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ABSTRACT 

Billions of dollars are lost within insurance companies due to fraud. Large money 

losses force insurance companies to increase premium costs and/or restrict policies. This 

negatively affects a company’s loyal customers. Although this is a prevalent problem, 

companies are not urgently working toward bettering their machine learning algorithms. 

Underskilled workers paired with inefficient computer algorithms make it difficult to 

accurately and reliably detect fraud. 

The goal of this study is to understand the idea of �-Nearest Neighbors (�-NN) 

and to use this classification technique to accurately detect fraudulent auto insurance 

claims. Using �-NN requires choosing a � value and a distance metric. The best choice of 

� values and distance metrics will be unique to every dataset. This study aims to break 

down the processes involved in determining an accurate � value and distance metric for a 

sample auto insurance claims dataset. Odd � values 1 through 19 and the Euclidean, 

Manhattan, Chebyshev, and Hassanat metrics are analyzed using Excel and R. 

Results support the idea that unique � values and distance metrics are needed 

depending on the dataset being worked with. 

Keywords: machine learning, insurance, fraud, detection, k-NN, distance 
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INTRODUCTION 

Background 

Due to fraud, billions of dollars are lost within the auto insurance field alone. 

According to Kalwihura and Logeswaran (2020), “Insurance fraud is the most practiced 

fraud in the world, and for the third consecutive time in six years, SAS Coalition (2019) 

reports that insurers have reported an increasing amount of suspected fraud.” These types 

of losses not only cause problems for the insurance companies, but their loyal customers 

as well. When companies struggle with large losses, these can sometimes cause them to 

increase the prices on certain insurance premiums. This puts an unfair strain on customers 

that are not committing any type of fraud. Insurance companies also combat this loss by 

changing the policy itself. Policies then contain fewer benefits and even harsher 

guidelines or restrictions. The penalties loyal customers and companies face are unjust. It 

is evident that there is a need to improve the current system being used to detect fraud. 

Increasing the accuracy of fraud detection algorithms can lower insurance prices, extend 

policies, and save insurance companies money. 

It is important to note that many sources can manipulate insurance documents and 

procedures; these sources are categorized by Dhara and Anjani Kumar (2013) as internal 

and external sources. Internal fraud is committed by employees. This type of fraud can 

include the misrepresenting of insurance policies, tampering with documents, or 

mishandling funds. The external case is, of course, customers. These customers lie on 

documents and/or withhold information. This research is centered around training an 

algorithm using patterns to detect external fraud. 
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Problem Statement 

The current process of detecting insurance fraud is time consuming and 

inefficient. Companies are placing little urgency on bettering the fraud detection process. 

Many claim handlers holding the responsibility to detect fraudulent activity “are often 

inexperienced, with typical company lifetimes of less than one year” (Morley et al., 

2016). Using underskilled workers to take on a very tedious and challenging task results 

in inefficiency, squandered work hours, and overlooked information. These results, in 

addition to the underutilization of computer algorithms, limits the number of fraudsters 

detected. A refined version of technological programs could drastically improve the 

current process of detecting fraudulent activity. 

It is no question that there is a critical need for improvement in the technological 

programs being used in the workplace today (Morley et al., 2016). Finding a way to 

improve fraud detection will aid in improving the viability of insurance companies. A 

better mathematical model could pinpoint and display suspicious customers who have the 

potential to be involved in insurance fraud. Insurance workers can then spend time 

investigating these few individuals, either confirming or denying their fraudulent claim. 

Using a mathematical model to specify the list of candidates involved in suspected 

fraudulent activity lowers the chances of the crime being overlooked, increases the speed 

and quality of the employee’s work, and increases the chances of fraudulent activity 

being discovered. 
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THE �-NN METHOD 

Introduction 

Machine learning is at the forefront of thought in data science today, and many 

companies are starting to follow suit by implementing various machine learning models 

to solve certain business problems and to ultimately increase profits and efficiency. The 

goal of machine learning is to train a computer on enough examples so that it can begin 

to predict an unknown variable for a new example. This unknown variable could be 

categorical or numerical. A model that seeks to predict a categorical variable is called a 

classification model (or classifier), and one that seeks to predict a numerical variable is 

called a regression model. In the study of insurance fraud, one is interested to know 

whether a claim is fraudulent, so this variable is categorical (Yes or No). Perhaps the 

simplest and most well-known classifier is the �-Nearest Neighbors (�-NN) algorithm, 

which was created by Fix and Hodges (1951) and later expanded upon by Cover and Hart 

(1967). 

