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ABSTRACT 

Following the release of ~4.9 million barrels of oil into the Gulf of Mexico from 

the Macondo wellhead, a vast area of the seafloor contained recently deposited marine 

sediments contaminated by the oil spill. The initial deposition of these contaminated 

marine sediments was likely not the end of the journey for the particles. Downslope 

gravitational processes and events of increased current speed in the deep ocean setting 

can result in recently deposited sediments to resuspend and be moved laterally with the 

current flow, increasing the area effected by the oil spill. Erosion experiments performed 

in a closed-loop resuspension flume were completed on 23 sediment cores collected from 

near the Macondo wellhead and areas to the SE. Using flow modeling of the Gulf of 

Mexico, core sites were chosen to be in areas where erosion or deposition is thought to be 

the dominant process of that coring location. Sites were reclassified based upon ease of 

initial transport of material and the shear stress of pulses, or peaks, in eroded sediment 

volume. All cores had erosion begin at <0.053 dyne cm-2 (4.6 cm s-1) and nearly all cores 

had large pulses of sediment eroded >0.48 dyne cm-2 (13.7 cm s-1). Surface sediment 

characteristics revealed older, rebound material was more easily resuspened than newly 

deposited material. This suggests that the area effected by the DwH oil spill has increased 

over time as contaminated material has been transported by natural process to deep 

waters SE of the wellhead. 
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CHAPTER I - Introduction 

1.1 Deepwater Horizon Oil Spill Background 

The Deep Water Horizon (DwH) oil spill released ~4.9 million barrels of crude 

oil into the Gulf of Mexico (GoM) from April 20th to July 15th,  2010. Another ~7 

million liters of chemical dispersants were also introduced into the GoM to catalyze the 

degradation of the oil. Using available synthetic aperture radar, MacDonald et al., (2015) 

discovered that the 87-day period of oil release from DwH produced an oil slick that was 

11,200 km2 in surface area and a volume of 22,600 m3. Of the oil spilled into the GoM, 

~75% was accounted for by recovery at the wellhead, burning, chemical dispersing, 

natural dispersing, and by evaporation or dissolving (Lehr et al., 2010). This research did 

not include any estimates for the amount of oil removed by settling through the water 

column and sedimentation on the seafloor. The presence of marine oil snow (MOS) in the 

surface waters near the Macondo wellhead suggest that the vertical transportation of these 

large, mucus-rich particles could have been a primary mechanisms for export of 

contaminants to the deep GoM (Passow et al., 2012; Vonk et al., 2015; Daly et at., 2016). 

Multiple biological, geological, sedimentological and chemical studies have attempted to 

quantify the amount of oil that was transported and deposited on the seafloor (Valentine 

et al., 2014; Brooks et al., 2015; Schwing et al., 2015; Daly et al., 2016 Romero et al., 

2017). Results of these studies show a decline in benthic foraminifera density, increased 

sediment accumulation rates, presence of fossil-carbon in surface sediments, hopane and 

other hydrocarbon compounds present that reflect DwH oil was in the surface sediments 

following the spill. Estimates of oil deposition vary from 0.5-21% of the oil was 

transported to the seafloor along with 1.9 ± 0.9 *104 metric tons of hydrocarbons 
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(Valentine et al., 2014; Chanton et al., 2015; Romero et al., 2017). Increased Mississippi 

River discharge along with the addition of drilling mud to the wellhead during the spill 

sourced high amounts of particles for oil to bind with and raise the likelihood of the oil 

being transported to the seafloor (Brooks et al., 2015; Yan et al., 2016). 

1.2 Resuspension of Surficial Marine Sediments 

Seafloor heterogeneity along with deep-sea currents have likely redistributed the 

contaminated sediments, resulting in an affected area larger than initially predicted. 

Sediments can be redistributed when lateral flow stress overcomes the cohesive properties 

of the sediments, causing the sediments to be transported into the water column and 

potentially forming benthic nepheloid layers (BNLs) (Gardner et al., 1983; Lampitt, 1985; 

McCave, 1986; Thomsen and Gust, 2000; Borrowman et al., 2006; Diercks et al., 2018). 

The resuspension of the most surficial layer of seafloor sediment has shown varying 

degrees of resistance depending on the composition of the sediment in the layer (Lampitt, 

1985; McCave and Hall, 2006; Gardner et al., 2016). Low-density phytodetritus dominated 

sediment has shown to be resuspended at the lowest speeds (6-8 cm s1), while non-cohesive 

silt sized sediments require slightly higher flow speeds (10-15 cm s-1), and sand dominated 

sediments being resuspended at 25-30 cm s-1 (Lampitt, 1985; McCave and Hall, 2006; 

Gardner et al., 2016). Thomsen and Gust (1999) found on the European continental margin 

that a more easily resuspendable surface aggregate layer can require flow speeds as low as 

0.4-1.2 cm s-1 to move this sediment. With low flow speeds transporting surface layer 

sediments and contributing to BNLs, flow interactions with sea floor structures can be a 

contributor to near-inertial forcing strong enough to move sediments (Tesi et al., 2012; 

Turnewitsch et al., 2013; Diercks et al., 2018). This factor is important to consider 
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especially in the area of DwH, due to numerous salt domes that are present in the northern 

GoM. Tesi et al., (2012) had results that showed a 60-90% contribution of material to a 

sediment trap below a flat-topped summit was sourced from the top of the summit. We 

may see similar sourcing of sediments on lee sides of elevated structures in the GoM, 

potentially being accumulation zones of contaminated particles originally deposited on the 

salt domes. 

1.3 Gulf of Mexico Watershed Analysis and Bathymetry 

With the publication of a new, high-resolution, bathymetrical map of the GoM 

(Kramer and Shedd, 2017), a watershed analysis of the basin was completed by Dr. Arne 

Diercks (Figure 1.1). This analysis reveals a gradient in the NE GoM that shows 

gravitational transport is dominantly towards the southeast from the Macondo wellhead. 

  

Figure 1.1 Gulf of Mexico Watershed and REDIRECT Coring Locations 

Map of the NE GoM showing coring locations from cruise PS18-25 on R/V Point Sur in May of 2019, overlying drainage pathways 

modelled from Kramer and Shed (2017) high-resolution bathymetry data. Map credit: Dr. Arne Diercks. 
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With the surface oil slick covering a large portion of the continental shelf and slope in the 

northern GoM, sedimentation of hydrocarbons in these areas leave the contaminants 

vulnerable to be transported downslope to abyssal depths by gravitational processes. A 

subsurface oil plume also existed in the depth range of the blowout from the drilling pipe 

(Diercks et al., 2010; Valentine et al., 2014). Contaminated sediments on the slope 

between 1,000-1,300 m show a “bathtub ring” like deposit of this plume following the 

blowout, leaving the contaminants susceptible to downhill transport to abyssal depths. 

Romero et al., 2017 mapped portions of this “bathtub ring” by sampling surface 

sediments for residual hydrocarbons. Figure 1.2 shows a map by Romero et al. (2017) 

with interpolated residual hydrocarbon concentrations, which shows the presence of 

hydrocarbons in the slope region where the contaminants may be later transported. 

