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ABSTRACT 

Staphylococcus epidermidis is a human pathogen that is increasingly known for 

its role in hospital infections associated with implantable medical devices. Antibiotic 

resistance has become a concerning issue for these infections as this bacteria have various 

virulence traits that help to evade immune response and antibiotic treatment. Currently, 

the most effective way to treat S. epidermidis infection is removal of the implant and 

long-term antibiotic treatment. S. epidermidis causes infection by expressing several 

protein factors that induce biofilm formation, the bacteria’s primary virulence 

mechanism. The purpose of this study was to perform the phenotypic characterizations of 

the msaABCR operon in S. epidermidis, and we hypothesized that msaABCR may play a 

role in biofilm formation, protease production, urease production, and deoxyribonuclease 

production. To test this hypothesis, we constructed a mutant strain by deleting the 

msaABCR operon from the wild-type strain RP62A. The mutant was later used in several 

phenotypic assays to observe its activity in biofilm formation, protease production, PIA 

quantification, and urease production. The msaABCR mutant of RP62A showed increased 

biofilm relative to RP62A after 24hr incubation. However, the msaABCR mutant showed 

reduced biofilm compared to RP62A after 48- and 72 hr incubation. Increased protease 

and urease production was also observed in the msaABCR mutant relative to RP62A. This 

study provides insights on the role of the msaABCR operon in S. epidermidis virulence 

mechanisms as it relates to biofilm formation. 

 

Keywords: Staphylococcus epidermidis; msaABCR; RP62A; biofilm formation; protease 

production; PIA quantification 
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 INTRODUCTION 

Staphylococci are Gram-positive microorganisms that can cause nosocomial 

infections in human. Staphylococci are also associated with chronic infection related to 

medical implants inserted in human body (1). Staphylococcus epidermidis was classified 

as a coagulase-negative staphylococci (CoNS), a heterogeneous group lacking coagulase, 

a blood-clotting enzyme (2). As a generally harmless and beneficial organism of the 

human skin flora, S. epidermidis majorly has been found to colonize moist areas of the 

body, including the armpit, conjunctiva, and groin (2). As a commensal bacterium for the 

skin and for maintaining homeostatic functions (3), it has additionally become known for 

its relation to nosocomial infections. 

 Today, S. epidermidis has shown to be an invasive, opportunistic pathogen in 

foreign material related infections (FMRI) (4) and in procedures that use implanted 

medical devices (3). The materials used in these procedures can be natural or synthetic 

and are referred to as biomaterials. Using biomaterials as implants has shown to replace 

or repair compromised tissue. However, this material has become vulnerable to several 

problems, bacterial infections being the most prominent (5, 6). S. epidermidis infections 

have occurred in procedures involving central venous catheters (CVC), artificial heart 

valves, prosthetic joints, prosthetic valves, and cerebrospinal fluid (7, 8). Patients with 

predisposing factors, such as congenital immune defects or concomitant medical 

conditions, have higher risks of developing a disease from a S. epidermidis infection (3, 

9). A study revealed S. epidermidis to be the cause of a majority of hospital-acquired 

bloodstream infections related to catheters in the United States (3, 10). Additionally, the 

Surveillance and Control of Pathogens of Epidemiological Importance (SCOPE) revealed 
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the leading cause of hospital-acquired bloodstream infections to be from CoNS (3, 10). 

Out of the CoNS isolates, eighty percent were identified to be S. epidermidis (3). 

Annually, approximately 80,000 central venous catheter infections occur in the United 

States, caused by S. epidermidis (1, 11). Therefore, understanding the mechanisms by 

which biofilm formation in S. epidermidis strains occurs and its association with the 

bacteria’s virulence is important for developing new methods to prevent future 

occurrences of infection. 

 S. epidermidis’s increasing emergence as a pathogen has been connected with its 

ability to form biofilm on medical devices (2). Staphylococcus aureus, which is another 

Gram-positive bacteria, posses several virulence factors to cause infection besides 

forming robust biofilms in humans. However, compared to S. aureus, S. epidermidis does 

not produce a similar level of virulence factors, but instead, its abilities to form biofilms 

on the surface of medical devices and on native tissues has shown to be the virulence 

mechanism causing infections (1). The three stages of biofilm development include 

primary attachment, proliferation of matured biofilm, and detachment (1). Research has 

shown that multi-functional protein factors, Aap (accumulation-associated protein) and 

Embp (extracellular matrix binding protein), are prominent contributors to the pathogen’s 

biofilm formation abilities of adhering on the surface and intracellularly (3). Treatment of 

infections caused by the bacterium have shown to be difficult because of its extreme 

resistance toward antibiotics. Factors derived from the bacteria, such as PIA 

(polysaccharide intracellular adhesin), Aap, and Embp, have been responsible for 

protecting S. epidermidis from host cell-mediated effector cells (1). The abilities of these 

factors have contributed to the bacteria’s ability to evade the host immune system and 
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survive antibiotic treatments. Despite the current methods of treatment for implant 

infections through high doses of antimicrobials and antibiotics, surgical removal of the 

implant along with long-term antimicrobial therapy have shown to be more effective (6). 

