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ABSTRACT

In the past, dealing with fourth-order partial differential equations using the Local
Method was not reliable due to difficulties in solving them directly. An approach such as
splitting these equations into two Poisson differential equations was adopted to alleviate such
challenges. However, this has a limitation since it is only applicable to Dirichlet and Laplace
boundary conditions. In this paper, we solve fourth-order PDEs directly using the LMAPS.
The improvement on the accuracy of this Method was as a result of the proposed distribution
of boundary conditions to alternating boundary points. And, also the use of suitable shape
parameter; calculated using LOOCV(Leave-One-Out-Cross-Validation) Algorithm [23].
The effectiveness of this Method was evident when we compared the results from two
numerical examples.

ii



ACKNOWLEDGMENTS

I want to express my gratitude towards my supervisor, Dr. C.S Chen, for the time he
invested in supervising my thesis. I have learned a lot during this time, and I look forward
to learning more from you.

I also want to thank my committee, Dr. Lambers and Dr. Zhu, whom I have studied a lot
from in class and during my research. I appreciate working with you.

I also want to acknowledge my mates in the MathZone.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . viii

NOTATION AND GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . ix

1 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction 1

1.2 Literature Review 2

1.3 Aim of this Study 3

2 MESHLESS METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Radial Basis Functions 4

2.2 Loocv 5

2.3 Variable shape parameter 7

2.4 Preliminary 8

2.5 Paricular Solutions 9

3 LOCALIZED METHOD OF APPROXIMATE PARTICULAR SOLUTIONS 11

3.1 Formulation 11

iv



4 NUMERICAL IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . 15

4.1 Numerical Examples and Results 16

5 CONCLUSIONS AND REMARKS . . . . . . . . . . . . . . . . . . . . . 25

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



LIST OF ILLUSTRATIONS

Figure

3.1 The computational domain showing interior points (•) and alternating boundary
points (• and ◦) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 The profiles of three irregular domains. (a) Star-shaped (b) Peanut-shaped . . . 16

4.2 Profile of the exact solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Example 1: Illustrating differences in accuracy for alternating and non-alternating
boundary points. ni=6000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Profile of the exact solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Example 2: The comparison of accuracy using variable and constant shape parameter.
ni=10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



LIST OF TABLES

Table

2.1 Commonly used RBFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Example 1:Comparing the accuracy using constant and variable shape parameter 19

4.2 Example 1: The accuracy using a variable shape parameter with interval [0,5]
and ns = 40 taking nb = 400 and ni = 6000. . . . . . . . . . . . . . . . . . . . 20

4.3 Example 1: RMSE for different λ using 40 local nodes and 400 boundary points. 20

4.4 Example 1: The accuracy using a variable shape parameter with interval [0,3]
and ns = 40 for various boundary and interior points. . . . . . . . . . . . . . . 21

4.5 Example 2:Comparing the accuracy using alternating and non-alternating bound-
ary points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



LIST OF ABBREVIATIONS

AME - Absolute Maximum Error
IMQ - Inverse Multiquadrics

LOOCV - Leave-One-Out-Cross-Validation
LMAPS - Localized Method of Approximate Particular Solutions

MAPS - Method of Approximate Particular Solutions
MQ - Multiquadrics

PDE - Partial Differential Equation
RBF - Radial Basis Function

RMSE - Root Mean Square Error

viii



NOTATION AND GLOSSARY

General Usage and Terminology

The usage of various notations in this paper are relatively common in mathematics and
computing. The techniques employed in this research may have vast applications, but this
focused on PDEs. In several cases, these fields tend to use different preferred notation to
indicate the same idea. In this paper, some symbols have been used in published literature
aside from the standard terminology.

For the sets of real numbers, we used R. Also, capital boldfaced greek letters, e.g.,Θ , Ξ

and Π are vectors and PΘ,PΞ and PΠ denote matrices. Functions that in lower case roman
letters such as f ,g,h are real-valued functions. The Calligraphic letters L and B denote
partial differential operators. Lower case roman letter, i, j,k and n are indices of a vector or
matrix.

u is a function of two variables x and y defined on some domain Ω of R2. At (x,y), the
Laplacian of u is defined by

∆(u) =
∂ 2u
∂x2 +

∂ 2u
∂y2

Also

∆
2(u) = ∆ ·∆(u) = ∂ 4u

∂x4 +2
∂ 4u

∂x2∂y2 +
∂ 4u
∂y4

The solution to a PDE is not unique, therefore to know one solution of a PDE, it is necessary
to impose boundary or initial conditions. In the domain Ω, ∂Ω denotes the boundary.

|| · || represents Euclidean norm, but vectors and matrices are closed in square brackets,
[·].

