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Abstract

Microarray data has a high dimension of variables but available datasets usually have only a small number of samples,
thereby making the study of such datasets interesting and challenging. In the task of analyzing microarray data for the
purpose of, e.g., predicting gene-disease association, feature selection is very important because it provides a way to handle
the high dimensionality by exploiting information redundancy induced by associations among genetic markers. Judicious
feature selection in microarray data analysis can result in significant reduction of cost while maintaining or improving the
classification or prediction accuracy of learning machines that are employed to sort out the datasets. In this paper, we
propose a gene selection method called Recursive Feature Addition (RFA), which combines supervised learning and
statistical similarity measures. We compare our method with the following gene selection methods:

N Support Vector Machine Recursive Feature Elimination (SVMRFE)

N Leave-One-Out Calculation Sequential Forward Selection (LOOCSFS)

N Gradient based Leave-one-out Gene Selection (GLGS) To evaluate the performance of these gene selection methods,
we employ several popular learning classifiers on the MicroArray Quality Control phase II on predictive modeling
(MAQC-II) breast cancer dataset and the MAQC-II multiple myeloma dataset. Experimental results show that gene
selection is strictly paired with learning classifier. Overall, our approach outperforms other compared methods. The
biological functional analysis based on the MAQC-II breast cancer dataset convinced us to apply our method for
phenotype prediction. Additionally, learning classifiers also play important roles in the classification of microarray data
and our experimental results indicate that the Nearest Mean Scale Classifier (NMSC) is a good choice due to its
prediction reliability and its stability across the three performance measurements: Testing accuracy, MCC values, and
AUC errors.
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Introduction

Using microarray techniques, researchers can measure the

expression levels for tens of thousands of genes in a single

experiment. This ability allows scientists to investigate the

functional relationship between the cellular and physiological

processes of biological organisms and genes at a genome-wide

level. The preprocessing procedure for the raw microarray data

consists of background correction, normalization, and summa-

rization. After preprocessing, a high level analysis, such as gene

selection, classification, or clustering, is applied to profile the

gene expression patterns [1]. In the high-level analysis,

partitioning genes into closely related groups across time and

classifying patients into different health statuses based on

selected gene signatures have become two main tracks of

microarray data analysis in the past decade [2–6]. Various

standards related to systems biology are discussed by Brazma

et al. [7]. When sample sizes are substantially smaller than the

number of features or genes, statistical modeling and inference

issues become challenging as the familiar ‘‘large p small n

problem’’ arises. Designing feature selection methods that lead

to reliable and accurate predictions by learning classifiers,

therefore, is an issue of great theoretical as well as practical

importance in high dimensional data analysis.

To address the ‘‘curse of dimensionality’’ problem, three basic

strategies have been proposed for feature selection: filtering,
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Table 1. The 34 cancer related genes of the 100 features selected by NBC-MSC on original training group of MAQC-II breast cancer
data for pCR prediction.

Symbol Synonym(s) Entrez Gene Name Affymetrix

ALB ALB1, ALBUMIN, Albumin 1, Albza, DKFZp779N1935, PRO0883, PRO0903, PRO1341,
SA, SERUM ALBUMIN, SERUM ALBUMIN CHAIN A, Serum albumin precursor

albumin 214837_at

C10ORF81 9930023K05RIK, bA211N11.2, FLJ23537, HEL185, MGC99964, RGD1559884,
RP11-211N11.2

chromosome 10 open reading frame 81 219857_at

CDK10 BC017131, MGC112847, PISSLRE cyclin-dependent kinase 10 210622_x_at

CEACAM1 bb-1, BGP, BGP1, BGPA, Bgpd, BGPI, BGPR, C-CAM, C-CAM1, CCAM105, CD66,
CD66A, Cea-1, Cea-7, CEACAM1-4L, ECTO ATPASE, HV2, mCEA1, Mhv-1, MHVR,
MHVR1, mmCGM1, mmCGM1a, mmCGM2, Pp120

carcinoembryonic antigen-related cell adhesion
molecule 1 (biliary glycoprotein)

211889_x_at

CHRNB4 Acrb-4, NACHR BETA4 cholinergic receptor, nicotinic, beta 4 207516_at

CR1 C3b/C4b receptor, C3BR, CD35, CD46, Cr1l, Crry, KN, Mcp, mCRY,
MGC102484, SCR1

complement component (3b/4b) receptor 1 (Knops
blood group)

217552_x_at

CXCL3 Cinc-2, CINC-2a, CINC-2b, Cinc3, Cxcl2, Dcip1, Gm1960, GRO ALPHA, GRO BETA,
GRO GAMMA, GRO1, Gro2, GRO3, GROA, GROb, GROg, KC, MGSA, Mgsa-b, MIP-2,
MIP-2a, MIP-2b, Mip2 alpha, N51, Scyb, Scyb2, SCYB3

chemokine (C-X-C motif) ligand 3 207850_at

CXCL13 ANGIE, ANGIE2, BCA-1, BLC, BLC1, BLR1L, CXC CHEMOKINE, Loc498335, SCYB13 chemokine (C-X-C motif) ligand 13 205242_at

DKK1 Dkk1 predicted, mdkk-1, SK dickkopf homolog 1 (Xenopus laevis) 204602_at

DRD2 D2, D2 DOPAMINE RECEPTOR, D2a dopamine receptor, D2DR, D2R, D2S,
DOPAMINE D2 RECEPTOR, Dr2

dopamine receptor D2 216924_s_at

EED HEED, l(7)5Rn, l7Rn5, lusk, WAIT-1 embryonic ectoderm development 209572_s_at

GINS3 2700085M18Rik, AI616142, FLJ13912, PSF3, RGD1308153 GINS complex subunit 3 (Psf3 homolog) 218719_s_at

GPS2 AI505953, AMF-1, MGC104294, MGC119287, MGC119288, MGC119289 G protein pathway suppressor 2 209350_s_at

GRIA2 GLUR-B, GluR-K2, GLUR2, GLUR2 IONOTROPIC, HBGR2 glutamate receptor, ionotropic, AMPA 2 205358_at

GSN DKFZp313L0718, GELSOLIN, MGC28083, MGC95032 gelsolin (amyloidosis, Finnish type) 214040_s_at

IFNAR1 ALPHA CHAIN OF TYPE I IFNR, AVP, BETA R1, CD118, Ifar, IFN RECEPTOR TYPE 1,
IFN TYPE 1 RECEPTOR, IFN-alpha-beta-R, IFN-ALPHA-REC, IFNalpha/betaR, IFNAR,
IFNBR, IFRC, Infar, INFAR1, Interferon Receptor, LOC284829, Type I infr

interferon (alpha, beta and omega) receptor 1 204191_at

ITGB4 AA407042, C230078O20, CD104, INTEGRIN-BETA 4 integrin, beta 4 204989_s_at

IVD 1300016K07Rik, 6720455E18Rik, ACAD2, AI463340, Isovaleryl-Coa Dehydrogenase isovaleryl Coenzyme A dehydrogenase 216958_s_at

KL ALPHA KLOTHO, alpha-kl, KLOTHO klotho 205978_at

N4BP1 AI481586, C81621, FLJ31821, KIAA0615, MGC176730, MGC7607, RGD1305179 NEDD4 binding protein 1 32069_at

NAIP AV364616, BIRC1, BIRC1A, Birc1b, Birc1e, BIRC1F, D13Lsd1, FLJ18088, FLJ42520,
FLJ58811, LGN1, LOC652755, Naip-rs1, Naip-rs3, Naip-rs4, Naip-rs4A, Naip1,
Naip2, Naip5, Naip6, NLRB1, psiNAIP, RGD1559914

NLR family, apoptosis inhibitory protein 204861_s_at

NDST1 1200015G06RIK, HSNST, HSST, HSST1, NST1 N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1 202608_s_at

PAICS 2610511I09Rik, ADE2, ADE2H1, AIRC, DKFZp781N1372, MGC1343, MGC5024,
MGC93240, PAIS

phosphoribosylaminoimidazole carboxylase,
phosphoribosylaminoimidazole succinocarboxamide
synthetase

214664_at

PAWR PAR-4 PRKC, apoptosis, WT1, regulator 204005_s_at

PDPK1 MGC20087, MGC35290, PDK1, PRO0461 3-phosphoinositide dependent protein kinase-1 204524_at

PHLDA1 DT1P1B11, MGC131738, PHRIP, PQ-RICH, Proline- and glutamine-rich, TDAG, TDAG51 pleckstrin homology-like domain, family A, member 1 218000_s_at

PPP1R15A
(includes
EG:23645)

9630030H21, GADD34, MYD116, Myeloid Differentiation, Peg-3, PP1
REGULATORY SUBUNIT, Ppp1r15a

protein phosphatase 1, regulatory (inhibitor)
subunit 15A

202014_at

RASSF1 123F2, AA536941, AU044980, D4Mgi37, MGC94319, NORE2A, PTS,
Rassf1A, Rassf1B, Rassf1C, RDA32, REH3P21

Ras association (RalGDS/AF-6) domain family member 1 204346_s_at

SYT1 AW124717, DKFZp781D2042, G630098F17Rik, P65, SVP65, SYNAPTOTAGMIN 1, SYT synaptotagmin I 203999_at

TACSTD2 C80403, EGP-1, GA733, GA733-1, Ly97, M1S1, MGC141612, MGC141613,
MGC72570, Prp1, TROP2

tumor-associated calcium signal transducer 2 202286_s_at

TEK AA517024, CD202B, Hyk, MGC139569, TIE-2, VMCM, VMCM1 TEK tyrosine kinase, endothelial 206702_at

TTF1 AV245725, RGD1565673, Ttf-I transcription termination factor, RNA polymerase I 204772_s_at

ZEB1 3110032K11Rik, AREB6, BZP, DELTA-EF1, MEB1, MGC133261, NIL-2-A,
Nil2, Tcf18, TCF8, TCP8, TF8, TRANSCRIPTION FACTOR 8, ZEB, ZFHEP, Zfhep2,
ZFHX1A, Zfx1a, Zfx1ha, [delta]EF1

zinc finger E-box binding homeobox 1 212758_s_at

ZNF10 KOX1 zinc finger protein 10 216350_s_at

doi:10.1371/journal.pone.0008250.t001

MAQC-II Gene Expression
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Table 2. The 34 cancer related genes of the 100 features selected by NMSC-MSC on original training group of MAQC-II breast
cancer data for pCR prediction.

Symbol Synonym(s) Entrez Gene Name Affymetrix

ALB ALB1, ALBUMIN, Albumin 1, Albza, DKFZp779N1935, PRO0883, PRO0903,
PRO1341, SA, SERUM ALBUMIN, SERUM ALBUMIN CHAIN A, Serum albumin
precursor

albumin 214837_at

ARAF 1200013E08Rik, ARAF1, AW495444, PKS, PKS2, RAFA1 v-raf murine sarcoma 3611 viral oncogene
homolog

201895_at

C10ORF81 9930023K05RIK, bA211N11.2, FLJ23537, HEL185, MGC99964, RGD1559884,
RP11-211N11.2

chromosome 10 open reading frame 81 219857_at

CDH1 AA960649, Arc-1, Cadherin 1, CD324, CDHE, CSEIL, E-CADHERIN, E-CADHERIN
120 KDA, ECAD, L-CAM, MGC107495, Um, UVO, uvomorulin

cadherin 1, type 1, E-cadherin (epithelial) 201131_s_at

CDK10 BC017131, MGC112847, PISSLRE cyclin-dependent kinase 10 210622_x_at

CEACAM1 bb-1, BGP, BGP1, BGPA, Bgpd, BGPI, BGPR, C-CAM, C-CAM1, CCAM105, CD66,
CD66A, Cea-1, Cea-7, CEACAM1-4L, ECTO ATPASE, HV2, mCEA1, Mhv-1, MHVR,
MHVR1, mmCGM1, mmCGM1a, mmCGM2, Pp120

carcinoembryonic antigen-related cell adhesion
molecule 1 (biliary glycoprotein)

211889_x_at

CEBPE C/EBP EPSILON, C/EBPe, C/EPBe, CRP1, Gm294, MGC124002, MGC124003 CCAAT/enhancer binding protein (C/EBP), epsilon 214523_at

CHRNB4 Acrb-4, NACHR BETA4 cholinergic receptor, nicotinic, beta 4 207516_at

CR1 C3b/C4b receptor, C3BR, CD35, CD46, Cr1l, Crry, KN, Mcp, mCRY,
MGC102484, SCR1

complement component (3b/4b) receptor 1
(Knops blood group)

217552_x_at

CXCL3 Cinc-2, CINC-2a, CINC-2b, Cinc3, Cxcl2, Dcip1, Gm1960, GRO ALPHA, GRO
BETA, GRO GAMMA, GRO1, Gro2, GRO3, GROA, GROb, GROg, KC, MGSA,
Mgsa-b, MIP-2, MIP-2a, MIP-2b, Mip2 alpha, N51, Scyb, Scyb2, SCYB3

chemokine (C-X-C motif) ligand 3 207850_at

CXCL13 ANGIE, ANGIE2, BCA-1, BLC, BLC1, BLR1L, CXC CHEMOKINE, Loc498335, SCYB13 chemokine (C-X-C motif) ligand 13 205242_at

DRD2 D2, D2 DOPAMINE RECEPTOR, D2a dopamine receptor, D2DR, D2R, D2S,
DOPAMINE D2 RECEPTOR, Dr2

dopamine receptor D2 216924_s_at

DYRK1A 2310043O08Rik, D16Ertd272e, D16Ertd493e, DUAL-SPECIFICITY TYROSINE-(Y)-
PHOSPHORYLATION REGULATED KINASE 1A, DYRK, DYRK1, HP86, MGC150253,
MGC150254, mmb, MNB, MNBH, Mp86, PSK47

dual-specificity tyrosine-(Y)-phosphorylation
regulated kinase 1A

211541_s_at

EPOR EP-R, ERYTHROPOIETIN RECEPTOR, MGC108723, MGC138358 erythropoietin receptor 215054_at

FAM153A KIAA0752, NY-REN-7 family with sequence similarity 153, member A 211166_at

GINS3 2700085M18Rik, AI616142, FLJ13912, PSF3, RGD1308153 GINS complex subunit 3 (Psf3 homolog) 218719_s_at

