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Abstract 

 Lagrange points are analytically proven to exist at certain positions in a two-body 

gravitational system, simply as a function of the gravitational force governing the motion of the bodies 

and the centrifugal potential due to rotation, providing regions of varying effective potentials. In a 

system involving interactions between the gravitational forces of multiple bodies however, the position 

of the Lagrange points ought to change. The purpose of this research project is to verify that the change 

does indeed occur when a new body is introduced, and compute the perturbation in the position of these 

points given various parameters.  

 

Keywords: Lagrange points, effective potential.  
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Chapter 1: Introduction 

Lagrange points are points of equilibrium that exist in the vicinity of two orbiting masses. 

The first three points were discovered by Leonhard Euler in 1765, while the latter two were found by 

the French-Italian mathematician Joseph Louis Lagrange in 1772. In his publication on the three-

body problem, Lagrange discovered a method that considered only the distance between the three 

bodies rather than their absolute positions [1]. He was able to prove five different configurations in 

which three bodies can be arranged in such a way that their motion is periodic. The stable points in 

the configuration were thus named in his honor.  

In a two-body non-inertial rotational frame as shown in the figure below, the five equilibrium 

points are at the given locations indicated by a red circle. 

 

Figure 1: Lagrange Points [2] 

a. Rationale: 

 Lagrange points have applications in space exploration for positioning of satellites, as some 

of them are pseudo-stable locations at which the effective net force is zero. Thus probes stationed at 
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such points will be able to maintain their orbits with less positioning required, and thus less fuel 

consumption. The James Webb Telescope, a satellite that NASA is launching in 2021 will be 

positioned at the point L2 in the Earth-Sun system. The points are also of interest in cosmology as 

mass accretion models for binary stars involve these points. A possible interplanetary transport 

network based on the position of the points is also an aspect of interest [3].  
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Chapter 2: Literature Review 

a. Analytic Positions  

The five equilibrium points in the vicinity of two orbiting masses arise analytically due to a 

solution of the three-body problem. Through assumptions that convert the problem into a restricted 

three-body problem, and using the equation of motion, various periodic solutions have been obtained 

by physicists and mathematicians alike.  

 

Figure 2: The three-body problem [4] 

As shown in the given schematic in Figure 2, given two masses M1 and M2, occupying positions 

of r1 and r2, the total force exerted on a third mass m at a position r is given by; 

    (i) 

Using the equation of motion, accounting for a co-rotating frame of reference, the centrifugal 

force and the Coriolis force, the effective force can be derived from a generalized potential of the 

following form, 
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   (ii) 

where Ω is the angular frequency and U is the gravitational potential. The second term in the 

expression is the Coriolis force, and the third term the centrifugal force. Given the Coriolis force is 

present only in an inertial frame, we assume that it is nonexistent through our solutions. Solving for 

two-dimensional Cartesian coordinates originating from the center of mass of the system, the points 

of equilibrium can be analytically found to give the following solutions for the first three points.  

(iii) 

where R, is the distance between two bodies, α is the mass ratio of the two bodies defined as, 

      (iv) 

 Balancing the radially outward centrifugal force with the gravitational force exerted by the 

two masses and using appropriate projection vectors one can derive the position of the remaining 

points, which are equidistant from both bodies. The solution to the last two points in the same 

coordinate system is given by; 

  (v) 
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 In terms of positioning of the points in a three-body system, the point L4 and L5 are leading 

or following the planet’s direction of rotation. A look at the shape of an effective potential plot can 

help determine if the point is at a stable region, based on whether it is at a hill, valley or saddle. 

Valleys are located in local minimums, making them fairly stable while saddle points are less stable, 

and hill points unstable. The potential surface will have Lagrange points located in positions where 

the gradient is zero. Analytically solving the functions for small perturbations in the orbit by 

linearizing the equation of motion about each solution has shown that L1, L2 and L3 are not stable 

regions of potential. L4 and L5 however, are stable because of the Coriolis force [5]. 

b. Effective Potential  

The effective potential is a combination of multiple potentials in a system into a single potential. 

