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Abstract 

Polymer vesicles and micelles have been of interest in the scientific community for the 

past few decades due to potential biomedical applications in areas such as drug delivery, 

nanoreactors, and biosensing. Polymer vesicles and micelles are formed through the self-

assembly of amphiphilic block copolymers. The objective of this project is to gain a better 

understanding of the influence of hydrophilic block copolymer length and composition in 

controlling the resulting morphologies from the co-assembly of triblock copolymers. First, a 

hydrophobic block composed of poly(methyl acrylate) was synthesized using reversible addition-

fragmentation chain-transfer (RAFT) polymerization mediated by a difunctional chain-transfer 

agent. The block was then chain-extended with hydrophilic blocks of poly (acrylic acid) of 2 

different lengths. The resulting two triblocks were then co-assembled at different ratios and the 

structure of the co-assemblies were characterized via light scattering.   

 

Keywords: amphiphilic block triblock polymers, RAFT polymerization, self-assembly  
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Chapter 1 

Introduction 

1.1 Block Copolymers 

Block copolymers are composed of two or more polymer chains.1-3 The blocks are 

covalently linked together and typically immiscible.2, 4 Due to being immiscible the polymer will 

undergo microphase separation. Microphase separation will be further discussed later in this 

paper. Block copolymers can have various architectures. Common architectures types are linear 

diblock (AB), triblock (ABA), multiblock or segmented copolymer (AB)n, branch (graft and star) 

and cyclic molecular architectures.3, 5 In Figure 1, some of the common architectures of block 

polymers are depicted. Reversible-deactivation radical polymerization (RDRP) is normally used 

to produce well-defined block copolymers.6 This method allows for manipulation of polymer 

aspects such as weight distribution, composition, and architecture, while keeping the broad 

spectrum of possible monomers.  

 

Figure 1. Architectures of Block Terpolymers: Linear, Comb Graft Copolymers, Star and Cyclic 

Terpolymers.3  

RDRP was derived from living polymerization.7 Living polymerization was first defined 

as a chain growth polymerization without transfer or termination.8 Living polymerization method 

does not provide a control over the molecular weight or narrow molecular weight distributions.  
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In order to achieve these goals, the initiator should be consumed at the early stages of the 

polymerization and the exchange between species of various activities is faster than the 

propagation step. Achieving these additional criteria, the polymerization is a controlled living 

polymerization. The investigation of adding radicals to unsaturated hydrocarbons laid the 

groundworks for RDRP methods.7 The general principle of RDRP is reversible deactivation of 

living chain ends and rapid exchange between active and dormant chain ends to maintain a 

reactive polymer chain end. Four common polymerizations in this classification are nitroxide-

mediated polymerization (NMP), atom transfer radical polymerization (ATRP), reversible 

addition-fragmentation chain-transfer (RAFT) polymerization, and organometallic-mediated 

polymerizations (OMRP).6, 9 Refer to Scheme 1 for fundamental mechanisms of the common 

RDRPs. 

 

Scheme 1. Fundamental mechanisms of the common RDRPs. Dissociation-combination is 

typically done by NMP and some OMRP systems. Atom transfer is done by ATRP. Degenerate 

transfer are done by RAFT and some OMRP systems.9  
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1.2 RAFT polymerization 

RAFT is a type of RDRP9 and is one of the most versatile processes that allows for 

control of the reaction conditions and functionality.10 This process allows for a wide range of 

monomers. RAFT has two main steps, initiation and propagation. There are two common types 

of initiators that are used for RAFT polymerization and they are peroxide and azo initiator.11 

During the initiation step, an initiator undergoes a homolytic cleavage. Then the radical initiator 

attacks the monomer to create oligomeric radicals.10  

 

Scheme 2. General mechanism for RAFT polymerization. 