Previous studies from our lab showed that the msaABCR operon plays role in several 

different staphylococcal phenotypes like biofilm formation, virulence regulation, persister 

cells formation, cell wall biosynthesis, and antibiotic resistance in Staphylococcus aureus 

strains. Therefore, we hypothesized that the msaABCR operon might also be involved in 

S. epidermidis phenotypes like biofilm formation and virulence. 
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  LITERATURE REVIEW 

2.1 Stages of Biofilm Development 

The mechanism of biofilm formation in S. epidermidis requires functional factors 

that can promote binding to the surface, promote cell-cell aggregation, and decompose 

matrix components (3,12). In the first stage of biofilm development, bacteria colonize the 

surface through adhesion. Despite the absence of specific receptor-ligand interactions, 

studies have shown the bacteria’s expression of cell surface proteins with extracellular 

matrix (ECM) binding activities mediates interactions with host ECM components. These 

proteins are thought to play a pivotal role in initiating infection because of the vast 

amounts of ECM material that covers foreign materials as they enter the body (3,7,13). In 

the second stage of biofilm formation, the accumulation process, the process of forming 

channels takes place to transport nutrients to the deeper layers of the biofilm matrix (14; 

1). The development and proliferation of the multilayer biofilm matrix is highly 

dependent on the expression of intercellular adhesin molecules. In the final stage of 

biofilm formation in S. epidermidis the biofilm clusters detach and spread to other areas 

of the body. 

2.2 Structural and Multifunctional Factors in S. epidermidis Biofilm Formation 

Three serine-aspartate repeat (Sdr) proteins, SdrF, SdrG and SdrH have been 

identified because of their role during primary attachment (3, 15). As microbial surface 

components recognizing adhesive matrix molecules (MSCRAMMS), Sdr proteins adhere 

to the implant surface through reversible non-covalent interactions (1, 13, 14). 

Irreversibly, the bacterial cells adhere to surfaces through dipole-hydrophobic 

interactions and ionic and hydrogen bonding. Additional surface molecules, 
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lipopolysaccharides and exopolysaccharides, also play a role in bacterial adhesion (6). It 

has been shown that the SdrG protein (called fibrinogen binding protein (Fbe)) on the 

surface of bacterial cells is necessary for attachment to the surface of the fibrinogen-

coated implant. SdrG has revealed a “dock, lock, and latch” mechanism for bacterial-

ECM interactions (3, 16, 17). The SdrF proteins have shown to be necessary for 

attachment of bacteria to implant surfaces coated with collagen I (3, 18). 

S. epidermidis autolysin AtlE is a protein whose role in cell wall turnover and 

binding to unmodified polystyrene is pivotal to bacteria attachment (3, 19). The 

recruitment and activation of AtlE has appeared to prompt changes in the hydrophobicity 

of the bacterial surface (3, 20). Specifically, in S. epidermidis, AtlE controls much of the 

autolysis that occurs (3, 21). AtlE has also revealed a role in extracellular DNA (eDNA) 

mediated S. epidermidis biofilm formation (3, 22). Released during cell lysis, studies 

have revealed eDNA to be a structural element in the formation of biofilm. Observations 

of S. epidermidis 1457 and S. epidermidis RP62A have shown that bacterial attachment 

to glass surfaces is evaded in the addition of DNase I. Aside from its role in attachment, 

eDNA has been known to have a role in stabilizing biofilm formation, as a result of its 

adhesion functions (3, 22, 23). 

One of the most important adhesins studied in S. epidermidis biofilm is PIA (3, 

7). First identified in S. epidermidis 1457 and RP62A, PIA, a product of the icaADBC 

operon, consists of a major polysaccharide I and a minor polysaccharide II (1, 3, 24). As 

the “hemagglutinin” of S. epidermidis, the expression of all icaADBC genes is required 

for PIA to function (3, 25). As an adhesin, PIA embeds adjacent S. epidermidis cells in an 
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interlaced structure of extracellular matrix (1, 26, 27). In PIA-independent biofilms, 

additional proteins, such as Embp and Aap, function as intracellular adhesins (1, 28). 

 Identified in 90% of strains of S. epidermidis isolates, Embp has become known 

as a significant factor in primary attachment and biofilm accumulation (3, 29). The 

structural component of Embp consists of FIVAR-GA repeats, which has contributed to 

the Fibrinogen-binding activity of the molecule (3, 30). A study revealed over-expression 

of Embp to enhance adherence on surfaces that were Fn-coated. Aside from boosting 

adherence, Embp-Fn interactions also showed to be important for accumulation on plastic 

surfaces. Aside from its role in bacterial attachment, Embp has also shown to function in 

bacterial accumulation by acting as an intercellular adhesin. These functions were 

identified in a study that revealed the overexpression of Embp1, a shortened isoform (3, 

31). The upregulation of Embp has also become known to correlate with resistance 

against phagocytosis (3, 28). Recently, studies have identified Embp as a likely candidate 

for preventive approaches against implant infections because of the inhibition anti-Embp 

antibodies demonstrated in S. epidermidis biofilm formation (3, 32).  