GRIA2 GLUR-B, GluR-K2, GLUR2, GLUR2 IONOTROPIC, HBGR2 glutamate receptor, ionotropic, AMPA 2 205358_at

GSN DKFZp313L0718, GELSOLIN, MGC28083, MGC95032 gelsolin (amyloidosis, Finnish type) 214040_s_at

IFNAR1 ALPHA CHAIN OF TYPE I IFNR, AVP, BETA R1, CD118, Ifar, IFN RECEPTOR TYPE 1,
IFN TYPE 1 RECEPTOR, IFN-alpha-beta-R, IFN-ALPHA-REC, IFNalpha/betaR, IFNAR,
IFNBR, IFRC, Infar, INFAR1, Interferon Receptor, LOC284829, Type I infr

interferon (alpha, beta and omega) receptor 1 204191_at

ITGB4 AA407042, C230078O20, CD104, INTEGRIN-BETA 4 integrin, beta 4 204989_s_at

KL ALPHA KLOTHO, alpha-kl, KLOTHO klotho 205978_at

LPAR1 5031439C20, AI326300, clone 4.9, EDG2, ENDOTHELIAL DIFFERENTIATION
LYSOPHOSPHATIDIC ACID G-PROTEIN-COUPLED RECEPTOR 2, Gpcr26, GPR26,
Kdt2, LPA receptor 1, LPA1, LPA1 RECEPTOR, LPA2, LYSOPHOSPHATIDIC ACID
G-PROTEIN-COUPLED RECEPTOR, MGC105279, MGC29102, Mrec1.3, rec.1.3, vzg-1

lysophosphatidic acid receptor 1 204037_at

MCF2 B230117G22Rik, DBL, MGC159138, RGD1566098 MCF.2 cell line derived transforming sequence 208017_s_at

MYO10 AW048724, D15Ertd600e, FLJ10639, FLJ21066, FLJ22268, FLJ43256, KIAA0799,
MGC131988, mKIAA0799, Myo10 (predicted), myosin-X

myosin X 201976_s_at

NAIP AV364616, BIRC1, BIRC1A, Birc1b, Birc1e, BIRC1F, D13Lsd1, FLJ18088, FLJ42520,
FLJ58811, LGN1, LOC652755, Naip-rs1, Naip-rs3, Naip-rs4, Naip-rs4A, Naip1,
Naip2, Naip5, Naip6, NLRB1, psiNAIP, RGD1559914

NLR family, apoptosis inhibitory protein 204860_s_at

NDST1 1200015G06RIK, HSNST, HSST, HSST1, NST1 N-deacetylase/N-sulfotransferase (heparan
glucosaminyl) 1

202608_s_at

PHLDA1 DT1P1B11, MGC131738, PHRIP, PQ-RICH, Proline- and glutamine-rich, TDAG,
TDAG51

pleckstrin homology-like domain, family A,
member 1

218000_s_at

PPP1R15A
(includes
EG:23645)

9630030H21, GADD34, MYD116, Myeloid Differentiation, Peg-3, PP1
REGULATORY SUBUNIT, Ppp1r15a

protein phosphatase 1, regulatory (inhibitor)
subunit 15A

202014_at

RASSF1 123F2, AA536941, AU044980, D4Mgi37, MGC94319, NORE2A, PTS, Rassf1A,
Rassf1B, Rassf1C, RDA32, REH3P21

Ras association (RalGDS/AF-6) domain family
member 1

204346_s_at

SIAH1 AA982064, AI853500, D9MGI7, FLJ08065, hSIAH1, HUMSIAH, SIAH, Siah1a, Sinh1a seven in absentia homolog 1 (Drosophila) 202981_x_at

TTF1 AV245725, RGD1565673, Ttf-I transcription termination factor, RNA polymerase I 204772_s_at

MAQC-II Gene Expression
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Symbol Synonym(s) Entrez Gene Name Affymetrix

VAMP2 FLJ11460, mVam2, RATVAMPB, RATVAMPIR, SYB, SYB2, SYNAPTOBREVIN 2,
Vamp ii

vesicle-associated membrane protein 2
(synaptobrevin 2)

201557_at

ZNF10 KOX1 zinc finger protein 10 216350_s_at

ZNF205 4933429B21, AI835008, Krox-8, Zfp13, ZINC FINGER PROTEIN 205, ZNF210 zinc finger protein 205 206416_at

doi:10.1371/journal.pone.0008250.t002

Table 2. Cont.

Table 3. The 26 cancer related genes of the 100 features selected by GLGS on original training group of MAQC-II breast cancer
data for pCR prediction.

Symbol Synonym(s) Entrez Gene Name Affymetrix

ADAM15 MDC15, METARGIDIN, tMDCVI ADAM metallopeptidase domain 15 217007_s_at

ARAF 1200013E08Rik, ARAF1, AW495444, PKS, PKS2, RAFA1 v-raf murine sarcoma 3611 viral oncogene homolog 201895_at

ASNS AS, ASPARAGINE SYNTHETASE, MGC93148, TS11 asparagine synthetase 205047_s_at

B4GALT5 9430078I07Rik, AW049941, AW539721, BETA4-GALT-IV, beta4Gal-T5,
beta4GalT-V, gt-V, MGC138470

UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase,
polypeptide 5

221485_at

CEACAM1 bb-1, BGP, BGP1, BGPA, Bgpd, BGPI, BGPR, C-CAM, C-CAM1, CCAM105,
CD66, CD66A, Cea-1, Cea-7, CEACAM1-4L, ECTO ATPASE, HV2, mCEA1,
Mhv-1, MHVR, MHVR1, mmCGM1, mmCGM1a, mmCGM2, Pp120

carcinoembryonic antigen-related cell adhesion
molecule 1 (biliary glycoprotein)

211889_x_at

CXCL3 Cinc-2, CINC-2a, CINC-2b, Cinc3, Cxcl2, Dcip1, Gm1960, GRO ALPHA, GRO
BETA, GRO GAMMA, GRO1, Gro2, GRO3, GROA, GROb, GROg, KC, MGSA,
Mgsa-b, MIP-2, MIP-2a, MIP-2b, Mip2 alpha, N51, Scyb, Scyb2, SCYB3

chemokine (C-X-C motif) ligand 3 207850_at

CYCS (includes
EG:54205)

CYC, CYCS, CYCSA, CYCT, CYCTA, CYTC, CYTOCHROME C, HCS,
MGC93634, T-Cc

cytochrome c, somatic 208905_at

DRD2 D2, D2 DOPAMINE RECEPTOR, D2a dopamine receptor, D2DR, D2R,
D2S, DOPAMINE D2 RECEPTOR, Dr2

dopamine receptor D2 216924_s_at

EGFR 9030024J15RIK, AI552599, EGF RECEPTOR, EGF-TK, EGFR1, EGFRec, ER2,
ERBB, ERBB1, Errp, HER1, MENA, PIG61, wa-2, Wa5

epidermal growth factor receptor (erythroblastic
leukemia viral (v-erb-b) oncogene homolog, avian)

201983_s_at

FBLN1 FBLN, FIBULIN 1 fibulin 1 207834_at

FIS1 2010003O14Rik, CGI-135, Riken cDNA 2010003o14, TTC11 fission 1 (mitochondrial outer membrane) homolog
(S. cerevisiae)

218034_at

FOXC1 ARA, ch, fkh-1, FKHL7, FLJ11796, FLJ11796 FIS, FREAC-3, frkhda,
IGDA, IHG1, IRID1, Mf1, Mf4, rCG 44068, rCG_44068

forkhead box C1 213260_at

FTL FERRITIN LIGHT CHAIN, FTL1, Ftl2, L-FERRITIN, MGC102130, MGC102131,
MGC118079, MGC118080, MGC71996, RGD1560687, RGD1561055,
RGD1566189, YB24D08

ferritin, light polypeptide 201265_at

GFRA1 AU042498, GDNFR, Gdnfr alpha, GDNFRA, GFR-ALPHA-1, GRFA1,
MGC23045, Ret, RET1L, RETL1, TRNR1

GDNF family receptor alpha 1 205696_s_at

ITGB4 AA407042, C230078O20, CD104, INTEGRIN-BETA 4 integrin, beta 4 204989_s_at

KL ALPHA KLOTHO, alpha-kl, KLOTHO klotho 205978_at

LEF1 3000002B05, AI451430, DKFZp586H0919, LEF, TCF/LEF, TCF1ALPHA lymphoid enhancer-binding factor 1 221557_s_at

LMO4 A730077C12Rik, Crp3, Etohi4, MGC105593 LIM domain only 4 209205_s_at

LPAR2 EDG-4, FLJ93869, IPA2, LPA receptor 2, LPA2, LPA2 RECEPTOR, Pbx4,
RGD1561336

lysophosphatidic acid receptor 2 206723_s_at

MKI67 D630048A14Rik, KI-67, KIA, MIB1, MIKI67A, MKI67A antigen identified by monoclonal antibody Ki-67 212022_s_at

NAIP AV364616, BIRC1, BIRC1A, Birc1b, Birc1e, BIRC1F, D13Lsd1, FLJ18088,
FLJ42520, FLJ58811, LGN1, LOC652755, Naip-rs1, Naip-rs3, Naip-rs4,
Naip-rs4A, Naip1, Naip2, Naip5, Naip6, NLRB1, psiNAIP, RGD1559914

NLR family, apoptosis inhibitory protein 204861_s_at

PPP1R15A (includes
EG:23645)

9630030H21, GADD34, MYD116, Myeloid Differentiation, Peg-3, PP1
REGULATORY SUBUNIT, Ppp1r15a

protein phosphatase 1, regulatory (inhibitor)
subunit 15A

202014_at

RARB A830025K23, BETA RAR, HAP, LOC51036, NR1B2, RAR BETA,
RAR-EPSILON, RRB2

retinoic acid receptor, beta 208530_s_at

TEK AA517024, CD202B, Hyk, MGC139569, TIE-2, VMCM, VMCM1 TEK tyrosine kinase, endothelial 206702_at

TTF1 AV245725, RGD1565673, Ttf-I transcription termination factor, RNA polymerase I 204772_s_at

USF2 bHLHb12, FIP, MGC91056 upstream transcription factor 2, c-fos interacting 202152_x_at

doi:10.1371/journal.pone.0008250.t003

MAQC-II Gene Expression

PLoS ONE | www.plosone.org 4 December 2009 | Volume 4 | Issue 12 | e8250



T
a

b
le

4
.

T
h

e
2

5
ca

n
ce

r
re

la
te

d
g

e
n

e
s

o
f

th
e

1
0

0
fe

at
u

re
s

se
le

ct
e

d
b

y
LO

O
C

SF
S

o
n

o
ri

g
in

al
tr

ai
n

in
g

g
ro

u
p

o
f

M
A

Q
C

-I
I

b
re

as
t

ca
n

ce
r

d
at

a
fo

r
p

C
R

p
re

d
ic

ti
o

n
.

S
y

m
b

o
l

S
y

n
o

n
y

m
(s

)
E

n
tr

e
z

G
e

n
e

N
a

m
e

A
ff

y
m

e
tr

ix

A
D

A
M

1
7

A
lp

h
a

Se
cr

e
ta

se
,

C
D

1
5

6
b

,
cS

V
P

,
M

G
C

7
1

9
4

2
,

T
A

C
E,

T
N

FA
C

O
N

V
ER

T
A

SE
A

D
A

M
m

e
ta

llo
p

e
p

ti
d

as
e

d
o

m
ai

n
1

7
2

1
3

5
3

2
_

at

A
P

P
A

b
e

ta
2

5
–

3
5

,
A

-B
ET

A
4

0
,

A
-B

ET
A

4
2

,
A

A
A

,
A

B
ET

A
,

A
B

P
P

,
A

D
1

,
A

d
ap

,
A

L0
2

4
4

0
1

,
A

M
Y

LO
ID

B
ET

A
,

A
M

Y
LO

ID
B

ET
A

4
0

,
A

M
Y

LO
ID

B
ET

A
4

0
H

U
M

A
N

,
A

M
Y

LO
ID

B
ET

A
4

2
,

A
m

yl
o

id
b

e
ta

A
4

,
A

M
Y

LO
ID

B
ET

A
P

EP
T

ID
E

4
0

,
A

m
yl

o
id

p
re

cu
rs

o
r,

A
m

yl
o

id
o

g
e

n
ic

g
ly

co
p

ro
te

in
,

A
p

p
al

p
h

a,
A

P
P

I,
ap

p
ic

an
,

B
ET

A
A

P
P

,
C

T
Fg

am
m

a,
C

V
A

P
,

E0
3

0
0

1
3

M
0

8
R

IK
,

N
e

xi
n

II,
P

3
,

P
N

2
,

P
re

A
4

,
P

R
O

T
EA

SE
N

EX
IN

2

am
yl

o
id

b
e

ta
(A

4
)

p
re

cu
rs

o
r

p
ro

te
in

2
1

4
9

5
3

_
s_

at

A
R

A
F

1
2

0
0

0
1

3
E0

8
R

ik
,

A
R

A
F1

,
A

W
4

9
5

4
4

4
,

P
K

S,
P

K
S2

,
R

A
FA

1
v-

ra
f

m
u

ri
n

e
sa

rc
o

m
a

3
6

1
1

vi
ra

l
o

n
co

g
e

n
e

h
o

m
o

lo
g

2
0

1
8

9
5

_
at

C
EA

C
A

M
1

b
b

-1
,

B
G

P
,

B
G

P
1

,
B

G
P

A
,

B
g

p
d

,
B

G
P

I,
B

G
P

R
,

C
-C

A
M

,
C

-C
A

M
1

,
C

C
A

M
1

0
5

,
C

D
6

6
,

C
D

6
6

A
,

C
e

a-
1

,
C

e
a-

7
,

C
EA

C
A

M
1

-4
L,

EC
T

O
A

T
P

A
SE

,
H

V
2

,
m

C
EA

1
,

M
h

v-
1

,
M

H
V

R
,

M
H

V
R

1
,

m
m

C
G

M
1

,
m

m
C

G
M

1
a,

m
m

C
G

M
2

,
P

p
1

2
0

ca
rc

in
o

e
m

b
ry

o
n

ic
an

ti
g

e
n

-r
e

la
te

d
ce

ll
ad

h
e

si
o

n
m

o
le

cu
le

1
(b

ili
ar

y
g

ly
co

p
ro

te
in

)
2

1
1

8
8

9
_

x_
at

C
T

SL
2

1
1

9
0

0
3

5
F0

6
R

ik
,

C
at

h
e

p
si

n
l,

C
A

T
H

EP
SI

N
V

,
C

A
T

H
L,

C
A

T
L2

,
C

ts
l,

C
ts

l1
,

C
T

SU
,

C
T

SV
,

fs
,

M
EP

,
M

G
C

1
2

5
9

5
7

,
n

kt
ca

th
e

p
si

n
L2

2
1

0
0

7
4

_
at

C
Y

R
6

1
A

I3
2

5
0

5
1

,
C

C
N

1
,

C
ys

te
in

e
-r

ic
h

p
ro

te
in

6
1

,
G

IG
1

,
IG

FB
P

1
0

,
M

G
C

9
3

0
4

0
cy

st
e

in
e

-r
ic

h
,

an
g

io
g

e
n

ic
in

d
u

ce
r,

6
1

2
1

0
7

6
4

_
s_

at

D
K

K
1

D
kk

1
p

re
d

ic
te

d
,

m
d

kk
-1

,
SK

d
ic

kk
o

p
f

h
o

m
o

lo
g

1
(X

e
n

o
p

u
s

la
e

vi
s)

