A Study of the Effect of Appreciative Inquiry on Student-Course Engagement and Attendance in the Community College

Frances Virginia Turner Robbins

University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

Part of the Community College Leadership Commons

Recommended Citation

https://aquila.usm.edu/dissertations/826

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
The University of Southern Mississippi

A STUDY OF THE EFFECT OF APPRECIATIVE INQUIRY ON
STUDENT-COURSE ENGAGEMENT AND ATTENDANCE
IN THE COMMUNITY COLLEGE

by

Frances Virginia Turner Robbins

Abstract of a Dissertation
Submitted to the Graduate School
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

May 2012
ABSTRACT

A STUDY OF THE EFFECT OF APPRECIATIVE INQUIRY ON
STUDENT-COURSE ENGAGEMENT AND ATTENDANCE
IN THE COMMUNITY COLLEGE

by Frances Virginia Turner Robbins

May 2012

This mixed-methods research study investigated the effects of Appreciative Inquiry on student-course engagement and attendance in core academic classes at a community college in central Mississippi. In an increasingly competitive global economy, most individuals need education or technical skills beyond high school to secure employment offering self-supporting wages. However, graduation and completion rates at colleges and universities show many students who embark on the education journey do not successfully reach their goals. Researchers (Friedman, Rodriguez, & McComb, 2001) suggest poor attendance rates remain linked to lower student engagement and contribute to student attrition. Attrition, in turn, lowers enrollment, hinders institutional reputation, and reduces institutional vitality (Miller, 2003). Several community colleges across the United States employ Appreciative Inquiry, a strengths-based organizational development model, to improve attendance and student engagement (Stetson, 2008). However, little empirical research exists to describe the impact of Appreciative Inquiry use in the classroom. This study adds to the research literature by empirically examining the effects of Appreciative Inquiry on student attendance and course engagement.
The study employed a static group comparison quantitative design to contrast attendance rates and student course engagement scores of students in classes using Appreciative Inquiry and students in non-AI classes. Faculty members submitted qualitative data throughout the semester via summary reports of Appreciative Inquiry implementation, as well as through a post-semester focus group. Quantitative statistics used in data analysis included independent samples t-test and chi-square tests, while identification of recurring concepts in a focus group discussion served as the qualitative analysis method. Quantitative and qualitative data were integrated and compared to determine the impact of Appreciative Inquiry on attendance and student-course engagement in the community college classroom.
THE EFFECT OF APPRECIATIVE INQUIRY ON STUDENT ENGAGEMENT
AND ATTENDANCE IN THE COMMUNITY COLLEGE

by

Frances Virginia Robbins

A Dissertation
Submitted to the Graduate School
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Approved:

Heather M. Annulis
Director

Cyndi H. Gaudet

Patti P. Phillips

Brian W. Richard

Susan A. Siltanen
Dean of the Graduate School

May 2012
DEDICATION

To Cindy Stoll, without whom this research would have remained a dream. You taught me so many things, but most importantly, how to serve. You are greatly missed.
ACKNOWLEDGMENTS

I would like to acknowledge the support of dissertation chair, Dr. Heather Annulis, who challenged me to grow beyond my expectations; Dr. Cyndi Gaudet, who provided ongoing encouragement and support; Dr. Patricia Phillips, who guided the quest toward excellent mixed-methods research design; and Dr. Brian Richard, who gracefully and patiently answered incessant questions regarding statistical analysis. These committee members made a daunting task surmountable and rewarding.

Sincere appreciation goes to the many professionals at Hinds Community College who made this research possible: Cindy Stoll for her willingness to retrieve mountains of data; Laurie George for her willingness to serve as courier of reports, assessments, and various other documents; Dr. Theresa Hamilton and Dr. Tom Kelly for their willingness to allow faculty members to participate in the study; and above all, the faculty members who spent countless hours training, discussing, pondering, implementing, and reflecting on the process of Appreciative Inquiry.

I extend sincere gratefulness to the pioneers who paved the road toward organizational evolution and student success: Dr. David Cooperrider for his passion to see the positive in people and organizations; and Dr. Mitch Handelsman for his vision to provide instructors with an assessment tool suitable for single courses.

Although the above colleagues, mentors, and experts contributed greatly to this research, I would not have embarked on this journey without the support of family and friends. I greatly admire the women who have influenced me: Mrs. Elizabeth Turner Cox, who is the quintessential sister, mother, teacher, and friend; Dr. Elizabeth Jane Kelly, who modeled hard work and determination despite the odds; Mrs. Roberta Ward
Alexander, who instilled a love of education and life in those who were blessed to know her; and Mrs. Frances Virginia Douglass, my great-grandmother whose name I bear. I never met her but try to emulate her nonetheless.

Deepest gratitude belongs to the one man who captured my heart, Lieutenant Colonel Danny Robbins, and to the God who was gracious enough to bring him to me. My cup runneth over.
TABLE OF CONTENTS

ABSTRACT ... ii

DEDICATION.. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES .. ix

LIST OF ILLUSTRATIONS ... x

CHAPTER

I. INTRODUCTION ..1

Problem Statement
Purpose of Study
Limitations
Delimitations
Assumptions
Hypotheses
Conceptual Framework
Definition of Terms
Significance of the Study

II. REVIEW OF RELATED LITERATURE ..18

Increased Need for Higher Education and Technical Skills
The Community College Role in Economic Development
Community College Student Retention and Attrition Challenges
Theoretical Framework of Student Success
Student Engagement and Attendance
Appreciative Inquiry: A Student Engagement and Attendance Strategy
Summary

III. RESEARCH DESIGN AND METHODOLOGY ...56

Introduction
Research Design
Population and Sample
Study Variables and Collection Methods
Threats to Validity and Reliability
Hypotheses
Data Analysis Procedures
Summary
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Institutional Characteristics Impacting Student Retention and Attrition</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Schedule of Treatment Activities and Responsible Parties</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>Correlations, Descriptives, and Reliabilities of Student Engagement Factors</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>Data Collection and Analysis Methods</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>Pre-existing Engagement Factors, Definitions, and Grouping Variables</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>Differences in Pre-existing Known Engagement Factors Between Groups</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>Statistical Analysis of Attendance Variable</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>Statistical Analysis of Skills Engagement Variable</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>Statistical Analysis of Emotional Engagement Variable</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>Statistical Analysis of Participation/Interaction Engagement Variable</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>Statistical Analysis of Performance Engagement Variable</td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>Statistical Analysis of Overall Engagement Variable</td>
<td>98</td>
</tr>
<tr>
<td>13</td>
<td>Question Types Employed in Focus Groups</td>
<td>101</td>
</tr>
<tr>
<td>14</td>
<td>Instructors’ Understanding of Appreciative Inquiry Process</td>
<td>103</td>
</tr>
<tr>
<td>15</td>
<td>Instructors’ Perceived Ability to Implement Appreciative Inquiry Process</td>
<td>103</td>
</tr>
<tr>
<td>16</td>
<td>Instructors’ Perceived Ability to Implement Appreciative Inquiry Strategies</td>
<td>104</td>
</tr>
<tr>
<td>17</td>
<td>Instructors’ Perceived Ability to Accommodate Student Requests</td>
<td>106</td>
</tr>
<tr>
<td>18</td>
<td>Instructors’ Willingness to Implement Appreciative Inquiry in the Future</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure

1. Conceptual Framework..15
2. The AI 4-D Cycle for Applied Positive Change..44
3. AI Cycle and Deliverables used by Delta College...54
4. Sequential-Explanatory Phases and Procedures ...57
5. Static Group Comparison Design ...58
CHAPTER I

INTRODUCTION

Most nations, states, communities and neighborhoods share a common goal to enjoy an acceptable standard of living and a decent quality of life. The definitions of *acceptable* and *decent* vary from nation to nation, state to state, and even person to person. Most individuals and groups of people, regardless of their definitions, strive for social, economic, and personal health and well-being. Douglass (2010) suggests educational attainment rates of a nation, along with the quality of its higher education sectors, play a crucial role in a nation’s economic stability. Simply stated, the socioeconomic health of a nation depends on higher education (Douglass, 2010). Therefore, most groups and individuals need higher education and training in order to achieve a desired quality of life in an increasingly competitive economy.

Rich in resources, the United States could boast the highest educated citizenry. However, contrary evidence exists. In a recent report, Adelman (2009) writes, “U.S. higher education can no longer sail on the assumption of world dominance, oblivious to the creative energies, natural intelligence, and hard work of other nations” (p. ix). Goldin and Katz (2008) report the United States ranks in the middle regarding workers’ cognitive skills, the most critical component of human capital in today’s knowledge economy. According to Robertson (2005), the balance between knowledge and resources (labor and capital) shifted toward knowledge, and securing long-term economic viability grows increasingly dependent on knowledge. Education plays a critical role in economic growth, but only if education systems respond in new ways to the demands of the knowledge economy (Robertson, 2005).
Postsecondary educators profess the necessity of increased investment in higher education to achieve sustained national competitiveness. However, policymakers and the public understandably question the value of those investments. In particular, community college administrators face mounting inspection (Harbour, 2003). Nearly 50 percent of first-time community college students exit postsecondary education without attaining a credential or transferring to another post-secondary institution (Provasnik & Planty, 2008). Horn (2009) portrays a bleak reality, reporting only one in ten students entering community colleges in 2003 completed a degree within three years. Such statistics fuel concern regarding the cost of higher education and lead to calls for accountability, transparency, increased reporting requirements, and outcomes-based funding (Goldrick-Rab, Harris, Mazzeo, & Kienzl, 2009).

Problem Statement

Amidst growing concern, community college leaders face challenges to improve student retention, persistence, and graduation rates. While community colleges provide low tuition, convenient location, flexible scheduling, open-door admissions, and services for at-risk students, those students often bring social and academic barriers affecting retention and completion (Cohen & Brawer, 1996). A significant number of community college students arrive academically underprepared and require significant remediation to reach college-level courses (Provasnik & Planty, 2008), while others struggle to balance school, family and job-related responsibilities. Student engagement, one of the key factors of persistence and retention, remains difficult to develop and sustain in the face of such challenges. Therefore, community college educators strive to discover new and better ways to engage students in the learning process. Adelman (2007) surmises no
long-term solution to the problem of retaining and graduating underprepared low-income students is possible unless institutions find strategies to address their academic needs.

Appreciative Inquiry (AI) emerges as one strategy to meet the various academic needs of community college students. Developed in 1987 by Cooperrider and Srivastva, AI facilitates organizational change through the use of a strengths-based approach (Orem, Binkert, & Clancy, 2007). According to Johnson (2010), organizations successfully utilize AI to improve individual motivation, engagement and performance. Johnson (2010) further suggests college faculty can adapt AI to the classroom, using it to bridge the instructor-student gap with the goal of increasing student engagement and improving performance. According to Haar and Hosking (2004), AI proves a suitable classroom strategy because it contributes to the nature of social relationships. The American Association for Community Colleges supports the use of AI, as evidenced by the Association’s co-sponsorship of Appreciative Inquiry Facilitator Training courses throughout the world (Center for Appreciative Inquiry, 2010). Stetson (2008) highlights the potential impact of Appreciative Inquiry in the community college setting:

Community colleges face an unknown future, one that seems to promise continuous deep, rapid and often turbulent change. To thrive in this environment, community colleges can create organizational cultures that help people thrive – environments that nourish ongoing creativity and innovation – for students, employees, communities and society at large … One promising way to do this is through Appreciative Inquiry, a powerful approach to organizational change and development. (p. 109)
To answer the call for accountability, community college leaders seek to employ strategies leading to student success. However, with scarce resources and demanding stakeholders, leaders must have confidence that strategies they choose in which to invest actually produce results.

Purpose of Study

This research project examined the impact of Appreciative Inquiry in the classroom on student-course engagement scores and student attendance in a face-to-face community college setting. Stetson and Miller (2004) described Appreciative Inquiry as a classroom approach, detailing ten specific instances in which community colleges employed AI. Each college portrayed in the publication boasts successful results. However, claims of positive impact through AI usage remained unexamined by empirically sound methods. Therefore, the current study relied upon foundational theories of student retention, attrition, involvement and engagement to examine the relational linkages of Appreciative Inquiry, student-course engagement, and student-course attendance. As the recent recession accelerates global competition to increase skills, knowledge and abilities of the workforce (Ward, 2006; Fischer, 2010), institutions of higher education search for strategies to improve attendance and engagement.

Limitations

Designed as a sequential explanatory mixed-methods approach, this study utilized a static-group comparison design to collect quantitative data. The static-group comparison design compares two non-randomly assigned groups on a post-test after a treatment has been applied to only one of the groups. Since the static group comparison design uses non-random samples, it is an appropriate design choice for the current study.
Students at the college have the freedom to register for class sections based on a variety of factors, making random assignment impossible. Lacking random assignment of participants, the sample in this design is classified as a non-probability sample (Huck, 2008). Consequently, the experimental and control groups were unlikely to be equal on a variety of factors. Group differences on factors known to impact student engagement challenge efforts to isolate the effects of Appreciative Inquiry. Specifically, groups could differ on the following characteristics: admission status, initial placement levels, residential status, gender distribution, reported financial standing, and full-time status (Kuh, 2003). Differences between groups on these factors might predispose one group to be more or less engaged than the other, independent of the effects of Appreciative Inquiry. Therefore, any differences in attendance or student-course engagement could be attributed to pre-existing group differences rather than to Appreciative Inquiry.

Instructor inexperience with the Appreciative Inquiry process exists as a second limitation. While all participating instructors received training as Appreciative Inquiry facilitators, the study represented their first attempts at implementing the process. Thirdly, the study focused on traditional, face-to-face instruction. Online or hybrid environments may produce different results. A fourth possible limitation of the study centered on the self-reported nature of student-course engagement. The study utilized a survey instrument in which students self-reported engagement levels on four subscales. According to Gonyea (2005), utilization of self-reported information can threaten the credibility of the data. Self-reported instruments often, but not always, elicit social desirability bias, the desire to edit a response in order to portray the responder in a positive light (Gonyea, 2005). While social desirability bias remained a possible
limitation, the self-reported Student-Course Engagement Questionnaire appeared to be the most appropriate measure for engagement for the current study. Independently and collectively, these parameters limit the study and possibly weaken the generalizability of the study to other general populations of students in post-secondary institutions.

Delimitations of the Study

In order to include a broad cross-section of students, the current study focused on students enrolled in core required academic classes on the main campus of a six-campus community college in the southern United States. According to the institution’s general education core, only English Composition I is required of all students seeking an Associate of Arts or Associate of Applied Science Degree. Therefore, only students enrolled in English Composition I classes served as study participants. In addition, Keller (2011) identifies English Composition I as a gateway course standing between students and most of the elective program-related courses for which students originally enrolled in the college. This fact makes successful completion of English Composition I crucial to student success. Keller (2011) continues by stating the following:

English Composition I will be one of the toughest classes that community college students have to motivate themselves to complete. And English composition faculty are charged not only with teaching the course content, but also with choosing or developing new ways of keeping these students engaged and motivated. (pp. 485-486)

The use of a purposive sample further limited students in the study to those in face-to-face classes that met at least twice per week. In order to eliminate instructor inexperience in the classroom as a mitigating factor, instructors with a minimum of three years of
college teaching experience participated in the study. Additionally, participating instructors taught two sections of English Composition I on the same days of the week, allowing for appropriate attendance comparisons. As previously mentioned, the boundaries set by the researcher, along with inherent limitations beyond the researcher’s control, contributed to decreased generalizability of results.

Assumptions

The study relied on self-reported measures of student-course engagement. Common practice (Ouimet, Bunnage, Carini, Kuh, & Kennedy, 2004) allows for the use of self-reported data in research studies. After reviewing the literature on self-reporting, Ouimet et al. (2004) concluded students can accurately report on activities and how they benefit from the college experience. While social desirability bias can hinder validity of self-reported measures, accuracy of self-reports depends upon clear wording of questions and students’ possession of the appropriate information to answer the questions. Kuh (2001) states, “For many indicators of educational practice, such as how students use their time, student reports are often the only meaningful source of data” (p. 3). The researcher conducted the current study under the assumption that participants provided accurate and truthful information.

Hypotheses

The following hypotheses were tested using a static-group comparison, quasi-experimental research design (Creswell, 2009), involving students from experimental groups and control groups:

\[\text{H} a_1: \text{Attendance} \text{ Appreciative Inquiry Group} > \text{Attendance} \text{ Control Group} \]

\[\text{H} 0_1: \text{Attendance} \text{ Appreciative Inquiry Group} \leq \text{Attendance} \text{ Control Group} \]
Ha2: Skills Engagement Appreciative Inquiry Group > Skills Engagement Control Group

H02: Skills Engagement Appreciative Inquiry Group ≤ Skills Engagement Control Group

Ha3: Emotional Engagement Appreciative Inquiry Group > Emotional Engagement Control Group

H03: Emotional Engagement Appreciative Inquiry Group ≤ Emotional Engagement Control Group

Ha4: Part/Int Engagement Appreciative Inquiry Group > Part/Int Engagement Control Group

H04: Part/Int Engagement Appreciative Inquiry Group ≤ Part/Int Engagement Control Group

Ha5: Performance Engagement Appreciative Inquiry Group > Performance Engagement Control Group

H05: Performance Engagement Appreciative Inquiry Group ≤ Performance Engagement Control Group

Ha6: Overall Engagement Appreciative Inquiry Group > Overall Engagement Control Group

H06: Overall Engagement Appreciative Inquiry Group ≤ Overall Engagement Control Group

The dependent variables for the hypotheses included daily class attendance as recorded by instructors and student perceptions of course engagement as measured by the Student Course Engagement Questionnaire or SCEQ (Handelsman, Briggs, Sullivan, & Towler, 2005). Participation in Appreciative Inquiry served as the independent variable. In addition, a qualitative approach was included to determine what, if any, additional information or explanation could be gleaned regarding the above hypotheses. Instructors submitted questionnaires and summary reports at three separate time periods throughout the research project to provide qualitative data. At the end of the semester, a focus group solicited further insight from participating instructors regarding the impact of Appreciative Inquiry on attendance and engagement.

Conceptual Framework

Based on a review of the literature, a potential connection exists between Appreciative Inquiry, student-course engagement (Handelsman, Briggs, Sullivan, &
Towler, 2005), student-course attendance, student engagement at the institution level (Chickering & Gamson, 1987), student integration (Tinto, 1975), student attrition (Bean, 1980), and student involvement (Astin, 1999).

Researchers (Douglass, 2010; Williams, 2008; Robertson & Keeling, 2008) promote higher education and training as a means to economic, social, and personal prosperity. In order to remain competitive, nations strive to ensure higher education attainment of citizens. For citizens to attain educational credentials, they must enroll and persist in pursuits of higher education. Extensive literature examines factors contributing to student retention, attrition, and persistence.

Tinto’s student integration model (1975; 1993) remains the most widely recognized and cited retention theory found in relevant literature. Tinto’s theory proposes student retention primarily involves social and academic integration of the student into the institutional environment. Tinto (2000) emphasizes the availability of social support as a condition promoting student success. Formal social support such as counseling and mentoring, as well as informal social support like student centers and student activities, foster social integration in the organization. In essence, the more frequently students engage with faculty, staff, and their peers, the more likely they will persist to graduation (Tinto, 2000).

Like Tinto, Bean (1980) acknowledges student participation in the institution as a major determinant in the persistence process. Bean’s student attrition model hypothesizes a student’s beliefs shape his attitudes, and his attitudes affect his intent to remain enrolled in college (DesJardins, Ahlburg, & McCall, 1999). Therefore, any strategy that positively affects the student’s beliefs and attitudes potentially contributes to
student success. Bean (2005) identifies three groups of factors influencing student attitudes as the student interacts with the institution: academic factors, social factors, and bureaucratic factors. Regarding social factors, Bean (2005) suggests students feel they fit well with a college for a variety of reasons, but the social aspects of fitting in with peers are consistently the most important.

Building upon the work of Tinto and Bean, Astin’s student involvement model suggests student involvement promotes institutional commitment by the student and leads to greater integration in the social and academic systems of the college (Berger & Milem, 1999). Astin’s model is rooted in a longitudinal study of college dropouts revealing socialization as a key factor in student persistence (Astin, 1975). In fact, Astin (1993) claims that peers remain the most powerful source of influence in the lives of college students. He further reports that activities such as living on campus, joining social organizations, or working on campus increase the likelihood that a student will come in contact with other students, professors, or college staff, and therefore positively relate to student persistence (Astin, 1999).

Astin’s research on the effects of student involvement leads directly to the focus of student engagement (Cazabon, 2009). Schreiner and Louis (2008) suggest the term engagement in the National Study of Student Engagement serves as a synonym to Astin’s (1984) term involvement in his original articulation of student involvement theory. Kuh (2003) defines student engagement as the time and effort students dedicate to educationally sound activities inside and outside the classroom. He further acknowledges the critical need for information about student engagement and the practices institutions use to induce students to take part in those activities (Kuh, 2003). Addressing
institutional practices, researchers assert quality education produces direct links between educational practices and positive student outcomes (Astin, 1993; Kuh, 1995; Pascarella, Cruce, Umbach, Wolniak, Kuh, Carini, Hayek, Gonyea, & Zhao, 2006; Pascarella, Palmer, Moye, & Pierson, 2001). Chickering and Gamson (1987) link practices and outcomes in the Seven Principles of Good Practice in Higher Education model, the best-known set of student engagement indicators to date (Kuh, 2001). The indicators suggest successful undergraduate institutions employ the following strategies:

1. Encourage student-faculty contact
2. Encourage cooperation among students
3. Encourage active learning
4. Give prompt feedback
5. Emphasize time on task
6. Communicate high expectations, and
7. Respect diverse talents and ways of learning.

The literature review that follows in Chapter Two provides an in-depth discussion of the seven principles.

In describing the linkages between learning, student outcomes, and workforce competitiveness, Edgerton (2001) introduces the term pedagogies of engagement. He writes:

Throughout the whole enterprise, the core issue, in my view, is the mode of teaching and learning that is practiced. Learning “about” things does not enable students to acquire the abilities and understanding they will need for the twenty-first century. We need new pedagogies of engagement that will turn out the kinds
of resourceful, engaged workers and citizens that America now requires.

(“Toward Pedagogies of Engagement,” para. 2)

Edgerton supports the Seven Principles of Good Practice. Specifically, three of the principles involve social interaction and directly relate to the pedagogies of engagement: student-faculty contact, cooperation among students, and active learning (Smith, Sheppard, Johnson, & Johnson, 2005).

Based on the Seven Principles for Good Practice in Undergraduate Education, the National Study of Student Engagement gauges broad elements such as levels of academic challenge and supportive campus environments. However, Tinto (2000) suggests the root of student attrition lies primarily at the classroom level, not the institutional level. He further suggests student learning serves as the key to student retention; therefore, faculty involvement remains critical to any serious student success approach (Tinto, 2000). Bean (2005) agrees, suggesting faculty members, more than any other group of college employees, shape the psychological processes and attitudes affecting student retention and engagement. Handelsman, Briggs, Sullivan and Towler (2005) share Tinto’s observation, prompting the authors to develop a reliable, valid and multidimensional instrument known as the Student Course Engagement Questionnaire (SCEQ). The authors use an inductive approach to capture the many potential dimensions of student engagement and report the following consistent factors of engagement at the course level: skills engagement, emotional engagement, participation engagement, and performance engagement.

