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Abstract 

PIWI proteins are well known for their various roles and localization in germline 

development of diverse organisms, yet their specific role and function in somatic tissue 

remains elusive. PIWI proteins are essential for the biogenesis of PIWI-interacting RNA 

(piRNA), silencing mechanisms, sexual reproduction, and regeneration. piRNAs are 

PIWI bound RNAs that play an essential role in transposon silencing. PIWI and piRNAs 

expression and localization have been discovered in the model organism Drosophila 

melanogaster and mice; however, its localization in the C. teleta annelid is currently 

unknown and the subject remains an active area of research. In the present study, the 

localization of two PIWI paralogs were analyzed using the process of immunostaining to 

demonstrate its expression in somatic cells. The presence of PIWI proteins were 

confirmed using the Western Blot technique and immunofluorescences; observations of 

PIWI proteins localization were found in the nuclei of early-stage embryos and the 

cytoplasmic follicles of larvae. This indicates that PIWI proteins are in fact expressed in 

the C. teleta somatic tissue and there is an autonomous function of PIWI in both somatic 

and germline cells. The results of this experiment provide new insights on the function of 

PIWI proteins in invertebrate somatic cells and can be applied to build on the knowledge 

of small RNA biology.  
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Chapter 1: Introduction 

The P-element induced wimpy testis (PIWI) proteins belong to the Argonaute 

family that are highly conserved RNA-binding proteins present in various animals (Ku 

and Lin, 2014). PIWI-interacting RNAs (piRNAs) are characterized by their specific 

binding to the PIWI proteins. PIWI proteins are required for piRNA biogenesis and 

function and play an essential role in germline development (Ross et al., 2014). The cells 

(i.e., eggs and sperm) of the germline forms gametes in sexually reproducing organisms 

and often does not contribute to the soma, which are all the other cells that are not sex 

cells (Dannenberg and Seaver, 2018). PIWI proteins have been studied in different model 

organisms within the germline to observe their function and localization. Previous studies 

on the Drosophila gene PIWI paralogs, the first identified expression of PIWI proteins, 

determined that their germline function was dependent on the somatic cells in the gonads 

(Yashiro et al., 2018). While PIWI proteins were commonly perceived as germline 

specific, their presence has been discovered within somatic cells playing an essential role 

in sexual reproduction, whole-body regeneration, and genome integrity (Ross et al., 2014; 

Yashiro et al., 2018). 

Although numerous studies have discussed the importance of PIWI protein’s role 

in the germline, this restricted perspective is a consequence of the commonly used model 

organisms (e.g., D. melanogaster, C. elegans, and Mice). Researchers have begun to re-

investigate PIWI proteins and the PIWI-piRNA pathway in somatic cells in different 

organisms, including lower eukaryotes. Studies on mollusks have revealed that PIWI 

proteins and piRNAs pathways are used to repress transposable elements in the germline 

and in the soma (Jehn et al., 2018). Studies of the PIWI/piRNA pathway system in the 
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phylum Mollusca are well-described and provide a mean of comparison for the study 

presented here, which utilized a model organism in the closely related phylum Annelida. 

Newly developed invertebrate model species within the phylum Annelida that possess the 

ability to regenerate have shown PIWI proteins in a new light. 

In this project, Capitella teleta was used as a model organism to analyze the 

localization of PIWI proteins within its somatic cells. The C. teleta is a segmented 

annelid whose stable genome, reproduction rate, early development, and stereotypic 

cleavage pattern makes it an ideal candidate for this study (Seaver, 2016). Annelid 

embryo tissues were observed at different developmental stages and 

immunohistochemistry was utilized to localize PIWI proteins within the cells. The 

expression of PIWI and piRNA biogenesis in somatic tissue and the role of the PIWI- 

piRNA pathway were subsequently examined. The results presented here illustrate a 

broader localization for the PIWI protein family in the soma of the C. teleta and expand 

our functional understanding of the piRNA pathway and its expression in tissues. 
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Chapter 2: Background 

2.1: Capitella teleta  

 The marine polychaete annelid C. teleta, formally known as Capitella sp., (Parry, 

2015; Seaver, 2016) has served as an emerging model organism for developmental and 

regenerative studies. C.teleta is a small, segmented annelid that is a member of the 

Spiralia family and is commonly found living in organically rich sediments (Seaver, 