Gravitational processes have shown to be the dominant delivery mechanism to the 

abyssal plain for terrigenous sediments (Ward et al., 2017). The Mississippi River is a 

large source of terrigenous material to the GoM, and was in a high-discharge state during 

the time of the DwH blowout (Vonk et al., 2015). This was a main contributing factor to 

the large deposition event during and after the oil spill (Daly et al., 2016; Giering et al., 

2018). 
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Figure 1.2 Map of Residual Hydrocarbons in Surface Sediment Sample Following the 

DwH Oil Spill 

Map of interpolated residual hydrocarbon concentrations (ppm) from surface sediment samples taken from 2010-2011 by Romero et 

al., 2017. Gray lines indicate bathymetry (m). 

1.4 Sediment Flume Background 

Sediment flumes are one tool commonly used to gather data involving sediment 

resuspension and erodibility in-situ and in the laboratory (McNeil et al., 1996; Thomsen 

and Gust, 1999; Borrowman et al., 2006; Sea Engineering Inc, 2012). Laboratory flume 

studies give the advantage of being able to control different dynamics in the environment, 

while in-situ flumes allow scientists to observe sediment dynamics in the natural 

environment. In-situ flumes face the risk of the natural environment not producing the 

conditions of primary interest in a specific study (Raven and Gschwend, 1999). 

Laboratory flumes also add the advantage of being able to collect sediment from 

numerous locations and environments to examine at a later date, rather than only being 

able to operate in a single location at a time. Many prior flume experiments have focused 

river sediments, shallow coastal sediments, or laboratory made sediments mixtures 

(McNeil et al., 1996; Borrowman et al., 2006; Sea Engineering Inc, 2012). This focus on 
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shallower sediments is likely due to the higher energy that is consistently present in these 

environments that transports large volumes of sediment daily. This study is intended to 

highlight how deep-sea sediment cores respond to increasing shear stress, especially at 

lower flow speeds. A linear flume was chosen for these experiments primarily due to 

three factors. Linear flumes have development of fully turbulent flow occurring without 

the risk of secondary flows that are occasionally present in annular style flumes (Ravens 

and Gschwend, 1999; Jonnson et al., 2006). A linear flume is also a more easily designed 

and constructed piece of equipment compared to annular flumes. Finally, in a linear 

flume it is easier to collect images of down-channel transport in a linear flume, where the 

test section does not curve or change orientation. 

1.5 Sedimentary Environments and Hypotheses 

Coring locations for the May 2018 cruise were selected with the focus of 

analyzing different sedimentary environments in the GoM. The GoM is a unique basin 

due to its ocean-like structure, containing the major bathymetric provinces of an ocean 

(coastal zones, continental shelf, slope, and abyssal depths) (Ward et al., 2017). The 

geographic area for this research has complicated dynamics due to the abundant salt 

domes present along with incised valleys from prior low-stands in the basin (Ward et al., 

2017). This heterogeneity in topographic features likely contributed to the uneven 

distribution of contaminated sediment deposits following the DwH spill (Ross et al., 

2009; Diercks et al., 2018). Coring locations were chosen with two basic environment 

classifications: erosional and depositional. These classifications were decided based upon 

structural features and by analyzing the watershed analysis of the GoM. Erosional coring 

locations were ones in the center of drainage channels from the watershed analysis or on 
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top of elevated structures. As aforementioned, inertial forces have shown to resuspend 

sediment on flat-topped summits where they were deposited in less stressed environments 

(Tesi et al., 2012; Turnewitsch et al., 2013). There have also been recorded instances of 

flow speeds exceeding 50 cm s-1 in channelized features in the GoM under normal 

forcing conditions (Ross et al., 2009). These instances of high stress events lead to the 

classification of similar sites as erosional environments. Depositional sites were chosen in 

areas where stress is expected to be lower and allow for the settling out of suspended 

particles and potential accumulation of sediment. These sites were either on the lee side 

of salt domes or other elevated structures where sediments may settle out after being 

moved from the structures. Other depositional features were chosen due to their 

proximity to drainage channels from the modelled watershed. Figure 1.3 (a-e) shows 

cross sections of two different predicted sedimentary environments. Figure 1.3 (a & c) 

show the location of a core taken on the lee side of a salt dome in the GoM. This is an 

example of what would be considered a deposition site prior to the cruise due to the 

expected sourcing from the dome and low energy at the base of the lee side of the dome. 

Figure 1.3 (b & c) show the location of a submarine channel in GoM. This site would be 

considered erosional due to the high likelihood of increased flow speeds in this channel 

resulting in a high-energy environment. Sites outside of these channels or in the open 

plain of the deep GoM were chosen due to 2 factors: (1) low energy expected in these 

environments and (2) sourcing of sediments predicted to be from far field resuspension 

events or pelagic settling from surface waters. The consideration of each of the prior 

discussed factors lead to 2 working hypotheses for this research. 
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Hypothesis 1: Cores collected from predicted depocenters in the northern GoM 

will require lower bed shear stress to initiate the movement of unconsolidated particles on 

the surface layer in comparison to cores erosional environments.  

Hypothesis 2: Erosion of cores collected form predicted depocenters will reveal 

larger particles are being transported than cores from predicted erosional environments. 

This will result in differences in the amount of sediment volume eroded and transported 

throughout experimentation. 

 

Figure 1.3 Cross Sections of a Predicted Depositional and Erosional Environment 

This figure shows the cross sections of 2 locations where cores were collected during the PS1825 cruise. (a) & (b) Show mapped areas 

of the GoM with a salt dome, coring location, and cross section line. Modelled drainage pathways are also on the maps. (c) Shows the 

cross section from image (a). (d) Shows the plotted cross section from image (b). 
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- Methods 

1.1 Cruise Details and Core Collection 

In May of 2018, 32 sediment multicores were collected on a research cruise in the 

NE Gulf of Mexico on the R/V Point Sur. Water depth at the coring locations varied from 

1500 m to >3200 m, with sampling sites starting near the Macondo wellhead and trending 

to the southeast. Figure 1.1 shows the cruise track and coring location and Table 2.1 lists 

the coring locations with location and depth characteristics. Cores were collected using 

an Ocean Instruments MC-800 multicorer and were stored in cold storage on the ship. To 

ensure the integrity of the sediment water interface of the cores, an ample amount of 

water above the sediment water interface was preserved. Figure 2.1 shows the intact 

sediment surface immediately following core collection on the cruise. The presence of a 

benthic branched organism and lack of turbidity in the overlying water column represent 

how cores were able to be retrieved with minimal sediment disturbance. To absorb any 

trapped air inside of the core tube, a sponge was secured at the top of the water, to 

minimize the sloshing of the water in the tube. Unwanted water movement in the core 

tube during transport could potentially cause sediment to resuspend and change the core 

from its natural state.  

Upon returning from the cruise, the cores were carefully transported in an upright 

position, and again stored in a dark refrigerator at 4°C, undisturbed, until experimentation 

was ready. The storage of cores ranged from three to five months depending on when the 

core was analyzed in the flume. During this storage period, it is likely that bacterial 

respiration was occurring as well as alteration of any contaminants that may be present 

(US EPA., 2001). This may have caused cores to be slightly in a different state during 
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flume analysis, but it is unknown how storage time of cores affects the resuspension of 

the sediment. Of the 26 collected multicores, 22 were analyzed for resuspension and 

erosional characteristics. The multicores that were not analyzed were due to disturbance 

of the sediment surface during the storage and transportation process. These disturbances 

reduced the integrity of the sediment water interface and could potentially bias the data 

that would be collected from these cores. 