Of the four SCEQ subscales, skills engagement remains particularly important in the current study. Skills engagement includes student behavior exhibited through daily
attendance. Research reveals strong correlations between attendance and performance (Moore, Armstrong, & Pearson, 2008; Gump, 2004; Thatcher, Fridjhon, & Cockcroft, 2007). Petress (1996) suggests daily attendance provides students interaction with classmates and faculty members; therefore, attendance remains a key to educational attainment. While high attendance patterns contribute to student success, institutions benefit from regular student attendance as well. The community college in which the current study takes place receives funding in large part based on actual student attendance in class. Therefore, strategies promoting increased attendance remain critical to institutional success.

In addition to effective attendance strategies, Tinto (1993) encourages college administrators to employ strategies that increase relational opportunities between students and faculty. Tinto (1993) links student persistence with socially invested students who seek relationships with faculty and other students. Based on social principles and positive change theories, Appreciative Inquiry emerges as a strategy to improve student engagement and success.

Since Cooperrider introduced Appreciative Inquiry in the mid-1980s, the model remains a popular approach to organizational development (Stetson, 2008). Cooperrider and Srivastva (1987) base the AI process on the 4-D cycle of discovery, dream, design, and destiny. In the discovery phase, stakeholders exchange stories and experiences of organizational strength and success. Stakeholders move from discovery to the dream phase, in which participants develop a dream or vision statement to bridge the discovery of past successes and the future of even greater excellence. In the design phase,
stakeholders discuss strategies to bring the vision to reality. Lastly, participants enter the destiny phase by creating an action plan to ensure realization of the vision (Farr, 2006). Stetson and Miller (2004) summarize the essence of Appreciative Inquiry as follows:

The assumption underlying AI is simple: every human (i.e., living or social) system has a core of strengths that is often hidden and/or underutilized – what is known as its positive core. AI helps people in the system search for and find the positive core. When the positive core is revealed and tapped into, it provides a sustainable source of positive energy that nourishes both personal and organizational change and, potentially, transformation. (p. 3)

The search for the positive core in an organization, or classroom in the case of this study, remains a collaborative, social approach. AI engages participants (or students) in a cooperative learning and co-creation process (Cooperrider & Whitney, 2005), therefore providing opportunity for social integration in the classroom. The current study investigates the use of Appreciative Inquiry to engage students in developing a positive college classroom experience. Figure 1 graphically represents the hypothesized positive impact Appreciative Inquiry has on student-course engagement and student-course attendance. The literature review reveals a strong connection between Appreciative Inquiry and foundational student success theories; specifically, the theories reviewed and Appreciative Inquiry converge at the social intersection. Increased student engagement and attendance at the course level contribute to increased overall student engagement in the community college. As community college engagement increases, student retention and persistence in higher education improves (Chickering & Gamson, 1987). As student
retention and persistence improves, a workforce with increased knowledge, skills, and abilities emerges (Douglass, 2010; Adelman, 2009; Goldin & Katz, 2008).

Figure 1. Conceptual Framework: Proposed linkages between Appreciative Inquiry, student-course engagement and attendance based on foundational student success theories.
Definition of Terms

Key phrases and terms pertinent to this study include the following:

1. *Appreciative Inquiry* is a change philosophy that incorporates a process (4-D Cycle of Discovery, Dream, Design, and Destiny) for engaging people at any or all levels to produce effective, positive change (Cooperrider, Whitney, & Stavros, 2008).

2. *Student attrition* refers to the cessation of individual membership in an institution of higher education (Bean, 1980, p. 157).

3. *Student-course engagement* refers to a multidimensional construct that describes what happens in and immediately surrounding a classroom involving the skills, emotions, participation, and performance of a student in a specific course (Handelsman, Briggs, Sullivan, & Towler, 2005).

4. *Student engagement* refers to the time and energy students devote to educationally sound activities inside and outside the classroom (Kuh, 2003).

5. *Student persistence* refers to a student remaining in a course of study until completion of a degree or certificate program.

6. *Student retention* refers to a student’s continued enrollment at an institution from one quarter or semester to another (Porter, 2003).

Significance of the Study

Institutions of higher learning face pressures from stakeholders in the private, public, and governmental sectors. Calls for greater accountability for actual results continue to grow. This study is relevant to the community college education field as institutions struggle to find effective strategies to improve student retention and persistence. Specifically, various community colleges across the United States turn to
Appreciative Inquiry as one such strategy. Appreciative Inquiry began as an unplanned and unintended approach to organizational change in the mid-1980s, but emerges as a worldwide phenomenon practiced in organizational and community development in over 100 countries (Stetson, 2008). However, relatively little empirical research exists testing the claims made by AI advocates, especially in the higher education sector. The current study explored the hypothesized positive relationships between Appreciative Inquiry, student engagement, and student attendance, beginning in Chapter Two with an extensive review of relevant literature regarding theoretical foundations of significant constructs. If, as hypothesized, Appreciative Inquiry positively impacts student engagement and attendance, the study offers evidence that institutions of higher education could employ the strategy to improve student retention and persistence for greater educational attainment. A more educated citizenry contributes to economic vitality in an increasingly competitive global economy (Ward, 2006).
CHAPTER II

REVIEW OF RELATED LITERATURE

Increased Need for Higher Education and Technical Skills

Educators, politicians and economists emphasize the link between an educated citizenry and national economic competitiveness. The symbiotic relationship between higher-educated, higher-skilled workers and individual, community, and national prosperity remains a fundamental principle upon which nations build economies. In reference to the British economy, Williams (2008) suggests further education exists to provide skills for individual employability needed for economic growth in the face of international competition. In the past decade, economic drivers increasingly dominated higher education (Williams, 2008). Upon review of the development of a Ukrainian higher education system, Janmaat (2008) states educational policies aimed at enhancing the employability, flexibility and mobility of the workforce contribute to a nation’s economic performance and competitiveness in a global marketplace. Since the 1980’s, China’s higher education system provides the country with scientific and technological expertise, which Cook (2008) defines as “a path to individual advancement and an engine to stimulate the market economy” (p. 33). Robertson and Keeling (2008) report higher education firmly incorporates a discourse of global competitiveness. Many parts of the world view higher education as the prime motor for the development of a knowledge-based economy (Robertson & Keeling, 2008). Numerous cultures perceive postsecondary education as a public good, contributing to society by educating citizens, improving human capital, encouraging civic involvement, and boosting economic development (Altbach, Resiberg, & Rumbley, 2010).
On the United States’ national front, President Barack Obama also highlights the education-economy connection:

Time and again, when we have placed our bet for the future on education, we have prospered as a result – by tapping the incredible innovative and generative potential of a skilled American worker … In an increasingly competitive world economy, America’s economic strength depends upon the education and skills of its workers. (The White House, Office of the Press Secretary, 2009)

According to Haskins (Haskins, n.d.), the human capital gained from a college education remains the most valuable economic asset parents can provide children, bearing a remarkably strong relationship to individual economic outcomes. Perhaps the connection between higher education and economic prosperity is now more important than ever – a time in which the United States attempts to rebound from national and international downturns. Ward (2006) speculates the downturns will likely accelerate global shifts in the race to develop human capital.

Fischer (2010) echoes Ward’s prediction, stating the recent recession could accelerate global shifts in the competition to educate more people and produce top-flight research, and, as a result, the United States could lose ground. Douglass (2010) describes the situation as follows:

Twenty-two of the 30 fastest-growing career fields require some postsecondary education, yet two-thirds of young adults from poor families do not get a college education and about half of all students who enroll in a bachelor’s degree program do not get their degree by the age of 29. (p. 4)
According to Bruininks, Keeney, and Thorp (2010), the United States spent more money in 1995 on college student education than any other country in the world, and as a result, graduated the most college students. Ten years later, the U.S. continues to spend the most money on college student education, but nations including Australia, Iceland, Finland, Ireland, and Poland report more success in graduating college students (Bruininks, Keeney, & Thorp, 2010). In fact, the United States now ranks 10th among countries with adults ages 25 to 34 who hold at least an associate’s degree (Fischer, 2010). Research suggests that raising the cognitive skills of U.S. students to the level of top-scoring nations in Asia could significantly increase U.S. national income (Hanushek & Woessman, 2008). A relevant review of current global trends in financing higher education echoes the present negative course of American education-economic directions:

In the U.S., where educational attainment rates have largely remained stable or are declining, the severity of the economic problems, along with the growing gap between the rich and the poor, will likely mean a short-term decline in [educational] access and perhaps a long-term decline in graduation rates. The Great Recession is further exposing and reinforcing a trend in which the educational attainment rates of a nation, along with the quality of its higher education sectors, will determine the fate of not only its economic competitiveness, but also its socioeconomic health. (Douglass, 2010, p. 26) Robertson (2005) agrees, recognizing the critical role education plays in economic growth, but only if education systems respond in new ways to the demands of the knowledge economy.
In order to change the current downward spiral, the United States requires a strong vision to propel a higher education renaissance (Bruininks, Keeney, & Thorp, 2010). Renaissance refers to a reawakening of the critical importance of higher education. Many, including the current presidential administration, share this sentiment. In fact, President Obama set a lofty goal - by 2020, the United States “will once again have the highest proportion of college graduates in the world” (The White House, Office of the Press Secretary, 2009). The nation’s community college system emerges as one of the primary vehicles for education attainment under the Obama administration.

“Community colleges represent an affordable, accessible route for a wide income spectrum of students to access well-paying, high-demand jobs, as well as further education” (Goldrick-Rab, Harris, Mazzeo, & Kienzl, 2009). The Council of Economic Advisers (2009) projects occupations requiring higher educational attainment to grow much faster than those with lower education requirements, with the fastest growth among occupations requiring an associate’s degree or a post-secondary vocational award. Lacey and Wright (2009) agree, predicting occupations in the associate degree category will grow more rapidly than employment in any other education or training category over the 2008–2018 period. Therefore, institutions granting associate degrees and post-secondary technical and vocational awards can help the nation realize the education attainment goal, along with the individual, community, and national prosperity that accompany educational achievement. In particular, Horn and Nevill (2006) recognize community colleges as offering educational opportunities to greater percentages of nontraditional students and minority students than four-year institutions. In an era of economic
challenges, community colleges offer alternatives to rigorous university educations; prepare high school alumni for social responsibility and employment; respond to the needs of business and industry; and offer low-cost means to higher education (Frost, 2009). Arguably, the path to higher national educational attainment, economic advancement, and greater national prosperity passes in part through the community college (Goldrick-Rab, Harris, Mazzeo, & Kienzl, 2009).

Community College Student Retention and Attrition Challenges

While community colleges offer access to low-cost, high-reward education, challenges threaten continued economic competitiveness – for the individual as well as the community. For example, nearly 50 percent of first-time community college students leave postsecondary education without attaining a credential or transferring to another post-secondary institution (Provasnik & Planty, 2008). Other researchers echo this finding, reporting only 20 to 50 percent of community college students achieve successful outcomes, depending on success measures (Hoachlander, Sikora, Horn, & Carroll, 2003). Horn (2009) portrays a bleak reality, reporting only one in ten students entering community colleges in 2003 completed a degree within three years. A review of relevant literature reveals two types of variables influencing student attrition; individual student characteristics and institutional characteristics.

Individual Characteristics

For decades, student retention researchers focused exclusively on how individual student attributes influence attrition. The broad missions of community colleges attract diverse student populations to the institutions, resulting in a disparate number of nontraditional students. Often the literature describes nontraditional students as those
who are age 25 or older, but others define nontraditional students using background characteristics or risk factors of the students (Kim, 2002). While serving at the National Center for Educational Statistics, Horn and Carroll (1998) identified seven risk factors threatening the retention of nontraditional students: (1) failing to enroll within the same year as completion of high school, (2) attending part-time, (3) maintaining financial independence of parents, (4) working full-time, (5) having dependents other than a spouse, (6) parenting alone, and (7) failing to possess a high school diploma. At the time of the Horn and Carroll report release, researchers reported three-fourths of students in community colleges faced at least one of the above risk factors (Kim, Sax, Lee, & Hagedorn, 2010). Simply stated, community colleges enroll a disproportionate share of at-risk students (Kuh, Kinzie, Buckley, Bridges, & Hayek, 2006). Of the above risk factors, Allen (2009) identifies work-life balance issues and academic underpreparedness as top issues surrounding community college student retention. Matthews (2009) suggests a lack of engagement as an additional risk factor.

Work-life balance. According to Horn and Nevill (2006), community college students work more than students at 4-year institutions. More than two-thirds of community college students attend classes part-time, including 26 percent who attend less than half time (Horn & Nevill, 2006). Nearly all (79 percent) community college students work while enrolled (averaging 32 hours per week), and 41 percent work full-time (Horn & Nevill, 2006), a six percent increase from full-time working students in 1996 (Kojaku, Nunez, & Malizio, 1998).

Research suggests competing employee and student roles negatively impact students’ success at the community college. According to Tinto, academic and social
integration are complementary but independent processes by which students adjust to college life (Kuh, Kinzie, Buckley, Bridges, & Hayek, 2006). Kim, Sax, Lee, and Hagedorn (2010) report students who view themselves primarily as employees rather than students spend less time on campus, are less likely to engage in classroom discussion, and are less likely to think their college offers desirable social activities when compared to individuals who view themselves primarily as students rather than employees.

Working students agree with researchers that employment has a direct impact on academic success. Nontraditional students indicate employment interferes with class scheduling, reduces the number of classes taken, limits access to the library, and lowers grades (Choy, 2002). This finding extends to traditional-aged students as well. Increased work hours produce complaints by traditional age students regarding their ability to do well in classes (Pascarella & Terenzini, 2005). Research supports students’ concerns, revealing more hours of work may have a cumulative negative impact on grades over a college career and may affect lower performing students differently (Svanum & Bigatti, 2006).

Astin’s theory of student involvement also recognizes the work-life balance struggles of students. Astin (1984) suggests students possess limited supplies of mental and physical energy. Thus, community colleges compete with other forces in the student’s life for a share of limited time and energy. Astin (1984) describes this phenomenon as a “zero-sum” game in which the time and energy that the student devotes to work, family responsibilities, and other activities represent a reduction in the time and energy the student devotes to educational development.
Academic under-preparedness. In addition to challenges of work-life balance, many community college students begin the college experience with significant deficits in academic preparation. In fact, Bailey (2009) suggests the majority of community college students arrive unprepared to engage effectively in learning college-level material. According to data from the National Education Longitudinal Study, 58 percent of community college students take at least one remedial course, 44 percent between one and three remedial courses, and 14 percent more than three remedial courses (Attewell, Lavin, Domina, & Levey, 2006). According to Bailey (2009), many community college students referred to remedial courses never enroll, and many who actually complete one remedial course never enroll in sequential developmental courses. Fewer than half of the students referred to developmental education complete the recommended sequence (Bailey, 2009). Avoidance of remedial courses appears to take its toll, as only one in four students who take remedial courses at community colleges ultimately graduate (Attewell, Lavin, Domina, & Levey, 2006).

Lack of engagement. A third challenge associated with community college student retention involves a lack of engagement between the student and the institution. According to Astin (1984), the theory of student involvement emerges from a longitudinal study of college dropouts. The study sought to identify factors in the college environment that markedly affected students’ persistence in college. The study showed every positive factor as likely to increase student involvement in the undergraduate experience, and every negative factor as likely to reduce involvement. As a result, factors contributing to students remaining in college suggest involvement, whereas those contributing to the student’s dropping out imply a lack of involvement.
Out of Astin’s focus on student involvement developed the research area of student engagement. Kuh (2003) suggests evaluative efforts at an institution should focus on collecting information about student engagement, which he defines as the time and energy students devote to educationally-sound activities inside and outside of the classroom. He further recommends institutions interested in raising the quality of the undergraduate experience adopt policies, procedures, and practices that encourage students to take part in such activities.

Kuh (2003) summarizes data from the National Survey of Student Engagement, identifying full-time students, students living on campus, and native students (those who start and graduate from the same school) as the most engaged student groups. A review of the enrollment data in community colleges across America reveals an obvious challenge. According to the American Association of Community Colleges, 11.5 million students enrolled in community colleges in America in the fall of 2007, with an expected increase of nearly 17% by the fall of 2009. Among those enrolled in 2007, 40% enrolled full-time and 60% enrolled part-time. Since many community college students attend school part-time, have other responsibilities such as work and family, and attend commuter campuses, the difficulty in cultivating student engagement at the community college grows. Kuh (2003) acknowledges the existence of a “non-trivial number of students whose life exigencies severely limit the amount of time they can devote to their studies – those who work full-time, support and care for dependents, and so forth” (p. 27). Work-life balance, academic under-preparedness, and lack of engagement contribute to reduced student success. However, characteristics of educational institutions also factor into the student success equation.
Institutional Characteristics

For decades, most of the student retention and attrition research focused exclusively on the influence of individual student attributes. Researchers now identify issues related to the institution. Pascarella and Terenzini (2005) emphasize, “since individual effort or engagement is the critical determinant of the impact of college, then it is important to focus on the ways in which an institution can shape its academic, interpersonal, and extracurricular offerings to encourage student engagement” (p. 602). Tinto (2000) emphatically states the following:

To be serious about student retention, institutions would recognize that the roots of student attrition lie not only in their students and the situations they face, but also in the very character of the educational settings in which they ask students to learn, namely, the classrooms, laboratories, and studios of the campus. (p. 1)

Research on institutional characteristics promoting positive student outcomes focuses primarily on four-year institutions. For example, Porter (2000) reports higher entrance exam scores and the percentage of female students positively associate with graduation rates. He also suggests higher expenditures per student, smaller total enrollment, and the availability of on-campus housing associate with higher graduation rates. Astin, Tsui, and Avalos (1996) report private universities described as enrolling better-prepared students boast the highest graduation rates. The researchers also suggest highly-selective institutions produce higher graduation rates. Mortenson (1997) suggests institutions with fewer students living on campus and fewer full-time students produce lower graduation rates. Ryan (2003) detects institutions with greater expenditures on
instructional and academic support report higher graduation rates, while observing no positive effect from increased expenditures on student services and administration.

According to Bailey, Calcagno, Jenkins, Kienzl, and Leinbach (2008), many institutional variables impacting student retention and attrition depend on the characteristics of the institution’s students. However, a few researchers point educators to characteristics that act independently of the students who are attending the institution.

Table 1

Institutional Characteristics Impacting Student Retention and Attrition

<table>
<thead>
<tr>
<th>Institutional Characteristic</th>
<th>Supporting Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic and social support</td>
<td>Tinto & Pusser, 2006</td>
</tr>
<tr>
<td>Financial aid levels</td>
<td>Bailey, Calcagno, Jenkins, Kienzl, & Leinbach, 2008</td>
</tr>
<tr>
<td>Higher entrance exam scores</td>
<td>Porter, 2000</td>
</tr>
<tr>
<td>Higher per student expenditure</td>
<td>Porter, 2000; Ryan, 2003; Titus, 2006, 2004; Bailey, Calcagno, Jenkins, Kienzl, & Leinbach, 2008</td>
</tr>
<tr>
<td>Institutional commitment</td>
<td>Tinto & Pusser, 2006</td>
</tr>
<tr>
<td>Institutional focus on certificates vs. degrees</td>
<td>Bailey, Calcagno, Jenkins, Kienzl, & Leinbach, 2008</td>
</tr>
<tr>
<td>Learning opportunities</td>
<td>Tinto & Pusser, 2006</td>
</tr>
<tr>
<td>On-campus housing availability</td>
<td>Porter, 2000; Mortenson, 1997; Titus, 2006, 2004</td>
</tr>
<tr>
<td>Percentage of female students</td>
<td>Porter, 2000</td>
</tr>
<tr>
<td>Percentage of full-time students</td>
<td>Mortenson, 1997</td>
</tr>
<tr>
<td>Percentage of full-time vs. part-time faculty members</td>
<td>Bailey, Calcagno, Jenkins, Kienzl, Leinbach, 2008</td>
</tr>
<tr>
<td>Private vs. public funding</td>
<td>Astin, Tsui, & Avalos, 1996; Titus, 2006, 2004</td>
</tr>
<tr>
<td>Selective admissions process</td>
<td>Astin, Tsui, & Avalos, 1996</td>
</tr>
<tr>
<td>Smaller total enrollment</td>
<td>Porter, 2000; Titus, 2006, 2004</td>
</tr>
<tr>
<td>Student involvement activities</td>
<td>Tinto & Pusser, 2006</td>
</tr>
<tr>
<td>Tuition levels</td>
<td>Bailey, Calcagno, Jenkins, Kienzl, & Leinbach, 2008</td>
</tr>
</tbody>
</table>

Titus (2006; 2004) lists the following institutional characteristics that might affect attrition: control (public or private), residential offerings, college size, sources of
revenue, and patterns of expenditure. Bailey et al. (2008) add the following institutional characteristics impacting retention: tuition levels; the use of part-time faculty; overall expenditures per student; the extent to which the college focuses on certificates as opposed to associate degrees; and the level of financial aid. Tinto and Pusser (2006) propose a different set of institutional variables affecting attrition. Those attributes include institutional commitment, academic and social support, involvement opportunities, and learning. Regardless of which set of variables educators embrace, one commonality remains: institutional policies, procedures, practices, and culture can have a direct impact on student retention and attrition. Table 1 depicts the prevalence of institutional characteristics cited in relevant retention and attrition research.

Theoretical Framework of Student Success

Foundational Models

Most retention research and literature focus on several well-established and empirically tested models. These include Tinto’s (1975) model of student integration, Bean’s (1985) model of student attrition, Astin’s (1975) model of student involvement, and Chickering’s and Gamson’s (1987) model of student engagement known as the Seven Principles for Good Practice in Undergraduate Education. As described below, all four models include one common thread: social integration contributes to student success.

Tinto’s student integration model. Tinto’s (1975; 1993) student integration model remains the most widely recognized and cited retention theory found in relevant literature. In fact, some researchers (Coll & Stewart, 2008) credit Tinto with
defining the current paradigm structure of retention theory. In his seminal 1975 article, Tinto formulates a theoretical model of retention explaining the processes of interaction between the individual and the institution (Tinto, 1975). In essence, Tinto’s theory proposes student retention primarily involves integration of the student, both socially and academically, into the institutional environment. Tinto bases his model, in part, on Durkheim’s (1961) theory suggesting suicide is more likely to occur among individuals not integrated into the fabric of society. Tinto applies this correlation to the landscape of the college as a social system with its own value and social structure. Much like an individual drops out of life through suicide, students drop out of college, in part, due to a lack of social integration. However, Tinto acknowledges colleges revolve around academic systems in addition to social systems, and academic integration plays a role in retention. In Tinto’s model, students achieve social and academic integration when they have positive regard for their academic performance and they value the social relationships they establish at the institution (Coll & Stewart, 2008).

According to Tinto (1975), social integration occurs primarily through informal peer group associations, semi-formal extracurricular activities, and interaction with faculty and administrative personnel within the college. These encounters, if positive, result in various degrees of social communication, friendship support, and collective affiliation. Tinto (1975) proposes with other variables equal, increased social integration should improve the probability that the student will persist in college. Once again, if informal peer associations and interaction with faculty greatly contribute to student retention as Tinto proposes, community college educators face a serious challenge as many students interact with the institution almost solely in the classroom.
Academic integration serves as the complementary aspect to Tinto’s social integration. According to Tinto (1975), academic integration revolves around a student’s grade performance and intellectual development. At the time Tinto developed his theory, grade performance emerged as the single most important factor in predicting student retention (Astin, 1972; Blanchfield, 1971; Kamens, 1971). Spady (1970) describes grades as the single most visible reward for a student’s efforts in college. Tinto (1975) proposes students utilize grades as tangible resources for future educational and career mobility. In terms of intellectual development, Medsker and Trent (1968) report students who persisted viewed their college education as an opportunity to gain knowledge and appreciate new ideas rather than simply as a path to gainful employment.