 Another molecule, Aap, has become known for its function in primary 

attachment, biofilm accumulation, and immune escape. Aap is a protein with an A- and 

B-domain, linked to the cell wall via its C-terminal anchor region. Localized to the 

surface of the bacteria, only minimum aggregates are found in the biofilm matrix (3, 27, 

28, 33). Studies have revealed the formation of extended fibers in Aap that cluster and 

protrude away from the cell wall (3, 26). One study revealed varying recombinant 

proteins found within the B-domain of Aap, along with two regions (G5 domain and E-

region). The interconnectedness of the two domains have shown to have thermodynamic 
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stabilities, which has led to the explanation of Aap’s formation of projecting fibers in 

harsh conditions (3, 34). Additional studies have revealed the B domain’s role in bacterial 

accumulation, revealing Aap’s function as an intercellular adhesin (3, 27, 25). Another 

mechanism involving the modification of surface epitopes by B repeat variations has 

been hypothesized to contribute to immune escape (3, 29). Aside from the B domain, the 

A domain of Aap has been discovered to play a role in bacterial attachment to artificial 

surfaces or epithelial cells (3, 36, 37). In a study investigating bacterial attachment in S. 

epidermidis isolates, a processed Aap isoform, lacking the A domain, revealed to have no 

effect on bacterial adherence. However, in a mature, unprocessed Aap containing the A 

domain, adherence was almost completely inhibited, following the deletion of Aap (3, 

36). Therefore, it was supported that mature, unprocessed Aap required the A domain for 

Aap-mediated adherence (3, 38). Studies have shown improved adherence in Aap 

expressing the A domain; therefore, it has been concluded that Aap’s function in S. 

epidermidis biofilm formation is characterized by the protein’s structurally distinctive 

domains (3, 27, 38).  

 Phenol-soluble modulins (PSMs), pro-inflammatory peptides, have revealed a 

pivotal role in biofilm dispersal (1, 39, 40). Producing six PSM peptides, δ-toxin and ß-

PSM have shown to be the most prevalent in S. epidermidis (1, 41, 42). Studies have 

identified ß-PSM as the peptide responsible for promoting detachment and dispersal of 

biofilm in infections (3, 40). It is believed that PSM contributes to biofilm dispersal by 

disrupting the non-covalent interactions between molecules in the biofilm matrix (1, 39). 
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2.3 Molecular Interactions and Regulation in S. epidermidis Biofilm Formation 

The S. epidermidis biofilm types (PIA-, Aap-, or Embp-) differ by morphological 

properties. The production of Aap in PIA-dependent biofilms forms a dense layer of 

bacteria that evenly covers the surface. However, in biofilms that rely on Embp, cells are 

not clustered, but produce a small amount of extracellular matrix containing Embp. 

Washing procedures have shown PIA-dependent biofilms to be more stable compared to 

Aap- or Embp-dependent biofilms (3, 28). Due to these properties, S. epidermidis is able 

to use adhesins to adapt to varying, changing environments. For example, in 

circumstances with stress exposure and factors of innate immunity, such as CVC 

infections, S. epidermidis strains are more likely to express icaADBC and form PIA-

dependent biofilms (3, 7, 43). 

Research has revealed the production of PIA, Aap, or Embp to be active during 

biofilm accumulation to promote cell aggregation. However, studies have shown a 

majority of S. epidermidis strains to carry all three genes, with none being sufficient on 

their own for mature biofilm formation (31, 44, 45). Other studies have shown that the 

intercellular adhesins play important roles during biofilm formation. Data has revealed 

stronger biofilm formation in strains with both aap and icaADBC as compared to strains 

with only aap or icaADBC (3, 46). Further bioinformatics have been analyzed to reveal 

the possible interaction between aap, embp, and PIA. The interaction between these 

adhesins has shown possible because of the Aap B domain binding activity and the Embp 

FIVAR regions sugar binding. As a result of the adhesins’ binding activity, interactions 

involving PIA have shown to be possible but not yet fully supported. Functional 

substitution among the three genes has also become evident in several studies. In a 
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treatment involving protease, the expression of icaADBC and PIA revealed to protect a 

Embp-producing S. epidermidis strain from proteolytic inhibition (3, 31). The biological 

properties of each adhesin molecule may provide an explanation as to how S. epidermidis 

can survive immune responses and changing host environments during colonization and 

infection. Through analysis of S. epidermidis strains, this idea was supported as the 

bacteria can differentially use specific adhesins to adapt to specific environments, such as 

those in the presence of host effector cells or osmotic stress (3, 28).   

2.4 Immune Evasion in S. epidermidis and Medical Relevance 

The innate immune response against staphylococcal infections involves the 

recruitment of effector cells by the complement system. The purpose of the effector cells 

is to label the bacteria to be identified and killed. The three pathways of complement 

activation (classical, alternative, and lectin) play a role in the immune response to S. 

epidermidis infection, producing an attack complex to kill the cells. While the alternative 

pathway plays a small role, it is believed that the classical and lectin pathways play a 

larger role in the rapid killing of the bacterial cells (1, 47). Biofilm formation in S. 

epidermidis has shown to protect the bacteria from uptake by effector cells (1, 48). 

