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IntroductIon 
Many species are undergoing range shifts and inhabiting 

new areas because global warming is changing environmental 
conditions (Hastings et al. 2020, Pinsky et al. 2020, Osland 
et al. 2021). Many of those species are moving into habitats 
at higher latitudes, shifting their geographic ranges poleward 
(Hastings et al. 2020, Pinsky et al. 2020, Osland et al. 2021). 
For example, West—Indian manatees, Trichechus manatus, are 
a tropical, herbivorous marine mammal that has become in-
creasingly common in the northern Gulf of Mexico (nGOM), 
which are sub—tropical waters that historically were not part 
of the primary range for manatees in the southeastern United 
States (Hieb et al. 2017, Cloyed et al. 2021a, 2022). In many 
ways, manatees are a flagship species in the accelerating tropi-
calization of the nGOM, where the number of plant and ani-
mal species with tropical ranges are increasing (Fodrie et al. 
2010, Heck et al. 2015, Osland et al. 2021). Because manatees 
are large, herbivorous, marine mammals, they can have large 
impacts on aquatic plant communities and local ecosystems 
(Hauxwell et al. 2004, Lefebvre et al. 2017, Littles et al. 2019). 
Understanding how manatees use habitats in the nGOM will 
provide important insights into how manatees affect or may be 
affected by both tropical and native vegetation species in local 
communities as their range shifts.

Manatees forage in different types of habitats throughout 
their range, and these habitats can be distinguished by differ-
ences in stable carbon and nitrogen isotope ratios (Moncreiff 
and Sullivan 2001, Wissel et al. 2005, Reich and Worthy 2006, 
Vaslet et al. 2012). Manatees typically forage on a variety of 
available dietary resources across habitat types in the nGOM 
primarily during warm seasons (Lefebvre et al. 1999, Reich 
and Worthy 2006, Cloyed et al. 2022) and spring and autumn 
migrations to and from the region (Hieb et al. 2017, Cloyed et 
al. 2019, 2022). These habitats include freshwater or riverine 
habitats, estuarine habitats that include a mixture of riverine 
and marine influences, and seagrass habitats that are generally 
found in more marine—influenced sections of estuaries and 

adjacent nearshore areas (Reich and Worthy 2006, Alves—
Stanley et al. 2010). The δ13C values from these habitats also 
form a gradient. Submerged aquatic vegetation (SAV) from 
estuarine habitats dominated by freshwater flow from inland 
sources have δ13C values ranging from —28‰ to —34‰ (Wis-
sel et al. 2005, Reich and Worthy 2006, Alves—Stanley et al. 
2010, Cloyed et al. 2021b). The SAV from lower parts of estu-
aries typically have higher δ13C values ranging from —18‰ to 
—24‰, with areas more heavily influenced by marine waters 
having higher δ13C values. Seagrass habitats that are typically 
found in more marine influenced parts of estuaries have the 
highest δ13C values ranging from —8‰ to —14‰ (Peterson 
and Fry 1987, Moncreiff and Sullivan 2001, Reich and Worthy 
2006, Vaslet et al. 2012, Wilson et al. 2017). Although δ15N 
values typically vary with trophic level, increases in δ15N val-
ues can indicate freshwater association or potential nutritional 
stress (Wissel et al. 2005, Hatch 2012). Seagrass meadows are 
common in the more tropical waters of Florida but do occur 
in the nGOM, especially in the Mississippi Sound (Lefebvre 
et al. 1999, Handley and Lockwood 2021). We generally know 
the habitats that manatees use in the nGOM, but we know 
little about the individual variation in habitat use and how 
frequently individuals may move among freshwater or ma-
rine—dominated estuarine habitats and more marine seagrass 
habitats.