2
0

4
6

0
2

_
at

D
R

D
2

D
2

,
D

2
D

O
P

A
M

IN
E

R
EC

EP
T

O
R

,
D

2
a

d
o

p
am

in
e

re
ce

p
to

r,
D

2
D

R
,

D
2

R
,

D
2

S,
D

O
P

A
M

IN
E

D
2

R
EC

EP
T

O
R

,
D

r2
d

o
p

am
in

e
re

ce
p

to
r

D
2

2
1

6
9

2
4

_
s_

at

ET
S2

A
U

0
2

2
8

5
6

,
ET

S2
IT

1
v-

e
ts

e
ry

th
ro

b
la

st
o

si
s

vi
ru

s
E2

6
o

n
co

g
e

n
e

h
o

m
o

lo
g

2
(a

vi
an

)
2

0
1

3
2

9
_

s_
at

G
R

IA
2

G
LU

R
-B

,
G

lu
R

-K
2

,
G

LU
R

2
,

G
LU

R
2

IO
N

O
T

R
O

P
IC

,
H

B
G

R
2

g
lu

ta
m

at
e

re
ce

p
to

r,
io

n
o

tr
o

p
ic

,
A

M
P

A
2

2
0

5
3

5
8

_
at

IT
G

B
4

A
A

4
0

7
0

4
2

,
C

2
3

0
0

7
8

O
2

0
,

C
D

1
0

4
,

IN
T

EG
R

IN
-B

ET
A

4
in

te
g

ri
n

,
b

e
ta

4
2

0
4

9
9

0
_

s_
at

K
IF

3
A

1
1

1
-1

1
-7

1
,

1
1

1
-1

1
-8

6
,

A
F1

8
0

0
0

4
,

A
F1

8
0

0
0

9
,

A
W

1
2

4
6

9
4

,
K

IF
3

,
K

if
l,

K
n

s3
ki

n
e

si
n

fa
m

ily
m

e
m

b
e

r
3

A
2

1
3

6
2

3
_

at

K
LF

6
A

a1
0

1
7

,
A

I4
4

8
7

2
7

,B
C

D
1

,C
8

68
1

3
,C

O
P

EB
,

C
P

B
P

,
D

K
FZ

p
6

8
6

N
0

19
9

,E
ry

th
ro

p
o

ie
ti

n
1

,
FM

2
,

FM
6

,
G

B
F,

Ie
re

p
o

1
,

IE
R

EP
O

3
,

K
R

U
P

P
EL

LI
K

E
Z

IN
C

FI
N

G
ER

P
R

O
TE

IN
Z

F9
,P

A
C

1
,

P
R

O
TO

-O
N

C
O

G
EN

E
B

C
D

,
P

ro
to

-o
n

co
g

en
e

B
C

D
1

,R
7

5
2

8
0

,S
T1

2,
Z

F9
K

ru
p

p
e

l-
lik

e
fa

ct
o

r
6

2
1

1
6

1
0

_
at

LT
B

P
1

9
4

3
0

0
3

1
G

1
5

R
ik

,
9

8
3

0
1

4
6

M
0

4
,

M
G

C
1

6
3

1
6

1
,

T
G

FB
la

te
n

t
tr

an
sf

o
rm

in
g

g
ro

w
th

fa
ct

o
r

b
e

ta
b

in
d

in
g

p
ro

te
in

1
2

0
2

7
2

9
_

s_
at

M
C

F2
B

2
3

0
1

1
7

G
2

2
R

ik
,

D
B

L,
M

G
C

1
5

9
1

3
8

,
R

G
D

1
5

6
6

0
9

8
M

C
F.

2
ce

ll
lin

e
d

e
ri

ve
d

tr
an

sf
o

rm
in

g
se

q
u

e
n

ce
2

0
8

0
1

7
_

s_
at

R
ES

T
2

6
1

0
0

0
8

J0
4

R
IK

,
A

A
4

0
7

3
5

8
,

D
1

4
M

G
I1

1
,

M
G

C
1

5
0

0
9

9
,

N
R

SF
,

X
B

R
R

E1
-s

ile
n

ci
n

g
tr

an
sc

ri
p

ti
o

n
fa

ct
o

r
2

0
4

5
3

5
_

s_
at

SD
C

1
A

A
4

0
8

1
3

4
,

A
A

4
0

9
0

7
6

,
B

B
4

,
C

D
1

3
8

,
H

SP
G

,
SD

C
,

SY
N

1
,

Sy
n

d
,

SY
N

D
1

,
SY

N
D

EC
A

,
Sy

n
d

e
ca

n
,

SY
N

D
EC

A
N

-1
sy

n
d

e
ca

n
1

2
0

1
2

8
7

_
s_

at

SE
M

A
3

B
A

W
2

0
8

4
9

5
,

FL
J3

4
8

6
3

,
LU

C
A

-1
,

SE
M

A
,

SE
M

A
5

,
SE

M
A

A
,

se
m

aV
se

m
a

d
o

m
ai

n
,

im
m

u
n

o
g

lo
b

u
lin

d
o

m
ai

n
(I

g
),

sh
o

rt
b

as
ic

d
o

m
ai

n
,

se
cr

e
te

d
,

(s
e

m
ap

h
o

ri
n

)
3

B
2

0
3

0
7

1
_

at

SL
P

I
A

LK
1

,
A

LP
,

A
N

T
IL

EU
K

O
P

R
O

T
EA

SE
,

an
ti

le
u

ko
p

ro
te

in
as

e
,

B
LP

I,
H

U
SI

,
H

U
SI

-I
,

M
P

I,
Se

cr
e

to
ry

Le
u

ko
p

ro
te

as
e

I
n

h
ib

it
o

r,
SL

P
1

,
W

A
P

4
,

W
FD

C
4

se
cr

e
to

ry
le

u
ko

cy
te

p
e

p
ti

d
as

e
in

h
ib

it
o

r
2

0
3

0
2

1
_

at

SP
1

1
1

1
0

0
0

3
E1

2
R

IK
,

A
A

4
5

0
8

3
0

,
A

I8
4

5
5

4
0

,
Sp

1
(t

ra
n

s
sp

lic
e

d
is

o
fo

rm
),

SP
1

-1
,

T
ra

n
s-

ac
ti

n
g

tr
an

sc
ri

p
ti

o
n

fa
ct

o
r

1
Sp

1
tr

an
sc

ri
p

ti
o

n
fa

ct
o

r
2

1
4

7
3

2
_

at

TC
F7

L2
(in

cl
u

d
es

EG
:6

9
3

4
)

LO
C

6
7

9
8

6
9

,
m

T
cf

-4
B

,
m

T
cf

-4
E,

T
C

F-
4

,
T

C
F4

B
,

T
C

F4
E,

T
cf

7
l2

tr
an

sc
ri

p
ti

o
n

fa
ct

o
r

7
-l

ik
e

2
(T

-c
e

ll
sp

e
ci

fi
c,

H
M

G
-b

o
x)

2
1

6
5

1
1

_
s_

at

T
N

FA
IP

3
A

2
0

,
M

A
D

6
,

M
G

C
1

0
4

5
2

2
,

M
G

C
1

3
8

6
8

7
,

M
G

C
1

3
8

6
8

8
,

O
T

U
D

7
C

,
T

N
F

A
LP

H
A

-I
N

D
U

C
ED

P
R

O
T

EI
N

3
,

T
N

F-
in

d
u

ci
b

le
e

ar
ly

re
sp

o
n

se
,

T
N

FA
1

P
2

,
T

n
fi

p
3

tu
m

o
r

n
e

cr
o

si
s

fa
ct

o
r,

al
p

h
a-

in
d

u
ce

d
p

ro
te

in
3

2
0

2
6

4
4

_
s_

at

T
T

F1
A

V
2

4
5

7
2

5
,

R
G

D
1

5
6

5
6

7
3

,
T

tf
-I

tr
an

sc
ri

p
ti

o
n

te
rm

in
at

io
n

fa
ct

o
r,

R
N

A
p

o
ly

m
er

as
e

I
2

0
4

7
7

2
_

s_
at

T
X

N
A

D
F,

A
W

5
5

0
8

8
0

,
D

K
FZ

p
6

8
6

B
1

9
9

3
,

EO
SI

N
O

P
H

IL
C

Y
T

O
T

O
X

IC
IT

Y
FA

C
T

O
R

,
M

G
C

1
5

1
9

6
0

,
M

G
C

6
1

9
7

5
,

T
H

IO
R

ED
O

X
IN

,
T

R
X

,
T

R
X

1
,

T
xn

1
th

io
re

d
o

xi
n

2
0

8
8

6
4

_
s_

at

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
0

8
2

5
0

.t
0

0
4

MAQC-II Gene Expression

PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8250



T
a

b
le

5
.

T
h

e
2

0
ca

n
ce

r
re

la
te

d
g

e
n

e
s

o
f

th
e

1
0

0
fe

at
u

re
s

se
le

ct
e

d
b

y
SV

M
R

FE
o

n
o

ri
g

in
al

tr
ai

n
in

g
g

ro
u

p
o

f
M

A
Q

C
-I

I
b

re
as

t
ca

n
ce

r
d

at
a

fo
r

p
C

R
p

re
d

ic
ti

o
n

.

S
y

m
b

o
l

S
y

n
o

n
y

m
(s

)
E

n
tr

e
z

G
e

n
e

N
a

m
e

A
ff

y
m

e
tr

ix

A
P

P
A

b
et

a
2

5
–3

5
,

A
-B

ET
A

4
0

,
A

-B
ET

A
4

2
,

A
A

A
,

A
B

ET
A

,
A

B
P

P
,A

D
1

,
A

d
ap

,
A

L0
2

4
4

0
1

,
A

M
Y

LO
ID

B
ET

A
,

A
M

Y
LO

ID
B

ET
A

4
0

,
A

M
Y

LO
ID

B
ET

A
4

0
H

U
M

A
N

,
A

M
Y

LO
ID

B
ET

A
4

2
,

A
m

yl
o

id
b

et
a

A
4

,
A

M
Y

LO
ID

B
ET

A
P

EP
TI

D
E

4
0

,A
m

yl
o

id
p

re
cu

rs
o

r,
A

m
yl

o
id

o
g

en
ic

g
ly

co
p

ro
te

in
,

A
p

p
al

p
h

a,
A

P
P

I,
ap

p
ic

an
,

B
ET

A
A

P
P

,
C

TF
g

am
m

a,
C

V
A

P
,

E0
3

0
0

1
3

M
0

8
R

IK
,

N
ex

in
II,

P
3

,
P

N
2

,
P

re
A

4
,

P
R

O
TE

A
SE

N
EX

IN
2

am
yl

o
id

b
e

ta
(A

4
)

p
re

cu
rs

o
r

p
ro

te
in

2
1

4
9

5
3

_
s_

at

C
LE

C
3

B
D

K
FZ

p
6

8
6

H
1

7
2

4
6

,
T

ET
R

A
N

EC
T

IN
,

T
N

,
T

N
A

,
T

T
N

C
-t

yp
e

le
ct

in
d

o
m

ai
n

fa
m

ily
3

,
m

e
m

b
e

r
B

2
0

5
2

0
0

_
at

C
X

C
L9

B
B

1
3

9
9

2
0

,
C

M
K

,
cr

g
-1

0
,

H
u

m
ig

,
M

G
C

1
0

5
3

1
2

,
M

IG
,

SC
Y

B
9

ch
e

m
o

ki
n

e
(C

-X
-C

m
o

ti
f)

lig
an

d
9

2
0

3
9

1
5

_
at

D
K

K
1

D
kk

1
p

re
d

ic
te

d
,

m
d

kk
-1

,
SK

d
ic

kk
o

p
f

h
o

m
o

lo
g

1
(X

e
n

o
p

u
s

la
e

vi
s)

