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CHAPTER I - INTRODUCTION 

Overview 

During the fall semester of the 2014 – 2015 academic year, 71,834 students 

enrolled in community colleges across the state of Mississippi (Mississippi Community 

College Board [MCCB], 2012).  Many of these students enrolled in programs terminating 

in a two-year degree.  Since two year degree plan designs are based on the anticipated 

transfer of the students to a four-year institution, the bachelor’s degree level requirement 

of college algebra is often included in the two-year degree plans offered by community 

colleges.  This serves the purpose of fulfilling one of the missions present in the 

community college system.  The enhanced probability of completing a four-year degree 

is one of the hallmarks of the system.  Based on the premise of completing the 

foundational coursework required for more advanced study, the presence of a prominent 

college algebra structure in the community college mathematics program signals the 

extent to which the course is viewed as foundational, and identifies with its widespread 

requirement in the degree plans of the four-year institutions.  An examination of the 

degree plan catalogs for a sample of the eight publically funded universities and fifteen 

publically funded community colleges reveals that approximately 83% of the university 

degree plans and 58% of the community college degree plans contain college algebra as a 

requirement of the degree plan.  When adjusted to remove Science, Technology, 

Engineering, and Mathematics (STEM) degree plans requiring higher level mathematics 

courses, approximately 100% of the public university degree plans and 68% of 

community college degree plans require college algebra.  The community college 

percentages also approach 100% when the pure academic degree plans are analyzed.   



 

2 

In university settings, degree plans are often purely academic.  At the community 

college level, degree plans also include vocational – technical fields of study.  The 

structure of vocational – technical degree plans are somewhat different than the structure 

their pure academic counterparts.  Many vocational – technical fields have various sub-

levels between the high school graduate and the associate’s degree.  Each of these sub-

levels provides an option for credential obtainment.  The community college system in 

the State of Mississippi recently implemented the 30 – 45 – 60 method.  In this system, 

the students of vocational-technical fields may receive a Career Certificate for the 

completion of 30 college hours, a Technical Certificate for the completion of 45 college 

hours, and an Associate’s of Applied Science degree for the completion of 60 college 

hours in the requisite degree plan.  Whether the student plans on transferring to the 

workforce or a four-year university, the ultimate goal of the community college system 

centers on the attainment of the associate’s level degree.  The reasons lie in the known 

benefits with respect to workforce placement, advancement opportunities in the 

workforce, and the overall end of career achievement levels which are well known to 

favor holders of a college degree when compared to their counterparts holding a lesser 

credential.  Holders of a college degree, beginning with the associate’s degree, have 

unemployment rates below the national average after the age of 25.  This is in stark 

contrast to those not holding a college degree.  Furthermore, unemployment rates steadily 

decrease as the level of college degree increases.  The median weekly earnings follow a 

similar trend with all but the associate’s degree reporting figures higher than the national 

average.  Despite being lower than the national average, the median weekly income for 

the associate’s degree is less than 100 dollars from the national average.  The next lower 
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level is more than 125 dollars below the national average for median weekly income 

(Bureau of Labor and Statistics [BLS], 2016).  According to a 2010 report, only 20% of 

Mississippi high school graduates possess the necessary ACT mathematics sub-score to 

have a 75% chance of passing college algebra.  Considering the needed score is reported 

as a 22 on the mathematics section, the statewide entry standard for college algebra is a 

19, and 35% of Mississippi graduates have below minimum core scores on the ACT, it is 

easily seen how college algebra serves as one of the most common stop-out points for 

students enrolled in community colleges (Mississippi Institutions of Higher Learning 

[MIHL], 2010).  With the availability of college issued credentials in vocational – 

technical fields that do not require college algebra for successful completion, students 

struggling with the college algebra requirement often take the lesser options to avoid the 

course entirely.   