The idea is to divide a data set into two parts, a training set and a test set. In this 

research, 80 percent of the data set was devoted to training and 20 percent to testing. It is 

beneficial to use as much data as available to train the model, but enough data should be 

saved to test the model to establish confidence in the model’s performance. The unknown 

categorical variable of interest is known for each training point and each testing point, so 

whatever the model predicts for a testing point can be compared to the actual value. The 

distance between each test point and each training point is calculated. A value � is 

determined, which represents the number of nearest neighbors to consider for each testing 

point. Whichever value for the categorical variable appears the most often among these � 
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nearest neighbors is the value that the model assigns to the testing point. What remains is 

to choose the value of � and which distance metric to use. Throughout this research, four 

distance metrics were considered. Three are arguably the most well known: the 

Euclidean, Manhattan, and Chebyshev metrics. The fourth metric considered was the 

Hassanat distance, introduced by Ahmad Hassanat (2014). This metric has met great 

success in many works, particularly in regard to the �-NN algorithm (Alkasassbeh et al. 

2015; Prasath et al. 2019). 

The Distance Metric 

Euclidean Distance Metric 

The Euclidean distance is one the most common distance metrics. It measures the 

shortest, straight-line distance between two points. The Euclidean distance between any 

two points �, � ∈ ℝ! is defined to be 

! 

��(�, �) = 56|�" − �"|# 

"%& 

To gain a visual understanding of any given distance metric, one can observe its 

unit circle. A unit circle for a distance metric � is defined as the set of all points � ∈ ℝ! 

such that �(�, 0) = 1. In ℝ#, the Euclidean unit circle simplifies to the familiar circle 

equation �# + �# = 1, whose graph can be observed in Figure 1. 
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Figure 1:The Euclidean unit circle in ℝ# 

Manhattan Distance Metric 

The Manhattan distance metric is also fairly common. This is also known as the 

“city block” measure, as its technique from getting from point to point is similar to the 

path a pedestrian would walk using city roads. The Manhattan distance between any two 

points �, � ∈ ℝ! is defined to be 

! 

��(�, �) = 6|�" − �"| 
"%& 

In ℝ#, the Manhattan unit circle simplifies to the equation |�| + |�| = 1, whose 

graph can be observed in Figure 2. 
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Figure 2: The Manhattan unit circle in ℝ# 

Chebyshev Distance Metric 

The Chebyshev distance metric measures the distance between two points as the 

maximum absolute difference between their corresponding coordinates. Its path can be 

related to the minimum number of moves it would take a king in chess to move from one 

square to another. The Chebyshev distance between any two points �, � ∈ ℝ! is defined 

to be 

��(�, �) = max|�" − �"|" 

In ℝ#, the Chebyshev unit circle simplifies to the equation max(|�|, |�|) = 1, 

whose graph can be observed in Figure 3. 
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Figure 3: The Chebyshev unit circle in ℝ# 

Hassanat Distance Metric 

The Hassanat distance metric is somewhat complex. Due to research done by 

Prasath et al. (2019) and Alkasassbeh et al. (2015) emphasizing its accuracy, this measure 

was tested. It ensures the distance measure is not altered by variations like “different 

scale, noise and outliers” (Alkasassbeh et al., 2015). The Hassanat distance between any 

two points�, � ∈ ℝ! is defined to be 

! 

��(�, �) = 6�(�" , �") 
"%& 

where 

1 − 
1 +min(�" , �")⎧ if min (�" , �") ≥ 0⎪ 1 + max(�" , �")

, 
�(�" , �") = 

1 − 
1 +min(�" , �") + |min(�" , �")| ⎨ if min (�" , �") < 0⎪ 

⎩ 1 +max(�" , �") + |min(�" , �")| 
, 

Due to the complexity of the Hassanat distance metric, the unit circle takes the 

form of a hyperbola (or higher-dimensional analog), as seen in Figure 4. When one looks 
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at the set of all points a distance d from the origin, where � ≠ 1, the Euclidean, 

Manhattan, and Chebyshev unit circles simply grow or shrink everywhere proportionally. 

However, for any 0 < � < 1, the set of points having Hassanat distance � from the origin 

take a fundamentally different shape, that of a distorted diamond that is no longer 

unbounded as shown in Figure 5. 

