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Abstract 

Unmanned Aerial Vehicles (UAVs) are being extensively used in diverse sectors of the 

society for various tasks ranging from videography to an extremely sensitive situation such as first 

responders helping during a disaster. It has been seen that if a fleet of UAVs is deployed, they can 

perform a task quicker and more efficiently than a single UAV. With an increase in the number of 

UAVs, a problem arises of handling them with proper control structures. It has been studied that 

the Behavior Trees (BT) can be a better control architecture to handle the autonomous vehicles, as 

BTs are more reactive to changes. Being a fixed-rule decision model, there is still some bias on 

how a BT chooses its behavior. There has been some work to solve this issue by including the 

Reinforcement Learning (RL) technique for BTs so that agents can better learn their BTs and 

choose actions without bias. But this work only applies to a single agent system. Hence, we have 

proposed a solution on how multiple UAVs can apply RL in a cooperative scenario to learn their 

BTs. We show how the inclusion of communication between agents will impact the way an 

autonomous agent learns its BT. 

Keywords: UAVs, Behavior Trees, Coordinaition, Multi-Agents 
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Chapter 1:  Introduction 

Unmanned Aerial Vehicles (UAVs) have increasingly been used in a wide scope of 

applications, such as surveillance [1], farming [2], cartography [3], disaster management 

[4], wildfire tracking [5], cloud monitoring [6], structure supervision [7] and many more. 

As they can quickly cover an area by flying at high speed and altitude, they have been used 

extensively in many fields nowadays. The fact that UAVs can reach areas that are not 

feasible to people has made them the first choice to use even in sensitive applications such 

as first aid and emergency monitoring. 

UAVs are helping in various sectors; hence, people are interested to combine 

multiple UAVs to solve a problem more efficiently. Instead of using a single UAV, using 

multiple UAVs simultaneously can be extremely efficient as they can complete a task 

quicker and also cover a larger area. Multiple UAVs can accomplish far more in terms of 

mission duration, mission area, and even mission payload balancing [10], compared to a 

single UAV. Besides, they would be proficient in a variety of complex tasks that need a 

specific degree of collaboration and cooperation. This proficiency makes them ready to 

achieve a bigger range of tasks, which is achieved by working alongside each other by 

sharing vital information needed for the effective completion of the mission. The use of a 

single UAV is considered as a reduction of the system usefulness; since it has many flaws 

in various features compared to multi-UAV systems [8]. In recent years, a lot of work has 

been carried out to work on cooperative control for UAVs such as formation flying [17]. 

Still, some cooperative control problems need to be addressed such as coordinated target 

assignment and intercept [9]. 
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The capacities and jobs of multi-UAVs are advancing and require new ideas for 

their control [11]. New methods in arranging and execution are required to facilitate the 

operation of a fleet of UAVs. An overall control system architecture must likewise be built 

that can perform coordination of the UAVs and quickly reconfigure to account for changes 

in the environment of the fleet [12]. 

One such control system architecture used to control autonomous agents is 

Behavior Trees (BT). BTs were used traditionally in the computer gaming industry to solve 

the problem faced by complex control structures due to the ever-increasing complexity of 

game code. In computer science, control flow is the order in which individual statements, 

instructions, or function calls of a program are executed or evaluated. These programs use 

statements that change a program’s state. Since the state space of games started increasing, 

it was not feasible to use pre-existing control architectures such as Finite State Machines 

(FSM). 

There are still some shortcomings with BTs and their nodes. Even though a BT 

greatly improves the performance with growing complexity, it is still a fixed-rule decision 

model. To solve the problem of how to select actions and behaviors efficiently by 

autonomous agents in BTs, authors of [19] have come up with a way to incorporate 

Reinforcement Learning (RL) techniques in BT. This technique makes use of the RL 

algorithm so that an agent can learn an optimal policy which can then be used to make an 

efficient action selection. This existing technique for BTs, however, only works for a 

single agent problem. But there is no guidance on how to apply it in multi-agent problems. 