For this reason, the benefits of career placement and advancement combined with 

the enhancement of the overall quality of life illustrate the need to address the issue of 

stopping-out due to the requirements of college algebra.  The issue of characterizing the 

factors related to success in college algebra has received considerable attention in the 

literature.  However, many of the variables cannot be controlled by the academic 

institution as a whole or the academic advisor.  The dynamics of life often constitute 

problems beyond the scope of the academic institution to solve.  These problems can be 

exacerbated by, or interact with, improper placement in a course beyond the ability of the 

student to complete.  Many students find the college algebra course provides problems 

they are not able to conquer, regardless of whether the course itself, or the combination of 

the course with the stresses of life, constitutes the problem.  While the institution itself 
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cannot solve all of the potential problems and interactions created when students sign up 

for courses, the placement of students in coursework consistent with their academic 

abilities enhances the likelihood these problems will not cause a stop-out of the student in 

the process of obtaining an associate’s or bachelor’s degree.   

Placing a student in college courses contains many aspects not typically thought 

about in the environments where much of the policy regarding crucial operational 

components such as funding reimbursements and their dependent criteria are developed.  

These include student attitudes, previous coursework, placement test performance, 

student goals, college policies, and course loads.  The intricacies of advising a college 

student can tax the abilities of the most dedicated academic advisor.  Numerous details 

must be taken into account.  In past years, the judgement of the advisor would be taken as 

a valid standard of placement.  As the academic setting has developed into a standards 

and student performance-based environment, the need for objective placement measures 

has become apparent.  Aside from the security provided in a litigious society, the use of 

objective placement criteria to advise and place students removes some of the pressure 

from the advisor.  In the event a student is unsuccessful in a course, research supported 

placement standards provide a degree of support for the decisions made by the institution 

and the advisor.  Despite the use of these objective placement standards, the predictive 

accuracy of the most commonly used placement standards in Mississippi, namely ACT 

sub-scores, remains lower than advisors would prefer.  The possibility of enhancing 

predictive accuracy raises considerable interest.  However, enhancing the predictive 

accuracy of placement parameters constitutes a balancing act between the accuracy of the 

predictions and the workload placed on the advisor.   
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Dynamics of the Problem 

Statement of the Problem 

The prediction of college algebra success remains an active area of research in the 

field of educational research regarding community college mathematics.  A typical 

methodology for placement relies heavily on the scores of standardized tests such as the 

ACT.  In the State of Mississippi community college system, a uniform placement 

structure has been adopted for direct placement into the college algebra course without a 

co-requisite laboratory experience.  The minimum placement parameter for direct, non-

supplemented placement is a score of nineteen on the ACT mathematics section.  While 

considerable effort has been devoted to this problem in recent years, these efforts have 

mainly focused on the inclusion of more independent variables to increase the sensitivity 

and specificity of the predictions.  Even though progress has been made, many of the 

included variables are not easily accessed by the community college advisor.  A further 

lack of consideration regarding time constraints makes these prediction methods 

impractical from the standpoint of implementation by the community college advisor, 

despite the generally improved accuracy of the predictions.  Little work has been done to 

improve the accuracy of predictions through enhanced consideration and examination of 

the ACT sub-scores.  Since these variables are readily available, the focus of this study is 

on the maximization of the placement potential present in the ACT sub-scores.   

Rationale for the Study 

The accurate prediction of success in college algebra can be viewed through the 

idea of college algebra constituting a gateway course to the completion of an associate’s 

or bachelor’s degree.  Of the students enrolling in the Mississippi community college 
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system, 35% are deemed under prepared for college level course work and placed into the 

remedial education program (MIHL, 2010).  Nationally, 30% never complete 

remediation.  Of the 70% completing the remediation coursework, 30% never enroll in 

the corresponding college level coursework.  Among the 49% of students enrolling in 

college level coursework after the completion of remediation, less than 25% of the total 

number of remedial students successfully complete the college level component.  

Statistics demonstrate that many of these students do not have any better probability of 

success than their non-remediated counterparts (Remediation, 2012).  Remedial 

coursework appears to have an absolute quality which is not fully articulated.  When 

remediation works, it works very well.  However, it only works for a small number of the 

overall group of students initially enrolled in the remedial coursework (Bahr, 2008).  The 

factors influencing this phenomena do not fall in the scope of this study.   

