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ABSTRACT

The study of p-adic valuations is connected to the problem of factorization of integers,

an essential question in number theory and computer science. Given a nonzero integer n

and prime number p, the p-adic valuation of n, which is commonly denoted as νp(n), is the

greatest non-negative integer ν such that pν | n. In this paper, we analyze the properties of

the 2-adic valuations of some integer sequences constructed from Ulam square spirals. Most

sequences considered were diagonal sequences of the form 4n2 + bn+ c from the Ulam

spiral with center value of 1. Other sequences related to various Ulam square spirals were

selected from the Online Encyclopedia of Integer Sequences (OEIS). Conjectures of the

2-adic valuations of these sequences were made based on observations of the binary tree

representations of their valuations. We found explicit closed forms for some sequences with

finitely many valuations. When sequences produced infinitely many valuations, these results

were proved using an adaptation of the Hensel’s lemma, previously used by Almodovar et al

in their study of 2-adic valuation of quadratic polynomials of the form n2 +a. In both of

these cases, we classified a number of similar valuation patterns for the diagonal sequences

of Ulam spirals.

Keywords: p-adic valuations, Ulam square spiral, OEIS, binary tree, Hensel’s lemma
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CHAPTER I: INTRODUCTION

The Fundamental Theorem of Arithmetic states that every integer greater than or equal to

2 is a prime number itself or can be expressed as the product of prime numbers; furthermore,

this factorization is unique. For example, we can factor 2520 as

2250 = 2×3×3×5×5×5 = 2×32×53

and obtain the prime 2, 3, and 5 with the degree of 1, 2, and 3, respectively. Since 2, 32, and

53 are factors of 2250, it follows that they also divide 2250.

Given a non-zero integer n and prime number p, the p-adic valuation of n, which is

commonly denoted as νp(n), is the greatest non-negative integer ν such that pν divides n.

That is, the p-adic valuation for Z is the function νp : Z→ N defined by

νp(n) =

{
max{ν ∈ N : pν | n} if n 6= 0
∞ if n = 0

for n ∈ Z. Using the prior example, we have

ν2(2250) = 1, ν3(2250) = 2, and ν5(2250) = 3.

This is very useful for certain computational tasks. For example, an adaptation of the Fürer’s

integer multiplication algorithm by De et al used modular arithmetic and p-adic numbers,

which are constructed using p-adic valuations, instead of arithmetic over complex numbers

to achieve a time complexity of O(N · logN ·2O(log∗N)) [4].

A natural question to ask at this point is is whether it is possible to find the p-adic

valuation of sequences of integers for a fixed p. We achieve this by taking the p-adic

valuation of each element of the sequence and generate a sequence of p-adic valuations.

For example, consider the Fibonacci sequence Fn = Fn−1 +Fn−2 where F0 = 1 and F1 = 1.

We have Fn = {1,1,2,3,5,8, . . .}. By taking the 2-adic valuation of each element of this

sequence, we generate a sequence of 2-adic valuations: ν2(Fn) = {0,0,1,0,0,3, . . .}.

There are three different cases one could expect when dealing with p-adic valuation of

integer sequences.
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1. Constant: This case arises when the valuation of each element is the same. For exam-

ple, consider sequence {xn}= {12,21,30,39,48, . . .}where ν3(xn)= {1,1,1,1,1, . . .}.

Observe that the 3-adic valuation of each element of {xn} is the same.

2. Finite: This case arises when we have a non-constant but finite valuation. That is,

there exists a regularity or periodic pattern in the valuation of the sequence. For

example, the sequence {yn} = {80,124,176,236,304,380, . . .} such that ν2(yn) =

{4,2,4,2,4,2, . . .}. Even though the 2-adic valuation is non-constant, there is a

noticeable periodic pattern in the valuation of {yn}.

3. Infinite: This last case arises when the valuation is neither constant nor finite.

Consider the sequence {zn} = {5,25,125,625,3125,15625, . . .} where ν5(zn) =

{1,2,3,4,5,6, . . .}. Notice that the 5-adic valuation of {zn} is non-constant since

the valuation of each element is different and not finite since the 5-adic valuations are

increasing without bound.

Sometimes, the regularity is hard to see when the sequence of p-adic valuations is

short, so it is important to generate a sequence long enough so that we could spot it. For

example, consider the quadratic polynomial 4n2 + 48n+ 16. It generates the sequence

{68,128,196,272,356,448, . . .} with 2-adic valuation {2,7,2,4,2,6, . . .}. Based on obser-

vation alone, this 2-adic valuation appears infinite. However, if we were to include more

terms in the sequence of 2-adic valuation, the sequence then becomes{
2,7,2,4,2,6,2,4 , 2,7,2,4,2,6,2,4 , 2,7,2,4,2,6,2,4 , . . .

}
.

Here we see that there is a regularity in the 2-adic valuation of the sequence. Hence, this

2-adic valuation is in fact finite despite the first observation.

From the last example, we see that as the regularity grows more complex, it is difficult

to differentiate between periodic and non-periodic p-adic valuation. Therefore, we rely on

other tools to help us visualize the difference between these two types of valuations. A

valuation tree drawing is used to accomplish this task. Since there are three different cases
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of p-adic valuation of integer sequences, one could expect three different types of valuation

trees as well. We expand more on the notation and construction of valuation trees in a later

chapter.
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CHAPTER II: LITERATURE REVIEW

The study of p-adic valuations is connected to the problem of factorization of integers,

an essential question in number theory and computer science. For a fixed value of p, the

p-adic valuation of a sequence of integers gives us a partial factoring and can help us see

the structure of the factorization of that sequence. Hence, many studies were conducted to

find closed-forms of p-adic valuations of different integer sequences. A closed-form of the

p-adic valuation of the sequence would be very useful when the closed form of the sequence

is unknown. Even when the closed form of a sequence is known and relatively simple, the

p-adic valuation of that sequence can still lead to some interesting results.

For example, Almodovar et al [1] demonstrated that the 2-adic valuation of the simplest

class of quadratic polynomials, ν2(n2+a), takes on different forms depending on the choice

of the parameter a. Their conjecture and proof rely heavily on the analysis of valuation tree

drawings of their sequences. They found that the 2-adic valuation of n2 + a using direct

computation shows that this sequence admits a simple closed-form for a 6= 4,7 mod 8. The

article ends with the proof of the infinite branching in the 2-adic valuation of n2 +7.

In another study, Amdeberhan et al. [2] studied the 2-adic valuation of Stirling numbers

and provided some approximations of the 2-adic valuation of S(n,5) to support their belief

that it is possible to obtain accurate approximations for the 2-adic valuations of Stirling

numbers by simple integer combinations of the most basic 2-adic valuations of the integers.

Beyerstedt et. al [3] analyzed the p-adic valuations of An, a sequence of ASM numbers,

for arbitrary primes p. By summing the recurrence and using A1 = 1, they obtain an analytic

formula for the p-adic valuation of An. The proof of their main theorem is achieved by

induction on the number of digits in the expansion of n in base p.

Sanna [11] studied the p-adic valuation of harmonic numbers and show that there exists

a subset Sp of the positive integers, with logarithmic density greater than 0.273, and such

that for any n ∈ Sp the p-adic valuation of Hn is equal to −blogb nc.

Following these other studies, we set p = 2; our main motivation for choosing p = 2 is

that it is easier to work with only even and odd cases rather than other remainder possibilities
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that would arise with other choice of p. This allows us to quickly select integer sequences

that are of interest to us.

We focus our attention on sequences related to square spirals. One well known square

spiral sequence is the Ulam spiral created by Stein et al [13] for their study of square

spiral sequences and distribution of primes of those sequences. It is constructed by writing

the positive integers in a counterclockwise spiral pattern on a square lattice. Below is an

example of the Ulam spiral sequence that starts at 1 and ends at 121 in a counterclockwise

direction.

101 100 99 98 97 96 95 94 93 92 91
102 65 64 63 62 61 60 59 58 57 90
103 66 37 36 35 34 33 32 31 56 89
104 67 38 17 16 15 14 13 30 55 88
105 68 39 18 5 4 3 12 29 54 87
106 69 40 19 6 1 2 11 28 53 86
107 70 41 20 7 8 9 10 27 52 85
108 71 42 21 22 23 24 25 26 51 84
109 72 43 44 45 46 47 48 49 50 83
110 73 74 75 76 77 78 79 80 81 82
111 112 113 114 115 116 117 118 119 120 121

Figure 1: Ulam spiral with some diagonal sequences

Notice the different diagonal sequences formed by the colored numbers on the Ulam

spiral. One interesting property that the Ulam spiral possesses is that it is possible to express

every diagonal sequence on the Ulam spiral with the quadratic polynomial:

4n2 +bn+ c for b,c ∈ Z and n = 0,1, . . .

For example, choosing b = 2 and c = 4 yields the quadratic polynomial 4n2 + 2n+ 4.

It generates the red diagonal sequence {10,24,46,76,114,160,214, . . .} and has 2-adic

valuation {1,3,1,2,1,5,1, . . .}.

A partial proof of the form 4n2 +bn+ c was given on Math Stack Exchange [7], and

we complete the proof in the next chapter. Note that for certain values of b and c, the
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polynomial 4n2 +bn+ c can also produce horizontal and vertical sequences. We selected

some sequences of the form 4n2 +bn+ c for our study. We also selected other sequences

related to square spiral as well. Other sequences for this study include:

• OEIS A156859 [8]: n2 +n+ b(n+1)/2c.