Here, for the first time we analyzed stable carbon (δ13C) 
and nitrogen (δ15N) isotope values in facial whiskers (perioral 
facial vibrissae) which aid in feeding (Marshall et al. 1998), 
to define individual variation in habitat use by West Indian 
manatees stranded in the nGOM. Perioral facial vibrissae are 
keratin based, metabolically inert, and estimated to grow at 
a rate of about 0.51 mm/d (Garcés‐Cuartas et al. 2020), with 
a range between 0.47 and 0.55 mm/d among animals in con-
trolled feeding studies. As they grow, the vibrissae may incor-
porate stable isotopes that correspond to manatee diets for-
aged from associated habitats at a similar rate, with the root 
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representing the most recent diet and the tip the most distant 
(Zhao and Schell 2004). To determine if vibrissae record stable 
isotope ratios on timescales comparable to other tissues, we 
compared the isotope values in different segments of the vi-
brissae to values in liver, skin, and muscle that have varying 
isotopic incorporation rates (Alves—Stanley and Worthy 2009, 
Kurle 2009, Martínez del Rio et al. 2009). We predicted that 
isotope values in the root segment of vibrissae would be simi-
lar to values in liver because liver typically has faster isotopic 
incorporation than other tissues (turnover of 1—3 weeks; Kurle 
2009, Martínez del Rio et al. 2009); values in mid—vibrissae 
to the tip would correspond to values in skin (turnover rate 
of 3—6 weeks; Alves—Stanley and Worthy 2009); and values 
in the tips of longer vibrissae could correspond to the values 
in muscle, which typically has slower incorporation than skin 
(6—8 weeks; Kurle 2009, Martínez del Rio et al. 2009). Facial 
vibrissae are a promising supplement or alternative to the use 
of soft tissues for stable isotope analyses because they resist 
rapid decomposition, are relatively easy to collect and store 
compared to soft tissues, which often require a necropsy to 
obtain, and could reduce the need to collect multiple tissues 
to define temporal variation in resource use (Zhao and Schell 
2004, Newsome et al. 2010, Cloyed et al. 2023).

MaterIals and Methods
Study Site and Stranding Information 
Manatees used in this study stranded dead along the nGOM 

coast between Bay St. Louis, MS and the Pensacola Bay area of 
the Florida panhandle (Figure S1). Of the 14 stranded mana-
tees, 7 stranded in Mississippi, 5 in Alabama, and 2 in Flori-
da, and 12 individuals were males and 2 were female. Twelve 
strandings took place during the cold season (November—
April), and individuals that stranded during these months all 
had evidence of cold stress, even if they had other cause of 
deaths (e.g., trauma from vessel collisions). Two strandings that 
took place during the warm season (May—October) were caused 
by trauma and had no evidence of cold stress. Strandings oc-
curred in a combination of coastal areas, barrier islands, and 
embayments like Pensacola Bay, Mobile Bay, and Mississippi 
Sound. All strandings were responded to by the Alabama Ma-
rine Mammal Stranding Network (ALMMSN) at the Dauphin 
Island Sea Lab under US Fish and Wildlife Service Letters of 
Authorization #LOAFC770191—H and #MA66525C. 

Manatee Tissue Samples 
We sub—sampled facial vibrissae and ~5 g each of liver, ab-

dominal muscle, and skin from frozen samples (—20°C) that 
were initially collected during post—mortem examinations 
(necropsies) of manatees at the time carcasses were recovered. 
The longest available facial vibrissae were selected from each 
manatee. Each vibrissa was thoroughly cleaned by soaking in 
soapy (SparkleenTM, Fisher Scientific, Pittsburg, PA, USA) wa-
ter for 72 h to loosen residual skin and fat, scrubbed with a 
soft toothbrush and isopropyl alcohol for final gross tissue re-
moval, and submerged for 5 min in 2:1 chloroform:methanol 
to remove contaminating lipids from the surface. After clean-

ing, lengths of vibrissae were measured, and vibrissae were cut 
into 0.5 cm segments, estimated to represent 9—11 d periods 
of time, when the error rate of these growth rates were fac-
tored into the calculation (Garcés‐Cuartas et al. 2020). Each 
segment was labeled alphabetically from root to tip. 

Facial vibrissae and all soft tissues were dried in an oven for 
48—72 h, until thoroughly dry. Vibrissae were homogenized us-
ing a hand press (Parr 2811 Pellet Press, Parr Instrument Com-
pany, Moline, IL, USA), and soft tissues were homogenized 
using mortar and pestle. Samples were weighed to 1.0 mg (0.2 
mg) and packed into 3x5 mm tin capsules. Soft tissue samples 
were not lipid—extracted because previous research found this 
step unnecessary (Cloyed et al. 2020). Samples were sent to the 
University of California, Davis Stable Isotope Facility for anal-
ysis on a PDZ Europa ANCA—GSL elemental analyzer with a 
PDZ Europa 20—20 isotope—ratio mass spectrometer (Sercon 
Ltd, Cherise, UK). Isotopic values were expressed using delta 
notation (δ) in parts per thousand (‰), where δX = (R

sample
 / 

R
standard

 – 1) x 1,000, with R
sample

 and R
standard

 representing the 
molar ratios of C13/C12 and N15/N14 of the sample and standard 
reference material, respectively. The reference material was Vi-
enna—Pee Dee belemnite for carbon and atmospheric N