2
0

4
6

0
2

_
at

D
R

D
2

D
2

,
D

2
D

O
P

A
M

IN
E

R
EC

EP
T

O
R

,
D

2
a

d
o

p
am

in
e

re
ce

p
to

r,
D

2
D

R
,

D
2

R
,

D
2

S,
D

O
P

A
M

IN
E

D
2

R
EC

EP
T

O
R

,
D

r2
d

o
p

am
in

e
re

ce
p

to
r

D
2

2
1

6
9

2
4

_
s_

at

EP
O

R
EP

-R
,

ER
Y

T
H

R
O

P
O

IE
T

IN
R

EC
EP

T
O

R
,

M
G

C
1

0
8

7
2

3
,

M
G

C
1

3
8

3
5

8
e

ry
th

ro
p

o
ie

ti
n

re
ce

p
to

r
2

1
5

0
5

4
_

at

ES
R

1
A

A
4

2
0

3
28

,A
lp

h
a

es
tr

o
g

en
re

ce
p

to
r,

A
U

0
4

1
2

1
4

,
D

K
FZ

p
6

8
6

N
2

3
1

2
3

,
ER

,
ER

A
LP

H
A

,
Er

al
p

h
a

(4
6

kD
a

is
o

fo
rm

),
ER

6
6

,
ER

A
,

ER
[a

],
ES

R
,

ES
R

A
,E

ST
R

,
ES

TR
A

,
ES

TR
O

G
EN

R
EC

EP
TO

R
A

LP
H

A
,E

ST
R

O
G

EN
R

EC
EP

TO
R

1
,

N
R

3
A

1
,

R
N

ES
TR

O
R

,
TE

R
P

-1
e

st
ro

g
e

n
re

ce
p

to
r

1
2

1
5

5
5

2
_

s_
at

FA
M

1
5

3
A

K
IA

A
0

7
5

2
,

N
Y

-R
EN

-7
fa

m
ily

w
it

h
se

q
u

en
ce

si
m

ila
ri

ty
1

5
3

,m
em

b
er

A
2

1
1

1
6

6
_

at

G
SN

D
K

FZ
p

3
1

3
L0

7
1

8
,

G
EL

SO
LI

N
,

M
G

C
2

8
0

8
3

,
M

G
C

9
5

0
3

2
g

e
ls

o
lin

(a
m

yl
o

id
o

si
s,

Fi
n

n
is

h
ty

p
e

)
2

1
4

0
4

0
_

s_
at

IF
N

A
R

1
A

LP
H

A
C

H
A

IN
O

F
T

Y
P

E
I

IF
N

R
,

A
V

P
,

B
ET

A
R

1
,

C
D

1
1

8
,

If
ar

,
IF

N
R

EC
EP

T
O

R
T

Y
P

E
1

,
IF

N
T

Y
P

E
1

R
EC

EP
T

O
R

,
IF

N
-a

lp
h

a-
b

e
ta

-R
,

IF
N

-A
LP

H
A

-R
EC

,
IF

N
al

p
h

a/
b

e
ta

R
,

IF
N

A
R

,
IF

N
B

R
,

IF
R

C
,

In
fa

r,
IN

FA
R

1
,

In
te

rf
e

ro
n

R
e

ce
p

to
r,

LO
C

2
8

4
8

2
9

,
T

yp
e

I
in

fr

in
te

rf
er

o
n

(a
lp

h
a,

b
et

a
an

d
o

m
eg

a)
re

ce
p

to
r

1
2

0
4

1
9

1
_

at

K
L

A
LP

H
A

K
LO

T
H

O
,

al
p

h
a-

kl
,

K
LO

T
H

O
kl

o
th

o
2

0
5

9
7

8
_

at

N
A

IP
A

V
3

6
4

6
1

6
,

B
IR

C
1

,
B

IR
C

1
A

,
B

ir
c1

b
,

B
ir

c1
e

,
B

IR
C

1
F,

D
1

3
Ls

d
1

,
FL

J1
8

0
8

8
,

FL
J4

2
5

2
0

,
FL

J5
8

8
1

1
,

LG
N

1
,

LO
C

6
5

2
7

5
5

,
N

ai
p

-r
s1

,
N

ai
p

-r
s3

,
N

ai
p

-r
s4

,
N

ai
p

-r
s4

A
,

N
ai

p
1

,
N

ai
p

2
,

N
ai

p
5

,
N

ai
p

6
,

N
LR

B
1

,
p

si
N

A
IP

,
R

G
D

1
5

5
9

9
1

4
N

LR
fa

m
ily

,
ap

o
p

to
si

s
in

h
ib

it
o

ry
p

ro
te

in
2

0
4

8
6

1
_

s_
at

N
D

ST
1

1
2

0
0

0
1

5
G

0
6

R
IK

,
H

SN
ST

,
H

SS
T

,
H

SS
T

1
,

N
ST

1
N

-d
e

ac
e

ty
la

se
/N

-s
u

lf
o

tr
an

sf
e

ra
se

(h
e

p
ar

an
g

lu
co

sa
m

in
yl

)
1

2
0

2
6

0
8

_
s_

at

P
P

P
1

R
1

5
A

(i
n

cl
u

d
e

s
EG

:2
3

6
4

5
)

9
6

3
0

0
3

0
H

2
1

,
G

A
D

D
3

4
,

M
Y

D
1

1
6

,
M

ye
lo

id
D

if
fe

re
n

ti
at

io
n

,
P

e
g

-3
,

P
P

1
R

EG
U

LA
T

O
R

Y
SU

B
U

N
IT

,
P

p
p

1
r1

5
a

p
ro

te
in

p
h

o
sp

h
at

as
e

1
,

re
g

u
la

to
ry

(i
n

h
ib

it
o

r)
su

b
u

n
it

1
5

A
2

0
2

0
1

4
_

at

P
T

G
IS

C
Y

P
8

,
C

Y
P

8
A

1
,

M
G

C
1

2
6

8
5

8
,

M
G

C
1

2
6

8
6

0
,

P
cs

,
P

g
i2

,
P

G
IS

,
P

R
O

ST
A

C
Y

C
LI

N
,

P
ro

st
ac

yc
lin

Sy
n

th
as

e
,

P
T

G
I

p
ro

st
ag

la
n

d
in

I2
(p

ro
st

ac
yc

lin
)

sy
n

th
as

e
2

1
1

8
9

2
_

s_
at

R
A

D
2

3
B

0
6

1
0

0
0

7
D

1
3

R
ik

,
A

V
0

0
1

1
3

8
,

H
H

R
2

3
B

,
H

R
2

3
B

,
M

G
C

1
1

2
6

3
0

,
m

H
R

2
3

B
,

P
5

8
R

A
D

2
3

h
o

m
o

lo
g

B
(S

.
ce

re
vi

si
ae

)
2

0
1

2
2

3
_

s_
at

SP
1

1
1

1
0

0
0

3
E1

2
R

IK
,

A
A

4
5

0
8

3
0

,
A

I8
4

5
5

4
0

,
Sp

1
(t

ra
n

s
sp

lic
e

d
is

o
fo

rm
),

SP
1

-1
,

T
ra

n
s-

ac
ti

n
g

tr
an

sc
ri

p
ti

o
n

fa
ct

o
r

1
Sp

1
tr

an
sc

ri
p

ti
o

n
fa

ct
o

r
2

1
4

7
3

2
_

at

T
A

C
ST

D
2

C
8

0
4

0
3

,
EG

P
-1

,
G

A
7

3
3

,
G

A
7

3
3

-1
,

Ly
9

7
,

M
1

S1
,

M
G

C
1

4
1

6
1

2
,

M
G

C
1

4
1

6
1

3
,

M
G

C
7

2
5

7
0

,
P

rp
1

,
T

R
O

P
2

tu
m

o
r-

as
so

ci
at

e
d

ca
lc

iu
m

si
g

n
al

tr
an

sd
u

ce
r

2
2

0
2

2
8

6
_

s_
at

T
U

B
B

3
3

2
0

0
0

0
2

H
1

5
R

ik
,

b
e

ta
-4

,
M

(b
e

ta
)3

,
M

(b
e

ta
)6

,
M

C
1

R
,

N
st

,
T

u
b

b
e

ta
3

,
T

U
B

B
4

,
T

u
b

u
lin

b
e

ta
-3

,
T

u
b

u
lin

b
e

ta
-I

II,
T

u
j1

tu
b

u
lin

,
b

e
ta

3
2

0
2

1
5

4
_

x_
at

Z
N

F1
0

K
O

X
1

zi
n

c
fi

n
g

e
r

p
ro

te
in

1
0

2
1

6
3

5
0

_
s_

at

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
0

8
2

5
0

.t
0

0
5

MAQC-II Gene Expression

PLoS ONE | www.plosone.org 6 December 2009 | Volume 4 | Issue 12 | e8250



T
a

b
le

6
.

T
h

e
3

4
ca

n
ce

r
re

la
te

d
g

e
n

e
s

o
f

th
e

1
0

0
fe

at
u

re
s

se
le

ct
e

d
b

y
N

B
C

-M
SC

o
n

o
ri

g
in

al
tr

ai
n

in
g

g
ro

u
p

o
f

M
A

Q
C

-I
I

b
re

as
t

ca
n

ce
r

d
at

a
fo

r
e

rp
o

s
p

re
d

ic
ti

o
n

.

S
y

m
b

o
l

S
y

n
o

n
y

m
(s

)
E

n
tr

e
z

G
e

n
e

N
a

m
e

A
ff

y
m

e
tr

ix

A
P

P
A

b
e

ta
2

5
–

3
5

,A
-B

ET
A

4
0

,A
-B

ET
A

4
2

,A
A

A
,A

B
ET

A
,A

B
P

P
,A

D
1

,A
d

ap
,A

L0
2

4
4

0
1

,A
M

Y
LO

ID
B

ET
A

,A
M

Y
LO

ID
B

ET
A

4
0

,A
M

Y
LO

ID
B

ET
A

4
0

H
U

M
A

N
,A

M
Y

LO
ID

B
ET

A
4

2
,A

m
yl

o
id

b
e

ta
A

4
,A

M
Y

LO
ID

B
ET

A
P

EP
T

ID
E

4
0

,A
m

yl
o

id
p

re
cu

rs
o

r,
A

m
yl

o
id

o
g

e
n

ic
g

ly
co

p
ro

te
in

,A
p

p
al

p
h

a,
A

P
P

I,a
p

p
ic

an
,B

ET
A

A
P

P
,C

T
Fg

am
m

a,
C

V
A

P
,E

0
3

0
0

1
3

M
0

8
R

IK
,N

e
xi

n
II,

P
3

,P
N

2
,P

re
A

4
,P

R
O

T
EA

SE
N

EX
IN

2

am
yl

o
id

b
e

ta
(A

4
)