This sequence is the main column of a version of the counterclockwise square spiral

with a center of 0 (Figure 2). It generates the sequence {0,3,7,14,22,33,45,60, . . .}

with 2-adic valuation {∞,0,0,1,1,0,0,2, . . .}.

100 99 98 97 96 95 94 93 92 91 90
101 64 63 62 61 60 59 58 57 56 89
102 65 36 35 34 33 32 31 30 55 88
103 66 37 16 15 14 13 12 29 54 87
104 67 38 17 4 3 2 11 28 53 86
105 68 39 18 5 0 1 10 27 52 85
106 69 40 19 6 7 8 9 26 51 84
107 70 41 20 21 22 23 24 25 50 83
108 71 42 43 44 45 46 47 48 49 82
109 72 73 74 75 76 77 78 79 80 81
110 111 112 113 114 115 116 117 118 119 120

Figure 2: Main column of a square spiral with center 0

• OEIS A325958 [9]: 16n2 +4n+4.

This sequence is the sum of corners of a (2n+ 1)× (2n+ 1) square spiral (Figure

3). It generates the sequence {4,24,76,160,276,424,604,816, . . .} which has 2-adic

valuations {3,2,5,2,3,2,4,2, . . .}.
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101 100 99 98 97 96 95 94 93 92 91
102 65 64 63 62 61 60 59 58 57 90
103 66 37 36 35 34 33 32 31 56 89
104 67 38 17 16 15 14 13 30 55 88
105 68 39 18 5 4 3 12 29 54 87
106 69 40 19 6 1 2 11 28 53 86
107 70 41 20 7 8 9 10 27 52 85
108 71 42 21 22 23 24 25 26 51 84
109 72 43 44 45 46 47 48 49 50 83
110 73 74 75 76 77 78 79 80 81 82
111 112 113 114 115 116 117 118 119 120 121

Figure 3: OEIS A325958 on a square spiral

• OEIS A001107 [10]: 4n2−3n.

This sequence is the 10-gonal (or decagonal) numbers (Figure 4). It generates the se-

quence {0,1,10,27,52,85,126,175,232, . . .}with 2-adic valuation {∞,0,1,0,2,0,1,0,3, . . .}.

100 99 98 97 96 95 94 93 92 91 90
101 64 63 62 61 60 59 58 57 56 89
102 65 36 35 34 33 32 31 30 55 88
103 66 37 16 15 14 13 12 29 54 87
104 67 38 17 4 3 2 11 28 53 86
105 68 39 18 5 0 1 10 27 52 85
106 69 40 19 6 7 8 9 26 51 84
107 70 41 20 21 22 23 24 25 50 83
108 71 42 43 44 45 46 47 48 49 82
109 72 73 74 75 76 77 78 79 80 81
110 111 112 113 114 115 116 117 118 119 120

Figure 4: OEIS A001107 on a square spiral with center 0

Our main goal of this study is to analyze the behaviors of the 2-adic valuations of some

sequences related to square spirals using the concept of 2-adic valuation trees. This will

expands the study of p-adic valuation of integer sequences further by providing more insight

into the study of 2-adic valuation of different classes of sequences related to square spirals.
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CHAPTER III: METHODOLOGY

In this chapter, we first explain the sequence selection process and list some properties

of p-adic valuations. Next, we discuss the motivation behind the use of tree structures and

detail the construction of a 2-adic valuation tree. And the last section provides a proof of the

form 4n2 +bn+ c of diagonal sequence of Ulam spiral.

Sequence Selection

For this study, we restrict ourselves to the choice of p = 2 and only pick sequences

related to square spirals. Since the 2-adic expansions of sequences with high density of

primes are mostly zero; we must ensure that our sequences consist of enough even numbers

or relatively few primes so that they are divisible by 2. Appropriate sequences should

also contain at least one defining property such as an explicit formula, a recurrence, or a

generating function. These defining properties are useful in helping us construct and prove

the 2-adic valuations of the sequence. In particular, we picked sequences with interesting

valuation trees; that is, the valuation tree has some interesting structure such as symmetry,

single direction branching, alternating branching, etc.

Properties of p-adic valuation

There are some helpful properties of p-adic valuation that we used extensively throughout

the paper. We list these properties in this section. Let a,b ∈ Z. Then

(a) νp(a ·b) = νp(a)+νp(b)

(b) If νp(a) = νp(b), then νp(a+b)≥min{νp(a),νp(b)}.

(c) If νp(a) 6= νp(b), then νp(a+b) = min{νp(a),νp(b)}.

Example 3.1. Let p = 2. Since 12 = 4(3) = 22(3), then ν2(12) = 2. Let a = 4 and

b = 3. Using property (a), we have

ν2(12) = ν2(4 ·3) = ν2(4)+ν2(3) = 2+0 = 2,

8



which matches the previous solution. Now consider ν2(8). Since 8 = 23, then ν2(8) = 3.

Let a = 4 and b = 4. Then 8 = a+b and ν2(a) = ν2(b) = 2. By property (b), we see that

ν2(8) = ν2(4+4) = 3≥min{ν2(4),ν2(4)}= min{2,2}= 2.

Lastly, consider ν2(7). Note that ν2(7) = 0. Let a = 3 and b = 4. Then 7 = a+ b and

ν2(a) = 0, ν2(b) = 2 and ν2(a) 6= ν2(b). By property (c), we have

v2(7) = ν2(3+4) = min{ν2(3),ν2(4)}= min{0,2}= 0.

Plots of the 2-adic Valuations of Square Spiral Sequences

Consider the diagonal sequence {68,128,196,272,356,448,548, . . .}. It is generated by

the quadratic polynomial p(n)= 4n2+48n+16 and has 2-adic valuation {2,7,2,4,2,6,2, . . .}.

Figure 5 shows the plot of the 2-adic valuations of p(n) for n = 1,2, . . . ,100.

Figure 5: 2-adic valuations of p(n) = 4n2 +48n+16 for n = 1,2, . . . ,100

Notice that there exists a regularity in the 2-adic valuation of this sequence. The values

on the plot oscillate between the numbers 2,4,6, and 7, which leaves the impression that the

2-adic valuation of this sequence is finite. To see if this observation holds for larger range

of n, we generate a plot of the 2-adic valuations of p(n) for n = 1,2, . . . ,1000 in Figure 6.

With a larger range of values, it is difficult to see the oscillation effect. However, observe

that the values on the plot do not exceed 7; this indicates that the valuation of the sequence

remains at most 7 as n gets larger. Hence, our conjecture is that the 2-adic valuation of the

diagonal sequence p(n) = 4n2 +48n+16 is finite. The proof of this conjecture is left for a

later section.
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Figure 6: 2-adic valuations of p(n) = 4n2 +48n+16 for n = 1,2, . . . ,1000

Now consider the diagonal sequence {10,24,46,76,114,160,214,276, . . .}. This se-

quence is generated by the quadratic polynomial p(n) = 4n2 +2n+4 and has 2-adic valu-

ations {1,3,1,2,1,5,1,2, . . .}. Figure 7 shows the plot of the 2-adic valuation of p(n) for

n = 1,2, . . . ,100.

Figure 7: 2-adic valuations of p(n) = 4n2 +2n+4 for n = 1,2, . . . .100

The valuation appears non-periodic since it is difficult to see if there exists a regularity in

the plot. However, it is easy to see that the values on the plot are at most 9 for n = 1, . . . ,100.

To see if this observation holds for n = 1,2, . . . ,1000, we generate a plot of the 2-adic

valuation of p(n) for n = 1 . . .1000 in Figure 8. We see that the values in this plot are at

most 13, a higher value compared to the one observed in Figure 7. Hence, we conjecture

that as n increases, the 2-adic valuation of p(n) = 4n2+2n+4 also increases without bound

as well, and thus this sequence produces infinitely many valuations.

The question remains as to how we could describe the 2-adic valuation of a sequence that

10



Figure 8: 2-adic valuations of p(n) = 4n2 +2n+4 for n = 1,2, . . . ,1000

produces infinitely many valuations. The plots shown in this section are useful for quickly

determining if a sequence produces finitely or infinitely many valuations. However, if we

want to further study the structure of the 2-adic valuations of sequences, we will quickly

find that these plots are no longer sufficient for this task. One way to accomplish this task is

to represent the 2-adic valuations of sequences as binary trees. The discussion on 2-adic

valuation trees of sequences are provided in the next two sections.

Numbers associated with p-adic tree

In this section, we expand more on the definition of numbers associated with vertices in

2-adic valuation trees from Almodovara et al [1]. Let p be a prime. Every p-adic tree starts

with a single root vertex at the zeroth level. The numbers associated with the root vertex are

of the form n for all n ∈ N.

We refine the form n associated with the root vertex to get the numbers associated

with vertices of the first level. Let a0 be a remainder of dividing n by p such that a0 ∈

{0,1,2, . . . , p−1}. It follows that the root vertex v0 then splits into p vertices at the first

11



level. The numbers corresponding to these vertices are defined as

n≡ 0 (mod p)

n≡ 1 (mod p)

n≡ 2 (mod p)

...

n≡ (p−1) (mod p).

Therefore,

n≡ a0 (mod p) =⇒ n−a0 = mp =⇒ n = mp+a0

Then all numbers associated with vertices at level one have the form mp+a0.