One way would be for each agent to ignore the other agent and carry out their respective 

works. However, this would fail to exploit the cooperative nature of our application. 
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The goal of this project is to study how multiple UAVs should apply RL in a 

cooperative setting to learn individual BTs. Hence, we suggest a novel solution to that 

problem by adding communication features to the RL state space and leveraging the Robot 

Operating System (ROS) message passing architecture that allows agents to take messages 

into account when conducting RL. We hope to understand whether the addition of extra 

communication helps agents to perform better in solving a problem. 
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Chapter 2: Background 

2.1 Finite State Machines (FSMs) 

An FSM is one of the basic mathematical models of computation. It consists of a 

set of states, transitions, and events, as shown in Fig. 1, which shows an example of an 

FSM designed to carry out a grab-and-throw task [14]. FSMs have been the standard choice 

of control structure while designing a task-switching structure for a long time [13]. FSMs 

are intuitive structures to understand. However, it is extremely difficult to manage once the 

scale of the program is increased. Historically, FSMs have also been used as a control 

architecture for many autonomous agents. An autonomous agent needs to be able to quickly 

and efficiently react to changes. Similarly, agents should enable the components that are 

developed to be independently tested to increase the modularity. By modular, we mean the 

degree to which a system’s components may be separated into building blocks, and 

recombined [22]. 

Fig. 1: Graphical representation of an FSM designed to carry out a simple grab-and-throw 
task. The initial state has a thicker border, and events names are given next to the 

corresponding transition arrows [14]. 

Since the complexity grows with the size, it is easier to develop the components, 

test it independently from each other. It has been argued in [14] that, unfortunately, there 
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is a tradeoff between reactivity and modularity that is inherent to FSMs. The state 

transitions on an FSM are one-way control transfers. The shortcomings of one-way control 

transfers have been discussed by the author of [15]. This inherent limitation of FSM is not 

scalable requiring many transitions between components. 

To combat the deficiency of FSM, people started using better control architecture 

such as BT. Isla puts forward the BT model [16], which significantly improves 

development efficiency. Using BTs instead of FSMs to switch tasks allows us to define 

actions as separate modules. Since BTs are executed in a certain way, it makes it reactive 

to any changes that may come in the way. Hence, BTs have become the most common 

architecture for autonomous agents and gaming industries. 

2.2 Behavior Trees (BTs) 

In simple terms, a BT is a paradigm in which we can structure the switching 

between different behaviors/tasks/actions in an autonomous agent. Computationally, a BT 

is a directed rooted tree, with internal nodes serving to direct control flow, while leaf nodes 

represent action execution or condition evaluation. 

The root is the top of the tree with no parent, while every other node has at least 

one parent. There are two types of internal nodes: control flow nodes and execution nodes. 

Control flow nodes have at least one child, whereas, the execution nodes do not have 

children. There are mainly three types of control flow nodes: selector node, sequence node, 

and parallel node. There are mainly two types of execution nodes: action node and 

condition node. Fig. 2 shows the various types of nodes used in this paper. 
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Fig 2: Various node types of a behavior tree 

Behavior trees start their execution from the root node passing ticks with a given 

frequency and then moving onto their children from left to right. The node is executed only 

if the tick is reached there. After that, the child may pass the tick onto its children, but they 

must return to the parent one of three status: Running (if the execution is not finished and 

has to continue), or Success (if the goal has successfully been achieved) or Failure. 

The sequence node routes the ticks to its children from left to right until one of its 

children returns either Failure or Running. After that, it returns Failure or Running 

accordingly to its parent. In this case, the remaining children do not receive the tick. It 

returns Success if and only if all of its children return Success. 

The selector node routes the ticks to its children from left to right until one of its 

children returns either Success or Running. After that, it returns Success or Running 

accordingly to its parent. In this case, the remaining children do not receive the tick. It 

returns Failure if and only if all of its children return Failure. 