In a non-inertial reference frame for the restricted three body problem, only the gravitational 

potential energy and the centrifugal potential are incorporated.  

The following case illustrates the concept of combined effective potential in the case of the Earth-

Moon system with a test mass. The first equation Utot is a combination of the gravitational potential of 

both bodies along with the centrifugal effect of the rotating reference frame, a version of equation (ii) 

without the Coriolis force. The second equation is a reduced version of the first equation which shows 

the paraboloid geometry of the centrifugal component, where μ is the mass ratio, r1 the distance 

between the test mass and m1, and r2 the distance between the test mass and m2, l is the angular 

momentum while x and y are the Cartesian coordinates of the test mass [6]. The given graphs after the 

equations are potentials plots sliced across an axis for better visual representation. 
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Figure 3: Combination of effective potential energy, as shown in [6]. 
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Chapter 3: Methodology 

a) Computational Approach  

The computational portion of the project was built off of previous work done on the influence of 

other heavenly bodies on satellite positioning [7]. Data from NASA’s New Horizons program was 

used to obtain positioning of various celestial bodies in our solar system. The current project was 

initially geared toward determining the perturbations based on the positioning of live space missions 

and the position and mass parameters of Earth and nearby planets. The computations based on this 

proved to be challenging as the mass of the Sun, a colossal 1.989×1030 kg dwarfed the potential 

values for all planets except for the outer gas giants. The approach was then shifted to observe the 

position of the points and see if changes in potential values were encountered when simulating 

systems with effective potential values that could be turned into something tangible. Celestial 

systems as the ones used for the computations do exist in the form of binary star systems or 

circumbinary planet systems but are rare. The color plots and the mesh plots generated based on the 

effective potential values of these systems were very helpful in visualizing the changes, while 

numerical analysis was used to measure these changes.  

 The computational approach focused on the points L4 and L5, as these are the most 

interesting given the extended stability.  

i.Solar System:  

The actual parameters of the gas giants, Jupiter and Saturn, were used to calculate the effective 

potential for Jupiter’s L4 and L5 Lagrange points, home to the famous Trojan Asteroids. The 

gravitational potential for Saturn was then added and the effective potential values were checked for 

possible changes to the position of the points. 
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Figure 4: Trojan Asteroids indicating Jupiter’s L4 (group on the left) and L5 point (group on 

the right), from [8].  

ii.Three-body system  

A three-body system was created with a massive body at the center of our coordinate system, 

with a given mass of 99. It was orbited by a smaller body of mass 1 at a radius of 1. The value for 

the gravitational constant was treated as being 1. The third body in this case is simply a test mass, 

and we proceed with the assumption that it does not have a gravitational field of its own. The center 

of mass was firstly computed and factored into the potential formula to get a better value for the 

separation distance. The derived formulas for the position of the Lagrange points in equations (iv) 

and (v) assumed the position of the smaller body to be along the x-axis, therefore a rotational matrix 

was factored into the potential formula to account for different positions.  
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iii.n-body system  

Once the expected positions for the Lagrange points were verified for a three-body system, the 

code for the effective potential was adjusted to factor in the gravitational potential from other bodies. 

The new bodies had a position that could be rotated, while maintaining the initial position of the first 

two bodies by assuming a co-rotating frame with respect to the first two bodies. The maximum value 

for the effective potential was then determined, which was the coinciding position of the points 

depending on whether the point is following or leading the planet in its motion. A lot of other bodies 

could in theory be incorporated as the assumption was a non-inertial frame, however stable 

configurations of such mass ratios are rare in the cosmos and addition of more masses could push the 

study into more hypothetical systems than physically plausible ones. The plots also have the position 

of the bodies denoted, but these are not to scale.  
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Chapter 4: Results: 

i. Solar System  

The following table lists the initial values for the Sun, Jupiter and Saturn acquired from the New 

Horizons program, based on the positions of the entities on April 27, 2012 [9].  