2
 for 

nitrogen. Measurement standard deviations of these references 
were 0.04‰ for δ13C and 0.04‰ for δ15N, which were done 
in—house and based on chitin (n = 11), amaranth flour (5), caf-
feiene (6), enriched alanine (6), glutamic acid (6), keratin (5), 
and nylon powder (37). 

Analyses 
We examined the δ13C and δ15N values along the length 

of each vibrissa, from root to tip, with segment a, nearest the 
root, corresponding to the most recent 10 d (±1 day) period 
before stranding, and each subsequent segment correspond-
ing to subsequent 10 d periods. We compared the δ13C values 
of each segment to known values in freshwater, marine, and 
seagrass sources in the nGOM (Moncreiff and Sullivan 2001, 
Wissel et al. 2005, Vaslet et al. 2012, Marth et al. 2023) to de-
termine if individual manatees foraged among these habitats 
in the weeks and months prior to stranding. Although mana-
tees are herbivores and should exhibit little variation in δ15N 
(reflecting a consistently low trophic level), we compared δ15N 
values along the length of vibrissae to test for variation in basal 
δ15N values among forage habitats and for signs of nutritional 
stress (Hatch 2012, Patterson and Carmichael 2018, Funck et 
al. 2020), which may be detectable in animals experiencing 
cold stress syndrome (Bossart et al. 2003, Martony et al. 2019). 

We used t—tests to determine if δ13C values in different seg-
ments of vibrissae were similar to the δ13C values in the dif-
ferent soft tissues based on their isotopic incorporation rates. 
We calculated the difference of δ13C values between vibrissae 
and each soft tissue and then used t—tests to compare whether 
those differences were different from 0. To account for mul-
tiple comparisons within each soft tissue, we used a Bonfer-
roni approach to adjust p values. We assumed an alpha = 0.05, 
and each tissue had 4 comparisons (segments ab, bc, cd, de), so 
adjusted alphas = 0.013 (0.05/4) and p values below this thresh-
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old were considered significant. Different tissues undergo dif-
ferential fractionation during metabolic processes leading to 
different isotopic values relative to diet, and we applied trophic 
discrimination factors to each tissue type based on previous 
studies. For δ13C values, we applied trophic discrimination fac-
tors of 2.50‰ for facial vibrissae, and 3.62‰, 2.78‰, and 
2.80‰ for liver, muscle, and skin, respectively (Stegall et al. 
2008, Alves—Stanley and Worthy 2009, Newsome et al. 2010, 
Tyrrell et al. 2013, Stricker et al. 2015). For δ15N values, we 
applied factors of 3.3‰ for vibrissae, and 3.90‰, 2.7‰, and 
0.35‰ for liver, muscle, and skin, respectively (Stegall et al. 
2008, Alves—Stanley and Worthy 2009, Newsome et al. 2010, 
Tyrrell et al. 2013, Stricker et al. 2015). We then averaged δ13C 
and δ15N values of pairwise segments (ab, bc, cd, and de) to 
characterize isotope values along the length of the vibrissae. 
We did not analyze beyond segment e because the majority of 
individuals had vibrissae with segments a — e. We calculated 
the difference in δ13C and δ15N values between each of those 
averaged pairwise segments and the δ13C and δ15N values in 
the soft tissues after the trophic discrimination factors had 
been applied. 

results
The longest available vibrissae from each manatee (n = 14) 

varied in length. One individual had 3 segments (a—c), one had 
4 segments (a—d), 10 had 5 segments (a—e), one had 6 segments 
(a—f), and one had 8 segments (a—h). Liver and skin samples 
were viable for analysis from 13 individuals and muscle from 
12. 