The parallel node route the ticks to its children and it returns Success if M children 

return Success. It returns Failure if N - M + 1 children return Failure. It returns Running 

otherwise. Here, N is the number of children and M ≤ N is a user-defined threshold. 
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Similarly, an action node, when it receives a tick, executes a predefined command 

and it returns Success if/when the (multi-step) action is correctly completed. It returns 

Failure if the action fails to complete and it returns Running if it needs more steps to 

complete the task. When a condition node receives a tick, it examines a certain premise 

and returns Success or Failure based on its evaluation. The condition node never returns 

Running. 

There is an additional type of control flow node, called the Decorator. It has a single 

child and it alters the return status of its child according to a certain user-defined logic and 

also selectively ticks the child according to some predefined rule [18]. 

To help and avoid the unwanted re-execution of some nodes, nodes with memory 

have also been introduced. The main difference between the normal control flow nodes and 

the control flow nodes with memory is that the latter one can remember or store whether a 

child has returned Success or Failure. This helps to avoid the re-execution of the child until 

the whole sequence or selector node finishes in either Success or Failure. The memory is 

cleared out when the parent node returns either Success or Failure so that at the next 

activation all children are considered. Nodes with memory can be regarded as syntactic 

sugar as the same behavior can be achieved by making use of a combination of normal 

control flow nodes. 

2.3 Reinforcement Learning (RL) 

RL is a paradigm that allows an agent to learn from trial and error with no prior 

understanding of the environment. In simple terms, it is to learn how to map 

situations/states to optimal actions so that it can perform better and maximize a numerical 
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reward signal. In this type of learning, the learner is not told what to do and what actions 

to take but instead must figure out which action to perform so that they can accumulate 

the most reward by taking those actions.  

Technically, RL problems are categorized as Markov Decision Processes or MDPs. 

MDPs are a classical formalization of sequential decision making, where actions impact 

not just immediate rewards, but also subsequent states or situations, hence, ultimately 

affecting future rewards. In this sense, MDPs involve delayed reward and the need to 

tradeoff immediate and delayed rewards [20]. 

Here, the learner or the one to make the decision is called an agent. The agent 

interacts with the outside world and everything outside the agent is known as the 

environment. So, the agent continuously interacts with the environment by selecting 

certain actions to perform and then the environment responds to these actions and presents 

the agent with a new situation or state to face. Moreover, the environment also provides 

an agent with special numerical values known as the reward. The agent then seeks to 

maximize that reward over time by its choice of actions. Fig. 3 shows how the agent and 

environment interact in MDPs. 

Fig. 3: The agent–environment interaction in a Markov decision process [20] 

An MDP is given by the tuple < S, A, R, P >, where S denotes the set of visible 

environmental states that an agent can be in at any given time t. A is the set of actions that 

the agent can choose from at any state. In each discrete time step t, the agent senses the 
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current state st selects a particular action a and executes it. Then, the environment responds 

to the action performed by the agent, returns the reward R and also generates a successor 

state st+1. R: S  A → R is the reward function, that is., R (s, a) specifies the reward from 

the environment that the agent gets for executing action a  A in state s  S. P: S  A  S 

→ [0, 1] is the state transition probability function which specifies the probability of 

reaching the next state in the Markov chain with that particular action selected by the agent. 

The main goal of the agent is to learn a policy  : S → A that maximizes not the 

immediate reward, but the cumulative reward in the long run. This is based on the currently 

observed state st to select the next action at. To be able to maximize the sum of current and 

future rewards, almost all RL algorithms involve estimating value functions defined by V . 