2016; Hejnol et al., 2006). Capitella belongs to the Spiralia family, also referred to as 

Lophotrochozoa, and is placed in the 

Sedentaria clade (Hejnol et al., 2009) 

(Figure 1). Morphologically, C. teleta 

has typical annelid features such as a 

long, narrow body elongated along an 

anterior-posterior axis, nine thoracic 

segments and abdominal segments that 

continuously regenerates during its 

lifetime, and a posterior pygidium (Giani 

et al., 2011; Seaver, 2016). The C. teleta 

body plan is displayed in Figure 3F. In 

addition to its thoracic and abdominal segments, C. teleta undergoes sexual reproduction 

and exhibits robust posterior regeneration, including regeneration of its ovaries (Giani et 

al., 2011; Seaver, 2016).  

Figure 1: Simplified phylogram of Metazoa. (A) 

Phylogram of selected metazoan phyla with 

bilaterian animals with division among the three 

major superclades: Deuterostomia, Ecdysozoa, and 

Lophotrochozoa. (Ferrier, 2012). 
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C. teleta serves as a successful model organism for development due to multiple 

factors. First, C. teleta exhibits sexual dimorphism with the presence of males, females, 

and hermaphrodites that reproduce sexually (Giani et al., 2011; Seaver, 2016; 

Dannenberg and Seaver, 2018). The female annelids have visible macroscopic paired 

ovaries ventrally positioned on the coelomic cavity (Seaver, 2016; Dannenberg and 

Seaver, 2018). After fertilization, mated females produce a ‘brood tube’ out of mucus and 

sand grains that house embryos and early larval stages (Giani et al., 2011; Seaver, 2016) 

(Figure 2). The female annelid and the offspring remain inside the brood tube until the 

larvae is ready to emerge. The embryos develop inside the brood for about nine days until 

they are released (Seaver, 2016). Once the brood is freed from the tube, the competent 

larvae of C. teleta metamorphize into juveniles within an hour (Seaver, 2016) (Figure 3). 

Next, C. teleta embryos undergo spiral cleavage that is mostly seen at the third cleavage, 

which generates eight blastomeres. (Seaver, 2016; Giani et al., 2011; Ferrier, 2012). 

Thus, C. teleta is especially well suited to explore the presence of PIWI proteins during 

different developmental 

stages (i.e., zygotic, 

larval, and juvenile). 

Finally, the C. teleta 

species is inexpensive, 

and easy to manipulate and 

maintain. Mature C. teleta adult 

annelids can reproduce year-round (Giani et al., 2011) and a lab colony can easily be 

maintained within plastic bowl containers in an incubator.  

Figure 2: C. teleta brood tube. (A) Anterior microscope 

image of the female C. teleta brood tube. (B) Ventral 

microscopic image of the female C. teleta brood tube. 
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2.2: PIWI Proteins and piRNA  

 As previously mentioned, PIWI proteins were initially discovered as a gene 

required for germline cell division in D. melanogaster germ tissue and have been 

continuously perceived as germline-specific protein having an essential role in germline 

formation, sexual reproduction, and transposon silencing (Darricarrère et al., 2012; 

Wolfswinkel, 2014; Ross et al., 2014; Yuan and Yamashita, 2010). Even though the 

presence of PIWI proteins in somatic tissues were documented during their first 

discovery, most studies focus specifically on the different functions of PIWI within the 

germline of different organisms; therefore, leaving limited research on somatic PIWI 

proteins. During early embryonic development, the germline completely separates from 

the somatic cells; however, studies have shown that PIWI proteins are expressed in both 

the germline and somatic tissue (Yashiro et al., 2018; Dannenberg and Seaver, 2018). 

Figure 3: Different developmental stages of C. teleta. Microscope images of C. teleta 

embryos at the (A) singe cell zygote embryonic stage, (B) early dividing embryo, (C) 

late cleavage, (D) barrel shape, (E) swimming larvae, and (F) an adult annelid image. 
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PIWIs can be important in germline defense being that they help to knock out mutations 

and genetic anomalies in the organism (O’Donnell & Boeke, 2007).  