Bean’s student attrition model. Bean (1980) acknowledges Tinto’s work, but built upon it using a review of the literature on turnover in work organizations. Like Tinto, Bean (1980) acknowledges student involvement in the institution as a major determinant in the persistence process. However, Bean (2005) asserts the definition of involvement includes more than behaviors in which the student engages; rather, his student attrition model emphasizes the importance of the student’s *intention* to remain enrolled or to depart from college. The attrition model hypothesizes a student’s beliefs shape his attitudes, and his attitudes affect his intent to remain enrolled in college or to drop out (DesJardins, Ahlburg, & McCall, 1999). Bean (1980) identifies three types of variables influencing student attitudes and intentions to persist: background variables, organizational variables, and intervening variables. Of particular interest to the current study are the following four organizational determinants:
1. Integration, defined as the degree to which a student participates in primary or quasi-primary relationships (has close friends),

2. Advisor, defined as the degree to which a student believes his or her advisor is helpful,

3. Staff/faculty relationship, defined as the amount of informal contacts with faculty members,

4. Campus organizations, defined as the number of memberships in campus organizations (Bean, 1980).

The four determinants listed above contain elements of socialization similar to Tinto’s social integration (Tinto, 1975). Essentially, Bean’s model places great importance on the psychological results of the student’s interaction with the organization (Johnson & Collins, 2009).

Astin’s student involvement model. After the development of Tinto’s student integration model and Bean’s student attrition model emerges Astin’s theory of student involvement. Frustrated by the disconnection between inputs of college policies and expected outputs of student success, Astin develops a simple theory explaining factors that influence student development (Astin, 1984). Specifically, Astin provides an alternative, or perhaps an enhancement, to the prevalent pedagogical theories of the day: subject-matter theory, resource theory, and individualized (or eclectic) theory (Astin, 1984). Astin’s student involvement theory includes five basic postulates:

1. Involvement refers to the investment of physical and psychological energy in various objects.

2. Regardless of its object, involvement occurs along a continuum.
3. Involvement has both quantitative and qualitative features.

4. The amount of student learning and personal development associated with any educational program is directly proportional to the quality and quantity of student involvement in that program.

5. The effectiveness of any educational policy or practice directly relates to the capacity of that policy or practice to increase student involvement (Astin, 1999).

Astin’s model is rooted in a longitudinal study of college dropouts revealing socialization as a key factor in student persistence (Astin, 1975). In fact, Astin claims that peers remain the most powerful source of influence in the lives of college students (Astin, 1993). He further reports that activities such as living on campus, joining social organizations, or working on campus increase the likelihood that a student will come in contact with other students, professors, or college staff, and therefore positively relate to student persistence (Astin, 1999). Berger and Milem (1999) suggest Astin’s student involvement model provides a means for explaining the very process of social integration that Tinto proposes and Bean acknowledges. Building upon the work of Tinto (1975, 1993), Berger and Milem (1999) support Astin’s model by reporting student involvement promotes institutional commitment by the student and leads to greater social integration.

According to Cazabon (2009), the most important proposition in Astin’s theory of student involvement declares the value of any educational policy or practice is determined by its ability to increase student involvement. Accordingly, institutional policies and practices can be evaluated in terms of the level to which they increase or reduce student involvement. As researchers began to study and apply Astin’s student involvement
model, a natural product of the increased attention developed. Pike and Kuh (2005) suggest that student engagement theory emerges from the work of Astin, Pike, and Kuh. Cazabon (2009) supports this premise, citing Astin’s student involvement model as the precursor for the field of student engagement research.

Student Engagement and Attendance

Astin (1975) defines involvement as the investment of physical and psychological energy in various objects. Engagement closely relates to the concept of involvement. Schreiner and Louis (2008) suggest the term engagement in the National Study of Student Engagement (discussed later) relates synonymously with Astin’s (1984) term involvement in his original articulation of student involvement theory. Kuh (2003) defines student engagement as the time and energy students devote to educationally sound activities inside and outside the classroom. He further acknowledges the critical need for good information about student engagement and the policies and practices institutions use to induce students to take part in activities (Kuh, 2003). Additionally, researchers suggest student engagement remains the most important factor in learning and personal development during college (Astin, 1993; Pascarella & Terenzini, 1991).

With increasing importance placed on student engagement, institutions strive to improve engagement opportunities for students. With that goal in mind, researchers have studied the topic for decades. In the early 1980s, the American Association of Higher Education (AAHE) conducted a series of conferences focusing on issues in higher education (Chickering & Gamson, 1999). Leading scholars, including Arthur Chickering, Zelda Gamson, Alexander Astin, Patricia Cross, Russell Edgerton, and Joseph Katz, gathered at one such conference in 1986 to draft a statement of principles of
good practice (Southerland, 2010). Out of the discussion emerged the best known set of student engagement indicators: the Seven Principles for Good Practice in Undergraduate Education (Kuh, 2001). Published originally in the AAHE bulletin (Chickering & Gamson, 1987), the principles represent behaviors associated with valued outcomes of colleges (Kuh, Pace, & Vesper, 1997). According to the principles, successful undergraduate institutions employ strategies that:

1. Encourage student-faculty contact
2. Encourage cooperation among students
3. Encourage active learning
4. Give prompt feedback
5. Emphasize time on task
6. Communicate high expectations, and
7. Respect diverse talents and ways of learning (Chickering & Gamson, 1987).

These principles summarize over 50 years of research exploring how teachers teach and students learn, students work with one another, and students and faculty talk to each other (Chickering & Gamson, 1987). Students who participate in good educational practices are significantly more likely to earn a bachelor’s degree than their peers who do not engage in good educational practices; a factor that is particularly relevant considering that nearly half of all students who aspire to earn a bachelor’s degree never attain this goal (Astin, 1984). Students who employ good educational practices are also more likely to have higher grades, report higher satisfaction with the college experiences, and enjoy increased cognitive, emotional and personal growth (Astin, 1993; Pascarella et al., 2006). Research reveals positive results from good practices, as three of the principles point
directly to pedagogies of engagement: 1) good practices encourage student-faculty contact; 2) good practices encourage cooperation among students; and 3) good practices encourage active learning (Smith, Sheppard, Johnson, & Johnson, 2005). Furthermore, the first two engagement principles (student-faculty contact and cooperation among students) share the social nature of the previously-described models of student integration, attrition, and involvement.

Measures of Student Engagement

National Survey of Student Engagement (NSSE). Since the introduction of the Seven Principles for Good Practice, institutions of higher learning employ a host of strategies to implement the principles. While limits exist as to what colleges can realistically do to help students overcome years of educational disadvantages, most institutions can foster greater levels of student engagement and success by consistently utilizing policies and effective educational practices (Kuh, 2007). In order to improve student engagement levels, colleges must determine current student engagement levels and which areas offer opportunities for improvement. Developed to address the need for baseline data, the National Survey of Student Engagement (NSSE) is based on the Seven Principles of Good Practice in Undergraduate Education (Kezar & Kinzie, 2006). Specifically, Kuh (2003) reports one goal of the NSSE remains to “insinuate the language of effective educational practice into discussions about collegiate quality” (p. 25). The NSSE exists as a self-supporting auxiliary unit within the Center for Postsecondary Research in the Indiana University School of Education. More than 1,400 colleges and universities in the U.S. and Canada boast participation in NSSE since its first administration in 2000 (NSSE, 2010). The NSSE measures the extent to which students
engage in empirically derived good educational practices and what they gain from the college experience (Kuh, 2001). Five institutional benchmarks developed using items from the NSSE include the following:

1. Level of academic challenge
2. Active and collaborative learning
3. Student interaction with faculty members
4. Enriching educational experiences, and
5. Supportive campus environment.

Kuh (2001) suggests the benchmarks serve as proxy measures to identify opportunities for improving undergraduate education. However, the NSSE measures engagement on a *macro* institutional level, gauging broad elements such as level of academic challenge and supportive campus environments. In contrast, Shulman (2002) argues learning begins with student engagement; therefore, methods for determining the extent to which students engage in the learning process in a specific course (micro level) should be investigated (Schreiner & Louis, 2008). Course engagement is a distinctive method of acting in learning situations (Svanum & Bigatti, 2006). The responsibility of engaging students in learning rests primarily on the instructor, who becomes less an imparter of knowledge and more a designer and facilitator of learning experiences and opportunities (Smith, Sheppard, Johnson, & Johnson, 2005). In contrast to broad, institutional measures of engagement, faculty members seek engagement strategies for students they may teach in only one class. To measure and therefore improve student engagement on the micro course level, Handelsman, Briggs, Sullivan and Towler (2005)
develop a reliable, valid and multidimensional measure of college student engagement at
the course level, the Student Course Engagement Questionnaire (SCEQ).

\textit{Student course engagement questionnaire (SCEQ).} After researching existing
literature on student engagement and utilizing an inductive approach to capture the many
potential dimensions of student engagement, the SCEQ architects present evidence of the
following four interpretable and internally consistent factors of student engagement at the
course level (Handelsman, Briggs, Sullivan, & Towler, 2005):

1. Skills engagement
2. Emotional engagement
3. Participation/interaction engagement
4. Performance engagement.

The skills engagement subscale of the SCEQ asks students to describe their
behaviors associated with a course such as studying on a regular basis, completing
homework, and attending class on a regular basis. The emotional engagement subscale
asks students for behavioral descriptions related to applying the course material to real
life, finding ways to make the course interesting, and desiring to learn the material. The
participation/interaction engagement subscale asks students to describe their behaviors
related to actively participating in small group discussions, asking questions when there
is a lack of understanding, and helping fellow students. The performance engagement
subscale centers on students’ reports of self-confidence, achieving desired grades, and
excelling on tests (Handelsman, Briggs, Sullivan, & Towler, 2005). The
participation/interaction subscale draws particular interest for the current study. The
SCEQ architects provide the following examples of behaviors associated with the
subscale: active participation in small group discussion, helping fellow students, and interacting with the faculty member when a lack of understanding arises (Handelsman, Briggs, Sullivan, & Towler, 2005). The social undertones of such behaviors match the social nature of student integration, attrition, involvement, and macro-level engagement.

Importance of Student-Course Attendance

Importance for the student. In addition to significance placed on student engagement, Petress (1996) highlights the importance of student attendance and the value of the social nature of attending class:

An education involves cooperative professor/student/classmate effort. Too frequently, student peer classroom interaction, challenge, and insight are overlooked or diminished. The need for this cooperative, team-work, and peer presence needs accentuating as it is a rationale for required student attendance at all class sessions. (p. 387)

Devadoss and Foltz (1996) agree, citing college student absenteeism as a major concern for institutions of higher learning, as “absenteeism disturbs the dynamic teaching-learning environment and adversely affects the overall well-being of classes” (p. 499). Friedman, Rodriguez, and McComb (2001) report similar findings, suggesting students specifically attend some classes for the opportunity to engage in class dialogue. Student attendance in classes using small group, interactive exercises to enhance student learning remains particularly crucial, as absenteeism decreases the effectiveness of the format (Launius, 1997). Perhaps the social nature of classroom interaction contributes to the strong correlations between attendance and performance (Moore, Armstrong, & Pearson, 2008; Gump, 2004; Thatcher, Fridjhon, & Cockcroft, 2007). Specifically, students who
attend class regularly are more likely to learn course material, earn higher grades on exams, and report higher satisfaction with achievements than those who attend class less often (Davidovitch & Soen, 2006).

Importance for the institution. While research reveals a strong incentive for students to attend class, institutions of higher learning benefit from high rates of attendance. Of particular importance to the current study, Mississippi community colleges receive funding based in large part on actual student attendance in class. The Mississippi State Board for Community and Junior Colleges (2007) provides the following description of funding based on attendance:

The appropriation bill passed annually by the Mississippi legislature provides for support of community colleges and that such support be distributed to the fifteen public community and junior colleges upon the basis of enrollment and attendance on the last day of the sixth week…Each college shall have and enforce a policy which will properly identify any student who withdraws, officially or in-fact by absences, from a class…Records relating to such withdrawals shall be …required for distribution of state funds …“Enrolled and in attendance” shall mean that the student’s last day of attendance occurred on or after the last class meeting of the sixth week. Students with the equivalent of two absences (per one credit hour course) by the end of the sixth week shall be deemed not “enrolled and in attendance”. (“Enrolled and in Attendance,” para. 1, 4, 6)

Allen (2009) reports the community college in which this study takes place lost over $500,000 in state appropriations in 2008 because students did not meet the definition of “enrolled and in attendance” due to excessive absences. With significant budgetary
concerns and student success at stake, attendance remains a focus of interest for community college leaders. Acknowledging the severity of the absenteeism problem, educators explore creative techniques such as innovative teaching methods to increase class attendance (Devadoss & Foltz, 1996). The following section explores one such method.

Appreciative Inquiry: A Student Engagement and Attendance Strategy

Combining the foundational models of student integration, attrition, involvement, and engagement leads to the following conclusion: Students are most likely to persist to graduation and eventually enter the workforce as productive members if they:

1. Socially and academically integrate into the institution (Tinto, 1975, 1993),
2. Develop primary relationships with friends, helpful relationships with advisors, informal contacts with faculty, and memberships with campus organizations (Bean, 1980),
3. Participate in activities that increase contact with other students, professors, or college staff, (Astin, 1975; Kuh, 2003),
4. Engage in institutional-level practices encouraging student-faculty contact and cooperation among students (Chickering & Gamson, 1987),
5. Engage in course-level practices encouraging small group participation, interaction with faculty when a lack of understanding occurs, and assistance to fellow students (Handelsman, Briggs, Sullivan, & Towler, 2005), and
6. Attend class regularly (Bowen, Price, Lloyd, & Thomas, 2005; Launius, 1997).
The common attribute among all six previously discussed student success approaches remains the social, interactive nature of each theory or model (Boyd & Bright, 2007). Therefore, strategies to improve engagement at the course level, a focus for this study, emphasize the social aspect of student learning and achievement.

Appreciative Inquiry (AI), an improvement strategy receiving increasing attention in the academic arena, incorporates most of the above postulates into one practical engagement approach. Introduced by David Cooperrider and his colleagues at Case Western Reserve University in the 1980s, AI emerges from positive psychology and organizational change movements (Farr, 2006). Cooperrider and Whitney (2005) define AI as follows:

Appreciative Inquiry is the cooperative, co-evolutionary search for the best in people, their organizations, and the world around them. It involves systematic discovery of what gives life to an organization or community when it is most effective and most capable in economic, ecological, and human terms. (p. 8)

AI assumes something works well in every organization, and individual or collective strengths serve as the starting point for creating positive change (Cooperrider, Whitney, & Stavros, 2008). The broad language of AI focuses on specific aspects of an organization. For the purposes of this study, the classroom serves as the organization.

In direct opposition to more traditional problem-solving approaches, AI focuses on the positive core of an organization or group. The basic premise of AI suggests human systems grow in the direction in which they focus attention and persistently question (Cooperrider & Whitney, 2005). Bushe (as cited in Farr, 2006) defines AI as “an action research process that studies something from the positive side to create a new
kind of conversation among people as they work together to improve a group or organization” (p. 54). A discussion regarding the essential elements of AI and its theoretical foundations follows.

Process of Appreciative Inquiry

Cooperrider and Whitney (2005) base the AI process on the 4-D cycle of discovery, dream, design, and destiny.

1. Discovery: Mobilizing the whole system [classroom] by engaging all stakeholders [students and faculty] in the articulation of strengths and best practices. In other words, it is identifying “the best of what has been and what is.”

2. Dream: Creating a clear results-oriented vision in relation to discovered potential and questions of higher purpose, such as “What is the world calling us to become?”

3. Design: Creating possibility propositions of the ideal organization [classroom], articulating an organization [classroom] design that people [students and faculty] feel is capable of drawing upon and magnifying the positive core to realize the newly expressed dream.

4. Destiny: Strengthening the affirmative capability of the whole system [classroom], enabling it to build hope and sustain momentum for ongoing positive change and high performance. (p. 16)

Watkins and Mohr (as cited in Farr, 2006) summarize the above phases in slightly simpler terms. In the first phase of discovery, stakeholders [students and faculty] exchange stories and experiences of what worked well in the past. Secondly, the
stakeholders [students and faculty] collectively develop a dream or vision statement to bridge the discovery of past successes and the future of greater excellence. Thirdly, the stakeholders [students and faculty] dialogue about necessary actions to make the dream or vision statement a reality. Lastly, the stakeholders [students and faculty] create an action plan to ensure the dream or vision statement becomes destiny. As the desired future comes to fruition, stakeholders sustain momentum and restart the cycle to promote ongoing positive change (Cooperrider & Whitney, 2005). Figure 2 illustrates the 4-D cycle of Appreciative Inquiry.

Figure 2. The AI 4-D Cycle for Applied Positive Change. Adapted with permission from “The Discovery and Design of Positive Institutions” presentation by David Cooperrider at the first World Congress on Positive Psychology, 2009.

Theoretical Foundations of Appreciative Inquiry

The use of AI in a variety of settings continues to grow (Dick, 2006). Possibly the increase in popularity arises from the near evangelical focus on positive strengths of
an organization (Grant & Humphries, 2006). But the necessity of caution emerges, as
popularity does not indicate a theoretically sound foundation. Bushe (2005) expresses
concern that the positive focus of AI creates a zealous attention among practitioners. He
cautions AI facilitators against indiscriminant applications of the approach, instead
calling for disciplined and reasoned usage, arguing theory should determine the situations
cite the following five theoretical principles upholding AI: the constructionist principle,
the principle of simultaneity, the poetic principle, the anticipatory principle, and the
positive principle.

Constructionist principle. Crotty (1998) defines *constructionism* as “the view that
all knowledge, and therefore all meaningful reality as such, is contingent upon human
practices, being constructed in and out of interaction between human beings and their
world, and developed and transmitted within an essentially social context” (p. 42).
Cooperrider and Whitney (2005) further describe constructionism as an approach to
human science in which relationships become the center of knowledge, rather than the
individual as the center of knowledge. Appreciative Inquiry builds, in part, on the
constructionist principle that rejects absolutist claims of single solutions in favor of the
never-ending collaborative quest to understand and construct options for better living. In
constructivism, as in AI, a keen appreciation exists for the power of language to create
reality (Cooperrider & Whitney, 2005). More directly, the constructivist view states
that language and words serve as the very building blocks of all social reality (Bushe,
2005). In AI, the language and words of positive shared stories become the propeller to a
greater reality. Applied to the classroom setting, the language and words of shared
positive classroom experiences become the foundation for a better classroom environment.

Principle of simultaneity. Based on the belief that inquiry is intervention, the principle of simultaneity suggests human systems [classrooms] change as people make inquiries about them (Bushe & Kassam, 2005). In other words, the processes of inquiring and changing do not occur independently of one another. Instead, inquiry and change are simultaneous activities because the inquiry creates change as people discover, learn, dialogue and construct (Carr-Stewart & Walker, 2003). According to Cooperrider and Whitney (2005), the very questions asked [the inquiry] set the stage for the discovery, and the discovery yields stories that describe and construct the future [the change]. In AI practice, the simultaneity principle requires spending adequate time and effort to identify the focus of the inquiry and to deeply consider the exact wording and provocative potential of the questions asked (Bushe & Kassam, 2005). In the classroom setting, merely sharing stories of affirmative experiences from the past may positively change the current classroom setting.

Poetic principle. The poetic principle states that organizations [classrooms] behave more like books than machines, that the stories people [students and faculty] tell each other every day express organizational life [classroom life], and that people constantly co-author the story of the organization [classroom] (Bushe & Kassam, 2005). Fitzgerald, Murrell, and Newman (2001) further suggest an organization’s [classroom’s] pasts, presents, or futures serve as limitless sources of learning, motivation, or interpretation much like the boundless interpretive possibilities in a piece of poetry or literature. Having an impact far beyond just the words themselves, the topics discussed
invoke sentiments, understandings, and worlds of meaning. Therefore, the very language of the inquiry directs the outcomes. The inquiry should rely on words that acknowledge, enliven and inspire the best in people (Bushe & Kassam, 2005). In the classroom setting, as participants discuss previous positive experiences and define desired future states, students gain understanding about, and can relate to, effective classroom environments.

Anticipatory principle. Simply stated, the anticipatory principle suggests that an organization’s [classroom’s] positive images of the future direct the organization’s [students’] positive actions. In other words, the image of the future guides current behavior (Fitzgerald, Murrell, & Newman, 2001). Cooperrider and Whitney (2001) elaborate by stating:

Much like a movie projector on a screen, human systems are forever projecting ahead of themselves a horizon of expectation (in their talk in the hallways, in the metaphors and language they use) that brings the future powerfully into the present as a mobilizing agent. To inquire in ways that serve to refashion anticipatory reality - especially the artful creation of positive imagery on a collective basis - may be the most prolific thing any inquiry can do. (p. 21)

Applied to the classroom setting, students may project expectations of an effective and inspiring classroom experience, mobilizing participants into positive action.

Positive principle. The positive principle states momentum and sustainable change requires positive affect and social bonding (Cooperrider, Whitney, & Stavros, 2008). Citing research such as the broaden-and-build theory of positive emotions (Fredrickson, 2001), AI theorists contend sentiments like hope, excitement, inspiration, camaraderie and joy remain central to the change process (Ledema, Wilmot, & Srivastva,
In the classroom setting, students need to have hope for and collaborate about a better experience in order for positive change to occur.

Five Change Theories Embedded in Appreciative Inquiry

In addition to the above principles cited by the architects of AI, Bushe (2005) suggests the following change theories embed the frame of AI: social constructivism, heliotropic hypothesis, organizational inner dialogue, paradoxical dilemmas, and appreciative process. Social constructivism is discussed in the chapter section on the theoretical foundations of Appreciative Inquiry.

Heliotropic hypothesis. Cooperrider (1990) introduces the "heliotropic hypothesis," stating social forms evolve toward images that affirm and give life. Essentially, he argues all groups [classes of students] have images of themselves that underlay self-organizing processes, and social systems have a natural tendency to evolve toward the most positive images held by their members [students]. Conscious evolution of positive imagery remains a viable option for evolving the group [class] as a whole (Bushe & Coetzer, 1995). Described slightly differently, the heliotropic hypothesis suggests people display a natural tendency to embrace positive imagery, in much the same way as many life forms gravitate towards light (Golembiewski, 2000). Thus, people [students] respond enthusiastically when invited to explore organizational [classroom] strengths rather than weaknesses and to imagine positive organizational futures (Neilsen, Winter, & Saatcioglu, 2005). Positive emotions generated by focusing on strengths facilitate behavioral and social change in people’s lives as they themselves define such change (Sekopane, 2003).