One can see that the Hassanat distance in ℝ! takes values in [0, �]. The Hassanat 

distance packs the infinite range [0, ∞) of the Euclidean distance into the finite range 

[0, �] in such a way that two vectors can be considered close even if one coordinate is 

vastly different. For instance, in the 2-D case, both coordinates must be somewhat close 

to each other for the Hassanat distance to be in [0,1), whereas as soon as the Hassanat 

distance is 1, as we can see in the unit circle, one coordinate in the vectors can be widely 

different as long as the values for the other coordinates are close. This seems like a useful 

property to have when detecting fraud. Two individuals exhibiting similar characteristics 

but living in two very distant cities should not be thought to be too different from each 

other. 
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Figure 4: The Hassanat unit circle in ℝ# 

Figure 5: The set of all points in ℝ# having Hassanat distance ½ from the origin 

Detailing �-NN Through an Example 

Brett Lantz (2019) further explains the details of � -nearest neighbors using a food 

sorting example. For instance, an ingredient must be classified as either a fruit, vegetable, 

or protein. Each ingredient will be rated on a scale from 1 to 10 of how crunchy it is and 
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1 to 10 of how sweet it is. The � -NN algorithm then treats the feature ratings as 

coordinates. The algorithm can plot on a multidimensional space, but for simplicity, this 

example is plotted in two dimensions (using two features). How crunchy the food is is 

plotted on the �-axis and how sweet the food is is plotted on the �-axis. Similar types of 

food are grouped together. This allows for categories of fruits, vegetables, and proteins to 

be established. These groups can be used as a pattern to determine what other ingredients 

are. 

The nearest neighbor approach, now programmed with preset patterns, will be 

used to determine whether a tomato is a fruit, vegetable, or protein. This step requires a 

distance metric. The Euclidean distance measure is most commonly used, but there are 

several other techniques to determine the distance between two points, all of which yield 

various levels of accurate results. A value of � must also be determined. Choosing too 

large a � value works to reduce the impact of noisy data and could potentially create an 

algorithm that ignores smaller, important pattern qualities. Too large of a � value will 

result in underfitting the data. On the other hand, choosing too small a � value allows 

outliers to have a major impact on the classification process, causing the machine 

learning program to give too much weight to individual data values, resulting in an 

overfitting of the data. Depending on the type of data being analyzed, the optimal � 

value will fluctuate. 

Using � = 3, suppose that a tomato’s three closest neighbors are an orange, 

grapes, and nuts. Two of three of the neighbors are a fruit, therefore the tomato is 

categorized as a fruit. 
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Confusion Matrix 

“A confusion matrix is a table that categorizes predictions according to whether 

they match the actual value” (Lantz, 2019). The four possibilities include true positives, 

false positives, true negatives, and false negatives. 

Figure 6: Sample 2x2 confusion matrix 

It is important to understand that the titles of “positive” and “negative” do not 

always refer to “good” and “bad.” They are simply titles that refer to two different 

outcomes. True positives and true negatives can be described as predicted outcomes that 

correctly matched the results. A false positive is produced when the predicted value is 

positive, but the actual value is negative. Similarly, a false negative is produced when the 

predicted value is negative, but the actual value is positive. 

A confusion matrix is used to determine how well a model performed. 

Components such as accuracy, error rate, sensitivity, specificity, precision, and recall can 

11 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

all be calculated using the number of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). 

Accuracy measures the “success rate”. It takes the total number of true positives 

and true negatives and divides them by the total number of predictions. 

�� + �� 
accuracy = �� + �� + �� + �� 

Error rate is essentially the opposite of accuracy. It measures the number of 

incorrect predictions divided by the total number of predictions. 

�� + �� 
error rate = �� + �� + �� + �� = 1 − accuracy 

Sensitivity displays a “true positive rate.” This measure takes the number of true 

positives and divides them by the sum of true positives and false negatives. 

�� 
sensitivity = �� + �� 

Specificity displays a “true negative rate.” Like sensitivity, specificity measures 

the number of true negatives and divides them by the sum of true negatives and false 

positives. 

�� 
specificity = �� + �� 

Precision displays the number of positive examples that are truly positive. This is 

a very good measure of how trustworthy a model is. 

�� 
precision = �� + �� 

Recall has the same formula as sensitivity but can be used to draw different 

conclusions. Higher recall means that the model is capturing a large portion of positive 

examples. 
12 



 

 

 

 

 

  

 

 

 

 

  

 

 

 

 	  

	    

	     

    

   	

	 	  

  

   

�� 
recall = �� + �� 

Overview of Analysis 

The �-NN algorithm is simple, yet it is a versatile and widely-used classifier 

(Lantz, 2019). This research is centered around using Excel and R to find the optimal � 

value and distance metric that yields the best performance for the insurance claims data 

set. 

