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ABSTRACT 

Resistance exercise with blood flow restriction (BFR) has been suggested to exaggerate 

the exercise pressor response over traditional non-BFR exercise. While applying BFR 

relative to an individual’s arterial occlusion pressure (AOP) and exercising at low-loads 

seems to produce a comparable cardiovascular response to traditional moderate or high-

load training, it is beneficial to identify modifications for reducing the cardiovascular 

response to BFR exercise. PURPOSE: To determine if unilateral (UNI), bilateral (BI), or 

alternating (ALT) exercise modalities elicit different cardiovascular responses during 

BFR exercise. METHODS: 18 participants (13 male and 5 female) performed four sets of 

UNI, BI, and ALT knee-extensions at 30% one-repetition maximum and 40% AOP. 

Pulse wave analysis was measured before and after exercise. Data were analyzed using 

Bayesian RMANOVA and presented as mean (SD). RESULTS: Changes in aortic 

systolic blood pressure, aortic diastolic blood pressure, and aortic mean arterial pressure 

were greater following ALT. Changes in aortic rate pressure product [ALT = 4873 (2479) 

mmHg * bpm, UNI = 3243 (1482) mmHg * bpm, BI = 3308 (1449) mmHg * bpm] were 

also higher following ALT. The volume of work performed was greater in ALT [ALT = 

1946 (1787) kg, UNI = 945 (313) kg, BI = 918 (319) kg]. CONCLUSION: Given the 

greater cardiovascular response following alternating BFR exercise in healthy 

individuals, those at an increased risk of a cardiovascular event should instead choose 

unilateral or bilateral BFR exercise until further work is done to determine the degree to 

which this modality can be tolerated. 
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CHAPTER I - INTRODUCTION 

To increase muscular strength and mass the American College of Sports Medicine 

(ACSM) recommends using ~60-80% of the person’s one repetition maximum (1RM) 

which is about 8 to 12 repetitions per set (American College of Sports Medicine, 2018). 

In the United States during 2011, only 29.3% of the population reported meeting muscle-

strengthening guidelines set by the U.S Department of Health and Human Services 

(Centers for Disease Control and Prevention, 2013). This could be because people do not 

have the ability or desire to meet the exercise-related guidelines set forth by different 

governing bodies. Researchers continue to investigate alternative and more efficacious 

means to increase muscle mass and strength in older and at-risk populations.  

Increasing muscle mass and strength can be accomplished by exercising with a 

range of loads until failure, this way a low-load and a high-load exercise produce similar 

increases in muscle mass and strength by recruiting a similar amount of muscle fibers 

over a training period (Dankel S. J., et al., 2016; Marcotte, West, & Baar, 2015). For 

example a high load could be 80% of a person’s 1RM and a low load could be 20% of a 

person’s 1RM. Low-load resistance exercise when combined with blood flow restriction 

(BFR) results in similar increases in muscle mass compared to the ACSM 

recommendation for resistance exercises at moderate- and high-loads (Loenneke, Wilson, 

Marin, Zourdos, & Bemben, 2012; Yasuda, et al., 2011), but with less volume 

(Loenneke, et al., 2012; Jessee, et al., 2017). Muscle mass and strength can also be 

increased by exercising with a low load to failure, but by combining BFR there is a 

reduction in the amount of volume needed to reach failure. Typical BFR protocols 

involve a cuff positioned at the most proximal point of a limb and then increasing the 
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pressure of the cuff until the amount of arterial blood into the limb is reduced, and venous 

return is occluded creating a hypoxic environment during exercise (Yasuda, et al., 2010). 

Due to this internal environment around the working muscle failure seems to result in 

lower loads, which is why lower volumes can be completed yet result in similar increases 

in muscle size (Jessee, et al., 2018). 

With advancements in BFR-related research, a recent systematic review paper 

came out addressing a hypothetical concern that suggests BFR exercises could exaggerate 

the exercise pressor reflex, and thus pose a risk for an adverse cardiovascular response in 

special and even healthy populations (Spranger, Krishnan, Levy, O'Leary, & Smith, 

2015). Since Spranger et al., many researchers have investigated the cardiovascular 

outcomes in response to BFR exercises and found that the cardiovascular response is not 

different from moderate-load exercise without BFR (Sugawara, Tomoto, & Tanaka, 

2015; Broxterman, et al., 2015; Domingos & Polito, 2018; Mouser, et al., 2019; Neto, et 

al., 2016; Neto, et al., 2016; Kilgas, et al., 2018; Moriggi Jr., et al., 2015). One 

confounding issue may be the application of BFR given that Spranger et al., reviewed 

many papers in which the participants were exercising at unknown or suprasystolic cuff 

pressure and the participants may have had no oxygenated blood for their exercising 

muscles. Currently, recommendations for BFR protocols have evolved into measuring 

each person’s arterial occlusion pressure (AOP) instead of using one standard pressure 

applied to all individuals (Jessee M. B., et al., 2016; Mouser, et al., 2017). When the cuff 

pressures are made relative by measuring AOP and using a percentage of AOP for BFR, 

then researchers can better control the stimulus to avoid ischemia. Thus, the ability to 

ensure arterial blood flow, albeit reduced, may be one possible way to reduce the risk of 
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an adverse cardiovascular event due to the exercise pressor reflex outlined by Spranger et 

al. Manipulating different exercise modalities could be another way to reduce the risk of 

an adverse cardiovascular event. 

Though, there are studies investigating the cardiovascular outcomes of exercising 

with different muscle groups (Moreira, et al., 2015) and muscle masses (Matos-Santos, 

Farinatti, Borges, Massaferri, & Monteiro, 2017). In general, these studies found that 

using a smaller muscle mass, like the unilateral condition, does not elicit a cardiovascular 

response to the same magnitude of using larger muscle masses like the bilateral or 

alternating condition. However, there is no literature on the cardiovascular outcomes 

when combining BFR with unilateral, bilateral, and alternating exercises. As such, the 

purpose of this study was to quantify and compare the cardiovascular response to 

different exercise modalities (unilateral, bilateral, and alternating) with a low load when 

combined with BFR. The results of this study could help identify a potential modification 

to BFR protocols that would attenuate the risk of a major cardiovascular response.  
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CHAPTER II - LITERATURE REVIEW 

2.1 Blood Flow Restriction Application and the Description of the Stimulus 

BFR is typically applied by placing a cuff around the proximal portion of the 

upper leg or arm and setting the pressure (mmHg) to a percentage of the total pressure 

that would occlude arterial blood in that limb (known as arterial occlusion or limb 

occlusion). With a deflated cuff, deoxygenated (venous) blood can flow freely to the 

heart, and oxygenated (arterial) blood can flow freely into the limb. However, when the 

pneumatic cuff at the most proximal portion of the limb is inflated to a pressure greater 

than venous pressure, then venous blood will pool in the limb distal to the pneumatic cuff 

(Mouser, et al., 2017). As the pressure continues to increase, for example to greater than 

60% AOP, then arterial blood flow into the limb is reduced (Mouser, et al., 2017). If the 

pressure is increased to a point where there is no longer a pulse in the tibial or brachial 

artery, then, arterial blood has been fully occluded in the limb (100% AOP).  

The type, size, pressure, and placement of the cuff should be included in a BFR 

study so fellow researchers can objectively read and understand the results and 

conclusions of a BFR study (Rossow, et al., 2012; Mouser, et al., 2017). In addition, 

these details should be accounted for to properly apply the intended BFR stimulus to the 

participant. The type of cuff can vary from an inelastic nylon pneumatic cuff to an elastic 

cuff, which would need a higher pressure to elicit the same occlusion as a pneumatic cuff 

(Karabulut, McCarron, & Abe, 2011). The width of the cuff is important because a wider 

cuff will restrict blood flow at a lower pressure than a narrow cuff (Jessee M. B., et al., 

2016). Using absolute pressure from previous literature may likely cause different 

responses for people because of the natural variability amongst individuals, specifically 
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limb circumference and blood pressure (Loenneke, et al., 2015). This is clear when 

applying the same absolute pressure to an arm and a leg of an individual (Loenneke, et 

al., 2015). A leg usually has a larger circumference and would need a higher pressure to 

occlude blood flow, but the arms would need a lower pressure than the legs. Even when 

comparing individuals with large and small arms the pressure is different due to limb 

circumference (Jessee M. B., et al., 2016). To illustrate the issue with using an arbitrary 

pressure a study by Suga et al. used a “moderate pressure” based on 130% of the 

participants resting systolic blood pressure (SBP) about 147mmHg on average and “high 

pressure” of 200 mmHg for the arm based off an absolute value in previous literature 

(2010). In this case, the researchers recorded that metabolic stress in a high-pressure 

protocol with a low load (20% 1 repetition maximum) was significantly lower when 

compared to high-load exercise without BFR (Suga, et al., 2010), but these results are 

indicative of a limb exercising above arterial occlusion pressure (AOP) i.e. ischemic 

exercise. In addition, the researchers found that there were no significant differences 

between “moderate pressure” and “high pressure” in intramuscular metabolites and pH 

with the same load (20% 1RM). While Suga et al. compared what they assumed to be 

moderate and high pressures, both pressures could have been greater than the participant's 

arterial occlusion.  