PIA has shown to play an important role in S. epidermidis immune evasion. 

Studies have revealed PIA-producing S. epidermidis strains to be more virulent than 

isogenic PIA mutant strains (3, 49). As a prominent factor in biofilm accumulation, 

studies have also revealed a mechanism in which PIA forms a positively charged 

“capsule” around the bacteria. This mechanism has been known to protect S. epidermidis 

from immune recognition (1, 50). Additional mechanisms of PIA include the prevention 

of neutrophil attacks when bacterial clusters are broken down and protection against host 
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antimicrobial peptides (AMPs) (1, 24). Other adhesins, Aap and Embp, have also shown 

to protect S. epidermidis strains from phagocytosis (28, 31). In a catheter infection model, 

icaADBC and aap were inactivated and results were compared. While the inactivation of 

the ica operon had no effect on bacterial colonization, S. epidermidis was almost unable 

to infect the model when aap was inactivated (3, 38).   

Studies have suggested that PSMs are the only gene products in S. epidermidis 

that possess cytolytic functions (1, 51). PSMδ, specifically, has revealed highly cytolytic 

activity towards human neutrophils, contributing to the bacteria’s pathogenesis. Several 

mechanisms of PSM have resulted in a low inflammatory profile, potentially helping S. 

epidermidis evade the immune system and colonize medical device surfaces (1, 52). A 

recent study has observed PSM-mec, which is expressed in methicillin-resistant bacterial 

isolates, as a potential cause of bloodstream infections related to S. epidermidis implant 

infections and antibiotic resistance within S. epidermidis (1, 53). 

 

 

 

 

 

 

 

 

 

Figure 1: Representation of the biofilm matrix. (Composition and function of Staphylococcus 

epidermidis biofilms in immune evasion: Le et al. 2018. Immune Evasion Mechanisms of 

Staphylococcus epidermidis Biofilm Infection. Front Microbial (1)).  
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 Bacteremia has become a known result of bacterial dispersal from S. epidermidis 

biofilm on implant devices. The presence of CoNS in the bloodstream can result in 

further infection, leading to acute sepsis. With S. epidermidis being the most prevalent in 

these conditions, the immunocompromised and neonates have shown to be the most 

susceptible (2, 52). With S. epidermidis infections becoming more frequent, the 

emergence of antibiotic-resistant strains has become a large concern. The current, most 

effective method of treatment involves surgical removal along with long-term antibiotic 

therapy (2, 54). Because the immune response is not enough to treat the infection, a 

majority of S. epidermidis infections become chronic. The mechanism of biofilm 

formation and the function/regulation of S. epidermidis factors have provided more 

knowledge on the bacteria’s virulence. With virulence linked to biofilm formation, 

additional studies on colonization and host immune responses could potentially discover 

more effective methods for treating and preventing implant infections related to S. 

epidermidis (3). 

2.5 msaABCR operon 

Previously our laboratory characterized the msaABCR is a four-gene operon, 

containing genes (msaA, msaB, msaC, and anti-sense msaR) (58). As a non-protein 

coding RNA, msaC, has shown to be a regulator of the operon. Additionally, the anti-

sense msaR was also shown to be expressed differentially on growth-dependent fashion, 

thus indicating its role in the regulation and/or expression of the msaABCR operon. The 

anti-sense msaR has also been found to be complementary to the 5’ end of the msaB 

gene. The only apparent protein coding gene found in the operon is msaB which encodes 

MsaB. Our previous studies have shown that, in S. aureus, the MsaB protein in the 
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msaABCR operon is the dual transcriptional regulator, functioning as both an activator 

and repressor (55-57). Our findings revealed that the operon positively regulates biofilm 

development and represses protease production, indicating its role in S. aureus virulence. 

Previous studies showed that deletion of the msaABCR operon resulted in increased 

processing of Atl and increased protease activity. These increases caused autolysis to 

occur which resulted in defective biofilm in S. aureus (58). 

 

Figure 2: Representation of the msaABCR operon. Identification of the RNAs was done by rapid 

amplification of cDNA ends (RACE) and Northern blot analysis, which is represented by the long 

thin arrows with nucleotides length and direction. Short thick arrows represent the direction and 

position of gene-specific primers used in various reactions (57).  
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 METHODS 

3.1 Bacterial Strains and Media Used.  

Staphylococcus epidermidis strain RP62A and its msaABCR mutant were used in 

this research. S. epidermidis strains were grown in tryptic soy broth (TSB) medium. The 

bacterial strains used in this study is shown in Table 1. 

Table 1. Bacterial Strains and Plasmid used in this study. 