Let a1 be a remainder of dividing m by p such that a1 ∈ {0,1,2, . . . , p− 1}. Then m

could also be written in the form l p+a1 for a1 ∈ {0,1,2 . . . , p−1} then

mp+a0 = (l p+a1)p+a0 = l p2 +a1 p+a0

Hence, each vertex at level one is then split into p vertices at level two and the numbers

associated with these vertices have the form l p2 + a1 p+ a0. By a similar procedure, we

could also refine the form l p2 +a1 p+a0 to get vertices at level three as well.

In general, let k ∈ N be the level of the p-adic valuation tree and vk be the vertices at

level k. Then the numbers associated with vk+1 that were split from vk have the form

pk+1n+ pkak +bk−1

where

bk−1 =

{
pk−1ak−1 + . . .+ pa1 +a0 if k−1≥ 0
0 if k−1 < 0

and ak−1, . . . ,a1, and a0 have already been determined. Example (3.1) shows a three-level

2-adic tree with numbers associated with each vertex listed.

Example 3.1. Let p = 2. The root vertex v0 at the zeroth level splits into 2 vertices at

level one. The numbers of those vertices have the form

20+1n+20a0 +0 = 2n+a0 with a0 ∈ {0,1}.
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Then the numbers associated with the two vertices at level 1 are either even (2n) or odd

(2n+1). Figure 9 shows the root vertex and the two vertices at the first level along with the

numbers associated with them.

Figure 9: The numbers associated with the root vertex and the first two levels

Each v1 then splits into two vertices at level 2, and the numbers associated with the

vertices at level 2 are defined as

21+1n+21a1 +b0 = 4n+2a1 +a0 with a1 ∈ {0,1}

For the vertices associated with 2n, the value of a0 is already determined to be 0. Then the

numbers associated with those vertices have the form

4n+2a1 =

{
4n if a1 = 0
4n+2 if a1 = 1

For the vertices associated with 2n+1, the value of a0 is already determined to be 1. Then

the numbers associated with those vertices have the form

4n+2a1 +1 =

{
4n+1 if a1 = 0
4n+3 if a1 = 1

Figure 10 shows the root vertex and the first two levels along with the numbers associated

with them.

13



Figure 10: The numbers associated with the root vertex and the first two levels

Since the value of a1 and a0 had already been determined at this point, we then could

use the same procedure as above to find the numbers associated with vertices branched from

each v2. We can choose a2 ∈ {0,1} such that

8n+4a2 +2a1 +a0 =



8n if a2 = 0, a1 = 0, a0 = 0
8n+4 if a2 = 1, a1 = 0, a0 = 0
8n+2 if a2 = 0, a1 = 1, a0 = 0
8n+6 if a2 = 1, a1 = 1, a0 = 0
8n+1 if a2 = 0, a1 = 0, a0 = 1
8n+5 if a2 = 1, a1 = 0, a0 = 1
8n+3 if a2 = 0, a1 = 1, a0 = 1
8n+7 if a2 = 1, a1 = 1, a0 = 1

Figure 11 shows the root vertex and the first three levels along with the numbers

associated with them.

Figure 11: The numbers associated with the root vertex and the first three levels

14



Construction of a p-adic tree

The following construction is an expansion of the construction shown by Almodovara et

al [1]. Let {xn} be an integer sequence and f (x) be a polynomial with integer coefficients

such that {xn}= f (pn+a0). Since pn+a0 ≡ a0 (mod p), it follows that

f (pn+a0)≡ f (a0) (mod p). (1)

for a0 ∈ {0,1, . . . , p−1}.

Assume f (a0) 6≡ 0 (mod p). It follows from (1) that

f (pn+a0) 6≡ 0 (mod p) =⇒ p6 | f (pn+a0).

Then there exists no k ∈ N satisfying f (pn+a0) = pk. Therefore, we have

νp( f (pn+a0)) = 0 if f (a0) 6≡ 0 (mod p) (2)

On the other hand, assume f (a0)≡ 0 (mod p). It follows from (1) that

f (pn+a0)≡ 0 (mod p) =⇒ p | f (pn+a0).

Then f (pn+a0) = pk for some k ∈ N. Since k could contain other multiples of p, we have

νp( f (pn+a0))≥ 1 if f (a0)≡ 0 (mod p). (3)

Since the valuation is non-constant, the p-adic valuation of the vertex with numbers pn+a0

is non-terminating but is at least 1 at this level. It follows that this vertex splits into p vertices

at the next level. From (2) and (3), the numbers associated with vertices of the next level is

defined as p2n+ pa1 +a0 for a1 ∈ {0,1, . . . , p−1} and a0 is already determined.

Observe from (2) and (3) that νp( f (pn+ a0)) depends on whether p divides f (a0).

Hence, we now consider whether p2 divides f (pa1+a0) to determine the value of νp( f (p2n+

pa1 +a0)). Since p2n+ pa1 +a0 ≡ pa1 +a0 (mod p2), then

f (p2n+ pa1 +a0)≡ f (pa1 +a0) (mod p2). (4)
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By a similar procedure as before, assume f (pa1 +a0) 6≡ 0 (mod p2). It follows that

f (p2n+ pa1 +a0) 6≡ 0 (mod p2) =⇒ p2 6 | f (p2n+ pa1 +a0).

Hence,

νp( f (p2n+ pa1 +a0)) = 1 if f (pa1 +a0) 6≡ 0 (mod p2). (5)

On the other hand, assume f (pa1 +a0)≡ 0 (mod p2). Then

f (p2n+2a1 +a0)≡ 0 (mod p2) =⇒ p2 | f (p2n+2a1 +a0).

Thus f (p2n+ pa1+a0) = p2m for some m ∈N and νp( f (p2m+ pa1+a0))≥ 2. Therefore

νp( f (p2n+ pa1 +a0))≥ 2 if f (pa1 +a0)≡ 0 (mod p2) (6)

and we would repeat the same process again to determine the value of νp( f (p3n+ p2a2 +

pa1 +a0)) for a2 ∈ {0,1, . . . , p−1} with a1,a0 already determined.

In general, if a0,a1,a2, . . . ,ak−1 ∈ {0,1, . . . , p−1} such that

f (a0)≡ 0 (mod p)

f (pa1 +a0)≡ 0 (mod p2)

f (p2a2 + pa1 +a0)≡ 0 (mod p3)

...

f (pkak + pk−1ak−1 + . . .+ pa1 +a0) 6≡ 0 (mod pk+1)

Then for any n≡ pkak + pk−1ak−1 + . . .+ pa1 +a0 (mod pk+1), we have

νp( f (n)) = k. (7)

The process above provides a formulaic way to determine whether a vertex is terminating

or non-terminating. However, it is often difficult to predict possible branching with just this

process alone. Therefore, we use a p-adic tree to visualize the process above. Example (3.2)

shows how we can use a p-adic tree to describe the valuation of a sequence.
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Example 3.2. The sequence {68,128,196,272,356,448,548, . . .} is generated by the

quadratic function p(n) = 4n2 +48n+16 for n≥ 1. We use Mathematica to form a conjec-

ture of the 2-adic valuation tree of this sequence. Below are the Mathematica commands

used and their purpose:

• p[n]:= 4n^2 + 48n + 16; – Define p(n) to be the function 4n2 +48n+16.

• Table[IntegerExponent[n,p],{n,a,b}] – Generate a table of p-adic valuations

of integers in the range [a,b].

• ListPlot[Table[IntegerExponent[n,p],{n,a,b}] – Generate a list-plot of the

table of p-adic valuations of integers in the range [a,b].

We provide the inputs and outputs obtained from Mathematica below.

The list-plot of the first 25 numbers of the diagonal sequence p(n) contains four different

2-adic valuations; the values of these valuations are 2,4,6, and 7. This observation along

with other explorations in Mathematica led to the conjecture that the 2-adic valuation tree
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of p(n) only contains the four values 2,4,6,7, and thus the tree is terminal. We prove this

conjecture by constructing a 2-adic tree.

The construction of the 2-adic valuation tree of this sequence begins with the root vertex

at level 0, and the numbers associated with the root vertex have the form n for n ∈ N. Since

we can factor 4n2 +48n+16 as 22(n2 +12n+4), it follows that

ν2(4n2 +48n+16) = ν2(22)+ν2(n2 +12n+4) = 2+ν2(n2 +12n+4).

Since it is possible for n2 +12n+4 to contain other multiples of 2, we can only conclude

that ν2(4n2 +48n+16)≥ 2. Therefore, the root vertex is non-constant which implies that

it is non-terminating but is at least 2. We use the symbol (∗) used by Almodovar et al [1] to

denote that a vertex is non-terminating. It follows that the root vertex splits into 2 vertices at

the first level.

The numbers associated with the left vertex are even and have the form 2k. On the other

hand, the numbers associated with the right vertex are odd and have the form 2k+1. We

can find the 2-adic valuation of these vertices by substituting 2k and 2k+1 back into f (n).

By substituting 2k, we have 4(2k)2 +48(2k)+16 = 24(k2 +6k+1). Then

ν2(4(2n)2 +48(2n)+16) = ν2(24)+ν2(k2 +6k+1)

= 4+ν2(k2 +6k+1).

Since k2 + 6k+ 1 could contain other multiples of 2, then ν2(4(2k)2 + 48(2k)+ 16) ≥ 4

which implies that the vertex with numbers 2n is non-terminating.

By substituting 2k+1, we have 4(2k+1)2 +48(2k+1)+16 = 22(4k2 +28k+17) and

ν2(4(2k+1)2 +48(2k+1)+16) = ν2(22(4k2 +28k+17)

= ν2(22)+ν2(4k2 +28k+17)

= 2+ν2(4k2 +28k+17).