Organizational inner dialogue. According to Bushe (2005), organizations [classes] engage in an inner dialogue comprised of the things people [students] say to each other in small confidential groups that remain unmentionable in official forums of
organizational business. This inner dialogue serves as a powerful stabilizing force in social systems, accounting for the failure to follow through on rationally derived decisions (Bushe, 2005). The inner dialogue reveals and communicates participants’ true thoughts and feelings about official matters. This inner dialogue carries through the stories people tell themselves and each other to justify interpretations of events and decisions. Simply put, this change theory suggests inner dialogue changes when the stories change.

Paradoxical dilemmas. AI also leads to developmental change by offering images that resolve paradoxical dilemmas for groups. Bushe (2005) describes paradoxical dilemmas as situations in which the organization asks members to accomplish two mutually incompatible tasks. For example, a work unit within a manufacturing plant must *always* meet deadlines and *never* give customers defective products. The work unit possibly cannot accomplish both directives. Either they will meet the production deadline and produce defective products, or produce quality products but miss the deadline. Bushe (2005) suggests under these circumstances, a group looks and feels trapped, repeats failing patterns and finds itself with the same unsolvable issues. These conditions produce a loss of energy and motivation to continue operating as a group. Since all sizes of social systems can become stuck in taboo paradoxical dilemmas, AI capacity to facilitate new image development and jostle conventional thinking produces positive change (Bushe, 2005). Stated differently, AI propels the quest for new ideas, images, theories and models. Innovative thinking liberates an organization’s collective aspirations and alters the social construction of reality, uncovering previously unavailable decisions and actions in the process (Bushe, 2009). This generativity, the
ability to generate new images and ideas, exists at the core of the AI process (Cooperrider & Srivastva, 1987).

Appreciative process. Bushe (2005) highlights the appreciative nature of AI. One can create change by paying attention to the desired state rather than paying attention to problems. Research suggests positive emotions lead to more flexibility, creativity, openness to information and efficiencies in thinking (Isen, 2000). In addition, several recent studies reveal the ratio of positive to negative talk relates to the quality of relationships, cohesion, decision-making, creativity and overall success of various social systems (Fredrickson & Losada, 2005). The broaden-and-build theory of positive emotions (Fredrickson, 2001) supports these findings.

Based on theoretical principles identified by Cooperrider, Whitney, and Stavros (2008), as well as embedded change theories recognized by Bushe (2005), AI proves an applicable approach in a variety of organizational settings.

Uses of Appreciative Inquiry

According to Bushe (2005), a rapidly increasing number of organizations, graduate students, and authors embrace the AI approach. Practitioners utilize AI to create positive organizational change in corporate, educational, and other settings. A description of AI examples in various organizational settings follows.

Appreciative Inquiry in corporate settings. To say that many in the corporate world utilize AI as a change strategy remains an understatement. Ten years ago, Quinn (2000) wrote, “Appreciative Inquiry is currently revolutionizing the field of organization development” (p. 220). Major companies embrace the AI process, resulting in significant shifts in organizational culture. For example, in 1997 the leadership of GTE/Verizon
employed AI to create a whole-system change initiative. The initiative won the American Society for Training and Development’s award for the best change program nationwide (Cooperrider & Whitney, 2005). In another example, the Santa Ana Star Hotel Casino in Albuquerque, New Mexico, realized a 20% increase in customer service scores and a 30% increase in employee satisfaction levels after utilizing the AI summit process to create positive change within the organization (Kinni, 2003). In the hospitality industry, a field study experiment used AI to address issues surrounding management turnover at Wendy’s International, a Fortune 500 company. Retention of entry-level management personnel reportedly increased over 30% in units employing AI (Jones, 1998). The increased retention rates resulted in savings of over $100,000 in training costs (Cwiklik, 2006).

Appreciative inquiry in educational settings. In addition to the corporate setting, AI surfaces across the education landscape from elementary schools to institutions granting doctoral degrees. For example, participants from higher education, K-12 school districts, the State Education Department, and technical support networks in the state of New York used AI to create a vision of the future for full inclusion of students with disabilities (Kozik, Cooney, Vinciguerra, Gradel, & Black, 2009). The results of the project created a potential structure for school systems to induct and nurture inclusive teachers.

Carr-Stewart and Walker (2003) describe AI use in a variety of educational settings. The authors used the AI approach as the foundation for a one-week Principals’ Short Course in which aspiring principals focused on leadership success stories. Similarly, the authors facilitated the AI process with a group of teacher interns to
discover the best in teacher practices, priorities, and principles (Carr-Stewart & Walker, 2003). Finally, the authors detail the use of AI with 164 public school superintendents in an effort to better understand their work lives: roles, relationships, realities and responses. The forums provided dialogues about education and leadership, allowing participants to dream about the most promising future for superintendents, organizations and constituents (Carr-Stewart & Walker, 2003).

The Developmental Education Appreciative Inquiry Project at Baker College serves as another example of AI in higher education. The project aimed to improve student success in developmental education courses, specifically acknowledging faculty development as a critical component of the change program. Project organizers held ten AI sessions involving 100 faculty members. Participants shared personal experiences based on the following questions:

1. Think back on your experience teaching a developmental or other class. Locate a time when an entire class or even an individual student was truly engaged in the class and motivated to learn. What circumstances caused this to occur?

2. Describe an incident when a student took accountability for his or her learning in one of your classes. What were the circumstances that led to this happening? What were the consequences?

3. Describe a moment when you observed a student have that “a-ha” moment when she or he experienced deep learning and understanding. What made that possible? (Davis, 2005).
Based on shared positive experiences, participants developed a collective dream statement describing the desired transformation of the developmental education learning environment. The Destiny phase came to fruition, with the AI process producing greater collaboration among faculty, increased energy, and increased use of new approaches to increase student success (Davis, 2005). While disabled student inclusion, leadership development, and student success strategies serve as examples of AI accomplishments in education, additional opportunities for AI application exist.

Potential Impacts of Appreciative Inquiry on Student Engagement.

Citing several studies, Shea, Fredericksen, Pickett, Pelz, and Swan (2001) define learning as a social process. They further report any learning environment meant to foster understanding must account for the social nature of learning. Billson (1986) supports the claim, stating “learning, achievement, and retention appear to be socially-rooted phenomenon” (p. 143). The social nature of learning also emerges in the foundational studies previously discussed in this literature review. Tinto (1975) acknowledges the contribution social integration makes to student success. Bean stresses the importance placed on the psychological results of the student’s interaction with the organization, including other students, faculty, and administrators. Building on Astin’s student involvement theory, engagement studies focus on the social nature of learning. Five of the Seven Principles for Good Practice in Undergraduate Education hinge on the student’s interactions with others in the college community: student-faculty contact, cooperation among students, active learning, prompt feedback, and respect for diversity. According to Kuh, Pace, and Vesper (1997), the principles represent behaviors associated with valued outcomes of colleges. Brown, Collins, and Duguid (1989) suggest learning
advances through collaborative social interaction and the social construction of knowledge. Any attempt to improve the learning environment must pass through the social intersection.

To date, several community colleges employ AI to advance the learning environment. Stetson (2008) details the use of AI by San Jacinto College faculty members to reenergize teaching and learning across the college district. In another application, faculty members at Michigan’s Delta College used AI with developmental and advanced English composition classes to improve student success. Reported benefits of the process include improved student retention, higher final grades, and enhanced satisfaction (Stetson, 2008). Figure 3 displays the AI cycle used in the Delta College case, along with deliverables associated with each phase.

![AI cycle and deliverables used by Delta College. Adapted with permission from Appreciative Inquiry in the Community College: Early Stories of Success.](image-url)
While accounts of AI impact on student engagement and retention tout positive results, a review of relevant literature reveals a lack of empirical evidence supporting the effectiveness of such a strategy. These accounts serve as the impetus of the current research study.

Summary

This review of literature describes the increased need for a higher skilled and educated citizenry among nations desiring to remain viable in an increasingly competitive global economy. The American community college system arises as a primary vehicle for educational attainment. While community colleges offer individuals access to low-cost, high-reward education, individual and institutional characteristics contribute to low student retention and educational success. Successful students socially integrate into the institution (Tinto, 1975), socially interact with peers to gain encouragement to strive toward educational goals (Bean, 1980), socially involve themselves in the institution (Astin, 1984, 1999), and socially engage with faculty and other students (Chickering & Gamson, 1987). Grounded in sound theoretical principles and focusing in large part on the social nature of organizations, AI emerges as a potential strategy by which to improve student attendance and engagement at the course level within the community college setting.
CHAPTER III
RESEARCH DESIGN AND METHODOLOGY

Introduction

The current study sought to determine what impact, if any, Appreciative Inquiry has on attendance and student-course engagement in the community college setting. Since nearly 50 percent of first-time community college students exit postsecondary education without attaining a credential or transferring to another post-secondary institution (Provasnik & Planty, 2008), community college leaders seek strategies to improve student engagement. Researchers (Stetson & Miller, 2004) hail the use of Appreciative Inquiry as such a strategy in the community college, yet little empirical evidence exists describing its impact. Chapter Three includes a description of the research design, treatment, population, sample, instrumentation, study variables, data collection, and data analysis procedures utilized in the research project.

Research Design

To determine the impact of Appreciative Inquiry on attendance and student-course engagement, the study examined attendance patterns and self-reported engagement levels through a mixed-methods approach. According to Creswell and Clark (2007), mixing the methods provides a better understanding of the issue under investigation than single methods provide. Specifically, the study employed a sequential-explanatory design, which Hanson, Creswell, Clark, Petska, and Creswell (2005) describe as follows:

In [sequential-explanatory] designs, quantitative data are collected and analyzed, followed by qualitative data. Priority is usually unequal and given to the
quantitative data. Qualitative data are used primarily to augment quantitative data.

Data analysis is usually connected, and integration usually occurs at the data interpretation stage and in the discussion. (p. 229)

Figure 4. Sequential-explanatory phases and procedures for current study.

The current study utilized the Student-Course Engagement Questionnaire (SCEQ) administered during the thirteen week of the semester (in accordance with the typical course evaluation schedule) to collect quantitative data regarding student engagement in the courses under investigation. In addition, at the end of the semester the researcher retrieved records entered by instructors from the institution’s database to gather information regarding student attendance. Subsequent to quantitative data collection and
analysis, instructors participated in a post-semester focus group designed to enrich the understanding of the quantitative data. Focus group questions were informed by quantitative data analysis as well as process summary reports submitted by instructors in weeks five and ten. Figure 4 displays the phases and related procedures employed in the current investigation.

To collect the quantitative data, a quasi-experimental, static-group comparison design was utilized. Defining characteristics include non-random assignment of participants to experimental and control groups, along with a post-test only observation (Creswell, 2009). Figure 5 shows the graphical depiction of static-group comparison design, where Group A serves as the experimental group, Group B serves as the control group, AI serves as the treatment and O as the post-test.

```
Group A -------------- AI -------------- O

Group B -------------------------------- O
```

Figure 5. Static group comparison design.

Description of the treatment. Students in the experimental classrooms (Group A) engaged in the four-stage cycle of Appreciative Inquiry, while those in the control classrooms did not. After receiving a description of the research project and providing informed consent (see Appendix F), instructors participated in a four-hour Appreciative Inquiry workshop during which they learned about and participated in the AI process. The workshop took place approximately one week prior to the fall 2011 semester. Objectives of the instructor workshop included the following:

1. Instructors ranked their perceived level of understanding of the foundational elements of the 4-D cycle of Appreciative Inquiry.
2. Acting in the role of a student, instructors participated in the first three phases of Appreciative Inquiry.

3. Instructors identified barriers to application of the AI process for the upcoming semester, along with strategies to overcome barriers.

4. Instructors ranked their level of understanding of and intent to follow the qualitative data collection process of the research study.

5. Instructors reported intent to apply information and concepts learned in the workshop to the experimental classrooms (Group A) utilizing AI in the upcoming semester.

At the conclusion of the AI workshop, instructors had the opportunity to ask questions and identify additional resources necessary for adequate implementation of the AI process.

As students are allowed to add and drop classes during the first week of the semester, instructors introduced AI to students in the experimental classrooms (Group A) during the second week of class. As part of the initial AI process in the experimental classrooms, students first interviewed one another to discover previous positive classroom experiences. Appendix A contains the interview guide used by pairs of students. Instructors lead students to develop collective dream statements describing desired classroom environments, then aided students in designing action plans to bring about the dream statements. Once instructors facilitated the Discovery, Dream, and Design phases of AI with experimental classes, they submitted summaries of the processes (see Appendix B). Instructors revisited dream statements and action steps with experimental classes during the fifth and tenth weeks of the semester to discuss progress.
of the classes towards reaching the desired classroom environments described in the
dream statements. Faculty members asked students to identify strategies or actions
needing attention in order to more fully realize the dream statements. For the remainder
of the semester, instructors guided experimental classes (group A) in focusing on
concepts and strategies voiced by students during weeks five and ten. During the
thirteenth week of the semester, students in both experimental groups (group A) and
control groups (group B) completed the paper-pencil Student Course Engagement
Questionnaire (see Appendix D).

Population and Sample

population

The population of interest for the current study included academic and technical
students enrolled in required general education core classes at the main campus of a
comprehensive Mississippi community college. Several factors made this population an
appropriate choice. Previous research shows students have fewer absences in elective classes
than in required classes (Friedman, Rodriguez, & McComb, 2001). Therefore, strategies to
improve attendance may be needed most in mandatory courses. Secondly, academic and
technical students are not as integrated into their programs as students in career programs.
Career program students generally work closely with the same instructor for most classes and
complete the program of study in less than two years. Increased student-faculty contact often
yields higher student engagement (Chickering & Gamson, 1987). In contrast, students in
general education core classes often have the instructor for one class only, lessening the
potential for a nurturing instructor-student relationship, and therefore lessening the likelihood
of engagement. Furthermore, since academic and technical students take a wide variety of
classes, they may not develop relationships with their classmates. Reduced opportunities for student-to-student and student-to-faculty interaction lead to reduced social and academic integration (Astin, 1999; Chickering & Gamson, 1987).

Sample

A purposive sample was drawn from students in general education classes. With purposive sampling, researchers begin with a large group of potential subjects. However, subjects must meet certain criteria to be included in the study (Huck, 2008). Inclusion criteria for the present study consisted of students who register for selected course sections of English Composition I taught in the traditional face-to-face method on the main college campus. English Composition I is the only general education core course required of all students receiving an Associate of Arts or Associate of Applied Science degree. English Composition I classes contain a broad cross section of students. In addition, Keller (2011) identifies English Composition I as a gateway course standing between students and most of the elective program-related courses for which students originally enrolled in the college. This fact makes successful completion of English Composition I crucial to student success.

Faculty members with a minimum of three years of college teaching experience and a desire to participate in the study taught the courses included in the current study. Furthermore, the investigator limited the courses to those for which the instructor taught at least two sections that met on the same days, allowing for a comparison between the experimental and control groups for each instructor. All instructors meeting the criteria (three years of teaching experience and at least two sections of English Composition I taught on the same days) were invited to participate in the study. At the time of the
research proposal submission, eight instructors met the criteria. Five of the eight eligible instructors agreed to participate in the study, while three chose not to participate. The next section describes the study variables and collection methods involved in the research project.

Study Variables and Collection Methods

According to Swanson and Holton (2005), variables refer to phenomena that vary depending on the conditions affecting them. The independent variable can be defined as a variable believed to have an impact on another variable (Gall, Borg, & Gall, 1996). In a theorized cause-and-effect relationship, the independent variable exists as the cause. In contrast to the independent variable, the dependent variable can be described as a variable believed to be impacted by the independent variable (Gall, Borg, & Gall, 1996). In a theorized cause-and-effect relationship, the dependent variable represents the effect. The current research study includes one independent variable and two dependent variables. The use of Appreciative Inquiry in the classroom served as the independent variable. Class attendance and student-course engagement served as the dependent variables. In other words, the researcher hypothesized that Appreciative Inquiry, the independent variable, impacts student-course attendance and student-course engagement, the dependent variables.

Quantitative Methods

Research repeatedly shows class attendance positively correlates with student success (Van Blerkom, 1992; Wyatt, 1992; Clump, Bauer, & Whiteleather, 2003; Allen, 2009). In the institutional setting for this study, instructors recorded student attendance
via an online system which stores individual student attendance in the institutional database. The researcher collected attendance records through access to the database.

To report perceptions regarding course engagement, students completed the paper-pencil Student Course Engagement Questionnaire (SCEQ) (Handelsman, Briggs, Sullivan, & Towler, 2005). The SCEQ measures four dimensions of engagement: skills engagement, emotional engagement, participation/interaction engagement, and performance engagement. For each of the SCEQ items, participants responded to the question: “To what extent do the following behaviors, thoughts, and feelings describe you in this course?” The response categories were captured on the following 5-point Likert scale: 1 = not at all characteristic of me; 2 = not really characteristic of me; 3 = moderately characteristic of me; 4 = characteristic of me; and 5 = very characteristic of me. Each of the four dimensions yielded an average score. During the thirteenth week of the semester, students in experimental groups and control groups completed the SCEQ (see Appendix D). This evaluation blends seamlessly with the college’s established course evaluation process, as students in courses throughout the institution complete a paper-pencil evaluation during the thirteenth week of the semester.

Qualitative Methods

Instructors involved in the study submitted progress reports three times during the semester. These reports were designed to gather feedback from the instructors as to the effectiveness of Appreciative Inquiry as an attendance and engagement strategy in the classroom. After instructors facilitated the Discovery, Dream, and Design phases of AI with experimental classes, they submitted a summary of the process (see Appendix B). Instructors revisited the dream statements, along with identified strategies, with
experimental classes in weeks five and ten. Following these weeks, faculty members submitted summary reports that provided qualitative information in two sections (see Appendix C). First, the instructors summarized discussions held with students regarding class progress towards reaching the collective dream statement. Secondly, instructors provided personal insights and observations regarding the effectiveness of AI, while identifying barriers to implementation and other factors that may have contributed to perceived differences in student attendance and engagement between experimental groups and control groups.

Table 2

Schedule of Treatment Activities and Responsible Parties

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
<th>Responsible Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two</td>
<td>Facilitate AI process</td>
<td>Instructors</td>
</tr>
<tr>
<td>Two</td>
<td>Complete interview guides</td>
<td>Students in experimental groups</td>
</tr>
<tr>
<td>Two</td>
<td>Complete week two summary sheet and submit to researcher</td>
<td>Instructors</td>
</tr>
<tr>
<td>Five</td>
<td>Revisit dream statement and strategies with class to determine progress towards implementation, complete week five summary and submit to researcher</td>
<td>Instructors</td>
</tr>
<tr>
<td>Ten</td>
<td>Revisit dream statement and strategies with class to determine progress towards implementation, complete week ten summary and submit to researcher</td>
<td>Instructors</td>
</tr>
<tr>
<td>Thirteen</td>
<td>Complete SCEQ instrument</td>
<td>Students</td>
</tr>
<tr>
<td>Thirteen</td>
<td>Collect SCEQ instruments from experimental and control groups, submit to researcher</td>
<td>Instructors</td>
</tr>
<tr>
<td>Fifteen</td>
<td>Participate in researcher-led focus group</td>
<td>Instructors</td>
</tr>
</tbody>
</table>
At the conclusion of the semester, instructors participated in a focus group to provide further insight into the effect, if any, of AI on student attendance and student-course engagement. The focus group questions were informed by the feedback provided by instructors on the summary reports from weeks five and ten, as quantitative analysis results. Table 2 details the timeframe, activities, and responsible participants for actions involved in the current study.

Threats to Validity and Reliability

Threats to Validity

According to Huck (2008), a research study demonstrates validity if it measures what it intends to measure. The current study used a sequential explanatory mixed-methods research design, utilizing static group comparison design for the quantitative approach. The purpose of the static-group comparison design is to ascertain the influence of the independent variable on one group and the lack of influence due to the failure to apply the independent variable on the other group. However, this design offers no assurance that the groups are equivalent on any variables, including the dependent variable(s), prior to the study. Therefore, a primary threat to internal validity with the static group comparison design is selection bias, in which possible pretest group differences make it difficult to separate intervention effects from selection effects (Shadish, Cook, & Campbell, 2002). Specific to this study, groups possibly differed on the following characteristics reported to impact student engagement: status of admission (native vs. transfer), initial placement levels, residential status, gender, reported financial standing, and full-time status (Kuh, 2003). In order to ascertain the plausibility of this threat to validity, experimental and control groups were compared on the six factors
mentioned above. Significant differences between control and experimental groups lessen the validity of the study.

To reduce the threat to validity caused by selection bias, researchers suggest using a nonequivalent control-group design, which allows for the use of a pretest to increase validity when random assignment is not possible (Gall, Borg, & Gall, 1996). However, Szafran (2007) points out that pretest data are frequently unavailable, as is the case of the current study’s focus on student engagement and attendance in a particular course. A suitable pretest or proxy pretest remained undiscovered after a thorough review of relevant literature. When pretest data are unavailable, the static-group comparison design proves a preferred non-experimental design (Denzin, 2009), especially when the researcher has little or no control over the assignment of participants (Babbie, 2008).

An additional threat to internal validity included treatment diffusion, which occurs when the effect of an intervention spreads from the experimental group to the control group, or when control group knowledge of the intervention elicits behavior and responses that otherwise would not have occurred (McMillan, 2007). The current study presented opportunities for students in the AI and control groups to have discussions regarding the treatment outside of class, which could elicit behavior among students in control groups that might impact attendance and engagement. In cases of threats to validity, Shadish, Cook, and Campbell (2002) suggest exploring whether the threat exists as a possibility, or if the threat is in fact fairly plausible or likely to influence the research findings. In the case of the current study, opportunities for AI group students to discuss the process with control group students remained possible. However, plausibility of such a threat proved difficult to ascertain.
While student interaction made treatment diffusion possible, instructor influence might also have contributed to diffusion effects. Researchers (Craven, Marsh, Debus, & Jayasinghe, 2001; Good & Brophy, 1974) report when instructors are trained to change interaction patterns with students in experimental groups, the instructors often change their behavior (in the same manner) toward students in the control groups. In the current study, instructors received training on involving students in experimental classes to create a positive classroom environment in part by developing good relationships between instructors and students. The possibility exists that instructors unintentionally incorporated these strategies into the control groups, thereby increasing the threat to internal validity.

Not only did threats to internal validity exist in the current study, but external threats to validity threatened the generalizability of results. The researcher chose students in English Composition I courses for the current study, as the course is a graduation requirement for all academic and technical students. Choosing a required course for a wide range of majors enabled the researcher to include a diverse group of students in terms of demographic factors, academic preparedness levels, and other variables that might limit generalizability if the sample were too narrow.

Instrumentation and Validity

The Student Course Engagement Questionnaire (SCEQ) measured student engagement along four dimensions in a particular college class. SCEQ architects utilized standard psychometric procedures for scale development (Hinkin, 1998), inductive approaches for dimension identification, and exploratory factor analysis to assess the psychometric properties of the instrument (Handelsman, Briggs, Sullivan, & Towler,
2005). The authors employed three methods to address construct validity, which refers to whether or not items on a research instrument measure hypothetical constructs or concepts (Creswell, 2009). Based on Hinkin’s work (1998), the authors studied the relation of their student-engagement measure with three other measures that provided indications of convergent and discriminant validity. Secondly, the researchers followed Dweck (1999) by investigating the possible relationship between student self-theories and student engagement. Lastly, the authors inspected the connections between student engagement and motivational goals, as research shows goal orientation predicts the use of different learning strategies (Ames & Archer, 1988) and academic achievement (Greene & Miller, 1996).