The value function of a state s under a policy  is denoted by (s) and defined as 

the expected sum of the rewards when starting in s and following  thereafter. Formally 

we can define (st) =  [R(st, (st)) +  R(st+1, (st+1)) + …] where st, st+1, … are 

successive samplings from the distribution P following the Markov Chain with policy  

[3]. Here,  is a parameter, 0    1, called the discount rate which determines the present 

value of future rewards. Similarly, action-value function for policy  given by Q is defined 

as: 

Q(s, a) = R(s, a) +  max ∑ 𝑃(𝑠, 𝑎, 𝑠 ’)V(𝑠’) (1)𝑠’ 
 

We define Q(s, a) as the value of taking action a in state s under a policy , which 

is the expected sum of the rewards when the agent starts from state s at step t, executes the 

action a, and thereafter follows the optimal policy. The final optimal policy is calculated 

as 

9 



 

 
 

        

   

    

    

      

 

 

  

  

    

   

       

    

          

     

   

 

 

        

    

 

  

  

          

     

     

     

   

(s) = arg max 𝑄(𝑠, 𝑎) (2)
𝑎 

This means that we want the agent to learn a policy  maximizing Q(s, a) for any state s. 

For our experiments, we have focused on tasks that allow Q(s, a) values to be stored 

in a table, i.e, tabular Q-learning. For those tasks, the state space is designed simply so as 

not to require any function approximation [18]. The algorithm to update the Q(s, a) is 

provided below. 

Q-Learning Algorithm 

Initialize Q(s, a) arbitrarily 

Repeat (for each episode) 

Initialize s 

Repeat (for each step of episode) 

Choose a from s using policy  derived from Q 

Take action a, then observer r, s’ 
Q(s, a) ← Q(s, a) + [ R(s, a) + max 𝑄(𝑠’, 𝑎) − 𝑄(𝑠, 𝑎) ]

𝑎 
s ← s’ 

until s is terminal 

Here, α is the learning rate which is set between 0 and 1. Lower the value of α, the 

slower the agent learns. Hence, if we set a higher value such as 0.9, the agent would learn 

quickly. 

2.4 Learning Selector Node 

For our experiment, we have used a special kind of node called a learning selector 

node (LOR) designed in [19]. In the definition of the behavior trees, selector nodes will 

choose their children from left to right until it finds a certain node that returns either Success 

or Running. This formulation puts more weight on the left-most (first) child as it will 

always be ticked first and that should not always be the case. Sometimes the order of the 
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children nodes may not be known before execution. Consider, for instance, the task of a 

UAV attempting to find a target. In this case, it may not be known which of many 

alternative ways to find a target should be attempted first. This choice may even vary from 

location to location. For instance, in the vicinity of tall buildings, it may be beneficial to 

elevate first to get a better view of the interspaces. Whereas in open areas, it may be useful 

to rotate first to quickly locate a target. Fu et al. [19] suggest that we attach the weight to 

the child nodes and then the selector node be modified in such a way that it ticks child 

nodes in accordance with the weights from high to low. The authors suggested a way to 

use the idea of RL to optimize selectors naming them learning-selector. In our paper, we 

have used the following Learning Selector algorithm to use the learning selector node as a 

part of our BT. 

Learning Selector Algorithm 

This way, when a learning-selector node is ticked, it will evaluate the current state 

of the agent. After that, it will sort the state-action pair with corresponding Q(s, a) within 

a certain state. It then chooses to tick a random child with the probability of epsilion e and 
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then tick the child with the highest value of Q(s, a) with the probability of 1-e and update 

the Q table. 

2.5 Robot Operating System (ROS) 

ROS is a framework for writing robot software. It is a collection of tools, libraries, 

and conventions that aim to simplify the task of creating complex and robust robot behavior 

across a wide variety of robotic platforms. Since it is an open-source project, we can use 

the packages developed by other people. One of the main building blocks of the ROS is 

called a node. Nodes are the executable files within a ROS package. Nodes have the special 

property to communicate with other nodes using Topics and Services. Topics are a way for 

nodes to send messages to each other. In our paper, we have made use of message passing 

between two nodes to demonstrate the communication between two UAVs. Fig. 4 shows 

how message passing using Topics works via publication and subscription. Messages are 

routed via a transport system with publish/subscribe semantics. A node sends out a message 

by publishing it to a given topic. A node that is interested in a certain kind of data will 

subscribe to the appropriate topic [21]. There can be multiple concurrent publishers and 

subscribers for a single topic. 