Notice that 4k2 + 28k + 17 is odd and contains no other multiple of 2. Therefore, we

conclude that ν2(4(2k + 1)2 + 48(2k + 1) + 16) = 2 which implies that the vertex with
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Figure 12: 2-adic valuation tree of root vertex and first level

numbers 2k+1 terminates. This completes the first level of the tree. Figure 12 describes the

process above with a 2-adic valuation tree.

Since the even vertex at level 1 is non-terminating, it splits into 2 vertices at level 2.

These vertices have the form 4l and 4l+2. We repeat the same substitution process as above.

By substituting 4l, we have

ν2(4(4l)2 +48(4l)+16) = ν2(24(4l2 +12l +1))

= ν2(24)+ν2(4l2 +12l +1)

= 4+ν2(4l2 +12l +1) = 4

which implies that the vertex with numbers 4l terminates. By substituting 4l +2,

ν2(4(4l +2)2 +48(4l +2)+16) = ν2(26(l2 +4l +2))

= ν2(26)+ν2(l2 +4l +2)

= 6+ν2(l2 +4l +2)≥ 6

which implies that the vertex with numbers 4l +2 is non-terminating. This completes the

second level of the tree. Figure 13 extends Figure 12 to include the second level of the tree.

We repeat the same process again since the vertex with numbers 4l +2 at level 2 is non-

terminating. This vertex splits into 2 vertices at level 3 with the left vertex having numbers

of the form 8m+2 and the right vertex having numbers 8m+6. Then by substitution, we
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Figure 13: 2-adic valuation tree of root vertex and first two levels

have

ν2(4(8m+2)2 +48(8m+2)+16) = ν2(27(2m2 +4m+1))

= ν2(27)+ν2(2m2 +4m+1)

= 7+ν2(2m2 +4m+1) = 7

which implies that the vertex with numbers 8m+2 terminates. Next, we substitute in 8m+6,

ν2(4(8m+6)2 +48(8m+6)+16) = ν2(26(4m2 +12m+7))

= ν2(26)+ν2(4m2 +12m+7)

= 6+ν2(4m2 +12m+7) = 6

which implies that the vertex with numbers 8m+6 also terminates. This completes the third

level and the tree since there is no non-terminating vertex left. Figure 14 shows the complete

2-adic valuation tree.

We compare this result to the one generated by a tree drawing package in Mathematica

[5]. This tree package takes an integer sequence as input and generates a conjecture 2-adic

valuation tree up to the specify depth. Figure 15 shows the 2-adic valuation tree of the

diagonal sequences p(n) = 4n2 +48n+16 generated in Mathematica. We see that the trees

in both Figure 14 and 15 are the same. We will use this tree drawing package to assist in

selecting sequences and form conjecture of the 2-adic valuation trees of different square

spiral sequences in later chapters.
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Figure 14: Complete 2-adic valuation tree of 4n2 +48n+16

Figure 15: 2-adic valuation tree of 4n2 +48n+16 generated in Mathematica

Theorem III.5.1 (2-adic valuation of diagonal sequence 4n2 +48n+16).

ν2(4n2 +48n+16) =


2 if n≡ 1 (mod 2)
4 if n≡ 0 (mod 4)
6 if n≡ 6 (mod 8)
7 if n≡ 2 (mod 8).
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Proof of Diagonal Sequences of Ulam spiral

We show that all diagonal sequences of the Ulam spiral have the form 4n2+bn+c. This

was partially proved by Myerson on Math Stack Exchange [7]. We extend this partial result

to provide a complete proof in this section. First, we make some observations about the

diagonal sequences on the Ulam spiral. Figure 16 shows some diagonal sequences on the

Ulam spiral.

101 100 99 98 97 96 95 94 93 92 91
102 65 64 63 62 61 60 59 58 57 90
103 66 37 36 35 34 33 32 31 56 89
104 67 38 17 16 15 14 13 30 55 88
105 68 39 18 5 4 3 12 29 54 87
106 69 40 19 6 1 2 11 28 53 86
107 70 41 20 7 8 9 10 27 52 85
108 71 42 21 22 23 24 25 26 51 84
109 72 43 44 45 46 47 48 49 50 83
110 73 74 75 76 77 78 79 80 81 82
111 112 113 114 115 116 117 118 119 120 121

Figure 16: Ulam spiral with some diagonal sequences

Let {an} be the diagonal sequence {3,13,31,57,91, . . .} for n≥ 1. Observe that

a2−a1 = 13−3 = 10

a3−a2 = 31−13 = 18

a4−a3 = 57−31 = 26

a5−a4 = 91−57 = 34

and

(a3−a2)− (a2−a1) = 18−10 = 8

(a4−a3)− (a3−a2) = 26−18 = 8

(a5−a4)− (a4−a3) = 34−26 = 8.

Therefore, {an} has the non-homogeneous recurrence relation

8 = (an−an−1)− (an−1−an−2) = an−2an−1 +an−2.
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A quick verification using terms from {an} shows that

31−2(13)+3 = 8, 57−2(31)+13 = 8, 91−2(57)+31 = 8.

This non-homogeneous recurrence relation also holds for other diagonals sequence as well.

101 100 99 98 97 96 95 94 93 92 91
102 65 64 63 62 61 60 59 58 57 90
103 66 37 36 35 34 33 32 31 56 89
104 67 38 17 16 15 14 13 30 55 88
105 68 39 18 5 4 3 12 29 54 87
106 69 40 19 6 1 2 11 28 53 86
107 70 41 20 7 8 9 10 27 52 85
108 71 42 21 22 23 24 25 26 51 84
109 72 43 44 45 46 47 48 49 50 83
110 73 74 75 76 77 78 79 80 81 82
111 112 113 114 115 116 117 118 119 120 121

Figure 17: Rings on Ulam spiral

Observe from Figure 17 that the first ring has 1 element, and the second ring has 8

elements. The third ring has 16 elements, then 24, 32, 40, and so on. The numbers of

elements on each ring, aside from the first, increase by 8 between each ring. Since each

number of a diagonal sequence lies on a different ring, it follows that the second difference

of these numbers also increases by 8.

For example, consider the diagonal sequence {10,24,46,76,114, . . .}, we have

46−2(25)+10 = 8, 76−2(46)+24 = 8, 114−2(75)+46 = 8.

Likewise for the diagonal sequence {6,18,38,66,102, . . .},

38−2(18)+6 = 8, 66−2(38)+18 = 8, 102−2(66)+38 = 8.

Therefore, all diagonal sequences of the Ulam spiral are defined by the non-homogeneous

recurrence relation an−2an−1 +an−2 = 8. We solve this relation for a closed-form.

We shift the index of an−2an−1 +an−2 = 8 to get

an+2−2an+1 +an = 8. (8)
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Then the general solution of (8) is

an = a(h)n +a(p)
n (9)

where a(h)n is the solution of the corresponding homogeneous recurrence relation of (8) and

a(p)
n is the particular solution of (8).

The corresponding homogeneous recurrence relation have the form an+2+an+1+an = 0

with characteristic polynomial x2−2x+1. The roots of this polynomial is x = 1 with a mul-

tiplicity of 2. Therefore a(h)n = A(1n)+Bn(1n) = A+Bn is the solution of the corresponding

homogeneous recurrence relation.

We now solve for the particular solution a(p)
n . Assume a(p)

n = αn2 + βn + γ . We

substitute a(p)
n into (8) and get

8 = [α(n+2)2 +β (n+2)+8]−2[α(n+1)2 +β (n+1)+8]+ (αn2 +βn+8)

= [α(n2 +4n+4)+βn+2β +8]−2[α(n2 +2n+1)+βn+β +8]+ (αn2 +βn+8)

= αn2 +4αn+4α +βn+2β +8−2αn2−4αn−2α−2βn−2β −16+αn2 +βn+8

= 2αn2 +4αn+4α +2βn+2β +16−2αn2−4αn−2α−2βn−2β −16

= 2α.

So 8 = 2α which implies α = 4. Therefore a(p)
n = 4n2 +βn+ γ with arbitrary β and γ .

Then the solution of (9) is

an = A+Bn+4n2 +βn+ γ = 4n2 +(B+β )n+(A+ γ)

Let b = B+β and c = A+ γ , then we have

an = 4n2 +bn+ c (10)

as the solution of the non-homogeneous recurrence relation an+2+an+1+an = 8. Therefore,

all diagonal sequences of Ulam spiral are defined by (10).

To verify this result, consider the diagonal sequence {3,13,31,57,91, . . .}. We have
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a1 = 3 and a2 = 13. By substitution, we have a system of two equations

3 = 4+b+ c

13 = 16+2b+ c

Solving this system yield b =−2 and c = 1. Then {3,13,31,57,91, . . .} is defined by the

quadratic polynomial 4n2−2n+1. We use Mathematica to find the sequence generated by

f (n) = 4n2−2n+1 for n≥ 1. We found that

f (n) = {3,13,31,57,91,133,183, . . .},

which matched our sequence.

Likewise, for the diagonal sequence {6,18,38,66,102, . . .}, we have a1 = 6 and a2 = 18.

By similar procedure as above, we found that b = 0 and c = 2. Then 4n2+2 is the quadratic

polynomial that generates {6,18,38,66,102, . . .}. Let f (n) = 4n2 +2 for n≥ 1, then

f (n) = {6,18,38,66,102,146,198, . . .},

which matched the diagonal sequence.
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CHAPTER IV: PROOFS OF SOME ULAM DIAGONAL SEQUENCES

In this chapter, we state the 2-adic valuations of some diagonal sequences of the Ulam

spiral. We prove these statements by showing that their valuations can be represented by

2-adic trees.