Instrumentation and Reliability

According to Huck (2008), researchers advocate varying perspectives related to reliability, defined as the extent to which research data is consistent. In determining instrument reliability, the SCEQ architects focused primarily on the instrument’s internal consistency by examining individual items of the test. The authors used coefficient alphas, the most widely used measure of scale reliability (Peterson, 1994) to determine test score reliability (Handelsman, Briggs, Sullivan, & Towler, 2005). Generally, instruments that produce scores of .80 or higher are adequate for most research purposes (Gall, Borg, & Gall, 1996). Table 3 demonstrates the alpha reliability coefficients for the four dimensions of engagement measured by the Student-Course Engagement Questionnaire: Skills engagement, emotional engagement, participation/interaction engagement, and performance engagement (Handelsman, Briggs, Sullivan, & Towler, 2005).
Table 3

Correlations, Descriptives, and Reliabilities of Student Engagement Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>M</th>
<th>SD</th>
<th>Skills</th>
<th>Emotional</th>
<th>Part/Int</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills</td>
<td>3.70</td>
<td>.66</td>
<td>(.82)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional</td>
<td>3.53</td>
<td>.80</td>
<td>0.44</td>
<td>(.82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation</td>
<td>3.06</td>
<td>.84</td>
<td>0.26</td>
<td>0.34</td>
<td>0.34</td>
<td>(.79)</td>
</tr>
<tr>
<td>Performance</td>
<td>4.06</td>
<td>.69</td>
<td>0.36</td>
<td>0.25</td>
<td>0.23</td>
<td>(.76)</td>
</tr>
</tbody>
</table>

Hypotheses

The following hypotheses were tested using a sequential explanatory mixed-methods approach involving students from experimental groups and control groups:

Ha1: Attendance Appreciative Inquiry Group > Attendance Control Group

H01: Attendance Appreciative Inquiry Group ≤ Attendance Control Group

Ha2: Skills Engagement Appreciative Inquiry Group > Skills Engagement Control Group

H02: Skills Engagement Appreciative Inquiry Group ≤ Skills Engagement Control Group

Ha3: Emotional Engagement Appreciative Inquiry Group > Emotional Engagement Control Group

H03: Emotional Engagement Appreciative Inquiry Group ≤ Emotional Engagement Control Group

Ha4: Part/Int Engagement Appreciative Inquiry Group > Part/Int Engagement Control Group

H04: Part/Int Engagement Appreciative Inquiry Group ≤ Part/Int Engagement Control Group

Ha5: Performance Engagement Appreciative Inquiry Group > Performance Engagement Control Group

H05: Performance Engagement Appreciative Inquiry Group ≤ Performance Engagement Control Group

Ha6: Overall Engagement Appreciative Inquiry Group > Overall Engagement Control Group

H06: Overall Engagement Appreciative Inquiry Group ≤ Overall Engagement Control Group
The dependent variables for the hypotheses included daily class attendance as recorded by instructors and student perceptions of course engagement as measured by the Student Course Engagement Questionnaire or SCEQ (Handelsman, Briggs, Sullivan, & Towler, 2005). Participation in Appreciative Inquiry served as the independent variable (Boyd & Bright, 2007).

Data Analysis Procedures

To evaluate possible pre-test group differences, the researcher compared control and experimental groups for each instructor on six engagement factors using Pearson’s Chi Square statistic. Subsequently, the investigator used t-test for independent samples to compare the means of experimental and control groups on measures of attendance and student-course engagement scores. Average attendance for each instructor’s control and experimental groups were calculated and compared using t-test for independent samples. For attendance data, the researcher recorded the actual number of days each student attended class from the beginning of the semester through the last full week of class. This method allowed for analysis of attendance measures by actual number of days attended rather than by weighted percentages.

The Student-Course Engagement Questionnaire (SCEQ) served as the collection method for quantitative engagement data. The SCEQ yields an overall engagement score and four subscale scores for each student. Mean scores for each instructor’s control and experimental groups were calculated on the overall scale as well as the four subscales and then compared. After comparing groups by instructor, the investigator further grouped students by meeting days and compared average days attended and the means of total and subscale engagement. For example, engagement and attendance of students from AI
experimental groups meeting Monday, Wednesday, and Friday were grouped and compared with engagement and attendance of students from control groups meeting Monday, Wednesday, and Friday. Similar groupings and comparisons were conducted for students in classes meeting Tuesday and Thursday.

According to Creswell (2009), the process of analyzing qualitative data, such as instructor responses on summary forms and in focus group settings, involves organizing the data for analysis, moving into a deeper understanding of the data, and interpreting a more profound meaning of the data. To accomplish such tasks, the researcher assimilated the qualitative data, identified recurring concepts through content analysis process with the data and compared the qualitative data to the quantitative data for similarities and validity (Myers, 2009). Table 4 summarizes the data collection and analysis methods employed in the study.

Table 4

Data Collection and Analysis Methods

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Construct</th>
<th>Collection Method</th>
<th>Quantitative Scale</th>
<th>Quantitative Statistical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha₁:</td>
<td>Attendance</td>
<td>Quantitative:</td>
<td>Interval Scale</td>
<td>Qualitative: T-test for independent samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recorded Attendance System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualitative: Weeks 5 and 10 summary reports and end-of-term focus group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ha₂:</td>
<td>Skills Engagement</td>
<td>Quantitative: SCEQ: Questions 4, 5, 9, 10, 13, 14, 17, 20, 23</td>
<td>Interval Scale</td>
<td>Qualitative: T-test for independent samples</td>
</tr>
</tbody>
</table>
Table 4 (continued).

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Domain</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha3:</td>
<td>Emotional Engagement</td>
<td>Qualitative: Weeks 5 and 10 summary reports, end-of-term focus group</td>
</tr>
<tr>
<td></td>
<td>Experimental group emotional engagement compared to control group emotional engagement</td>
<td>Qualitative: Data transcription, concept identification</td>
</tr>
<tr>
<td></td>
<td>Quantitative: SCEQ Questions 7, 8, 11, 21, 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval Scale</td>
<td></td>
</tr>
<tr>
<td>Ha4:</td>
<td>Participation/Interaction Engagement</td>
<td>Qualitative: Weeks 5 and 10 summary reports, end-of-term focus group</td>
</tr>
<tr>
<td></td>
<td>Experimental group participation/interaction engagement compared to control group participation/interaction engagement</td>
<td>Qualitative: Data transcription, concept identification</td>
</tr>
<tr>
<td></td>
<td>Quantitative: SCEQ Questions 1, 2, 3, 6, 7, 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval Scale</td>
<td></td>
</tr>
<tr>
<td>Ha5:</td>
<td>Performance Engagement</td>
<td>Qualitative: Weeks 5 and 10 summary reports, end-of-term focus group</td>
</tr>
<tr>
<td></td>
<td>Experimental group performance engagement compared to control group performance engagement</td>
<td>Qualitative: Data transcription, concept identification</td>
</tr>
<tr>
<td></td>
<td>Quantitative: SCEQ Questions 12, 15, 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval Scale</td>
<td></td>
</tr>
<tr>
<td>Ha6:</td>
<td>Overall Engagement</td>
<td>Qualitative: Weeks 5 and 10 summary reports, focus group</td>
</tr>
<tr>
<td></td>
<td>Experimental group overall engagement compared to control group overall engagement</td>
<td>Qualitative: Data transcription, concept identification</td>
</tr>
<tr>
<td></td>
<td>Quantitative: SCEQ Questions 1-23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval Scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantitative: T-test for independent samples</td>
<td></td>
</tr>
</tbody>
</table>
As shown in the table above, differences in attendance and self-reported engagement scores (overall engagement and subscales) were analyzed using independent samples t-test comparisons. The researcher compared scores between AI and control groups for each instructor and further by meeting days. Engagement scores were further compared for the overall sample.

Summary

Chapter Three describes the research design for the current study, which sought to determine the impact of Appreciative Inquiry on student-course engagement and student-course attendance. The study employed a sequential explanatory mixed-methods approach, collecting quantitative data through a quasi-experimental, static-group comparison design. Open-ended questions on summary reports submitted by participating faculty members and a faculty focus group at the end of the semester served as qualitative data for the current study.

The population for the study included academic and technical students in general education core classes on the main campus of a comprehensive Mississippi community college. The sample included students enrolled in specific sections of English Composition I classes, as this course represents the only required general education course for all academic and technical students receiving Associate of Arts or Associate of Applied Science Degrees.

Instructor-recorded attendance records retrieved via the institution’s student information system provided data used to measure student-course attendance. To report perceptions regarding engagement, students in control and AI classes completed the Student Course Engagement Questionnaire (SCEQ), which was reported as valid and
reliable in previous research (Handelsman, Briggs, Sullivan, & Towler, 2005). Quantitative data collected via the attendance system, as well as SCEQ data, was analyzed via the independent samples t-test through the use of SPSS software.

Threats to validity included selection bias, which resulted from the infeasibility of random assignment of students to experimental or control groups. To ascertain the plausibility of selection bias, experimental and control groups were compared on a variety of factors known to influence engagement. Significant differences between groups elevate concern regarding selection bias, while little difference minimizes the threat. Chapters Four and Five provide complete data analysis and results discussion.
CHAPTER IV

RESULTS

Introduction

This mixed-methods research study investigated the effects of Appreciative Inquiry on student-course attendance and engagement in core academic classes at a community college in central Mississippi. The investigation employed a sequential explanatory research design to compare engagement scores on the Student-Course Engagement Questionnaire (SCEQ) and attendance in English Composition I classes. This chapter details the results of the study in two phases – the quantitative phase followed by the qualitative phase.

In the current study, five English Composition I instructors each taught a designated control class and experimental class, with the total sample numbering 246 students. The sample included students who registered for one of ten English Composition I classes – five experimental classes and five control classes. The specific class sections utilized in the study were taught by willing, full-time English Composition I faculty members who had at least three years of teaching experience. Each participating faculty member taught an experimental class and control class that met on the same days of the week, which allowed for comparison of attendance records of students. Ninety-one percent (224) of the students in the sample began their college careers at the institution in which the study was conducted, while nine percent were classified as transfer students. Due to scores on the institution’s mandatory placement exam, 33% (80) of the students in the sample were required to successfully complete at least one developmental English course prior to enrolling in English Composition. Of the students
in the sample, 45% (110) lived on campus during the semester in which the study took place, and 96% (236) of the students were classified as full-time students (12 or more hours). Sixty-seven percent (164) of the sample students were eligible to receive federal Pell grants, with 46% (112) of the sample being comprised of female students and 54% (134) being male students.

Students in the experimental classes participated in the four-stage Appreciative Inquiry process to envision a positive classroom environment. The instructors, who had been previously-trained on the AI process, guided students through interviews of one another and group discussions to envision the most positive classroom environment possible. Students and faculty then collaborated to develop a collective dream statement describing the desired classroom environment for the class. Once the dream statements were created, the instructors aided students in designing action plans to implement the dream statements. Instructors and students worked together throughout the semester to apply the strategies developed in the process. The current study sought to determine if using the AI process to create positive classroom environments positively impacts student attendance and student-course engagement. See Appendix G for a compilation of the dream statements and associated strategies developed by the five classes.

In the Appreciative Inquiry process, the strategies serve as means by which groups move toward dream statement outcomes. Instructors utilizing Appreciative Inquiry claim the process serves as a means to move students toward more positive outcomes (Stetson, 2008). The current study aimed to investigate whether or not Appreciative Inquiry had a positive impact on student attendance and student-course engagement in the community college.
Quantitative Phase Analysis

The current study used a sequential explanatory mixed-methods research design, utilizing static group comparison design for the quantitative approach. The purpose of the static-group comparison design is to ascertain the influence of the independent variable or treatment on one group and the lack of influence due to the failure to apply the independent variable on the other group. However, this design offers no assurance that classes utilizing Appreciative Inquiry and those that do not are equivalent on any variables, including attendance and engagement. Therefore, a primary threat to internal validity with the static group comparison design is selection bias, in which possible pretest group differences in attendance and engagement make it difficult to separate the effects of Appreciative Inquiry from selection effects (Shadish, Cook, & Campbell, 2002).

Possible Pre-existing Group Differences on Known Engagement Factors

To lessen the threat of selection bias to internal validity, the researcher performed chi-square analysis to detect possible pre-existing differences between students participating in Appreciative Inquiry and those who did not on six factors known to impact student engagement: admission status, developmental status, residential status, gender, financial status, and enrollment status. The chi square test is a nonparametric test used to test for statistically significant differences when the research data are in the form of frequency counts for two or more categories (Gall, Borg, & Gall, 1996). The previously mentioned six known engagement factors are categorical in nature, making chi square the appropriate statistical test. In the context of analytical research, the term significant means that the result is not likely to occur if the null hypothesis is true (Huck,
In the current study, if the result is statistically significant, observed differences in attendance and engagement are due to influences other than chance. The hypotheses state observed differences are due to the independent variable, Appreciative Inquiry. Table 5 displays the six known engagement factors analyzed, along with a brief definition as used in the current study and the grouping variable assigned in the data analysis process.

Table 5

Pre-existing Engagement Factors, Definitions, and Grouping Variables

<table>
<thead>
<tr>
<th>Factor</th>
<th>Definition Used</th>
<th>Grouping Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admit Status</td>
<td>Native (student began his/her college education at the college) versus transfer (student began his/her college education at another college)</td>
<td>Native = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfer = 2</td>
</tr>
<tr>
<td>Developmental Status</td>
<td>College required the student to take developmental level English class prior to English Composition I based on placement test scores (ACT or Compass)</td>
<td>Yes = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No = 2</td>
</tr>
<tr>
<td>Residential Status</td>
<td>Student lives on campus</td>
<td>Yes = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No = 2</td>
</tr>
<tr>
<td>Gender</td>
<td>Student is male or female</td>
<td>Female = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Male = 2</td>
</tr>
<tr>
<td>Financial Status</td>
<td>Student is eligible to receive Pell Grant funding</td>
<td>Yes = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No = 2</td>
</tr>
<tr>
<td>Enrollment Status</td>
<td>Student began the semester as a full-time student (twelve or more hours)</td>
<td>Yes = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No = 2</td>
</tr>
</tbody>
</table>

Comparison of instructor one control and Appreciative Inquiry groups. In comparing instructor one’s control and experimental classes, student admit statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = 2.94, p = .08$.

Students’ developmental statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = .94, p = .33$. Students’ residential statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = 2.17, p = .14$.

Students’ gender distribution was not found to be significantly different at the .05 level,
Pearson $\chi^2 (1, N=48) = 2.67, p = .10$. Students’ financial aid eligibility was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = 0.02, p = .88$. Students’ enrollment statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = 0.00, p = .95$. In summary, instructor one’s control and experimental groups were not found to be significantly different on any of the six factors known to impact engagement. Therefore, the threat of selection bias for instructor one was minimal as related to these particular engagement factors. Any differences found for attendance and engagement scores are unlikely related to differences between the two groups on the six known engagement factors.

Comparison of instructor two control and Appreciative Inquiry groups. Students’ admit statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = .96, p = .32$. Students’ developmental statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = .86, p = .35$. Students’ residential statuses were found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = 5.88, p = .01$. In the AI group for instructor two, 56% of students lived in residential housing, in comparison to 22% of students in the control group. Students’ gender distribution was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = 3.18, p = .07$. Students’ financial aid eligibility was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = 0.05, p = .82$. Students’ enrollment statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=48) = .45, p = .50$. These findings indicate instructor two’s Appreciative Inquiry and control classes were not significantly different on five of the six known engagement factors analyzed in the current study. However, instructor’s two’s AI class had a significantly
higher proportion of residential students than the control class; therefore, the AI class was possibly predisposed to be more engaged than the control group apart from the effects of Appreciative Inquiry.

Comparison of instructor three control and Appreciative Inquiry groups. Students’ admit statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = 1.87, p = .17$. Students’ developmental statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = .04, p = .83$. Students’ residential statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = .98, p = .32$. Students’ gender distribution was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = .17, p = .68$. Students’ financial aid eligibility was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = 1.98, p = .15$. Students’ enrollment statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = .98, p = .32$. These findings indicate instructor three’s control and experimental groups were not significantly different on any of the six factors known to impact engagement. Therefore, the threat of selection bias was minimal as related to these specific engagement factors. Any differences found for attendance and engagement scores are unlikely related to differences between the two groups on the six known engagement factors.

Comparison of instructor four control and Appreciative Inquiry groups. Students’ admit statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=52) = .44, p = .50$. Students’ developmental statuses were found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=52) = 4.53, p = .03$. In the AI group for instructor four, 36% of students had been required to enroll in developmental English classes prior to
taking English Composition I, in comparison to 11% of students in the control group. Students’ residential statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=52) = .26, p = .60$. Students’ gender distribution was found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=52) = 4.85, p = .02$. In instructor four’s AI group, 60% of the students were female, while only 30% of the students in this instructor’s control group were female. Students’ financial aid eligibility was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=52) = .34, p = .55$. Students’ enrollment statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=52) = 0.00, p = .95$. An analysis of instructor four’s control and Appreciative Inquiry classes revealed significant differences on two of the six known engagement factors examined. A higher proportion of developmental students in the AI class possibly predisposed the class to lower engagement, while a higher proportion of females possibly predisposed the control class to higher engagement.

Comparison of instructor five control and Appreciative Inquiry groups. Students’ admit statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = .27, p = .60$. Students’ developmental statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = .69, p = .40$. Students’ residential statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = 2.45, p = .11$. Students’ gender distribution was found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = 5.88, p = .01$. In the AI group for instructor five, 58% of students were female, in comparison to 33% of students in the control group. Students’ financial aid eligibility was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = .26, p = .61$. Students’ enrollment statuses were not found to
be significantly different at the .05 level, Pearson $\chi^2 (1, N=49) = 2.0, p = .15$. These findings indicate instructor five’s Appreciative Inquiry and control classes were not significantly different on five of the six known engagement factors analyzed in the current study. However, instructor five’s AI class had a significantly higher proportion of females than the control class; therefore, the AI class was possibly predisposed to be more engaged than the control group apart from the effects of Appreciative Inquiry.

Table 6 provides a summary of the only statistically significant differences in pre-existing engagement factors resulting from the chi-square analyses. Comparisons yielded statistically significant differences at the .05 level on at least one of the six known engagement factors in three of the five class pairs. Instructor four’s Appreciative Inquiry group had a statistically significant higher proportion of students required to take developmental English classes prior to English Composition I than the control class. This finding suggests instructor four’s Appreciative Inquiry class was potentially predisposed to be less engaged than the corresponding control class. In contrast, the Appreciative Inquiry class for instructor five had a statistically significant lower proportion of students required to take developmental English than the corresponding control group. This finding suggests instructor five’s Appreciative Inquiry class was possibly predisposed to be more engaged than the corresponding control group.

Instructor two’s Appreciative Inquiry class had a statistically significant higher proportion of students living on campus than the control group. Research suggests residential students in general are more engaged than commuter students, (Kuh, 2003), potentially predisposing instructor two’s Appreciative Inquiry group to be more engaged than the control group.
Finally, statistical analysis revealed a significantly higher proportion of female students in instructor four’s Appreciative Inquiry group than in the corresponding control group. Since female students are typically more engaged than male students (Kuh, 2003), instructor four’s Appreciative Inquiry group had the potential for higher engagement than the control group.

As Table 6 indicates, instructors two and five had Appreciative Inquiry classes that were potentially predisposed for higher engagement than control groups on one engagement factor. However, instructor four’s Appreciative Inquiry and control group comparison yielded mixed results. Gender distribution potentially predisposed instructor four’s Appreciative Inquiry group to be more engaged, while developmental status potentially predisposed instructor four’s AI group to be less engaged.

Table 6

* Differences in Pre-existing Known Engagement Factors between Groups*

<table>
<thead>
<tr>
<th></th>
<th>Group</th>
<th>N</th>
<th>Pearson Chi-Square</th>
<th>P value</th>
<th>Direction of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental Status</td>
<td>Instructor 4 AI</td>
<td>23</td>
<td>4.53</td>
<td>.03</td>
<td>AI group higher proportion of developmental students</td>
</tr>
<tr>
<td></td>
<td>Instructor 4</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instructor 5 AI</td>
<td>25</td>
<td>5.88</td>
<td>.01</td>
<td>AI group lower proportion of developmental students</td>
</tr>
<tr>
<td></td>
<td>Instructor 5</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Status</td>
<td>Instructor 2 AI</td>
<td>23</td>
<td>5.88</td>
<td>.02</td>
<td>AI group higher proportion of residential students</td>
</tr>
<tr>
<td></td>
<td>Instructor 2</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 (continued).

<table>
<thead>
<tr>
<th>Gender</th>
<th>Instructor 4 AI</th>
<th>23</th>
<th>4.85</th>
<th>.02</th>
<th>AI group higher proportion of female students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instructor 4</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

While quantitative data analysis began with comparing Appreciative Inquiry and control groups for each instructor, the hypotheses for the current study tested comparisons on the overall sample rather than individual instructor groups. The investigator tested for potential pre-existing differences in engagement factors within the overall sample. Students in the Appreciative Inquiry classes were grouped together and compared to similarly grouped students from the control classes. The comparison of the overall sample produced no significant differences at the .05 level. Students’ admit statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=246) = 3.05, p = .08$. Students’ developmental statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=246) = 1.38, p = .23$. Students’ residential statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=246) = 2.73, p = .09$. Students’ gender distribution was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=246) = .78, p = .37$. Students’ financial aid eligibility was not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=246) = .13, p = .71$. Students’ enrollment statuses were not found to be significantly different at the .05 level, Pearson $\chi^2 (1, N=246) = .001, p = .97$. In summary, these findings indicate the overall sample Appreciative Inquiry classes and control classes were not significantly different on any of the six factors assessed in the study that are known to impact student engagement. Therefore, any differences found
between the two groups in attendance and student-course engagement are unlikely to be caused by differences in the groups on the six known engagement factors assessed prior to AI implementation.

Comparison of Control and Appreciative Inquiry Groups on Attendance and Engagement

This research project examined the impact of Appreciative Inquiry in the classroom on student-course engagement scores and student attendance. Appreciative Inquiry and control groups were compared on pre-existing known engagement factors in order to ensure neither group was predisposed toward higher engagement prior to implementation of Appreciative Inquiry. After the initial comparison of known engagement factors, further analysis was conducted to determine the effect of Appreciative Inquiry on the two dependent variables of attendance and student-course engagement using six alternative hypotheses and their corresponding null hypotheses:

- **Ha1:** Attendance Appreciative Inquiry Group > Attendance Control Group

- **H01:** Attendance Appreciative Inquiry Group ≤ Attendance Control Group

- **Ha2:** Skills Engagement Appreciative Inquiry Group > Skills Engagement Control Group

- **H02:** Skills Engagement Appreciative Inquiry Group ≤ Skills Engagement Control Group

- **Ha3:** Emotional Engagement Appreciative Inquiry Group > Emotional Engagement Control Group

- **H03:** Emotional Engagement Appreciative Inquiry Group ≤ Emotional Engagement Control Group

- **Ha4:** Part/Int Engagement Appreciative Inquiry Group > Part/Int Engagement Control Group

- **H04:** Part/Int Engagement Appreciative Inquiry Group ≤ Part/Int Engagement Control Group

- **Ha5:** Performance Engagement Appreciative Inquiry Group > Performance Engagement Control Group

- **H05:** Performance Engagement Appreciative Inquiry Group ≤ Performance Engagement Control Group

- **Ha6:** Overall Engagement Appreciative Inquiry Group > Overall Engagement Control Group
H0₆: Overall Engagement \text{Appreciative Inquiry Group} \leq \text{Overall Engagement Control Group}.