The δ13C values in manatee vibrissae ranged from about 
—30 to —14‰, with some individuals having little variation 
along the length of the vibrissae and others having dramatic 
shifts of 5−10‰ from the root to the tip (Table 1; Figure 1A). 
Many of the individuals with δ13C values that remained con-
sistent along their vibrissae had higher δ13C values (> —20‰), 
falling between the typical range of values in estuarine and 
seagrass sources (Figure 1A). Most individuals in which δ13C 
values changed showed a decrease in δ13C from values within 
the range of marine sources at the vibrissae root to values ap-
proaching freshwater sources at the vibrissae tip (Figure 1A). 
The individual with the longest vibrissa (8 segments) had δ13C 
values in the range of marine sources at the root that shifted 
toward freshwater sources mid—vibrissae before rising again 
toward the range of marine sources at the tip (Table 1; Figure 
1A). The δ15N values in manatee vibrissae also showed consid-
erable variation, ranging from about 1−8 ‰ (Table 1), with val-
ues in most animals decreasing 1—2 ‰ from root to tip (Fig-
ure 1B). In contrast, one individual had an increase in δ15N 
values of > 2‰ from the second segment (b) to the tip (Figure 
1B). Many of the individuals that had lower δ15N values had 
the highest δ13C values and stranded in MS or AL (Figure 1A, 
B), and many of the individuals with high δ15N values had low 
δ13C values (Figure 1A, B). Both FL individuals had relatively 
high δ15N values (Figure 1B).

The results comparing the differences between segments of 

vibrissae to soft tissues were complex (Table S1). For liver and 
skin, δ13C values were different between vibrissae segments 
and tissue (differences ≠ 0) at the root (ab) but became similar 
(differences = 0) moving towards the tip (de) (Table S1; Figure 

FIGURE 1. Isotope values along the length of individual manatee vibris-
sae from the root (a) to the tip (h). A. Carbon. B. Nitrogen.

TABLE 1. Mean stable carbon and nitrogen isotope values (± sd) for 
each vibrissae segment and soft tissue from manatees stranded in the 
northcentral Gulf of Mexico. Segment indicates 0.5 cm segments from 
root (a) to tip (h).

Tissue Segment         δ13C      δ15N  N

Vibrissae a —18.04 (3.62) 8.58 (1.58) 14

 b —18.57 (4.49) 8.25 (1.63) 14

 c —19.25 (5.58) 8.00 (1.67) 14

 d —18.95 (7.38) 7.82 (2.61) 13

 e —18.58 (8.53) 7.55 (3.18) 12

 f —23.56 (NA) 9.81 (NA) 2

 g —20.77 (NA) 9.94 (NA) 1

 h —18.59 (NA) 9.76 (NA) 1

Liver  —19.15 (3.65) 9.20 (1.24) 13

Skin  —18.99 (4.35) 8.14 (1.67) 13

Muscle  —17.59 (3.67) 7.19 (1.88) 12

https://aquila.usm.edu/cgi/viewcontent.cgi?filename=0&article=1707&context=gcr&type=additional&preview_mode=1
https://aquila.usm.edu/cgi/viewcontent.cgi?filename=0&article=1707&context=gcr&type=additional&preview_mode=1
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2A, C). In contrast, δ15N values were similar between vibrissae 
and liver at the root but were increasingly different towards the 
tip, but these differences were not significant (Table S1; Figure 

2D). A similar pattern of differences in δ15N 
values was observed between skin and along 
the length of vibrissae, but all values were dif-
ferent from zero (Figure 2F). The values in 
vibrissae segments and muscle were similar 
throughout the length of the vibrissae for both 
δ13C and δ15N (Table S1; Figure 2B, E). 

dIscussIon
The δ13C and δ15N values along the length 

of manatee facial vibrissae demonstrated varia-
tion in diet that reflected use of different for-
age habitats in the weeks and months prior to 
death. Differences in how δ13C values changed 
along the length of the vibrissae revealed 
considerable individual variation in forage 
habitat use by manatees, particularly variation 
along a habitat gradient from freshwater—in-
fluenced habitats at one end to seagrass beds 
in marine—influenced habitats at the other 
end and estuarine habitats with a mixture of 
freshwater and marine resources in the middle 
(Wissel et al. 2005, Reich and Worthy 2006, 
Vaslet et al. 2012, Cloyed et al. 2022). Mana-
tees are known to use a wide range of coastal 
and freshwater habitat types throughout their 
range, and in the nGOM are generally found 
in coastal or inshore habitats where submerged 
aquatic vegetation is readily available (Reich 
and Worthy 2006, Hieb et al. 2017, Cloyed 
et al. 2022). In general, manatees with high 
δ13C values that are indictive of foraging in 
marine habitats containing seagrass showed 
little change among vibrissae segments in our 
study. Many of these individuals stranded in 
Mississippi, where patches of seagrass are pres-
ent (Moncreiff 2007, Pham et al. 2014), and in 
addition to having high δ13C values, they also 
had low δ15N values. This combination of δ13C 

and δ15N values is highly indictive of a seagrass—based diet 
(Campbell and Fourqurean 2009, Barros et al. 2010). These 
manatees likely remained in marine and/or seagrass habitats 