Once the oligomeric radicals are formed, the radical will attack the chain-transfer agent 

(CTA) to form an intermediate as illustrated in the pre-equilibrium step modeled in Scheme 2.10 

A common type of CTA are thiocarbonylthio compound that bear an R and Z group.12 In Scheme 

3, illustrates the general structure of CTA. The reactivity of the R and Z group is significant 

when choosing a CTA.13 The R group is the good leaving group that is better than the 

propagating radical but can still be used to initiate the polymerization.10 The Z group affects the 
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kinetics of the polymerization to either stabilize or destabilize the CTA intermediate.13 The R 

and Z group have demonstrated to influence the dispersity and the molecular weight of the 

polymer.10, 14 Between the two groups, the Z group should be the primary focus when picking a 

CTA because the Z group affects the kinetics of the addition of monomers.11, 12, 14 Some common 

Z group for CTAs are alkyl/phenyl (dithioesters), alkyl sulfides (trithiocarbonate), and alkoxides 

(xanthates).11     

 

Scheme 3. General structure for CTA. 

Once the intermediate is formed, the radical is moved to the R group to form an R group 

radical.10 Reinitiation occurs when the monomer is added to the R group radical. The next step is 

propagation. The monomer is added to either the oligomeric radical or the R group radical for 

chain growth. This addition and alternation between the two radical species should be relatively 

fast to keep the concentration of growing chains lower than stable radical intermediates, which 

limits termination. Termination occurs either by combination or disproportionation. Once 

termination occurs, a second reaction can be set up with a different monomer to create a block 

polymer.  

1.3 Self-assembly of block copolymers in bulk and in solution             

Self-assembly of amphiphilic molecules has been an interest in the scientific community 

for the past few decades.2, 10 In nature, the cell is one of the best examples that showcases this 

self-assembly process.22 The cell has a phospholipid bilayer membrane which is formed through 
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self-assembly of amphiphilic phospholipids consisting of a hydrophobic tail and a hydrophilic 

head.  

The self-assembly can be achieved in bulk or aqueous solution.2 The self-assembly 

process in bulk is driven by an unfavorable mixing enthalpy with a small mixing entropy.2, 3 The 

unfavorable mixing is brought on by thermodynamic incompatibility between the blocks which 

causes microphase separation.15 Macrophase separation is prevented due to the blocks being 

covalently bonded. Different morphologies that can be achieved are spheres, cylinders, gyroids, 

and lamellae which is depicted in Figure 2.3 There are three important parameters that affect the 

morphologies: the composition of the block copolymer, the number of repeating units, and the 

Flory-Huggins interaction parameter.   

 

Figure 2. Morphologies from the assembly of amphiphilic polystyrene-b-poly(acrylic acid) 

(PSm-b-PAAn) captured by transmission electron microscopy (TEM), where m and n are the 

degrees of polymerization of PS and PAA.2  
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Performing self-assembly in solution increases the level of complexity because of the 

introduction of solvent.2 Self-assembly in aqueous solution is driven by minimization of free 

energy in the system.3 The general method for self-assembly in solution is to first dissolve the 

polymer in a good solvent for all the blocks.2 Then a selective solvent, usually water, is slowly 

added to the solution until the water content is higher than when aggregation starts. Lastly, to 

freeze the kinetic process and morphology, excess water is added to the solution.  

Morphology is primarily affected by the packing of the copolymer chains.16 The packing 

parameter (p) can be defined as: 

𝑝 =
𝑣

𝑎𝑜𝑙𝑐
 

where v is the volume of the hydrophobic chains, ao is the optimal area of the head group, and lc 

is the length of the hydrophobic tail.16 The packing parameter values suggest the morphology of 

the self-assembled polymer. When p ≤ 1/3, a spherical micelle is favored. When 1/3 ≤ p ≤ 1/2, 

cylindrical micelles are favored and when 1/2 ≤ p ≤ 1, a vesicle is favored. Factors that can 

change the packing parameter are changing the block copolymer composition and concentration, 

water content, common solvent, and additives.3 

1.4 Characterization methods 

Light scattering is a characterization method that is used to determine particle size, 

particle size distribution, and molecular weight.17, 18 When the light strikes a particle, it causes 

electrons around the particle to oscillate with the same energy as the light.19 The oscillating 

electrons create an oscillating dipole in the particle. The oscillating dipole is the source of energy 

to scatter the light. Particles of different sizes will scatter with different intensities depending on 

the scattering angle. Some factors that affect the scattering of light are particle size, wavelength 
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dependence, the distance of the observed scattering of light, concentration, and molecular weight 

of the particles. Two conventional methods of light scattering are dynamic light scattering (DLS) 

and static light scattering (SLS). The principle of DLS is that the particles are hit with a 

monochromatic light that will generate scattered light waves in all directions.18 The intensity of 

the scattered light is then measured at a known angle by a photon detector. Using DLS the 

hydrodynamic radius can be calculated using the Stokes-Einstein equation: 