p
re

cu
rs

o
r

p
ro

te
in

2
1

4
9

5
3

_
s_

at

C
C

D
C

2
8

A
1

7
0

0
0

0
9

P
1

3
R

ik
,A

I4
8

0
6

7
7

,C
6

O
R

F8
0

,C
C

R
L1

A
P

,D
K

FZ
P

5
8

6
D

0
6

2
3

,M
G

C
1

1
6

3
9

5
,M

G
C

1
3

1
9

1
3

,M
G

C
1

9
3

5
1

,R
G

D
1

3
1

0
3

2
6

co
ile

d
-c

o
il

d
o

m
ai

n
co

n
ta

in
in

g
2

8
A

2
0

9
4

7
9

_
at

C
EA

C
A

M
1

b
b

-1
,B

G
P

,B
G

P
1

,B
G

P
A

,B
g

p
d

,B
G

P
I,B

G
P

R
,C

-C
A

M
,C

-C
A

M
1

,C
C

A
M

1
0

5
,C

D
6

6
,C

D
6

6
A

,C
e

a-
1

,C
e

a-
7

,C
EA

C
A

M
1

-4
L,

EC
T

O
A

T
P

A
SE

,H
V

2
,m

C
EA

1
,M

h
v-

1
,M

H
V

R
,M

H
V

R
1

,m
m

C
G

M
1

,m
m

C
G

M
1

a,
m

m
C

G
M

2
,P

p
1

2
0

ca
rc

in
o

e
m

b
ry

o
n

ic
an

ti
g

e
n

-r
e

la
te

d
ce

ll
ad

h
e

si
o

n
m

o
le

cu
le

1
(b

ili
ar

y
g

ly
co

p
ro

te
in

)
2

1
1

8
8

3
_

x_
at

C
H

R
N

B
4

A
cr

b
-4

,N
A

C
H

R
B

ET
A

4
ch

o
lin

e
rg

ic
re

ce
p

to
r,

n
ic

o
ti

n
ic

,
b

e
ta

4
2

0
7

5
1

6
_

at

C
X

C
L9

B
B

1
3

9
9

2
0

,C
M

K
,c

rg
-1

0
,H

u
m

ig
,M

G
C

1
0

5
3

1
2

,M
IG

,S
C

Y
B

9
ch

e
m

o
ki

n
e

(C
-X

-C
m

o
ti

f)
lig

an
d

9
2

0
3

9
1

5
_

at

EI
F1

A
1

2
1

,E
IF

1
A

,IS
O

1
,M

G
C

1
0

1
9

3
8

,M
G

C
6

5
0

3
,S

U
I1

,S
U

I1
-R

S1
e

u
ka

ry
o

ti
c

tr
an

sl
at

io
n

in
it

ia
ti

o
n

fa
ct

o
r

1
2

1
2

1
3

0
_

x_
at

EM
P

1
C

L-
2

0
,E

N
P

1
M

R
,E

P
IT

H
EL

IA
L

M
EM

B
R

A
N

E
P

R
O

T
EI

N
1

,M
G

C
9

3
6

2
7

,T
M

P
e

p
it

h
e

lia
l

m
e

m
b

ra
n

e
p

ro
te

in
1

2
0

1
3

2
5

_
s_

at

EP
O

R
EP

-R
,E

R
Y

T
H

R
O

P
O

IE
T

IN
R

EC
EP

T
O

R
,M

G
C

1
0

8
7

2
3

,M
G

C
1

3
8

3
5

8
e

ry
th

ro
p

o
ie

ti
n

re
ce

p
to

r
2

1
5

0
5

4
_

at

ET
V

5
1

1
1

0
0

0
5

E0
1

R
ik

,8
4

3
0

4
0

1
F1

4
R

ik
,E

R
M

e
ts

va
ri

an
t

5
2

0
3

3
4

9
_

s_
at

FB
LN

1
FB

LN
,F

IB
U

LI
N

1
fi

b
u

lin
1

2
0

7
8

3
4

_
at

FB
X

L7
A

L0
2

3
0

5
7

,D
2

3
0

0
1

8
M

1
5

R
ik

,F
B

L6
,F

B
L7

,F
B

P
7

,M
G

C
1

0
2

2
0

4
F-

b
o

x
an

d
le

u
ci

n
e

-r
ic

h
re

p
e

at
p

ro
te

in
7

2
1

3
2

4
9

_
at

G
H

R
A

A
9

8
6

4
1

7
,G

H
B

P
,G

H
R

/B
P

,G
R

O
W

T
H

H
O

R
M

O
N

E
R

EC
EP

T
O

R
,M

G
C

1
2

4
9

6
3

,M
G

C
1

5
6

6
6

5
g

ro
w

th
h

o
rm

o
n

e
re

ce
p

to
r

2
0

5
4

9
8

_
at

G
P

C
3

D
G

SX
,G

ly
p

ic
an

3
,G

T
R

2
-2

,M
G

C
9

3
6

0
6

,O
C

I-
5

,S
D

Y
S,

SG
B

,S
G

B
S,

SG
B

S1
g

ly
p

ic
an

3
2

0
9

2
2

0
_

at

G
P

S2
A

I5
0

5
9

5
3

,A
M

F-
1

,M
G

C
1

0
4

2
9

4
,M

G
C

1
1

9
2

8
7

,M
G

C
1

1
9

2
8

8
,M

G
C

1
1

9
2

8
9

G
p

ro
te

in
p

at
h

w
ay

su
p

p
re

ss
o

r
2

2
0

9
3

5
0

_
s_

at

IG
F2

B
P

3
2

6
1

0
1

0
1

N
1

1
R

ik
,A

A
5

2
2

0
1

0
,A

b
2

-2
5

5
,A

L0
2

2
9

3
3

,A
U

0
4

5
9

3
1

,D
K

FZ
p

6
8

6
F1

0
7

8
,IM

P
-3

,K
O

C
1

,K
o

c1
3

,m
im

p
3

,N
e

ils
e

n
,R

G
D

1
3

0
6

5
1

2
,V

IC
K

Z
3

in
su

lin
-l

ik
e

g
ro

w
th

fa
ct

o
r

2
m

R
N

A
b

in
d

in
g

p
ro

te
in

3
2

0
3

8
2

0
_

s_
at

IN
G

4
D

6
W

su
1

4
7

e
,D

6
X

rf
9

2
,M

G
C

1
2

5
5

7
,M

G
C

1
5

6
6

8
8

,m
y0

3
6

,p
2

9
IN

G
4

,p
3

3
IN

G
1

IS
O

LO
G

in
h

ib
it

o
r

o
f

g
ro

w
th

fa
m

ily
,

m
e

m
b

e
r

4
2

1
8

2
3

4
_

at

IT
G

B
4

A
A

4
0

7
0

4
2

,C
2

3
0

0
7

8
O

2
0

,C
D

1
0

4
,IN

T
EG

R
IN

-B
ET

A
4

in
te

g
ri

n
,

b
e

ta
4

2
0

4
9

8
9

_
s_

at

K
LF

5
4

9
3

0
5

2
0

J0
7

R
ik

,B
T

EB
2

,C
K

L
F,

IK
LF

,K
ru

p
p

e
l-

lik
e

fa
ct

o
r

5
,m

B
T

EB
2

K
ru

p
p

e
l-

lik
e

fa
ct

o
r

5
(i

n
te

st
in

al
)

2
0

9
2

1
1

_
at

M
FA

P
3

L
4

9
3

3
4

2
8

A
1

5
R

IK
,5

4
3

0
4

0
5

D
2

0
R

ik
,A

I4
6

1
9

9
5

,A
W

1
2

5
0

5
2

,K
IA

A
0

6
2

6
,m

K
IA

A
0

6
2

6
,N

Y
D

-s
p

9
m

ic
ro

fi
b

ri
lla

r-
as

so
ci

at
e

d
p

ro
te

in
3

-l
ik

e
2

1
0

4
9

3
_

s_
at

N
C

O
R

1
5

7
3

0
4

0
5

M
0

6
R

IK
,A

2
3

0
0

2
0

K
1

4
R

IK
,h

C
IT

5
2

9
I1

0
,h

N
-C

o
R

,K
IA

A
1

0
4

7
,M

G
C

1
0

4
2

1
6

,M
G

C
1

1
6

3
2

8
,m

K
IA

A
1

0
4

7
,N

-C
O

R
,R

IP
1

3
,R

xr
ip

1
3

,T
R

A
C

1
n

u
cl

e
ar

re
ce

p
to

r
co

-r
e

p
re

ss
o

r
1

2
0

0
8

5
4

_
at

P
A

2
G

4
3

8
kD

a,
A

A
6

7
2

9
3

9
,E

B
P

1
,H

G
4

-1
,It

af
4

5
,M

G
C

9
4

0
7

0
,p

3
8

-2
G

4
,P

lf
ap

,P
R

O
LI

FE
R

A
T

IO
N

A
SS

O
C

IA
T

ED
2

G
4

,P
ro

liv
e

ra
ti

o
n

-a
ss

o
ci

at
e

d
p

ro
te

in
1

p
ro

lif
e

ra
ti

o
n

-a
ss

o
ci

at
e

d
2

G
4

,
3

8
kD

a
2

1
4

7
9

4
_

at

P
C

N
A

M
G

C
8

3
6

7
,P

cn
a/

cy
cl

in
,P

C
N

A
R

p
ro

lif
e

ra
ti

n
g

ce
ll

n
u

cl
e

ar
an

ti
g

e
n

2
1

7
4

0
0

_
at

P
LD

1
A

A
5

3
6

9
3

9
,C

8
5

3
9

3
,P

c-
P

lc
,P

h
o

sp
h

o
lip

as
e

D
1

,P
LD

1
A

,P
LD

1
B

,P
ld

a,
P

ld
b

p
h

o
sp

h
o

lip
as

e
D

1
,

p
h

o
sp

h
at

id
yl

ch
o

lin
e

-s
p

e
ci

fi
c

2
1

5
7

2
3

_
s_

at

R
P

L1
3

A
1

8
1

0
0

2
6

N
2

2
R

ik
,2

3
-K

D
H

IG
H

LY
B

A
SI

C
,M

G
C

1
0

7
5

7
1

,R
ib

o
l1

3
a,

R
ib

o
so

m
al

p
ro

te
in

l1
3

a,
T

st
ap

1
9

8
-7

,t
u

m
-a

n
ti

g
e

n
ri

b
o

so
m

al
p

ro
te

in
L1

3
a

2
1

1
9

4
2

_
x_

at

SC
G

B
1

D
2

B
U

1
0

1
,L

IP
B

,L
IP

O
P

H
IL

IN
B

,L
P

H
B

se
cr

e
to

g
lo

b
in

,
fa

m
ily

1
D

,
m

e
m

b
e

r
2

2
0

6
7

9
9

_
at

SE
L1

L
A

W
4

9
3

7
6

6
,IB

D
2

,K
IA

A
4

1
3

7
,m

K
IA

A
4

1
3

7
,P

R
O

1
0

6
3

,S
EL

1
,S

EL
1

-L
IK

E,
SE

L1
H

se
l-

1
su

p
p

re
ss

o
r

o
f

lin
-1

2
-l

ik
e

(C
.

e
le

g
an

s)
2

0
2

0
6

3
_

s_
at

SE
R

P
IN

A
6

A
I2

6
5

3
1

8
,A

V
1

0
4

4
4

5
,C

B
G

,M
G

C
1

1
2

7
8

0
se

rp
in

p
e

p
ti

d
as

e
in

h
ib

it
o

r,
cl

ad
e

A
(a

lp
h

a-
1

an
ti

p
ro

te
in

as
e

,
an

ti
tr

yp
si

n
),

m
e

m
b

e
r

6
2

0
6

3
2

5
_

at

SM
A

4
b

5
5

C
2

0
.2

,F
LJ

3
6

7
0

2
,M

G
C

2
2

2
6

5
,M

G
C

6
0

3
8

2
,S

M
A

3
g

lu
cu

ro
n

id
as

e
,

b
e

ta
p

se
u

d
o

g
e

n
e

2
1

4
8

5
0

_
at

MAQC-II Gene Expression

PLoS ONE | www.plosone.org 7 December 2009 | Volume 4 | Issue 12 | e8250



wrapper, and embedded methods. Filtering methods select

subset features independently from the learning classifiers and

do not incorporate learning [8–11]. One of the weaknesses of

filtering methods is that they only consider the individual feature

in isolation and ignore the possible interaction among features.

Yet the combination of certain features may have a net effect

that does not necessarily follow from the individual performance

of features in that group [12]. A consequence of the filtering

methods is that we may end up with selecting groups of

highly correlated features/genes, which present redundant

information to the learning classifier to ultimately worsen its

performance. Also, if there is a practical limit on the number of

features to be chosen, one may not be able to include all

informative features.

To avoid the weakness of filtering methods, wrapper methods

wrap around a particular learning algorithm that can assess the

selected feature subsets in terms of the estimated classification

errors and then build the final classifier [13]. Wrapper methods

use a learning machine to measure the quality of subsets of

features. One recent well-known wrapper method for feature/gene

selection is Support Vector Machine Recursive Feature Elimina-

tion (SVMRFE) [14], which refines the optimum feature set by

using Support Vector Machines (SVM). The idea of SVMRFE is

that the orientation of the separating hyper-plane found by the

SVM can be used to select informative features; if the plane is

orthogonal to a particular feature dimension, then that feature is

informative, and vice versa. In addition to microarray data

analysis, SVMRFE has been widely used in high-throughput

biological data analyses and other areas involving feature selection

and pattern classification [15].

Wrapper methods can noticeably reduce the number of features

and significantly improve the classification accuracy [16,17].

However, wrapper methods have the drawback of high compu-

tational load, making them less desirable as the dimensionality

increases. The embedded methods perform feature selection

simultaneously with learning classifiers to achieve better compu-

tational efficiency than wrapper methods while maintaining

similar performance. LASSO [18,19], logic regression with the

regularized Laplacian prior [20], and Bayesian regularized neural

network with automatic relevance determination [21] are

examples of embedded methods.

To improve classification of microarray data, Zhou and Mao

proposed SFS-LS bound and SFFS-LS bound algorithms for

optimal gene selection by combining the sequential forward

selection (SFS) and sequential floating forward selection (SFFS)

with LS (Least Squares) bound measure [22]. Tang et al. designed

two methods of gene selection, leave-one-out calculation sequen-

tial forward selection (LOOCSFS) and the gradient based leave-

one-out gene selection (GLGS) [23]. Diaz-Uriarte and De Andres

[24] presented a method for gene selection by calculating the out

of bag errors with random forest [25].

In human genetic research, exploiting information redundancy

from highly correlated genes can potentially reduce the cost and

simultaneously improve the reliability and accuracy of learning

classifiers that are employed in data analysis. To exploit the

information redundancy that exists among the huge number of

variables and improve classification accuracy of microarray data,

we propose a gene selection method, Recursive Feature Addition

(RFA), which is based on supervised learning and similarity

measures. We compare RFA with SVMRFE, LOOCSFS, and

GLGS by using the MAQC-II breast cancer dataset to predict pre-

operative treatment response (pCR) and estrogen receptor status

(erpos) and compare RFA with SVMRFE and LOOCSFS on the

MAQC-II multiple myeloma dataset to predict the overall survival
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Table 7. The 33 cancer related genes of the 100 features selected by NMSC-MSC on original training group of MAQC-II breast
cancer data for erpos prediction.

Symbol Synonym(s) Entrez Gene Name Affymetrix

BAG1 BAG1L, Bag1s, RAP46 BCL2-associated athanogene 202387_at

CCDC28A 1700009P13Rik, AI480677, C6ORF80, CCRL1AP, DKFZP586D0623,
MGC116395, MGC131913, MGC19351, RGD1310326

coiled-coil domain containing 28A 209479_at

CEACAM1 bb-1, BGP, BGP1, BGPA, Bgpd, BGPI, BGPR, C-CAM, C-CAM1, CCAM105,
CD66, CD66A, Cea-1, Cea-7, CEACAM1-4L, ECTO ATPASE, HV2, mCEA1,
Mhv-1, MHVR, MHVR1, mmCGM1, mmCGM1a, mmCGM2, Pp120

carcinoembryonic antigen-related cell
adhesion molecule 1
(biliary glycoprotein)

211883_x_at

CHRNB4 Acrb-4, NACHR BETA4 cholinergic receptor, nicotinic, beta 4 207516_at

EIF1 A121, EIF1A, ISO1, MGC101938, MGC6503, SUI1, SUI1-RS1 eukaryotic translation initiation factor 1 212130_x_at

EPOR EP-R, ERYTHROPOIETIN RECEPTOR, MGC108723, MGC138358 erythropoietin receptor 215054_at

FBLN1 FBLN, FIBULIN 1 fibulin 1 207834_at

GBP1 (includes EG:2633) 5830475C06, GBP1, GBPI, IFI67-K, MAG-1, MGC124334, Mpa-1 guanylate binding protein 1, interferon-
inducible, 67kDa

202270_at

GHR AA986417, GHBP, GHR/BP, GROWTH HORMONE RECEPTOR, MGC124963,
MGC156665

growth hormone receptor 205498_at

GPC3 DGSX, Glypican 3, GTR2-2, MGC93606, OCI-5, SDYS, SGB, SGBS, SGBS1 glypican 3 209220_at

GPS2 AI505953, AMF-1, MGC104294, MGC119287, MGC119288, MGC119289 G protein pathway suppressor 2 209350_s_at

IMPDH2 ENSMUSG00000071041, Imp dehydrogenase 2, IMPD, IMPD2, Impdh, IMPDH-II,
inosine 59-phosphate dehydrogenase 2, MGC72938, OTTMUSG00000019498

IMP (inosine monophosphate)
dehydrogenase 2

201892_s_at

ING4 D6Wsu147e, D6Xrf92, MGC12557, MGC156688, my036, p29ING4, p33ING1
ISOLOG

inhibitor of growth family, member 4 218234_at

ITGB4 AA407042, C230078O20, CD104, INTEGRIN-BETA 4 integrin, beta 4 204990_s_at

KLF5 4930520J07Rik, BTEB2, CKLF, IKLF, Kruppel-like factor 5, mBTEB2 Kruppel-like factor 5 (intestinal) 209211_at

MAP3K12 DLK, MUK, PK, ZPK, ZPKP1 mitogen-activated protein kinase kinase
kinase 12

205447_s_at

MFAP3L 4933428A15RIK, 5430405D20Rik, AI461995, AW125052, KIAA0626, mKIAA0626,
NYD-sp9

microfibrillar-associated protein 3-like 210493_s_at

NCOR1 5730405M06RIK, A230020K14RIK, hCIT529I10, hN-CoR, KIAA1047,
MGC104216, MGC116328, mKIAA1047, N-COR, RIP13, Rxrip13, TRAC1

nuclear receptor co-repressor 1 200854_at

PA2G4 38kDa, AA672939, EBP1, HG4-1, Itaf45, MGC94070, p38-2G4, Plfap,
PROLIFERATION ASSOCIATED 2G4, Proliveration-associated protein 1

proliferation-associated 2G4, 38kDa 214794_at

PCNA MGC8367, Pcna/cyclin, PCNAR proliferating cell nuclear antigen 217400_at

PLA2G16 ADPLA, C78643, H-REV107-1, HRASLS3, HREV107, HREV107-3, MGC118754 phospholipase A2, group XVI 209581_at