Strains Description/Genotype                        Source 

Staphylococcus epidermidis 

(RP62A) 

Methicillin resistant NARSA 

msaABCR mutant msaABCR operon deletion 

mutant in RP62A 

(57) 

Complementation msaABCR+pCN34.msaABC

R in msaABCR mutant 

RP62A 

This Study 

pCN34 plasmid Low copy number shuttle 

vector 

NARSA 

 

3.2 Deletion of msaABCR operon from S. epidermidis RP62A 

A mutagenesis protocol was used to construct a nonpolar, in-frame deletion of the 

msaABCR operon in the S. epidermidis RP62A as previously described (57). The flanking 

regions of the msaABCR operon were amplified by polymerase chain reaction (PCR) and 

ligated together at a BamHI restriction site. The primers used to amplify the msaABCR 

operon flanking regions are listed in Table 2. Using the Gateway BP Clonase Enzyme 

Mix (Invitrogen Inc.), the PCR product was inserted into a temperature-sensitive plasmid 

pKOR1. The pKOR1-msa operon deletion construct was introduced into S epidermidis 
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RP62A. The culture was grown in TSB with 10µg / ml of chloramphenicol (CAM) at 

30°C. Cells were plated on tryptic soy argar (TSA) containing CAM at 43°C, a non-

permissive temperature for pKOR1 replication. Colonies were picked and allowed to 

grow in TSB at 30°C and plated on TSA containing 100 ng/ml of anhydrotetracycline, 

which induces antisense secY RNA expression promotes loss of plasmid. Two rounds of 

temperature shifts were necessary to isolate the deletion mutant. The deletion of 

msaABCR in RP62A was verified by PCR, and functional assays were performed. 

 

3.3 Construction of Complemented Strain 

Competent S. epidermidis cells were prepared to increase the permeability of the 

S. epidermidis cell membranes for transformation. 250 ml of B media (1% peptone, 0.5% 

yeast extract, 0.1% glucose, 0.5% NaCl, and 0.1% K2HPO4) were prepared prior to 

preparation of the cells. The pH of B media was adjusted to 7.4. The overnight culture of 

S. epidermidis, grown in 25 ml of B media, was diluted to OD600 of 0.1 into 25 ml of pre-

warmed B media and shaken at 250 rpm. The cells were grown to an OD600 of 2.0 and 

diluted into 50 ml of pre-warmed B media to an OD600 of 0.1. Once cells reached mid-

exponential phase (OD600 = 0.5-0.65), they were pelleted by centrifugation at 4ºC for 10 

min. The cells were washed with 1, 1/2, 1/20, and 1/50, volumes of cold 10% glycerol, 

pelleting between washes at 4ºC. The final cell pellet was resuspended in 700 μl of cold 

10% glycerol. The sample was aliquoted to 60 μl and stored at -80ºC. To transform S. 

epidermidis cells with plasmid DNA, electroporation was performed. The prepared cells 

were thawed at room temperature for 5 min. The recombinant plasmid (pCN34 

containing the functional copy of msaABCR operon) was added to the RP62A competent 
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cells and incubated at room temperature for 30 min. At room temperature, 

Electroporation was performed at 2kV, 25 uF capacitance, and 100 ohms resistance. The 

cells were resuspended in 950 μl of rich medium, with antibiotics added if necessary. The 

cells were shaken at 250 rpm for 4 hr at 37ºC and plated on selective media (TSB 

containing 50 ug/ml of kanamycin). The msaABCR operon gene in the complemented 

strain was under the control of its native promoter. The primers used to make the 

complementation plasmid pCN34.msaABCR are listed in Table 2. 

Table 2. List of Primers used in this study. 

  Primer Sequence (5′ to 3′) Reference 

Primers for msaABCR operon deletion 

Upstr F ATTGGGATGGTACCTGGCCGTTCAATTGTTGGA This study 

Upstr R ATGCCCAGGATCCGAATTATGACTATCTCA This study 

Dnstr F AATACTGGATCCTTTGTTCGTATGTAGTAAATTC This study 

Dnstr R GCATTCTTGGTCGACGTGTATACGAGTCTACTAAGTTA This study 

Primers for complement construct  

FP AGCGCGGATCCTATCAATATGATTTCGCTTA This study 

RP ATGAGGAATTCGTTGCGTGTAAAATCTAAATCCTACA This study 

 

3.4 Biofilm Assay 

To study the effect of varying growth conditions on the formation of biofilm in 

the wild type RP62A, msaABCR mutant, and complemented strain, a modified biofilm 

assay was performed as previously described (57, 59). Briefly, overnight cultures of S. 

epidermidis cells were grown. Nine wells were inoculated with 1.5 ml of culture diluted 

to an OD600 of 0.05 in TSB supplemented with 0.25% glucose and 3% NaCl. Three wells, 
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pre-coated with 25% human plasma, were inoculated with 1.5 ml of culture diluted to an 

OD600 of 0.05 in TSB supplemented with 0.25% glucose and 3% NaCl. Nine wells were 

inoculated with 1.5 ml of culture diluted to an OD600 of 0.05 in TSB. Three wells, pre-

coated with 25% human plasma, were inoculated with 1.5 ml of culture diluted to an 

OD600 of 0.05 in TSB. Plates were incubated with shaking at 150 rpm for 24, 48, or 72 

hours. The biofilm was washed with 1x PBS, fixed with 100% ethanol, stained with 

crystal violet, washed three times with 1x PBS, and eluted with 5% acetic acid. The 

eluted stain was transferred to a microtiter plate, and the biofilm was quantitated at 595 

nm. Three separate experiments were performed in triplicate, and the mean values were 

recorded. 