ix
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Chapter 1

BACKGROUND

1.1 Introduction

During the past decades, the method of particular solution(MAPS) has gained its popularity
as applied to various partial differential equations[4, 11, 30], which intends to solve problems
in physics, engineering, etc. This range of problems is most likely associated with higher-
order equations such as fourth-order PDEs. Many strategies have been developed and
implemented to solve fourth-order PDEs. Some of which are; approximation of biharmonic
equation using the finite difference scheme, applied to general irregular planar domains by
Ben-Artzi et al. [2]. Ben-Artzi et al. approximated ∆2Φ at a grid point by interpolating the
data on the (irregular) stencil by a polynomial of degree six. Yao et al. [30] compared three
meshless methods. Method of particular solution(MPS), method of fundamental solutions
(MFS-MPS) and the Kansas method and concluded that the MFS-MPS outperformed the
MPS and Kansa’s method

Upon all these achievements, there are still difficulties in solving fourth-order PDEs
using local methods. One of the challenges has been with the approximation of fourth-order
derivative using a small number of source points. Various decoupling techniques proposed by
researchers to split the fourth-order PDEs into two decoupled second-order PDEs [20, 28, 1]
avoided this problem. Though, this strategy is only possible in applying the Dirichlet and
Laplace boundary conditions.

There is a high accuracy guaranteed when using RBFs. However, the choice of a shape
parameter c that reduces the approximation error has been a severe problem for researchers.
There have been various strategies for use [19, 16, 3]. As c approaches zero, the resultant
matrix gets ill-conditioned, whereas the error minimizes. This interdependence is called
the uncertainty principle. Rippa [23] implemented the LOOCV to find a suitable shape
parameter that does provide not only an accurate approximation but also a well-conditioned
matrix.

In fourth-order PDEs, there is a need for two boundary conditions. We impose these
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boundary conditions in an alternating sense on different boundary points, and this makes
the resultant matrix square, as such, improves the accuracy and stability of our results. In
[1, 20, 28], a system of the non-squared matrix had to be solved.

Chapter 2, we briefly introduce meshless methods, the Definition of RBFs, and some
commonly used RBFs. In Section 2.2, we present the LOOCV and how to use it to determine
the optimal shape parameter. In Section 2.3, we show how to implement the variable shape
parameter. Then in section 2.4, we introduce the decoupling approach.

This thesis is organized as follows: Chapter 3 is the formulation of LMAPS and 4
demonstrate our numerical implementation, examples and results. Finally, in chapter 5 is
the conclusion of the method.

1.2 Literature Review

The LMAPS have been in use for the first time in 2011 by Yao et al. [29] when the difficulty
of using globally applying MAPS was identified. Yao et al. realized that the global method
results in a large dense matrix as such, restricting the number of collocation points. The
larger the number of collocation points the denser the matrix and the extremely difficult it
becomes to solve large-scale science and engineering problems. Hence, they develop the
LMAPs that allows the use of small neighboring points (Local point) which are a subset
of the collocation points to approximate the solution of PDEs. Due to the difficulty of
solving fourth-order PDEs directly, in [20] Li et al. Implement the technique of splitting the
biharmonic equation into two Poisson equation after which the LMAPS was applied to the
Poisson equations to approximate the solution.In [28] Yang et al. used local Kansas’s method
to the Berger equation using RBF. To succeed in solving higher order differential equations
using localized RBF methods without difficulty; Yang et al. split the given equation into two
second-order partial differential equations. They also used the LOOCV to find a desirable
shape parameter of MQ and Matern RBFs. In the paper [17] the local Kansas method and
the LMAPS to solve eigenvalue problem on the L-shape and irregular domain. Li et at
[20]. present the LMAPS, in solving a 2D biharmonic equation in a bounded region. The
scheme focus on decoupling the biharmonic problem into two Poisson equations, and then
the LMAPS is applied to each Poisson equation to solve for numerical results. Chang et

al. [4] solves fourth-order PDEs using two second-order closed-form Particular solutions.
For Chang et al. to implement high degree polynomials which in the normal case are for
ill-conditioning and extremely unstable. They adopt a multi-scale strategy to minimize the
large condition number of the resultant matrix. Chen et al. in [6] they implemented the
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MAPS using RBFs where elliptic PDE with variable coefficient was solved. Chen et al.

used the dual reciprocity boundary element method (DRBEM) and their MAPS to arrange
the elliptic PDE into a Poisson-type equation. Which made the PDE easier to be solved.

1.3 Aim of this Study

The goal of this research is to solve fourth-order PDEs with constant coefficient directly
without splitting the PDE into decoupled second-order PDE and be able to produce a
stable and accurate numerical result. We should achieve our purpose when we consider the
following.

• Assign boundary conditions on alternating boundary point, making a square matrix.

• Use the LOOCV to find a suitable shape parameter instead of guessing

• Employ variable shape parameter over the constant shape parameter.

These three points when implemented properly should guarantee an excellent result.
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Chapter 2

MESHLESS METHOD

Recently, methods such as the LMAPS, Kansas methods, MLS methods and radial basis
functions are widely used to solve different kinds of problems in the fields of engineering
and science, these methods are categorized as mesh-less methods. Unlike mesh methods like
the FDM and FEM that require extensive meshing henceforth tedious and time consuming,
mesh-less methods are simple, yet guarantees accurate results and does not require re-
meshing. In [21], A mesh is defined as any of the open spaces or interstices between the
strands of a net that is formed by connecting nodes in a predefined manner. whilst The
meshfree method is used to establish a system of algebraic equations for the whole problem
domain without the use of a predefined mesh or uses easily generable meshes in a much
more flexible or “freer” manner.