Fig. 4: Message Passing between two nodes using Topics 
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Chapter 3: Methodology 

3.1 BT Framework 

For our project, we have built a BT framework that serves as the main unit needed 

to control the UAV. This framework adheres to the definition and functionality of the BT 

defined in section 2.2. It has two main functions, namely, a BT building function that builds 

the behavior tree off a text file as shown in Fig. 5 and an execution function that executes 

the behavior tree. It can also call actions designed for a particular agent. 

Fig. 5: A text file with the representation of BT 

The program starts by reading a text file that contains information to build a BT. 

After the BT is built, the program starts executing the BT. The leaf node as discussed before 

is either a condition node or an action node; hence, at the end of the execution, the BT 

framework calls the behaviors defined for the particular agent. In our case, we have 5 

actions and 1 condition in our BT which will be discussed in the section 3.3. 

The Fig. 6 represents a tree structure that will be built using a text file shown in Fig. 

5. The number of dashes in Fig. 5 represents the depth of the node in the tree. The root 

node has no dash associated with it. The root node is a selector node (OR) which has 2 
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children. Its first child (the second line having one dash) is a sequence node (AND) which 

has 2 children of its own. Its first child is a condition node (C-seeTarget) and its second 

child is an action node (A-endEpisode). Since they are execution nodes, they do not have 

children. We then reach the second child of the root node, which is a learning selector node 

(LOR), which has 5 children of its own. In this way, the entire tree is built. 

Fig. 6: A graphical representation of a BT used in our experiment corresponding to the 

text specification in Fig. 5. 
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3.2 Pseudo Environment 

For our project, we have carried out experiments in pseudo environment which 

closely resembles the actual environment. The pseudo environment consists of a 10 by 10 

grid which is acquired by defining a 2-dimensional array of size 10 by 10. The environment 

represents the area where the UAVs will fly and try to find the target. It also comprises 

occlusions, mirroring real-world settings, which will affect the vision of the UAVs. 

The list of waypoints is associated with its corresponding coordinates in the grid. 

The waypoints will be necessary for UAVs to move around. One way to choose the set of 

waypoints is by following the deployment algorithm proposed in [23] which gives a set of 

points in a space such that the entire area is visible. Since the environment we designed is 

fairly small, we have developed a lookup table for UAVs. This lookup table returns a set 

of visible blocks, considering the occluded grids, from any location within the 

environment. In our experiment, each possible combination of direction, height, and 

waypoint is regarded as a distinct state. 

For example, once the UAV reaches a certain state, a function will be called which 

will return a set of visible coordinates from that state. In this way, UAVs will be able to 

figure out if they can see the target or not. For our experiment, we have developed the grid 

world environment of three different variations. First, we considered the case of having 

one fixed target location where a single UAV is flying. Fig. 7 shows this case. 
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Fig 7: 10 X 10 grid-world environment consisting of waypoints and one target location 

for a single UAV 

Here, a grid cell, with a yellow square labelled T1, is a target location. Similarly, 

grid cells, labelled X, are the occlusions present in the environment. Grid cells, with a blue 

circle labelled with numbers, are the waypoints. As shown in the figure, the UAV starts 

from waypoint one and follows the numbers in ascending order. After it reaches the end, it 

again starts from the beginning. The target T1 is visible from state of tuple < waypoint #10, 

low-height,orientation-WEST>. 

Similarly, for the second experiment, we consider the case of having two target 

locations where a single UAV is flying. Here, we incorporate the stochasticity in the 

16 



 

 
 

    

 

 

 

   

    

        

   

    

    

environment, as there is an equal probability for the target to be in either of the two potential 

locations. Fig. 8 shows this case. 

