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Figure 12: 2-adic valuation tree of root vertex and first level

numbers 2k+1 terminates. This completes the first level of the tree. Figure 12 describes the

process above with a 2-adic valuation tree.

Since the even vertex at level 1 is non-terminating, it splits into 2 vertices at level 2.

These vertices have the form 4l and 4l+2. We repeat the same substitution process as above.

By substituting 4l, we have

ν2(4(4l)2 +48(4l)+16) = ν2(24(4l2 +12l +1))

= ν2(24)+ν2(4l2 +12l +1)

= 4+ν2(4l2 +12l +1) = 4

which implies that the vertex with numbers 4l terminates. By substituting 4l +2,

ν2(4(4l +2)2 +48(4l +2)+16) = ν2(26(l2 +4l +2))

= ν2(26)+ν2(l2 +4l +2)

= 6+ν2(l2 +4l +2)≥ 6

which implies that the vertex with numbers 4l +2 is non-terminating. This completes the

second level of the tree. Figure 13 extends Figure 12 to include the second level of the tree.

We repeat the same process again since the vertex with numbers 4l +2 at level 2 is non-

terminating. This vertex splits into 2 vertices at level 3 with the left vertex having numbers

of the form 8m+2 and the right vertex having numbers 8m+6. Then by substitution, we
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Figure 13: 2-adic valuation tree of root vertex and first two levels

have

ν2(4(8m+2)2 +48(8m+2)+16) = ν2(27(2m2 +4m+1))

= ν2(27)+ν2(2m2 +4m+1)

= 7+ν2(2m2 +4m+1) = 7

which implies that the vertex with numbers 8m+2 terminates. Next, we substitute in 8m+6,

ν2(4(8m+6)2 +48(8m+6)+16) = ν2(26(4m2 +12m+7))

= ν2(26)+ν2(4m2 +12m+7)

= 6+ν2(4m2 +12m+7) = 6

which implies that the vertex with numbers 8m+6 also terminates. This completes the third

level and the tree since there is no non-terminating vertex left. Figure 14 shows the complete

2-adic valuation tree.

We compare this result to the one generated by a tree drawing package in Mathematica

[5]. This tree package takes an integer sequence as input and generates a conjecture 2-adic

valuation tree up to the specify depth. Figure 15 shows the 2-adic valuation tree of the

diagonal sequences p(n) = 4n2 +48n+16 generated in Mathematica. We see that the trees

in both Figure 14 and 15 are the same. We will use this tree drawing package to assist in

selecting sequences and form conjecture of the 2-adic valuation trees of different square

spiral sequences in later chapters.
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Figure 14: Complete 2-adic valuation tree of 4n2 +48n+16

Figure 15: 2-adic valuation tree of 4n2 +48n+16 generated in Mathematica

Theorem III.5.1 (2-adic valuation of diagonal sequence 4n2 +48n+16).

ν2(4n2 +48n+16) =


2 if n≡ 1 (mod 2)
4 if n≡ 0 (mod 4)
6 if n≡ 6 (mod 8)
7 if n≡ 2 (mod 8).
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Proof of Diagonal Sequences of Ulam spiral

We show that all diagonal sequences of the Ulam spiral have the form 4n2+bn+c. This

was partially proved by Myerson on Math Stack Exchange [7]. We extend this partial result

to provide a complete proof in this section. First, we make some observations about the

diagonal sequences on the Ulam spiral. Figure 16 shows some diagonal sequences on the

Ulam spiral.

101 100 99 98 97 96 95 94 93 92 91
102 65 64 63 62 61 60 59 58 57 90
103 66 37 36 35 34 33 32 31 56 89
104 67 38 17 16 15 14 13 30 55 88
105 68 39 18 5 4 3 12 29 54 87
106 69 40 19 6 1 2 11 28 53 86
107 70 41 20 7 8 9 10 27 52 85
108 71 42 21 22 23 24 25 26 51 84
109 72 43 44 45 46 47 48 49 50 83
110 73 74 75 76 77 78 79 80 81 82
111 112 113 114 115 116 117 118 119 120 121

Figure 16: Ulam spiral with some diagonal sequences

Let {an} be the diagonal sequence {3,13,31,57,91, . . .} for n≥ 1. Observe that

a2−a1 = 13−3 = 10

a3−a2 = 31−13 = 18

a4−a3 = 57−31 = 26

a5−a4 = 91−57 = 34

and

(a3−a2)− (a2−a1) = 18−10 = 8

(a4−a3)− (a3−a2) = 26−18 = 8

(a5−a4)− (a4−a3) = 34−26 = 8.

Therefore, {an} has the non-homogeneous recurrence relation

8 = (an−an−1)− (an−1−an−2) = an−2an−1 +an−2.
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A quick verification using terms from {an} shows that

31−2(13)+3 = 8, 57−2(31)+13 = 8, 91−2(57)+31 = 8.

This non-homogeneous recurrence relation also holds for other diagonals sequence as well.