𝑅 =
𝑘𝑇

6𝜋𝜂𝐷
 

where k is the Boltzmann constant, T is the temperature in Kelvin, D is the diffusion coefficient, 

and 𝜂 is the viscosity of the suspending medium. The Stokes-Einstein equation can only be used 

when there is a single scattered light, and the concentration of the sample is not too high. DLS is 

commonly used to analyze size distribution.  

  

Figure 3. Equipment set up for DLS.  

The principle of SLS is similar to DLS, with the exception that the intensity of the 

scattered light is measured at multiple known angles by a photon detector instead of just one 

angle.20 The radius of gyration can be obtained from SLS by creating a Zimm plot. The radius of 
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gyration is used to determine the shape and size of the particle. Figure 2 and 3 are diagrams of 

the equipment set up for collecting experiment data for DLS and SLS.  

 

Figure 4. Equipment set up for SLS.21 

In this project, the light scattering is used to monitor the hydrodynamic radius (Rh), radius 

of gyration (Rg), and distribution size. The ratio of Rg/ Rh can be used to determine the 

morphology of the co-assembled polymer.17 A micelle structure would be expected when the 

Rg/Rh ratio is less than one and a cylindrical micelle would be expected when  Rg/Rh ratio is 

greater than one. A vesicle structure is expected to form with a Rg/Rh ratio of one.  

1.5 Motivation 

 The objective of this project is to have a better understanding of how we can control the 

morphology of the co-assembled triblock copolymers. The importance of this research is to 

further understand how to control the morphology of a self-assembled polymer to tailor them for 

biomedical applications such as drug delivery, nanoreactors, biosensing and gene therapy.2, 22 In 

this project, amphiphilic triblock copolymers were synthesized using reversible addition-

fragmentation chain-transfer (RAFT) polymerization. The hydrophobic block is comprised of 

poly(methyl acrylate) and the hydrophilic block is comprised of poly(acrylic acid). One polymer 
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will have a higher percent composition of the hydrophilic block (P328) while the other polymer 

will have a lower percentage (P78). The two triblock copolymers will be co-assembled at 

different ratios and the resulting self-assembled structures that will be characterized by light 

scattering. 

Research Question(s):  

1. How does the initial ratio of the two triblocks affect the morphology formed from co-

assembly? 
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 Chapter 2 

Materials and Methods 

2.1 Materials 
 

Dichloromethane (DCM) (Fisher Scientific; 99.9%), Hexanes (Fisher Scientific; 98.5%), N,N-

Dimethylformamide (DMF) (Fisher Scientific; 99%), methanol (Fisher Scientific; 99.8%), 

tetrahydrofuran (THF) (Fisher Scientific; 99.8%), petroleum ether (Fisher Scientific; certified 

ACS), and trifluoroacetic acid (TFA) (Sigma-Aldrich; 99%) were used as received. Methyl 

acrylate (MA) (Alfa Aesar; 99%,) was filtered through basic alumina and t-butyl acrylate (tBA) 

(Alfa Aesar; 98%,) was filtered through neutral alumina. 4,4’-azobis(isobutyronitrile) (AIBN) 

(Sigma-Aldrich;98%) was recrystallized in cold methanol. 

2.2 Methods 

2.2.1 Synthesis of Poly(methyl acrylate) (P(MA)) 

A 20 mL reaction vial was charged with AIBN (6 mg, 0.037 mmol, 0.2 equiv.), di-4-

cyano-4-(ethylsulfanylthiocarbonyl)sulfanylpentanoic acid (diCEP) (0.1 g, 0.181 mmol, 1 

equiv.), and MA (7 g, 81.31 mmol, 449.48 equiv.). The vial was sealed and purged with argon at 

0°C for 15 minutes. The solution was then placed in an oil bath set at 80°C for 6 hours. The 

reaction was stopped by exposing the solution to air and quenching in liquid nitrogen. The target 

molecular weight was 20,000 g/mol at 50% conversion. The crude product was dissolved in 