 

Figure 1.1 Image of Sediment-water Interfae of a Core Collected during Cruise PS18-25 

This image shows the undisturbed sediment surface from a core collected for resuspension flume analysis. This represents the ability 

to collect undisturbed cores, preserving the natural setting of the sediment. 
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Table 1.1 Cruise  PS18-25 Core Site Properties 

List of coring station names, pre-cruise sedimentation environments, locations and depths from cruise PS18-25 on R/V Point Sur. 

1.2 Flume Design and Dynamics 

In order to analyze resuspension of the collected sediments, a linear flume was 

constructed for analysis based on Borrowman et al., (2006) Sedflume design (Figures 2.2 

& 2.3). The acrylic test section of the flume is 95 cm in length, 15 cm in width, and 5 cm 

Station 

Pre-Cruise 
Sedimentation 
Environment 
Classification 

Longitude Latitude 
Water 
Depth 

(m) 

PS1825-MC1 Channel 88° 15.30212' W 28° 42.84920' N 1703 

PS1825-MC 2 Depocenter (Lee) 88° 20.35629' W 28° 39.13342' N 1750 

PS1825-MC 3 Depocenter (Lee) 88° 26.45617' W 28° 36.04800' N 1730 

PS1825-MC 4 Depocenter (Lee) 88° 26.83200' W 28° 32.13078' N 1743 

PS1825-MC 5 Depocenter (Lee) 88° 19.11850' W 28° 32.05158' N 1890 

PS1825-MC 6 Depocenter (Lee) 88° 21.40813' W 28° 27.32281' N 1910 

PS1825-MC 7 Depression 88° 10.07492' W 28° 25.21397' N 2064 

PS1825-MC 8 Channel 88° 7.97012' W 28° 24.86423' N 2170 

PS1825-MC 9 Depression 88° 7.59109' W 28° 13.25420' N 2272 

PS1825-MC 10 Channel 87° 58.23715' W 28° 18.16521' N 2290 

PS1825-MC 11 Depression 87° 57.81921' W 28° 30.34882' N 2282 

PS1825-MC 12 Depocenter (Lee) 88° 2.94617' W 28° 37.51637' N 2179 

PS1825-MC 13 Depression 88° 5.10635' W 28° 40.77679' N 1763 

PS1825-MC 14 Channel 88° 0.56992' W 28° 46.33392' N 1946 

PS1825-MC 15 Channel (Levee) 87° 54.96780' W 28° 40.34122' N 2410 

PS1825-MC 16 
Channel 
(Confluence) 

87° 41.40701' W 28° 38.81653' N 2381 

PS1825-MC 17 Channel 87° 50.26611' W 28° 34.17881' N 2344 

PS1825-MC 18 Channel 87° 47.94754' W 28° 27.95368' N 2393 

PS1825-MC 19 Channel 87° 44.67865' W 28° 21.46454' N 2459 

PS1825-MC 20 Depression/Plain 87° 42.59766' W 28° 17.28081' N 2448 

PS1825-MC 21 
Channel 

(Confluence) 
87° 30.24078' W 28° 19.83799' N 2584 

PS1825-MC 22 
Deep Channel - 

Erosion – 
Winnowing 

85° 55.97090' W 27° 26.52520' N 3223 

PS1825-MC 22A 
Deep Channel - 

Erosion – 
Winnowing 

86° 16.30204' W 27° 30.42636' N 3127 

PS1825-MC 23 Depocenter 87° 1.09198' W 27° 38.38956' N 3052 

PS1825-MC 24 Depocenter 87° 16.97428' W 27° 46.34078' N 2975 

PS1825-MC 30 Depression 88° 15.05768' W 28° 35.76084' N 1986 

PS1825-MC 31 
(DwH01) 

- 88° 23.28094' W 28° 43.50483' N 1570 
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in height. A DIGITEN, model: FL-1608, Hall Sensor flowmeter, located within the 5 cm 

PVC pipe before the test section, recorded flow speed throughout each experiment. A 10 

cm diameter core opening is located in the center of the flume, 147 cm from the 

flowmeter. During a test, a Sony 4k camcorder was mounted 20-cm beyond the core, 

with its focal point set at the center of the channel. This camera collected video data of 

the sediment being transported down-channel after being eroded from the core. During 

recording, the camera was unable to resolve any particles that did not exceed 1 pixel in 

size and was therefore unable to be analyzed during image processing. A GoPro camera 

was also used to film the surface of the core throughout each experiment. This camera 

was not used for any statistical analysis due to the inability to manually focus the camera 

in the flume, but the footage was used to qualitatively analyze the surface of the cores 

during experimentation. The closed loop flume was filled with filtered artificial salt water 

(salinity ~ 35) prior to each test, drained, and cleaned after each core. The artificial salt 

water delivered from the 100 gallon storage tank, first travelled through a 5 cm diameter 

circular PVC pipe before entering the rectangular test section of the channel through a 

flow diverter. The full development of turbulent flow was achieved by converting the 

flow from the 5 cm PVC pipe, through the flow diverter and into the 5 cm tall by 15 cm 

wide channel. The interaction between the turbulent flow and exposed sediment core 

surface allowed shear stress to be applied to the core. Shear stress was calculated in the 

flume and ranged from 0.003 dyne/cm2 at the lowest flow speed and 1.08 dyne/cm2 at the 

highest flow speed. When the resulting shear stress overcomes the cohesive properties of 

the sediment, erosion begins to occur which can result in the transportation of particles 

into the camera’s view. 



 

13 

 

Figure 1.2 Diagram of Linear Resuspension Flume  

This figure shows the dimensions of the constructed linear sediment flume, as well as the locations of the core insertion, flowmeter, 

and camera mounting station. 
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Figure 1.3 Image of Resuspension Flume 

1.3 Operating Procedure 

Cores were carefully introduced into the bottom of the flume channel by using a 

core extruding mechanism. This mechanism also secured the tube in the flume during the 

test. While filling the flume, the top of the core tube was covered with a cap to reduce 

any interaction of the water entering the flume with the sediment surface during the 

filling process. The sediment water interface inside the core tube was kept as low as 

possible below the base of the flume to avoid agitation of the sediment interface. Cores 

were collected and stored with a large amount of original seawater in the core tube. Once 

the flume was flooded, the protective cover was carefully removed using a pressure 

equalizing tube in the cover to allow air to escape and water to slowly enter that space. 