101 100 99 98 97 96 95 94 93 92 91
102 65 64 63 62 61 60 59 58 57 90
103 66 37 36 35 34 33 32 31 56 89
104 67 38 17 16 15 14 13 30 55 88
105 68 39 18 5 4 3 12 29 54 87
106 69 40 19 6 1 2 11 28 53 86
107 70 41 20 7 8 9 10 27 52 85
108 71 42 21 22 23 24 25 26 51 84
109 72 43 44 45 46 47 48 49 50 83
110 73 74 75 76 77 78 79 80 81 82
111 112 113 114 115 116 117 118 119 120 121

Figure 17: Rings on Ulam spiral

Observe from Figure 17 that the first ring has 1 element, and the second ring has 8

elements. The third ring has 16 elements, then 24, 32, 40, and so on. The numbers of

elements on each ring, aside from the first, increase by 8 between each ring. Since each

number of a diagonal sequence lies on a different ring, it follows that the second difference

of these numbers also increases by 8.

For example, consider the diagonal sequence {10,24,46,76,114, . . .}, we have

46−2(25)+10 = 8, 76−2(46)+24 = 8, 114−2(75)+46 = 8.

Likewise for the diagonal sequence {6,18,38,66,102, . . .},

38−2(18)+6 = 8, 66−2(38)+18 = 8, 102−2(66)+38 = 8.

Therefore, all diagonal sequences of the Ulam spiral are defined by the non-homogeneous

recurrence relation an−2an−1 +an−2 = 8. We solve this relation for a closed-form.

We shift the index of an−2an−1 +an−2 = 8 to get

an+2−2an+1 +an = 8. (8)
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Then the general solution of (8) is

an = a(h)n +a(p)
n (9)

where a(h)n is the solution of the corresponding homogeneous recurrence relation of (8) and

a(p)
n is the particular solution of (8).

The corresponding homogeneous recurrence relation have the form an+2+an+1+an = 0

with characteristic polynomial x2−2x+1. The roots of this polynomial is x = 1 with a mul-

tiplicity of 2. Therefore a(h)n = A(1n)+Bn(1n) = A+Bn is the solution of the corresponding

homogeneous recurrence relation.

We now solve for the particular solution a(p)
n . Assume a(p)

n = αn2 + βn + γ . We

substitute a(p)
n into (8) and get

8 = [α(n+2)2 +β (n+2)+8]−2[α(n+1)2 +β (n+1)+8]+ (αn2 +βn+8)

= [α(n2 +4n+4)+βn+2β +8]−2[α(n2 +2n+1)+βn+β +8]+ (αn2 +βn+8)

= αn2 +4αn+4α +βn+2β +8−2αn2−4αn−2α−2βn−2β −16+αn2 +βn+8

= 2αn2 +4αn+4α +2βn+2β +16−2αn2−4αn−2α−2βn−2β −16

= 2α.

So 8 = 2α which implies α = 4. Therefore a(p)
n = 4n2 +βn+ γ with arbitrary β and γ .

Then the solution of (9) is

an = A+Bn+4n2 +βn+ γ = 4n2 +(B+β )n+(A+ γ)

Let b = B+β and c = A+ γ , then we have

an = 4n2 +bn+ c (10)

as the solution of the non-homogeneous recurrence relation an+2+an+1+an = 8. Therefore,

all diagonal sequences of Ulam spiral are defined by (10).

To verify this result, consider the diagonal sequence {3,13,31,57,91, . . .}. We have
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a1 = 3 and a2 = 13. By substitution, we have a system of two equations

3 = 4+b+ c

13 = 16+2b+ c

Solving this system yield b =−2 and c = 1. Then {3,13,31,57,91, . . .} is defined by the

quadratic polynomial 4n2−2n+1. We use Mathematica to find the sequence generated by

f (n) = 4n2−2n+1 for n≥ 1. We found that

f (n) = {3,13,31,57,91,133,183, . . .},

which matched our sequence.

Likewise, for the diagonal sequence {6,18,38,66,102, . . .}, we have a1 = 6 and a2 = 18.

By similar procedure as above, we found that b = 0 and c = 2. Then 4n2+2 is the quadratic

polynomial that generates {6,18,38,66,102, . . .}. Let f (n) = 4n2 +2 for n≥ 1, then

f (n) = {6,18,38,66,102,146,198, . . .},

which matched the diagonal sequence.
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CHAPTER IV: PROOFS OF SOME ULAM DIAGONAL SEQUENCES

In this chapter, we state the 2-adic valuations of some diagonal sequences of the Ulam

spiral. We prove these statements by showing that their valuations can be represented by

2-adic trees.

Proof of Diagonal Sequence 4n2 +48n+16 Valuation

Theorem IV.1.1 (2-adic valuation of diagonal sequence 4n2 +48n+16).

ν2(4n2 +48n+16) =


2 if n≡ 1 (mod 2)
4 if n≡ 0 (mod 4)
6 if n≡ 6 (mod 8)
7 if n≡ 2 (mod 8).