To ensure a relative stimulus rather than applying an arbitrary stimulus, BFR 

should be applied as a percentage of AOP measured for each participant. To illustrate, 

AOP can be measured  when a BFR cuff is placed at the uppermost portion of the limb 

and slowly inflated while using a Doppler probe (handheld Doppler or Doppler 

ultrasound) to detect blood flow in the distal portion of the BFR limb (Laurentino G. C., 
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et al., 2018). When the probe no longer detects blood flow, arterial blood is fully (100%) 

occluded at the set pressure (mmHg) of the cuff. Then, researchers can take a percentage 

of arterial occlusion, and calculate the relative pressure for BFR resistance exercise 

depending on the desired level of BFR. Doing so, would also allow researchers to 

compare the effects of low, moderate, or high BFR protocols. Most BFR studies are 

seeking to investigate the potential effects of reduced arterial blood flow (Ladlow, et al., 

2018; Loenneke, et al., 2015; Lixandrao, et al., 2015; Jessee M. B., et al., 2016; Mouser, 

et al., 2017; Mattocks, et al., 2017; Laurentino G. C., et al., 2016; Jessee, et al., 2018; 

Jessee, et al., 2017). Studies using pressures based on arbitrary absolute numbers found in  

literature (Bunevicius, et al., 2017; Yasuda, et al., 2011) are difficult to interpret because 

other researchers do not know how much blood flow was reduced for each participant or 

if it was an ischemic stimulus. The participants with arbitrary absolute values may be 

exercising under ischemic conditions, or with no change in blood flow, or with 

completely different amounts of blood flow. By using pressure relative to the participant, 

researchers can administer similar reductions in blood flow across the population. 

Without the standardization in protocols with BFR, it is difficult for researchers to fully 

synthesize and assess the current literature with BFR training (Dankel S. J., Jessee, Abe, 

& Loenneke, 2015). 

 

2.2 Adaptions seen with Blood Flow Restriction 

2.2.1 Blood Flow Restriction Alone and Passive Mobilization 

BFR can have positive effects on muscle size and strength when utilized alone or 

with passive mobilization. When BFR is used alone, it can slow down muscle atrophy 
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when compared to bed rest alone. When compared to passive mobilization used in 

comatose patients, the addition of BFR can slow the rate of atrophy at a greater rate than 

passive mobilization alone.   

Takarada et al. conducted a two-week investigation on the effects of repeated 

BFR on participants who recently had anterior cruciate ligament surgery (2000). The 

control group (n=8) had a pneumatic cuff on their upper thigh, but it was not inflated. An 

experimental group (n=8) had the pneumatic cuff inflated on their upper thigh twice a 

day. The protocol was five sets of five minute inflates followed by three minute deflates 

starting at a pressure of 180 mmHg and then increasing the pressure in increments of 10 

mmHg depending on the participant's recovery speed (Takarada, Takazawa, & Ishii, 

2000). The experimental group had a cross-sectional area of about 167.5 cm2 three days 

after surgery and 156.3 cm2 after 2 weeks of the BFR protocol. The control group had a 

cross-sectional area of 161.0 cm2 three days after the surgery and 137.5 cm2 after 2 weeks 

without the BFR protocol. Takarada et al. concluded that when BFR was utilized in the 

two weeks immediately after surgery, there was less decrease in cross-sectional area as 

opposed to the control group that received no pressure (2000).  

BFR at 80% AOP also delays muscle atrophy in people who are on bedrest when 

employed with passive mobilization when compared to people who have only passive 

mobilization (Barbalho, et al., 2018). Barbalho et al. measured the participant's medial 

thigh circumference, quadriceps thickness with ultrasound, and muscle strength (2018). 

In this case, the bedrest patients that were in the intervention group (n=20) were not 

contracting at a percentage of their 1RM, but having their legs manipulated while BFR is 

administered. The control group (n=20) had their legs passively manipulated without 
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BFR. BFR with manipulation of the legs slowed down the muscle wasting process when 

compared to the control group (Barbalho, et al., 2018). In the studies provided by 

Barbalho et al. and Takarada et al., the effects of BFR were compared with a population 

that was unable to load their limbs actively. More studies have investigated the impact 

that BFR can have on exercising participants when compared to participants that are not 

immobilized. 

There seems to be a more pronounced muscular response to BFR for subjects that 

are immobilized. In a study with recreationally active men, Nyakayiru et al. saw no 

significant differences in myofibrillar protein synthesis between the resting condition 

with BFR and without BFR (2019). Nyakayiru et al. then looked to see if there were 

differences when a low load (20% 1RM) was applied. The researchers saw myofibrillar 

protein synthesis were greater in low-load with BFR than, low-load (20% 1RM) exercise 

only. In this case, BFR only does not seem to induce the same environment when 

compared to exercise or exercise with BFR applied. However, these were recreationally 

active men. So, if the subjects had been on bedrest like the participants in the study by 

Barbalho et al., then the results may have been different with the BFR leg in the resting 

group having a significant difference in myofibrillar protein synthesis. Although, 

Barbalho et al., was measuring the rate of muscular atrophy and protein synthesis. Thus, 

further investigations into the myofibrillar protein synthesis response are necessary to 

determine the mechanism of protein synthesis in clinical populations.  
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2.2.2 Blood Flow Restriction with Aerobic Exercise 

Aerobic exercise, when combined with BFR, has increased muscular strength 

when compared to aerobic exercise without BFR. A study by Paton et al. found that BFR 

did not improve the cardiorespiratory system of runners but may have had slight 

increases in muscle strength (2017). There were two groups, a control group (n=8) and a 

BFR group (n=8), who underwent eight sessions of aerobic training. The researchers 

reported non-significant changes in maximal oxygen uptake between groups, but the BFR 

group had a significant improvement in running economy, which could suggest muscular 

strengthening (Paton, Addis, & Taylor, 2017). Abe et al. found that a 6-week training 

program with BFR walking improved isometric and isokinetic muscle strength and leg 

muscle size in and elderly male population (2010). However, there was not a significant 

change in estimated aerobic capacity with the BFR walking when compared to a non-

exercising control group (Abe, et al., 2010). But, when Abe et al. looked at low-intensity 

cycling in healthy young me, they saw significant 6.4% increase in aerobic capacity for 

the BFR group over an 8 week training period when compared to the non-BFR group 

(2010). The researchers also saw a significant 3.4 - 5.1% increase in muscle cross section 

area (Abe, et al., 2010). Kim et al. found no significant change between groups in muscle 

cross sectional area in a study assessing a high-intensity cycle without BFR, low-intensity 

cycling with BFR, and a non-exercising control group for a 6 week period (2016). But 

there was a significant increase in leg muscle mass in the low-intensity BFR group from 

before and after training (Kim, et al., 2016). Since BFR can have these positive benefits 

in muscular and aerobic capacity, researchers have focused on the cardiovascular 

response elicited by BFR and aerobic exercise. 
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Sugawara et al. investigated the aortic systolic blood pressure with and without 

BFR during walking and compared the results to the participant’s baseline (Sugawara, 

Tomoto, & Tanaka, 2015). The study employed a set BFR pressure of 160 mmHg for all 

participants. When investigators use absolute BFR pressure for all participants, it is likely 

that not all participants are getting the same occlusion pressure. As mentioned previously, 

using relative pressures based on the participants, AOP can help deliver a similar BFR 

stimulus. Nonetheless, in the study with Sugawara et al., there was a significant increase 

in aortic systolic blood pressure with walking combined with BFR than walking without 

BFR (Sugawara, Tomoto, & Tanaka, 2015). Sugawara et al. conclude that walking with 

BFR causes a hypertensive response because of the reduction in stroke volume and large 

increases in heart rate to maintain cardiac output. One reason for the significant 

hypertensive response could be that the participants had different or a greater BFR 

stimulus than the investigators intended. In the study, Sugawara et al. did not report the 

size or type of cuff that was used for the BFR protocol, and this can vary the stimulus 

when using absolute pressures.  

In a study conducted by Renzi et al., the researchers looked at the effect of BFR 

with walking in a healthy population (n=17). All participants did a BFR walking 

condition and a control walking condition without BFR about 7 days apart. In the 

exercise the participants did five sets of 2-minute walking at a pace of 2 miles an hour 

with 1 minute of rest between sets for three weeks (Renzi, Tanaka, & Sugawara, 2010). 

The researchers found that a low intensity walk with BFR needs a greater cardiovascular 

response and decreases vascular endothelial function (2010). The researchers looked at 

flow-mediated vasodilation and saw no change in the control group, but a significant 
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decrease in the BFR group (Renzi, Tanaka, & Sugawara, 2010). There was also a greater 

blood pressure response in the BFR group, and Renzi et al. concluded this was due to an 

increase in total peripheral resistance from the BFR cuffs on the legs (2010). In addition, 

the double product, also known as rate pressure product, reached about a 90% increase 

from baseline in the BFR group, but the control group only saw about a 30% increase 

from baseline. Renzi et al. used arbitrary absolute pressures for the BFR condition and 

increased the cuff pressure until 160 mmHg for the exercise. 

Sugawara et al. and Renzi et al. illustrate the potential dangers of using BFR with 

exercise, but there is some research that combining a low relative BFR pressure with low-

load exercise produces a similar cardiovascular response to moderate- or high-load 

exercise. 

 

2.2.3 Blood Flow Restriction with Resistance Exercise 

Different combinations of resistance training load and BFR pressures lead to 

muscle hypertrophy (Ladlow, et al., 2018). Dankel et al. concluded in a literature review, 

that muscle size increased in areas proximal and distal to the BFR cuff placement as 

participants exercised at a low load of 20-30% 1RM (Dankel S. J., Jessee, Abe, & 

Loenneke, 2015). However, Lixandrao et al. concluded that if a person can perform high-

load resistance training, then it would be more efficient than low-load training with BFR 

(Lixandrao, et al., 2015). In this study participants exercised at either 20% or 40% of 

their 1RM with either 40% or 80% of AOP and each of the four conditions was compared 

to exercise at 80% 1RM without BFR. Lixandrao et al. suggested that the AOP 

percentage was not the most crucial factor in the therapy, but the exercise load had a 
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primary impact. However, Lixandrao et al. had participants perform two sets of the 

exercise with 15 repetitions and increasing to three sets of exercise toward the end of the 

twenty-four-week training program (2015). In this case, is a limitation that the 

participants exercising with 80% of their 1RM has greater load on their muscles than 

participants that were exercising 20% of their 1RM. The 80% 1RM likely induced fatigue 

and stimulated more of the overall muscle to grow while stopping prior to fatiguing the 

muscle with 20% does not fully stimulate all the muscle fibers. In addition, Lixandrao et 

al. did not report the average total work volume of participants for each condition (2015). 