Data being used has been obtained from 

https://www.kaggle.com/code/buntyshah/insurance-fraud-claims-detection/notebook. It 

can be noted that “insurance data are generally proprietary information of the insurance 

companies and are not publicly available” (Kalwihura & Logeswaran, 2020). Due to this 

difficulty in obtaining such private information, it cannot be confirmed that the dataset 

used within this research represents real data. However, if the data in this dataset is 

synthetic it is still suitable for use in developing methods and tools which can then be 

applied to real data sets. Furthermore, the question can be posed: “If given a set of 

insurance fraud data, how do I select the optimal � value and distance metric to train a 

� -NN model for accurately predicting fraud?” Processes outlined aim to demonstrate the 

idea behind � -NN, investigate the structure of machine learning algorithms, and analyze 

how to determine appropriate � values and distance metrics. 

One of the weaknesses that accompanies the � -NN algorithm is the uncertainty 

when choosing a value for � . Within this research, odd � values 1 through 19 are 

implemented and observed. Even values of � are avoided due to ties in the majority vote 

of the nearest neighbors. Several values are tested due to the fact that every dataset 
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requires a certain value of � to yield the most accurate results. Qualities such as the type 

and number of variables all contribute to the effectiveness of chosen � values. Creating 

an accurate model greatly depends on testing data using several � values and analyzing 

each of their performances. 

The distance metrics being used in the analysis are Euclidean, Manhattan, 

Chebyshev, and Hassanat. Each will be observed on its performance by taking its 

accuracy, error rate, sensitivity, specificity, precision, and recall. These items are 

calculated by using the results of a confusion matrix. 

Although all values calculated from the confusion matrix are important, some 

need to be analyzed with this particular dataset in mind. Precision and recall are both very 

important to look at in this case. Higher precision is desirable when the costs of false 

positives are high. A higher recall is desirable when the costs of false negatives are high. 

Within this dataset, false positives indicate that the algorithm has categorized a 

claim as fraudulent, but the claim is honest. False negatives indicate that the algorithm 

has categorized a claim as honest, but the claim is fraudulent. When thinking about false 

positives and false negatives in this instance, one can conclude that the cost of false 

positives would be higher than false negatives. Although false negatives result in 

customers getting away with fraudulent activity, if a model determined that a certain 

customer's insurance claim was positive for fraudulent activity, when in reality it is not, 

this can cause friction between an insurance firm and its customers. An insurance 

company confronting a loyal customer could result in the customer having to go through 

strenuous processes to prove their authenticity. An insurance company does not want the 

14 



 

 

 

 

reputation of falsely accusing its valued and honest customers. Therefore, the level of 

precision should be held at a higher consideration than recall. 
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PROCESS 

Process for Excel 

The raw dataset detailing the information regarding insurance claims is not 

immediately usable. It must be determined which variables can be disregarded, which 

need to be one-hot encoded (see definition below), and which need to be normalized. 

One-Hot Encoding 

Because a distance function cannot operate with nominal values, variables must 

be converted to a numerical format. A process for doing this is called one-hot encoding. 

The variable is broken into categories. A 1 indicates that the categorical variable takes 

some specific value and a 0 indicates otherwise. This creates a format that consists of all 

1s and 0s, which conveniently scales in coherence with normalized data. For data with 

only two categories, items will be constructed similarly to the following example (male 

and female): 

if � = male male = b1 
0 otherwise 

For cases in which there are more than two categories, items will be constructed similarly 

to the following example (cold, medium, hot): 

if � = hothot = b1 
0 otherwise 

if	 � = medium medium = b1 
0 otherwise 

Normalizing 

Normalizing is a technique used to ensure all variables are on the same scale. The 

formula takes the difference between the variable, �, and the minimum of � and divides 

this value by the range of �. 
16 



 

 

 

 

 

 

  

 

 

   

   

 

 

 

 

 
 

� − min(�)
=�new max(�) − min(�) 

This produces values that range from 0 to 1. Normalizing is necessary because, for 

example, if one variable ranges from 0 to 1 while another variable ranges from 0 to 1000, 

the distance between the two vectors will be completely dominated by the variable with 

the larger range. It is necessary that all variables contribute equally to the computation. 

Once one-hot encoding and normalizing are complete, the data is ready to be used for 

calculations. 

Formula Descriptions and Explanations 

The Excel workbook consists of four sheets: “Data,” “Sheet 1,” “Sheet 2,” and 

“Sheet 3.” “Sheet 1” of the workbook contains the original dataset along with two 

additional columns, AO and AP, where customers’ vehicle make and model, and city and 

state were concatenated, respectively. This was done using the & command. It was 

decided to combine these variables because, for example, two city names could be the 

same but could be in different states. 