Proof of Diagonal Sequence 4n2 +48n+16 Valuation

Theorem IV.1.1 (2-adic valuation of diagonal sequence 4n2 +48n+16).

ν2(4n2 +48n+16) =


2 if n≡ 1 (mod 2)
4 if n≡ 0 (mod 4)
6 if n≡ 6 (mod 8)
7 if n≡ 2 (mod 8).

Proof. See Example 3.2 in Chapter 3.

Proof of Diagonal Sequence 4n2 +2n+4 Valuation

The Ulam spiral sequence {10,24,46,76,114,160,214,276, . . .} is generated by the

quadratic polynomial 4n2+2n+4 and has 2-adic valuations {1,3,1,2,1,5,1,2, . . .}. Figure

18 shows the listplot of the 2-adic valuations of this sequence while Figure 19 shows the

2-adic tree to a depth of 3.

Figure 18: 2-adic listplot of 4n2 +2n+4.

Observe that at each level k, the terminating vertex has valuation exactly k, and the other

non-terminating vertex has valuation at least k. Since this 2-adic tree appears to be non-

terminating, we rely on the technique used by Almodovar et al [1], which is an adaptation of
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Figure 19: 2-adic tree of the sequence 4n2 +2n+4.

Hensel’s Lemma (Theorem 2.20) [12]. Using this lifting technique, we show that the 2-adic

valuation of the diagonal sequence 4n2 +2n+4 is infinite and can be captured by such a

tree.

Theorem IV.2.1. Let v be a non-terminating node in the valuation tree of ν2(4n2 +2n+4)

at the k-th level with k ≥ 1. Then v splits into two vertices at the (k+ 1)-th level. One

terminates with valuation k+1. The other has valuation of at least k+2.

Proof. Let f (n) = 4n2 +2n+4. The numbers associated with the vertex v at level k have

the form 2kn+bk−1, and the numbers associated with vertices at level k+1 beneath v have

the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0

has been determined. The induction hypothesis is that

f (2kn+bk−1)≡ 0 (mod 2k+1)

22k+2n2 +2k+3nbk−1 +2k+1n+4b2
k−1 +2bk−1 +4≡ 0 (mod 2k+1)

4b2
k−1 +2bk−1 +4≡ 0 (mod 2k+1)
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so that ν2(4b2
k−1 + 2bk−1 + 4) ≥ k+ 1. Whether the numbers associated with vertices at

level k+1 beneath v is terminating or not depends on the choice of ak = 0 or ak = 1. Hence,

consider the congruence

f (Nk) = 4N2
k +2Nk +4≡ 0 (mod 2k+2)

that is,

4[2k+1n+2kak +bk−1]
2 +2[2k+1n+2kak +bk−1]+4≡ 0 (mod 2k+2)

22k+4n2 +22k+4nak +22k+2a2
k +2k+4nbk−1 +2k+3akbk−1 +2k+2n+2k+1ak

+4b2
k−1 +2bk−1 +4≡ 0 (mod 2k+2)

which reduces to

4b2
k−1 +2k+1ak +2bk−1 +4≡ 0 (mod 2k+2). (11)

We solve (11) for the unknown ak. Note that (11) can be rewritten as

2k+1ak ≡−(4b2
k−1 +2bk−1 +4) (mod 2k+2)

By the induction hypothesis, 4b2
k−1 +2bk−1 +4 = 2k+1m for some m ∈ Z.

2k+1ak ≡−(2k+1m) (mod 2k+2)

ak ≡−m (mod 2)

as the solution to (4.1). Therefore the vertex descending from v with ak 6≡ −m (mod 2)

terminates with valuation k+1, and the other vertex has valuation at least k+2.

We will discuss the 2-adic valuations of other diagonal sequences more in Chapter 6

where we classify some diagonal sequences based on similar tree patterns.
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CHAPTER V: PROOFS OF SOME NON-DIAGONAL ULAM SEQUENCES

We explore and prove the 2-adic valuation trees of some non-diagonal Ulam sequences

in this chapter.

Proof of A156859 Tree

From the OEIS, the sequence A156859 is the sequence of the main column of a version

of the square spiral with a center of zero (Figure 2). It is defined by the function f (n) = n2+

n+
⌊n+1

2

⌋
for n ∈ N. This function generates the sequence {0,3,7,14,22,33,45,60, . . .}

with 2-adic valuations {∞,0,0,1,1,0,0,2, . . .}. Figure 20 shows the listplot of the 2-adic

Figure 20: 2-adic listplot of A156859.

valuations of this sequence. From Figure 20, it is easy to see a distinct pattern of the 2-adic

valuations of this sequence. Figure 21 shows the 2-adic tree of A156859 up to the fifth level.

Again, we use the lifting technique to show that the 2-adic tree of A156859 is infinite

and non-terminating.

Theorem V.1.1 (2-adic tree of A156859). Let v be a non-terminating node of f (n) =

n2 +n+
⌊n+1

2

⌋
at the k-th level with k ≥ 1. Then v splits into two vertices at the (k+1)-th

level. For even n, the one with ak = 1 terminates with valuation k−1. The other with ak = 0

has valuation of at least k. For odd n, the one with ak = 0 terminates with valuation k−1.

The other with ak = 1 has valuation of at least k.
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Figure 21: 2-adic tree of the sequence A156859.

Proof. To prove that the 2-adic valuation tree of f (n) = n2 +n+
⌊n+1

2

⌋
is non-terminating,

we prove that both the even and odd branch are non-terminating.

We first consider the even branch. Note that the numbers associated with the vertex v

at level k have the form 2kn+bk−1, and the numbers associated with vertices at level k+1

beneath v have the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0.

Since we are on the even branch, ak−1, . . . ,a0 are already determined to be 0 so that bk−1 = 0

and Nk = 2k+1n+2kak. The induction hypothesis is that

f (2kn+bk−1)≡ b2
k−1 +bk−1 +

⌊
bk−1 +1

2

⌋
≡ 0 (mod 2k−1),

so that ν2

(
b2

k−1 +bk−1 +
⌊

bk−1+1
2

⌋)
≥ k−1.

Consider the congruence

f (Nk) = N2
k +Nk +

⌊
Nk +1

2

⌋
≡ 0 (mod 2k)
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that is,

(2k+1n+2kak)
2 +(2k+1n+2kak)+

⌊
(2k+1n+2kak)+1

2

⌋
≡ 0 (mod 2k). (12)

We solve (12) for the unknown ak.

(2k+1n+2kak)
2 +(2k+1n+2kak)+

⌊
(2k+1n+2kak)+1

2

⌋
≡ 0 (mod 2k)

2k+1n+22k+2n2 +

⌊
1
2
(1+2k+1n+2kak)

⌋
+2kak +22k+2nak +22ka2

k ≡ 0 (mod 2k)⌊
1
2
(1+2k+1n+2kak)

⌋
≡ 0 (mod 2k)

2kn+2k−1ak +

⌊
1
2

⌋
≡ 0 (mod 2k)

2kn+2k−1ak +0≡ 0 (mod 2k)

ak ≡ 0 (mod 2)

as the solution for ak. Therefore the vertex descending from v with ak = 1 terminates with

valuation k−1, and the other vertex with ak = 0 has valuation at least k.

We now prove that the odd branch is also non-terminating. The numbers associated with

the vertex v at level k have the form 2kn+bk−1, and the numbers associated with vertices at

level k+1 beneath v have the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0.

Since we are on the odd branch, ak−1, . . . ,a0 are already determined to be 1. Hence,

bk−1 = 2k− 1 and Nk = 2k+1n+ 2kak + 2k− 1 = 2k+1n+ 2k(ak + 1)− 1. The induction

hypothesis is that

f (2kn+bk−1)≡ b2
k−1 +bk−1 +

⌊
bk−1 +1

2

⌋
≡ 0 (mod 2k−1),

so that ν2

(
b2

k−1 +bk−1 +
⌊

bk−1+1
2

⌋)
≥ k−1.
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Consider the congruence

f (Nk) = N2
k +Nk +

⌊
Nk +1

2

⌋
≡ 0 (mod 2k)

that is,

(2k+1n+2k(ak +1)−1)2 +(2k+1n+2k(ak +1)−1)

+

⌊
(2k+1n+2k(ak +1)−1)+1

2

⌋
≡ 0 (mod 2k).

(13)

We solve (13) for the unknown ak.

2k +22k−2k+1 +2k+1n−2k+2n+22k+2n+22k+2n+22k+2n2 +

⌊
1
2
(2k+1n+2k(ak +1))

⌋
+2kak−2k+1ak +22k+1ak +22k+2nak +22ka2

k ≡ 0 (mod 2k)⌊
1
2
(2k+1n+2k(ak +1))

⌋
≡ 0 (mod 2k)

2kn+2k−1(ak +1)≡ 0 (mod 2k)

ak +1≡ 0 (mod 2)

as the solution for ak. Therefore the vertex descending from v with ak = 0 terminates with

valuation k−1, and the other vertex with ak = 1 has valuation at least k.
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Proof of A325958 Tree

The OEIS sequence A325958, a sequence of the sum of corners of (2n+1)× (2n+1)

square (Figure 3), is defined by the quadratic polynomial 16n2 +4n+4. This polynomial

generates the sequence {4,24,76,160,276,424,604,816, . . .} which has 2-adic valuations

{3,2,5,2,3,2,4,2, . . .}. Figure 22 shows the 2-adic tree of this sequence.