Yasuda et al. came to a similar conclusion and found that significant increases in 

muscle strength and size occurred in the training protocols that combined high-load 

resistance training once a week with low-load BFR training twice a week (Yasuda, et al., 

2011). In this study, the high-load group exercised at 75% 1RM without BFR and the 

low-load group exercised at 30% 1RM with a BFR set at 100 mmHg and increasing over 

the course of the training period. Yasuda et al. found that the greatest increases in 

muscular strength and size occurred when low-load BFR resistance exercise was 

combined with high-load resistance exercise. However, Yasuda et al. did not control for 

relative pressure of the person and did not exercise the participants until volitional failure 

(2011). As mentioned before, BFR pressures should be relative to the cuff and the person 

by finding the point of total occlusion and taking a percentage of that pressure. But, 

exercising until volitional failure is also a very important aspect of standardizing muscle 

hypertrophy. Instead of using arbitrary exercise sets and repetitions, exercising until 

voluntary failure helps to truly compare the exercise stimulus across varying loads. With 

BFR, failure may be reached sooner in low-load exercises than without BFR or with 
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similar loads, but varying AOP percentages. When BFR pressure is based on a 

percentage of the participants AOP, then groups under a low BFR stimulus would have a 

relative pressure that gives them that low BFR stimulus. In addition, the participants 

could reach failure in a similar amount of time than they would if absolute pressures were 

used. The purpose of exercising to volitional failure is that we can access the ability of 

the stimulus to elicit an effect of adaption.  

By combining BFR with low-load resistance exercises, people can increase 

muscular strength and size even though they are not exercising at the ACSM guidelines 

(Loenneke, Wilson, Marin, Zourdos, & Bemben, 2012). This is beneficial for populations 

that may not have the ability to exercise at high-loads of 60-80% of their 1RM. 

Nyakayiru et al. saw a significant increase in biomarkers for myofibrillar protein 

synthesis in twelve recreationally active young men under single-leg low-load BFR 

conditions (Nyakayiru, et al., 2019). The participants were divided into two groups, one 

was the resting condition group, and the other was the low-load group (20% 1RM) 

(Nyakayiru, et al., 2019). The study was a within-subject design, and the low-load group 

had one leg randomly assigned to two five-minute cycles under BFR, and the opposite 

leg was considered the control measure without BFR (Nyakayiru, et al., 2019).  In the 

participants that were under low-load conditions, over the five hour period, the low-load 

leg with BFR had a significantly higher amount of myofibrillar protein synthesis when 

compared to the leg with only low-load resistance exercise (Nyakayiru, et al., 2019).  

In BFR application alone and with passive mobilization there was a delay in 

muscle atrophy, but when a person can exercise with a low-load to failure, they can 

increase their muscular strength and size (Loenneke, Wilson, Marin, Zourdos, & 
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Bemben, 2012). Thus, BFR can be used as a transitioning period for injured, immobile, 

or elderly populations, and the safety of BFR protocols should be thoroughly understood 

before recommendations can be made for these specific populations (Loenneke, Wilson, 

Marin, Zourdos, & Bemben, 2012). 

 

2.3 Cardiovascular Response and Concerns 

The circulatory system has a variety of functions: hormone transport, immune 

support, clotting factors, transporting oxygen, etc. It is a closed system, and changes in 

one side of the heart will affect the blood flowing to the other side. Oxygenated blood 

flows from the heart to the needed muscles and organs. Then, deoxygenated blood flows 

from the organs to the heart, to the lungs, and back to the heart for the cycle to continue. 

In a healthy individual, this system operates very efficiently (Smith & Fernhall, 2011). 

However, in unhealthy individuals, heart disease can make simple tasks difficult and 

difficult tasks challenging. This is because a heart that does not receive enough blood, 

eject enough blood, or eject blood with enough pressure could increase your chance for 

heart attack, stroke, poor circulation, blood clots, etc. ACSM reports that acute 

myocardial infarctions and sudden cardiac death are associated with vigorous exercise 

(American College of Sports Medicine, 2018). 

As mentioned before, there are some concerns about how BFR might affect the 

cardiovascular system by enhancing the exercise pressor reflex in response to the 

deoxygenated tissue distal from the BFR cuff and a reduced return of blood flow 

(Spranger, Krishnan, Levy, O'Leary, & Smith, 2015). The most concerning of those 

issues include the possibility of myocardial infarction (MI or heart attack). While BFR 
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does provide a way to exercise at a low load while still inducing muscle hypertrophy, the 

participant's cardiovascular responses should be moderated because BFR does artificially 

decrease the amount of blood returning to the heart. When the muscle signals a need for 

more oxygen, the central nervous system responds by withdrawing parasympathetic 

activation and increasing sympathetic activation (Smith & Fernhall, 2011). As this 

occurs, the body tries to send more blood to the deoxygenated tissue by causing an 

increase in heart rate, and this increases the workload of the heart and the heart requires 

more oxygen for the myocardium (Smith & Fernhall, 2011). 

In many cases, Spranger et al. reviewed studies with participants likely at full 

arterial occlusion and receiving no oxygenated blood to the muscle (Jessee M. B., 

Buckner, Mouser, Mattocks, & Loenneke, 2016). However, these values were based on 

previous absolute pressures in literature like in the case of Yasuda et al. and Sugawara et 

al. (2011; 2015). Yasuda et al. based their study in 2011 off a previous study in 2008, 

where pressures from 100 mmHg to 160 mmHg were used for all participants (2011; 

2008). A study by Shimizu et al. inflated the pneumatic cuff to the systolic blood pressure 

in the femoral artery of the participant (2016), which could cut off blood flow since SBP 

is the highest BP in the arteries.  With these studies of varying absolute pressures, it may 

not be an accurate assumption that all BFR exercise could be dangerous. Cuff size and 

pressure should be relative to the participant to maximize safety in BFR exercises 

because if the pressure is not relative, we cannot ensure they were not under arterial 

occlusion (Kilgas, et al., 2018; Neto, et al., 2016; Mouser, et al., 2017). When BFR is 

based off an absolute value in literature, then the investigator is unable to quantify the 

participant's arterial blood flow making the study difficult to replicate or the researchers 
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are not creating their desired stimulus for the study. Fully occluding arterial blood 

increases blood pressure and load on the heart (Spranger, Krishnan, Levy, O'Leary, & 

Smith, 2015). However, partial arterial occlusion can be applied to ensure the participants 

are receiving some arterial blood flow during the BFR exercise, which would put less 

load on the heart.  

Unpublished results from our lab, Credeur et al., looked at the cardiovascular 

response to unilateral handgrip exercise with and without BFR under a moderate-load 

(60% maximum voluntary contraction) and with BFR under a low-load (40% maximum 

voluntary contraction) for five minutes. Measurements were compared to baseline and a 

time control condition when BFR was applied without exercise. Blood flow was reduced 

on average by about 71% and assessed by Doppler-ultrasound. The moderate-load 

condition when combined with a BFR stimulus that is reducing blood flow by 71% on 

average, there is a reduced central pressor response to exercise. Heart rate for the low-

load BFR condition did not have a significant difference when compared to time control. 

Credeur et al, did not see any changes in wave reflection magnitude or augmentation 

index from the baseline condition. 

Spitz et al. assessed the impact of cuff width on perceived discomfort with a 

relative pressure (40% AOP) BFR arm exercise (Spitz, et al., 2019). Spitz et al. used a 

discomfort scale with values from 0 to 100 and read the Steele et al. ratings of perceived 

discomfort. The researchers had three different experiments. The first (n=96), involved 4 

sets of biceps curls to failure with the same relative pressure for a narrow (5 cm) and a 

wide cuff (12 cm). The researchers saw that participants had less discomfort with the 

narrow cuff (40.6 men and 38.0 women) than the wide cuff (45.9 men and 39.2 women) 
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inflated to the same relative pressure during the exercise (Spitz, et al., 2019). The other 

two experiments concluded that if a wide cuff was inflated based on a relative pressure 

found with a narrow cuff, participants had a higher discomfort and there was no 

difference in discomfort between the wide and narrow cuff at rest when set to a relative 

pressure (Spitz, et al., 2019).  

 

2.3.1 Quantifying the Cardiovascular Response 

Different methods to maximize BFR exercise safety include using tools to get 

accurate and precise measurements for different individuals. Comparing arterial 

occlusion before and after exercise can be used as a surrogate measure to quantify the 

cardiovascular response (Jessee, et al., 2018). When exercising with low- (30% 1RM) 

and moderate-loads (50% 1RM) adding BFR causes an increase in arterial occlusion 

pressure (Jessee, et al., 2018). But there are other direct measures that give a holistic view 

of the cardiovascular response to BFR resistance exercises like central and peripheral 

blood pressure, heart rate, and oxygen saturation (Neto, et al., 2016; Neto, et al., 2016; 

Kilgas, et al., 2018; Mouser, et al., 2019; Rossow, et al., 2012; Nitzsche, et al., 2016; 

Kacin & Strazar, 2011; Matos-Santos, Farinatti, Borges, Massaferri, & Monteiro, 2017; 

Ganesan, et al., 2015).  

Even though there may be many different variables to quantify a cardiovascular 

response, many BFR studies include oxygen saturation (tissue saturation) collected from 

either a finger oximeter (Broxterman, et al., 2015) or a near-infrared spectroscopy (NIRS) 

device (Cayot, Lauver, Silette, & Scheuermann, 2014; Ganesan, et al., 2015). NIRS is a 

reliable sensor that captures the relative changes in concentrations of oxygenated, 
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deoxygenated, and total hemoglobin by emitting wavelengths of 760-850 nm at the skin 

contact point (Ganesan, et al., 2015). The NIRS device can show changes in tissue 

oxygenation over time for different BFR protocols without an invasive procedure. 