 

3.5 Congo Red Binding Assay 

To detect extracellular polysaccharide in S. epidermidis, slight modifications of a 

Congo red binding assay were performed. Briefly, overnight cultures were diluted to an 

OD600 and normalized to the smallest OD reading in TSB. Plates were inoculated with 10 

μl of cells and incubated at 37ºC for 24 hours. The colonies were observed for color-

producing pigmentation. Overnight cultures were diluted to an OD600 of 0.05 in TSB. 100 

μl of cells were inoculated in 5 mL Congo Red broth and incubated at 37ºC for 24 hours. 

Cells were removed by centrifugation, and the absorbance of the supernatant was 

measured at 498 nm. 
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3.6 Protease Assay 

Assays were performed to determine the protease activity of S. epidermidis cells. 

Protease activity was measured from the supernatants of overnight cultures as previously 

described (57, 59). Briefly, overnight cultures were diluted to an OD560 of 0.05 in TSB. 

Centrifugation for 5 min at 15,000 rpm was used to harvest and separate the cells. The 

supernatant was collected, and filter sterilized using a 0.45 um syringe filter. 300 μl of 

supernatant was mixed with 800 μl of 3 mg azocasein ml-1 in Tris-buffered saline (pH 

7.5). TSB was the blank control. The samples were incubated overnight in the dark at 

37ºC. 400 μl of 50% trichloracetic acid was added to precipitate undegraded azocasein 

and centrifugation for 10 min at 15,000 rpm was used. The absorbance, OD340, was 

measured. Two separate experiments were performed in triplicate, and the mean values 

were recorded. 

 

3.7 Urease Assay 

Assays were performed to determine urease activity of S. epidermidis cells. 

Stuart’s Urea Broth was made and filter sterilized. Cells were inoculated in 5mL TSB and 

incubated at 37ºC for 2 hours. The cultures were diluted to an OD600 of in Urea Broth and 

incubated at 37ºC for 24 hours. Following incubation, 1 mL of culture was centrifuged at 

12,000 rpm for 5 min. In a microtiter plate, 200 μl of supernatant was added to the wells 

and the absorbance at 560 nm was measured. Two separate experiments were performed 

in triplicate, and the mean values were recorded. 
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3.8 DNase Test 

To determine the production of deoxyribonuclease in S. epidermidis cells, a 

DNase test was performed. DNase Test Agar with toluidine blue was made. Overnight 

cultures were diluted to an OD600 and normalized to the smallest OD reading in TSB. The 

agar plates were inoculated with cells and incubated at 37ºC for 24 hours. The zone of 

clearance as a result of nuclease activity was assessed. 

 

3.9 Statistical Analysis 

In this study, all the statistical analyses to test for significance were performed by 

using one-way ANOVA followed by a post-hoc Tukey test with OriginPro software 

(Originlab, Northampton, MA). A significance level of 0.05 was set as the cutoff value to 

determine the significant difference between the test groups.  
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 RESULTS 

4.1 Biofilm Formation 

4.1.1 Biofilm Formation by the msaABCR mutant of RP62A 

We performed microtiter-based biofilm formation assay in TSB and Biofilm media. The 

Biofilm plates were harvested after 24-, 48-, and 72 hr for the absolute quantification of 

biofilm after the fixing and staining process. After 24 hr of incubation, we observed that 

the msaABCR mutant formed 2.35- and 2.64- fold increased biofilm in TSB and Biofilm 

medium respectively relative to wild type RP62A (Fig 3). 

 

 

 

 

 

 

 

 

 

Figure 3: Biofilm Formation Assay (24hr). Graph comparing the biofilm growth of S. epidermidis 

after 24hr incubation with growth conditions of TSB and Biofilm media (TSB supplemented with 

0.25% dextrose and 3.0% NaCl). Values show the percent activity relative to wild-type RP62A, 

set as 100%. All the values were analyzed using one-way ANOVA followed by a post-hoc Tukey 

test. Error bars indicate standard errors of the means. A P-value of < 0.05 was considered 

statistically significant (**p-value < 0.05). 
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Interestingly, after 48 hr of incubation, the msaABCR mutant showed reduced biofilm 

formation in TSB media, but showed increased biofilm formation in biofilm media (Fig 

4). Likewise, after 72 hr, the msaABCR mutant showed reduced biofilm formation (> 2-

fold) in both TSB and biofilm media (Fig 5). These results suggest that the msaABCR 

mutants’ biofilm formation is dependent in growth and the media conditions. Although, 

the msaABCR mutant of RP62A showed increased biofilm formation during the initial 

stages, it showed defective biofilm formation at the later stages (after 48 hr).  