Following the removal of the protective cover, the core material inside the core tube was 

raised by the core extruder, so that the sediment water interface was flush with the floor 

of the flume channel. The access hole above the core insertion point in the flume was 

closed off, producing a closed loop system, and the camera and lighting were prepared 

for filming. An LED light bar illuminated the camera’s view at a 90° angle from the top 

of the channel. The half-hall flowmeter was connected to an Arduino Uno through a 

digital pin. The Arduino program then counted the amount of raising peaks from the 

magnetic sensors over a 1-second period. This was converted to a flowrate (L/min) value 

by multiplying by 60 and a constant supplied by the manufacturer for calculating flowrate 

with magnetic peaks. This process repeated continuously throughout the experimentation 

period to designate a flow speed for each second of a test. The calculation was then 

passed over the serial cable to Tera-term where date and time could be recorded along 
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with flow speed. These values were synced with the date and time of the computer that 

stored the data and the camera time, so that it could be correlated to the exact time that 

video data was collected. The last step before starting the flow in the flume was to turn on 

the camera and reconfirm the set focal point in the center of the flume channel. Once 

each of these steps were completed, the experiment was ready to begin. Following the 

initial preparations, the flow in the channel was slowly increased to the first flow speed 

interval (~1 cm s-1), which was sustained for ~20 seconds. Subsequently, the flow was 

increased by ~1 cm s-1 to the next flow speed interval and the process was repeated until 

flow speeds reached ~20 cm s-1. Flow speed intervals included 1.1, 2.3, 3.4, 4.6, 5.7, 6.9, 

8.0, 9.1, 10.3, 11.4, 12.6, 13.7, 14.9, 16.0, 17.1, 18.3, and 19.4 cm s-1. Shear stress was 

calculated for these flow speeds using the quadratic stress law (Ross et al., 2009):  

 τ = ρ*CD*u2, (1) 

 where ρ is the density of seawater, u is the near bottom free-stream velocity, and CD is 

the drag coefficient (2.5*10-3; Ross et al., 2009). Not all experiments reached the highest 

flow speed interval because a large number of particles were present in the flume at the 

higher intervals, no longer allowing individual particle recognition in the image 

processing. These speed intervals mimic the natural environment of the deep Gulf and 

can cause resuspension of sediment resulting in the formation of benthic nepheloid layers 

(Diercks et al., 2018). 

1.4 Image Processing 

Upon completion of core erosion experiments, individual image files were 

extracted from the video files for analysis. Using Windows Powershell©, an ffmpeg 

processing script, found in Appendix A, was used to extract four images per second from 
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each video file. Images were saved in tagged image file (TIF) format to ensure pixels 

were not distorted during image extraction. All image files from each video were then 

analyzed for particle number and size characteristics using Image Pro Plus®. Size 

characteristics gathered from Image Pro Plus® included individual particle area as well as 

maximum and minimum diameter and radius values for each particle. Images from each 

file were analyzed in chronological order so that sediment statistics from each image 

could be correlated with flow speed data. Prior to the counting process, the images were 

converted into grey scale data (0-65,565 pixel values) to normalize the images and to 

allow for a uniform analysis of each image given a specific pixel range to be counted as 

particles by the program. To be able to analyze moving particles within the video frame, 

a background subtraction process was conducted on each image (Figure 2.4 (a-e)). This 

involved the program using the image directly before the image under analysis and taking 

out all features that existed in the same locations in both images. This process removed 

all pixels of the same value within both images so that any object that may not be related 

to the actual erosion and transportation of the sediment cores is not processed. Once the 

previous image was subtracted, the program counted objects of a certain pixel value 

range. A pixel value range was manually set to count only the particles that had entered 

the camera frame and particles that had been transported within the viewing area from 

one frame to the next. Figure 2.4 (a-e) depicts the image processing procedure that was 

operated on each extracted frame of every video from the flume experiments. Particle 

characteristics collected from this process were initially saved as ASCII (extension CNT) 

files which were then converted to an excel friendly summary format by a binning 

software created by Roy Jarnagin. This program binned particles in ten 0.2 mm size 
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fractions and accumulated the particle size characteristics in each bin for each image for 

more efficient analysis of the particle statistics. 

 

Figure 1.4 Image Processing Procedure 

The set of images represent the image processing steps to gather particle data from videos of erosion experiments. (a) Image extracted 

from recorded video of an erosion experiment. (b) Image immediately following image a from the same erosion experiment. (c) 

Conversion of image to gray scale to allow for Image Pro® to assess a smaller color pixel value range. This is only shown for 1 image 

but what done for each image throughout the processing. (d) This image shows the background subtraction of image a from image b. 

This removes all static objects in the camera’s view so that only moving particles are present in the image. (e) Result of counting 

procedure that highlights objects in pixel value range. 

1.5 Particle Characteristics and Calculations 

The data collected by the Image Pro Plus® processing script collected individual 

particle dimensions including diameter, roundness, short and long axis length, and area. 

These values for eroded sediment volume were then calculated by using 

 V=πa2b where, (2) 

where a is the radius of short-axis and b is the radius of the long-axis. This formula was 

used because organic sediments in the surface layer, such as marine snow particles, are 

commonly known to lack perfect spherical shape. The volume formula is for an ellipsoid 

and a more accurate calculation for less spherical objects. Volume was calculated for 
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each particle in each frame throughout each experiment in attempt to identify trends in 

erosion timing and scale. Volume calculations were only completed on particles with 

radius values >0.2 mm, all particles below this value did not have a calculable volume 

within Image Pro®. Total volume values and average particle area values were calculated 

excluding the 0.0-0.2 mm size fraction. This decision was made due to particle counts 

being present in this fraction without flow within the channel on multiple occasions, 

resulting in a lack of confidence in the accuracy of the data in this size fraction. This 

could potentially be contributed to minor camera movements due to vibration of the 

frame on which the flume and camera were mounted or other unknown factors. This 

makes volume and particle size values only include the fine sand size fraction and larger, 

excluding clay and silt sized fractions. While it is acknowledged that mud sized particle 

typically dominate GoM sediments (Ward, 2017), unconsolidated surface sediments are 

likely organic rich particles that may be connected with mucus-like substances or other 

binding material, resulting in larger, more cohesive particles than the underlying 

sediment. Ignoring the mud fraction still allows for analysis of these larger particles, 

which is the primary focus of this research. In order to classify the sedimentation 

environment at coring location by the results of the flume experiments, an analysis of 

eroded sediment volume per flow speed interval was completed. The total sediment 

volume and particle size were calculated in each interval to see how these values would 

change with increasing flow speeds. Based upon the timing of initial sediment erosion 

and eroded volume peaks, sites were then classified as depositional or erosional, which 

are listed in Table 3.1. 
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1.6 Surface Sediment Properties 

Multi-cores from the same sites used for flume analyses were analyzed by Dr. 

Gregg Brooks, Dr. Rebekka Larson of Eckerd College and Dr. Jeff Chanton at FSU. All 

three were part of the GOMRI funded project and agreed to provide their data for 

comparison with the erosion analyses. Several sediment properties including, mass 

accumulation rate (MAR) based on 210Pb activity, bulk density (g/cm3), percent carbon, 

and radiocarbon (Δ14C) content, expressed in delta notation (‰) were determined. Cores 

were sampled following the procedures described in Schwing et al. (2017), which allow 

for sampling at millimeter scale resolution. Total Lead-210 (210PbTot) activity values were 

collected by gamma spectrometry on Series HPGe (High-Purity Germanium) Coaxial 

Planar Photon Detectors. Data were corrected for emission probability at the measured 

energy, counting time, sample mass, and converted to activity (disintegrations per minute 

per gram, dpm/g), using the International Atomic Energy Association (IAEA) organic 

standard IAEA-447 for calibration (Kitto et al. 1991; Larson et al. 2018). The activities of 

the 214Pb (295 keV), 214Pb (351 keV), and 214Bi (609 keV) were averaged as a proxy for 

the “supported” Lead-210 (210PbSup) that is produced in situ (Baskaran et al., 2014) 

(Smith et al., 2002; Swarzenski, 2014). The 210PbSup activity was subtracted from the 

210PbTot activity to calculate the “unsupported” or “excess” Lead-210 (210Pbxs), which is 

used for dating within the last ~100 years. 