In this charter we briefly introduce RBFs and list of some closed form particular solu-
tions.

2.1 Radial Basis Functions

RBFs are used for approximating unknown functions with known data. They can be used
to approximate solutions of partial differential equations with certain initial and boundary
conditions. These approximations are generally multivariate functions, however, reduced
to a scalar function, φ(r). Where r the Euclidean norm ||X ||2, defined as a radial distance
between the collocation points and centers. The recovery functions from meshless data is
then obtained by the linear combination of radial basis function, φ ,

u(Xi) =
N

∑
k=1

aiφ(||Xi−Xk||2) 1≤ i≤ m

The unknown multivariate function, u, is obtained by solving the linear system for the weight
{ak}N

i of the center, with a finite number of collocation points, {Xi}M
1 . The nodes {Xk}N

i are
called centers.
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It is important to choose the number of collocation points M to be greater than or equal
to the number of centers N. However, to ensure easy solvability of the linear system we
choose M = N. Note: X = (x,y), r = ||X−Xk||2 =

√
(x− xk)2 +(y− yk)2

Definition 2.1.1. A radial basics function φ on [0∞) defined in [5] is positive definite on
IRd , if for all choices of sets X := {x1, ...,xN} of finitely many points x1, ...,xN ∈ IRd and
arbitrary in the symmetric N×N matrices φ(||Xi−Xk||2) are positive definite.

For a system of equations containing rbf to be solved, it needs to satisfy the above definition.
In table 2.1 are some few types of RBFs mostly used by scientists and engineers.

Table 2.1: Commonly used RBFs

Name φ(r)

Gaussian exp(−cr2)

Multiquadrics
√

r2 + c2

Inverse multiquadrics 1√
r2+c2

Conical r2n−1

Thin plate spline r2 logr

Matern (cr)nKn(cr)

Previous researches have shown how the use of RBFs improved accuracy. Despite
RBFs great performance, its accuracy depends on the shape parameter c.There are various
techniques[9, 14] for finding a suitable shape parameter. In the next section we explained,
the leave-one-out-cross-validation, the technique we used to determine the optimal shape
parameter.

2.2 Loocv

Many RBf users have successfully found a way to reduce the condition number of the
coefficient matrix when solving system linear equations [10, 12, 13]. However, there is
always an approximation error associated with the value of the shape parameter. It is crucial
to find the optimal shape parameter in order to minimize the error. The standard technique
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commonly used is the method of cross-validation. wiki: "Cross-validation is a model
validation techniques for assessing how the results of a statistical analysis will generalize to
an independent data set". In other words, the method of cross-validation is used to estimate
how accurately a predictive model can perform. The particular case of Cross-validation
we implemented in this paper is the LOOCV. LOOCV "uses a single observation from the
original sample as the validation data, and the remaining observations as the training data".
The procedure is repeated such that each observation in the sample is used once as the
validation data. The resultant vector is then used to find the optimal c. Let

x[k] = [x1,x2, ...,xk−1,xk+1, ...,xN ]
[T ] ,

be the datasetes with the validation point xk removed. The radial basis function interpolant
û[k] to f is given by

û[k](x) =
N−1

∑
i=1

a[k]i φ (||x− xi||2)

where
û[k](xi) = fi, i ∈ [1,k)∪ (k,N]

Then the error ek is calculated as difference in the approxiamtion and the exact function
value at xk,

ek = f (xk)− û[k]

The accuracy of the overall datasets is then determined by the norm of the error vector
e = [e1,e2, ...,eN ]

[T ] which is the cost function. It is obtained by removing, in turn, one of
the datasets and comparing the approximated value with the known value at the removed
points. Minimizing the cost function ||e|| gives the optimal c.

Rippa [23] proposed a very simple and efficient way to implement the LOOCV algorithm,
calculating the error using the formula

ek =
ak

A−1
k

(2.1)

Where ak is the kth coefficient of û for all datasetes and A−1
k is the kth diagonal element of

the inverse of the corresponding interpolation matrix. We can find a suitable shape parameter
by using the MatLab function fminbnd to minimize the cost function for c obtained from
(2.1).

The implementation of the idea on how to determine the cost function for c is as follows.

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://haifengl.github.io/smile/api/java/smile/validation/LOOCV.html
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1 function ceps=costEps(ep,parsol,D,DM)

2 rhs = IMQ(ep, D);

3 mq = MQ(ep, DM);

4 A = parsol(ep, DM, mq);

5 invA = inv(A);

6 errorvector = (A\rhs)./diag(invA);

7 ceps=norm(errorvector);

8 return

Where parsol is the particular solution (fourth-order in our case) based on the shape
parameter (ep), a vector of distances D and a distant matrix DM, which is the pairwise
distance between collocation points. Furthermore, IMQ and MQ are RBFs; inline-five, the
function inv finds the inverse of the square Matrix (A). Inline-six, we have computed all
entries of the error vector at a goal. The diag and norm functions find the diagonal entries
of matrix and the Euclidean norm of a vector, respectively.