Each null hypothesis was tested utilizing independent samples t-test to determine whether or not Appreciative Inquiry groups had lower or equal attendance and engagement when compared to control groups. Analysis revealing Appreciative Inquiry groups with higher attendance or engagement would lead to a rejection of the null hypothesis in favor of the alternative hypothesis. The following section details results from each analysis performed and the resulting conclusion regarding the null and alternative hypotheses.

\text{Ha₁}: \text{Attendance} \text{Appreciative Inquiry Group} > \text{Attendance} \text{Control Group}. \text{Ha₁} stated Appreciative Inquiry groups have higher attendance rates than control groups. \text{H₀₁} stated AI groups have equal or lower attendance rates than control groups. The institution requires instructors to electronically record attendance data for each class on a daily basis, which allowed retrieval of attendance records for quantitative analysis. The attendance records were used to compare actual class days attended for students in Appreciative Inquiry and control groups using independent samples t-test analysis. Researchers utilize t-tests to compare means between two groups to determine whether the null hypothesis can be rejected (Swanson & Holton, 2005; Gall, Borg, & Gall, 1996). After comparing the average attendance rates for Appreciative Inquiry and control groups by instructor, the researcher grouped classes by days of the week the classes met. Average attendance was calculated for students in AI classes meeting on Mondays, Wednesdays, and Fridays and then compared to average attendance for students in control groups meeting on the same days. Similar comparisons were conducted for classes meeting on Tuesdays and Thursdays. Comparing groups by meeting days provided information regarding potential attendance differences influenced by meeting days.
Table 7 displays results of the quantitative analysis regarding attendance, including the mean, standard deviation, number of students, T-value, and p-value for each comparison. The mean refers to a measure of central tendency calculated by dividing the sum of the scores in a set by the number of scores (Gall, Borg, & Gall, 1996). Once the mean is calculated, researchers can determine how widely scores vary around the mean by calculating the standard deviation (Swanson & Holton, 2005). The T-value describes the numerical value resulting from a t-test analysis, which is used to compare means between two groups (Swanson & Holton, 2005). The p-value, or probability value, refers to the likelihood that a statistical result was obtained by chance (Gall, Borg, & Gall, 1996). The lower the p-value, the less likely the difference between groups is attributable to chance and the more likely the observed difference may be related to Appreciative Inquiry in the current study.

Of the seven comparisons of average attendance rates in the current study, only the comparison for instructor two yielded significant results. The test was significant at the .05 level, t(46) = 2.25, p = .03. Students in the AI class (M = 27.88, SD = 1.61) attended class on average two days more during the semester than students in the control class (M = 25.61, SD = 4.58). The 95% confidence interval for the difference in means ranged from .30 to 4.23. A confidence interval for the difference between two means stipulates a range of values within which the difference between the means of the two samples may lie (Easton & McColl, 1997). The 95% confidence interval indicates a 95% confidence level that the true difference between means of the two groups is within this range. Since zero is not within the range for instructor two’s comparison, one can be 95% confident there is a true difference in attendance rates between the groups.
Table 7

Statistical Analysis of Attendance Variable

<table>
<thead>
<tr>
<th>Group (AI or Control)</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
<th>T value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1 AI</td>
<td>23.39</td>
<td>3.66</td>
<td>23</td>
<td>1.39</td>
<td>.17</td>
</tr>
<tr>
<td>Instructor 1 Control</td>
<td>21.49</td>
<td>5.57</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 2 AI</td>
<td>27.88</td>
<td>1.61</td>
<td>25</td>
<td>2.25</td>
<td>.03</td>
</tr>
<tr>
<td>Instructor 2 Control</td>
<td>25.61</td>
<td>4.58</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 3 AI</td>
<td>23.96</td>
<td>5.87</td>
<td>24</td>
<td>.50</td>
<td>.61</td>
</tr>
<tr>
<td>Instructor 3 Control</td>
<td>23.00</td>
<td>7.32</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 4 AI</td>
<td>36.36</td>
<td>8.40</td>
<td>25</td>
<td>-.10</td>
<td>.91</td>
</tr>
<tr>
<td>Instructor 4 Control</td>
<td>36.63</td>
<td>9.91</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 5 AI</td>
<td>33.65</td>
<td>7.45</td>
<td>26</td>
<td>.63</td>
<td>.52</td>
</tr>
<tr>
<td>Instructor 5 Control</td>
<td>32.21</td>
<td>8.64</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/W/F Aggregate AI</td>
<td>34.98</td>
<td>7.97</td>
<td>51</td>
<td>.24</td>
<td>.80</td>
</tr>
<tr>
<td>M/W/F Control</td>
<td>34.55</td>
<td>9.51</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/TH Aggregate AI</td>
<td>25.96</td>
<td>4.66</td>
<td>49</td>
<td>1.52</td>
<td>.13</td>
</tr>
<tr>
<td>T/TH Aggregate Control</td>
<td>24.25</td>
<td>6.24</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classes meeting Mondays, Wednesdays, and Fridays met more often during the semester than classes meeting Tuesdays and Thursdays, which prevented comparing the Appreciative Inquiry classes and the control classes as an overall sample. Therefore, results of by-instructor and aggregate days-of-the-week comparisons provided data for conclusions regarding hypothesis one. Null hypothesis one stated average attendance of students in Appreciative Inquiry groups was less than or equal to that of students in control groups. As only one of seven comparisons revealed Appreciative Inquiry students with higher average attendance than control groups, the researcher failed to reject the null hypothesis \(H_0: \text{Attendance}_{\text{Appreciative Inquiry Group}} \leq \text{Attendance}_{\text{Control Group}} \).
all but one of seven comparisons, attendance of AI and control groups did not differ significantly, failing to provide support for the alternative hypothesis that Appreciative Inquiry promotes attendance.

Ha₂: Skills Engagement Appreciative Inquiry Group > Skills Engagement Control Group. Ha₂ stated Appreciative Inquiry groups have higher skills engagement than control groups. Eight comparisons utilizing the t-test for independent samples were performed to test the corresponding null hypothesis. Appreciative Inquiry and control groups were compared first by instructor, secondly by meeting days of the week, and lastly with AI classes grouped together and control classes grouped together. Table 8 displays results of descriptive statistical analysis for skills engagement, including the mean, standard deviation, number of participants, T-value, and p-value for each comparison. The findings called for a failure to reject null hypothesis, H₀, which stated students in Appreciative Inquiry groups scored lower or equal to students in control groups on the Skills Engagement subscale of the Student Course Engagement Questionnaire (SCEQ). No comparison on the skills engagement subscale reported students in the AI groups scored statistically significantly higher at the .05 level than students in the control groups. These findings indicate students who do not participate in AI have similar skills engagement scores as students who are involved in the AI process.

Table 8

Statistical Analysis of Skills Engagement Variable

<table>
<thead>
<tr>
<th>Group (AI or Control)</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
<th>T value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1 AI</td>
<td>33.80</td>
<td>6.68</td>
<td>15</td>
<td>- .53</td>
<td>.59</td>
</tr>
<tr>
<td>Instructor 1 Control</td>
<td>35.00</td>
<td>6.08</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8 (continued).

Instructor 2 AI	33.70	5.35	20	-.43	.66
Instructor 2 Control	34.56	6.46	16		
Instructor 3 AI	34.56	7.93	16	.07	.93
Instructor 3 Control	34.36	6.29	14		
Instructor 4 AI	34.95	5.27	19	1.02	.31
Instructor 4 Control	33.05	6.20	20		
Instructor 5 AI	36.62	8.75	13	.35	.72
Instructor 5 Control	35.45	6.97	11		
M/W/F Aggregate AI	35.63	6.81	32	1.02	.30
M/W/F Control	33.90	6.47	31		
T/TH Aggregate AI	34.08	6.53	36	-.24	.81
T/TH Aggregate Control	34.47	6.27	30		
Total Sample AI	34.63	6.64	83	.26	.79
Total Sample Control	34.36	6.24	78		

Ha₃: *Emotional Engagement* Appreciative Inquiry Group $>$ *Emotional Engagement* Control Group.

Ha₃ stated Appreciative Inquiry groups have higher emotional engagement than control groups. Eight comparisons utilizing t-test for independent samples provided results regarding the corresponding null hypothesis. Appreciative Inquiry and control groups were compared first by instructor, secondly by meeting days of the week, and lastly with AI classes grouped together and control classes grouped together. Table 9 displays results of descriptive statistical analysis for emotional engagement, including the mean, standard deviation, number of participants, T-value, and p-value for each comparison.
The comparison of Appreciative Inquiry and control groups for instructor four yielded significant results at the .05 level, $t(37) = 2.37, p = .02$. Students in the AI class ($M = 17.21, SD = 3.75$) scored higher on the subscale on average than students in the control class ($M = 14.40, SD = 3.64$). The 95% confidence interval for the difference in means ranged from .41 to 5.21, meaning the researcher is 95% confident the true difference between the means of the groups lies within this range. Since zero falls outside the range of the interval, one can be 95% confident that there is a true difference

Table 9

Statistical Analysis of Emotional Engagement Variable

<table>
<thead>
<tr>
<th>Group (AI or Control)</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
<th>T value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1 AI</td>
<td>16.47</td>
<td>4.56</td>
<td>15</td>
<td>-.36</td>
<td>.71</td>
</tr>
<tr>
<td>Instructor 1 Control</td>
<td>17.00</td>
<td>3.72</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 2 AI</td>
<td>18.05</td>
<td>3.70</td>
<td>20</td>
<td>.17</td>
<td>.86</td>
</tr>
<tr>
<td>Instructor 2 Control</td>
<td>17.81</td>
<td>4.53</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 3 AI</td>
<td>18.06</td>
<td>5.14</td>
<td>16</td>
<td>.97</td>
<td>.33</td>
</tr>
<tr>
<td>Instructor 3 Control</td>
<td>16.36</td>
<td>4.27</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 4 AI</td>
<td>17.21</td>
<td>3.75</td>
<td>19</td>
<td>2.37</td>
<td>.02</td>
</tr>
<tr>
<td>Instructor 4 Control</td>
<td>14.40</td>
<td>3.64</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 5 AI</td>
<td>20.15</td>
<td>4.45</td>
<td>13</td>
<td>2.36</td>
<td>.02</td>
</tr>
<tr>
<td>Instructor 5 Control</td>
<td>16.09</td>
<td>3.85</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/W/F Aggregate AI</td>
<td>18.41</td>
<td>4.24</td>
<td>32</td>
<td>3.37</td>
<td>.001</td>
</tr>
<tr>
<td>M/W/F Control</td>
<td>15.00</td>
<td>3.75</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/TH Aggregate AI</td>
<td>18.06</td>
<td>4.33</td>
<td>36</td>
<td>.85</td>
<td>.39</td>
</tr>
<tr>
<td>T/TH Aggregate Control</td>
<td>17.13</td>
<td>4.40</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Sample AI</td>
<td>17.90</td>
<td>4.34</td>
<td>83</td>
<td>2.47</td>
<td>.01</td>
</tr>
<tr>
<td>Total Sample Control</td>
<td>16.26</td>
<td>4.08</td>
<td>78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
in emotional engagement between the two groups. These findings indicate students in instructor four’s AI class scored higher on the emotional engagement subscale than students in the control class and that the difference is unlikely due to chance.

In addition to significant results on emotional engagement for instructor four, the comparison of Appreciative Inquiry and control groups for instructor five yielded significant results at the .05 level, \(t(22) = 2.36, p = .02 \). Students in the AI class (\(M = 20.15, SD = 4.45 \)) scored higher on the subscale on average than students in the control class (\(M = 16.09, SD = 3.85 \)). The 95% confidence interval for the difference in means ranged from .50 to 7.62, indicating one can be 95% confident the true difference between the means of the groups lies within this range. Since zero falls outside this range, the researcher is 95% confident there is a true difference between emotional engagement of the AI and control groups.

The comparison of emotional engagement scores of Appreciative Inquiry and control groups for classes meeting on Monday/Wednesday/Friday also produced significant results at the .05 level, \(t(61) = 3.37, p = .001 \). Students in the AI classes (\(M = 18.41, SD = 4.24 \)) scored higher on the subscale on average than students in the control classes (\(M = 15.00, SD = 3.75 \)). The 95% confidence interval for the difference in means ranged from 1.38 to 5.42, indicating the researcher is 95% confident the true difference between the means of the groups lies within this range. Since zero falls outside this range, one can be 95% confident there is a true difference in the two means.

In addition to two instructors and the Monday/Wednesday/Friday comparisons yielding significantly different results, the overall sample comparison revealed a significant difference in emotional engagement scores, \(t(159) = 2.47, p = .01 \). Students in
the AI classes (M = 17.90, SD = 4.34) scored higher on the subscale on average than students in the control classes (M = 16.26, SD = 4.08). The 95% confidence interval for the difference in means ranged from .33 to 2.96, indicating the researcher is 95% confident the true difference between the means of the groups lies within this range. Since zero falls outside this range, one can be 95% confident there is a difference in the emotional engagement of the two groups.

The researcher rejected H03: Emotional Engagement Appre­ciative Inquiry Group ≤ Emotional Engagement Control Group, as two of five instructor comparison groups revealed significantly higher scores for students in the AI groups, as did comparisons for M/W/F classes and the overall sample. Therefore, Ha3, which states that students in Appreciative Inquiry groups have higher emotional engagement than students in control groups, appears plausible.

\[Ha_4: \text{Part/Int Engagement Appre­ciative Inquiry Group} > \text{Part/Int Engagement Control Group} \]

Ha4 stated Appreciative Inquiry groups have higher participation/interaction engagement than control groups. Eight comparisons utilizing the t-test for independent samples provided results regarding the corresponding null hypothesis. Appreciative Inquiry and control groups were compared first by instructor, secondly by meeting days of the week, and lastly with AI classes grouped together and control classes grouped together. Table 1 displays results of descriptive statistical analysis for participation/interaction engagement, including the mean, standard deviation, number of participants, T-value, and p-value for each comparison.

The comparison of Appreciative Inquiry and control groups for instructor one yielded significant results at the .05 level, \(t(30) = 2.74, p = .01 \). However, directionality
of the results surfaced in the opposite direction of the expected result. Students in the control class (M = 19.47, SD = 4.40) scored higher on the subscale on average than students in the AI class (M = 23.47, SD = 3.85). The 95% confidence interval for the difference in means ranged from -6.98 to -1.02, indicating one can be 95% confident the true difference between the means of the groups lies within this range. The negative sign of the upper and lower limits of the confidence interval indicate the directionality of the difference; group one (AI) had a lower mean than group two (control).

Table 10

Statistical Analysis of Participation/Interaction Engagement Variable

<table>
<thead>
<tr>
<th>Group (AI or Control)</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
<th>T value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1 AI</td>
<td>19.74</td>
<td>4.40</td>
<td>15</td>
<td>-.274</td>
<td>.01</td>
</tr>
<tr>
<td>Instructor 1 Control</td>
<td>23.47</td>
<td>3.85</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 2 AI</td>
<td>19.10</td>
<td>4.15</td>
<td>20</td>
<td>-.95</td>
<td>.34</td>
</tr>
<tr>
<td>Instructor 2 Control</td>
<td>20.57</td>
<td>5.04</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 3 AI</td>
<td>21.00</td>
<td>5.07</td>
<td>16</td>
<td>.49</td>
<td>.62</td>
</tr>
<tr>
<td>Instructor 3 Control</td>
<td>20.14</td>
<td>4.25</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 4 AI</td>
<td>21.05</td>
<td>3.53</td>
<td>19</td>
<td>1.32</td>
<td>.19</td>
</tr>
<tr>
<td>Instructor 4 Control</td>
<td>19.25</td>
<td>4.85</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 5 AI</td>
<td>22.54</td>
<td>4.40</td>
<td>13</td>
<td>2.00</td>
<td>.057</td>
</tr>
<tr>
<td>Instructor 5 Control</td>
<td>18.91</td>
<td>4.41</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/W/F Aggregate AI</td>
<td>21.66</td>
<td>3.91</td>
<td>32</td>
<td>2.34</td>
<td>.02</td>
</tr>
<tr>
<td>M/W/F Control</td>
<td>19.13</td>
<td>4.63</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/TH Aggregate AI</td>
<td>19.94</td>
<td>4.61</td>
<td>36</td>
<td>-.37</td>
<td>.71</td>
</tr>
<tr>
<td>T/TH Aggregate Control</td>
<td>20.37</td>
<td>4.62</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Sample AI</td>
<td>12.34</td>
<td>2.28</td>
<td>83</td>
<td>.04</td>
<td>.96</td>
</tr>
<tr>
<td>Total Sample Control</td>
<td>12.06</td>
<td>2.22</td>
<td>78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The comparison of Appreciative Inquiry and control groups for instructor five produced significant results at the .10 level, \(t(22) = 2.00, p = .057 \). Students in the AI class (\(M = 22.54, SD = 4.40 \)) scored higher on the subscale on average than students in the control class (\(M = 18.91, SD = 4.41 \)). The 95% confidence interval for the difference in means ranged from -.11 to 7.37, indicating one can be 95% confident the true difference between the means of the groups lies within this range.

The comparison of participation/interaction engagement scores for Appreciative Inquiry and control groups meeting on Monday/Wednesday/Friday yielded significant results at the .05 level, \(t(61) = 2.34, p = .02 \). Students in the AI class (\(M = 21.66, SD = 3.91 \)) scored higher on the subscale on average than students in the control class (\(M = 19.13, SD = 4.63 \)). The 95% confidence interval for the difference in means ranged from .36 to 4.68, indicating the researcher is 95% confident the true difference between the means of the groups lies within this range. The absence of zero in this range means one can be 95% confident there is a difference in participation/interaction engagement between the two groups. However, this difference was found at the .10 alpha level instead of the predetermined .05 level. The researcher failed to reject null hypothesis, \(H_0 \): Part/Int Engagement_{Appreciative Inquiry Group} \leq Part/Int Engagement_{Control Group}, as no instructor comparison or the comparison of the overall sample on the participation/interaction engagement subscale showed students in Appreciative Inquiry groups had significantly higher participation/interaction engagement than students in control groups. The M/W/F comparison proved to be the only comparison yielding statistically significant results at the .05 level on this subscale. The overall findings
indicate students in control groups report similar participation/interaction engagement as students in Appreciative Inquiry groups.

Ha5: Performance Engagement
Appreciative Inquiry Group > Performance Engagement Control

Group. **Ha5** stated Appreciative Inquiry groups have higher performance engagement scores than control groups. Eight comparisons utilizing the t-test for independent samples provided results regarding the corresponding null hypothesis. Appreciative Inquiry and control groups were compared first by instructor, secondly by meeting days of the week, Table 11

Statistical Analysis of Performance Engagement Variable

<table>
<thead>
<tr>
<th>Group (AI or Control)</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
<th>T value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1 AI</td>
<td>12.73</td>
<td>1.90</td>
<td>15</td>
<td>-.14</td>
<td>.88</td>
</tr>
<tr>
<td>Instructor 1 Control</td>
<td>12.82</td>
<td>1.51</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 2 AI</td>
<td>11.95</td>
<td>2.48</td>
<td>20</td>
<td>.09</td>
<td>.92</td>
</tr>
<tr>
<td>Instructor 2 Control</td>
<td>11.88</td>
<td>2.41</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 3 AI</td>
<td>12.19</td>
<td>2.25</td>
<td>16</td>
<td>.45</td>
<td>.65</td>
</tr>
<tr>
<td>Instructor 3 Control</td>
<td>11.79</td>
<td>2.57</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 4 AI</td>
<td>12.11</td>
<td>1.82</td>
<td>19</td>
<td>.22</td>
<td>.82</td>
</tr>
<tr>
<td>Instructor 4 Control</td>
<td>11.95</td>
<td>2.37</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 5 AI</td>
<td>13.00</td>
<td>3.05</td>
<td>13</td>
<td>1.13</td>
<td>.26</td>
</tr>
<tr>
<td>Instructor 5 Control</td>
<td>11.73</td>
<td>2.28</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/W/F Aggregate AI</td>
<td>12.47</td>
<td>2.39</td>
<td>32</td>
<td>1.00</td>
<td>.31</td>
</tr>
<tr>
<td>M/W/F Control</td>
<td>11.87</td>
<td>2.30</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/TH Aggregate AI</td>
<td>12.06</td>
<td>2.35</td>
<td>36</td>
<td>.37</td>
<td>.70</td>
</tr>
<tr>
<td>T/TH Aggregate Control</td>
<td>11.83</td>
<td>2.45</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Sample AI</td>
<td>12.34</td>
<td>2.28</td>
<td>83</td>
<td>.76</td>
<td>.44</td>
</tr>
<tr>
<td>Total Sample Control</td>
<td>12.06</td>
<td>2.22</td>
<td>78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and lastly with AI classes grouped together and control classes grouped together. Table 11 displays results of descriptive statistical analysis for performance engagement, including the mean, standard deviation, number of participants, T-value, and p-value for each comparison.

The researcher failed to reject null hypothesis, H0, which stated students in Appreciative Inquiry groups scored lower or equal to students in control groups on the Performance Engagement subscale of the SCEQ. No comparison on the performance engagement subscale revealed students in Appreciative Inquiry groups had higher performance engagement than students in control groups. These findings indicate students who do not participate in AI have similar performance engagement scores as students who are involved in the AI process.

Ha6: Overall Engagement Appreciative Inquiry Group > Overall Engagement Control Group. Ha6 stated Appreciative Inquiry groups have higher overall engagement scores than control groups. To test the corresponding null hypothesis, eight comparisons utilizing the t-test for independent samples were conducted. First, the investigator compared Appreciative Inquiry groups and control groups by instructor. Secondly, groups were compared by meeting days of the week. Lastly, the researcher compared all Appreciative Inquiry classes with all control group classes. Table 12 displays results of descriptive statistical analysis for overall engagement, including the mean, standard deviation, number of participants, T-value, and p-value for each comparison.

The comparison of overall engagement scores for Appreciative Inquiry and control groups meeting on Monday/Wednesday/Friday yielded significant results at the .05 level, t(61) = 2.32, p = .02. Students in the AI class (M = 88.06, SD = 13.69) scored
higher on average than students in the control class (M = 79.90, SD = 14.47). The 95% confidence interval for the difference in means ranged from 1.15 to 15.35, indicating a 95% confidence level that the true difference between the means of the groups is within this range. Since zero lies outside this range, one can be 95% confident there is a difference in overall engagement between the two groups.