Object X (AU) Y (AU) Mass (kg) 

Sun 0 0 1.9891x1030 

Jupiter 0.7719208023413598 -5.15967904259965 1.8986x1027 

Saturn  -8.487285193590072 3.763807729501108 5.6846x1026 

Table 1: Initial Conditions 

The following plot in Figure 6 depicts the effective potential that results when only Jupiter and 

Sun are considered as a two-body system.  
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Figure 5: The effective gravitational potential is shown with L4 and L5 (white), the Sun 

(yellow) and Jupiter (red). 

Lagrange Point X (AU) Y (AU) 

L4  4.85363888 -1.90641688 

L5  -4.08319003 -3.24342333 

Table 2: Position of the points. 

When Saturn is included in the computation, the effective potential field is distorted as can be 

seen in Figure 7. It may not be visible that the points have shifted, though some asymmetry in the 

potential field is evident. The determination of the position of the maximum effective potential 

indicated a change had indeed occurred in the location of the points.  
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Figure 6: The effective gravitational potential is shown with L4 and L5 (white), the Sun 

(yellow), Jupiter (red) and Saturn (Orange). 

 

Changed Lagrange Point X (AU) Y (AU) 

L4 4.8511 -1.9074 

L5 -3.8899 -3.4693 

Magnitude of Deviation: 0.00272258  0.29729 

Table 3: Changed position of the points.  

 

 

 

ii. N-body  

The first simulation utilized the following parameters  

Object X (AU) Y (AU) Mass  

M1 0 0 99 

M2 1 0 1 

Table 4: Initial Conditions 

This two body test system was developed for a mass ratio of 99:1. While not as dominant as the 

actual solar mass, the size of the central mass enables the center of mass for the system to be 

approximated by its location.  
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Figure 7: Mesh plot of the effective potential, with the L4 and L5 points shown in white. 
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Figure 8: Color plot of the position of L4 and L5. 

Lagrange Point X (AU) Y (AU) 

L4  0.49 0.866025388 

L5  0.49 -0.866025388 

Table 5: Position of the points. 

The effective potential field depicted in the previous section was then reassessed after the 

introduction of a third body. This body, denoted as M3, had a mass of 2 (in units where the central 

body has a mass of 99 and the original orbiting body has a mass of 1). The body of mass 2 was 

placed at a radius from the central body that is triple that of the original orbiting body.   
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a) M3 at (3,0) 

In this simulation, the object M3 is along the x-axis at coordinates (3,0).  

 

Figure 9: The effective gravitational potential is shown with L4 and L5 (white), M1 (yellow), 

M2 (blue) and M3 (Red). 

Changed Lagrange Point X (AU) Y (AU) 

L4 0.0902 0.9925 

L5 0.0902 -0.9925 

Table 6: Changed position of the points.  

 L4 (AU) L5 (AU) 

Magnitude of Deviation: 0.419328 : 0.419328 

Table 7: Magnitude of Deviation.  
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b) M3 at (3/√2, 3/√2) 

In this simulation, the object M3 has rotated by 45 degrees and is now at (3/√2, 3/√2)).  

 

Figure 10: The effective gravitational potential is shown with L4 and L5 (white), M1 

(yellow), M2 (blue) and M3 (Red). 

Changed Lagrange Point X (AU) Y (AU) 

L4 -0.0702 1.0125  

L5 0.2907 -0.9524 

Table 8: Changed position of the points.  

 L4 (AU) L5 (AU) 

Magnitude of Deviation: 0.579033 0.217212 

Table 9: Magnitude of Deviation.  
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c) M3 at (0, 3) 

In this simulation, the object M3 has rotated by 90 degrees and is now at (0, 3).  