Figure 7: Excel formula created to combine “make” with “model” and “city” with 
“state” 
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“Data” also contains a third added column, AQ. Since the dataset came from a 

source with little background information, it cannot be concluded that the data was not 

listed in a specific order. Having the data in an ordered fashion would cause inaccurate 

results due to the fashion in which test and training rows are assigned. This column, AQ, 

assigns each row a random number between 0 and 1 using the RAND() command. The 

dataset was sorted in ascending order according to the values in AQ, ensuring rows were 

randomized. 

“Sheet 2” of the workbook contains all variables after deletion, normalizing, one 

hot-encoding, and labeling. 

Figure 8: Excel formula used to randomize rows 

Variables that have been categorized as carrying irrelevant information are policy 

number, insured’s ZIP code, and incident location. Policy number was removed due to 

the irrelevant nature of the numbers. Policy numbers are a string of random numbers that 

indicate specific cases. Ordering these through normalizing would not yield any relevant 

information. Insured’s ZIP code was removed because the customer’s city and state are 

already recorded. Similarly, incident location (street address) was removed. If street 

address and ZIP code were used in conjunction with the city and state, each customer 
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would have their own category when the one-hot encoding was carried out. This again 

would not yield relevant information. 

Variables that have been normalized (no color, “N”) and one-hot encoded 

(colored, “OHE”) can be found in Figure 9. It is important to note varying colors were 

used for organizational purposes, and do not indicate different alterations to variables. 

Figure 9: Organized list depicting which variables were normalized (no color,”N”) and 
one-hot encoded (colored, “OHE”) 

Normalizing uses MAX() and MIN() functions provided by Excel. Cell C2 

references information (A2) from “Data” and subtracts it from the MIN of the entire A 

column, again from "Data”. This numerical value is then divided by the difference 
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between the MAX of column A and the MIN of column A from “Data”. A similar 

process is done for each of the variables that need to be normalized. 

Figure 10: Excel formula created to mimic the normalizing formula 

One-hot encoding uses the IF() function provided by Excel. This formula takes 

the cell’s value (E2) from “Data” and assigns it a 1 if it matches the indicated value in 

parenthesis and a 0 if it does not. 

Figure 11: Excel formula used to one-hot encode certain variables 

The next step in the process is to label rows as either “test” or “training” rows. It 

is recommended that 80% of data be used in the training set, while 20% function as the 

test set (Lantz, 2019). There are 1000 rows in this dataset. After re-sorting the data in 

ascending order based on the random number assigned each row, the first 800 rows are 

labeled as “training rows,'' and the last 200 are labeled as “test rows.” This is simply done 

by adding two blank columns before the data. Column B is used to number the rows and 

assign column A with “Training” for the first 800, and “Test” for the last 200. Rows 

being randomized is important for this step. If rows were in order, for example, by policy 

bind date (oldest to newest), the normalized information would range from 0 to 1, in that 
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order. The highest values would be located within the test rows and would reduce the 

predictive power of the model because of bias.  

“Sheet 3” of the workbook contains the final steps in preparing the data so that it 

can be implemented into a cross table and conclusions can be drawn. 

The distance between each “training” and “test” row is calculated using the 

Euclidean, Manhattan, Chebyshev, and Hassanat distance metrics. Visual Basic for 

Applications (VBA) is a developer tool used within Excel to create new functions. 

Euclidean, Manhattan, and Hassanat commands were created and can be found within 

Appendix A. An example of the distance metric process can be seen in Figure 12. 

SUMXMY2 is used in this step because is it already stored in Excel and is identical to the 

Euclidean formula; the VBA code “EUCLID” can be found in Appendix A and used 

interchangeably. The SUMXMY2 command is used to find the squared distance between 

rows 1-800 (column A) of training rows and rows 801-1000 (row 2) of test rows. A 

formula was derived to reference from “Sheet2”, using the first training and first test row 

and calculating the distance between the two. Each cell works in this manner to create an 

800x200 grid calculating the distance between all training and test rows. 

Figure 12: Excel formula used to obtain the Euclidean distance between “training row” 
1 and “test row” 1 
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Excel’s SMALL() function is then used to locate the 1-19 smallest distances from 

the Test column. For this cell, the SMALL function highlights all of column B in blue 

and displays the 1st (A805 in red) smallest distance. All cells to the right of B805 will do 

the same, but for columns B, C, D, E, etc. All cells below B805 will calculate the 2nd, 3rd, 

4th, etc. smallest distance. This forms a 19x200 grid displaying each column’s 1-19th 

smallest distance. 

Figure 13: Excel formula used to located the � smallest distance 

A combination of INDEX() and MATCH() functions determines which row is 

associated with each distance within the grid. Figure 14 shows the formula created, while 

Figure 15 gives a more detailed visual of what is being done. The INDEX() function 

locates the row number in the array (column A in blue) where cell B805 (red) exactly 

matches a value in the second array (column B in purple). 