DCM and precipitated out in hexanes. The polymer was dried in a vacuum oven overnight at 

room temperature to produce a yellow solid. 1H NMR (300 MHz, CDCl3, δ, ppm): 3.67 (s, 3H), 

2.44-2.22 (br, 2H), 2.04-1.38 (br, 2H). 
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 2.2.2 Chain extension of P(MA) with t-butyl acrylate (tBA) 

A 20 mL reaction vial was charged with 0.4 g of P(MA) (0.022 mmol, 1 equiv.). In a 

separate vial, 5 mg of AIBN was dissolved in 2 mL of dry DMF. A separate vial was charged 

with 0.6 g of tBA (4.68 mmol, 214.4 equiv.). All the tBA was transferred to the reaction vial that 

contained P(MA). The vial that contained tBA was washed with 0.7 mL of dry DMF and 

transferred to the reaction vial. AIBN (0.3 mL, 0.005 mmol, 0.2 equiv.) was transferred to the 

reaction vial. The vial was sealed and purged with argon at 0°C for 15 minutes. The solution was 

then placed in an oil bath that was set at 80°C for 1.25 hours. The reaction was stopped by 

exposing the solution to air and quenching in liquid nitrogen. The target conversion was 30%, 

where the hydrophilic block is 30% of the overall composition. The polymer was dissolved in 

DCM and precipitated out in a 70:30 mixture of cold methanol and water. The polymer was 

dried in a vacuum oven at 35°C overnight to produce a pale-yellow solid.  

A second polymerization was carried out with the same procedures but used 0.4 g of 

P(MA) (0.022 mmol, 1 equiv.), 5 mg of AIBN (0.005 mmol, 0.2 equiv.), 0.8 g of tBA (6.24 

mmol, 285.9 equiv.). The reaction was stopped after 3 hours. The target was 70% conversion, 

where the hydrophilic block is 70% of the overall composition. 1H NMR (300 MHz, CDCl3, δ, 

ppm) 3.67 (s, 3H), 2.73-2.49 (br, 2H), 2.42-1.61 (br, 2H), 1.44 (s, 3H). 

 2.2.3 Removal of t-butyl group to form acrylic acid (AA) 

The general procedure for the removal of the t-butyl group is as follows: dissolved the 

triblock polymer, P(tBA)-b-P(MA)-b-P(tBA), with DCM in a two-necked 100 mL round bottom 

flask. Stir the solution for 10 minutes. Add TFA (5 equiv.)  and let the mixture stir for 12 hours 

at room temperature. The solvent was removed under pressure. The polymer was further purified 
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by dissolving it in THF and precipitating it out twice in petroleum ether. The polymer was dried 

in a vacuum oven overnight at room temperature to produce a yellow white solid. 1H NMR (300 

MHz, CDCl3, δ, ppm) 3.67 (s, 3H), 2.73-2.49 (br, 2H), 2.42-1.61 (br, 2H).  

2.2.4 Self- and Co-assembly of the different hydrophilic lengths 

The self-assembly of the polymer with the target of 30% hydrophilic composition 

proceeded as follows: 10 mg of the triblock polymer was dissolved in 1 mL of THF for 30 

minutes. Deionized (DI) water (3 mL) was added at 1mL/hour. This procedure was repeated for 

the polymer with the target of 70% hydrophilic composition.  

The general procedure for the co-assembly of the polymer with the target of 30% 

hydrophilic composition and the polymer with the target of 70 % hydrophilic composition is as 

follows: a total of 10 mg of the polymers were dissolved in 1 mL of THF for 30 minutes. DI 

water (3 mL) was added to the solution at 1 mL/hour. The ratios used for co-assembly are 25:75 

(polymer with the target of 30% hydrophilic composition to polymer with the target of 70% 

hydrophilic composition), 50:50, and 75:25. For the 25:75 mixture, 2.5 mg of the polymer with 

the target of 30% hydrophilic composition and 7.5 mg of the polymer with the target of 70% 

hydrophilic composition were used. For the 50:50 mixture, 5 mg of both polymers were used. 