The Constant Rate of Supply (CRS) algorithm was employed to assign specific 

ages to sedimentary intervals within the 210Pbxs profile.  The CRS algorithm is 

appropriate under conditions of varying accumulation rates (Appleby and Oldfieldz, 

1983; Binford, 1990). Mass accumulation rates (MAR) were calculated for each data 
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point (i.e., “date”), based upon the CRS model results. The use of MAR corrects for 

differential sediment compaction down core, thereby enabling a direct comparison of 

210Pbxs accumulation rates throughout a core (i.e., over the last ~120 years). Mass 

accumulation rates were calculated as follows: 

 MAR (g/cm2/yr) = dry bulk density   X   Linear Accumulation Rate (LAR) (3) 

Where: 

 dry bulk density (g/cm3) = sample dry mass (g)  sample volume (cm3) (4) 

 LAR = linear accumulation rate (cm/yr) (5) 

Bulk density (g/cm3) was determined after extrusion of samples. Each sample was freeze-

dried and weighted for dry mass to calculate bulk density (Binford, 1990; Appleby, 

2001). Stable carbon (%C) was measured using a Carlo-Erba elemental analyzer coupled 

to an isotope ratio mass spectrometer at the University of Maryland Center for 

Environmental Science Chesapeake Biological Laboratory. The 14C blanks were 

generally between 1.2 and 5 micrograms of C, producing a negligible effect on samples, 

which were over 1200 micrograms of C.  The analysis of 22 replicate sediment samples 

yielded an average analytical reproducibility of ± 6.8‰ for Δ14C and 0.2‰ for δ13C.  

Forty coal samples, representing fossil 14C dead carbon, were analyzed to access the 

procedural blank of combustion, graphitization, and target preparation, over the course of 

this study.  The average Δ14C value was -995 ± 7‰. Additionally, 25-azalea leaf 

standards collected in Tallahassee, Florida in 2013 were analyzed; the average Δ14C value 

was 31 ± 8‰. 

 



 

21 

- Results 

Flow speed of initial sediment erosion, total sediment volume eroded, average 

particle size, and eroded flow speed of first peak in eroded sediment volume for each 

experiment are listed in table 3.1. Ancillary data of bulk density, average 210Pb-based 

MAR (2014-2018), Δ14C content and %C are also listed in table 3.1. The flow speeds at 

which particles were initially eroded and transported into the frame of the camera were 

recorded for each experiment. The flow speed was then used to calculate shear stress 

which ranged from 0.003 dyne cm-2 to 0.964 dyne cm2. Flow speed and shear stress 

values will stated together throughout the discussion. Sediment from eight cores began to 

erode at flow speeds <2.0 cm s-1 (0.003 dyne-2) and an additional seven cores began to 

erode <2.5 cm s-1 (0.013 dyne cm-2). Total sediment volume eroded throughout each 

individual experiment was normalized to a value of 309 seconds, which was the average 

total experiment time of all cores. The normalization formula is 

 Normalized Volume = (309/x)*y, (6) 

where x is the total time of the experiment (s) and y is the total eroded volume (cm3). The 

normalized total volume ranged from 4.5 cm3 to 532.6 cm3, with 66.8±110.6 cm3 being 

the mean and standard deviation. Average particle area ranged from 0.38 mm2 to 0.63 

mm2 with a mean of 0.45±0.05 mm2. Eroded sediment volume peaks were chosen by 

analyzing curves of average eroded sediment volume per increasing flow speed interval. 

A value was considered a peak if there was an increase in sediment volume in the channel 

that increased during one flow speed interval above 1 cm3 and then decreased in the next 

interval by 20% or more of the previous volume. The occurrences of this peak ranged in 

flow speeds from 5.7 cm s-1 (0.084 dyne cm-2) to 16.0 cm s-1 (0.656 dyne cm-2). Some 
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cores exhibited multiple peaks throughout experimentation, while others would not have 

the occurrence of a peak until the highest flow speed interval. The sediment volume 

eroded before the presence of the first peak was calculated and ranged from 0.0 – 43.7 

cm3 with a mean of 8.6 ±10.5 cm3. Bulk density values from the upper 2 mm of sediment 

in each core had a mean of 0.20±0.08 g/cm3. Percent carbon values, also taken from the 

upper 2 mm, had a mean of 1.92±0.57. Average MAR from years 2014-2018 ranged from 

0.016 to 0.139 g cm-2 yr-1 with a mean of 0.06±0.036 g cm2 yr-1. Radiocarbon content 

was analyzed for the upper 2 mm of sediment and the values ranged from -139 ‰ to -319 

‰. 



 

 

Table 2.1 Flume Erosion Data with Other Sedimentary Characteristics of the Upper 2 mm. 

Table showing data collected from sediment flume erosion experiments and surface sediment sampling.  *Indicates the total volume was normalized to 309 seconds, which was the mean experiment 

time for all cores 

Station 

Shear 

Stress of 

Initial 

Erosion 

(dyne cm-2) 

Total 

Volume 

Eroded*  

(cm3) 

Average 

Particle 

Size 

(mm2) 

Shear Stress of 

First Peak in 

Sediment 

Volume (dyne 

cm-2) 

Volume 

Eroded 

Before 1st 

Peak* 

(cm3) 

Bulk 

Density 

(g cm-3) 

% 

Carbon 

Average 

MAR 2014-

2018 (g cm-2 

yr-1) 

Surface  

Δ 14C 
(‰) 