Figure 22: 2-adic tree of the sequence A325958.

Theorem V.2.1 (2-adic tree of A325958.). Let v be a non-terminating node of f (n) =

16n2 +4n+4 at the k-th level with k ≥ 1. Then v splits into two vertices at the (k+1)-th

level. One terminates with valuation k+2. The other has valuation of at least k+3.

Proof. Note that the numbers associated with the vertex v at level k have the form 2kn+bk−1,

and the numbers associated with vertices at level k+1 beneath v have the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0
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has been determined. We have f (2kn+bk−1) = 16[2kn+bk−1]
2 +4[2kn+bk−1]+4 which

evaluates to

22k+4 +2k+5bk−1 +2k+2 +16b2
k−1 +4bk−1 +4.

The induction hypothesis is that

22k+4 +2k+5bk−1 +2k+2 +16b2
k−1 +4bk−1 +4≡ 0 (mod 2k+2)

which simplifies to

16b2
k−1 +4bk−1 +4≡ 0 (mod 2k+2) =⇒ ν2(16b2

k−1 +4bk−1 +4)≥ k+2.

Now consider the congruence

16N2
k +4Nk +4≡ 0 (mod 2k+3)

which expands and simplifies to

2k+2ak +16b2
k−1 +4bk−1 +4≡ 0 (mod 2k+3). (14)

We solve (14) for the unknown ak. Note that (14) can be rewritten as

2k+2ak ≡−(16b2
k−1 +4bk−1 +4) (mod 2k+3). (15)

By the induction hypothesis, 16b2
k−1 +4bk−1 +4 = 2k+2m. Then (15) becomes

2k+2ak ≡−(2k+2m) (mod 2k+3)

which reduces to

ak ≡−m (mod 2)

as the solution to (14). Therefore, the vertex descending from v with ak 6≡ −m (mod 2)

terminates with valuation k, and the other vertex has valuation at least k+1.
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Proof of A001107 Tree

The OEIS sequence A001107 is a sequence of decagonal numbers on a square spiral with

a center of 0 (Figure 4). It is defined by the quadratic polynomial 4n2−3n which generates

the sequence {1,10,27,52,85,126,175,232, . . .}. This sequence has 2-adic valuations

{0,1,0,2,0,1,0,3, . . .}. Figure 23 shows the 2-adic tree of this sequence.

Figure 23: 2-adic tree of the sequence A001107.

For this sequence, we present two proofs using different techniques to show that its

2-adic tree is infinite. For the first proof, we rely on the lifting technique, and we use a

recurrence technique for the second proof.

Theorem V.3.1 (2-adic tree of A001107). Let v be a non-terminating node of f (n) =

4n2−3n at the k-th level with k ≥ 1. Then ν2(4n2−3n) = 0 if n is odd. For even n, v splits

into two vertices at the (k+1)-th level. The one with ak = 1 terminates with valuation k.

The other with ak = 0 has valuation of at least k+1.

35



Proof. We first show that the odd branch terminates with valuation 0. Note that

f (2n+1) = 4(2n+1)2−3(2n+1) = 2(8n2 +5n)+1

which is odd. Thus, ν2( f (2n+1)) = 0, and the odd branch terminates with valuation 0.

For the proof of the even branch, note that the numbers associated with the vertex v have

the form 2kn+ bk−1, and the numbers associated with the next level’s vertices beneath v

have the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1

has been determined. But ak−1, . . . ,a0 = 0 since we are on the left branch. Then bk−1 = 0,

and thus v = 2kn and Nk = 2k+1n+2kak. The induction hypothesis is that

f (bk−1) = 4b2
k−1−3bk−1 ≡ 0 (mod 2k)

so that ν2(4b2
k−1−3bk−1)≥ k. Consider the congruence

f (Nk) = 4N2
k −3Nk ≡ 0 (mod 2k+1)

that is,

4[2k+1n+2kak]
2−3[2k+1n+2kak]≡ 0 (mod 2k+1). (16)

for the unknown ak. Then (16) reduces to

−3ak ≡ 0 (mod 2)

as the solution for ak. Notice here that if ak = 1, then −3ak = −3 6≡ 0 (mod 2). So the

vertex descending from v with ak = 1 terminates with valuation k. On the other hand, if

ak = 0, then −3ak = 0 ≡ 0 (mod 2). Thus, the vertex descending from v with ak = 0 has

valuation of at least k+1.

The second proof requires a more thorough explanation. We first must find a recurrence

for the sequence A001107. To accomplish this, we rely on Mathematica and its packages.
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We use the HolonomicFunctions.m package [6] to find a recurrence relation for the OEIS

sequence A001107. The recurrence turns out to be the ratio of successive terms of the

sequence. We defined it as

an =C(n) ·an−1 (17)

where

C(n) =
n(4n−3)

(n−1)(4n−7)
.

Suppose we are given a0 and want to relate a3 to a0, then

a3 =C(3) ·a2 =C(3) ·C(2) ·a1 =C(3) ·C(2) ·C(1) ·a0. (18)

Let P(n, j) be a function where n is the initial subscript and j determines the j+ 1 steps

needed to traverse back to our desired destination. We have

P(n, j) =
j

∏
i=0

C(n− i)

where j = n−1 if n≥ 1; otherwise, j = 0. Then (18) becomes

a3 = P(3,2) ·a0.

The function P(n, j) provides a way for us to relate any two elements of the sequence;

however, it is quite cumbersome to work with if we want to compare two elements that are

not close. So we present a formula for that product in the following lemma.

Lemma V.3.2 (Solution of A001107 recurrence relation). Let

F(n, j) =
n(4n−3)

(n− j−1)(4n−4 j−7)
(19)

for n, j ∈N, where j = n−1 if n≥ 1; otherwise, j = 0. Then P(n, j) = F(n, j) for all j ≥ 0.

Proof. We prove by induction. For j = 0, we have

P(n,0) =C(n−0) =C(n) =
n(4n−3)

(n−1)(4n−7)

and

F(n,0) =
n(4n−3)

(n−0−1)(4n−4 ·0−7)
=

n(4n−3)
(n−1)(4n−7)
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which implies P(n,0)=F(n,0). Hence, assume P(n, j)=F(n, j) for j≥ 0. By the induction

hypothesis, we have

P(n, j+1) =
j+1

∏
i=0

C(n− i) =

(
j

∏
i=0

C(n− i)

)
·C(n− ( j+1))

=
n(4n−3)

(n− j−1)(4n−4 j−7)
· (n− j−1)(4(n− j−1)−3)
(n− j−1−1)(4(n− j−1)−7)

=
n(4n−3)

(n− j−1)(4n−4 j−7)
· (n− j−1)(4n−4 j−7)
(n− j−2)(4n−4 j−11)

=
n(4n−3)

(n− j−2)(4n−4 j−11)
.

We also have

F(n, j+1) =
n(4n−3)

(n− ( j+1)−1)(4n−4( j+1)−7)
=

n(4n−3)
(n− j−2)(4n−4 j−11)

.

It follows that P(n, j+1) = F(n, j+1). By induction, the claim P(n, j) = F(n, j) is true

for all j ≥ 0.

With Lemma 4.3.2, we now have all the necessary tools to show that the 2-adic tree of

the sequence A00107 has the properties from Theorem 4.4.1.

Proof. We first show that the odd branch terminates with valuation 0. Note that

f (2n+1) = 4(2n+1)2−3(2n+1) = 2(8n2 +5n)+1

which is odd. Thus, ν2( f (2n+1)) = 0, and the odd branch terminates with valuation 0.

For the even branch, we assume that ν2(n)≥ k and try to relate the vertex with ak = 0

back to n. That is, we want to relate f (2n) and f (n). We accomplish this by using (17)

and (19). To move from 2n back to n, we must take n steps backward. Using Mathematica,

F(2n,n−1) simplifies to

F(2n,n−1) =
2(8n−2)

4n−3
. (20)

By (17), we have

f (2n) =
2(8n−2)

4n−3
· f (n)
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which implies that ν2( f (2n))≥ k+1 since (20) contains a multiple of 2. Hence, this vertex

is non-terminating and has valuation at least k+1.

For the vertex with ak = 1 where k is the level of vertex we step back from, we relate

f (2k−1(2n+1)) and f (2k−1n) by taking 2k−1(n+1) steps backward. Using Mathematica,

we have

F [2k−1(2n+1),2k−1(n+1)−1] =
(2n+1)(2k+2n+2k+1−3)

n(2k+1n−3)
. (21)

By (17), it follows that

f (2k−1(2n+1)) =
(2n+1)(2k+2n+2k+1−3)

n(2k+1n−3)
· f (2k−1n)

Note that (21) does not contains any multiple of 2. Therefore, ν2[ f (2k−1(2n+1))] = k and

so this vertex terminates with valuation k.
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Proof of the Class of Sequences of the Form 444nnn222 +++(((222ttt +++111)))nnn+++ ccc

The non-diagonal sequence 4n2−3n discussed in the previous section belongs to the

class of square spiral sequences of the form 4n2 +(2t +1)n+ c. The 2-adic trees for some

of the sequences generated by the class 4n2 +(2t +1)n+ c are shown in Figure 24. Notice

that these trees are infinite and single branching on either the left or right branch and has

a starting valuation of 0 that increases by a constant 1 on each level. We prove that these

properties hold for all 2-adic trees of the class of sequences of the form 4n2 +(2t +1)n+ c.