 

Figure 11: The effective gravitational potential is shown with L4 and L5 (white), M1 

(yellow), M2 (blue) and M3 (Red). 

Changed Lagrange Point X (AU) Y (AU) 

L4 0.7118 0.6917 

L5 0.4511 -0.8922 

Table 10: Changed position of the points.  

 L4 (AU) L5 (AU) 

Magnitude of Deviation: 0.282107 0.0468862 

Table 11: Magnitude of Deviation.  
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d) M3 at (-3/√2, -3/√2) 

In this simulation, the object M3 has rotated by 225 degrees and is now at (-3/√2, -3/√2)).  

 

Figure 12: The effective gravitational potential is shown with L4 and L5 (white), M1 

(yellow), M2 (blue) and M3 (Red). 

Changed Lagrange Point X (AU) Y (AU) 

L4 0.5113 0.8521 

L5 0.6516 -0.7519 

Table 12: Changed position of the points.  

 L4 (AU) L5 (AU) 

Magnitude of Deviation: 0.0254481 0.197836 

Table 13: Magnitude of Deviation.  
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Chapter 5: Conclusions 

There were visible perturbations in the Lagrange points L4 and L5 in all scenarios where 

additional gravitational potentials were introduced. For the test involving actual astronomical 

parameters, Saturn was added to the two-body system of the Sun and Jupiter.  Location 

perturbations of Lagrange points with magnitude 0.00272258 (L4) and 0.29729 (L5) were 

identified.  In the model system, magnitudes ranging from a mere 0.0468862 [L5, M3 at (0,3] to 

a rather significant 0.579033 [L4, M3 at (3/√2, 3/√2)] were identified. The magnitude of the 

difference was relatively low for the astronomical parameters. This is mostly due to the 

dominance of the Sun’s gravitational potential. When the mass ratios were not as extreme, the 

difference in positions was quite significant, enough to completely change the location of any 

potential equilibrium for an object intended for the Lagrange point.  

One issue that could be better addressed in future explorations of the topic would be to 

account for the change in the center of mass due additional bodies. Similar test systems could be 

utilized in dynamical simulations in which the positions of the involved bodies are updated using 

gravitational forces and appropriate numerical methods for advancing differential equations [10]. 

Effective potential tests in different dynamic systems that have known stable configurations, 

such as the previously mentioned circumbinary orbit or a figure eight orbit would also be 

potential future projects of interest.  
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Appendix A: Code 

FORTRAN file gravp.f 

subroutine gravp(nbod,v,rpt,r,m,potl) 

 implicit double precision(a-h,o-z),integer(i-n) 

 double precision rpt(3),r(10,3),m(10) 

c G in AU,day from original ss.f code via wikipedia on G 

 g=1.488180714e-34 

  

c a= the distance between two bodies 

 a=sqrt((r(1,1)-r(2,1))**2+(r(1,2)-r(2,2))**2) 

 cosiv=r(2,1)/(sqrt(r(2,1)**2+r(2,2)**2)) 

 sinev=r(2,2)/(sqrt(r(2,1)**2+r(2,2)**2)) 

c om=Reduced Mass Ratio 

 om=m(1)/(m(1)+m(2)) 

c compute potential of the body at the center.  

 term2=-om/sqrt((rpt(1)/a+cosiv*(1-om))**2+(rpt(2)/a+sinev*(1-om))**2) 

c centrifugal potential due to only earth and sun 

 term3=-0.5*(((rpt(1)**2)/a**2)+((rpt(2)**2)/a**2)) 

 potl=0 

 do 110 inb=2, nbod 

   cosiv=r(inb,1)/(sqrt(r(inb,1)**2+r(inb,2)**2)) 

   sinev=r(inb,2)/(sqrt(r(inb,1)**2+r(inb,2)**2)) 

   a=sqrt((r(1,1)-r(inb,1))**2+(r(1,2)-r(inb,2))**2) 

c om=Reduced Mass Ratio 

   om=m(1)/(m(1)+m(inb)) 

c compute m2/abs(r-r1) 

   term1=(-1+om)/sqrt((rpt(1)/a-cosiv*om)**2+(rpt(2)/a-sinev*om)**2) 

   potl=potl+term1 

 110 continue 

 potl=potl+term2+term3 

 return 

 end   

 