Heart rate is a cardiovascular variable that is easy to track throughout an exercise 

condition. When blood pressure is also measured, then the rate pressure product (double 

product) can be determined (Neto, et al., 2016; Matos-Santos, Farinatti, Borges, 

Massaferri, & Monteiro, 2017; Rossow, et al., 2012). Devices like a SphygmoCor, are 

automatic blood pressure measuring devices and include other cardiovascular information 

like mean arterial pressure, peripheral and central blood pressures, augmentation 

pressures, and augmentation indexes (Rossow, et al., 2012). By knowing the SBP and 

DBP of the participant, the researcher can estimate mean arterial pressure. For example, 

if the load on the heart is high, then the mean arterial pressure will also be high. If the 

mean arterial pressure is high, then the baroreflex will signal for a change to 

accommodate the high pressure. Since BFR reduces the amount of deoxygenated blood 

returning to the heart, then there is a lower stroke volume, and the heart will beat faster to 

maintain cardiac output. As the workload on the heart increases then it would be more 

likely for a person to have a myocardial infarction. The augmentation index and 

augmentation pressure are measures of arterial stiffness. Augmentation pressure is then 

found by subtracting the pressure inflection point from the maximum SBP (Credeur, et 

al., 2018). Then, augmentation index is expressed as a percent of pulse pressure (Credeur, 

et al., 2018). When arteries are less elastic, the mean arterial pressure does not dampen 

and could cause damage to other blood vessels in the circulatory system (Smith & 

Fernhall, 2011). 
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Ratings of perceived effort (RPE-E) is a good indicator of the participant’s effort 

during exercise and can help understand the difficulty of the exercise for the participant 

(Steele, Fisher, McKinnon, & McKinnon, 2017). Ratings of perceived discomfort (RPE-

D) should indicate the participant’s discomfort during the exercise and should not include 

the participant’s effort during the exercise (Steele, Fisher, McKinnon, & McKinnon, 

2017). These scales can also help to predict adherence or tolerance to the protocol being 

performed. If the participant does not have a good understanding between the two 

measurements, then the participant may provide inaccurate results, or if different scales 

are used between studies, then the results may not be comparable (Steele, Fisher, 

McKinnon, & McKinnon, 2017). 

Steele et al. suggests using vivid scales to clearly instruct the participant of the 

differences between effort and discomfort (2017). While using the 6-20 Borg scale for 

RPE and the CR10+ scale for discomfort Jessee et al. and Mattocks et al. found 

participants had greater discomfort using higher BFR pressures with increasing loads 

during exercise (Dankel S. J., et al., 2018; Jessee, et al., 2017). In one study, participants 

who had a higher BFR pressure also had a higher ratings of perceived exertion (Mattocks, 

et al., 2017), but Jessee et al. saw no difference across conditions with a ratings of 

perceived exertion or perceived discomfort even though both investigators reported using 

the same scales. This discrepancy could be because Jessee et al. looked at the effects of 

compound exercise movements where the primary movers are not under BFR. In 

addition, Mattocks et al. performed unilateral elbow flexion exercises, and Jessee et al. 

performed bilateral exercise with the bench press.    
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2.4 The Possibilities of Blood Flow Restriction Combined with Unilateral, Bilateral, 

and Alternating Exercises 

There have been many investigations into the cardiovascular response of BFR, but 

the cardiovascular response can also be affected by the amount of muscle mass utilized 

during exercise. When exercising bilaterally, a participant is activating more muscles at 

the same time, and the demand for oxygen for these tissues is increased. The 

cardiovascular system responds by vasodilating vessels to exercising muscles and 

vasoconstricting vessels that are not absolutely necessary during exercise (Smith & 

Fernhall, 2011). 

Current literature seems to have conflicting results about the cardiovascular 

response when comparing bilateral and unilateral exercises (Saeterbakken & Fimland, 

2012). Moreira et al. assessed the cardiovascular response in fifteen healthy male subjects 

by three different types of exercises (bicep curls, knee extensions, and barbell rows) for 

each set of exercise. The subjects performed unilateral, bilateral, and alternating exercise 

conditions for each body segment to see the cardiovascular difference between 

modalities. When looking at unilateral, bilateral, and alternating resistance training 

exercises in the upper and lower body, Moreira et al. concluded that the bilateral upper 

body had a higher cardiovascular response than the other exercises bilaterally (2015). 

Moreira et al., discuss that the structure of the vascular tree increases the cardiovascular 

demand of the bilateral upper body exercise because there is greater resistance to blood 

flow (2015). In addition, the bilateral exercise had a greater cardiovascular response 

when compared to unilateral exercise in the same body segment (Moreira, et al., 2015). A 
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possible limitation to this study is that participants did not exercise to failure; instead, 

they performed three sets of ten repetitions for each exercise.  

Matos-Santos et al. reported a significant increase in blood pressure, heart rate, 

cardiac output, and rate pressure product in bilateral compared to unilateral knee-

extensions. One limitation of the study is that participants did four sets of twelve 

repetitions for both exercises. So, Matos-Santos et al. did not have the participants 

exercise until volitional failure. Two things are suggested from these studies. First, that 

the amount of muscle mass contracting can affect the cardiac response (i.e., higher blood 

pressure, heart rate, and rate pressure product) (Matos-Santos, Farinatti, Borges, 

Massaferri, & Monteiro, 2017; Moreira, et al., 2015). Second, the upper limbs have a 

greater resistance to blood flow than the lower limbs and have greater cardiovascular 

response (Matos-Santos, Farinatti, Borges, Massaferri, & Monteiro, 2017). By 

manipulating the amount of active tissue or exercise modality (unilateral, bilateral, or 

alternating), researchers may be able to attenuate the cardiovascular response to exercise. 

This could mean that there are different ways that researchers can minimize a heightened 

cardiovascular response during BFR exercise, by applying different relative pressures, 

exercising with different loads, and possibly manipulating the exercise modality. To the 

best of our knowledge, there is no research currently investigating the cardiovascular 

response of BFR resistance exercise with different modalities (unilateral, bilateral, 

alternating). 
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CHAPTER III - METHODOLOGY 

3.1 Participants 

The participants in this study were recruited if they were 18-35 years old. We 

recruited twenty-three volunteers with 13 males and 5 females. The participants were 

recruited from email, classroom announcements, and word of mouth. Participants were 

excluded from participation if they took medication that would influence blood pressure 

or heart rate, or had any orthopedic issues prohibiting resistance exercise in the lower 

body. Also, participants were excluded if they met two of the following risk factors for 

thromboembolism: currently using birth control, diagnosis of Crohn’s disease, previous 

fracture of hip, pelvis or femur, major surgery within the last 6 months, varicose veins, 

family or personal history of pulmonary embolism or thromboembolism, or a BMI >30 

(Motykie et al., 2000). 

 

3.2 Experimental Design 

The first visit the participants filled out the exclusion criteria (Figure 5.11), 

informed consent, and a PAR-Q. If the participants were eligible and willing to 

participate, then their height and weight was recorded. Then, the participants performed a 

1RM test. During the 1RM test, Participants were familiarized with two separate scales to 

measure ratings of perceived effort (RPE-E) and perceived discomfort (RPE-D). Then, 

the participants were familiarized with each exercise modality by performing five 

repetitions of each condition to a metronome with a deflated cuff on their left upper leg. 

Subsequent visits (at least 2 days and not more than 10 apart) included one of 

three randomly ordered experimental protocols. Participants performed a protocol under 
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BFR using either unilateral, bilateral, or alternating left and right limb exercises (Moreira, 

et al., 2015). AOP was measured for each limb before the exercise protocol for each visit. 

RPE-E and RPE-D were taken before, between sets, and immediately after exercise. 

RPE-E was taken immediately after each set, and RPE-D was taken 20 seconds after each 

set. Pulse wave analysis (PWA) was measured two times before and once immediately 

after the exercise condition. Exercises were performed under 40% AOP and at 30% of the 

participant’s averaged bilateral 1RM. The participant was asked to do four sets of 

exercise to volitional failure with 30 seconds of rest between set (Jessee, et al., 2018). 

Then, the BFR cuff was deflated and removed. Each visit lasted about forty-five minutes 

but not longer than one hour. 

 

3.2.1 Informed Consent 

The participant was welcomed into the lab and given the exclusion criteria (Figure 

6.9). Then, the investigator described the entire study to the participant, this includes but 

is not limited to the purpose, procedures, risks and discomforts, benefits, confidentiality 

of the participant, early withdraw from the study, and predicted date the study would be 

finished. The participant was also informed to avoid alcohol, nicotine, and exercise 24 

hours prior to the study and avoid caffeine 8 hours prior to each visit. The participant was 

able to ask for further information prior to providing verbal and written consent. After 

consent was obtained, the participant filled out a Physical Activity Readiness 

Questionnaire (PAR-Q [2019+]) to ensure they were not at an increased risk of a 

cardiovascular event. If the participant was at an increased risk for a cardiovascular 
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event, then they were excluded from the study. If they were eligible to participate then 

height and body mass measures were taken. 

 

3.2.2 Height and Body Mass 

Participants height and body mass were measured using standard equipment. 

Height was measured in centimeters and mass was measured in kilograms. The 

participants body mass index was then calculated.  