Due to the axiomatic connection of placement parameters to the placement of 

students in remedial coursework, the refinement of placement parameters constitutes a 

prominent need in the overall scheme of the mathematics educational structure.  

Regardless of ability, a student misplaced into remedial coursework becomes less likely 

to succeed based on the above statistics.  Likewise, the student incorrectly placed above 

their ability level will likely not succeed and has an increased risk of stopping-out due to 

the decreased probability of successfully completing the course on subsequent attempts.  

Overall, given the poor percentage of students completing an associate’s degree in three 

years from initial enrollment, 9.5%, a bachelor’s degree in six years, 35.1% 

(Remediation, 2012), and the high stop-out rate in college mathematics courses, the 

accurate placement of students in college algebra becomes paramount.   
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Moreover, the placement of students in the proper mathematical coursework must 

consider the sensitivity of the process.  This study aims to increase sensitivity and 

specificity in regard to college algebra outcome predictions.  For the purpose of 

predicting success in college mathematics, the accuracy and precision of the predictions 

must be maximized.  A loss of accuracy and precision will result in erroneous 

predictions.  By enhancing the accuracy and precision of the predictions, the risks of an 

erroneous prediction of college algebra success, or a loss of sensitivity, can be 

minimized.  Concurrently, this study also seeks to minimize the risk of erroneous 

predictions of college algebra failure, or a loss of specificity.  It is difficult to minimize 

both of these simultaneously in models consisting of a single predictor.  This is due to the 

concepts of sensitivity and specificity being mathematically related.  This study aims to 

reduce the overall chances of an inaccurate prediction through the use of multiple 

predictors.  The minimization of erroneous predictions related to both sensitivity and 

specificity will enhance the placement of students in college algebra courses.   

Justification for the Study 

In the setting of academic performance in STEM, Mississippi continually ranks at 

the bottom of the list when compared to worldwide performance in these areas.  

Mississippi ranked third from the bottom when compared to the results of the Program 

for International Student Assessment, or PISA test, surpassing only Mexico and Chile in 

2014 (Hanushek, Peterson, & Woessmann, 2014).  In 2012, Mississippi saw almost 

30,000 community college students enrolled in some form of remedial coursework with 

mathematics being the most prominent of the reported percentages (Remediation, 2012).  

This constitutes approximately 40% of the total number of students enrolled in 
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Mississippi’s community colleges.  The accuracy of outcome predictions for college 

algebra students comes into question when considering the high percentage of students 

enrolled in remedial coursework, Mississippi’s overall standing in mathematics 

worldwide and in the United States, effects of enrollment type on degree attainment, and 

the percentage of stop-outs due to mathematics.       

During the 2015 – 2016 academic year, several rule changes emerged in the 

educational setting.  These changes significantly impacted the placement of students in 

college coursework.  The most prominent changes directly relate to the need for accurate 

predictions of success in college algebra.  Centering on finance, the close of the 2015 – 

2016 academic year has shown the impact of these changes on the students, faculty, and 

institutions.  Students and institutions are reviewing and adjusting their ideas regarding 

finances for college coursework.   

First, students cannot use federal financial aid to pay for coursework not listed in 

their degree plan.  Developmental coursework is not listed in any college degree plan in 

the State of Mississippi.  Since listing it in the degree plan would require all students to 

take the course, simply listing it in the degree plan will not solve the problem.  Also, 

reimbursements for courses from the state are reduced or eliminated for developmental 

coursework.  Second, federal financial aid cannot be used to pay for excessive repeats of 

the same course.  After three attempts, the student must pay out of pocket for additional 

enrollments in the course.  Finally, federal financial aid also carries a cap of maximum 

lifetime aid which did not previously exist.  Numerous attempts at coursework 

continuously pushes the student towards this cap.  During these changes, community 

colleges have narrowed the window to withdraw from a course without financial penalty.  
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This reduces the timeframe for a student to assess the probability of successfully 

completing the course. 