Proof. See Example 3.2 in Chapter 3.

Proof of Diagonal Sequence 4n2 +2n+4 Valuation

The Ulam spiral sequence {10,24,46,76,114,160,214,276, . . .} is generated by the

quadratic polynomial 4n2+2n+4 and has 2-adic valuations {1,3,1,2,1,5,1,2, . . .}. Figure

18 shows the listplot of the 2-adic valuations of this sequence while Figure 19 shows the

2-adic tree to a depth of 3.

Figure 18: 2-adic listplot of 4n2 +2n+4.

Observe that at each level k, the terminating vertex has valuation exactly k, and the other

non-terminating vertex has valuation at least k. Since this 2-adic tree appears to be non-

terminating, we rely on the technique used by Almodovar et al [1], which is an adaptation of
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Figure 19: 2-adic tree of the sequence 4n2 +2n+4.

Hensel’s Lemma (Theorem 2.20) [12]. Using this lifting technique, we show that the 2-adic

valuation of the diagonal sequence 4n2 +2n+4 is infinite and can be captured by such a

tree.

Theorem IV.2.1. Let v be a non-terminating node in the valuation tree of ν2(4n2 +2n+4)

at the k-th level with k ≥ 1. Then v splits into two vertices at the (k+ 1)-th level. One

terminates with valuation k+1. The other has valuation of at least k+2.

Proof. Let f (n) = 4n2 +2n+4. The numbers associated with the vertex v at level k have

the form 2kn+bk−1, and the numbers associated with vertices at level k+1 beneath v have

the form

Nk = 2k+1n+2kak +bk−1

where

bk−1 = 2k−1ak−1 + . . .+2a1 +a0

has been determined. The induction hypothesis is that

f (2kn+bk−1)≡ 0 (mod 2k+1)

22k+2n2 +2k+3nbk−1 +2k+1n+4b2
k−1 +2bk−1 +4≡ 0 (mod 2k+1)

4b2
k−1 +2bk−1 +4≡ 0 (mod 2k+1)
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so that ν2(4b2
k−1 + 2bk−1 + 4) ≥ k+ 1. Whether the numbers associated with vertices at

level k+1 beneath v is terminating or not depends on the choice of ak = 0 or ak = 1. Hence,

consider the congruence

f (Nk) = 4N2
k +2Nk +4≡ 0 (mod 2k+2)

that is,

4[2k+1n+2kak +bk−1]
2 +2[2k+1n+2kak +bk−1]+4≡ 0 (mod 2k+2)

22k+4n2 +22k+4nak +22k+2a2
k +2k+4nbk−1 +2k+3akbk−1 +2k+2n+2k+1ak

+4b2
k−1 +2bk−1 +4≡ 0 (mod 2k+2)

which reduces to

4b2
k−1 +2k+1ak +2bk−1 +4≡ 0 (mod 2k+2). (11)

We solve (11) for the unknown ak. Note that (11) can be rewritten as

2k+1ak ≡−(4b2
k−1 +2bk−1 +4) (mod 2k+2)

By the induction hypothesis, 4b2
k−1 +2bk−1 +4 = 2k+1m for some m ∈ Z.

2k+1ak ≡−(2k+1m) (mod 2k+2)

ak ≡−m (mod 2)

as the solution to (4.1). Therefore the vertex descending from v with ak 6≡ −m (mod 2)

terminates with valuation k+1, and the other vertex has valuation at least k+2.

We will discuss the 2-adic valuations of other diagonal sequences more in Chapter 6

where we classify some diagonal sequences based on similar tree patterns.
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CHAPTER V: PROOFS OF SOME NON-DIAGONAL ULAM SEQUENCES

We explore and prove the 2-adic valuation trees of some non-diagonal Ulam sequences

in this chapter.

Proof of A156859 Tree

From the OEIS, the sequence A156859 is the sequence of the main column of a version

of the square spiral with a center of zero (Figure 2). It is defined by the function f (n) = n2+

n+
⌊n+1

2

⌋
for n ∈ N. This function generates the sequence {0,3,7,14,22,33,45,60, . . .}

with 2-adic valuations {∞,0,0,1,1,0,0,2, . . .}. Figure 20 shows the listplot of the 2-adic

Figure 20: 2-adic listplot of A156859.

valuations of this sequence. From Figure 20, it is easy to see a distinct pattern of the 2-adic

valuations of this sequence. Figure 21 shows the 2-adic tree of A156859 up to the fifth level.

Again, we use the lifting technique to show that the 2-adic tree of A156859 is infinite

and non-terminating.

Theorem V.1.1 (2-adic tree of A156859). Let v be a non-terminating node of f (n) =

n2 +n+
⌊n+1

2

⌋
at the k-th level with k ≥ 1. Then v splits into two vertices at the (k+1)-th

level. For even n, the one with ak = 1 terminates with valuation k−1. The other with ak = 0

has valuation of at least k. For odd n, the one with ak = 0 terminates with valuation k−1.

The other with ak = 1 has valuation of at least k.
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