 

3.2.3 One Repetition Maximum (1RM) 

Participants were seated in an isolateral leg extension machine, which is 

illustrated in Figure 5.9 with the model number in Figure 6.8 (Hammer Strength®, Model 

IL-LE). Then, they warmed-up by completing no more than 10 unloaded knee extensions 

for each leg. The participant was asked to undergo a full range of motion for each 

repetition attempt, which is extending the knee about 90 degrees until stopped at the 

safety bar on the machine. When the participant was ready, a lighter weight that the 

participant was confident in lifting was added to the bar and increased with each 

successful knee extension attempt. If the participant was unsuccessful, then the load was 

lowered in smaller increments until the 1RM was determined. There were 60 seconds 

between each leg attempt, and the starting leg was randomized. Investigators tried to 

determine the participants 1RM in less than approximately 5 attempts per leg. If the 1RM 

was different between legs, then they were averaged together for the participants average 

bilateral 1RM. Each exercise was performed at 30% of the participants averaged bilateral 

1RM.  
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3.2.4 Arterial Occlusion Pressure (AOP) 

A 10cm wide, pneumatic nylon cuff (Hokanson®, SC10D) was placed on the 

proximal portion of each upper leg while the participant was standing (Figure 6.5). Then, 

the participant was asked to sit in the knee-extension machine. RPE-E, RPE-D, and PWA 

were assessed while the participant rested in the machine. Then, an Ultrasonic Pocket 

Doppler probe (Edan, SD3 Vascular) was used to detect the pulse in the posterior tibial 

artery. To determine the participant’s AOP, the cuff pressure was slowly increased 

(Hokanson®, E20-Rapid Cuff Inflator) from 50 mmHg until a pulse was no longer 

audible and this pressure was recorded to the nearest mmHg. AOP of each exercising leg 

was measured prior to each condition. Each cuff was inflated to 40% of the respective 

AOP in each leg before the exercise condition began. If the pressure exceeded 300 

mmHg, then 40% of 300mmHg was used due to limitation of equipment being unable to 

inflate the cuff any further. 

 

3.3 Exercise Conditions 

3.3.1 Bilateral Exercise 

The participant had a nylon pneumatic cuff placed at the proximal portion of the 

upper left and right thigh. Then, the previously averaged 1RM from the first lab visit was 

used for the bilateral exercise. Both legs synchronously extended to the pre-set safety bar 

and returned, completing a full 90-degree motion. The participant continued to exercise 

until volitional failure, or until they were unable to maintain a 2-second cadence (1 

second concentric, 1 second eccentric), or if one leg was unable to keep pace with the 
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cadence. If the participant missed the safety bar or was off beat for more than two 

consecutive attempts per leg, then the investigator ended the set. 

 

3.3.2 Unilateral Exercise 

During the unilateral exercise, the participant had a nylon pneumatic cuff placed 

at the proximal portion of both legs, but only one cuff was inflated and attached at a time. 

The investigator randomized which leg the participant used for exercise first, and the 

opposing limb remained relaxed while the exercising leg extended to the pre-set safety 

bar and returned, completing a full 90-degree motion. The participant continued until 

volitional failure, or until they were unable to maintain a 2-second cadence (1 second 

concentric, 1 second eccentric) for four sets. If the participant was offbeat or missed the 

safety bar for more than 2 consecutive attempts, then the investigator ended the set. Cuffs 

were undone if not exercising and had to be secured before starting the exercise 

Once four sets were completed on the first leg, then the investigators deflated and 

unattached the Velcro of the cuff. Then, the investigators attached the Velcro and inflated 

the cuff of the rested leg, and the participants were asked to begin the same protocol on 

the opposite limb while the first exercised leg rested.  

 

3.3.3 Alternating Exercise 

During the alternating exercise, the participant had a nylon pneumatic cuff placed 

at the proximal portion of both legs. The investigator randomized which leg was first for 

exercise, and the opposing limb extended to the pre-set safety bar when the original leg 

returned to a 90-degree angle. The participant continued to alternate until volitional 
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failure, or until they were unable to maintain a 2-second cadence (1 second concentric, 1 

second eccentric) for two consecutive attempts per leg.  

 

3.4 Variables 

3.4.1 Systolic (SBP) and Diastolic Blood Pressure (DBP), Pulse Wave Analysis 

(PWA) 

PWA, SBP, and DBP were measured twice with an automatic blood pressure cuff 

(SphygmoCor XCEL, AtCor Medical) prior to exercise and once immediately after 

exercise. The two PWA measurements taken at baseline were averaged together. An 

example of the SphygmoCor can be seen in Figure 6.1. The participant remained seated 

in the knee-extension machine, and a cuff was placed on the proximal portion of the 

upper left arm. Figure 6.2 illustrates the placement of the SphygmoCor, and Figure 6.3 

illustrates the information needed about the participant prior to measurement. Figure 6.4 

is a visual of the SphygmoCor XCEL system on a cart that is rolled closer to the 

participant as they are seated in the leg extension machine. The participant was informed 

that the cuff would inflate a total of four times, and the investigator began the 

SphygmoCor measurement (took up to 3 minutes for one measurement). The cuff inflated 

the first time to measure brachial SBP and brachial DBP and then inflated to sub-systolic 

blood pressure to analyze the brachial pressure waveform. 

 

3.4.2 Rate Pressure Product (RPP) 

RPP (sometimes referred to as double product) is a measure of cardiovascular 

stress and was determined by taking the product of SBP and HR data from the PWA 
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measures before and immediately after exercise. The investigators calculated aortic RPP 

(aRPP) and brachial RPP (bRPP) by using the aortic SBP and the brachial SBP 

measurements. 

 

3.4.3 Ratings of perceived effort (RPE-E) and perceived discomfort (RPE-D) 

RPE-E and RPE-D were measured with two different scales, with a range of 0 to 

10, which have been validated previously (Steele, Fisher, McKinnon, & McKinnon, 

2017). The participant was familiarized with the different scales on the first visit and 

prior to the protocol on subsequent visits. The participant was asked before and 

immediately after the exercise to describe how hard they feel they were working during 

the exercise condition based on the RPE-E scale (Figure 6.6). The participant was asked 

20 after the exercise condition to describe how much discomfort they felt currently based 

on the RPE-D scale (Figure 6.7). The participant pointed to or said the number on the 

appropriate scale that accurately represents either their RPE-E or RPE-D.  

 

3.4.4 The Volume of Load Lifted 

The total number of repetitions completed were recorded by the investigator and 

multiplied by the load to quantify the volume of load lifted by the participant for each 

condition (Jessee, et al., 2018). 

 

3.5 Data Analysis 

Body mass index was measured for all participants by dividing the participants 

weight in kilograms by their height (converted to meters) squared. Cardiovascular 
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measures were collected and analyzed with 17 participants. aRPP was calculated by 

multiplying aSBP by HR. bRPP was calculated by multiplying bSBP by HR. Volume 

was calculated by multiplying the number of repetitions for each condition by the amount 

of weight the participant moved. The unilateral condition left, and right leg results were 

averaged together. All data presented as mean (SD) unless noted otherwise. AIX%75 was 

analyzed with 15 participants because the instrument was unable to provide us with this 

data for 2 participants. In addition, one of the participant’s did not have their waveform 

assessed. Participants were excluded from analysis if they did not have the variables for 

all three conditions. 

 

3.6 Statistical Analysis 

A Bayesian one-way ANOVA was performed to compare volume and the change 

in cardiovascular measures from PWA across conditions. Bayesian repeated measures 

ANOVA was conducted for RPE-E, RPE-D, and volume. Cardiovascular variables were 

assessed based on differences from the averaged PWA measure before the start of the 

exercise condition minus the PWA measure after the exercise condition. In Figure 3.1, 

Wagenmaker et al. illustrates a way to interpret the bayes factors. If the bayes factor (BF) 

was greater than 3, then there would be moderate evidence for the alternative hypothesis 

(Wagenmakers, et al., 2018). If the BF was less than .333, then there would be moderate 

evidence for the null hypothesis (Wagenmakers, et al., 2018). BF values between .333 

and 3 are anecdotal evidence, and more data would be necessary to see if the evidence 

supports one hypothesis over another (Wagenmakers, et al., 2018). In addition, if there 

was an interaction, then post-hoc comparisons were used to investigate simple effects. If 
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there was no evidence for a significant interaction, then main effects of condition and 

time were investigated (JASP 0.9.2.0).  

 

Figure 3.1 Classification Scheme from Wagenmakers et al. 2018 

This image illustrates how to interpret the bayes factor when comparing the null and alternative hypothesis (Wagenmakers, et al., 

2018). 
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CHAPTER IV – RESULTS 

4.1 Cardiovascular measures 

A table of all mean values for cardiovascular variables at each time point can be 

found in Table 4.1.  

 Unilateral Bilateral Alternating 
 

Before 1 Before 

2 

After Before 

1 

Before 

2 

After Before 

1 

Before 

2 

After 

bSBP 
(mmHg) 

132.2 

(13.4) 

125.9 

(11.0) 

149.7 

(15.9) 

132.1 

(14.6) 

127.1 

(12.9) 

152.3 

(14.7) 

129.7 

(11.5) 

126.7 

(10.0) 

157.0 

(12.2) 

bDBP 
(mmHg) 

78.8 (10.6) 78.8 

(8.9) 

84.9 

(12.4) 

79.5 

(7.1) 

77.3 

(6.9) 

85.4 

(10.5) 

77.2 

(9.9) 

74.9 

(7.8) 

86.9 

(11.9) 

aSBP 
 (mmHg) 

114.8 

(11.0) 

111.0 

(9.8) 

125.5 

(12.4) 

115.2 

(11.0) 

111.6 

(9.9) 

127.7 

(11.7) 

112.8 

(9.0) 

109.1 

(8.0) 

131.8 

(10.3) 

aDBP 
(mmHg) 

80.1 (11.0) 79.9 

(8.7) 

86.8 

(12.4) 

80.4 

(7.3) 

78.3 

(6.9) 

87.5 

(10.6) 

77.8 

(10.1) 

76.3 

(7.3) 

89.7 

(12.2) 

aPP 
(mmHg) 

34.7 (10.0) 31.1 
(7.3) 

38.7 
(7.5) 

34.8 
(7.6) 

33.3 
(8.7) 

40.2 
(8.4) 