Post-Cruise 

Flume 

Experiment 

Classification 

PS1825-MC04 0.053 30.7 0.45 0.482 9.3 0.12 2.13 0.057 -194.40 Erosional 

PS1825-MC05 0.003 21.4 0.63 0.164 3.4 0.16 2.25 0.035 -177.30 Depositional 

PS1825-MC06 0.053 73.27 0.51 0.656 39.8 0.27 2.37 0.016 -180.20 Erosional 

PS1825-MC07 0.003 37.2 0.45 0.335 3.5 0.18 2.6 0.047 -181.40 Depositional 

PS1825-MC08 0.03 13.8 0.45 0.566 7.9 0.18 1.48 0.062 -238.70 Erosional 

PS1825-MC09 0.03 4.6 0.39 0.084 0.1 0.18 1.45 0.118 -314.80 Erosional 

PS1825-MC10 0.013 22.1 0.39 0.121 0.1 0.18 1.29 0.076 -233.10 Erosional 

PS1825-MC11 0.013 532.6 0.49 0.053 0.1 0.21 1.40 0.053 -243.80 Depositional 

PS1825-MC12 0.03 31.5 0.46 0.164 0.1 0.15 2.46 0.021 -201.40 Erosional 

PS1825-MC13 0.013 30.9 0.50 0.482 12.9 0.32 2.13 0.028 -165.00 Erosional 

PS1825-MC14 0.003 211.9 0.47 0.121 7.5 0.12 2.92 0.014 -139.90 Depositional 

PS1825-MC15 0.013 81.2 0.44 0.405 11.4 0.10 2.84 0.040 -207.90 Erosional 

PS1825-MC16 0.013 57.2 0.46 0.271 1.8 0.38 1.63 0.139 -319.30 Depositional 

PS1825-MC17A 0.003 25.4 0.42 0.121 0.1 0.24 1.80 0.058 -227.10 Depositional 

PS1825-MC17B 0.013 30.1 0.46 0.335 2.8 0.24 1.80 0.058 -227.10 Depositional 

PS1825-MC18 0.013 4.5 0.43 0.214 0.1 0.21 1.35 0.134 -255.20 Erosional 

PS1825-MC19 0.003 29.7 0.40 0.271 4.5 0.16 1.32 0.090 -225.20 Depositional 

PS1825-MC20 0.003 50.0 0.44 0.121 0.8 0.29 1.40 0.060 -258.90 Depositional 

PS1825-MC21 0.053 22.8 0.42 0.656 4.9 0.25 1.51 0.032 -186.60 Erosional 

PS1825-MC22 0.053 38.3 0.38 0.566 7.7 0.22 - - - Erosional 

PS1825-MC23 0.003 76.9 0.45 0.482 12.7 0.04 - - - Erosional 

PS1825-MC30 0.03 99.8 0.46 0.405 21.2 0.12 2.72 0.019 -167.00 Depositional 

PS1825-MC31-

DWH01 
0.003 18.0 0.42 0.405 4.2 0.27 1.46 0.053 -211.20 Erosional 
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2.2 Environment Classification by Eroded Volume Curves 

A reanalysis of sedimentary environment from pre-cruise classification was done 

on coring locations based upon results of resuspension flume experiments. Graphs were 

created for each experiment that contained normalized eroded volume per interval, 

normalized particle counts per interval, and average particle size eroded per each flow 

speed interval. Error bars were not plotted with the average particle area values due to 

most cores having all error bars overlap in each interval. Eroded sediment volume and 

particle counts were normalized to 20 second intervals so that each experiment could be 

analyzed on the same period per interval. The normalization process for each interval was 

the same as the normalization process for the total eroded volume but using 20 seconds as 

the total time and using the volume eroded in the interval being analyzed instead of the 

total volume. An example of an erosion graph that was classified as a depositional 

environment is shown in Figure 3.1 (a). Particles began to erode at 1.1 cm s-1 (0.003 dyne 

cm-2) with the average volume being near 0 mm3 value. Particles were present in each 

interval for the entire experiment with low volumes until the 4.6 cm s-1 interval. A peak 

in normalized sediment volume was observed at the 6.9 cm s-1 (0.121 dyne cm-2) flow 

interval of 0.27 cm3. Eroded sediment volume and particle area decreased over the next 

three flow speed intervals that range from 8-10 cm s-1. Eroded volume and particle area 

increased again at the 11.4 cm s-1 (0.482 dyne cm-2) flow speed interval and increased at 

each interval for the rest of the experiment. Cores with graphs that mimic a similar 

pattern were also considered depositional locations. 

Graphs that are considered to represent erosional environments show different 

characteristics. Figure 3.1 (b) presents an example of an erosional environment. Particles 
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were not present in the flume until a flow speed of 3.4 cm s-1 (0.03 dyne cm-2) was 

reached. At this speed, an average volume near 0 mm3 with an average particle area of 

0.35±0.11 mm2 were eroded . The average eroded volume did not exceed 0.01 cm3 until 

the flow speed reached 11.4 cm s-1 (0.335 dyne cm-2), though there was a small peak in 

particle area of 0.53±0.31 mm2 at the 5.7 cm s-1 flow speed. There was no peak present in 

the data until the 14.9 cm s-1 (0.566 dyne cm-2) flow interval that had 0.26 cm3 eroded 

sediment volume. All sites were classified as either erosional or depositional based on 

their curves, which are all shown in Appendix B.



 

 

 

Figure 2.1 Example of Sediment Erosion Curves 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area per interval. These values were also calculated without the 0.0-0.2 

mm size fraction as in earlier calculations. The red line is plotting average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. (A) shows an example of a depositional volume curve due to the early onset of large particles, low speed of initial 

erosion, and low flow speed of first peak. (B) shows an example of an erosional volume curve due to low volume at low flow speed and the late presence of a sediment volume peak. *Represents the 

data present is normalized to 20 seconds 
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2.3 Correlation of Surface Sediment Characteristics and Erosion Data 

To determine if there is a relationship between the flume erosion experiments and 

the surface sediment characteristics, a correlation scatterplot matrix was created 

comparing each of the data categories in Table 3.1. Figure 3.2 shows the plots and 

correlations of each component. The relationships with the largest absolute correlation 

coefficients were between surface MAR and Δ 14C (-0.87), flow speed of first peak and 

sediment volume eroded before first peak (0.71), MAR and percent carbon (-0.66), and 

Δ14C and percent carbon (0.69). Each of these relationships had an absolute correlation 

coefficient greater than ±0.50. Other, less correlated, relationships were present between 

sediment volume eroded before first peak and MAR (-0.49), sediment volume eroded 

before first peak and percent carbon (0.47) sediment volume eroded before first peak and 

Δ 14C (0.46), flow speed of first peak and Δ 14C (0.45), bulk density and percent 

carbon(-0.44) and flow speed of first peak and flow speed of initial erosion (0.43). All 

other relationships had absolute correlation coefficient less that ±0.40.  
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Figure 2.2 Scatterplot Matrix of Values from Table 3.1 

This figure shows correlations between each value listed in table 3.1. Correlation values are plotted as well to show relationship 

between different aspects of erosion experiments and surface sediment characteristics. 
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– Discussion 

3.1 Sedimentation Regions 

Based on variations in sedimentary characteristics and flume data, Diercks et al. 

(in revision) presented three geographic Regions in the study area. The following 

discussion will adhere to their characterization of the sedimentation within the study area 

and discuss the flume analyses data in reference to these three Regions. 

Region 1 included cores 4 and DwH 01;  

Region 2 SE of Region 1, includes cores 5, 6, 12, 13, 14, and 30;  

Region 3, further to the SE in the study area, included sites 7, 8, 9, 10, 11, 15, 16, 

17A & B, 18, 19, 20, 21, 22, and 23. 

Discussed in detail in Diercks et al. (in revision), cores in all three Regions 

contained thin, mm-scale, sub-parallel laminae and wavy bed units that are characteristic 

of sediment re-deposition by gravitational processes. Inclined beds and color-banded 

units were only present in cores from Regions 2 and 3, which are indicative of low 

density, fine-grained turbidity currents, slide, or slumps (Coleman et al., 1986; Brooks et 

al., 2015). Figure 4.1 shows the spatial trends in flow speed of first peak values, Δ14C 

concentrations, and %C throughout the study area with lines dividing the area into the 

three regions.  