As a consequence of these changes, students are forced to pay for the remedial 

courses themselves or accrue student loans.  Given the average student in a Mississippi 

community college does not have the extensive financial resources to pay for remedial 

education or repeated attempts, students possess a reluctance to take certain courses.  The 

average community college tuition per college hour in Mississippi ranges from 120 to 

150 dollars.  Each course can cost 400 to 500 dollars not covered by financial aid 

resources.  This financial burden further increases the risk of stopping-out.  Thus, the 

necessity to accurately place students in, or conversely not in, college algebra exists due 

to the potential of significant financial burden. 

The accurate placement of college algebra students centers on the advisors.  

Community college advisors receive the task of placing students in coursework with 

potentially considerable financial consequences based on minimal information.  Due to 

the time constraints in advisement, common practice places students in Mississippi in 

college algebra with an ACT mathematics sub-score of nineteen or higher without 

requiring co-requisite laboratory experience.  Students with sub-scores of seventeen and 

eighteen can be placed in college algebra with required co-requisite laboratory 

experience.  The advisors rely on the ACT sub-scores due to time and access reasons.  

This study aims to improve utilization of the ACT resource through the inclusion of the 

sub-scores not typically used in mathematics advisement at Mississippi institutions of 

higher learning.   
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Definition of Terms 

The definitions of all relevant terms found in this study can be found here.  Only 

terms deemed unlikely to be readily known by the reader, or are not common knowledge, 

are included.  All definitions draw context from the current study. 

1. Accuracy – The ability of a predictor model to correctly predict student 

outcomes in college algebra. 

2. Attractor – A concept in mathematical Chaos where sequential calculations of 

the equations describing a system result in terms gathering around a limiting 

value. 

3. Chaos Theory – A branch of the sciences, specifically mathematics and 

physics, concerned with the study of non-linear dynamics (chaotic systems). 

4. Chaotic – A mathematical system retaining a deterministic quality but having 

the characteristic by which small perturbations in the initial conditions cause 

large, unpredictable changes in the final conditions. 

5. College Readiness – ACT sub-scores greater than sixteen in English, nineteen 

in mathematics, eighteen in reading, and eighteen in science reasoning.  The 

reading sub-score is based on ACT recommendations. 

6. Counterbalancing – The tendency of higher performance in one academic area 

to balance deficiencies in another academic area. 

7. Deterministic – A mathematical system whereby the final conditions of the 

system are solely determined by the initial conditions. 

8. Precision – The ability of a predictor model to consistently predict student 

outcomes in college algebra. 
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9. Sensitivity – The percentage of students predicted to succeed in college 

algebra who successfully complete the course. 

10. Specificity – The percentage of students predicted to be unsuccessful in 

college algebra who are not successful in the course.   

11. Stopping-Out – A situation where a student stops attending class but does not 

officially drop from the course.  This differs from dropping-out where the 

student withdraws from the course or plan of study through official means. 

12. Synergistic – A set of circumstances where the presence of two or more 

variables simultaneously gives results which are more than the sum of the 

results from the individual variables. 

Dynamics of the Study 

Research Questions 

This study will attempt to address the following research questions.  These 

questions focus on the maximization of the potential predictive value in the ACT sub-

scores.  The focus rests on the question of enhanced accuracy in the parameters and 

predictions used to place students in college algebra.   

1. Do cross-variable or self-multiplicative combinations of the ACT sub-scores 

correlate with mathematical success? 

2. Do cross-variable or self-multiplicative combinations of the ACT sub-scores 

correlate better with college algebra success than the mathematics sub-score?  

3. Will the inclusion of multiplicative combinations of the ACT sub-scores, 

second through fourth order terms, improve the predictions of outcome in 
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college algebra as compared to the linear regression of the ACT mathematics 

sub-score? 