Figure 24: 2-adic trees of 4n2 +(2t +1)n+ c.

Theorem V.4.1 (2-adic tree of 4n2 +(2t+1)n+ c). Let v be a non-terminating node of

f (n) = 4n2 +(2t +1)n+ c at the k-th level with k ≥ 1. Then v splits into two vertices at the

(k+1)-th level. One terminates with valuation k. The other has valuation of at least k+1.

Proof. The numbers associated with the vertex v at level k have the form 2kn+bk−1, and

the numbers associated with vertices at level k+1 beneath v have the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0

has been determined. The induction hypothesis is that

f (bk−1) = 4b2
k−1 +(2t +1)bk−1 + c≡ 0 (mod 2k)
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so that ν2(4b2
k−1 +(2t +1)bk−1 +4)≥ k. Consider the congruence

f (Nk) = 4N2
k +(2t +1)Nk + c≡ 0 (mod 2k+1)

which expands and simplifies to

2kak +4b2
k−1 +(2t +1)bk−1 + c≡ 0 (mod 2k+1). (22)

We solve (22) for the unknown ak. Note that (22) can be rewritten as

2kak ≡−[4b2
k−1 +(2t +1)bk−1 + c] (mod 2k+1).

By the induction hypothesis, 4b2
k−1 +(2t +1)bk−1 + c = 2km for some m ∈ Z. Then (22)

becomes

2kak ≡−2km (mod 2k+1)

which reduces to

ak ≡−m (mod 2)

as the solution to (22). Therefore, the vertex descending from v with ak 6≡ −m (mod 2)

terminates with valuation k, and the other vertex has valuation of at least k+1.
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CHAPTER VI: OBSERVATIONS OF THE 2-ADIC TREES OF SOME DIAGONAL

SEQUENCES

In this chapter, we discuss the characteristics of the valuation trees of some classes of

diagonal sequences. These characteristics are constant, finite, single infinite, and double

infinite valuation. Due to the seemingly infinite numbers of different tree patterns, we only

provide a partial classification of Ulam diagonal sequences of the form 4n2 +bn+ c.

Constant Valuation

In this section, we prove the explicit formulas of the 2-adic valuations of some classes

of diagonal sequences with constant valuation using simple factorization.

Lemma VI.1.1. For all n ∈ N, if b≡ 0 (mod 2) and c 6≡ 0 (mod 2), then

ν2(4n2 +bn+ c) = 0.

Proof. We write b = 2k and c = 2l +1. Then,

4n2 +bn+ c = 4n2 +(2k)n+(2l +1) = 2(2n2 + kn+ l)+1.

Note that for all n ∈ N, 2(2n2 + kn+ l)+1 is odd. Hence, ν2(4n2 +bn+ c) = 0.

Lemma VI.1.2. For all n ∈ N, if b≡ 4 (mod 8) and c≡ 4 (mod 8), then

ν2(4n2 +bn+ c) = 2.

Proof. Write b = 8k+4 and c = 8l +4. Then,

4n2 +bn+ c = 4n2 +(8k+4)n+(8l +4) = 22(n2 +2kn+n+2l +1).

Note that for all n ∈ N, 2n2 +4kn+2l +1 is odd. Therefore, ν2(4n2 +bn+ c) = 2.
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Finite and Non-Constant Valuation

Similar to the case where the valuation is finite, if the valuation is non-constant but finite,

an explicit formula can be achieved by simple factorization. We provide the explicit formula

of some classes of diagonal sequences with non-constant but finite valuation in this section.

Lemma VI.2.1. For all n ∈ N, if b≡ 0 (mod 32) and c≡ 12 (mod 32), then

νp(4n2 +bn+ c) =

{
2 if n≡ 0 (mod 2)
4 if n≡ 1 (mod 2).

Proof. Write b = 32k and c = 32l +12. If n is even, say n = 2m, then

4n2 +bn+ c = 22(4m2 +16km+8l +3)

and thus ν2(4n2 +bn+ c) = 2. If n is odd, say n = 2m+1, then

4n2 +bn+ c = 24(m2 +4km+m+2k+2l +1)

and so ν2(4n2 +bn+ c) = 4.

Lemma VI.2.2. For all n ∈ N, if b≡ 8 (mod 16) and c≡ 16 (mod 32), then

νp(4n2 +bn+ c) =

{
4 if n≡ 0 (mod 2)
2 if n≡ 1 (mod 2).

Proof. Write b = 16k+8 and c = 32l +16. If n is even, say n = 2m, then

4n2 +bn+ c = 24(m2 +2km+m+2l +1)

and thus ν2(4n2 +bn+ c) = 4. If n is odd, say n = 2m+1, then

4n2 +bn+ c = 22(4m2 +8km+8m+8l +4k+7)

and so ν2(4n2 +bn+ c) = 2.
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Lemma VI.2.3. For all n ∈ N, if b≡ 0 (mod 16) and c≡ 4 (mod 16), then

νp(4n2 +bn+ c) =

{
2 if n≡ 0 (mod 2)
3 if n≡ 1 (mod 2).

Proof. Write b = 16k and c = 16l +4. If n is even, say n = 2m, then

4n2 +bn+ c = 22(4m2 +8km+4l +1)

and thus ν2(4n2 +bn+ c) = 2. If n is odd, say n = 2m+1, then

4n2 +bn+ c = 23(2m2 +4km+2m+2l +2k+1)

and so ν2(4n2 +bn+ c) = 3.

Lemma VI.2.4. For all n ∈ N, if b≡ 0 (mod 24) and c≡ 8 (mod 16), then

νp(4n2 +bn+ c) =

{
3 if n≡ 0 (mod 2)
2 if n≡ 1 (mod 2).

Proof. Write b = 24k and c = 16l +8. If n is even, say n = 2m, then

4n2 +bn+ c = 23(2m2 +6km+2l +1)

and thus ν2(4n2 +bn+ c) = 3. If n is odd, say n = 2m+1, then

4n2 +bn+ c = 22(4m2 +12km+4m+4l +6k+3)

and so ν2(4n2 +bn+ c) = 2.

Lemma VI.2.5. For all n ∈ N, if b≡ 0 (mod 32) and c≡ 16 (mod 64), then

νp(4n2 +bn+ c) =


2 if n≡ 1 (mod 2)
4 if n≡ 0 (mod 4)
5 if n≡ 2 (mod 4)
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Proof. Write b = 32k and c = 64l +16. If n is odd, say n = 2m+1, then

4n2 +bn+ c = 22(4m2 +16km+4m+16l +8k+5)

and thus ν2(4n2 +bn+ c) = 2. If n = 4m, then

4n2 +bn+ c = 24(4m2 +4l +8km+1)

and thus ν2(4n2 +bn+ c) = 4. If n = 4m+2, then

4n2 +bn+ c = 25(2m2 +4km+2m+2l +2k+1)

and thus ν2(4n2 +bn+ c) = 5.

The list of different classes of diagonal sequences discussed in the previous two sections

is not exhaustive. In fact, there appears to be trees with finite valuations at every depth.

Conjecture VI.2.1: For any depth d ∈ N, there exists a finite tree of depth d.

Infinite and Single Branching

In this section, we provide a proof for the class of diagonal sequences of the form

4n2 +(4t + 2)n+ 2s. This class generates infinite and single branching 2-adic valuation

trees. Trees that belong to this class appear much more frequently than other single infinite

branching trees; thus, we can analyze the characteristics of trees belonging to these two

classes in much more detail. There are other classes of single infinite branching trees such

as the class of diagonal sequences of the form 4n2 +4n+4s. However, their valuation trees

are spaced very far apart, making the analysis of their characteristics very difficult.

Figure 25 shows some 2-adic trees produced by 4n2 +(4t +2)n+2s. Observe that these

trees are infinite and single branching on either the left or right branch. In addition, the

2-adic valuations increase by a constant of 1 on each level. One important thing to note here

is that valuations are at least one; our induction hypothesis is based on this observation. We

now prove that these properties hold for all 2-adic trees of this class of diagonal sequences.
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Figure 25: 2-adic trees of 4n2 +(4t +2)n+2s.

Theorem VI.3.1 (2-adic tree of 4n2 +(4t+2)n+2s). Let v be a non-terminating node of

f (n) = 4n2 +(4t +2)n+2s) at the k-th level with k ≥ 1. Then v splits into two vertices at

the (k+1)-th level. One terminates with valuation k+1. The other has valuation of at least

k+2.

Proof. The numbers associated with the vertex v at level k have the form 2kn+bk−1, and

the numbers associated with vertices at level k+1 beneath v have the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0

has been determined. The induction hypothesis is that

f (bk−1) = 4b2
k−1 +(4t +2)bk−1 +4s≡ 0 (mod 2k+1)

so that ν2(4b2
k−1 +(4t +2)bk−1 +4)≥ k+1. Consider the congruence

f (Nk) = 4N2
k +(4t +2)Nk +4s≡ 0 (mod 2k+2)

which expands and simplifies to

2k+1ak +4b2
k+1 +(4t +2)bk−1 +2s≡ 0 (mod 2k+2). (23)
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We solve (23) for the unknown ak. Note that (23) can be rewritten as

2k+1ak ≡−[4b2
k+1 +(4t +2)bk−1 +2s] (mod 2k+2).