Now to determine the optimal shape parameter by using function fminbnd to find the
minimum of costEPs.

epmin = fminbnd(@(ep) costEPs(ep,parsol,D,DM),cmin,cmax) (2.2)

where cmin,cmax is the initial search guessed interval for the optimal shape parameter.

2.3 Variable shape parameter

A variable shape parameter [24] strategy refers to uses a possibly different value of the
shape parameter at each center. The theoretical complexity of the variable shape parameter
is rather too difficult to explain [25]. However, there is no doubt it has proven to be effective
[15, 27] when implemented. One importance of using the Variable shape parameter is
creating distinct elements in the sparse matrix as such, and it reduces the condition number.
Now that the optimal shape parameter is known from the previous section, it is possible to
now construct the Variable shape parameter by using random shape strategy in [24]

ep j = epmin +(epmax− epmin) rand(1,N) (2.3)

Note: epmin is the optimal shape parameter obtained in the previous section and epmax =

epmin +δ (δ ∈+IR). rand in MATLAB returns an array of random numbers. rand(1,N)
in equation (2.3) generates a 1-by-N vector.
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Instead of using rand equation 2.3 we used haltonset and net both MATLAB func-
tions.The former constructs a quasi random point set from Halton sequence whilst the later
generates quasi-random point set. So the new equation becomes

ep j = epmin +(epmax− epmin) net(p,ns) (2.4)

where p = haltonset. Readers should check MATLAB Documentation for more information
of these functions. There are few other shape parameter strategies [24, 25, 27] such as;

1. Trigonometry shape parameter strategy

2. Exponential shape parameter strategy

2.4 Preliminary

Let us consider the boundary value problem of biharmonic equation

∆
2u(x,y) = f (x,y) x,y ∈Ω (2.5)

∆u(x,y) = g(x,y) x,y ∈ ∂ΩL (2.6)

u(x,y) = h(x,y) x,y ∈ ∂ΩD (2.7)

Where Ω is a two-dimensional domain bounded by a surface ∂Ω which consist of two
parts, ∂Ω = ∂ΩL∪∂ΩD and ∂ΩL∩∂ΩD = /0.

In order to avoid the difficulty in solving the biharmonic equation directly, implementing
a scheme in [20] is necessary to split (2.5)–(2.7) into two Poisson equations by substituting
an intermediate function v = ∆u as shown below:

∆v(x,y) = f (x,y) x,y ∈Ω

v(x,y) = g(x,y) x,y ∈ ∂ΩL

and

∆u(x,y) = v(x,y) x,y ∈Ω

v(x,y) = h(x,y) x,y ∈ ∂ΩD

This scheme of splitting the fourth-order differential equation into two-second order may be
reliable yet inconvenient due to the restriction on boundary conditions.

https://www.mathworks.com/help/matlab/
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2.5 Paricular Solutions

Methods such as LMAPS, MAPS, and MFS require the use of closed-form particular
solutions as a basis function to approximate the solution to PDEs. Most recent researchers
do not have to derive their particular solution before use since they are available, [22, 18, 4,
8, 26]. Below are the lists of RBFs and their second and fourth-order particular solution we
implemented in this paper.

The Particulars of 2D Laplace differential operator [22]

∆Γ(r) = φ(r)

∆Γ(r) =
1
r

d
dr

(
r

dϒ
′′
(r)

dr

)

• φ(r) =
√

r2 + c2,

Γ(r) =
4c2 + r2

9

√
r2 + c2− c3

3
ln(c+

√
r2 + c2) (2.8)

• φ(r) = 1√
r2+c2 ,

Γ(r) =
√

r2 + c2− ln
(

1+
√

r2 + c2
)

• φ(r) =
√

1+ c2r2,

Γ(r) =
1

9c2

(
(4+ c2r2)

√
1+ c2r2−3ln(1+

√
1+ c2r2)

)

• φ(r) = 1√
1+c2r2 ,

Γ(r) =
1
c2

(√
1+ c2r2− ln(1+

√
1+ c2r2)

)
(2.9)
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The Particulars of 2D Biharmonic differential operator [22]

∆
2
ϒ(r) = ∆∆ϒ(r) = φ(r)

∆
2
ϒ(r) =

1
r

d
dr

(
r

d
dr

(
1
r

d
dr

(
r

dϒ(r)
dr

)))

• φ(r) =
√

r2 + c2,

ϒ(r) =
2c2

45
(r2 + c2)

3
2 − 7c4

60

√
r2 + c2 +

2c2−5r2

60
c3 ln(c+

√
r2 + c2) · · ·

+
1

225
(r2 + c2)

5
2 +

c3r2

12
(2.10)

• φ(r) = 1√
r2+c2 ,

ϒ(r) =
4r2−11c2

36

√
r2 + c2 +

c(2c2−3r2)