Fig. 8: 10 X 10 grid-world environment consisting of waypoints and two targets locations 

for one UAV 

Here, a grid cell, with a yellow square labelled T1, is the first target location. 

Similarly, a grid cell, with a yellow square labelled T2, is the second target location. The 

two target locations have an equal probability to be chosen as the target location for a 

particular run. Grid cells, labelled X, are the occlusions present in the environment. Grid 

cells, with a blue square labelled with numbers, are the waypoints. As shown in the Fig. 8, 

the UAV starts from waypoint number one and then follows the numbering in ascending 
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order. After it reaches the end, it again starts from the beginning. The target T1 is visible 

from state of tuple < waypoint #6, high-height, orientation-EAST >. The target T2 is visible 

from state of tuple < waypoint #10, low-height, orientation-WEST >. 

Lastly, we consider the case of having two UAVs and two target locations. There 

is an equal probability for the target to be in either of the two potential locations. This is 

the case where coordination between two UAVs takes place. Fig. 9 shows this case. 

Fig. 9: 10 X 10 grid-world environment consisting of waypoints and two targets locations 

for two UAVs 
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Here, a grid cell, with a yellow square labelled T1, is the first target location. 

Similarly, a grid cell, with a yellow square labelled T1, is the second target location. The 

target T1 is visible from state of tuple < waypoint #6 (with blue square), high-height, 

orientation-EAST > and tuple < waypoint #2 (with orange square), low-height, orientation-

EAST >. The target T2 is visible from state of tuple < waypoint #10 (with blue square), 

low-height, orientation-WEST > and tuple < waypoint #4 (with orange square), low-

height, orientation-SOUTH >. 

Grid cells, labelled X, are the occlusions present in the environment. Grid cells, 

with a blue square labelled with numbers, are the waypoints for the first UAV. The UAV 

starts from waypoint number one and then follows the numbering in ascending order until 

it reaches the last one, i.e., 11. After reaching the end, it again starts from the beginning. 

Similarly, grid cells, with an orange square labelled with numbers, are the waypoints for 

the second UAV. The UAV starts from waypoint number one and then follows the 

numbering in ascending order until it reaches the last one, i.e., five. After reaching the end, 

it again starts from the beginning. 

3.3 Behaviors/Actions 

We have come up with several actions that the UAV carries out for the effective 

search of the target. For our case, we have defined 4 actions, namely, Rotate, Elevate, De-

elevate, and Waypoint Translation. The details of the four actions are as follows: 

a. Rotate 

This action makes the UAV rotate by 90 degrees each time it gets ticked. For 

example, if the UAV is facing the north direction, then one tick turns it towards the east 

direction. It always follows a predefined pattern, turning from east to south, south to west, 
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west to north and north to east. This action is the only action that returns Running status in 

our experiment. It returns Running until the UAV returns to direction it was facing when it 

started. After that, it returns Success. In this manner, the UAV completes a 360 degrees 

rotation. 

b. Elevate 

This action, each time it gets ticked, makes the UAV climb up if it is in a lower 

height. For example, if the UAV is in a low height, it takes the UAV to an elevated height 

and returns Success. But if the UAV is already at an elevated height, then it continues to 

remain in the same height and returns Success. It does not return Running and Failure. 

c. De-elevate 

This action, each time it gets ticked, makes the UAV climb down if it is in an 

elevated height. For example, if the UAV is in an elevated height, it takes the UAV to a 

lower height and returns Success. But if the UAV is already at a lower height, then it 

continues to remain in the same height and returns Success. It does not return Running and 

Failure. 

d. Waypoint Translation 

This action, each time it gets ticked, makes the UAV go to the next waypoint. 