FIGURE 2. Boxplots depict differences in stable iso-
tope values between averaged pairwise segments of 
vibrissae and various manatee tissues. Vibrissae seg-
ments range from root (a) to tip (e). A. Carbon isotopes 
in vibrissae and liver. B. Carbon isotopes in vibrissae 
and muscle. C. Carbon isotopes in vibrissae and skin. 
D. Nitrogen isotopes in vibrissae and liver. E. Nitrogen 
isotopes in vibrissae and muscle. F. Nitrogen isotopes 
in vibrissae and skin. Solid bars indicate median, boxes 
represent upper and lower quartiles, error bars repre-
sent 1.5*interquartile range. S−Significant at p < 0.013 
based on Bonferroni adjustment of Student t—test; NS−
nonsignificant based on Bonferroni adjustment of Stu-
dent t—test.

https://aquila.usm.edu/cgi/viewcontent.cgi?filename=0&article=1707&context=gcr&type=additional&preview_mode=1
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in the weeks and months prior to stranding. Manatees that had 
lower δ13C values generally showed the greatest change in δ13C 
values (typically increasing) along vibrissae, suggesting move-
ment from freshwater—influenced towards marine—influenced 
estuarine habitats. Additionally, many of these individuals 
with low δ13C values also had high values of δ15N, suggesting 
that these large variations in δ15N values represent differences 
in habitat baselines. These results demonstrate the flexibility 
manatees can exhibit in their habitat use and associated forag-
ing and their likelihood to move among a range of habitats 
within the scope of 1—3 weeks (Cloyed et al. 2021a). Although 
our sample size is relatively small given the spatial and tempo-
ral scales at which they were collected, our results represent a 
high degree of variation in habitat use and in movement among 
habitats among individuals, which is possible given the known 
behavior of manatees to use and move among these habitats 
(Lefebvre et al. 1999, Morales—Vela et al. 2000, Alves—Stanley 
et al. 2010). Furthermore, the relatively common change from 
lower to higher δ13C values may reflect movements from up-
per estuarine, inshore habitats to more coastal habitats along 
which manatees would travel during their migration to thermal 
refugia located in peninsular Florida where they typically over-
winter (Cloyed et al. 2019, 2021a). This idea is supported by 
the fact that most animals in this study (n = 12) died between 
November to late January, overlapping with the late fall migra-
tion period for manatees leaving nGOM waters (Cloyed et al. 
2019, 2021a).

The increase in δ15N values from tip to root of most vibris-
sae may be caused by nutritional deficiencies associated with 
cold stress syndrome in manatees (Hatch 2012, Martony et al. 
2019). All but 2 of the manatees in our study either died from 
cold stress or had evidence of cold stress syndrome, even if their 
direct cause of death was something else (e.g., trauma from ves-
sel collision). Cold stress occurs when manatees are exposed 
to water temperatures < 20°C for prolonged periods (Bossart 
et al. 2003), and causes reduced metabolism, nutritional de-
ficiency, emaciation, and eventually starvation (Bossart et al. 
2003, Martony et al. 2019). Organisms undergoing nutritional 
stress and starvation often pull energy from internal reserves 
such as fat and muscle (Hatch 2012). The result is an increase 
in δ15N values due to catabolic processes that can mimic dietary 
consumption at higher trophic levels (Hatch 2012, Bowes et al. 
2014, Funck et al. 2020). Of note, δ15N values also increased 
slightly at the vibrissae root for the one animal that died during 
the warm season. This warm season animal increased 1.5‰ 
in δ15N, whereas many cold stressed animals had increased > 
1.5‰. In these cases, other diagnostic criteria are needed to in-
dicate cold stress because increased δ15N values alone may indi-
cate a shift into more freshwater—influenced parts of estuaries. 