Figure 14: Excel formula created to find the row associated with corresponding distance 
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Figure 15: Color-coded Excel formula associated with Figure 14 

Next, it is then determined whether these rows are associated with fraudulent 

activity or not. Another combination of INDEX() and MATCH() functions is used 

similarly to the previous step. The INDEX() function locates the value (Y/N) in the array 

from “Sheet2” (column GE) where cell B826 exactly matches the value from “Sheet2” 

(column B).  

Figure 16: Excel formula created to find Y/N value associated with corresponding row 

The majority winner (for varying � values) within each row can then be 

determined. Only an odd number of rows is considered to eliminate the possibility of a 

tie. IF() and COUNTIFS() functions are used to create this function. The formula places a 

“N” in cell B868 if more than half of the array (blue) is N’s and a Y if not, essentially 

displaying a majority winner. This produces the predicted values. 
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Figure 17: Excel formula created to determine a majority winner 

Figure 18: Color-coded Excel formula associated with Figure 17 

A row with the actual values of the test rows are transposed into row 880. These 

values will be used to compare to the predicted values. 

Figure 19: Excel formula used to transpose actual values 

Row 880 is compared to each row (868-877) using the COUNTIFS() function. 

Figure 20 shows the formula for cell B883. Row 880 values are compared to those in row 

883. If both values are “Y”, it is counted. There are 17 cells between row 880 and 883 in 

which values match (both “Y”). The formula is manipulated dependent on if TN, TP, FP, 

or FN needs to be calculated. For instance, FP would require row 880 (actual value) to be 

“N” and 883 (predicted value) to be “Y”. These values produce a confusion matrix for 

each value of �. 
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Figure 20: Excel formula used to determine the amount of true postives, false positives, 
true negatives, and false negatives 

With a confusion matrix now produced, it can be determined how well the model 

performed. Accuracy, error rate, sensitivity, specificity, precision, and recall are all 

calculated using basic formulas. Basic formulas are translated into Excel by referencing 

appropriate cells. This information will allow conclusions to be drawn and enables one to 

choose an optimal value of �. 

Figure 21: Excel formula used to mimic formulas for accuracy, error rate, sensitivity, 
specificity, precision, and recall 

Process for R 

The process for producing a confusion matrix for the dataset in R mimics the 

process through Excel. The same steps are simply modified according to the functions 

allowed in R. The data is saved as a .csv file for easy upload. The ratio of Y/N variables 
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in the fraud reported column is rewritten as a decimal. Incident city/state and auto 

make/model are combined using the paste( ) command. 

The same irrelevant columns are then removed using the –c( ) command. In R, the 

columns that display dates must be reformatted. This is done through the julian( ) and 

as.Date( ) command. 

Next, the appropriate columns must be normalized and one-hot encoded. 

Normalizing is done through creating a ‘normalize’ function using the formula and using 

it on the appropriate columns. One-hot encoding is done using the dummyVars( ) 

command. 

Lastly, training rows are assigned to be rows 1:800 and test rows are assigned to 

be rows 801:1000. A knn( ) command allows a certain � to be used in conjunction to the 

Euclidean metric. After running this command, a confusion matrix is produced using the 

CrossTable( ) command. The cross-table values then allow for computation of accuracy, 

error rate, sensitivity, specificity, precision, and recall. The script created following this 

process can be found within Appendix B. 
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RESULTS 

Varying � value 

Results for confusion matrix using varying � values in Excel can be found in 

Figure 22. Results calculated in R can be found in Tables 1-10. Each confusion matrix 

was composed of � values 1-19 (only odd). 

Results for Excel 

Figure 22: All results calculated in Excel for � values 1-19 (odd) 

Results for R 

Table 1: Confusion matrix calculated for � = � 
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Table 2: Confusion matrix calculated for � = � 

Table 3: Confusion matrix calculated for � = � 
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Table 4: Confusion matrix calculated for � = � 

Table 5: Confusion matrix calculated for � = � 
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Table 6: Confusion matrix calculated for � = �� 

Table 7: Confusion matrix calculated for � = �� 
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Table 8: Confusion matrix calculated for � = �� 

Table 9: Confusion matrix calculated for � = �� 
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Table 10: Confusion matrix calculated for � = �� 

All results for accuracy error rate, sensitivity, specificity, precision, and recall 

from R exactly match Excel results (Figure 22). 