Waypoints are coordinates in our grid-world example as discussed in section 3.2. At the 

start of the program, we have defined certain locations to be the waypoints in a systematic 

order. So, the waypoint translation makes UAV move in that order until it reaches the last 

waypoint. After the UAV reaches the last waypoint, it again starts from the first waypoint. 
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Chapter 4:  Experimental Evaluation 

In our project, we have carried out experiments on three different levels to measure 

the advantages of adding extra communication features in the RL state-space to support the 

cooperative nature of our application. 

4.1 One UAV and one target location without communication 

First, we experimented to see how a single agent learns its BT with just waypoints, 

direction, and height as an RL state. There was only one target location present in the 

environment. This experiment was done adhering to the concepts discussed in [19], where 

we used the existing RL technique for BTs which worked for single-agent problems. The 

motivation behind this experiment was to validate the RL in learning selector node (LOR) 

as a preliminary step, and ensure that it worked as expected, before using it in other 

experiments. 

4.2 One UAV and two target locations without communication 

Second, we experimented to see how a single agent learns its BT with just 

waypoints, direction, and height as an RL state. For this experiment, we added a second 

target location in our environment and made sure that at each iteration either of the two 

target locations was chosen to be a goal location. The purpose of this experiment was to 

establish a baseline for the performance of a single UAV in locating targets when it ignores 

the presence of a second UAV. In this setting, it is unable to exploit any cooperative 

communication with the second UAV that may impact its task. 

4.3 Two UAVs and two target locations with communication 

We carried out our novel experiment to see how the addition of extra 

communication features to the RL state space can affect the way the agent learns its BT. 
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For this experiment, agents learned their BTs with waypoints, direction, height, and 

communication feature as an RL state. 

We included a second UAV having its own set of waypoints in the same 

environment setup. We call this UAV2 and we call the first UAV1. The program was 

compiled and two ROS nodes were obtained. One node represented the UAV1 discussed 

in sections 4.2 and 4.3. The next node represented the newly incorporated UAV2. These 

two nodes were executed in two separate terminal windows. 

In our experiment, we made UAV2 go through fewer waypoints so that it could see 

targets quicker than UAV1. The extra communication feature was maintained as a vector 

of size equal to the number of the opposing UAV’s waypoints. For example, if UAV1 went 

through 11 waypoints and UAV2 went through five waypoints, then the size of the extra 

communication feature vector of UAV1 would be five and that of UAV2 would be 11. 

During the execution, as UAV2 saw the target from a certain waypoint, it passed a 

message to UAV1. The message included a flag that contained a value of one if the target 

was found or zero if the target was not seen from the waypoint. It also sent the index 

number of the waypoint where it was so that the extra feature vector of UAV1 could be 

updated as necessary. In this way, communication was achieved. 

As seen in Fig. 9, if the target was not at the first location T1, UAV2 would send a 

message (with the flag of zero and index of one) to UAV1, since UAV2 could only see the 

first target from its second waypoint (orange circle labelled two). After UAV1 received 

this message, it updated its communication feature vector with the appropriate flag. 

22 



 

 
 

 

      

     

          

         

   

 

    

       

  

       

  

     

    

 

Chapter 5: Results 

The experiments were conducted to observe and compare the difference in how the 

agent learns its BT with and without communication. We plotted the learning curves as 

number of iterations vs. length of episodes. First, we have shown the result from section 

4.1. Then, we have shown the combined result of sections 4.2 and 4.3, where we compared 

and analyzed the graphs obtained from learning with and without communication. 

5.1 One UAV and one target location without communication 

We plotted a learning curve to show that our implementation of the technique 

mentioned in [19] is correct. We can see in Fig. 10 that our agent is learning its BT with 

time since episode length is decreasing as number of iterations increases. At the start of the 

program, the episode length was 42 but with time and learning, the agent has learned its 

BT well and decreased episode length to 16. This verifies that our implementation of the 

RL technique for BTs proposed by [19] is correct. 
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Fig. 10: The learning curve of UAV involving single target and no communication     

averaged over 4 independent trials. 