Comparing isotopic values along the length of manatee vi-
brissae to those in soft tissues revealed an interesting pattern in 
isotopic incorporation in manatees. If manatee vibrissae grow 
at a rate of 0.51 cm/day (± 0.04 sd; Garcés‐Cuartas et al. 2020), 
then the isotope values along the length of the vibrissae should 
correspond to soft tissues, depending on how quickly those tis-
sues incorporate isotope values and given the tissue—specific 

discrimination factor. These patterns were different than ex-
pected in many cases. For example, δ13C values between vibris-
sae and skin were similar to the patterns with liver, suggesting 
both tissues may turnover on the order of 10–30 days, which 
is faster than the 1–2 months reported by a controlled feeding 
experiment on captive manatees (Alves—Stanley and Worthy 
2009, Kurle 2009). Some discrepancies between vibrissae seg-
ments and soft tissues maybe caused by the variation around 
vibrissae growth and isotopic incorporation rates. Growth rates 
of vibrissae maybe lower in wild manatees compared to those in 
captivity where growth experiments were performed. Addition-
ally, because there is evidence that some wild manatees in our 
study died from cold stress, associated nutritional stress may 
affect vibrissae growth. Vibrissae growth rates may, therefore, 
also likely vary seasonally, with higher rates during the warm 
season when manatees are consuming large quantities of food 
and lower in the cold season when metabolic rates and food 
intake are reduced. Similarly, δ15N values in skin were quite 
different from vibrissae, and this may be caused by incorrectly 
applied trophic discrimination factors. Of note, for liver and 
muscle, discrimination factors were determined from studies 
performed on taxonomically and ecologically similar species, 
but for skin, discrimination factors were obtained from the 
controlled feeding study (Alves—Stanley and Worthy 2009). 
Our data suggest that the values obtained from the controlled 
feeding study may not be accurate for wild manatees (Alves—
Stanley and Worthy 2009). Additionally, the discrimination 
factors that were available for vibrissae came primarily from 
carnivores, generally from pinnipeds and sea otters, and varia-
tion in discrimination factors between carnivores and herbi-
vores is unknown. It is also possible that discrimination factors 
may vary with other demographic factors such as sex or age, but 
most discrimination patterns do not differ between the sexes; 
and our animals were primarily males and none were calves, so 
it unlikely these factors had a meaningful effect on the analy-
sis (Kurle et al. 2014). Despite potential caveats to comparing 
stable isotopes in vibrissae to soft tissues, the pattern of differ-
ences in δ15N values along the length of the vibrissae is very 
similar to the pattern of differences in δ13C, suggesting that 
once the discrimination of δ15N in skin has been correctly ac-
counted for, turnover is likely to be on the order of 10–20 days 
(similar to the timescale defined using δ13C). 

This study is the first to use vibrissae for stable isotope analy-
sis in manatees. These tissues resist rapid decomposition that 
can complicate use of soft tissues from carcasses (the major 
source of manatee tissues broadly available for isotope analyses) 
and are relatively easy, safe, and inexpensive to collect. With 
additional study, it also may be possible to use individual vibris-
sae in place of multiple tissues to provide information on diet 
and habitat use from multiple points in time prior to strand-
ing. These data may be particularly informative to define shifts 
in habitat use following migration to or seasonal residence in 
regions like the nGOM to help define critical food resources 
and habitats in these areas outside core parts of their range in 
peninsular Florida. The Gulf of Mexico, in particular, is expe-
riencing warming at nearly twice the rate as oceans worldwide 
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(Wang et al. 2023). As such, the effects of climate change in 
the nGOM are coming into focus, and with the warming tem-
peratures come more tropical—associated species at higher lati-
tudes (Fodrie et al. 2010, Heck et al. 2015, Osland et al. 2021). 
Because manatees are large herbivores, they may have outsized 
effects on plant communities (Hauxwell et al. 2004, Lefebvre 
et al. 2017, Littles et al. 2019). Understanding where manatees 
forage and how they use habitats will help ecologists, conser-

vationists, and managers understand the food and habitat 
resources important to manatee conservation, as well as how 
manatees may affect the composition of future communities. 
Using a promising new tissue for monitoring, our study reveals 
that manatees use a range of forage habitats, from freshwater— 
to marine—influenced parts of estuaries to seagrass dominated 
habitats within the nGOM.
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