34.9 
(9.7) 

32.8 
(5.0) 

42.1 
(8.2) 

aMAP 
(mmHg) 

93.9 (10.8) 92.8 
(8.9) 

104.1 
(12.8) 

95.6 
(9.2) 

92.3 
(7.3) 

106.1 
(11.3) 

92.2 
(9.2) 

89.4 
(7.7) 

108.9 
(12.9) 

HR 
(bpm) 

70.0 (12.4) 70.2 
(11.6) 

87.9 
(13.0) 

72.4 
(9.0) 

70.1 
(8.7) 

89.4 
(12.7) 

69.8 
(11.6) 

69.6 
(10.5) 

94.1 
(19.9) 

aRPP 
(bpm*mmHg) 

9261.3 

(1868.9) 

8829.4 

(1509.4) 

11079.1 

(2150.8) 

9606.7 

(1780.6) 

8885.8 

(1282.7) 

11435.3 

(2002.1) 

9040.7 

(1599.4) 

8794.7 

(1312.4) 

12506.6 

(3229.9) 

bRPP 
(bpm*mmHg) 

8045.7 

(1605.4) 

7789.6 

(1369.2) 

13204.3 

(2573.6) 

8370.8 

(1431.7) 

7800.6 

(1040.9) 

13621.7 

(2348.6) 

7877.2 

(1429.2) 

7583.7 

(1189.7) 

14878.7 

(3801.3) 

AP 
(mmHg) 

2.5 (6.0) 2.2 (5.2) -0.9 

(6.9) 

3.6 (5.8) 3.8 (6.7) 1.3 (6.9) 3.4 (5.6) 1.4 (4.1) 0.4 (8.2) 

AIX 
(%) 

4.8 (15.1) 4.4 

(15.2) 

-2.6 

(17.0) 

9.1 

(14.2) 

9.5 

(15.5) 

1.7 

(17.5) 

7.8 

(15.2) 

3.3 

(12.4) 

-0.5 

(20.7) 

AIX75 
(%) 

2.3 (14.9) 2.1 

(15.2) 

3.7 

(17.0) 

7.8 

(14.9) 

7.2 

(16.8) 

8.6 

(16.8) 

5.2 

(17.2) 

0.7 

(14.9) 

7.4 

(18.0) 

WR 
(%) 

47.1 (6.6) 47.2 

(6.3) 

41.4 

(7.7) 

48.2 

(6.5) 

48.8 

(8.4) 

43.2 

(6.2) 

47.1 

(7.0) 

46.3 

(8.9) 

42.1 

(6.9) 

FH 
(mmHg) 

29.4 (6.2) 25.8 
(5.1) 

35.7 
(7.4) 

29.6 
(6.2) 

28.2 
(7.2) 

36.6 
(6.7) 

30.0 
(7.3) 

28.6 
(5.1) 

37.4 
(6.0) 

RH 
(mmHg) 

14.1 (4.3) 12.4 
(3.5) 

14.4 
(2.6) 

14.2 
(3.6) 

14.2 
(6.3) 

15.8 
(3.8) 

14.2 
(4.3) 

13.1 
(2.2) 

15.9 
(3.9) 

Table 4.1 Average Changes in Cardiovascular Variables 

The values are expressed as the first measurement before exercise (Before 1), the second measurement before exercise (Before 2), and 

the measurement immediately after exercise (After). The standard deviations are in parenthesis next to each measurement. bSBP = 

brachial systolic blood pressure; bDBP = brachial diastolic blood pressure; aSBP = aortic systolic blood pressure; bSBP = brachial 

systolic blood pressure; aPP = aortic pulse pressure; aMAP = aortic mean arterial pressure; HR = heart rate; aRPP = aortic rate 

pressure product; bRPP = brachial rate pressure product; AP = augmentation pressure; AIX% = augmentation index; AIX75% = 

augmentation index when corrected for heart rate; WR = wave reflection magnitude; FH = forward pressure height; RH = reflected 

pressure height. 
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There was anecdotal evidence (BF10 = 1.838) that the changes in bSBP were 

different between conditions (Figure 4.1). Follow-up comparisons showed changes in 

ALT were greater than UNI [28 (10) vs. 20 (12) mmHg; BF10 = 7.086], but not different 

from BI [28 (10) vs. 22 (9) mmHg; BF10 = 0.680]. The changes in UNI were not different 

from BI [20 (12) vs. 22 (9) mmHg; BF10 = 0.294].  

 

Figure 4.1 Changes in Brachial Systolic Blood Pressure 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was anecdotal evidence (BF10 = 1.114) that changes in bDBP were different 

between conditions (Figure 4.2). Follow-up comparisons showed changes in ALT were 

greater than UNI [11 (8) vs. 6 (11) mmHg; BF10 = 2.009] and were greater than BI [11 (8) 
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vs. 7 (8) mmHg; BF10 = 1.338]. The changes in UNI were not different from BI [6 (11) 

vs. 7 (8) mmHg; BF10 = 0.272]. 

 

Figure 4.2 Changes in Brachial Diastolic Blood Pressure 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was strong evidence (BF10 = 17.949) that changes in aSBP were different 

between conditions (Figure 4.3). Follow-up comparisons show changes in ALT were 

greater than UNI [21 (9) vs. 13 (11) mmHg; BF10 = 151.605) and were greater than BI 

[21 (9) vs. 14 (8) mmHg; BF10 = 2.640]. The changes in UNI were not different from BI 

[13 (11) vs. 14 (8) mmHg; BF10 = 0.304]. 
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Figure 4.3 Changes in Aortic Systolic Blood Pressure 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was moderate evidence (BF10 = 3.214) that changes in aDBP were different 

between conditions (Figure 4.4). Follow-up comparisons show changes in ALT were 

greater than UNI [12 (8) vs. 7 (11) mmHg; BF10 = 5.452] and were greater than BI [12 (8) 

vs. 8 (8) mmHg; BF10 = 3.732]. Changes in UNI were not different from BI [7 (11) vs. 8 

(8) mmHg; BF10 = 0.292].  
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Figure 4.4 Changes in Aortic Diastolic Blood Pressure 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was strong evidence (BF10 = 27.005) that changes in aMAP were different 

between conditions (Figure 4.5). Follow-up comparisons show changes in ALT were 

greater than UNI [18 (9) vs. 11 (10) mmHg; BF10 = 49.973] and were greater than BI [18 

(9) vs. 12 (7) mmHg; BF10 = 9.211). The changes in UNI were not different from BI [11 

(10) vs. 12 (7) mmHg; BF10 = 0.309].  
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Figure 4.5 Changes in Aortic Mean Arterial Pressure 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was moderate evidence (BF10 = 3.956) that changes in HR were different 

between conditions (Figure 4.6). Follow-up comparisons show changes in ALT were 

greater than UNI [25 (15) bpm vs. 19 (8) bpm; BF10 = 1.306] and were greater than BI 

[25 (15) bpm vs. 18 (11) bpm; BF10 = 9.372]. The changes in UNI were not different 

from BI [19 (8) bpm vs. 18 (11) bpm; BF10 = 0.262]. 
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Figure 4.6 Changes in Heart Rate 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was strong evidence (BF10 = 14.378) that changes in bRPP were different 

between conditions (Figure 4.7). Follow-up comparisons show changes in ALT were 

greater than UNI [6060 (2915) vs. 4270 (1809) mmHg * bpm; BF10 = 3.538] and were 

greater than BI [6060 (2915) vs. 4328 (1673) mmHg * bpm; BF10 = 11.180]. The changes 

in UNI were not different from BI [4270 (1809) vs. 4328 (1673) mmHg * bpm; BF10 = 

0.148]. 
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Figure 4.7 Changes in Brachial Rate Pressure Product 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was very strong evidence (BF10 = 41.682) that changes in aRPP were 

different between conditions (Figure 4.8). Follow-up comparisons show changes in ALT 

were greater than UNI [4873 (2479) vs. 3243 (1482) mmHg * bpm; BF10 = 6.625] and 

greater than BI [4873 (2470) vs. 3308 (1449) mmHg * bpm; BF10 = 22.785]. The changes 

in UNI were not different from BI [3243 (1482) vs. 3308 (1449) mmHg * bpm; BF10 = 

0.253]. 
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Figure 4.8 Changes in Aortic Rate Pressure Product 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was moderate evidence (BF10 = 0.274) that changes in pulse pressure were 

not different across UNI [6.0 (5.9) mmHg], BI [6.2 (7.4) mmHg], and ALT [8.3 (5.6) 

mmHg] conditions (Figure 4.9). 
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Figure 4.9 Changes in Pulse Pressure 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was moderate evidence (BF10 = 0.202) that changes in augmentation 

pressure were not different across UNI [-3.3 (5.2) mmHg], BI [-2.4 (5.9) mmHg], and 

ALT [-1.8 (6.5) mmHg] conditions (Figure 4.10). 

-10

-5

0

5

10

15

20

25

Δ
P

u
ls

e
 P

re
s
s
u

re
 (

m
m

H
g

)

Unilateral Bilateral Alternating



 

41 

 

Figure 4.10 Changes in Augmentation Pressure 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was moderate evidence (BF10 = 0.162) that changes in augmentation index 

(%) were not different across UNI [-7.1 (12.8)], BI [-7.7 (11.7)], and ALT [-5.7 (16.5)] 

conditions (Figure 4.11). 
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Figure 4.11 Changes in Augmentation Index 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was anecdotal evidence (BF10 = 1.354) that changes in augmentation index 

(%) when corrected for heart rate were different between conditions (Figure 4.12). 

Follow-up comparisons show that changes in ALT is greater than UNI [7.20 (13.7) vs. 