5.2 Comparison between learning without communication and with communication 

In this section, we compared and analyzed the graphs of the agents learning with 

and without communication. Both curves in Fig. 11 were obtained as averages of the data 

from four independent trials. 
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Fig. 11: The learning curve comparison between learning with communication and 

without communication averaged over 4 independent trials. This scenario involved two 

potential locations for the target, representing a searcher's uncertainty 

about where the target might actually be located. 

From the graph, we see that a learning curve with communication (blue) is lower 

than the learning curve without communication (purple). When the program started, the 

average episode length of learning without communication was 43 and the average episode 

length of learning with communication was 38. 

In the absence of the target in the first potential location, the agent learned to use 

the message, quickly bypassed the initial target location and proceeded to the next potential 

location, which caused the episode length to significantly drop to 17. However, the episode 
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length in learning without communication slowly decreased as the number of iterations 

increased. 

We see that the agent benefited from learning with communication for the first 

30,000 iterations. As observed in Fig. 11, the episode length was similar for learning with 

and without communication after the the first 30,000 iterations. We see that the episode 

length for both curves converges to 15 towards the end of the experiment. 

Chapter 6:  Discussion 
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The analysis of the graphs obtained from learning with and without communication 

reveals new avenues for UAVs to use RL to learn their BTs effectively. We discovered that 

the addition of extra communication features in the RL state space could help UAVs learn 

better policies. We demonstrated that we can leverage the ROS message passing feature to 

establish a cooperative environment for multiple UAVs. In this way, they can collaborate 

to solve a problem in less time. We expected that adding the extra communication feature 

would help UAV to change its choice of action, if the target could not be found at the first 

potential location. After receiving the message from UAV2, we expected that UAV1 would 

learn its BT differently and attempt to reach the second target location faster, which would 

ultimately decrease the episode length. 

Until the first 30,000 iterations in the experiment, the episode length was 

significantly lower for learning with communication as compared to that of learning 

without communication. The lower episode length signifies that the agent found the target 

quickly after communication was established. The decrease in the episode length indicates 

that the agent learned to use the message whenever the target was not present in the first 

potential location, quickly bypassed the initial location, and proceeded to the next possible 

location. 

Even in the absence of communication, the agent was able to learn its BT, however, 

adding communication feature helped the agent learn its BT in less time. This observation 

shows that the communication feature makes UAVs better adapt to changes ultimately 

affecting how they learn their BTs. In addition to the communication between the UAVs, 

the reactiveness of BT has further boosted the cooperative nature of our application. Even 
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in a short period of decision time, UAVs can quickly switch between actions if they get 

information about changes in the environment. 

In the experiment, we observed that learning with communication was not effective 

after the first 30,000 iterations. The ROS nodes of both UAV1 and UAV2 were executed 

for the same number of ticks. However, since the number of waypoints was less for UAV2 

than for UAV1, the UAV2 ROS node might have finished its execution ahead of the UAV1 

ROS node. As a result, the communication stopped, which might have caused the curves 

to converge towards the end of the experiment. 
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Chapter 7:  Conclusion and Future Work 

This research studied how multiple UAVs can effectively apply RL in a cooperative 

setting to better learn their BTs. The communication was established with the help of the 

ROS message passing feature to create a cooperative nature between two agents. Our 

findings suggest that cooperation between agents can help them learn effective RL policy. 

The RL policy ultimately helps agents learn their BTs. This observation was made by 

comparing the learning curves of two types of learning done by an agent, namely, learning 

with communication and learning without communication. The comparison demonstrated 

that episode length was lower in learning with communication, which suggests that the 

inclusion of extra communication features in RL state-space assist UAVs to better learn 

their BTs. 

As we conducted our experiment in a pseudo-environment, we plan to extend this 

work further by testing our solution in a Gazebo simulator which closely resembles the 

real-world settings. This will provide a more rigorous testing framework for our solution. 

We also believe that it is extremely important to explore whether the learning pattern would 

still be effective after increasing the number of agents. 
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