Table 12

Statistical Analysis of Overall Engagement Variable

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
<th>T value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1 AI</td>
<td>82.47</td>
<td>15.34</td>
<td>15</td>
<td>-1.22</td>
<td>.23</td>
</tr>
<tr>
<td>Instructor 1 Control</td>
<td>88.29</td>
<td>11.60</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 2 AI</td>
<td>82.80</td>
<td>12.04</td>
<td>20</td>
<td>-.46</td>
<td>.64</td>
</tr>
<tr>
<td>Instructor 2 Control</td>
<td>84.81</td>
<td>13.83</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 3 AI</td>
<td>85.81</td>
<td>17.38</td>
<td>16</td>
<td>.53</td>
<td>.59</td>
</tr>
<tr>
<td>Instructor 3 Control</td>
<td>82.64</td>
<td>14.85</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 4 AI</td>
<td>85.32</td>
<td>9.48</td>
<td>19</td>
<td>1.73</td>
<td>.09</td>
</tr>
<tr>
<td>Instructor 4 Control</td>
<td>78.65</td>
<td>14.22</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 5 AI</td>
<td>92.31</td>
<td>17.84</td>
<td>13</td>
<td>1.47</td>
<td>.15</td>
</tr>
<tr>
<td>Instructor 5 Control</td>
<td>82.18</td>
<td>15.32</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/W/F Aggregate AI</td>
<td>88.06</td>
<td>13.69</td>
<td>32</td>
<td>2.32</td>
<td>.02</td>
</tr>
<tr>
<td>M/W/F Control</td>
<td>79.90</td>
<td>14.47</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/TH Aggregate AI</td>
<td>84.14</td>
<td>14.51</td>
<td>36</td>
<td>.09</td>
<td>.92</td>
</tr>
<tr>
<td>T/TH Aggregate Control</td>
<td>83.80</td>
<td>14.10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Sample AI</td>
<td>85.39</td>
<td>14.36</td>
<td>83</td>
<td>.96</td>
<td>.33</td>
</tr>
<tr>
<td>Total Sample Control</td>
<td>83.23</td>
<td>13.95</td>
<td>78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The researcher failed to reject null hypothesis, H0: Overall Engagement

Appreciative Inquiry Group \(\leq\) Overall Engagement Control Group, as no instructor comparison or total sample comparison of overall engagement scores revealed Appreciative Inquiry groups with significantly higher scores than control groups. The M/W/F comparison proved to be the only comparison yielding statistically significant results at the .05 level on this subscale. Qualitative analysis from focus group data further enhanced this finding, as instructors believed scheduling options may have impacted students’ engagement patterns. These findings indicate students who do not participate in AI have similar overall engagement scores as students who are involved in the AI process.

Qualitative Phase Analysis

The current study utilized a mixed-methods research design to determine the impact of Appreciative Inquiry on attendance and student-course engagement. Specifically, the investigator employed a sequential explanatory design, during which quantitative data are collected and analyzed, followed by qualitative data. In the sequential explanatory design, precedence is typically uneven and given to quantitative data, with qualitative analysis serving to supplement quantitative analysis (Hanson, Creswell, Clark, Petska, & Creswell, 2005).

In the current study, the connective analysis of the quantitative data produced interview questions to provide additional clarity to the quantitative findings. In addition, instructors provided qualitative data via summary sheets throughout the semester-long research period. During weeks five and ten of the semester, instructors submitted summaries in an effort to report on overall progress with the Appreciative Inquiry process and to identify barriers to implementation. Summary report recurring concepts, such as
outside influences impacting attendance and engagement, guided the formulation of the focus group questions. Following recommendations by Krueger (1998), the investigator analyzed qualitative focus group data in a question-by-question format, looking for recurring concepts within questions and across questions (Rubin & Rubin, 2005). In the context of the current study, a concept is defined as “a word or term that represents an idea important to the research hypotheses” (Rubin & Rubin, 2005). Frequency, extensiveness, and intensity of emerging concepts served as the focus of the qualitative analysis. Frequency refers to how often a concept arose; extensiveness refers to how many participants spoke about the concept; and intensity refers to the participant’s strength of opinion or point of view about the concept (Krueger, 1998).

Krueger and Casey (2000) espouse “researcher neutrality and systematic procedures” (p. 199) increase the validity of research based on focus group data. A three-pronged approach to systematic data analysis aided in ensuring qualitative data validity in the current study. First, the focus group participants provided written summary responses to focus group questions, thereby providing an independent data set. Secondly, the focus group discussion was recorded and transcribed, allowing for repeated comparison of content with the written participant summaries. Thirdly, the researcher provided a preliminary report to focus group participants and invited feedback regarding accuracy of information.

During the focus group session, which consisted of the researcher serving as moderator and all five instructors participating in the research study, participants were asked a series of 18 questions. According to Krueger (1998), focus group moderators generally employ the following five types of questions during the focus group process:
opening questions, introductory questions, transition questions, key questions, and ending
questions. Table 13 provides a brief description of each question type.

Table 13

Question Types Employed in Focus Groups

<table>
<thead>
<tr>
<th>Question Type</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Opening | Participants get acquainted and feel connected
| | Begins discussion of topic; provides participants with an
| | opportunity to reflect on experiences and their connection to the
| | overall topic |
| Introductory | Moves smoothly and seamlessly to key questions; serves as logical
| | link between introductory and key questions |
| Transition | Obtains insight on areas of central concern in the study |
| Key | Brings closure to discussion; enables participants to reflect on
| | previous comments |

Since the focus group participants in the current study served together in a
collegiate academic department and therefore knew one another, opening questions were
omitted due to time constraints. The first eight questions served as introductory
questions, allowing participants an opportunity to reflect on their experiences with the
Appreciative Inquiry process during the study. Transitory language, rather than transition
questions, moved the group from introductory to key questions. Questions nine through
fourteen served as key questions, while questions fifteen through eighteen functioned as
ending questions. The following question-by-question qualitative data analysis emerged
from participants’ written summaries, the focus group transcript, and participant
preliminary report feedback. The analysis describes recurring concepts based on
frequency, extensiveness, and intensity.
Question 1: Drawing from your experience as an instructor, what factors do you believe impact student attendance and student-course engagement?

Focus group participants believed a student’s interest in the course, desire to succeed, skill level going into the class, and home/personal life balance, as well as instructor attitude, significantly impact student attendance and student-course engagement. Three of the five participants cited these five factors as playing a major role in attendance and engagement, while home/personal life balance and skill level garnered the most discussion. For example, one instructor commented on the home/personal life balance by stating, “Some students just overschedule themselves. They simply don’t know what they can handle in terms of the classes they take and their work schedules. They don’t know how to schedule their days or their semester.” Other factors impacting attendance and engagement mentioned by instructors included student personality, motivation, financial situation, and attitude toward learning, as well as the class time (i.e., 8:00 AM versus 10:00 AM).

Question 2: To what degree did you understand the AI process?

Table 14 displays participant responses to question two. In an effort to probe further, an additional question followed: *Do you feel like more training, information, or experience would have made a difference in how you implemented the process?* Two instructors identified challenges with scheduling and planning of activities related to strategies developed by their students. One instructor raised concern by stating, “The requirements for the coursework that must be completed create certain time constraints that make adjusting teaching methods during the semester difficult. When students have to write a certain number of papers, the schedule has a certain amount of inflexibility that
limits changes that can be made.” This concept resurfaced in the discussion regarding barriers to implementation in question seven.

Table 14

Instructors’ Understanding of Appreciative Inquiry Process

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Not At All</th>
<th>Somewhat</th>
<th>Mostly</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Instructor 2</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Instructor 3</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Instructor 4</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Instructor 5</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

Question 3: To what degree were you able to implement the AI process with your experimental group?

Table 15 displays participant responses to question three. The instructors reported feeling mostly positive regarding their ability to implement the process in their AI classes. One instructor who felt fully able to implement the process remarked, “To my knowledge, we did everything we were supposed to do.”

Table 15

Instructors’ Perceived Ability to Implement Appreciative Inquiry Process

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Not At All</th>
<th>Somewhat</th>
<th>Mostly</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Instructor 2</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Instructor 3</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Instructor 4</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>Instructor 5</td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

Question 4: To what degree were you able to implement the strategies formulated by your class?
Table 16 displays participant responses to question four. While this question appears straightforward, the participants spent an extensive amount of time in discussion. Four of the five participants indicated their students desired collaborative group work as a strategy to reach their dream states described during the AI process. However, several instructors cited challenges with group work - specifically, the planning necessary to incorporate group work into an English Composition class. Additionally, three of the five instructors questioned the value of group work, suggesting students perceived a much greater benefit than the instructors perceived.

Table 16

Instructors’ Perceived Ability to Implement Appreciative Inquiry Strategies

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Not At All</th>
<th>Somewhat</th>
<th>Mostly</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Instructor 2</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Instructor 3</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Instructor 4</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Instructor 5</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

In contrast to the results shown in Table 16, which were derived from the participants’ written responses prior to discussion, instructors shared varying views on how closely their classes achieved their dream statements. For example, while one instructor acknowledged the class felt they had achieved their dream statement for the most part, another instructor remarked, “Our dream statement seemed vague when we revisited it. Students were confused. It sounded good when we wrote it. I asked them how we would know when we got there, and they really didn’t have an answer. One of them admitted we would never get there. The strategies were supposed to get us there, but my class realized they were not going to get there with these strategies.”
Question 5: If you were not able to fully implement the strategies, what barriers existed?

Echoing earlier responses, planning challenges and disengaged students emerged as barriers to successful implementation of the AI process. Regarding planning challenges, one instructor remarked, “That was my number one problem. It’s just not easy to stick it in. You really have to make some adjustments in your schedule.” Three of the five instructors mentioned disengaged students as a barrier to successful implementation. As one instructor stated, “Those students lower the morale of all the students around them.”

Question 6: When you revisited your dream statement and strategies with your class, what strategies, if any, did your students identify as working well for them?

The concept of collaboration and group work emerged with the highest frequency, extensiveness and intensity in response to this question. As previously mentioned, four of the five participants reported that their students identified group work as contributing to their success. As question four previously generated a healthy discussion regarding group work, the participants limited their discussion of the concept in response to question six. Other factors identified by students as working well, and therefore voiced by focus group participants, included consistent attendance and a stress-free classroom environment.

Question 7: What strategies, if any, did the students want more of?

Four of the five participants once again cited group work as the leading factor students desired to help them reach the environment described in the dream statements. Additionally, two of the five instructors reported students asked for more examples to help achieve the dream statements, while one instructor voiced students’ desire for the
instructor to teach more. The focus group participants discussed the meaning of this suggestion, with several suggesting it could mean students wanted the instructor to lecture more, thereby decreasing the student writing load.

Question 8: To what degree were you able to accommodate the students’ requests?

Table 17 displays the question eight responses, gleaned from the participants’ written summaries. Four out of five instructors perceived they were mostly able to accommodate their students’ requests. For example, one instructor described her response to her students’ requests for more group work by stating, “I tried to incorporate group work when we were practicing – especially on new skills. If we were working on the argument essay where they had to respond to a reading, I would have them read the article in groups, then respond to it as a group.”

Table 17

Instructors’ Perceived Ability to Accommodate Student Requests

<table>
<thead>
<tr>
<th></th>
<th>Not At All</th>
<th>Somewhat</th>
<th>Mostly</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 2</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Instructor 3</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 4</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Instructor 5</td>
<td></td>
<td></td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

Following the above series of introductory questions, which allowed participants to reflect on experiences with Appreciative Inquiry, participants were asked key questions focused on whether or not employing AI in the classroom had a positive impact on student attendance and student-course engagement. Questions nine through fourteen served to address these participant perceptions.
Question 9: What, if any, differences did you perceive between your control and experimental groups in terms of attendance?

In response to this question, two of the five instructors perceived better attendance in AI classes. Specifically, one of these instructors stated, “I feel my control group had more absences earlier on. I think I may have ended up dropping more from my control group myself for absences.” Two of the five instructors perceived no difference in attendance between the two groups, while the other instructor introduced the topic of a more positive attitude in the AI group in response to this question. Two other instructors agreed that AI classes exhibited a more positive attitude than control groups.

In the discussion surrounding question nine, the outside influence of a new financial aid disbursement policy surfaced. In an effort to reduce the institution’s loan default rate and improve student attendance, the college implemented a new disbursement method for financial aid packages during the semester in which the current study took place. Specifically, the purpose of the revised disbursement method served “to encourage students’ success scholastically and financially by implementing an alternative payment schedule that will help meet the financial demands of the neediest students while encouraging class attendance and satisfactory progress” (Allen, Cooper, Horton, & Langston, 2011). The new disbursement method linked financial aid refund disbursement and student attendance in class. Three of the five instructors perceived the new policy had a significant impact on attendance rates in both classes. For example, one instructor indicated, “My impression was that they [some students] were staying in for the final disbursement of financial aid. They took the failing grades rather than
withdrawing for fear they would not get their final disbursement. I know that skewed the results.”

Question 10: What, if any, differences did you perceive between your control and experimental groups in terms of student-course engagement?

In response to question ten, all five participants perceived the AI groups to be more engaged in some fashion than the control groups, though different instructors described engagement differently. One instructor reported the AI group as being more involved, while another instructor described the AI group as having a better overall attitude. In reference to the AI group, one instructor stated, “My AI group was much more willing to go along. They were much more attentive and polite. They tried to engage more, while my control group was much more likely to show their boredom.”

Question 11: Did you perceive any differences between your control and experimental groups on other factors, such as grades, withdrawal rates, etc.?

Two instructors perceived higher grades in the AI groups, while a third instructor reported, “I had several students in the control group stay even though they couldn’t pass the class.” The instructor perceived the students’ choice to be based on the new financial aid disbursement policy. One instructor perceived fewer withdrawals in the AI group, while another instructor reported a higher number of withdrawals than usual in both classes. The participants voiced these observations based on their perceptions only, rather than on actual comparison of the data from the two groups.

Question 12: If you did perceive differences between the groups, to what extent do you think the differences were related to AI?
Four out of five participants believed AI had some positive impact on perceived differences in attendance and student-course engagement between control and experimental groups. The intensity of participants’ beliefs varied, with one instructor stating, “I think they were directly related,” while another considered, “I wonder if the collaborative nature of our AI activities set an atmosphere of a strong learning community and has some effect on attitude – even mine.”

Question 13: What other factors do you think might have contributed to the differences?

In response to question thirteen, four of five participants indicated that time of day may have contributed to perceived differences. For example, one instructor reported, “Classes at 8:00 and 9:30 are typically different in absences, with 9:30 usually having fewer.” In this instructor’s case, the AI group met at 9:30 AM, while the control group met at 8:00 AM. In addition to time of day, beginning skill level was noted by one instructor as possibly impacting perceived differences, or lack thereof. Specifically, this instructor stated, “The control group started with a higher skill level as a whole. My AI group began with twice as many students coming up from developmental classes.”

Question 14: For those of you who were not fully able to implement the strategies identified by your students, what impact on attendance and/or engagement do you think fully implementing the strategies would have had?

Participant responses to this question varied. Two instructors provided no response, while one instructor believed there would be no difference had the strategies been implemented more fully. One instructor indicated a belief that students would have been more successful, while another instructor commented, “I don’t see how total commitment and ability of the teacher to truly put ideas and accommodations into
practice could fail to have a positive impact. However, I think the teachers who would do well already do some form of this. I do think that it could benefit anyone willing to try it.”

Questions fifteen through eighteen served as ending questions and aimed to bring closure to the discussion. The questions enabled participants to reflect on previous comments and provide additional information and comments not covered by preceding questions.

Question 15: Describe your overall impression of the AI process.

All five participants voiced positive reactions to the AI process, although some recommended suggestions for improvement. Participants described the process as enjoyable, beneficial to students, and useful to instructors. Two instructors alluded to the concept that people support what they help create, with one instructor stating, “I liked it. The students responded well to it. They liked feeling I was trying to meet their needs and interested in their opinions on what makes a class work well.” Recommendations for improvement included more training prior to implementation and more regular visitation of the dream statements.

Question 16: Having been involved in this research, comparing a class in which you implemented AI and one in which you didn’t, how likely are you to implement AI in future classes?

Table 18 displays the responses to question sixteen, followed by additional explanations provided by several participants. Four of the five participating instructors indicated they were either likely or extremely likely to implement Appreciative Inquiry,
or a modified version of it, in future classes. One instructor indicated indecisiveness regarding this question and therefore chose not to answer.

Table 18

Instructors’ Willingness to Implement Appreciative Inquiry in the Future

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Will Not Implement</th>
<th>Probably Will Not Implement</th>
<th>Likely to Implement</th>
<th>Extremely Likely to Implement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor 3</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Instructor 4**</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Instructor 5</td>
<td></td>
<td></td>
<td></td>
<td>***</td>
</tr>
</tbody>
</table>

*Selected both options, with the following explanation: “I plan to use some of the basic approaches but probably not quite the same way.”
**“Not sure.”
***“Adapted form.”

Question 17: Bearing in mind the factors you identified in question one and their possible impact on your control and experimental groups, what do you expect the research to show for your classes in regards to attendance and student-course engagement?

The focus group began with a discussion regarding factors participants believed to impact student attendance and engagement. After discussing the process of Appreciative Inquiry and their ability to implement it, the instructors were asked whether or not they believed AI had an impact on the experimental classes, keeping in mind the possible influence of other factors. Three of the five instructors indicated an expectation that AI groups had overall better performance on attendance and engagement factors than control groups. However, instructors could not ascertain the degree of difference and whether or not AI impacted the differences. For example, one instructor commented, “I expect other
factors [scheduling options, home/personal life balance] to have had much more impact on attendance than AI.”

Question 18: Please provide any additional information you would like the researcher to know regarding your experience with the AI process.

None of the participants responded to this item.

Summary

This chapter presented quantitative analysis used to test the hypotheses that Appreciative Inquiry positively impacted attendance and student-course engagement, along with qualitative analysis to further explain the results of the quantitative analysis. The population included academic and technical students enrolled in required general education core classes at the main campus of a comprehensive Mississippi community college. Inclusion criteria for the study consisted of students who registered for selected course sections of English Composition I taught in the traditional face-to-face method on the main college campus by five participating instructors. While qualitative analysis revealed significant differences in attendance and engagement patterns between experimental and control groups for three instructors, comparison of the experimental and control groups for the overall sample yielded no statistically significant differences in attendance rates, overall engagement, skills engagement, emotional engagement, participation/interaction engagement, and performance engagement. Emotional engagement proved to be the only measure on which Appreciative Inquiry groups scored statistically significantly higher than control groups when the overall sample was analyzed. However, qualitative data analysis revealed confounding factors that potentially skewed the quantitative results. Chapter Five discusses implications of the
results of the study, potential confounding factors, and recommendations for future research.
CHAPTER V
DISCUSSION AND RECOMMENDATIONS

Summary of Results

This mixed-methods research study investigated the effects of Appreciative Inquiry on student-course engagement and attendance in core academic classes at a community college in central Mississippi. In an increasingly competitive global economy, most individuals need education or technical skills beyond high school to secure employment offering self-supporting wages. However, graduation and completion rates at colleges and universities show many students who embark on the education journey do not successfully reach their goals. Researchers (Friedman, Rodriguez, & McComb, 2001) suggest poor attendance rates remain linked to lower student engagement and contribute to student attrition. Attrition, in turn, lowers enrollment, hinders institutional reputation, and reduces institutional vitality (Miller, 2003). Several community colleges across the United States employ Appreciative Inquiry, a strengths-based organizational development model, to improve attendance and student engagement (Stetson, 2008). However, little empirical research exists to describe the impact of Appreciative Inquiry use in the classroom. The current study adds to the research literature by empirically examining the effects of Appreciative Inquiry on student attendance and course engagement.

Discussion

Quantitative analysis performed utilizing independent samples t-test procedures failed to support the hypotheses that students engaged in Appreciative Inquiry in the classroom attended class more often than students in non-AI classes. Furthermore, similar
tests failed to support the hypotheses that students in Appreciative Inquiry classes scored higher than students in non-AI classes on the Student-Course Engagement Questionnaire (SCEQ) on three of four sub-scales of the instrument. The only statistically significant finding at the .05 level was in the area of emotional engagement. Students in Appreciative Inquiry classes scored higher on the emotional engagement subscale than those in classes that did not utilize AI. Therefore, the researcher rejected the null hypothesis for this hypothesis only.

If the investigator had chosen a purely quantitative research design, the discussion regarding the efficacy of AI to improve attendance and student-course engagement might be a relatively minimal one. However, the sequential explanatory mixed-methods research design adds a qualitative element to the research and is especially advantageous when the quantitative analysis yields unexpected results (Ivankova, Creswell, & Stick, 2006). In the current study, a qualitative focus group conducted with participating instructors followed the quantitative phase. The focus group provided information regarding outside influences that possibly influenced the quantitative results. Integration of quantitative and qualitative analysis led to three conclusions regarding the current study.

Conclusion One: Financial Aid Disbursement Policy Possibly Influenced Results

During the qualitative focus group, participants revealed the implementation of a new policy at the college during the semester in which the study was conducted. In an effort to reduce the institution’s loan default rate and improve student attendance, the college implemented a new disbursement method for financial aid packages. Specifically, the purpose of the revised disbursement method served “to encourage
students’ success scholastically and financially by implementing an alternative payment schedule that will help meet the financial demands of the neediest students while encouraging class attendance and satisfactory progress” (Allen, Cooper, Horton, & Langston, 2011). In previous semesters, students received financial aid refunds after having been in class sixty percent of the semester. In contrast, the new policy expended refunds in four equal monthly disbursements contingent upon the student not being excessively absent. Specifically, the policy process stated, “Payments would be made contingent on the students’ class attendance and scholastic progress as documented by their instructors” (Allen, Cooper, Horton, & Langston, 2011). The focus group participants believed this new policy had a significant impact on student attendance in all classes. Instructors felt strongly that some students continued attending class primarily for fear of losing financial aid funds rather than for any educational benefit. After discussing the new policy with school officials, the researcher found support for the instructors’ theory, as approximately 90% of students at the college received some type of financial aid that falls under this policy (D. Braswell, personal communication, January 17, 2012). While the statistical analysis failed to support the hypothesized relationship between Appreciative Inquiry and student-course attendance, the instructors of the classes involved in the study speculate the financial aid disbursement policy influenced the results.

Not only might the new disbursement policy have impacted attendance, but it potentially influenced engagement as well. During the focus group, instructors reported students’ strong desire for group work in their classes. Students believed collaboration worked well for them and asked instructors to include more opportunities for group work
throughout the semester. Research supports the students’ beliefs, revealing cooperative learning increases student retention, student satisfaction, cognitive skills, and active participation (Cooper, 1995). Therefore, college instructors promote opportunities for students to learn from one another and work effectively in group discussions, group projects and group presentations (Lau, 2003). However, at the close of the semester in the current study, the effectiveness of the collaborative work drew mixed reviews from students. Instructors believed the challenge arose, in part, due to the presence of disengaged students in the classroom. Instructors believed the most effective group work is accomplished when all group members participate and contribute. However, when some students have little motivation to contribute, or simply attend class to receive a financial aid disbursement, the level of morale in the class could diminish. Several instructors believed this could have been the case in their classrooms, with one instructor commenting about disengaged students, “Those students lower the morale of all the students around them.” Spady (1970) supports this observation, reporting students’ interactions with one another in the academic system affect outcomes such as satisfaction and commitment to success in the classroom. Moos (1991) agrees, suggesting supportive relationships with other students improves student morale and engagement. While statistical analysis failed to support the hypothesized relationship between student-engagement and Appreciative Inquiry, the possibility exists that the presence of students in class for financial aid disbursement only could have influenced the results.