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

Figure 4: Biofilm Formation Assay (48hr). Graph comparing the biofilm growth of S. epidermidis 

after 48hr incubation with growth conditions of TSB and TSB supplemented with 0.25% dextrose 

and 3.0% NaCl. Values show the percent activity relative to RP62A, set as 100%. All the values 

were analyzed using one-way ANOVA followed by a post-hoc Tukey test. Error bars indicate 

standard errors of the means. A P-value of < 0.05 was considered statistically significant (**p-

value < 0.05). 
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Figure 5: Biofilm Formation Assay (72hr). Graph comparing the biofilm growth of S. epidermidis 

after 72hr incubation with growth conditions of TSB and TSB supplemented with 0.25% dextrose 

and 3.0% NaCl. Values show the percent activity relative to RP62A, set as 100%. All the values 

were analyzed using one-way ANOVA followed by a post-hoc Tukey test. Error bars indicate 

standard errors of the means. A P-value of < 0.05 was considered statistically significant (**p-

value < 0.05). 
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and 8). Contrarily, in biofilm media, 2.56- and 2.04 - fold increased biofilm formation 

was observed in the msaABCR mutant relative to RP62A after 48 and 72 hr (Fig 7 and 8).  

 

4.1.2 Biofilm Formation in Presence of Human Plasma 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

Figure 6: Biofilm Formation Assay in Presence of Human Plasma (24hr). Graph comparing the 

biofilm growth of S. epidermidis after 24hr incubation in the presence of human plasma with 

growth conditions of TSB and TSB supplemented with 0.25% dextrose and 3.0% NaCl. Values 

show the percent activity relative to RP62A, set as 100%. All the values were analyzed using one-

way ANOVA followed by a post-hoc Tukey test. Error bars indicate standard errors of the means. 

A P-value of < 0.05 was considered statistically significant (**p-value < 0.05). 
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Figure 7: Biofilm Formation Assay in Presence of Human Plasma (48hr). Graph comparing the 

biofilm growth of S. epidermidis after 48hr incubation in the presence of human plasma with 

growth conditions of TSB and TSB supplemented with 0.25% dextrose and 3.0% NaCl. Values 

show the percent activity relative to RP62A, set as 100%. All the values were analyzed using one-

way ANOVA followed by a post-hoc Tukey test. Error bars indicate standard errors of the means. 

A P-value of < 0.05 was considered statistically significant (**p-value < 0.05). 
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Figure 8: Biofilm Formation Assay in Presence of Human Plasma (72hr). Graph comparing the 

biofilm growth of S. epidermidis after 72hr incubation in the presence of human plasma with 

growth conditions of TSB and TSB supplemented with 0.25% dextrose and 3.0% NaCl. Values 

show the percent activity relative to RP62A, set as 100%. All the values were analyzed using one-

way ANOVA followed by a post-hoc Tukey test. Error bars indicate standard errors of the means. 

A P-value of < 0.05 was considered statistically significant (**p-value < 0.05). 

 

These results suggest that, in presence of human plasma, the msaABCR mutant showed 

increased biofilm formation during the initial stages but are defective in later stages of 

biofilm formation in TSB media. However, in biofilm media the msaABCR mutant 

showed increased biofilm formation in all stages of incubation period.  
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4.2 Virulence Assays 

RP62A of staphylococci produced extracellular proteins, extracellular DNA (eDNA), and 

polysaccharides in its biofilm matrix during the biofilm developmental processes. In S. 

aureus strains the msaABCR operon regulates proteases production and nucleases activity 

to regulate biofilm formation. So, in this study, we tested if msaABCR operon in RP62A 

regulates proteases production, nuclease production, or PIA production to regulate 

biofilm formation.  

 

4.2.1 Protease Production 

A protease production assay was performed in TSB. After overnight incubation with 

azocasein and precipitation with 50% Trichloracetic acid, the OD of the supernatant was 

measured at an absorbance of 340 nm to determine protease activity. We observed that 

the msaABCR mutant did not show any increase in protease activity relative to RP62A 

(Fig 9). Interestingly, we observed the complementation strains showed significantly 

reduced protease production relative to RP62A strains. However, we do not understand 

the reason why the complementation strains showed reduced protease production. 
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Figure 9: Protease Production Assay in TSB. Graph comparing the protease production of strain 

RP62A, msa mutant strain, and complementation. Values show the percent activity relative to 

RP62A, set as 100%. All the values were analyzed using one-way ANOVA followed by a post-

hoc Tukey test. Error bars indicate standard errors of the means. A P-value of < 0.05 was 

considered statistically significant (**p-value < 0.05). 

 

 

4.2.2 PIA Production 
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msaABCR mutant. To further confirm this, we performed congo-red binding assay, which 

showed that the RP62A strain binds more congo-red relative to the msaABCR mutant 
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type RP62A. In this assay too, the complementation is not showing the RP62A behavior 

and the reason behind this is not well understood. 
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Figure 10: PIA Production in Cong-Red Agar. Image showing the colony colors of strain 

complementation (A), RP62A (B), and isogenic msaABCR mutant (C) in Congo Red Agar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Congo-Red Binding Assay. Graph representing the Congo-Red binding assay to show 

PIA production. Values show the average amount of Congo-Red absorbed by the cells. All the 

values were analyzed using one-way ANOVA followed by a post-hoc Tukey test. Error bars 

indicate standard errors of the means. A P-value of < 0.05 was considered statistically significant 

(**p-value < 0.05). 