12
ln(c+

√
r2 + c2)+

c3 ln(2c)
6

+
r2c
4

• φ(r) = 1√
1+c2r2 ,

ϒ(r) =

√
1+ c2r2

36c4 (4c2r2−11)+
2−3c2r2

12c4 ln(1+
√

1+ c2r2)+
r2

4c2 (2.11)
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Chapter 3

LOCALIZED METHOD OF APPROXIMATE PARTICULAR
SOLUTIONS

3.1 Formulation

In this section, we introduce a meshless collocation method [7], LMAPS. By directly
implementing the particular solution of the RBF. Let us consider a fourth-order partial
differential equation as follows:

Lu(x,y) = f (x,y) x,y ∈Ω (3.1)

B1u(x,y) = g(x,y) x,y ∈ ∂Ω (3.2)

B2u(x,y) = h(x,y) x,y ∈ ∂Ω (3.3)

where L = ∆2 +α∆+β , α,β ∈ R, is a linear differential operator, Ω is a bounded and
closed nonempty domain with boundary ∂Ω. We consider two sets of collocation points,
the interior and boundary points.

Let {(xi,yi)}ni
1 be the interior points and {(xi,yi)}ni+nb

ni+1 be the boundary points. Note
that N = ni + nb is the total number of collocation points. For each xi ∈ Ωi, using KD-
tree algorithm we find ns nearest neighboring points to form a local domain Ωi, such that
Ωi∩Ωs 6= /0 for some Ωs,s = 1,2,3...ns.
The idea is to reformulate (3.1 ) as:

Lu(x,y) =
N

∑
k=1

akφ(x,y) (3.4)

The fourth-order particular solution ϒ(x,y) is obtained by repeatedly integrating the radial
basis function φ(x,y)

Lϒ(r) = φ(r) (3.5)

Using the LMAPS, we approximate the exact solution as the linear combination of the
fourth-order particular solutions {ϒ(rk)} at each of the local points.
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u(xs,ys)' û(xs,ys) =
ns

∑
k=1

αkϒ(rk), s = 1,2,3...ns, (3.6)

where {αk}ns
k=1 are the undetermined coefficients and r is the distance matrix define as the

Euclidean norm that is;
r = ||(xs,ys)− (x[s]i ,y[s]i )|| (3.7)

and it the distance r between the collocation point (xs,ys) and the local (source) point
(x[s]i ,y[s]i ).
From (3.6), we have

α
[s] = (ϒ[s])−1û[s] (3.8)

û[s] =
[
û(x1,y1)

[s], û(x2,y2)
[s], . . . , û(xns,yns)

[s]
]T

, a[s] = [a1,a2, . . . ,ans]
T

From (3.5),(3.6), and (3.8), we can reformulate (3.1) as follows:

Lû(xs,ys) =
ns

∑
k=1

αkLϒ(r) = f (xs,ys). (3.9)

=
ns

∑
k=1

αkφ(r)

= Θ
[s]

α
[s]

= Θ
[s](ϒ[s])−1û[s]

= PΘû[s] = f (xs,ys) (3.10)

Now, we impose (3.6) on the boundary condition (3.2)

B1û(xs,ys) =
ns

∑
k=1

αkB1ϒ(r) = g(xs,ys)

= Ξ
[s]

α
[s]

= Ξ
[s](ϒ[s])−1û[s]

= PΞû[s] = g(xs,ys) (3.11)

Like we did for the first boundary condition, we formulate the second boundary condition
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(3.3)

B2û(xs,ys) =
ns

∑
k=1

αkB2ϒ(r) = h(xs,ys)

= Π
[s]

α
[s]

= Π
[s](ϒ[s])−1û[s]

= PΠû[s] = h(xs,ys) (3.12)

where
PΘ = Θ

[s](ϒ[s])−1

PΞ = Ξ
[s](ϒ[s])−1

PΠ = Π
[s](ϒ[s])−1

Θ[s] , Ξ[s] and Π[s] are ns×1 vectors.

Finally, by collocating all points (boundary and interior points) using (3.10)–(3.12), we
obtain a sparse linear system of equations. For simplicity, we use Xi instead of (xi,yi) in the
sparse system shown below.

(ni)×N


nb
2 ×N


nb
2 ×N





PΘ(X1)

PΘ(X2)
...

PΘ(Xni)

PΞ(Xni+1)
...

PΞ(Xni+
nb
2
)

PΠ(Xni+
nb
2 +1)

...

PΠ(Xni+nb)





û(X1)

û(X2)
...

û(Xni)

û(Xni+1)
...

û(Xni+
nb
2
)

û(Xni+( nb
2 +1))

...

û(Xni+nb)



=



f (X1)

f (X2)
...

f (Xni)

g(Xni+1)
...

g(Xni+
nb
2
)

h(Xni+( nb
2 +1))

...

h(Xni+nb)



. (3.13)

We generalize the sparse linear system of equation in (3.13) as

Pu = F, size(P) = N×N (3.14)
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The solution can be obtained by simply multiplying both sides of equation (3.14) by P−1 to
yield;

u = FP−1 (3.15)

-1 -0.5 0 0.5 1
X

-1

-0.5

0

0.5

1

Y

Figure 3.1: The computational domain showing interior points (•) and alternating boundary
points (• and ◦)

in a star-shaped domain.