 PIWI proteins are members of the Arogonaute (Ago) family that collaboratively 

bind with microRNAs (miRNAs), short-

interfering RNAs (siRNAs), and PIWI-

interacting RNAs (piRNAs) in gene 

expression (Weick and Miska, 2014; Yashiro 

et al., 2018). Ago proteins are known to 

comprise the central protein component of 

RNA-mediated gene silencing complexes 

and utilize small noncoding RNAs to 

direct the PIWI protein toward a specific 

nucleic acid target (Seto et al, 2007). As 

small RNAs guide Argonaute proteins to 

specific targets, they are essential in the function of PIWI proteins. PIWI proteins are 

essential for the biogenesis of piRNAs. piRNAs are similar to PIWI proteins as they are 

both highly enriched in the germline and are animal specific (Wolfswinkel, 2014; Weick 

and Miska, 2014; Juliano et al., 2011). piRNA biogenesis pathways differ according to 

the organism and are transcribed as single-stranded RNA precursors from specific 

clusters in the genome (Weick and Miska, 2014). The amplification of piRNAs is through 

an alternated catalytic mechanism of two different PIWI proteins called the ping-pong 

cycle that occurs in the nuage (i.e., germline organelle) unlike PIWI proteins that have 

been highly detected in nuclear region of most germ cells (Wolfswinkel, 2014). The ping-

Figure 4: Ping-Pong Amplification Cycle. PIWI 

proteins are highly enriched in the nuage shown as the 

cycle above is closely associated with the nuclear pores. 

The PIWI proteins associate with Aub and Ago proteins 

that are involved in the ping-pong cycle of piRNA 

amplification and target transposon RNA for degradation. 
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pong cycle of piRNA production is a mechanism of piRNA-mediated transcriptional 

silencing by degradation of transposon RNA and recruitment of histone methylase 

(Wolfswinkel, 2014; Weick and Miska, 2014; Yakushev et al., 2013) (Figure 4). Thus, 

piRNAs are dependent on PIWI proteins for their function and biogenesis.  

Piwi in Capitella teleta 

There are two paralogs of PIWI proteins, piwi1 and piwi2, that are expressed in 

the genome of C. teleta. These genes are expressed in the reproductive structures of 

adults (gametes and gonads) and in the stem cells of the posterior growth zone 

(Wolfswinkel, 2014; Dannenberg and Seaver, 2018). The expression of PIWI marker 

genes is mostly restricted to gametogenesis and early embryonic development; however, 

their expression pattern and function is different in every organism. For example, in the 

D. melanogaster organism, there are three PIWI proteins (i.e., PIWI, Aub, and Ago 3) 

(Weick and Miska, 2014). Each PIWI protein has its own unique expression pattern. 

PIWI is expressed in both germ and ovarian somatic cells (OSCs) and localizes in the 

nuclei of germ and OSCs, while Aub is expressed in the cytoplasm of germ cells and 

localizes partially in the nuage (Weick and Miska, 2014). In the C. teleta, studies have 

shown that both Ct-piwi1 and Ct-piwi2 RNA are expressed throughout the annelid’s life 

cycle in an almost identical pattern in both somatic and germline cells (Giani et al., 

2011). However, the localization of the marker genes in somatic cells is not well 

described. 

2.3: PIWI Proteins Function in Flat Worms and piRNA Expression in Capitella teleta 

In planarian flatworms, PIWI proteins are essential for regeneration. Planarians 

require neoblasts, an adult stem cell population, to express three PIWI proteins (Kim et 
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al., 2020). Neoblasts are characterized by cell division as they are actively undergoing 

mitosis and they generate a heterogenous population of pluripotent and multipotent stem 

cells (Kim et al., 2020; Wolfswinkel, 2014). Pluripotent neoblasts can generate all cell 

types, particularly those that give rise to the germline (Kim et al., 2020). Moreover, 

planarians maintain pluripotent stem cells throughout each developmental stage (Kim et 

al., 2020). Neoblasts share similar characteristics with the germline such as perinuclear 

granules, known as chromatid bodies or the nuage (Wolfswinkel, 2014), and express the 

germline multipotency program (GMP) genes (Kim et al., 2020). GMP genes prevent 

somatic differentiation, regulate stem cell division, and protect genomic integrity (Kim et 

al., 2020). Moreover, GMP expresses key genes (i.e., PIWI, vasa, and Tudor) that are 

members of the piRNA pathway (Kim et al., 2020). Thus, the piRNA pathway plays a 

significant role in cellular pluripotency, germline maintenance, and stemness (Giani et 

al., 2011).  