Region 1 

Region 1 received the highest inputs of contaminated sediments in the short-term 

following the DwH oil spill (Chanton et al., 2012; Passow et al., 2012; Brooks et al., 

2015; Yan et al., 2016; Ziervogel et al., 2016; Romero et al., 2017). This Region has the 

highest potential for downslope transport due to the high slope angles present as well as 
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the varying seafloor morphology. The two cores in this Region, DwH01 and 04, had their 

first peak in eroded sediment volume occurring at 0.405 dyne cm-2 (12.6 cm s-1) and 

0.482 (13.7 cm s-1) respectively, which was above average for this study and suggests the 

lack of easily resuspended material in the surface layer (Table 3.1). In core 4, initial 

sediment erosion began at 0.053 dyne cm-2 (4.57 cm s-1), which was the highest shear 

stress needed to begin erosion. With only two cores present in this Region, it is hard to 

make a designation on erosional characteristics for the entire Region. Diercks et al. (in 

revision) completed a deeper analysis into the sedimentology and chemistry of sites 4 and 

DwH 01 as well as 3 additional cores in this Region. The three additional cores were 

unable to be analyzed in the resuspension flume due to damage to the cores during transit. 

Diercks et al. (in revision) concluded that this Region showed the presence of episodic 

sediment accumulation and has potential for longer-term accumulation of redistributed 

sediments from up-slope areas. The cores in this Region had differing sedimentological 

data with site 04 having above average %C (2.13) and younger Δ 14C (-194.4‰) values, 

while site DwH01 had low %C (1.46) and older Δ 14C (-211.2‰) values. Even with these 

differences, the erosion of these cores exhibited similar attributes. Both sites had below 

average total eroded volume, at or below average particle area, and volume peaks 

occurring at above average shear stresses for the study. The combination of these factors 

suggest the lack of an easily resuspendable surface layer and high-energy events are 

required to transport large volumes of sediment from this Region. 

Region 2 

Region 2 contains a similar bathymetry as Region 1 in the most NW portion of 

the study area, but transitions to an open plain setting with very subtle slopes in the SE 
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portion. The sites in this Region contained the highest %C values in the study as well the 

most enriched Δ 14C values, which is indicative of material being sourced from the sea 

surface and not from resuspension (Chanton et al., 2018). Previous studies have noted 

sediment resuspension in this area triggered by near inertial currents and other tropical 

storm induced events, which may restrict long-term sediment deposition associated with 

gravitational down-slope transport, resulting in resuspended material potentially 

bypassing this Region or only residing for a short time (Gardner and Sullivan, 1981; Isley 

et al., 1990; Diercks et al., 2018).  

Cores 6, 13, and 30 exhibited their first eroded sediment volume when shear 

stress reached >0.164 dyne cm-2, suggesting the lack of an easily resuspendable surface 

layer. Sediment erosion in core 14 peaked at 0.121 dyne cm-2 (6.9 cm s-1), but this core 

was the most northern site in the study area and may be an outlier for the Region. There 

was not a noticeable difference in the shear stress of initial erosion compared to the other 

Regions, as cores in this Region had resuspension occur at the lowest (0.003 dyne cm-2) 

and highest (0.053 dyne cm-2) shear stresses observed. Cores 5, 6, and 13 had the largest 

average eroded particle size in the study, and all other cores in the Region were above 

average in eroded particle size. This is likely attributed to the high %C facilitating the 

formation of large aggregates. In reviewing GoPro videos of the cores surface, the cores 

from this Region appeared to have dark, organic rich large aggregates. A noteworthy 

process recognized during the experiments was the hydrodynamic behavior of aggregates 

as a function of core morphology as they were initially eroded. Videos showed multiple 

occurrences of aggregates on the upstream side of the core being transported down-

channel to the lee side of the cores where they were trapped until higher flow speeds 
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transported them into the frame of the camera used for particle counting. This could 

explain why some of the experiments on cores in this Region did not present a peak in 

large particle sizes early on in the experiment, but only at higher flow speeds. Cores 5, 

12, 13, and 30 had a larger average particle size in the 2nd half of their respective 

experiments, revealing this delay in aggregate transport into the cameras field of view. 

With cores 6, 14, and 30 having 3 of the top 6 highest total volumes eroded, sites in this 

Region have the potential to have large amounts of sediment transported to other areas, 

but it would require high-energy events. 

Region 3 

The sites in Region 3 were located in the greatest water depths (>2000 m) in this 

study and low slope angles (<2°) trending from the NW to SE.  Region 3 had the highest 

MAR values and strong predominance of episodic sediment accumulation identified in 

the sedimentary record (Personal conversation: Gregg Brooks and Bekka Larson), which 

may be indicative of reoccurring down-slope transport events being delivered into the 

Region. Low %C and depleted Δ 14C values in this Region suggest the sediment present 

in this Region is older, reworked material being deposited from upslope (Diercks et al., 

2018). Transport from upslope and deposition into this Region would result in a loosely 

consolidated surface layer of fine-grained sediments that would be easily resuspended at 

low flow speeds, producing a sediment particle size distribution towards the fine 

particles. The flume data defends this claim as this Region contains 6 cores (sites 9, 

10,11, 17A, 18, and 20) that had a peak in eroded sediment volume occur at a shear stress 

of 0.256 dyne cm-2 (6.9 cm s-1), as well as 5 cores (sites 7, 17A, 19, 20, and 23) showing 

initial resuspension of material occurring at the lowest possible flow speed. Average 
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particle size of eroded particles in this Region were consistently at or below average 

(0.45 mm2), which may be associated with the low %C values also present. GoPro videos 

obtained during the flume analyses of cores in this Region show the visual difference in 

the surface material as the material appeared lighter in color and had smaller aggregates 

in comparison to the organic rich Region 2. 

Figure 3.1 Heat Maps of Flow Speed of First Eroded Sediment Volume Peak (A) Δ14C 

(B), and %C (C) 

Heat maps overlying modelled drainage pathways with labelled coring sites and lines dividing the maps into the three discussed 

regions. (A) Shows the flow speed of first eroded sediment volume peaks (cm s-1). (B) Shows Δ 14C (‰) values for the upper 0-2 mm 

intervals of each coring site. (C) Shows %C concentrations for the upper 0-2 mm interval of each sediment core. 

3.2 Sedimentary Environment Reclassification 

Sedimentary structures reflective of gravity driven sediment re-deposition were 

present in nearly all cores in the study area (Diercks et al., in revision). Thin, mm-scale, 

sub-parallel, wavy bed units, inclined beds and color-banded units are all commonly 
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occurring structures present in adjacent Mississippi Fan deposits that can be attributed to 

low-density, fine-grained turbidity current, and/or submarine slumps (Coleman et al., 

1986; Vonk et al., 2015; Ward et al., 2017). Sites were reclassified from their original 

environment predictions based upon presence and timing of initial erosion and eroded 

sediment volume peaks. These original classifications were based on a morphological 

stream analysis performed during coring site selections prior to the research cruise 

actually collecting the cores. Cores that had initial sediment erosion beginning at 

≤2.3 cm s-1 (0.013 dyne cm-2) and exhibited a peak in eroded volume at ≤11.4 cm s-1 

(≤0.335 dyne cm-2) were classified as depositional sites. If a core exhibited both of these 

characteristics, it suggested the surface material could be initially moved under low flow 

conditions and the material could be moved in large pulses under normal conditions for 

the GoM (Jochens and DiMarco, 2008; Ross et al., 2009; Diercks et al., 2018). For this 

study, sites 5, 7, 10, 11, 14, 16, 17, 19, and 20 met these stipulations. Site 18 also met 

these requirements but was not classified as a depocenter due to the low volume eroded 

throughout the experiment. 