0.10 (8.9); BF10 = 2.252], but not different from BI [7.20 (13.7) vs. 0.47 (8.6); BF10 = 

0.905]. The changes in UNI were not different from BI [0.10 (8.9) vs. 0.47 (8.6); BF10 = 

.264]. 
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Figure 4.12 Changes of Augmentation Index when Corrected for Heart Rate 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was moderate evidence (BF10 = 0.172) that changes in wave reflection 

magnitude were not different across UNI [-5.5 (8.7) %], BI [-4.7 (7.2) %], and ALT [-4.3 

(6.9) %] conditions (Figure 4.13).  
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Figure 4.13 Changes in Wave Reflection Magnitude 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

There was moderate evidence (BF10 = 0.154) that changes in the forward wave 

height component were not different across UNI [8.6 (6.8) mmHg], BI [8.3 (6.2) mmHg], 

and ALT [8.4 (4.4) mmHg] conditions (Figure 4.14).  
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Figure 4.14 Changes in Forward Pulse Height 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change.  

 

There was moderate evidence (BF10 = 0.274) that changes in the reflected wave 

height component were not different across UNI [1.5 (2.8) mmHg], BI [2.4 (3.0) mmHg], 

and ALT [2.5 (3.1) mmHg] conditions (Figure 4.15).  
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Figure 4.15 Changes in Reflected Pulse Height 

Open circles indicate individual changes in brachial systolic blood pressure from before and after each condition. Black lines 

indication median values of the group change. 

 

4.2 Ratings of perceived discomfort and ratings of perceived effort 

There is very strong evidence (BF10 = 0.074) that RPE-D did not change 

differently over time across conditions. When analyzing main effects, there is extreme 

evidence (BF10 = 4.144e +69) for a main effect of time and extreme evidence for a main 

effect of condition (BF10 = 1389.871). Post hoc comparisons between conditions show 

that ALT was greater than UNI (BF10 = 4584.549) and BI (BF10 = 471028.653), while 

UNI and BI conditions were not different (BF10 = 0.127). Post hoc comparisons for main 

effect of time can be seen in Table 4.2. Averaged values for each time point can be seen 

in Table 4.3. 
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      Prior Odds  Posterior Odds  BF 10, U  error %  

BEFORE   SET 1   0.320   1.178e +19   3.686e +19   1.119e -23   

    SET 2   0.320   1.037e +21   3.245e +21   2.226e -24   

    SET 3   0.320   3.906e +21   1.223e +22   6.263e -26   

    SET 4   0.320   1.590e +22   4.975e +22   1.367e -25   

SET 1   SET 2   0.320   2198.890   6882.113   1.734e -11   

    SET 3   0.320   10084.523   31562.670   1.267e -11   

    SET 4   0.320   4.242e  +7   1.328e  +8   2.851e -14   

SET 2   SET 3   0.320   2.204   6.899   6.083e  -7   

    SET 4   0.320   41832.585   130928.167   4.288e  -8   

SET 3   SET 4   0.320   4.566   14.291   3.232e  -7   

Table 4.2 RPE-D Post Hoc Comparisons of Time 

The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior probability that the null hypothesis holds across 

all comparisons (Westfall, Johnson, & Utts, 1997). Individual comparisons are based on the default t-test with a Cauchy (0, r 

=1/sqrt(2)) prior. The "U" in the Bayes factor denotes that it is uncorrected. 

 

RPE-D Before Set 1 Set 2 Set 3 Set 4 

Unilateral 0.1 (0.2) 4.3 (2.0) 4.8 (2.0) 5.1 (2.0) 5.4 (2.1) 

Bilateral 0.1 (0.2) 3.8 (1.6) 4.9 (1.9) 5.1 (2.1) 5.6 (2.1) 

Alternating 0.0 (0.1) 4.9 (1.8) 5.8 (1.9) 6.2 (1.7) 6.5 (1.8) 

Table 4.3 RPE-D Averaged Values for Each Time Point 

The scores were recorded before exercise (Before), 20 seconds after each set of exercise denoted by Set 1, Set 2, and Set 3, and 

immediately after completion of the exercise (Set 4). The scores are recorded as a mean (SD). 

 

There is very strong evidence (BF10 = 0.013) the RPE-E did not change differently 

over time across conditions. When examining main effects, there is extreme evidence 

(BF10 = 1.133e +125) that there is a main effect of time, but not a main effect of condition 

(BF10 = 0.104). Post hoc comparisons for time can be seen in Table 4.4. Averaged values 

for each time point can be seen in Table 4.5. 
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      Prior Odds  Posterior Odds  BF 10, U  error %  

BEFORE   SET 1   0.320   8.697e +26   2.722e +27   1.854e -30   

    SET 2   0.320   6.506e +34   2.036e +35   6.486e -38   

    SET 3   0.320   1.894e +38   5.928e +38   3.255e -41   

    SET 4   0.320   1.317e +41   4.122e +41   1.921e -44   

SET 1   SET 2   0.320   102.688   321.394   8.711e  -9   

    SET 3   0.320   73.580   230.292   1.376e  -8   

    SET 4   0.320   1597.753   5000.668   5.196e -11   

SET 2   SET 3   0.320   0.493   1.542   1.586e  -6   

    SET 4   0.320   391.657   1225.813   1.095e  -9   

SET 3   SET 4   0.320   139.976   438.099   5.592e  -9   

Table 4.4 RPE-E Post Hoc Comparisons of Time 

The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior probability that the null hypothesis holds across 

all comparisons (Westfall, Johnson, & Utts, 1997). Individual comparisons are based on the default t-test with a Cauchy (0, r 

=1/sqrt(2)) prior. The "U" in the Bayes factor denotes that it is uncorrected. 

 

RPE-E Before Set 1 Set 2 Set 3 Set 4 

Unilateral 0.0 (0.0) 7.7 (2.1) 8.4 (1.6) 8.6 (1.3) 9.0 (1.2) 

Bilateral 0.0 (0.0) 7.3 (2.5) 8.2 (1.7) 8.4 (1.5) 8.9 (1.1) 

Alternating 0.0 (0.0) 7.9 (1.7) 8.4 (1.5) 8.7 (1.4) 8.9 (1.5) 

Table 4.5 RPE-E Averaged Values for Each Time Point 

The scores were recorded before exercise (Before), and immediately after each set of exercise denoted by Set 1, Set 2, Set 3 and Set 4. 

The scores are recorded as a mean (SD). 

 

4.3 Volume of Load Lifted 

There was strong evidence (BF10 = 26.945) that changes in volume of work 

performed were different between conditions (Graph 16). Follow up comparisons show 

that ALT was greater than UNI [1946 (1787) kg vs. 945 (313) kg; BF10 = 3.355] and 

greater than BI [1946 (1787) kg vs. 918 (319) kg; BF10 = 4.310]. UNI and BI were not 

different between conditions [945 (313) kg vs. 918 (319) kg; BF10 = 0.282].  
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Figure 4.16 Averaged Total Volume of Load Lifted 

Black filled circles represent the average score for all participants in that condition and the errors bars are standard deviations. 

 

Correlations were looked at for each variable measured in each condition. For 

ALT there was moderate evidence for a positive correlation between volume and 

augmentation index (Pearson’s r = .558; BF10 = 3.657), augmentation index when 

corrected for heart rate (Pearson’s r = .671; BF10 = 9.727), and wave reflection (Pearson’s 

r = .629; BF10 = 7.074) as seen in Graph 17. There was moderate evidence (Pearson’s r = 

.522; BF10 = 3.293) for a positive correlation between volume and bSBP in UNI.  
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Figure 4.17 Differences in Augmentation Index, Augmentation Index Corrected for Heart 

Rate, and Wave Reflection 

Open circles represent each participant score in the alternating condition when compared to total volume of load lifted. Alt = 

alternating; A-B = difference between before and after exercise; AIX% = augmentation index; AIX%75 = augmentation index when 

corrected for heart rate; WR = wave reflection. 
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CHAPTER V – DISCUSSION 

5.1 Central hemodynamics with unilateral, bilateral, and alternating exercise 

Populations at a disadvantage to exercise to their fully capacity could benefit from 

using BFR exercise. In addition, some of these populations at an increased cardiovascular 

risk may benefit from exercises that have a lower cardiovascular response. In this study, 

we looked at how different modalities of low-load knee extensions with BFR affected 

central and peripheral hemodynamics. When exercise occurs without blood flow 

restriction, there is localized muscle swelling in the exercising muscles and an 

accumulation of metabolites. Muscle metaboreceptors sense the accumulation of 

metabolites, send a signal up the afferent nerves to the brainstem, and the cardiovascular 

center responds by altering blood pressure, heart rate, and local and peripheral 

vasculature. When BFR is applied this can increase the build-up of metabolites in the 

muscle inducing a greater cardiovascular response than traditional exercise without BFR.  

Previous studies have indicated that the cardiovascular response with BFR 

exercise is comparable to traditional moderate- and high-load training if blood flow is not 

occluded. Neto et al. looked at high-load exercise, low-load exercise, and low-load 

exercise with BFR (2016). The researchers saw no difference in double product or heart 

rate across conditions, but a significant increase from rest (Neto, et al., 2016). In addition, 

they looked are ratings of perceived exertion and found that there was a greater rating of 

perceived exertion in the legs in the low-load BFR condition when compared to a high-

load (Neto, et al., 2016). Jessee et al. compared AOP from before and immediately after 

upper body exercise and found that if pressure applied or load was increased, then a 

greater AOP was necessary. AOP was a way for the researchers to immediately measure 
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the participants cardiovascular response after the completion of exercise. In our study, we 

looked at central and peripheral cardiovascular measures using a SphygmoCor device. 

This allowed us to have a more reliable method for estimating cardiovascular risk. We 

tried to see if using a different exercise modality would elicit a different cardiovascular 

response. 