PLD1 AA536939, C85393, Pc-Plc, Phospholipase D1, PLD1A, PLD1B, Plda, Pldb phospholipase D1, phosphatidylcholine-
specific

215723_s_at

PTPN14 C130080N23RIK, MGC126803, OTTMUSG00000022087, PEZ, PTP36, PTPD2 protein tyrosine phosphatase, non-
receptor type 14

205503_at

SCGB1D2 BU101, LIPB, LIPOPHILIN B, LPHB secretoglobin, family 1D, member 2 206799_at

SEL1L AW493766, IBD2, KIAA4137, mKIAA4137, PRO1063, SEL1, SEL1-LIKE, SEL1H sel-1 suppressor of lin-12-like (C. elegans) 202063_s_at

SERPINA6 AI265318, AV104445, CBG, MGC112780 serpin peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 6

206325_at

SMC4 2500002A22Rik, C79747, CAP-C, DKFZP434F205, HCAP-C, MGC125078,
SMC4L1

structural maintenance of chromosomes 4 215623_x_at

SPAM1 (includes EG:6677) 4933439A12Rik, HYA1, HYAL1, HYAL3, HYAL5, MGC108951, MGC26532,
PH-20,
SPAG15, SPAM1, TESTICULAR HYALURONIDASE

sperm adhesion molecule 1 (PH-20
hyaluronidase, zona pellucida binding)

210536_s_at

TCF3 A1, AA408400, ALF2, AW209082, bHLHb21, E12, E12/E47, E2-5, E2A,
E47, ITF1, ME2, MGC129647, MGC129648, PAN1, Pan2, Tcfe2a,
TRANSCRIPTION FACTOR 3, VDIR

transcription factor 3 (E2A immunoglobulin
enhancer binding factors E12/E47)

213730_x_at

TGFA RATTGFAA, TFGA, TGF ALPHA, TGFAA, wa-1 transforming growth factor, alpha 211258_s_at

TNFRSF11A CD265, FEO, LOH18CR1, Ly109, MGC112793, mRANK, ODAR, ODFR,
OFE, OPGL receptor, OPTB7, OSTS, PDB2, RANK, RGD1563614, TRANCE-R

tumor necrosis factor receptor superfamily,
member 11a, NFKB activator

207037_at

TNFSF12 APO3L, DR3L, DR3LG, MGC129581, MGC20669, TWEAK tumor necrosis factor (ligand) superfamily,
member 12

205611_at

USP7 2210010O09Rik, AA409944, AA617399, AU019296, AW548146, C80752,
HAUSP, TEF1

ubiquitin specific peptidase 7
(herpes virus-associated)

222032_s_at

doi:10.1371/journal.pone.0008250.t007
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Table 9. The 44 cancer related genes of the 100 features selected by LOOCSFS on original training group of MAQC-II breast cancer
data for erpos prediction.

Symbol Synonym(s) Entrez Gene Name Affymetrix

ACP1 4632432E04Rik, AI427468, HAAP, LMPTP, LMW-PTP, MGC103115,
MGC111030, MGC132904, MGC3499

acid phosphatase 1, soluble 215227_x_at

BAG1 BAG1L, Bag1s, RAP46 BCL2-associated athanogene 202387_at

BCL2 AW986256, Bcl2 alpha, C430015F12Rik, CED9, D630044D05RIK,
D830018M01RIK, LOC100046608, ORF16

B-cell CLL/lymphoma 2 203685_at

BTG2 AA959598, Agl, An, an-1, APRO1, B-cell translocation gene 2,
antiproliferative, MGC126063, MGC126064, PC3, TIS21

BTG family, member 2 201236_s_at

CCDC28A 1700009P13Rik, AI480677, C6ORF80, CCRL1AP, DKFZP586D0623,
MGC116395, MGC131913, MGC19351, RGD1310326

coiled-coil domain containing 28A 209479_at

CCNA2 AA408589, CCN1, CCNA, CYCA, CYCLIN A2, CYCLIN-A, MGC156527, p60 cyclin A2 213226_at

CD47 9130415E20RIK, AA407862, AI848868, AW108519, B430305P08RIK, CD47
ANTIGEN, CDw149, IAP, Itgp, Locuslink 71587, MER6, MGC93490, OA3

CD47 molecule 211075_s_at

CFD ADIPSIN, ADN, Complement Factor D, DF, EVE, FACTOR D, PFD complement factor D (adipsin) 205382_s_at

CHRNA5 AChR alpha5, Acra-5, ALPHA5 NACHR, ALPHA5 NICOTINIC RECEPTOR,
LNCR2, MGC124059, MGC124168, nAChR alpha5, sialoprotein

cholinergic receptor, nicotinic, alpha 5 206533_at

CTSL2 1190035F06Rik, Cathepsin l, CATHEPSIN V, CATHL, CATL2, Ctsl, Ctsl1,
CTSU, CTSV, fs, MEP, MGC125957, nkt

cathepsin L2 210074_at

CXCL10 C7, CRG-2, GAMMA-IFN INDUCIBLE EARLY RESPONSE, gIP-10, IFI10, IFNG
INDUCIBLE PROTEIN-10, INP10, Interferon-inducible protein-10, IP-10, mob-1,
SCYB10, SMALL INDUCIBLE CYTOKINE SUBFAMILY B (Cys-X-Cys), MEMBER 10

chemokine (C-X-C motif) ligand 10 204533_at

CYB5A 0610009N12Rik, CB5, CYB5, Cytb5, CYTOCHROME B5, MCB5, MGC108694,
MGC128769

cytochrome b5 type A (microsomal) 209366_x_at

DDX17 2610007K22RIK, A430025E01Rik, AI047725, C80929, DEAD-box protein
p72, DEAD/H box RNA helicase p72, DKFZp761H2016, Gm926,
MGC109323, MGC79147, P72, RH70

DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 208718_at

DNMT3B DNA MTase HsaIIIB, ICF, M.HsaIIIB, MGC124407 DNA (cytosine-5-)-methyltransferase 3 beta 220668_s_at

EPHA2 AW545284, ECK, ECKR, Myk2, Sek-2 EPH receptor A2 203499_at

ERBB4 C-erb-b4, Erbb4 Cyt2, ERBB4 JM-A, HER4, MGC138404, p180erbB4 v-erb-a erythroblastic leukemia viral oncogene
homolog 4 (avian)

214053_at

ESR1 AA420328, Alpha estrogen receptor, AU041214, DKFZp686N23123,
ER, ER ALPHA, Er alpha (46 kDa isoform), ER66, ERA, ER[a], ESR, ESRA,
ESTR, ESTRA, ESTROGEN RECEPTOR ALPHA, ESTROGEN RECEPTOR1,
NR3A1, RNESTROR, TERP-1

estrogen receptor 1 205225_at

ETV5 1110005E01Rik, 8430401F14Rik, ERM ets variant 5 203349_s_at

FAM134B 1810015C04RIK, AU015349, FLJ20152, FLJ22155, FLJ22179 family with sequence similarity 134, member B 218510_x_at

FBLN1 FBLN, FIBULIN 1 fibulin 1 207834_at

GREB1 5730583K22Rik, 9130004E13, AF180470, AU023194, KIAA0575, mKIAA0575 GREB1 protein 205862_at

IL6ST 5133400A03Rik, AA389424, Ac1055, BB405851, CD130, CDw130,
D13Ertd699e, GP130, GP130-RAPS, Il6 transd, IL6R-beta

interleukin 6 signal transducer (gp130, oncostatin M
receptor)

211000_s_at

IRS1 ENSMUSG00000022591, G972R, HIRS-1, IRS1IRM insulin receptor substrate 1 204686_at

ITPR1 D6Pas2, I145TR, InsP3R, INSP3R1, IP3 RECEPTOR, Ip3 Receptor Type 1,
IP3R, IP3R1, opt, P400, Pcd6, Pcp-1, SCA15, SCA16

inositol 1,4,5-triphosphate receptor, type 1 203710_at

LRP8 4932703M08Rik, AA921429, AI848122, APOER2, HSZ75190, LR8B, MCI1 low density lipoprotein receptor-related protein 8,
apolipoprotein e receptor

208433_s_at

MAP3K12 DLK, MUK, PK, ZPK, ZPKP1 mitogen-activated protein kinase kinase kinase 12 205447_s_at

MAPT AI413597, ALZ50, AW045860, DDPAC, FLJ31424, FTDP-17, MAPTL,
MGC134287, MGC138549, MGC156663, MSTD, Mtapt, MTBT1, MTBT2, PHF
TAU, PPND, pTau, RNPTAU, TAU, Tau 3r, Tau-1, TAU-FACTOR, Tau40, TAU4R

microtubule-associated protein tau 203929_s_at

MCM7 AI747533, CDABP0042, CDC47, D16Mgi24, mCDC47, MCM2, Mcmd7,
MGC93853, P1.1-MCM3, P1CDC47, P85MCM, PNAS-146

minichromosome maintenance complex
component 7

208795_s_at

MYO10 AW048724, D15Ertd600e, FLJ10639, FLJ21066, FLJ22268, FLJ43256,
KIAA0799, MGC131988, mKIAA0799, Myo10 (predicted), myosin-X

myosin X 201976_s_at

NCAPG (includes
EG:64151)

CAP-G, CHCG, FLJ12450, HCAP-G, MGC126525, NCAPG, NY-MEL-3,
RGD1562646

non-SMC condensin I complex, subunit G 218663_at

NDRG1 CAP43, CMT4D, DRG1, GC4, HMSNL, N-myc Downstream Regulated 1,
N-myc downstream regulatory protein 1, NDR1, NDRL, NMSL, PROXY1,
RIT42, RTP, TARG1, TDD5

N-myc downstream regulated 1 200632_s_at
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milestone outcome (OSMO, 730-day cutoff) and to predict event-

free survival milestone outcome (EFSMO, 730-day cutoff).

Results

Results on MAQC-II Breast Cancer Dataset
We compare MSC-based RFA methods with GLGS,

LOOCSFS, and SVMRFE on MAQC-II breast cancer dataset.

Tables 1 to 10 list the cancer related genes of the first 100 features

selected by these methods. In comparison to GLGS, LOOCSFS,

and SVMRFE, RFA is associated with a greater number of

currently known cancer related genes for prediction of pCR and a

smaller number of currently known cancer related genes for

prediction of erpos. Since disease status is not simply related to the

number of these cancer related genes, we obtain the prediction

performance by running multiple experiments, and compare the

average prediction performance using the following measure-

ments: testing accuracy, Matthews Correlation Coefficients (MCC)

[26,27] that has been used in MAQC-II consortium [28], and area

under the receiver operating curve (AUC) errors with classifiers

NMSC, NBC, SVM and UDC (uncorrelated normal based

quadratic Bayes classifier) [29].

Figure 1 lists the testing accuracy, MCC values, and AUC

errors on prediction of erpos by using two RFA methods: NBC-

MSC and NMSC-MSC, as well as GLGS, LOOCSFS, and

SVMRFE with the four learning classifiers. Regarding the

prediction performance evaluated using testing accuracy and

MCC values (left column and middle column, Fig. 1), on average

the two RFA methods NBC-MSC and NMSC-MSC outperform

other compared gene selection methods. The advantage of RFA

by using NMSC and UDC is especially noticeable.

We notice that the performance evaluation using testing

accuracy (left column) and MCC (middle column) is consistent,

but the performance evaluation using AUC measurement is not

always consistent with the evaluation using testing accuracy and

MCC. For instance, in applying UDC to the feature sets, RFA

methods have the best prediction performance evaluated using

testing accuracy and MCC values; however, with respect to

performance evaluated using AUC errors RFA is not the best.

Regarding the testing performance measured by using AUC

errors, the best results have been obtained by using RFA with

NMSC classifier. The AUC errors are as low as 0.08, which is

much better than the results by using other methods of gene

selection.

The prediction results on pCR endpoint, shown in Figure 2,

also demonstrate the advantage of RFA methods over other

compared methods. All the best prediction results, evaluated by

using AUC, MCC and testing accuracy, are obtained by using

RFA methods.

Tables 11 and 12 list the average testing under the best training,

MS_HR, and the best testing under the best training, HS_HR, for

the predictions on erpos and pCR, respectively. Figure 3 and

Figure 4 show box-plots of MS_HR values for the predictions on

erpos and pCR. The results indicate that the prediction

performance depends not only on gene selection but also on

learning classifier. In other words, gene selection and classifier are

coupled in determining prediction performance. On average, RFA

gene selection methods deliver the best performance, followed by

GLGS; NMSC classifier outperforms the others with respect to the

performance and the consistency across the three measurements.

The combination of RFA with NMSC has the best overall

prediction performance.