Varying Metric 

Results for confusion matrix using varying distance metric in Excel can be found 

in Figures 23-25. Excel results contain all odd � values 1-19; however, results for only 

� = 11 are used in this portion of the analysis. Results calculated in R can be found in 

Figure 26. Each confusion matrix was composed using Euclidean, Manhattan, and 

Hassanat distance metrics using � = 11. 
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Results for Excel 

Figure 23: All results calculated in Excel using the Euclidean metric 

Figure 24: All results calculated in Excel using the Manhattan metric 

Figure 25: All results calculated in Excel using the Hassanat metric 

Results for R 

Figure 26: All results calculated in R using the Euclidean, Manhattan, and Hassanat 
distance metric and � = 11 
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Due to one-hot encoding certain variables, all results using the Chebyshev 

distance metric concluded to one. This is because the Chebyshev metric displays the max 

difference between any variables within the training and test rows. Since several of the 

variables’ values were 0 or 1 (after being one-hot encoded), the max difference was 

always one. Since this is the case, the Chebyshev distance metric does not yield any 

relevant results. 
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CONCLUSIONS 

Varying � Value 

Accuracy, precision, and recall are most closely analyzed. Error rate is simply the 

residual value from accuracy, and therefore redundant to analyze. Sensitivity produces 

the same values as recall. Sensitivity and recall differ only slightly through interpretation. 

Recall represents the “breadth” of results, while sensitivity is strictly a proportional value. 

Therefore, of these two measures, only recall will be considered. Specificity calculates 

the proportion of negative examples correctly classified. Since customers not committing 

insurance fraud are not of particular interest, this value is also of less relevance. 

When studying the accuracy results in Figure 22, one can see that the accuracy 

peaks between � = 7 and � = 11. One observes very high accuracy toward the higher � 

values as well. This finding can be disregarded, as it is now overfitting the data. Precision 

also peaks around the same � values. Recall, however, peaks with lower � values. Recall 

is peaking between � = 3 and � = 7. � = 1 can be disregarded as it is likely overfitting 

the data. 

As the cost of false positives is high, precision has higher importance. Higher 

precision and accuracy are both displayed between � = 7 and � = 11, the highest values 

of each being � = 11. Although recall is not displaying the best results for � = 11, the 

recall is still performing fairly well at � = 11. This tradeoff in this particular dataset is 

necessary due to the complications that are the consequence of a lower precision rate. 

Varying Distance Metric 

Since � = 11 yielded the most accurate results for the Euclidean distance metric, 

this � value is used to compare the output from other tested metrics. Results are easily 
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comparable in Figure 26. By visual inspection, it is observed that the Euclidean distance 

outperforms all metrics in accuracy, precision, and recall. 

These results are interesting due to the claims made by Alkasassbeh et al. (2015). 

These researchers state that not only is the Hassanat distance metric more successful for 

their dataset, but that it is the most successful for nearly all datasets tested. The 

researchers claim that the results of the Hassanat distance metric “demonstrate the 

superiority of this distance metric over the traditional and most-used distances, such as 

Manhattan distance and Euclidean distance.” However, Prasath et al. (2019) conclude 

“that Hassanat distance performed the best when applied on most datasets.” Important 

statements are made stating that there is never an overall optimal distance metric. This 

conclusion is most widely shared amongst previous researchers. 

Nevertheless, considering the support for the Hassanat distance metric, it is 

interesting that the Euclidean distance metric yielded the best results in this study. 

Although this finding does not support conclusions made by some authors, the findings 

further support the idea that no singular distance metric will be suitable for all datasets. 

Summary 

The process performed gives insight into the processes of machine learning and 

how machine learning algorithms are built. Using Excel to replicate R 

commands/procedures shows how data is being manipulated throughout the algorithm. 

Having these steps broken down and visualized aids in understanding the data, allowing 

for a deeper understanding of ways to improve models. 

These processes are also applicable to any dataset. Conclusions drawn confirmed 

the idea that no distance metric will yield the best results for all datasets. Knowing this 
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shortcoming, it is important to understand and have the ability to determine the best route 

for choosing an appropriate � value and distance metric. 

After values are decided, a unique algorithm can be implemented within the 

workplace to more accurately identify the customers committing fraudulent activity. 

Having a custom algorithm that takes into account the structure and different types of 

variables present in a particular data set is the first step in devising a better system that 

detects fraud. 

Important Notes 

Although many conclusions were drawn from the research, there are many notes 

to keep in mind. This research was done with a potentially fabricated dataset. This means 

that � values and distance metrics that performed well may not perform the best on other 

auto insurance data. However, the process for acquiring the most suitable � value and 

distance metric will follow the same pattern. 