For the 75:25 mixture, 7.5 mg of the polymer with the target of 30% hydrophilic composition 

and 2.5 mg of the polymer with the target of 70% hydrophilic composition were used. The 

samples then underwent dialysis for 24 hours in DI water to remove THF in order to prepare 

them for analysis. 
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2.2.5 Light Scattering 

Approximately 1 mL of each sample was transferred to a 12 x 75 mm tube. Then 

approximately 1 mL more of each sample was filtered with a 1.2 µL filter before being 

transferred into a 12 x 75 mm tube. 

Dynamic and static light scattering data were collected at 25oC. The time-dependent 

scattering intensities were measured with a Brookhaven Instruments BI-200SM goniometer that 

was equipped with an avalanche photodiode detector and TurboCorr correlator. The incident 

light used was 633 nm from a Research Electro Optics HeNe laser operating at 40 mW. The 

time-dependent scattering intensities were measured at 45, 60, 75, 90, 105, and 120o for DLS. In 

SLS the angles measured for the time-dependent scattering intensities were 45, 50, 60, 70, 80, 

90, 105, 115, 120, and 140o.  

To calculate the Rh values of the assembled polymers, the apparent diffusion coefficient 

needs to be calculated experimentally. The apparent diffusion coefficient is the slope of Γ versus 

q2, where q is the wave vector and Γ is the relaxation frequency. The wave vector is calculated 

using the following equation: 

𝑞 =
4𝜋𝑛

𝜆
sin (

𝜃

2
) 

Where 𝜆 is the wavelength of the incident light, 𝛳 is the scattering angle, and n is the refractive 

index of the solvent. The relaxation frequency was obtained from the quadratic fit of the 

autocorrelation function (g2(τ)),  

Γ = 𝜏−1 

where τ is the relaxation time. With the apparent diffusion coefficient of the assembled samples, 

the Rh can be calculated using the Stokes-Einstein equation. 
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 Chapter 3 

Results and Discussion 

3.1 Synthesis of P(MA) 

The hydrophobic block, poly (methyl acrylate) (P(MA)) was synthesized via RAFT 

polymerization using AIBN as the initiator and mediated by the CTA diCEP, as illustrated in 

Scheme 4. P(MA) was characterized by gel permeation chromatography (GPC) and nuclear 

magnetic resonance (NMR). 1H NMR was used to monitor the consumption of the monomer, 

methyl acrylate, and the purification of P(MA) by watching the disappearance of the vinyl peaks 

in the range of 5.75-6.5 ppm as shown in Figure 5. After purification, the yield of P(MA) was 

37%. Through GPC, the number-average molecular weight (Mn) was calculated to be 18,000 

g/mol with a dispersity of 1.23 and a degree of polymerization (Xn) of 205.  

 
Scheme 4. Synthesis of P(MA) 
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Figure 5. Comparative NMR spectra for the synthesis of P(MA). From bottom to top: starting 

material, after reaction time, monomer removal under reduced pressure, final purification from 

monomer, and dried polymer. 

  

Figure 6. GPC (A) light scattering plot (B) differential refractive index plot of P(MA). 

3.2 Chain extension of P(MA) with tBA 

The P(MA) chain was then extended with tBA via RAFT polymerization to form an ABA 

triblock copolymer. The extension was performed twice to synthesize two polymers with 

different hydrophilic block lengths as illustrated in Scheme 5. The 1H NMR spectra on Figure 7 

B 
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and 9 depict a disappearance of the vinyl peaks in the range of 5.5-6.5 ppm and the appearance 

of the methyl peak at 1.44 ppm after purification, indicating that tBA was added to P(MA).  

 

Scheme 5. Chain extension of P(MA) with tBA for 1.25 hours and 3 hours to produce polymers 

with an Xn of 79 and 328, respectively. 

 

 

Figure 7. Comparative NMR spectra of the extension P78. From bottom to top: comparing 

starting material, after reaction time, first purification, and dried polymer. 
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Figure 8. GPC comparisons showing (A) light scattering (B) differential refractive index plots of 

the central P(MA) and the triblock polymer, P78. 

 

Figure 9. Comparative NMR spectra of the extension of P328. From bottom to top: starting 

material, after reaction time, first purification, and dried polymer. 
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Figure 10. GPC comparison showing (A) light scattering (B) differential refractive index plots 

of the P(MA) central block to the triblock polymer, P328. 