The purpose of our study is to improve the efficiency of this method; thus, in our
numerical implementation, we impose different boundary conditions on the alternating
boundary points, as shown in Figure 3.1 by doing so, resulting in a sparse square matrix in
((3.13)). Hence we obtain stable and accurate results.

It is important to note that in the traditional approach, the two boundary conditions are
imposed on each boundary point, therefore, the resulting sparse matrix is non-square with
size (N+nb, N). Also, the constant shape parameter was used instead of the variable shape
parameter. Using the LMAPS, the system of equation is ill-conditioned; thus, the results
tend to be inaccurate and unstable.
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Chapter 4

NUMERICAL IMPLEMENTATION

The total number of interior points ni we considered in all examples is far too much for the
implementation of LMAPS. As such, the KD-tree algorithm is used to construct a binary
tree for the collocation points. Afterward, the Knnsearch function is used to search for
ns nearest neighboring points from the binary tree of a collocation point. The ns points
are called local nodes. To illustrate the effectiveness of the method, we considered three
numerical examples in 2D. We used two RBFs (MQ and IMQ) with their particular solutions,
listed in chapter 2.

The accuracy is measured by the root mean squared error and the absolute maximum
error

RMSE =

√√√√ 1
N

N

∑
j=1

(û(x j,y j)−u(x j,y j))2, (4.1)

AME = max
1≤ j≤N

|û(x j,y j)−u(x j,y j)|, (4.2)

where u and û are exact and approximate solutions, respectively.

For all the numerical implementation, we choose ni number of interior points and nb

number of boundary points. We generate uniformly partitioned interior points using Halton
quasi-random set generator, haltonset [5, 11]. The uniform distribution of the boundary
points also helps in well-conditioning of the resulting matrix.

For the examples in the next section, we consider three irregular domains in our numerical
implementation. The parametric equation for these domains is as follows.

∂Ω = {(x,y)|x = r(θ)cos(θ),y = r(θ)sin(θ),0≤ θ ≤ 2π}

.

1. Star-shaped domain:r(θ) =
1
2
(1+ cos2(3θ)).
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2. Peanut-shaped domain: r(θ) = 0.3

√
cos(2θ)+

√
1.1− sin2(2θ).

3. Amoeba-shaped domain: r(θ) = esin(θ)(sin2(2θ))+ ecos(θ)(cos2(2θ)).

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 4.1: The profiles of three irregular domains. (a) Star-shaped (b) Peanut-shaped .

4.1 Numerical Examples and Results

Example 1. In this example, we consider a forth order partial differential equation, with
Dirichlet and Neumann boundary conditions. ,

(∆2 +∆−λ )u(x,y) = f (x,y), (x,y) ∈Ω, (4.3)
∂

∂n
u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (4.4)

u(x,y) = h(x,y), (x,y) ∈ ∂Ω, (4.5)

The exact solution is u(x,y) = e(x+y). The irregular star-shape shown in Figure 4.1(a).
bounds the computational domain Ω . f (x,y) and g(x,y) are determined based on the exact
solution.

In the numerical implementation, we considered the radial basis function, φ(r)= 1√
1+c2r2 .

Meaning based on ∆2ϒ(r) = φ(r); the fourth-order particular solution is that in (2.11) and
based on ∆ϒ(r) = φ(r); the second-order particular solution is that in (2.9).

We chose 40 local points throughout the implementation of this example and started
with λ = 2.

The profile of the exact solution is shown in Figure 4.2
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Figure 4.2: Profile of the exact solution.

Fourth-order PDEs have two boundary conditions. So we impose the boundary conditions
on each boundary point (non-alternating boundary point) as previously implemented in
the traditional approach, as such resulting in a sparse matrix that is non-square. On the
new technique, we imposed the two boundary conditions one after the other on alternating
boundary points by insignificantly shifting the boundary points(alternating boundary points).
This time the resultant sparse matrix is square.

In figure 4.3 below, we compare three different accuracies — the non-alternating bound-
ary point scheme with a constant shape parameter, which is the traditional method. And
the non-alternating boundary point scheme with a variable shape parameter which is the
’first stage’ improved traditional method. The alternating boundary point approach is the
second stage improvement where we imposed the boundary conditions one after the other
on alternating boundary points and also implemented a variable shape parameter.

As such, the RMSEs for alternating points with the variable shape parameter is more
accurate and stable as compared to the non-alternating points with the variable shape
parameter. That of the non-alternating with constant shape parameter has a massive error, as
shown in figure 4.3.
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Figure 4.3: Example 1: Illustrating differences in accuracy for alternating and non-
alternating boundary points. ni=6000.

How accurate and stable the solution of most RBFs meshless methods depends on the
selection of the shape parameter. There are several techniques to choose the shape parameter,
but the one applied in this paper is the Leave-one-out cross-validation [23]. This strategy is
used to find a fixed shape parameter for φ(r) with its corresponding particular solution by
implementing the algorithm in section 2.2. With a search interval [min,max], it was possible
to find the optimal shape parameter by minimizing the cost-function by using fminbnd

function. It is important to note that the LOOCV depends on the search interval; therefore,
if not well-chosen, there is no guarantee of getting an optimal shape parameter. So we had
to adjust [min,max] through some multiple testing to get a suitable shape parameter. It is
still a research topic on how to get a proper search interval.