2.4: PiP-bodies (piRNA and PIWI Localization in Mouse Sperm/Eggs) 

 As described above, piRNAs have an association with PIWI proteins and 

specializes in the protection of genome integrity from the adverse effects of transposable 

elements (Aravin et al., 2009; Yuan and Yamashita, 2010), and are most prominent in 

germ cells (Wolfswinkel, 2014). The mouse genome encodes three PIWI-like proteins, 

MIWI (or PIWIL1), MILI (PIWIL2), and MIWI-2 (PWPWL4), all which play an 

essential role in spermatogenesis (Thomson and Lin, 2009). MIWI is expressed after birth 

in pachytene spermatocytes and spermatids (Aravin et al., 2009). MILI and MIWI-2 are 

the only PIWI proteins needed for transposon silencing in fetal gonocytes (Aravin et al, 

2009). MILI is expressed in germ cells and continues to persist in adulthood within male 
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testes and is present exclusively in the cytoplasm in numerous perinuclear granules 

(Weick and Miska, 2014; Aravin et al., 2009). In contrast, MIWI2 is abundant in 

gonocyte nuclei but also appears in cytoplasmic granules (Aravin et al., 2009). 

2.5: Expression of PIWI genes in Mollusks 

 PIWI genes and piRNAs are ubiquitously expressed in mollusks, similar to the 

expression in C. teleta due to lineagae-specfic adapataions. In mollusks, Piwi1 and Piwi2 

displayed high expression in the reproductive tract of Lymnaea stagnalis (Jehn et al., 

2018). The same study also reported that PIWI mRNA expression was significantly high 

in the male gonad for both Piwi1 and Piwi2 in the Crassostrea gigas (Jehn et al., 2018). 

The expression patterns suggested that the PIWI-piRNA pathway is conserved in the 

germline and soma in mollusks (Jehn et al., 2018). This shows that the C. teleta and 

molluks have similaries in the somatic PIWI/piRNA expression that was established in an 

early ancestor.  

2.6: Immunohistochemistry  

Immunohistochemistry (IHC) is a serological technique that utilizes antibodies to 

visualize the expression of a specific genes of interest. It utilizes a primary and a 

secondary antibody. The primary antibodies are raised against the target protein whereas 

the secondary antibodies are raised against the primary antibody and conjugated with 

chromophore and fluorophore or an enzyme. For this experiment, primary antibodies, 

piwi1 (guinea pig) and piwi2 (rabbit), and secondary antibodies, goat anti-guinea pig, 

goat anti-rabbit, and anti-mouse, were utilized. The antibodies were sourced from the 

ABclonal Technology. 2B10 and ELAV, which are developmental study hybridoma bank 

antibodies, were also utilized as an interest to see how the well conserved proteins 
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worked against the antibodies (Table 1). For our experimentation, the host species 

utilized for the primary antibody was guinea pig and rabbit. This treatment allows for the 

PIWI proteins to be marked with the primary antibody that can be treated with the 

secondary antibody for visualizing the protein of interest localization. The secondary 

antibody utilized was the AlexaFluor® goat anti-rabbit 568nm antibody, AlexaFluor® 

goat anti-guinea pig 647nm antibody and the AlexaFluor® goat anti-mouse 488nm 

antibody. The secondary antibodies are created by using the primary antibody as an 

antigen in a larger host organism (e.g., goat). These antibodies are labeled with 

fluorophores to allow visualization using fluorescent microscopy. This will stain green at 

488nm. The cells were then mounted in DAPI Fluoromount-G®. This mount stains all 

the nuclei of the cells and is visualized under florescence as blue. 

Primary Antibody Secondary Antibody 

Piwi1 Goat Anti-Guinea Pig 

Piwi2 Goat Anti-Rabbit 

2B10 Goat Anti-mouse 

ELAV Goat Anti-mouse 

Table 1: Primary and Secondary Antibodies Utilized 

It has been observed that the localization of PIWI proteins have different designations 

within various of organisms; however, their location in C. teleta displays a few similarities. The 

present research the PIWI paralogs responsible for the development in the germline and soma. 