In most central hemodynamic measurements, when there was evidence for 

differences between conditions there was usually evidence that the alternating form of 

exercise produced the greatest change from before exercise to immediately after. We also 

saw that there was usually evidence to support that there was no difference between the 

unilateral and bilateral conditions. When we looked at the amount of volume that each 

participant had for each exercise condition, there was evidence that participants had the 

greatest amount of volume during the alternating condition. RPE-D was not different 

between conditions over time, but the alternating condition had the greatest amount of 

perceived discomfort when compared to unilateral and bilateral exercise. 

With the experimental design of this study, participants exercised to a metronome 

at 60 beats per minute. They were instructed to lift on a beat, and lower on a beat. For the 

unilateral and bilateral exercise conditions the exercising leg(s) did not have rest between 

repetitions. However, in the alternating exercise condition there was a 2 second rest for 

each leg because the participants were asked to raise and lower the randomized leg first 

on each beat, and then do the same thing for the opposite leg. This amount of time 

between legs could attribute for the greater volume of work performed by the participant 

in the alternating condition when compared to the unilateral or bilateral condition. The 

greater amount of volume could also contribute to the higher change in central 
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cardiovascular measure like augmentation index, augmentation index corrected for heart 

rate, and wave reflection magnitude. We saw positive correlations for these values, so as 

volume increased, so did changes in augmentation index, augmentation index corrected 

for heart rate, and wave reflection magnitude. 

In some of the central hemodynamic measure, like wave reflection magnitude, 

pulse pressure, augmentation pressure, and augmentation index there was evidence 

(moderate or anecdotal) that there were no changes from before to after exercise across 

conditions. However, this could be because the device used did not capture the wave 

form as quickly after the alternating condition, due to a greater cardiovascular response, 

as it did for the unilateral or bilateral condition because the device was designed to take 

resting measurements. The SpyghmoCor first takes an initial blood pressure, then inflates 

to a sub systolic pressure to estimate aortic cardiovascular measures. In some cases, it 

would take up to three minutes before the wave form was captured. This could give the 

cardiovascular system time to recover toward baseline values. Even 1-2 minutes after 

exercise has shown a significant decrease in heart rate (Javorka, Zila, Balharek, & 

Javorka, 2002). The device did not compute the augmentation index when corrected for 

heart rate for three participants that completed the alternating condition. 

Three participants became dizzy, nauseous, or lightheaded immediately following 

or during the alternating condition. One participant was stopped before volitional failure 

because their last two sets of exercise were over 100 repetitions and we did not want to 

risk the possibility of rhabdomyolysis. These details are important to consider, because 

we were using healthy participants for this study. Based on previous studies without 

blood flow restriction, we did not expect the alternating condition to elicit a greater 
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cardiovascular response than bilateral exercise or bilateral and unilateral exercise to not 

have significantly different results.  

 

5.2 Results from previous studies without BFR 

Matos-Santos et al. examined the cardiovascular response between unilateral and 

bilateral exercise. One of the biggest differences when compared to our study is that we 

had participants exercise both legs in the unilateral condition. In addition, participants in 

our study had 30 seconds of rest between sets, as common with BFR protocols, and were 

asked to exercise with 30% of their 1RM until they could no longer keep going. Matos-

Santos et al. also used photoplethysmography with a Finometer to measure SBP, DBP, 

HR, RPP, SV, and CO before, after, and throughout the exercise conditions, but the 

device we used was unable to assess the cardiovascular response throughout exercise. 

However, we were able to get data on central hemodynamic instead of just brachial blood 

pressure measurements. In our study, only anecdotal evidence was found for changes in 

bSBP and bDBP when compared to the unilateral condition. We used the Bayesian 

inference for our statistical analysis so that we could compare the alternative (differences 

between conditions) hypothesis to the null (no differences between conditions) 

hypothesis. Where Matos-Santos et al. saw a significant difference between unilateral and 

bilateral exercise, we saw evidence that there was no difference between unilateral and 

bilateral exercise in post hoc comparisons. The differences in our results could be from 

several factors, but a very important factor is that we had the participants exercise both 

legs (randomized leg first for four sets and then the opposing leg for four sets) in the 

unilateral condition instead of just one. Matos-Santos did not report the volume of load 
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lifted in the unilateral and bilateral condition, but since the participants were using 70% 

of their 12 repetition maximum for each set, with a standardized number of sets, then it 

can be assumed that participants had about half of the volume of work in the unilateral 

condition when compared to the bilateral condition. In our study, there was evidence to 

support no differences between bilateral and unilateral exercise in volume of work 

performed, but the unilateral had the greatest volume of load lifted with a greater 

cardiovascular response in many variables. 

Moreira et al. conducted a study to examine HR, SBP, DBP, and RPP with 

different exercise modalities using 80% of their 10-repetition maximum for 3 sets of 10 

repetitions. Participants used a knee extension machine, barbell rows, and bicep curls 

with unilateral, bilateral, and exercising conditions (performed 9 different exercises). The 

results from the knee extension machine showed no significant difference in HR, SBP, 

DBP, or RPP for the unilateral condition. Moreira et al. saw that the cardiovascular stress 

increased with additional sets of exercise. This is like what we saw as the participants had 

a greater RPE-E and RPE-D with additional sets of exercise. Moreira et al. investigated 

whether there was a different cardiovascular response depending on the muscle group 

used and the different exercise modalities. Moreira et al. also concluded that the bilateral 

exercise demanded a significantly greater cardiovascular response than unilateral or 

alternating exercise conditions. Again, this is different from the results that we found in 

our study.  

We found that there was not a significant difference between unilateral and 

bilateral exercise. In addition, there was a greater cardiovascular response in the 

alternating condition when compared to unilateral and bilateral conditions. However, 
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Moreira et al. also did not go into detail about their methods for conducting unilateral, 

bilateral, or alternating methods. Moreira et al. also did not report the volume of load 

lifted for each participant for each condition. This makes it more difficult to compare our 

current study with their results. However, since the researchers did not mention averaging 

together the unilateral condition, it seems that the participants only performed exercises 

on one leg for the unilateral condition. And, if participants were only performing 3 sets of 

10 repetitions on one leg, then they may have been able to perform more repetition when 

compared to someone exercising both legs for the same exercise protocol. 

In a study by Costa et al. they compared the use of bilateral and unilateral exercise 

by total volume of load lifted, blood lactate, and ratings of perceived exertion (2015). 

Costa et al. did not have a significant difference in the volume of load lifted between 

unilateral and bilateral conditions, which is like our study. The exercise protocol was 

similar with participants exercising to volitional failure for 3 sets with 2 minutes of rest 

between each set. In the unilateral exercise condition, one leg exercised entirely and then 

the participant switched legs. Costa et al. did not find a significant difference between 

unilateral and bilateral conditions, but there was a main effect of time where each set and 

five minutes after exercise was significantly different from before exercise. Costa et al. 

did not look at cardiovascular measures but saw that blood lactate is not different with 

unilateral and bilateral conditions of exercise. Similarly, we found that cardiovascular 

measures were not different between unilateral and bilateral conditions. In addition, 

Costa et al. found that as the sets increased there was an increase in ratings of perceived 

exertion. This is similar to what we found with our study with similar exercise protocol, 

but BFR added. These conclusions make sense because blood lactate is a marker of 
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muscular fatigue and our methodology for unilateral and bilateral conditions both had 

participants exercise to fatigue. In addition, we saw that between unilateral and bilateral 

conditions total volume of load lifted was not different. This leads us to believe that when 

the volume of load lifted is not different with blood flow restricted exercise, then the 

cardiovascular response is not different because it is not engaging the exercise pressor 

response differently. 
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CHAPTER VI – CONCLUSION 

Our study investigates the cardiovascular response to different exercise modalities 

with BFR and a low load. There was evidence to support the changes in cardiovascular 

measures, volume of load lifted, ratings of perceived effort, and ratings of perceived 

discomfort, were not different between the unilateral and bilateral conditions. In addition, 

we saw that the alternating exercise condition has the greatest cardiovascular response 

when compared to unilateral and bilateral exercise if there was evidence for a difference 

between conditions. In addition, the alternating condition had a greater volume of load 

lifted when compared to either the bilateral or unilateral condition. Whether or not the 

alternating condition at a low load combined with BFR should be avoided for people at 

an increased risk of a cardiovascular event warrants further research on the volume of 

load lifted during the condition.
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APPENDIX A - Lab Equipment and Data Collection  

 

 

Figure 6.1 SphygmoCor XCEL 

This is the SphygmoCor XCEL device that was used to measure pulse wave analysis in participants. 

 

Figure 6.2 SphygmoCor XCEL Example Set Up 

This is an example of the SphygmoCor XCEL device on the arm of another person to measure pulse wave analysis. 

 

Figure 6.3 SphygmoCor XCEL Participant Data 

This is an example of the information needed prior to conducting pulse wave analysis. We input gender and date of birth. Other 

information was coded based on the participants experimental identification code. 
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Figure 6.4 SphygmoCor XCEL Lab Set-Up 

This image represents our experimental set up with the SphygmoCor XCEL. We had the device on the cart pictured above and rolled 

to the left side of the participant. 



 

61 

 

Figure 6.5 Hokanson®10cm Cuff E20 Rapid Cuff Inflator 

The Hokanson device was used to measure arterial occlusion pressure and reduce participants blood flow during the experiment. 

 

Figure 6.6 Ratings of Percieved Effort (RPE-E) 

This is the scale was used to quantify the participants ratings of percieved effort during exercise (Steele, Fisher, McKinnon, & 

McKinnon, 2017). 
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Figure 6.7 Perceived Discomfort (RPE-D) 

This figure was used to quantify how much discomfort the participant felt (Steele, Fisher, McKinnon, & McKinnon, 2017). 

 

Figure 6.8 Hammer Strength IL-LE 
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This is the machine used for the exercise protocol of this study. 

 

Figure 6.9 Exclusion Criteria Checklist 

This is the exclusion criteria checklist that was presented when participants came into the lab for the first time. 
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APPENDIX B – IRB Approval Letter 
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