Earlier, there has been an emphasis on the use of fixed shape parameter, but now there
has been a switch to the use of variable shape parameter for more accuracy [15]. As shown
in Table 4.1.

Again In Table 4.1, epmin is the optimal shape parameter we calculated using LOOCV.
epmin = c is the constant shape parameter, and it is the lower bound for the variable shape
parameter. The upper bound, epmax = epmin +δ (δ ∈+IR). For instants in the first-row
second column of the Table epmin = 0.640 and epmax = 0.640+1, that is [0.640,1.640].
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Table 4.1: Example 1:Comparing the accuracy using constant and variable shape parameter

variable shape parameter constant shape parameter

search Interval [epmin,epmax] RMSE c RMSE

[0,1] [0.640,1.640] 4.968E-05 0.640 9.449E-04

[0,3] [1.635,2.635] 9.863E-06 1.635 1.587E-04

[0,5] [2.767,3.767] 2.380E-06 2.767 1.536E-04

[0,7] [3.148,4.148] 2.721E-06 3.148 1.464E-04

[0,9] [3.297,4.297] 2.272E-06 3.297 2.574E-02

[0,11] [3.420,4.420] 7.595E-05 3.420 1.232E-04

The shape parameter also depends on how good we choose the search interval. For the
case of the variable shape parameter, it is clear from the table that too little, [0,1] or too big
[0,11] search intervals result in RMSEs 4.968E-05 and 7.595E−05, respectively which are
not accurate as compared to the others. The more precise and stable results came from the
search interval [0,3] to [0,9].

For the case of the constant shape parameter, all the search intervals produce a shape
parameter that yields relatively good accuracy, except for the search interval [0,9] with
shape parameter 3.297, the accuracy is 2.574E−02, which is not consistent with the others.

We conclude that for the variable shape parameter, the RMSE is more accurate and
stable, while RMSE of the constant shape parameter is not as good and not stable, as shown
in Table 4.1.

For testing for different delta in [epmin,epmax] where epmin= c and epmax = epmin +δ .
We introduce another strategy to construct the variable shape parameter. Here epmin = c−δ1

and epmax = c+δ2, where δ = δ1+δ2. It is important to take epmin = max{c−δ1,0} since
we do not want the shape parameter to be less than zero. c is the optimal shape parameter
obtained from LOOCV; it is the constant shape parameter. In this case the variable shape
parameter is given as [c−δ1,c+δ2] same as [epmin,epmax]. If δ1 = 0 then epmin = c.

For the search interval [0,5] c = 2.767 and the RMSE = 1.536E−04. In all cases where
δ2 ≥ δ1, the value epmax ≥ c and the accuracy becomes excellent and stable. However, as
δ2 < δ1, epmax < c, the efficiency reduces. It is advisable to keep epmax not lesser or too
higher than the optimal shape parameter c. This analysis of result is shown in Table 4.2
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Table 4.2: Example 1: The accuracy using a variable shape parameter with interval [0,5]
and ns = 40 taking nb = 400 and ni = 6000.

δ = 1.72 c = 2.767

δ1 δ2 [c−δ1,c+δ2] RMSE

0 1.72 [2.767,4.487] 2.620E-06

0.72 1 [2.047,3.047] 2.453E-06

0.86 0.86 [1.907,2.767] 8.320E-06

1 0.72 [1.767,2.481] 1.039E-05

1.40 0.32 [1.367,1.687] 1.454E-05

In Table 4.3, we show the RMSE for different λ and interior points but kept a fixed
nb = 400 boundary points. The numerical accuracy should always be valid no matter the
value of λ .

Table 4.3: Example 1: RMSE for different λ using 40 local nodes and 400 boundary points.

ni 5000 6000 9000

λ = 10 2.527E-06 9.915E-06 7.198E-06

λ = 102 2.624E-06 1.102E-05 7.311E-06

λ = 103 5.089E-06 6.422E-06 8.903E-06

Table 4.4 shows more numerical results considering 40 local points and a fixed, variable
shape parameter for different interior and boundary points.

For 6000 and 8000 interior points, the various number of boundary points from 250 to
850 produces excellent and stable numerical results. However, as we increase the number of
interior points to 9000; the RMSE is not as good and stable for boundary points 250 to 600.
Increasing the number of boundary points from 750 through to 850, we obtained better and
stable accuracies. One can say that for a large number of interior points, there is a need to
take large boundary points.

It is possible to calculate the number of boundary points depending on the number of
interior points; this technique will be part of our future work.
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Table 4.4: Example 1: The accuracy using a variable shape parameter with interval [0,3]
and ns = 40 for various boundary and interior points.

ni = 6000 ni = 8000 ni = 10000

nb RMSE nb RMSE nb RMSE

250 1.960E-06 250 3.620E-06 350 1.387E-05

400 9.863E-06 350 4.522E-06 400 1.336E-05

450 2.685E-06 450 3.251E-06 450 1.602E-05

500 3.623E-06 550 3.950E-06 550 5.104E-06

600 4.741E-06 600 5.134E-06 600 4.152E-05

650 3.462E-06 700 4.805E-06 750 6.655E-06

750 3.778E-06 750 4.988E-06 800 9.339E-06

850 5.177E-06 800 3.560E-06 850 7.674E-06

Example 2. In this example, we consider the following bi-harmonic problem, with Dirichlet
and Laplace boundary conditions.