Specifically, this examined the PIWI proteins localization within somatic tissue that can utilized 

to expand on present knowledge and can be applied to agriculture research to manipulate earth 

worm genetics with piRNAs.
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 Chapter 3: Methodology 

3.1: C. teleta Maintenance and Breeding  

 C. teleta annelids were obtained from Elaine Seaver at the Whitney Laboratory 

for Marine Bioscience in Florida. The male and female stocks were kept in clear 

containers in a gross chamber set at 20°C. The annelids were maintained on mud 

collected from Biloxi Bay. The mud was previously frozen to eliminate unwanted 

organisms but maintained the microbes within the mud. The annelids were feed once a 

week with one tablespoon of mud followed by the addition of fresh seawater and then 

placed back into the chamber. To acquire early cleavage stage embryos, mature male and 

female annelids are separated by sex. The mating bowls were set up by combining the 

annelids, male and female, into fresh vials together to reproduce. It took approximately 

12 hours for the annelids to lay eggs. After the females reproduced, the annelids were 

separated again and placed in distinct vials. The annelids sat for 16 hours until they reach 

cell division and cell morphology arose. As the annelids reproduced, they were carefully 

removed from the container to avoid overpopulation. When removing, the annelids were 

placed under the dissecting microscope to ensure that only healthy annelids were placed 

into the fresh container of mud to be restocked as a new colony. The overall goal was to 

collect mature male and female worms to use as mating pairs to produce early-stage 

embryos.  

3.2: Sample Preparation: Dissection and Collection of Embryos 

Using the dissection microscope and a pair of forceps, the annelids were carefully 

placed into a petri dish individually to dissect open any brood tubes. The mucus and sand 
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particles were carefully removed using the forceps to avoid any damage to the annelid. 

Once the embryos were released, they were gently collected using a pipette and 

immediately transferred to a 0.5 mL eppendorf tube. The embryos were then subjected to 

the immunohistochemistry process. 

3.3: Immunohistochemistry  

The collected embryos were suspended in two separate eppendorf tubes, one for 

2B10 and one for ELAV, containing 4% PFA and was placed on the laboratory rockers 

for 30 minutes at room temperature. The PFA solution was removed, and embryos were 

washed three times in 0.1%PBS-T solution on a rocker for five minutes. After the third 

wash, 100μl of 0.1% PBS-T solution and 5μl of Goat Serum was added to the tubes to 

create a 5% Goat Serum and allowed to block for an hour on a rocker at room 

temperature. Next, 0.3μl of primary antibody was added directly in the PBS-T Goat 

Serum and placed on the rocker overnight at 4°C. 

Upon removal, a repeat wash cycle with PBS-T was conducted five times for five 

minutes each. 500μl of 0.1% PBS-T solution and 1μl of the secondary antibodies, 

AlexaFluor® goat anti-rabbit 568nm antibody, AlexaFluor® goat anti-pig 647nm 

antibody, and the AlexaFluor® goat anti-mouse 488nm antibody, were added and 

allowed to incubate in the dark for one hour at room temperature. Upon completion of 

secondary antibody incubation, the embryos were washed with PBS-T three times. After 

washing, the embryos within the tubes were ready for slide preparation. 

3.4: Western Blot  

 Once the embryos were collected, the sample was prepared by extracting the 

proteins from the C. teleta embryos and determining the protein concentration. An SDS-
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PAGE was used to estimate the molecular mass of the protein to determine its abundance 

within the protein sample. The sample was ran through 12% resolving gel to separate the 

polypeptides by size. The sample was also then transferred to a PVDF membrane after 

activation. It was blocked with 5% non-fat dry milk and the primary antibodies (i.e., 

piwi1 and piwi2) were incubated by dilution with the blocking buffer on the rocker at 

room temperature for two hours. Next, the membrane was soaked in the HRP-labeled 

secondary antibodies (i.e., goat anti-mouse and goat anti-rabbit) for conjugation for two 

hours. Finally, the membrane was visualized by chemiluminescent detection.  

3.5: Slide Preparation and Confocal Microscopy 

A glass microscopic slide was cleaned with 70% ethanol using a Kimtech wipe. 

Using a transfer pipette, a small drop of DAPI Fluoromount-G® was placed on the slide. 

The embryos were gently collected using a pipette without collecting the extra fluid. 