Results on MAQC-II Multiple Myeloma Dataset
Figures 5 and 6 show the box-plots of average testing values for

EFSMO and OSMO, the classification models are based on the

best training. We did not apply GLGS because it would take an

Symbol Synonym(s) Entrez Gene Name Affymetrix

NOTCH3 AW229011, CADASIL, CASIL Notch homolog 3 (Drosophila) 203238_s_at

NPY1R MGC109393, NPY receptor Y1, NPY Y1 receptor, NPY-1, NPYIR,
NPYR, Y1, Y1 RECEPTOR, Y1-R

neuropeptide Y receptor Y1 205440_s_at

PCM1 2600002H09Rik, 9430077F19Rik, C030044G17Rik, LOC100044052,
MGC170660, PTC4

pericentriolar material 1 214118_x_at

PDZK1 1700023D20Rik, 2610507N21Rik, 4921513F16Rik, AI267131, AI314638,
AL022680, CAP70, CLAMP, D3Ertd537e, mPDZK1, NHERF3, PDZD1,
Sodium sulfate cotransporter

PDZ domain containing 1 205380_at

PTPN14 C130080N23RIK, MGC126803, OTTMUSG00000022087, PEZ, PTP36, PTPD2 protein tyrosine phosphatase, non-receptor type 14 205503_at

PVR 3830421F03Rik, CD155, D7ERTD458E, FLJ25946, HVED, mE4, NECL5,
NECTIN 2 ALPHA, NECTIN-2, Pe4, PVS, TAA1, TAGE4

poliovirus receptor 212662_at

RPS15 EG633683, MGC111130, RIG ribosomal protein S15 200819_s_at

RRM2 AA407299, MGC113712, MGC116120, R2, Ribonucleoside-diphosphate
reductase M2 subunit, Ribonucleotide reductase non-heme subunit,
RIBONUCLEOTIDE REDUCTASE SMALL SUBUNIT, Rnr-r2, RNRII, RR2, RR2M

ribonucleotide reductase M2 polypeptide 209773_s_at

SEL1L AW493766, IBD2, KIAA4137, mKIAA4137, PRO1063, SEL1, SEL1-LIKE, SEL1H sel-1 suppressor of lin-12-like (C. elegans) 202063_s_at

SLC39A6 Ermelin, LIV-1 solute carrier family 39 (zinc transporter), member 6 202088_at

TMBIM4 0610007H07Rik, AU022431, CGI-119, GAAP, MGC73002, S1R, ZPRO transmembrane BAX inhibitor motif containing 4 219206_x_at

UBE2B 17-kDa Ubiquitin-Conjugating Enzyme E2, 2610301N02RIK, E2-14K,
E2-17kDa, E2b, HHR6B, HR6B, LOC81816, RAD6B, UBC2

ubiquitin-conjugating enzyme E2B (RAD6 homolog) 211763_s_at

VEGFA Gd-vegf, MGC70609, VEGF, Vegf-3, VEGF1, VEGF120, VEGF164, Vegf165,
Vegf188, Vegfa 188, VPF, VPF/VEGF

vascular endothelial growth factor A 210513_s_at

doi:10.1371/journal.pone.0008250.t009
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Table 10. The 40 cancer related genes of the 100 features selected by SVMRFE on original training group of MAQC-II breast cancer
data for erpos prediction.

Symbol Synonym(s) Entrez Gene Name Affymetrix

ANGPTL4 ANGIOPOIETIN-LIKE 4, ANGPTL2, ARP4, Bk89, Fasting Induced Adipose Factor,
FIAF, Harp, HFARP, LOC362850, Ng27, NL2, PGAR, PGARG, pp1158, PPARG

angiopoietin-like 4 221009_s_at

APP A beta 25–35, A-BETA 40, A-BETA 42, AAA, ABETA, ABPP, AD1, Adap, AL024401,
AMYLOID BETA, AMYLOID BETA 40, AMYLOID BETA 40 HUMAN, AMYLOID BETA
42, Amyloid beta A4, AMYLOID BETA PEPTIDE 40, Amyloid precursor,
Amyloidogenic glycoprotein, App alpha, APPI, appican, BETAAPP, CTFgamma,
CVAP, E030013M08RIK, Nexin II, P3, PN2, PreA4, PROTEASE NEXIN2

amyloid beta (A4) precursor protein 214953_s_at

CHRNB4 Acrb-4, NACHR BETA4 cholinergic receptor, nicotinic, beta 4 207516_at

CREBL2 AI046348, B230205M03, MGC109304, MGC117311, MGC130380, MGC130381,
MGC138362

cAMP responsive element binding protein-like 2 201990_s_at

CTSL2 1190035F06Rik, Cathepsin l, CATHEPSIN V, CATHL, CATL2, Ctsl, Ctsl1, CTSU,
CTSV, fs, MEP, MGC125957, nkt

cathepsin L2 210074_at

CX3CL1 AB030188, ABCD-3, AI848747, C3Xkine, CX3C, CX3CL, CXC3, CXC3
CHEMOKINE PRECURSOR, CXC3C, D8Bwg0439e, FK, FKN, FRACTALKINE,
NEUROTACTIN, NTN, NTT, SCYD1

chemokine (C-X3-C motif) ligand 1 823_at

DACH1 AI182278, Dac, DACH, E130112M23Rik, FLJ10138 dachshund homolog 1 (Drosophila) 205471_s_at

E2F1 E2f, E2f1 predicted, KIAA4009, mKIAA4009, RBAP1, RBBP3, RBP3 E2F transcription factor 1 204947_at

EPOR EP-R, ERYTHROPOIETIN RECEPTOR, MGC108723, MGC138358 erythropoietin receptor 215054_at

ERBB4 C-erb-b4, Erbb4 Cyt2, ERBB4 JM-A, HER4, MGC138404, p180erbB4 v-erb-a erythroblastic leukemia viral oncogene
homolog 4 (avian)

214053_at

ESR1 AA420328, Alpha estrogen receptor, AU041214, DKFZp686N23123, ER, ER
ALPHA, Er alpha (46 kDa isoform), ER66, ERA, ER[a], ESR, ESRA, ESTR, ESTRA,
ESTROGEN RECEPTOR ALPHA, ESTROGEN RECEPTOR1, NR3A1, RNESTROR, TERP-1

estrogen receptor 1 217190_x_at

FAM152A 5830417C01Rik, C1orf121, CGI-146, DKFZp586C1019, FLJ21998, PNAS-4 family with sequence similarity 152, member A 212371_at

FBLN1 FBLN, FIBULIN 1 fibulin 1 207834_at

GATA3 HDR, MGC2346, MGC5199, MGC5445 GATA binding protein 3 209602_s_at

GHR AA986417, GHBP, GHR/BP, GROWTH HORMONE RECEPTOR, MGC124963,
MGC156665

growth hormone receptor 205498_at

GPC3 DGSX, Glypican 3, GTR2-2, MGC93606, OCI-5, SDYS, SGB, SGBS, SGBS1 glypican 3 209220_at

GREB1 5730583K22Rik, 9130004E13, AF180470, AU023194, KIAA0575, mKIAA0575 GREB1 protein 205862_at

IGF2BP3 2610101N11Rik, AA522010, Ab2-255, AL022933, AU045931, DKFZp686F1078,
IMP-3, KOC1, Koc13, mimp3, Neilsen, RGD1306512, VICKZ3

insulin-like growth factor 2 mRNA binding protein 3 203820_s_at

IL6ST 5133400A03Rik, AA389424, Ac1055, BB405851, CD130, CDw130, D13Ertd699e,
GP130, GP130-RAPS, Il6 transd, IL6R-beta

interleukin 6 signal transducer (gp130, oncostatin M
receptor)

212195_at

IRS1 ENSMUSG00000022591, G972R, HIRS-1, IRS1IRM insulin receptor substrate 1 204686_at

ITGB4 AA407042, C230078O20, CD104, INTEGRIN-BETA 4 integrin, beta 4 204990_s_at

ITPR1 D6Pas2, I145TR, InsP3R, INSP3R1, IP3 RECEPTOR, Ip3 Receptor Type 1,
IP3R, IP3R1, opt, P400, Pcd6, Pcp-1, SCA15, SCA16

inositol 1,4,5-triphosphate receptor, type 1 211323_s_at

LMO4 A730077C12Rik, Crp3, Etohi4, MGC105593 LIM domain only 4 209205_s_at

MFAP3L 4933428A15RIK, 5430405D20Rik, AI461995, AW125052, KIAA0626,
mKIAA0626, NYD-sp9

microfibrillar-associated protein 3-like 210493_s_at

MGMT AGAT, AGT, AI267024, ATase, MGC107020, O6-ALKYLGUANINE DNA
ALKYLTRANSFERASE

O-6-methylguanine-DNA methyltransferase 204880_at

PCNA MGC8367, Pcna/cyclin, PCNAR proliferating cell nuclear antigen 217400_at

PGR 9930019P03Rik, BB114106, ENSMUSG00000074510, LOC360433, NR3C3, Pgrb,
PR, PR BETA, PR-A, PR-B, PROGESTERONE RECEPTOR, Progesterone receptor A

progesterone receptor 208305_at

PLD1 AA536939, C85393, Pc-Plc, Phospholipase D1, PLD1A, PLD1B, Plda, Pldb phospholipase D1, phosphatidylcholine-specific 215723_s_at

PML 1200009E24Rik, AI661194, MYL, PP8675, Retinoic acid receptor, RGD1562602,
RNF71, TRIM19

promyelocytic leukemia 211013_x_at

PVR 3830421F03Rik, CD155, D7ERTD458E, FLJ25946, HVED, mE4, NECL5,
NECTIN 2 ALPHA, NECTIN-2, Pe4, PVS, TAA1, TAGE4

poliovirus receptor 212662_at

RARRES1 5430417P09RIK, AI662122, TIG1, Tig1/retinoic acid receptor responder 1 retinoic acid receptor responder (tazarotene induced) 1 206391_at

SCGB1D2 BU101, LIPB, LIPOPHILIN B, LPHB secretoglobin, family 1D, member 2 206799_at

SEL1L AW493766, IBD2, KIAA4137, mKIAA4137, PRO1063, SEL1, SEL1-LIKE, SEL1H sel-1 suppressor of lin-12-like (C. elegans) 202063_s_at

SERPINA5 4933415L04, MGC93420, PAI-3, PCI, Pi5 alpha1, PLANH3, PROCI serpin peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 5

209443_at
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excessive amount of time for the identification of the feature sets

on the multiple myeloma dataset. Experimental results again

manifest that gene selection is strictly coupled to learning classifier

in performance measurement. On average, RFA methods and

LOOCSFS are superior to SVMRFE.

Discussion

Due to a huge number of variables and small sample size,

there are complicated interactions and relations among genes as

well as high redundancy information with microarray data. The

selection of predictive models that depend on selected features

and employed classifiers is extremely important for the

classification of microarray data and for the further biological

function analysis/validation. Machine learning and data mining

techniques provide us with a powerful approach to the study of

the relationship among genes. Based on supervised learning and

similarity measurements, we propose a Recursive Feature

Addition (RFA), recursively employ supervised learning to

obtain the highest training accuracy and add a subsequent

gene based on the similarity between the chosen features and

the candidates to minimize the redundancy within the feature

set. We believe this RFA method captures more informative and

differently expressed genes than other methods. Experimental

comparisons are performed by using two MAQC-II microarray

datasets, breast cancer and multiple myeloma. Our studies show

that the method of gene selection is strictly paired with learning

classifier, which determines the final predictive model by using

training data. In other words, the best classification models

under different learning classifiers are associated with different

methods of gene selection. Using several popular learning

classifiers including NMSC, NBC, SVM, and UDC, on average,

the best method of gene selection is RFA, followed by GLGS,

LOOCSFS, and SVMRFE. Regarding compared learning

classifiers, NMSC outperforms the others with respect to testing

performance, stabilization, and consistency.

Biological function analysis based on MAQC-II breast cancer

dataset finds that our applied feature selection methods including

RFA, GLGS, LOOCSFS, and SVMRFE can generate features

containing a significant portion of known cancer related genes for

both pCR and erpos endpoints (Tables 1–10). Although the cancer

related gene number is not absolutely correlated with the

prediction performance of various methods of feature selection,

the remarkable cancer related genes in the features indicate that

the feature selection methods including RFA, GLGS, LOOCSFS,

and SVMRFE could produce biologically meaningful features,

which will convince the users to apply them for phenotype

prediction.

In all results of the five gene selection methods with the four

learning classifiers, on average, the combination of gene selections

of NMSC-MSC and NBC-MSC with the learning classifier of

NMSC has performed the best, regarding the comprehensive

evaluation criteria of testing accuracy, MCC values, and AUC

errors. It should be noted that the gene selection methods of

NMSC-MSC and NBC-MSC are not always the best over the four

learning classifiers, in other words, the best models among

different learning classifiers are associated with different gene

selection methods. The selection of the best model with the use of

a specific learning classifier is normally based on the training and

the evaluation criteria. Under an evaluation criterion with the use

of some learning classifier, the best training model among the five

gene selection methods is selected as the best model under the

learning classifier. To select the best model among the four

learning classifiers, the best models among the four learning

classifiers are compared and the model obtaining the highest

evaluation score is generally selected the best among the five gene

selection methods and the four learning classifiers. For instance,

Figure 7 demonstrates the average training performance of

MAQC-II breast cancer dataset over twenty times, with the

measurements of training accuracy, MCC values, and AUC

errors, for the classification of pCR endpoint status. Regarding the

comprehensive evaluation of the three criteria, the best classifica-

tion models are obtained by using gene selection method NMSC-

MSC for learning classifier NMSC, NBC-MSC for NBC classifier,

and NBC-MSC and SVMRFE for UDC classifier. With the use of

SVM classifier, although the gene selection method of SVMRFE

first hits the best training as the feature dimension increases,

almost all gene selection methods achieve the best before the

feature number increases to 100, in such case, it is hard for us to

determine the best model with the use of learning classifier SVM.

In the limit of feature number, we can say that SVMRFE is the

best for SVM classifier. The comparison between the training

(Figure 7) and the testing (Figure 2) shows that such selection of the

best model among the various methods of gene selection and

various learning classifiers is reasonable.

Regarding different evaluation criteria, the gene selection

associated with the best model under a learning classifier may be

different, as shown in Figure 7; with the use of learning classifier

Symbol Synonym(s) Entrez Gene Name Affymetrix

SERPINA6 AI265318, AV104445, CBG, MGC112780 serpin peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 6

206325_at

SLC7A5 4f2 light chain, 4F2LC, CD98, CD98 LIGHT CHAIN, CD98LC, D0H16S474E,
D16S469E, E16, E16/TA1, hLAT1, LAT1, MPE16, TA1

solute carrier family 7 (cationic amino acid
transporter, y+ system), member 5

201195_s_at

SPAM1
(includes
EG:6677)

4933439A12Rik, HYA1, HYAL1, HYAL3, HYAL5, MGC108951, MGC26532, PH-20,
SPAG15, SPAM1, TESTICULAR HYALURONIDASE

sperm adhesion molecule 1 (PH-20 hyaluronidase,
zona pellucida binding)

210536_s_at

TBC1D9 4933431N12RIK, AI847101, AW490653, C76116, KIAA0882, MDR1, RGD1308221 TBC1 domain family, member 9 (with GRAM domain) 212956_at

TFRC 2610028K12Rik, AI195355, AI426448, AU015758, CD71, E430033M20Rik, Mtvr-1,
p90, TFNR, TFR, TFR1, TRANSFERRIN RECEPTOR, TRFR

transferrin receptor (p90, CD71) 208691_at

TRPV6 ABP/ZF, Cac, CAT, CAT-L, CAT1, Crac, ECAC2, HSA277909, LP6728, Otrpc3, ZFAB transient receptor potential cation channel,
subfamily V, member 6

206827_s_at

doi:10.1371/journal.pone.0008250.t010

Table 10. Cont.
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NMSC, the best model is obtained by using gene selection

method of NMSC-MSC, evaluated by training accuracy and

MCC values, the best model is associated with SVMRFE,

evaluated by AUC errors. Overall, NMSC-MSC is the best for

learning classifier NMSC. Figure 7 shows that dozens of the best

training models are obtained by using different methods of gene

selection with the use of SVM classifier. One possible solution

for the selection of the best model under SVM classifier is to

divide all data points into training set, validation set, and testing

set. The training set is used to construct training models, the

validation set is used to select the best model by applying the

validation data to the best training models and selecting the best

Figure 1. Comparison of different gene selection methods for prediction of erpos status of MAQC-II breast cancer dataset with
different learning classifiers. X-axis shows the number of used features and Y-axis shows average values of the testing accuracy (left column),
MCC values (middle column), and AUC errors (right column) of twenty-time experiments, respectively.
doi:10.1371/journal.pone.0008250.g001
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training model that produce the best validation result. The

testing set is used for prediction or testing. The selection of the

best model using SVM classifier is very interesting and

challenging, especially in the case of small data points and

huge number of features. Although the topic is beyond the scope

of this paper, it is worthy to be explored in the future study.