∆
2u(x,y) = f (x,y), (x,y) ∈Ω (4.6)

∆u(x,y) = g(x,y), (x,y) ∈ ∂Ω (4.7)

u(x,y) = h(x,y), (x,y) ∈ ∂Ω (4.8)

Again f (x,y),g(x,y) and xh(x,y) are determined using the exact solution below;

u(x,y) = ysin(x)+ xcos(y)

The exact solution is u(x,y) = e(x+y). The irregular Peanut-shaped domain represented in
Figure 4.1(b) bounds the computational domain Ω . f (x,y) and g(x,y) are determined based
on the exact solution.

In the numerical implementation, we considered the radial basis function, φ(r) =√
c2 + r2. Thus based on ∆2ϒ(r) = φ(r); the fourth-order particular solution is that in (2.10).

We chose 45 local points throughout the implementation of this example.

In Section 3.1 we reformulated the first boundary condition (3.2) using (3.6) to yield
Ξ[s](ϒ[s])−1û[s]. where Ξ[s]=B1ϒ(r). For this Example, B1 =∆ therefore Ξ[s]=∆ϒ(r) and

∆ϒ(r) = Γ(r)
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where ϒ(r) is fourth-order particular solution (2.10) and Γ(r) is the second order particular
solution(2.8).

Figure 4.4: Profile of the exact solution.

In Table 4.5, we made the comparison of the numerical accuracy for one set and two
sets of boundary points that are non-alternating and alternating, respectively. We choose
400 boundary points, different interior points, and 45 local points. Again the optimal shape
parameter is obtained using the LOOCV with the initial search interval of [3,5]. We used
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Table 4.5: Example 2:Comparing the accuracy using alternating and non-alternating bound-
ary points.

Alternating boundary points Non-Alternating boundary points

ni RMSE MAX ERROR RMSE MAX ERROR

5000 7.991E-07 2.296E-06 6.784E-05 2.320E-04

7000 9.699E-07 2.987E-06 7.348E-05 2.311E-04

9000 1.882E-06 6.045E-06 1.072E-04 3.026E-04

12000 2.245E-06 5.421E-06 6.359E-05 1.484E-04

14000 4.160E-06 1..101E-05 2.841E-04 1.090E-03

15000 4.715E-06 1.141E-05 4.734E-05 2.003E-04

We used the variable shape parameter instead of the constant shape parameter for all
numerical results in this table. Once again, implementing the alternating boundary points
produces more accurate and stable results with various interior points as compared to the
non-alternating boundary points.

In Figure 1, we also compared RMSEs for variable and constant shape parameters where
we choose 10000 interior points and different boundary points for computation. For all
boundary points considered in the graph At nb=400, the RMSE taking the variable and
constant shape parameters is 1.790E-06 and 7.162E-05, respectively. For nb=700, the
RMSEs are 8.737E-06 and 3.413E-04, respectively. In all cases for the various number of
boundary points, the use of the variable shape parameter has proven to be more accurate and
stable.
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Figure 4.5: Example 2: The comparison of accuracy using variable and constant shape parameter.
ni=10000.
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Chapter 5

CONCLUSIONS AND REMARKS

The difficulty of solving fourth-order PDE has led to the splitting of fourth-order PDEs into
two decoupled second-order PDEs. This decoupling technique focuses only on PDEs with
the Dirichlet and Laplace boundary conditions. This study aims to solve fourth-order PDEs
directly without splitting into two second-order PDEs. To enhance the performance of this
technique, we further investigate our objectives already mentioned in chapter 1.

• Without splitting fourth-order PDEs using LMAPS, we have successfully solved
fourth-order PDEs with constant coefficients directly. The method has no restriction
on a distinct boundary condition. In numerical examples one and two, we impose the
Dirichlet, Neumann and the Dirichlet, Laplace boundary conditions.

• We also made sure to assign each boundary condition on alternating boundary points,
instead of imposing the two boundary conditions at the same time on a boundary
point. In doing so, the resultant matrix is square. In essence, the accuracy significantly
improved.

• In the selection of a suitable (fixed) shape parameter, we adopt the LOOCV algorithm,
then extend the fixed shape parameter to the variable shape parameter. In all numerical
computations, the variable shape parameter outperforms the constant shape parameter
as expected.

We are expecting to improve upon the method in our future research.

• One crucial thing to look at is finding a strategy to determine the search interval for
obtaining the optimal shape parameter.

• To achieve a more accurate and stable result, we will consider how to determine the
number of boundary points to use for a given number of interior points.

• Instead of alternating points, we will introduce a fictitious boundary outside the main
domain.
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• We will extend this method to the 3-dimensional domain, time-dependent problem,
and fourth-order PDEs with variable coefficient.

• We will also compare our approach to Kansa’s method and MPS-Kansa method.
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