By the induction hypothesis, 4b2
k+1+(4t +2)bk−1+2s = 2k+1m for some m ∈ Z. Then (23)

becomes

2k+1ak ≡−2k+1m (mod 2k+2)

which reduces to

ak ≡−m (mod 2)

as the solution to (23). Therefore, the vertex descending from v with ak 6≡ −m (mod 2)

terminates with valuation k+1, and the other vertex has valuation of at least k+2.

Infinite and Double Branching

Let f (n, t) = 4n2 +(32t +16)n for non-negative integer t. This particular class of Ulam

diagonals contains some interesting properties that are worth discussing. When t = 0, we

have f (n,0) = 4n2 +16n. Figure 26 shows the partial 2-adic valuation tree of this sequence.

This 2-adic tree appears to be non-terminating (or infinite) on the left branch and terminates

on the right branch. Furthermore, the left-branch splits into two non-terminating branches at

the vertex associated with numbers of the form 4n.

When t = 1, then f (n,1) = 4n2 + 48. Figure 27 shows the the 2-adic valuation tree

of this sequence. Notice the similarities between Figure 26 and 27. The 2-adic tree of

f (n,1) is left-branching and terminates on the right branch. The left branch then splits at

the vertex 4n into two non-terminating branches. In addition, each vertex on the leftmost

branch of both trees have the same 2-adic valuation. The only difference between Figure

26 and 27 is the behavior of the non-terminating right branch that was split off at vertex 4n.

In Figure 26, this specific branch always branches to the right side and terminates on the

left side. On the other hand, the branch at the same position in Figure 27 terminates on the

right side at first and branches left, but afterward it starts to branch right for the next few

vertices. In fact, the observations presented above holds true for all 2-adic trees of the form

f (n, t) = 4n2 +(32t +16)n.
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Figure 26: 2-adic tree of 4n2 +16n.

Figure 27: 2-adic tree of 4n2 +48n.

Theorem VI.4.1 (2-adic tree of 4n2 +(32t+16)n). Let vk be the non-terminating node at

level k. The 2-adic trees of the diagonal class 4n2+(32t+16)n has the following properties:

(i) Let k = 0 or 1. Then the vertex beneath vk with ak = 1 terminates with valuation
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2k+2. The other vertex with ak = 0 has valuation of at least 2k+4.

(ii) Let k = 2. Then both vertices descending from v2 are non-terminating and have

valuation of at least 7.

(iii) Let k > 2 and vk be a non-terminating vertex descending from v2 with a2,a1,a0 = 0.

Then vk splits into two vertices at the (k+1)-th level. The one with ak = 1 terminates

with valuation k+4. The other with ak = 0 has valuation of at least k+4.

(iv) Let k > 2 and vk be a non-terminating vertex beneath v2 with a2 = 1 and a1,a0 = 0.

Then vk splits into two vertices at the (k+1)-th level. One terminates with valuation

k+4. The other has valuation of at least k+4.

Proof. We prove that all 2-adic trees of the diagonal class f (n, t) = 4n2+(32t+16)n satisfy

properties (i), (ii), (iii) , and (iv).

(i) Suppose k = 0. The numbers associated with v0 have the form n, and the numbers

associated with the vertex descending from v0 with a0 = 1 have the form 2n+1. Then

f (2n+1, t) = 22(2n+1)(8t +2n+5) =⇒ ν2( f (2n+1, t)) = 2 = 2(0)+2.

On the other hand, the numbers associated with the vertex descending from v0 with

a0 = 0 have the form 2n. Then

f (2n, t) = 24n(n+4t +2) =⇒ ν2( f (2n, t))≥ 4 = 2(0)+4

Now consider k = 1. The numbers associated with v1 have the form 2n, and the

numbers associated with the vertex descending from v1 with a1 = 1 have the form

4n+2. Then

f (4n+2, t) = 24(2n+1)(2n+4t +3) =⇒ ν2( f (4n+2)) = 4 = 2(1)+2.

Meanwhile, the numbers associated with the vertex descending from v1 with a1 = 0

have the form 4n. Then

f (4n, t) = 26n(n+2t +1) =⇒ ν2( f (4n, t))≥ 6 = 2(1)+4.
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(ii) Assume k = 2. The numbers associated with v2 have the form 4n since a0,a1 are

already determined to be 0. Then the vertex descending from v2 with a2 = 0 is

associated with the numbers the form 8n. Then

f (8n, t) = 27n(2n+2t +1) =⇒ ν2( f (8n, t))≥ 7

since n(2n+2t +1) is even for all n ∈ Z. The other vertex with a2 = 1 is associated

with the numbers of the form 8n+4. We see that

f (8n+4, t) = 27(2n+1)(n+ t +1) =⇒ ν2( f (8n+4, t))≥ 7

since (2n+1)(n+ t +1) could be either even or odd depending on the choices of n

and t. Thus, both vertices descending from v2 are non-terminating.

(iii) Let k > 2 and vk be a non-terminating vertex descending from v2 with a2,a1,a0 = 0.

Then vk has numbers of the form 2kn+bk−1, and the numbers associated with vertices

at level k+1 beneath v have the form

Nk = 2k+1n+2kak +bk−1,

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0.

Since we are on the left branch, ak−1, . . .a0 are already determined to be 0. Thus, we

have bk−1 = 0 and Nk = 2k+1n+2kak. The induction hypothesis states that

f (bk−1, t) = 4b2
k−1 +(32t +16)bk−1 ≡ 0 (mod 2k+4)

so that ν2( f (bk−1, t))≥ k+4. Consider the congruence

f (Nk, t) = 4N2
k +(32t +16)Nk ≡ 0 (mod 2k+5)

that is,

4(2k+1n+2kak)
2 +(32t +16)(2k+1n+2kak)≡ 0 (mod 2k+5) (24)
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We solve (24) for the unknown ak.

2k+5n+22k+4n2 +2k+6nt +2k+4ak +22k+4nak +2k+5tak +22k+2a2
k ≡ 0 (mod 2k+5)

2k+4ak ≡ 0 (mod 2k+5)

ak ≡ 0 (mod 2)

as the solution for ak. Therefore, the vertex ak = 1 terminates with valuation k+5,

and the other vertex with ak = 0 has valuation of at least k+5.

(iv) Let k > 2 and vk be a non-terminating vertex descending from v2 with a2 = 1, and

a1,a0 = 0. Then vk has the form 2kn+bk−1, and the numbers associated with vertices

at level k+1 beneath v have the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0.

Since a0, a1, and a2 are already determined to be a0,a1 = 0, and a2 = 1, then

bk−1 = 2k−1ak−1 + . . .+23a3 +4. (25)

The induction hypothesis states that

f (bk−1, t) = 4b2
k−1 +(32t +16)bk−1 ≡ 0 (mod 2k+4)

so that ν2( f (bk−1, t))≥ k+4. Consider the congruence

f (Nk, t) = 4N2
k +(32t +16)Nk ≡ 0 (mod 2k+5)

which expands and simplifies to

2k+4ak +2k+4nbk−1 +2k+3akbk−1 +4b2
k−1 +32tbk−1 +16bk−1 ≡ 0 (mod 2k+5).

(26)
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We solve (26) for the unknown ak. Note that (26) can be rewritten as

2k+4ak +2k+4nbk−1 +2k+3akbk−1 ≡−(4b2
k−1 +32tbk−1 +16bk−1) (mod 2k+5).

(27)

By the induction hypothesis, 4b2
k−1 + 32tbk−1 + 16bk−1 = 2k+4m for some m ∈ Z.

From (25), we have 2k+4nbk−1 = 2k+6np and 2k+3akbk−1 = 2k+5q for some p,q ∈ Z.

Then (27) becomes

2k+4ak +2k+6np+2k+5akq≡−(2k+4m) (mod 2k+5)

which reduces to

ak ≡−m (mod 2)

as the solution to (26). It follows that the vertex descending from v with ak 6≡

−m (mod 2) terminates with valuation k+5, and the other vertex has valuation of at

least k+5.

The double-infinite branching class discussed above is only a small subset of the list of

double-infinite branching trees of Ulam diagonal sequences. However, the vertices in which

the double-branching pattern occurs in these trees are inconsistent, making the analysis of

their valuation patterns difficult.
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CHAPTER VII: CONCLUSION

In this paper, we showed that the 2-adic valuations of several sequences associated with

Ulam square spirals could be expressed as binary trees. For sequences that produced finitely

many valuations, explicit closed forms were easily achieved using simple factorization.

Although we were unable to find explicit closed forms for sequences with infinitely many

valuations, we proved by induction that the valuation trees of these sequences are non-

terminating using an adaptation of the Hensel’s lemma. Our observations revealed that there

are some characteristics that are shared among different trees and thus different classes of

trees are formed. We selected some classes and proved that all trees in these classes have

the same characteristics.

There are still many unsolved questions regarding the 2-adic valuations of Ulam square

spirals that could be used for future work. We listed some of these questions below:

• Are there infinitely many distinct classes of 2-adic valuation trees of Ulam diagonal

sequences?

• Could the recurrence technique shown in Chapter 5 be generalized as a tool to prove

arbitrary valuation trees?

• We have shown that some trees always branch left or right; however, this is not the

case for every tree. Suppose we are at a non-terminating vertex at level k of a tree, is

it possible to explicitly predict whether the vertex will branch left or right?

• All trees used in this study were constructed using the explicit formulas of their

sequences. If a sequence does not have an explicit formula, how might we construct

its valuation tree?
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