Materials and Methods

MAQC-II Breast Cancer Dataset
The breast cancer dataset used in the MAQC-II project is

used to predict the pre-operative treatment response (pCR) and

estrogen receptor status (erpos) [28]. The normalization was

Figure 2. Comparison of different gene selection methods for prediction of pCR status of MAQC-II breast cancer dataset with
different learning classifiers. X-axis shows the number of used features and Y-axis shows average values of the testing accuracy (left column),
MCC values (middle column), and AUC errors (right column) of twenty-time experiments, respectively.
doi:10.1371/journal.pone.0008250.g002
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provided by MAQC-II project using standard procedure (i.e.,

MAS 5.0 for Affymetrix platform). It was originally grouped into

two groups: a training set containing 130 samples (33 positives

and 97 negatives for pCR, 80 positives and 50 negatives for

erpos), and a validation set containing 100 samples (15 positives

and 85 negatives for pCR, 61 positives and 39 negatives for

erpos).

MAQC-II Multiple Myeloma Dataset
We take the MAQC-II multiple myeloma dataset to predict the

overall survival milestone outcome (OSMO, 730-day cutoff) and to

predict event-free survival milestone outcome (EFSMO, 730-day

cutoff). For OSMO label information, there are 51 positives and

289 negatives in original training set, 27 positives and 187

negatives in original validation set; as for EFSMO label

Table 11. Mean values and standard errors of HS_HR and MS_HR on ERPOS prediction in the study of MAQC-II breast cancer
dataset. In applying each classifier with each measurement, the best prediction value is in bold; the best prediction value of the
results using the four learning classifiers is in bold and italic.

MEASURE-MENTS GENE SELECTION METHOD MEAN(HS_HR)6STD(HS_HR), % MEAN(MS_HR)6STD(MS_HR), %

NMSC SVM NBC UDC NMSC SVM NBC UDC

Testing Accuracy NBC-MSC 89.562.2 79.362.2 82.961.1 91.661.7 88.561.4 76.560.5 81.760.3 91.061.6

NMSC-MSC 90.662.8 73.360 85.462.8 93.060.8 86.961.5 68.361.6 83.761.9 91.661.1

GLGS 89.762.1 83.862.1 86.861.8 90.561.4 89.261.7 80.360.9 85.761.7 90.261.3

LOOCSFS 86.460.8 66.761.9 86.961.4 86.361.6 86.160.8 65.160.9 86.261.0 85.861.4

SVMRFE 77.367.2 84.460 77.666.6 77.568.9 75.666.7 78.460.1 76.766.1 75.867.6

MCC values NBC-MSC 76.764.5 56.164.7 63.162.3 81.963.7 75.363.3 50.561.0 60.460.7 81.063.4

NMSC-MSC 79.165.8 44.860 66.665.6 84.562.4 72.264.1 34.463.5 64.464.2 82.762.5

GLGS 77.463.6 67.164.9 71.363.9 79.563.2 76.963.4 59.262.3 69.763.8 79.162.7

LOOCSFS 70.861.7 27.065.6 70.963.3 69.763.3 70.561.8 24.463.0 70.262.9 69.663.3

SVMRFE 51.9614.5 66.660 53.9611.9 53.8616.6 51.0613.9 53.860.3 53.5611.5 52.3615.0

AUC errors NBC-MSC 8.560.4 19.562.2 22.260.5 25.764.4 8.560.3 22.260.7 22.260.5 25.764.4

NMSC-MSC 8.460.7 23.560.4 23.161.3 17.163.6 8.460.7 28.262.3 23.161.3 17.163.6

GLGS 8.060.4 10.361.8 16.761.0 15.161.5 8.060.4 13.461.1 16.761.0 15.161.5

LOOCSFS 11.162.2 32.362.7 15.560.5 17.562.6 11.162.2 32.961.8 15.560.5 17.562.6

SVMRFE 17.366.1 14.160 15.360.6 17.362.9 17.366.1 19.160.1 15.360.6 17.362.9

doi:10.1371/journal.pone.0008250.t011

Table 12. Mean values and standard errors of HS_HR and MS_HR on pCR prediction in the study of MAQC-II breast cancer dataset.
In applying each classifier with each measurement, the best prediction value is in bold; the best prediction value is in bold and
italic of the results by using four classifiers.

MEASURE-MENTS GENE SELECTION METHOD MEAN(HS_HR)6STD(HS_HR), % MEAN(MS_HR)6STD(MS_HR), %

NMSC SVM NBC UDC NMSC SVM NBC UDC

Testing Accuracy NBC-MSC 88.762.3 88.960 90.961.0 88.660.8 87.561.9 83.160.3 86.660.6 87.761.6

NMSC-MSC 90.462.1 86.760.0 85.362.2 79.667.7 88.662.7 79.860.7 82.962.0 78.967.4

GLGS 81.264.1 81.960.8 79.461.0 77.065.2 80.864.3 76.260.6 79.161.0 76.565.2

LOOCSFS 77.061.1 82.160.5 72.161.7 74.163.1 76.661.2 78.162.5 71.461.8 73.262.7

SVMRFE 81.962.9 88.960 79.162.6 80.761.9 80.962.7 85.360.2 77.962.3 80.361.8

MCC values NBC-MSC 62.566.7 63.960 69.763.4 60.762.8 61.365.9 48.860.6 54.762.1 59.265.0

NMSC-MSC 68.466.5 55.260 47.767.4 43.9616.0 63.367.9 37.861.9 40.965.0 42.2614.9

GLGS 36.269.5 43.063.5 29.363.5 30.3610.2 35.469.8 29.261.2 28.462.8 30.0610.3

LOOCSFS 23.464.9 38.563.5 18.764.7 21.6611.0 23.065.1 26.365.1 18.265.0 21.1610.7

SVMRFE 40.967.9 62.560.0 32.666.9 41.164.7 39.467.4 49.160.7 30.565.5 40.764.9

AUC errors NBC-MSC 17.262.2 23.261.1 40.065.6 34.866.3 17.262.2 27.560.3 40.065.6 34.866.3

NMSC-MSC 14.463.0 19.160 47.963.7 46.065.1 14.463.0 28.261.1 47.963.7 46.065.1

GLGS 22.661.3 29.360 37.461.8 36.761.8 22.661.3 33.560.3 37.461.8 36.761.8

LOOCSFS 27.561.3 22.861.4 45.863.8 41.663.1 27.561.3 27.162.2 45.863.8 41.663.1

SVMRFE 20.064.4 18.865.7 38.763.4 38.462.0 20.064.3 25.660.2 38.763.4 38.462.0

doi:10.1371/journal.pone.0008250.t012
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information, there are 84 positives and 256 negatives in original

training set, 34 positives and 180 negatives in original validation

set [28]. The normalization was provided by MAQC-II project

research group.

Feature Selection
Supervised recursive learning. Our method of recursive

feature addition (RFA) employs supervised learning to achieve the

best training accuracy and uses statistical similarity measures to

choose the next variable with the least dependence on, or

correlation to, the already identified variables as follows:

1. Insignificant genes are removed according to their statistical

insignificance. Specifically, a gene with a high p-value is usually

not differently expressed and therefore has little contribution to

classification of microarray data. To reduce the computational

load, those insignificant genes are removed.

2. Each individual gene is selected by supervised learning. A gene

with highest classification accuracy is chosen as the most

important feature or the first element of the feature set. If

multiple genes achieve the same highest classification accuracy,

the one with the lowest p-value measured by test-statistics (e.g.,

score test), is identified as the first element. At this point the

Figure 3. Average erpos prediction performance by using MAQC-II breast cancer dataset with the measurements testing accuracy
(left column), MCC values (middle column), and AUC errors (right column), respectively. Classification models are setup based on the
best training. In each column, the best combination of gene selection and classifier is highlighted by a red dash circle. If there are multiple best
combinations, or the difference of these combinations is not conspicuous, multiple circles are placed.
doi:10.1371/journal.pone.0008250.g003
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chosen feature set, G1, contains just one element, g1,

corresponding to the feature dimension one.

3. The (N+1)st dimensional feature set, GN+1 = {g1, g2, …, gN, gN+1}

is obtained by adding gN+1 to the N th dimensional feature set,

GN = {g1, g2, …, gN}. The choice of gN+1 is processed as follows:

4. Add each gene gi (gi 6 [ GN) into GN and have the classification

accuracy of the feature set GN | {gi}. The gi (gi 6 [ GN)

associated with the group, GN | {gi} that obtains the highest

classification accuracy, is the candidate for gN+1 (not yet gN+1).

Considering the large number of variables, it is very likely that

multiple features correspond to the same highest classification

accuracy, these multiple candidates are placed into the set C,

but only one candidate in C will be identified as gN+1. How to

make the selection is described next.

Candidate feature addition. To find a most informative (or

least redundant) candidate for gN+1, we measure the statistical

similarity between the chosen features and each candidate. We

design a similarity measurement with the use of a widely-used

Pearson’s correlation coefficient [30].

Suppose gn (gn [ GN, n = 1, 2, …, N) is a chosen gene, gc (gc [ C) is

a candidate gene, and cor stands for the function of Pearson’s

correlation coefficient. The sum of the square of the correlation

Figure 4. Average pCR prediction performance by using MAQC-II breast cancer dataset with the measurements testing accuracy
(left column), MCC values (middle column), and AUC errors (right column), respectively. Classification models are setup based on the
best training. In each column, the best combination of gene selection and classifier is highlighted by a dash circle.
doi:10.1371/journal.pone.0008250.g004
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SC that is calculated as follows:

SC gcð Þ~
XN

n~1

cor2 gc, gnð Þ, n~1, 2 . . . N ð1Þ

Then selection of gN+1 is based on Minimal value of the Square

of the Correlation (MSC), that is,

gNz1/ gcjSC gcð Þ~ min (SC),gc[Cf g ð2Þ

In the methods mentioned above, a feature is recursively added

to the chosen feature set based on supervised learning and the

similarity measurement. In our experiments we choose naı̈ve bayes

classier (NBC) and nearest means scale classifier (NMSC) [29] for

supervised learning, NBC and NMSC-based RFA feature

selection methods are denoted as NBC-MSC and NMSC-MSC,

respectively.

Model Implementation and Comparison
Cross-validation is a technique for estimating how accurately

a predictive model will perform in practice. Generally, the data

Figure 5. Average EFSMO prediction performance by using MAQC-II multiple myeloma dataset with the measurements testing
accuracy (left column), MCC values (middle column), and AUC errors (right column), respectively. Classification models are setup based
on the best training. In each column, the best combination of gene selection and classifier is highlighted by a dash circle.
doi:10.1371/journal.pone.0008250.g005
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are partitioned into complementary subsets, one subset (called

the training set) is used for constructing the predictive model

and the other subset (called the validation set or testing set) is

used for validation. To reduce variability, multiple rounds are

performed using different partitions, and the validation results

are averaged over all rounds. There are three common types of

cross-validation:

1) Repeated random sub-sampling validation. This technique

randomly splits the dataset intro training and testing data.

The results are then averaged over the splits. The advantage

over K-fold cross validation (described below) is that the

portion of the training/testing split is not dependent on the

number of iterations (folds);

2) K-fold cross-validation. The original sample is partitioned

into K subsamples. A single subsample is retained as the

validation data for testing the model and the remaining K-1

subsamples are used as training data. The cross-validation

process is repeated K times with each of the K subsamples

used exactly once as the validation data;

Figure 6. Average OSMO prediction performance by using MAQC-II multiple myeloma dataset with the measurements testing
accuracy (left column), MCC values (middle column), and AUC errors (right column), respectively. Classification models are setup based
on the best training. In each column, the best combination of gene selection and classifier is highlighted by a dash circle. If there are multiple best
combinations, or the difference of these combinations is not conspicuous, multiple circles are placed.
doi:10.1371/journal.pone.0008250.g006
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3) Leave-one-out cross-validation. It uses a single observation

from the original sample as the validation data and the

remaining observations as the training data. It is the same as

a K-fold cross validation with K being equal to the number of

observations in the original sample. Leave-one-out cross-

validation is often computationally expensive.

Considering the high computational requirement of leave-one-

out cross-validation and the insufficiency of one time K-fold cross-

validation, we took the strategy of repeated random sub-sampling

validation. In the model implementation, we mixed all the training

data points and validation points. In each experiment, we

randomly chose 80% of samples for training and the remaining

Figure 7. Comparison of different gene selection methods for the training of pCR endpoint of MAQC-II breast cancer dataset using
the four classifiers. X-axis shows the number of used features and Y-axis shows average values of the training accuracy (left column), MCC values
(middle column), and AUC errors (right column) of twenty-time experiments, respectively.
doi:10.1371/journal.pone.0008250.g007
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20% of samples for testing. Twenty experiments were performed

(this strategy is approximately equal to performing 5-fold cross

validation four times). The average testing performances, evalu-

ated in terms of testing accuracy, MCC values, and AUC errors,

were compared. The learning classifiers UDC, NBC, NMSC, and

SVM were employed for training and testing.
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