Recommendation One: Replicate Study in Institution without Attendance-Based Financial Aid Disbursement
As previously mentioned, mixed-methods research seeks to draw from the strengths and minimize the weaknesses of both qualitative and quantitative approaches in a single research design. Quantitative purists maintain that real causes of scientific outcomes can be determined reliably and validly, while qualitative purists argue it is impossible to fully differentiate causes and effects because multiple-constructed realities abound (Johnson & Onwuegbuzie, 2004). Mixed-methods research designs, such as the sequential explanatory design utilized in the current study, attempt to apply quantitative analysis to test a hypothesis, while utilizing qualitative analysis to make context clear in the explanation of the results (Mason, 2006). In the current study, quantitative analysis yielded unexpected results, and qualitative analysis subsequently provided possible explanations of those results. The quantitative design sought to isolate the effects of Appreciative Inquiry on student attendance and student-course engagement. Qualitative analysis revealed the possibility that treatment effects were not isolated; rather, other variables potentially influenced the outcome of the results. Therefore, recommendations for future research address the isolation of these outside variables.

Given the above discussion of results, the current study could be replicated in an institution of higher learning with either no mandatory attendance policy or an attendance policy that does not directly link attendance and financial aid disbursement. Focus group participants strongly believed the new disbursement policy impacted attendance in all their classes, not just the classes involved in the study. If this is the case, the college proved successful in its aim to encourage class attendance. The objective of the new disbursement policy remains a noble one, as higher education involves cooperative professor/student/classmate effort that occurs in the classroom (Petress, 1996). However,
in the exploration of whether or not Appreciative Inquiry has an impact on classroom attendance, linking classroom attendance to financial aid disbursement challenges isolation of treatment effects.

Conclusion Two: Scheduling Options Possibly Influenced Results

In addition to citing the newly implemented financial aid disbursement policy, focus group participants repeatedly voiced concern that the schedule of classes might have impacted student engagement as much, if not more, than Appreciative Inquiry. The quantitative analysis lends some support to this theory, as students in classes taught in shorter time slots three times per week scored significantly higher on the Student-Course Engagement Questionnaire (SCEQ), as well as the emotional and participation engagement subscales of the instrument, than students in longer classes taught twice per week. Reardon, Payan, Miller, and Alexander (2008) suggest shorter class times may be better aligned with the average student’s attention span. Henebry (1997) further submits classes meeting more frequently allow students sufficient time to reflect on classroom material and seek additional help if necessary.

Recommendation Two: Replicate Study Controlling for Scheduling Options

Focus group participants repeatedly voiced concern regarding time of day as an influencing element, while quantitative analysis revealed a pattern regarding number of times the classes met per week. Therefore, the study could be replicated while controlling for scheduling options. In order to accomplish this task, future researchers must sacrifice controlling for instructor influence across groups. However, researchers could utilize faculty members with similar ratings from previous students to control for instructor influence. Conversely, controlling for one factor or factors often necessitates
sacrificing control over other factors. Future researchers must carefully weigh the value of controlling for each factor and decide accordingly. The current researcher suggests controlling for scheduling options due to the prevalence of the concern raised in focus group discussion as well as the quantitative analysis results suggesting a potential confounding influence.

Conclusion Three: Lack of Instructor Preparation Time Possibly Influenced Results

A third possible influencing factor surfaced in addition to changes in the financial aid disbursement policy and scheduling issues. The lack of sufficient preparation time for instructors to plan for and implement student-developed strategies continually resurfaced throughout the focus group discussion. As noted in the limitations section of Chapter One, all participating instructors received training as Appreciative Inquiry facilitators. However, the training took place one week prior to the beginning of the semester, thereby limiting preparation time for instructors to adjust lesson plans. As the study represented instructors’ first attempts at implementing the AI process, they did not know what to expect from students as they progressed through the four stages of AI. For example, students in the Appreciative Inquiry classes repeatedly asked for collaborative learning activities to aid in learning important concepts. However, with the demands of scheduling, assignments, exams, and outside classroom responsibilities, instructors lacked sufficient time to fully develop group activities. This challenge became evident during the focus group discussion, as instructors repeatedly wished for increased time to develop activities aimed at implementing AI strategies.

Recommendation Three: Future Researchers Should Adequately Prepare Instructors
Researchers conducting future studies involving Appreciative Inquiry should not underestimate the amount of time needed for instructors to adequately prepare for implementation of the process. In the current study, neither the instructors nor the researcher anticipated the desires of the students in striving toward the dream statements. If possible, future researchers should anticipate strategies desired by students and prepare instructors far enough in advance to allow instructors to adjust teaching methods.

Conclusion Four: Appreciative Inquiry May Impact Student Outcomes Other than Attendance and Engagement

The current study focused on the potential relationship between Appreciative Inquiry and student attendance and student-course engagement. The theories and principles upon which Appreciative Inquiry is built share commonalities with the foundational theories of student success. For example, the appreciative process is socially constructed and allows people who share a related objective to construct their own future (Cooperrider, Whitney, & Stavros, 2008). Similarly, Tinto’s theory of student integration views the college as a social system with its own value and social structure (Tinto, 1975). Converging at the social intersection, the underlying theories of Appreciative Inquiry and student success suggest a positive relationship between the two. While the current study focused on two variables of student success, attendance and student-course engagement, evidence emerged during the research that suggests other variables warrant further investigation. Focus group participants hypothesized higher grades and lower withdrawal rates among students in Appreciative Inquiry classes. This general expectation previously surfaced in the literature among college faculty who
implemented Appreciative Inquiry in the classroom (Stetson, 2008). Therefore, variables other than attendance and engagement might be worthy of examination.

Recommendation Four: Replicate the Study with Additional Dependent Variables

In addition to investigating the effects of Appreciative Inquiry on attendance and student-course engagement, the researcher recommends replicating the study with additional dependent variables such as grades or withdrawal rates. Research shows a general positive correlation between higher grades and a student’s likelihood of graduating (Piland, 1995). With community college leaders facing challenges to improve student retention, persistence, and graduation rates, any strategy supporting positive student outcomes proves a worthwhile topic of inquiry.

Limitations

As with any study, parameters existed in the current study that weakened the generalizability of results to other general populations. Non-random assignment of students to control and experimental groups, instructor inexperience with Appreciative Inquiry, limited application to classes taught in the traditional format, and the self-reported nature of student engagement levels existed as known limitations at the outset of the study. However, several unexpected limitations emerged during the implementation of the study.

One threat to internal validity with field research involves history, referring to events that occur between the launch of the treatment and the posttest that could produce the observed effect independent of treatment (Shadish, Cook, & Campbell, 2002). In the current research study, history refers to any event or influence that occurred between the start and end of the semester that possibly influenced attendance and engagement other
than Appreciative Inquiry. As previously discussed, the college in which the study took place instigated a new method of financial aid disbursement that sought to improve student attendance. The college implemented the new method during the same semester in which the current study took place. The implementation was beyond the researcher’s control and influence. Since the disbursement method was in its inaugural semester, no longitudinal data existed to determine whether or not the policy actually had an impact on attendance.

In addition to the new financial aid disbursement policy, a second limitation surfaced during Appreciative Inquiry implementation. One of the five instructors encountered family health issues toward the end of the semester. These issues forced the instructor to miss two weeks of class. Such an occurrence produces a threat to validity known as unreliability of treatment implementation, during which a treatment intended to be implemented in a standardized format is only partially implemented for some participants. In such cases, effects may be underestimated compared with full implementation (Shadish, Cook, & Campbell, 2002). The impact of the instructor’s absence on the Appreciative Inquiry process was not possible to ascertain, although the impact may have been minimized since the absences occurred at the end of the semester rather than during the launch of the AI process.

Lastly, attrition existed as a limiting factor in the current study. Attrition refers to the common challenge that participants in an experiment sometimes fail to complete the outcome measures (Shadish, Cook, & Campbell, 2002). Specific to the present research, some students who began the semester withdrew prior to the end of the semester. Therefore, not all participants completed the Student-Course Engagement Questionnaire
Differences in specific characteristics of the students who withdrew and those who remained enrolled possibly influenced attendance rates and student-course engagement scores apart from the effects of Appreciative Inquiry.

Conclusion

The purpose of this study was to expand the current body of knowledge by systematically and empirically measuring the effects of Appreciative inquiry on student attendance and student-course engagement in a comprehensive Mississippi community college. The study employed a sequential explanatory mixed-methods research design involving a static-group comparison of control and experimental groups for the quantitative approach and a focus group dialogue and analysis for the qualitative approach. The researcher collected attendance data from the institution’s database and compared attendance rates of experimental and control classes by instructor as well as by class schedule (meeting days per week). Students self-reported engagement on an overall level as well as on four sub-scales using the Student-Course Engagement Questionnaire (SCEQ). Statistical analysis using independent t-tests revealed no significant differences between groups regarding attendance, overall engagement, skills engagement, participation engagement, and performance engagement. However, students in the Appreciative Inquiry groups scored significantly higher on the emotional engagement subscale than students in the control groups. As part of a sequential explanatory mixed-methods approach, qualitative data collected through an instructor focus group provided insight as to why Appreciative Inquiry, tested in the quantitative phase, did not generally appear to significantly impact student attendance and engagement in a single course. Qualitative data analysis of significant concepts as
determined by frequency, extensiveness, and intensity identified three factors – financial aid disbursement policy, class scheduling, and lack of instructor preparation time – as potentially influenced the results of the study. Additionally, focus group participants speculated significant differences existed between control and experimental groups on non-tested variables such as grades and withdrawal rates.

The investigator recommends researchers conduct studies to further isolate the effects of Appreciative Inquiry. Specifically, conducting the study in an institution with either no mandatory attendance policy or an attendance policy not linked to financial aid disbursement could diminish the effects of outside variables. Additionally, controlling for class schedule options might isolate the effects of Appreciative Inquiry. However, future researchers must consider the value of controlling for class scheduling while sacrificing control of instructor influence.

In an increasingly competitive global economy, most individuals need education or technical skills beyond high school to secure employment offering self-supporting wages. However, graduation and completion rates at colleges and universities show many students who embark on the education journey do not successfully reach their goals. Research suggests poor attendance rates contribute to student attrition. Attrition, in turn, lowers enrollment, hinders institutional reputation, and reduces institutional vitality (Miller, 2003). Community college instructors continue to employ Appreciative Inquiry as a strategy to improve student attendance and engagement (Stetson, 2008). However, more research is needed to guide its effective and productive use to foster student success and persistence among the nation’s fastest growing college sector. As community college engagement increases, student retention and persistence in higher
education improves (Chickering & Gamson, 1987). As student retention and persistence improves, a workforce with increased knowledge, skills, and abilities emerges (Douglass, 2010; Adelman, 2009; Goldin & Katz, 2008). A more educated citizenry contributes to economic vitality in an increasingly competitive global economy (Ward, 2006).
APPENDIX A

STUDENT INTERVIEW GUIDE FOR DISCOVERY PHASE OF AI

(Adapted with permission from Stories of Positive Change in the Community College:
Appreciative Inquiry in Action)

1. BEST EXPERIENCE
 a. What was the most exciting and challenging class you ever had? What made it challenging and exciting? What did the teacher do? What did you do? What did the other students do?
 b. How do you learn best? Tell me about a time when you learned something very challenging. What helped you learn?
 c. Tell me about a class in which you learned a lot. What was it like? Who else was involved and what did they do? What did you do to help learn more? What made this a good learning experience for you?

2. VALUES
 a. Without being humble, what do you value most about yourself as a person – and as a student?
 b. When you are feeling good about learning, what about learning is meaningful?
 c. What means the most to you when you learn something well?
 d. What is the single most important thing that helps you learn?

3. THREE WISHES
 a. If you could have three wishes for this class, what would they be?
APPENDIX B

WEEK TWO AI SUMMARY

Instructor: Date:

Course Prefix: Course No: Section:

Date(s) AI Discovery, Dream, and Design phases implemented:

Collective dream statement developed by class:

Design strategies identified through AI process:

1. How have you been able to implement the AI process?

2. Do you have the resources you need to implement the AI process?

3. Can you identify any barriers to AI implementation you have experienced?

4. Is there any other information you would like the researcher to know about your experience to date with AI?
APPENDIX C

WEEK FIVE AND WEEK TEN AI SUMMARY

(Section A will be pre-populated with previously-provided information)

SECTION A

Instructor: Date:

Course Prefix: Course No: Section:

Date(s) AI Discovery, Dream, and Design phases implemented:

Collective dream statement developed by class:

Design strategies identified through AI process:

SECTION B

Instructor-facilitated discussion with students:

1. Have we achieved our dream statement? Record discussion summary here.
2. What is working well for us? Record discussion summary here.
3. Of what do we want to do more? Record discussion summary here.

SECTION C

Instructor comments/insights/concerns/observations:

1. How have you been able to implement the AI process?
2. Do you have the resources you need to implement the AI process?
3. Do you perceive any differences in attendance and student engagement in your experimental class as compared to your control class?
4. If yes, do you perceive these differences are related to the AI process?
5. If you do perceive differences in student attendance and engagement between your experimental and control groups, do you believe factors other than AI that might contribute to the perceived difference? If so, what are those factors?

6. Can you identify any barriers to AI implementation you have experienced?

7. Is there any other information you would like the researcher to know about your experience to date with AI?
APPENDIX D

STUDENT ENGAGEMENT QUESTIONNAIRE

To what extent do the following behaviors, thoughts, and feelings describe you, in this course? Please rate each of them on the following scale:

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>very characteristic of me</td>
</tr>
<tr>
<td>4</td>
<td>characteristic of me</td>
</tr>
<tr>
<td>3</td>
<td>moderately characteristic of me</td>
</tr>
<tr>
<td>2</td>
<td>not really characteristic of me</td>
</tr>
<tr>
<td>1</td>
<td>not at all characteristic of me</td>
</tr>
</tbody>
</table>

1. _____ Raising my hand in class
2. _____ Participating actively in small group discussions
3. _____ Asking questions when I don’t understand the instructor
4. _____ Doing all the homework problems
5. _____ Coming to class every day
6. _____ Going to the professor’s office hours to review assignments or tests, or to ask questions
7. _____ Thinking about the course between class meetings
8. _____ Finding ways to make the course interesting to me
9. _____ Taking good notes in class
10. _____ Looking over class notes between classes to make sure I understand the material
11. _____ Really desiring to learn the material
12. _____ Being confident that I can learn and do well in the class
13. _____ Putting forth effort
14. _____ Being organized
15. _____ Getting a good grade
16. _____ Doing well on the tests
17. _____ Staying up on the readings
18. _____ Having fun in class
19. _____ Helping fellow students
20. _____ Making sure to study on a regular basis
21. _____ Finding ways to make the course material relevant to my life
22. _____ Applying course material to my life
23. _____ Listening carefully in class

APPENDIX E

PERMISSION TO USE SCEQ

From: Handelsman, Mitch [mailto:Mitchell.Handelsman@ucdenver.edu]
Sent: Saturday, April 09, 2011 9:51 AM
To: Robbins, Ginger
Subject: RE: SCEQ

Hello Ginger--

Attached is a copy of the SCEQ.

You have our permission to use the scale. However, my understanding is that you may need permission from the publisher. The notice on the web page where our article appears says this:

Copyright of Journal of Educational research is the property of Heldref Publications and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

I don't know if using the scale is "individual use," or if you need Heldref's (www.heldref.org) permission. It hasn't been a problem in the past.

I wish you good luck with your research.

Cheers,

Mitchell M. Handelsman, Ph.D.
Professor of Psychology
University of Colorado Denver
APPENDIX F

REQUEST FOR FACULTY PARTICIPATION AND INFORMED FACULTY CONSENT

Dear faculty member,

As an experienced English Composition I instructor, you have been selected for voluntary participation in a research study entitled *A Study of the Effect of Appreciative Inquiry on Student-Course Engagement and Attendance in the Community College*. I am conducting this research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Human Capital Development through the University of Southern Mississippi. Below is a detailed description of the study along with identified benefits and risks to participation.

1. **Purpose**: The purpose of the current research study is to determine what impact, if any, the use of Appreciative Inquiry (AI) in the classroom has on student-course engagement and student-course attendance. The results of the study will be used to inform the body of knowledge on effective student engagement strategies, particularly in the community college setting.

2. **Description of Study**: The research study will span the fall 2011 semester. Faculty members participating in the study agree to attend a four-hour workshop during which they will learn how to facilitate Appreciative Inquiry in the classroom. Faculty participants will designate one class as a control group and one class as an experimental group. The instructors will facilitate the Appreciative Inquiry process in experimental classrooms as detailed in the AI workshop. Furthermore, faculty members will submit three summary reports throughout the fall semester, following weeks two, five, and nine. Instructors will also administer the Student Course Engagement Questionnaire to control and experimental classes during the thirteenth week of the semester and submit the questionnaires to the researcher. Finally, at the end of the semester faculty participants will engage in a focus group designed to provide qualitative data on the impact of Appreciative Inquiry in the community college classroom. The researcher estimates between five and seven faculty members will participate in the study, with each instructor identifying control and experimental classes including approximately 20-25 students per class.

3. **Benefits**: Potential benefits of participation for faculty include the acquisition of knowledge and experience using Appreciative Inquiry, which is hypothesized to provide positive impact on the classroom environment.

4. **Risks**: No known physical, psychological, social or financial research-related risks, inconveniences, or side effects exist.
5. **Confidentiality:** Confidentiality of all faculty participant records will be maintained. Records including personally-identifiable information will be kept in locked cabinets.

6. **Alternative Procedures:** No alternative courses of action are open to faculty participants.

7. **Participant’s Assurance:** This project has been reviewed by the Human Subjects Protection Review Committee, which ensures that research projects involving human subjects follow federal regulations. Any questions or concerns about rights as a research participant should be directed to the Chair of the Institutional Review Board at 601-266-6820. Participation in this project is completely voluntary, and participants may withdraw from this study at any time without penalty, prejudice, or loss of benefits. Any questions about the research should be directed to Ginger Robbins at (769) 798-4201.

Informed Consent
I hereby agree to participate in the research project entitled *A Study of the Effect of Appreciative Inquiry on Student-Course Engagement and Attendance in the Community College*. All procedures and/or investigations to be followed and their purpose, including any experimental procedures, were explained by Ginger Robbins. Information was given about all benefits, risks, inconveniences, or discomforts that might be expected. The opportunity to ask questions regarding the research and procedures was given. Participation in the project is completely voluntary, and I may withdraw at any time without penalty, prejudice, or loss of benefits. All personal information is strictly confidential, and no names will be disclosed. Any new information that develops during the project will be provided if that information may affect the willingness to continue participation in the project.

Printed Name of Faculty Participant

Signature of Faculty Participant Date
APPENDIX G

DREAM STATEMENTS AND ASSOCIATED STRATEGIES DEVELOPED BY APPRECIATIVE INQUIRY CLASSES

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Dream Statement</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor 1</td>
<td>We are a society of writers hoping to become better writers through a positive attitude, teamwork, and determination. Our goal is to become satisfied with a new understanding of writing and to prepare ourselves for future challenges.</td>
<td>Pay attention in class, ask questions in class, check up on classmates and help them (if appropriate), be aware of others, participate actively in discussions, wear name tags, complete peer reviews of our essays, set individual goals, schedule our time wisely, reflect on the work we have done.</td>
</tr>
<tr>
<td>Instructor 2</td>
<td>In this class, we will become successful communicators by striving for excellence and open-mindedness and maintaining a peaceful, stress-free environment.</td>
<td>Be hard-working, determined, and eager to learn, have good attendance, and have a relaxed atmosphere.</td>
</tr>
<tr>
<td>Instructor 3</td>
<td>In this class we have interesting, relatable assignments that allow for positive interactions in a comfortable, non-threatening atmosphere, so we can achieve success.</td>
<td>Attend class; do assignments; do extra work on problem areas; give suggestions; email and/or visit teacher; ask questions in class; participate in class activities; talk to each other; commit to the goals; willing to communicate and be open to new things.</td>
</tr>
<tr>
<td>Instructor 4</td>
<td>We will work with determination and interaction to create an interesting Composition I class.</td>
<td>Create a distraction-free working environment, be respectful, have open conversations, motivate and encourage each other, use incentives to encourage determination, have the class discuss and debate topics, use a variety of activities to learn, design creative topics, communicate clearly.</td>
</tr>
</tbody>
</table>
| Instructor 5 | In this class, we will get good grades by becoming better writers and gaining a new understanding of grammar and organization. We will develop good relationships with the instructors and other students. | To improve writing:
1. Listen in class (take notes).
2. Use online resources like chompchomp.com to work on grammar.
3. Go to Writing Center for grammar tutorials.
4. Take outlines to Writing Center for help with organization.
5. Send an outline to the instructor via e-mail for feedback.
To maintain good relationships with the class and instructor:
1. Come on time.
2. Come prepared.
3. Be personable. |
APPENDIX H

INSTITUTIONAL REVIEW BOARD NOTICE OF COMMITTEE ACTION

THE UNIVERSITY OF SOUTHERN MISSISSIPPI

118 College Drive #5147
Hattiesburg, MS 39406-0001
Tel: 601.266.6820
Fax: 601.266.5509
www.usm.edu/irb

HUMAN SUBJECTS PROTECTION REVIEW COMMITTEE
NOTICE OF COMMITTEE ACTION

The project has been reviewed by the University of Southern Mississippi Human Subjects Protection Review Committee in accordance with Federal Drug Administration regulations (21 CFR 26, 111), Department of Health and Human Services (45 CFR Part 46), and university guidelines to ensure adherence to the following criteria:

- The risks to subjects are minimized.
- The risks to subjects are reasonable in relation to the anticipated benefits.
- The selection of subjects is equitable.
- Informed consent is adequate and appropriately documented.
- Where appropriate, the research plan makes adequate provisions for monitoring the data collected to ensure the safety of the subjects.
- Where appropriate, there are adequate provisions to protect the privacy of subjects and to maintain the confidentiality of all data.
- Appropriate additional safeguards have been included to protect vulnerable subjects.
- Any unanticipated, serious, or continuing problems encountered regarding risks to subjects must be reported immediately, but not later than 10 days following the event. This should be reported to the IRB Office via the "Adverse Effect Report Form".
- If approved, the maximum period of approval is limited to twelve months. Projects that exceed this period must submit an application for renewal or continuation.

PROTOCOL NUMBER: 11071401
PROJECT TITLE: A Study of the Effect of Appreciative Inquiry on Student-Course Engagement and Attendance in the Community College
PROPOSED PROJECT DATES: 08/01/2011 to 01/31/2012
PROJECT TYPE: Dissertation
PRINCIPAL INVESTIGATORS: Frances Virginia Robbins
COLLEGE/DIVISION: College of Science & Technology
DEPARTMENT: Economic and Workforce Development
FUNDING AGENCY: N/A
HSPRC COMMITTEE ACTION: Exempt Approval
PERIOD OF APPROVAL: 07/21/2011 to 07/22/2012

[Signature]
Lawrence A. Hosman, Ph.D.
HSPRC Chair

[Signature]
7-21-2011
Date
REFERENCES

Johnson, B. (2010). *Transformation of online teaching practices utilizing appreciative inquiry to enhance the process of learning.* Retrieved from ProQuest’s Dissertations and Theses (AAT 3404202)

Mississippi State Board for Community and Junior Colleges (2007). Summer data workshop. Workshop conducted at the meeting of the State Board for Community and Junior Colleges, Jackson.

National Survey of Student Engagement. (2010). Retrieved from
http://nsse.iub.edu/html/about.cfm