It should also be noted that an abundant amount of valid research was conducted 

for the Hassanat distance metric. The Hassanat metric performed very well when used on 

several different datasets. This research does not aim to discredit the accuracy of the 

Hassanat distance metric. It instead further proves that regardless of the previous success 

rate of a distance metric (or � value), a singular algorithm will not always provide the 

most accurate results. 
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EXCEL/VBA CODE 

VBA CODE “EUCLID” 

Public Function EUCLID(r1 As Range, r2 As Range) As Double 

Dim i As Long, n As Integer, psum As Double 

n = r1.Cells.Count 

ReDim newvec(n) As Double 

For i = 1 To n 

newvec(i) = (r1(i).Value - r2(i).Value) ^ 2 

Next i 

psum = 0 

For i = 1 To n 

psum = psum + newvec(i) 

Next i 

EUCLID = Sqr(psum) 

End Function 

VBA CODE “MANHATTAN” 

Public Function MANHAT(r1 As Range, r2 As Range) As Double 

Dim i As Long, n As Integer, psum As Double 

n = r1.Cells.Count 

ReDim newvec(n) As Double 

For i = 1 To n 

newvec(i) = (r1(i).Value - r2(i).Value) 

Next i 
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psum = 0 

For i = 1 To n 

psum = psum + Abs(newvec(i)) 

Next i 

MANHAT = Abs(psum) 

End Function 

VBA CODE “CHEBYSHEV” 

Public Function CHEB(r1 As Range, r2 As Range) As Double 

Dim i As Long, n As Integer, Result As Double 

n = r1.Cells.Count 

ReDim newvec(n) As Double 

For i = 1 To n 

newvec(i) = Abs(r1(i).Value - r2(i).Value) 

Next i 

CHEB = Application.WorksheetFunction.Max(newvec) 

End Function 

VBA CODE “HASSANAT” 

Public Function HASS(r1 As Range, r2 As Range) As Double 

Dim i As Long, n As Integer, psum As Double 

n = r1.Cells.Count 

ReDim newvecmin(n) As Double 
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ReDim newvecmax(n) As Double 

ReDim D(n) As Double 

psum = 0 

For i = 1 To n 

newvecmin(i) = Application.WorksheetFunction.Min(r1(i).Value, r2(i).Value) 

newvecmax(i) = Application.WorksheetFunction.Max(r1(i).Value, r2(i).Value) 

D(i) = 1 - (1 + newvecmin(i)) / (1 + newvecmax(i)) 

psum = psum + D(i) 

Next i 

HASS = psum 

End Function 
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R CODE 

R CODE USED TO CREATE CROSS TABLES 

install.packages("gmodels") 

library(gmodels) 

install.packages("class") 

library(class) 

install.packages("caret") 

library(caret) 

claims <- read.csv("Auto Insurance Claims Data Randomized.csv", stringsAsFactors= 

FALSE) 

str(claims) 

table(claims$fraud_reported) 

round(prop.table(table(claims$fraud_reported))*100,digits=1) 

claims$CityState <- paste(claims$incident_city,claims$incident_state) 

claims$MakeModel <- paste(claims$auto_make, claims$auto_model) 

str(claims) 

claims <- claims[-c(10,25,3,23,24,36,37,40)] 

str(claims) 

claims$policy_bind_date <- as.Date(claims$policy_bind_date) 

str(claims$policy_bind_date) 

claims$policy_bind_date <- julian(claims$policy_bind_date) 

claims$incident_date <- as.Date(claims$incident_date) 

claims$incident_date <- julian(claims$incident_date) 
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str(claims) 

normalize <- function(x) {return((x-min(x))/(max(x)-min(x)))} 

claims_n <-

as.data.frame(lapply(claims[c(1,2,3,6,7,8,14,15,16,21,22,24,25,27,28,29,30,31)], 

normalize)) 

str(claims_n) 

claims_o <- claims[-c(1,2,3,6,7,8,14,15,16,21,22,24,25,27,28,29,30,31,32)] 

str(claims_o) 

dmy <- dummyVars("~ .", data=claims_o) 

claims_o <- data.frame(predict(dmy, newdata=claims_o)) 

str(claims_o) 

claims_final <- cbind(claims_n, claims_o,claims$fraud_reported) 

str(claims_final) 

claims_train <- claims_final[1:800, 1:184 ] 

claims_test <- claims_final[801:1000, 1:184 ] 

claims_train_labels <- claims[1:800, 32] 

claims_test_labels <- claims[801:1000, 32] 

claims_test_pred <- knn(train=claims_train, test=claims_test, cl=claims_train_labels, 

k=13) 

CrossTable(x=claims_test_labels, y=claims_test_pred, prop.chisq=FALSE) 
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