Once the embryos were placed on the slide, a paper towel was used to remove excess 

solution and discarded. To place the coverslip properly over the solution, petroleum jelly 

was added to each four corners and sealed with nail polish. The slides were allowed to 

dry and placed in box covered with a paper towel until imaged. Slides were visualized 

using the Leica Sp8 confocal microscope.
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Chapter 4: Results 

4.1: Western Blot Results 

To estimate relative levels of PIWI proteins in C. teleta embryos, Western 

blotting was performed using the antibodies listed in Table 1, positive controls (e.g., 

Histone H3 and Vinculin), and protein ladders. The controls were used to verify the 

changes in protein levels, ensure that the blocking was successful, and acted as a 

benchmark foe quantification. The PIWI paralogs of the two different developmental 

stages were compared with the protein ladder to estimate the molecular weight. The 

molecular weight of Piwi1 was estimated at ~96.7 kDa (Figure 5A) in early embryonic 

stages and larvae, and Piwi2 was estimated at ~59.7 kDa in both stages (Figure 5B). It 

can be seen that Piwi1 was expressed greater than Piwi2 in early embryos and larvae. The 

corresponding antibodies detected each piwi paralog in somatic cells in 

immunofluorescence analyses. 

 

 

 

Figure 5: Detection of PIWI proteins in C. telata embryos via Western Blot. (A) 

Expression of Piwi 1 (~96.7 kDa) confirmed in C. teleta larvae (lane 1) and early-stage 

embryo (lane 2) compared to the ladder. (B) Expression of Piwi 2 (~59.7 kDa) confirmed in 

C. teleta larvae (lane 1) and early-stage embryo (lane 2) compared to the ladder. 

 

A B 
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4.2: Immunohistochemistry Results 

Immunohistochemistry was conducted on the embryos with the selected 

antibodies. Immunofluorescence showed that Piwi1 and Piwi2 were primarily 

accumulated in the nucleus but were also detected in the cytoplasm. For example, in 

Figure 6, Piwi1 is visible in nuclei and in cytoplasmic follicles. These results support the 

hypothesis that PIWI is present in somatic cells within the nuclear region. To further 

characterize PIWI localization, we also stained larval stage C. teleta. Both PIWI paralogs 

were also expressed in the cytoplasmic region in the larvae stage as seen in Figure 7. This 

observation confirms that PIWI proteins are detected as cytoplasmic and can be seen in 

the posterior growth zone of the larvae. In Figure 6C, it can be seen that the Piwi1 is 

visible in the nuclei and cytoplasmic follicle. These results support the hypothesis that 

PIWI has present localization in somatic cells within the nuclear region. To further 

characterize PIWI localization, the two paralogs were also expressed in the cytoplasmic 

region in the larval stages as seen in Figure 7. This observation confirms that PIWI 

proteins are detected as cytoplasmic proteins and can be seen in the posterior growth zone 

of the larvae.  
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Figure 6: Immunohistochemistry comparison of localization of piwi1 and piwi2 in early Capitella 

embryos. Embryo slides were created by mating male and female adult annelids. The embryos were 

dissected at stage 3 cleavage and stained with different antibodies against Piwi1 or Piwi2. Imaginal slides 

were mounted and imaged using confocal microscopy. Excitation wavelengths used at 488nm (blue), 568 

nm (green), and 647nm (red). (A) Staining of single cell embryo using Guinea pig anti-Piwi1 antibody. (B) 

four cell stage showing expression in the cytoplasm (C) four cell cleavage stage (D) eight cell cleavage 

stage showing expression prominently in the nuclei and some in the cytoplasm.  
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Figure 7: Immunohistochemistry comparison of larvae stages. Embryo slides were created by mating male 

and female adult annelids. The embryos were dissected at stage 3 cleavage and treated with 

immunohistochemistry utilizing the 4 primary antibodies and secondary antibodies. Images were displayed at 

488nm, 568 nm, and 647nm (A) Anterior view of immunohistochemistry comparison of larvae stages (B) 

Ventral view, with anterior. Both (C) and (D) display immunohistochemistry comparison of larvae stages using 

DAPI, 2B10 marker protein, piwi1, and piwi2. 
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Chapter 5: Discussion 