Region 1 contained no sites that were classified as depocenters. These sites were 

located in the shallowest Region of the study area. The seafloor in this region had the 

steepest slope gradients, where flow speed would be greatest, and likelihood of 

downslope transport by gravitational processes or shear stress triggered transport would 

be increased (Ross et al., 2009; Morey et al., 2020; Diercks et al., in revision). The cores 

from this region had nearly identical sediment volume curves with the volume peaks 

occurring at the 2nd highest shear stress in their respective experiment, suggesting 
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surface material in this region is lacking a defined fluffy layer and/or has resistant 

material due to increased %C concentrations.  

In Region 2, sites 5 and 14 were classified as depositional. This Region had the 

highest %C concentrations throughout (>2.13%), which likely contributed to the 

increased shear stresses needed to eroded large amounts of surface material. Contrary to 

the other depositional sites, core 14 had the highest %C value in the entire study area and 

core 5 had above average %C, but still exhibited a large pulse of sediment occurring at 

<10cm s-1. All other sites in this Region met the criteria of being erosional environments. 

Diercks et al., (in revision) cite 210Pbxs data that shows more consistent, stable 

accumulation of sediment matched with low MARs reflecting material from episodic 

down-slope transportation is not accumulating here.  

Region 3 contained the majority of the sites classified as depocenters in this study: 7, 10, 

11, 16, 17, 19, and 20. As stated above, this is a gently sloping region in the greatest 

water depths of the study area. Sediment volume peaks occurred at lower bed shear 

stresses in this region, which suggests the presence of an easily resuspended surface 

layer. The measured low %C and depleted Δ 14C values suggest the material in this 

Region could be rebound material that has been utilized during the transportation 

journey. This prolonged exposure to degradational processes during transportation results 

in the material being easier to resuspend once in contact with the seafloor as seen in other 

studies (Walsh et al., 1988; Gardner and Walsh 1990; Diercks et al., 2018). 

3.3 Parameter Correlations 

Correlations between flume data and surface sediment properties were analyzed 

for any noteworthy relationships related to the classification of sites. The flow speed of 
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the first peak of eroded sediment correlated best with Δ14C (-0.45, n=21, p=0.13), 

showing that cores with younger surface material did not exhibit an eroded volume peak 

until higher shear stresses. Younger carbon compounds, potentially sourced from primary 

production, has the ability to act as a binding material for surface sediments, which may 

result in increased resistance to stress (Thomsen and Gust, 2000; Chanton et al., 2018). 

This relationship was present in the flume experimentation as cores with more enriched 

Δ14C had eroded volume peaks occurring at higher flow speeds than cores with depleted 

Δ14C values. Low-density turbidity flows, far field earthquakes, or slumps/slides are 

common to the GoM and present a potential delivery mechanism of depleted Δ14C to the 

study area (Coleman et al., 1986; Fan et al., 2020). Sediment from cores that have 

undergone this transportation, would likely see decrease in carbon content as it is 

continually utilized during the journey. The lack of fresh carbon to bind the material can 

result in easier resuspension of surface material and presence of smaller particles, which 

can be seen in the flume data. 
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– Conclusions 

All sites included in this study were depositional over the last ~100 years, but 

varied in surface sediment characteristics and scale of accumulation. The variance in 

these characteristics revealed a difference in resilience to shear stress in different regions 

of the study. Shear stress of initial erosion and eroded sediment volume peaks show the 

likelihood of material being preserved in a region or eroded and accumulating in different 

locations. All sites in the study had initial particle erosion begin ≤4.1 cm s-1 (τ=0.053 

dyne cm-2) suggesting small-scale movement of material occurs under low stress 

conditions in the northern GoM. Peaks in sediment erosion varied from region to region 

with Regions 1 and 2 requiring higher shear stress for an observed peak compared to 

Region 3. This trend may be a result of the age of the material, as cores in Regions 1 and 

2 had younger material with higher %C concentrations in the uppermost layer of the 

sediment. Sites in Region 3 had more depleted Δ 14C values and lower %C 

concentrations, which is indicative of degraded material being sourced from long-term 

transportation processes.  

The hypothesized difference in eroded particle size did not appear related to the 

structural differences at the coring sites, but appeared to be more representative of the age 

of the material in the region. Sites in Regions 1 and 2 had a higher average eroded 

particle size (0.49 mm2) than sites in Region 3 (0.43 mm2). An interesting result in 

analyzing particle size differences was that particles from Regions 1 and 2 increased in 

size following an eroded volume peak, while particles from Region 3 decreased in size in 

most cases. This may be an artifact of the hydrodynamics occurring in the flume that 

caused some large aggregates to be trapped on the lee side of the sediment core until 
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higher flow speeds, or it could be a result of the larger, more organic rich particles in 

Regions 1 and 2 requiring elevated shear stress to erode the particles down-channel. 

The result of this research shows evidence of older, rebound material being more 

easily resuspended and susceptible to downslope transport in GoM than newly deposited 

material. In combination with Diercks et al., (in revision), this evidence suggests that, 

over time, a larger area of the GoM than originally recognized has been impacted by the 

DwH oil spill by identifying areas that are potential receptors of DwH oil in deep waters 

SE of the wellhead.  
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APPENDIX A – Windows PowerShell Script 

cd \ 

cd .\Users\ 

cd .\(\ 

cd .\Desktop\ 

cd .\MC17A\ (the core directory) 

ffmpeg -i MC17A.mts -r 4 -pix_fmt rgba MC17A_%04d. 
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APPENDIX B  Erosion Graphs 

 

Figure B.1 Erosion Graph of Core DWH01 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.2 Erosion Graph of Core MC04 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.3 Erosion Graph of Core MC05 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.4 Erosion Graph of Core MC06 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.5 Erosion Graph of Core MC07 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.6 Erosion Graph of Core MC08 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.7 Erosion Graph of Core MC09 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.8 Erosion Graph of Core MC10 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.9 Erosion Graph of Core MC11 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.10 Erosion Graph of Core MC12 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.11 Erosion Graph of Core MC13 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.12 Erosion Graph of Core MC14 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.13 Erosion Graph of Core MC15 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.14 Erosion Graph of Core MC16 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.15 Erosion Graph of Core MC17A 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.16 Erosion Graph of Core MC17B 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.17 Erosion Graph of Core MC18 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.18 Erosion Graph of Core MC19 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.19 Erosion Graph of Core MC20 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.20 Erosion Graph of Core MC21 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.21 Erosion Graph of Core MC22 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.22 Erosion Graph of Core MC23 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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Figure B.23 Erosion Graph of Core MC30 

Data points plotted in figure are sediment volume and particle counts per interval, normalized to 20 seconds, and average particle area 

per interval. These values were also calculated without the 0.0-0.2 mm size fraction as in earlier calculations. The red line is plotting 

average particle area (mm2), the blue line shows normalized sediment volume (cm3), and the green line shows normalized particle 

counts. Values listed on the particle counts line are flow speed values for each interval. 
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