MATLAB colorplot.m  

dat = load('outputs/outse'); 
  

[height, length] = size(dat); 

%Finding the intervals 

dx=dat(((height)^.5+1),1)-dat(1,1); 
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dy=dat(2,2)-dat(1,2); 
  

%creating a vector x with all the needed divisions  

x=[dat(1,1):dx:dat((height),1)]; 

%Fixing the floating-point arithmetic issue of 1x399 

x=[x,dat(height,1)]; 
  

%same with y 

y=[dat(1,2):dy:dat(sqrt(height),2)]; 

y=[y,dat(sqrt(height),2)]; 
  

%create a new matrix to have values for potential 

potl=zeros(sqrt(height),sqrt(height)); 

for ix=1:sqrt(height); 

        for iy=1:sqrt(height); 

            potl(ix,iy)=dat(sqrt(height)*(ix-1)+iy, 3); 

        end 

end 
  

%Mesh & Contour plot 

figure 

mesh (x, y, potl','FaceAlpha','0.5') 

xlabel('x in AU') 

ylabel('y in AU') 

zlabel('Effective Potential') 

title('Potential in a gravitational system') 

axis tight 

colorbar 

zlim([-3 max(max(potl))]) 

colormap(jet)    % change color map 
  

maximum = max(max(potl)); 

[px,py]=find(potl==maximum) 
  

figure 

hold on 

imagesc(x,y',potl',[-1.6 max(max(potl))]) 

xlabel('x in AU') 

ylabel('y in AU') 
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grid on 

axis('equal') 

set(gca,'YDir','normal') 

colormap('Jet') 
  

%Plotting maximum point/points 

for i=1:size(px) 

    scatter(x(px(i)), y(py(i)),'w','filled') 

end 
  

% potlex=potl; 

% potlex(:,1:200)=-100; 

% maximum = max(max(potlex)); 

% [px,py]=find(potlex==maximum) 

% x(px) 

% y(py) 
  

%scatter(x(px), y(py),'MarkerEdgeColor',[0 0 

0],'MarkerFaceColor',[1 1 1],'LineWidth',1) 
  

%Orbit as needed 

viscircles([0 0],3,'LineStyle',':', 'Color', 'k', 

'LineWidth', 0.1) 
  

%PLotting the position of the planets/sun 

%Jupiter 

scatter(7.719208023413598E-01,-5.159679042599656, 40, 

'MarkerEdgeColor',[0.7 0.2 

0.3],'MarkerFaceColor',[0.6350 0.0780 

0.1840],'LineWidth',1) 

%Saturn 

scatter(-8.487285193590072E+00,3.763807729501108, 40, 

'MarkerEdgeColor',[0.9 0.3 

0.09],'MarkerFaceColor',[0.8500 0.3250 

0.0980],'LineWidth',1) 

%Sun/M1 

scatter(0, 0, 50,'MarkerEdgeColor',[1 0.8 

0.2],'MarkerFaceColor',[0.9290 0.6940 

0.1250],'LineWidth',1) 
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%"M2" 

scatter(1, 0, 20,'MarkerEdgeColor',[0 0.5 

0.8],'MarkerFaceColor',[0 0.4470 0.7410],'LineWidth',1) 

%"M3" 

scatter(0, 3,'MarkerEdgeColor',[0.7 0.2 

0.3],'MarkerFaceColor',[0.6350 0.0780 

0.1840],'LineWidth',1) 
  

hold off; 
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