 The prominent and conserved role of PIWI proteins and piRNAs is to regulate 

transposon activity. PIWI proteins are complementary to piRNAs and both are involved 

in cellular biogenesis (Wolfswinkel, 2014). piRNAs are amplified through the alternated 

catalytic activity of two different PIWI proteins in a mechanism known as the ping-pong 

cycle (Wolfswinkel, 2014). The ping-pong cycle of piRNA production takes place in the 

nauage and this is also where most of the PIWI proteins are found. The nuage is RNA 

enriched that can take many forms such as a diffuse cloud to granules (Weick and Miska, 

2014). Previous studies have shown that it is found in the perinuclear region of germline 

cells and is closely associated with the nuclear pores. Several PIWI proteins have also 

been detected in the nuclei of germ cells, often during specific development stages. In D. 

melanogaster, PIWI is in the nucleus of germ cell precursors as well as mature germ cells 

(Yashiro et al., 2018). In the mouse (miwi), PIWI is found in the nuclei of spermatocytes 

(Aravin et al, 2009). Increasingly, evidence suggests that PIWI proteins and piRNAs 

function not only in the germline, but also in somatic tissue. 

 In mice, PIWI-RNA interactions are demonstrated by the MILI and MIWI2 

proteins. It was found in a compartmentalization study that the MIWI2 proteins are more 

present in the gonocyte nuclei yet, they also appear in the cytoplasm (Aravin et. al, 2009). 

In addition, the MILI protein is present predominantly in the cytoplasm (Aravin et. al, 

2009). In the mice, the germline from the beginning of development separates and 

branches off into the somatic cells which include the normal cells of the body while the 

germline includes the gonocytes mentioned previously (Aravin et. al, 2009). This is 

significant because the germline produces the embryos and PIWI proteins have a 
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significant role in the development of the germline. With the PIWI proteins localizing in 

the cytoplasm instead of the nuclei more, they will be able to interact with the RNA 

during transcriptional regulation (Thomson & Lin, 2009).  

In the common fruit fly, more specifically, the D. melanogaster fly, the 

localization of PIWI proteins occurs in the nucleus (Thomson & Lin, 2009). In a peer-

reviewed article about the PIWI protein in the fly, the focus is placed on the proteins 

being in the ovarian somatic cells in comparison to the germline cells, although they are 

also expressed in the germline cells. The significance of the PIWI proteins being 

localized in the nucleus instead of the cytoplasm is that transcription takes place in the 

cytoplasm outside of the nucleus and RNAs are responsible for the process where they 

may be found more in the cytoplasm of somatic cells.  

In comparison to localization of PIWI proteins in other organisms, the presence of 

the cells can be used to draw conclusion with the results from the C. teleta. The results of 

this study indicate that PIWI proteins are localized prominently in the nuclei and in the 

cytoplasm of the C. teleta during embryonic and larval stages. Piwi1 and Piwi2 are 

expressed throughout the developmental stages of C. teleta that not only includes 

germline cells, but somatic as well. The two genes showed similar expression patterns to 

one another. Both genes are broadly expressed during embryonic and early larval stages 

within the nuclei and gradually become more prevalent in the cytoplasmic region in later 

stages of development. In larval stages, the localization of the proteins closely 

corresponds with the primordial germ cells (PGCs) within the descendants of the 

blastomere in Figure 6 and 7. Since many model systems have fully segregated germlines 

and lack regenerative capabilities, detailed studies have disproportionately influenced the 
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views concerning the segregation of the germline from the soma. PGCs are segregated 

from somatic tissue during early development and are responsible for generating gametes. 

Moreover, PIWI is commonly known for its role in the germline, but there are examples 

that shows its expression outside of the germline, such as planarian flatworms that 

display PIWI proteins expression in the posterior regions (Kim et al., 2020). Our 

observation adds another example of PIWI proteins being expressed in the cytoplasmic 

region in larvae.  

In conclusion, the results presented in this thesis provide some preliminary but 

essential understanding of the localization of PIWI proteins within Capitella. The results 

indicate that PIWI is expressed during blastemal growth and later found in the 

cytoplasmic region and different segments of larvae. Although the functions and 

localization of PIWI proteins and piRNAs remain unclear, these findings have pointed 

out that the PIWI-piRNA system has a presence beyond the germline. The information 

from this study can be applied to agricultural research to help manipulate the genetics 

(e.g., piRNAs) of earthworms.  
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