Figure 8 and Figure 10 depict a decrease in retention time indicating that the chain 

extension was successful. Through GPC, the Mn for the polymer with the target of 30% 

hydrophilic composition was calculated to be 38,500 g/mol with a dispersity of 1.23. In the 

second run of the same polymer through GPC, the Mn was 22,000 g/mol with a dispersity of 

1.23. The polymer with the target of 70% hydrophilic composition was calculated to be 52,000 

g/mol with a dispersity of 1.35. In the second run of the same polymer through GPC, the Mn was 

42,000 with a dispersity of 1.47. Because of the difference of Mn between the two GPC runs, it 

was decided to use NMR to calculate the Mn. Through NMR, the Mn for the polymer with the 

target of 30% hydrophilic composition was calculated to be 28,000 g/mol. After subtracting the 

Mn of P(MA) the percent hydrophilic composition was calculated to be 24%. The polymer with 

the target of 70% hydrophilic composition was calculated to be 60,000 g/mol. After subtracting 

the Mn of P(MA) the percent hydrophilic composition was calculated to be 57%. Using the NMR 

calculated Mn, the degree of polymerization (Xn) for the polymer with 24% hydrophilic 

composition was calculated to be 78 and will be referred to as P78. For the polymer with 57% 
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hydrophilic composition the Xn was calculated to be 328 and will be referred to as P328. Both 

polymers have the same Xn for the hydrophobic block which was calculated to be 205. 

3.3 Removal of t-butyl group 

After the chain extension was performed, the t-butyl group was removed to convert tBA 

to acrylic acid (AA) through hydrolysis. The 1H NMR spectra on Figure 11 and 12 shows the 

removal of the t-butyl group as confirmed by the disappearance of the characteristic t-butyl peak 

at 1.44 ppm, and the appearance of the hydroxyl group. The yield of P328 was 87% and the yield 

of P78 was 86% after the removal of the t-butyl group.  

 

Scheme 6. Removal of t-butyl group through hydrolysis to form P(AA)-b-P(MA)-b-P(AA). 
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Figure 11. Comparative NMR spectra after t-butyl removal of P78. From bottom to top: starting 

material of P(tBA)-b-P(MA)-b-P(tBA), second hydrolysis, purification, and dried P(AA)-b-

P(MA)-b-P(AA). 
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Figure 12. Comparative NMR spectra after t-butyl removal from P328. From bottom to top 

starting material of P(tBA)-b-P(MA)-b-P(tBA), second hydrolysis, purification, and P(AA)-b-

P(MA)-b-P(AA). 

3.4 Self- and co-assembly of P78 and P328  

P78 and P328 were first self-assembled separately and then mixed at the following ratios 

(P78: P328): 25:75, 50:50, and 75:25. The morphologies obtained from the self- and co-assembly 

of the polymers were characterized by DLS and SLS. DLS was used to determine the 

hydrodynamic radius (Rh) and SLS was used to determine the radius of gyration (Rg). The 

unfiltered samples will be the primary focus because it is an accurate representation of the 

assembly process. The filtered samples were used to determine if the size of the assembly 

morphologies could be controlled.  
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Figure 13. Hydrodynamic diameter distribution curve of the morphologies obtained from the 

self-assembly of P78 triblock at 90°. 

 

Figure 14. Hydrodynamic diameter distribution curve of the morphologies obtained from P328 

triblock at 90°. 

The Rh values for the morphologies obtained from the self-assembly of P78 and P328 

were 123 and 74 nm, respectively based on multiangle DLS. This suggests that P78, triblock 

with a smaller hydrophilic block, self-assembled into larger morphologies whereas P328, 
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triblock with a larger hydrophilic block, self-assembled into smaller morphologies. Figures 13 

and 14 represent the distribution curves for the hydrodynamic diameter of the morphologies 

obtained from the self-assembly of P78 and P328, respectively. In Figure 13, the distribution 

curve is in the range of 300-700 nm hydrodynamic diameter whereas, in Figure 14, the 

distribution curve is in the range of 175-375 nm hydrodynamic diameter.  