 

A

C

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RP62A msaABCR complementation

A
b

so
rb

a
n

c
e
 (

4
9

8
 n

m
)

S. epidermidis strains

Congo-Red Binding Assay

**

**



 

25 

Congo-red dye was allowed to bind the cells grown overnight. The supernatant was 

collected, and absorbance reading was taken at 498 nm. The bar graph shows that the 

msaABCR mutant binds less congo-red thus indicating that msaABCR mutant produces 

less PIA. In this assay, we did not observe any complementation in the complemented 

strains. At this point we are unable to explain the complementation phenotype. 

 

4.2.3 Urease Production 

We performed a urease production assay in Urea Broth. After overnight incubation and 

centrifugation, the supernatant was measured at an absorbance of 560 nm to determine 

urease activity. We observed that the msaABCR mutant showed 4.83-fold increased 

urease production relative to RP62A (Fig 12).  

 

 

 

 

 

 

 

 

 

Figure 12: Urease Production Assay in Urea Broth. Graph comparing the urease production of 

strain RP62A, msa mutant strain, and complementation. Values show the percent activity relative 

to RP62A, set as 100%. All the values were analyzed using one-way ANOVA followed by a post-

hoc Tukey test. Error bars indicate standard errors of the means. A P-value of < 0.05 was 

considered statistically significant (**p-value < 0.05). 
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4.2.4 Nuclease Production 

We spot inoculated Dnase Test Agar plates containing toluidine blue with overnight S. 

epidermidis cultures that were diluted to an OD600 and normalized to the smallest OD 

reading in TSB. As seen in Figure 13, we observed that all the test strains (RP62A, 

msaABCR mutant, and complementation) did not produce any zone of clearance, which 

indicates that none of the strain produced deoxyribonuclease to the detection limit of this 

test.  

 

 

 

 

 

 

 

 

 

 

 

Figure 13:Nuclease Production in DNase Test Agar. Image showing the colonies of strain 

complementation (A), RP62A (B), and isogenic msaABCR mutant (C) in DTA with toluidine 

blue. 
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 DISCUSSION 

Previously, our studies showed that the msaABCR operon positively regulates 

biofilm formation in Staphylococcus aureus (57, 58). We showed that msaABCR operon 

positively regulates extracellular proteases, which in turn modulates murein hydrolases 

activity that has resulted in increased cell death to regulate biofilm formation in S. 

aureus. In this study, we examined if the msaABCR operon regulates biofilm formation in 

Staphylococcus epidermidis RP62A strains. Interestingly, we observed that mutation of 

msaABCR operon has induced biofilm formation relative to RP62A except during the 

later stages of biofilm after 72 hr. We also tested the effect of growth condition (TSB vs. 

biofilm media) and coating the microtiter plate with human plasma on the biofilm 

formation. In absence of plasma coating, the msaABCR mutant showed increased biofilm 

formation in TSB media condition after 24 hr but showed reduced biofilm formation after 

48 hr of incubation. In biofilm media, the msaABCR mutant showed increased biofilm 

formation till 48 hr but reduced biofilm formation after 72 hr of incubation. When the 

microtiter plates were coated with human plasma, we observed similar effect in TSB 

growth conditions, however in biofilm media growth condition, msaABCR mutant 

showed increased biofilm formation during all incubation periods. These results were in 

contrast to our prior observations where msaABCR mutants always showed defective 

biofilm formation in all growth conditions in S. aureus. These differences might be 

because the strain we used in this study is different (S. aureus vs. S. epidermidis). 

Another reason may be the mode of biofilm development in RP62A is different from the 

S. aureus strains. S. aureus formed protein and eDNA mediated biofilm formation, 

whereas RP62A forms PIA dependent biofilm formation.  
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We also examined the effect of msaABCR operon mutation on protease 

production, nuclease production, and PIA production. In contrast to the effect of 

msaABCR operon mutation in S. aureus strains, we observed no effect on protease 

production and nuclease production. However, our result showed that the msaABCR 

produce less PIA relative to the wild type RP62A. PIA is one of the important 

components of RP62A biofilm matrix. Since the msaABCR mutant produced less PIA, 

this might be the explanation for the defective biofilm formation in the later stages of 

biofilm development by the mutant. In S. epidermidis, the icaADBC operon produces 

PIA, which acts as a structural factor in biofilm formation. Our findings suggest that the 

msaABCR operon could regulate the icaADBC operon to produce PIA. Indeed, further 

experiments are necessary to fully explain the other defects and/or explain the role of 

msaABCR operon in regulating PIA production during the biofilm development. 

 Previous studies have concluded that urease neutralizes acids, thereby protecting 

bacteria in acidic environments (61). In our study, the msaABCR mutant showed 

significantly higher urease production relative to RP62A (Fig 10). The findings in urease 

production could indicate that the msaABCR operon represses urease production in S. 

epidermidis. With biofilm formation as its primary virulence mechanism, the msaABCR 

operon could play a role in resistance towards S. epidermidis biofilm formation due to the 

lack of urease activity.  

 In conclusion, this study shows that the msaABCR operon in S. epidermidis 

RP62A plays different roles in regulating biofilm formation and virulence (proteases, 

nucleases) than we observed in S. aureus strains.  
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