The radius of gyration (Rg) for P328 was 211 nm. The ratio of Rg/Rh can be used to 

determine the morphology of the co-assembled polymer.17 When Rg/Rh ratio is less than one, the 

expected structure is a micelle. If the ratio equals to one, the expected structure is a vesicle. If the 

ratio is greater than one, the expected structure is a cylindrical micelle. For P328, the Rg/Rh ratio 

was 2.85 which suggests that structure is a cylindrical micelle.  

Table 1. Light scattering data for the unfiltered samples 

Sample 
Hydrodynamic Radius 

 (Rh) (nm) 

100:0 123 

25:75 420 

50:50 102 

75:25 115 

0:100 74 
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Figure 15. Hydrodynamic diameter distribution curve of the morphologies obtained from the 

25:75 (P78:328) mixture co-assembly 90°. 

 

 

Figure 16. Hydrodynamic diameter distribution curve of the morphologies obtained from the 

50:50 (P78:P328) mixture co-assembly 90°. 
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Figure 17. Hydrodynamic diameter distribution curve of the morphologies obtained from the 

75:25 (P78:P328) mixture co-assembly 90°. 

Table 1 displays the Rh values of the morphologies obtained from the co-assembly of the 

triblocks. In the 25:75 co-assembly, Figure 15 depicts that there are two distributions. This 

suggest that there are two particle sizes that falls in the 350-750 and 6,500-10,000 nm range. 

However, the 6,500-10,000 nm curve is more predominant than the other curve, suggesting that 

majority of the particles’ hydrodynamic diameter fall within this range. In the 50:50 co-

assembly, Figure 16 illustrates only one distribution curve, suggesting that there is one particle 

size and that it falls in the range of 250-265 nm. In the 75:25 co-assembly, Figure 17 depicts that 

there are two distribution curves. This suggests that there are two particle sizes which fall in the 

75-125 and 400-600 nm range. However, the 400-600 nm curve is more predominant than the 

other curve, suggesting that majority of the particles’ hydrodynamic diameter fall within this 

range. Comparing the hydrodynamic diameter of 25:75 (P78:P328) and the 75:25 (P78:P328), 

we get a bigger diameter size from the 25:75 and a smaller diameter size for the 75:25. This 

could be because P328 has a larger hydrophilic block than P78 and is expected to produce large 

particle sizes. 
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As Figure A-1 shows, no useful information could be obtained from the Zimm plot from 

the co-assembly of the 50:50 mixture of P78:P328. The SLS data will be further studied in the 

future to understand the variation in the data. To investigate what is occurring during the co-

assembly, transmission electron microscopy (TEM) could be used to visually analyze the 

morphologies of the co-assembled triblocks. 

Table 2. Comparison of the hydrodynamic radius of the unfiltered and filtered samples. 

  

Hydrodynamic Radius  

(Rh) (nm) 

Sample 

(P78:P328) Unfiltered Filtered 

100:0 123 66 

25:75 420 71 

1:1 102 87 

75:25 115 80 

0:100 74 64 

 

The filtered samples had a smaller particle size than the unfiltered samples as the values 

are represented in Table 2. The filtered samples had a lower turbidity than the unfiltered samples. 

This could be that filtration trapped majority of the polymer. In future, this could be investigated 

by TEM to visually compare the morphologies of the unfiltered samples to the filtered samples. 
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Chapter 4  

Conclusion 

 In this project, two amphiphilic triblock polymers with different hydrophilic block 

lengths were synthesized and assembled in aqueous solution. DLS and SLS were used to 

characterize the morphologies of the triblocks co-assembled in different ratios. The unfiltered 

samples had larger hydrodynamic radii than that of the filtered samples. When the triblocks were 

co-assembled in a one-to-one ratio, a single distribution curve of the hydrodynamic diameter was 

observed. However, when one triblock content dominated the other, two distribution curves were 

observed. Conclusive SLS data was unable to be collected for the self-assembled morphologies 

of P78 and for the co-assembled morphologies since the scattered light intensity could not be 

measured. Future investigations could include further characterization of the unfiltered samples 

via TEM in order to visually analyze the morphologies of the co-assembled polymers. Another 

characterization method that could be done is to add fluorescence resonance electron transfer 

(FRET) pairs and use fluorescence microscopy to determine if co-assembly occurred.   
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Appendix 

 

 

Figure A-1. The Zimm plot from the co-assembly of the 50:50 mixture of P78:P328. 
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