4. Using the methods of enumerative combinatorics, will overall college 

readiness provide a better prediction of college algebra success than the 

mathematics sub-score? 

5. Will overall college readiness predict college algebra success better than the 

model that includes cross-variable and self-multiplicative combinations of the 

sub-scores? 

Hypotheses 

The following hypotheses will be tested in order to answer the stated research 

questions.  These hypotheses represent the testable components in each research question.  

Hypotheses tested in this study were developed with the goal of identifying variable 

combinations which will enhance the predictions used to place students in college algebra 

coursework. 

1. Cross-variable combinations of the ACT sub-scores will significantly 

correlate with college algebra success. 

2. Self-multiplicative combinations of the ACT sub-scores will significantly 

correlate with college algebra success. 

3. Cross-variable combinations of the ACT sub-scores will have higher 

correlations with college algebra success than the self-multiplicative 

combinations of the ACT sub-scores. 

4. The inclusion of significantly correlated cross-variable and self-multiplicative 

sub-scores in the regression model will give predictions of college algebra 
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success that are significantly different than predictions of the linear regression 

model of the ACT mathematics sub-score alone. 

5. Overall general college readiness will provide better predictions of college 

algebra success than the ACT mathematics sub-score alone. 

6. There will be no statistically significant difference in the model predictions 

containing higher order terms when compared with the predictions of college 

algebra success using overall college readiness.   

Literature Basis and Justification of a Revised Method 

Numerous studies ranging from the 1930’s to the present focus on the accurate 

prediction of college algebra success.  The predominance of the studies in the literature 

base focused on one of three interrelated paths to improving the accuracy of success 

predictions in college algebra.  These paths are placement test development, increasing 

the number of independent variables, and the inclusion of sociological factors.  Some of 

these efforts have met with considerable success.  Details of these studies are given in 

Chapter II.  Despite their considerable success, the focus of the studies in the literature 

base do not lend well to their application in the time constrained, finance driven 

environment of the community college advisement process.   

 The utilization of placement tests developed by the individual institution does not 

provide a ready solution to the problem.  While likely more accurate considering the 

inherent differences between institutions, placement tests incur significant costs to 

develop and validate.  In the litigious society of today, the risks of non-validated testing 

procedures cannot be justified.  Despite the justification of the development and 

validation processes, the costs of doing so cannot be readily met by many of the 
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community colleges in Mississippi.  In many cases, the inclusion of more predictor 

variables is a cost efficient option when compared to the costs associated with test 

development. 

 The most substantial volume of studies in the literature base involve increasing 

the number of independent variables present in the predictor model.  Increasing the 

number of predictor variables does tend to increase the accuracy of the model; however, 

this is met with diminishing returns for each increase in the number of independent 

variables.  Beyond the statistical problems present when the number of independent 

variables increases, the ability of the advisors to obtain the necessary information places a 

natural limit to the practicality of increasing the number of independent variables.  Many 

of the current studies, year 2000 and beyond, include a substantial number of sociological 

variables.  While the models improve with the inclusion of these variables, community 

college advisors do not possess the qualifications and resources, nor the time to ascertain 

and process, the required degree of information.  As a final note to the lack of practicality 

present in many of the models, advisors are less likely to spend a considerable amount of 

time executing a complex statistical model, even with the benefit of more accurate 

predictions.  Thus, many of the models, though statistically better than the foundational 

method of a single placement score, lack the practical efficiency necessary to be of value 

to the community college advisor.   

Qualitative Results from the Pilot Study 

During the 2015 – 2016 academic year, a qualitative study of college algebra 

advisors was conducted for the purpose of identifying the viewpoints held regarding the 

placement of college algebra students.  While a number of response categories were 
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identified, the overarching themes centered around two areas.  First, advisors occupying 

instructor level positions hold differing opinions from their administrative level 

counterparts regarding proper placement procedures in college algebra.  Second, the ACT 

mathematics sub-score carries considerably less weight in the opinions of instructor level 

advisors versus their administrative peers.  A number of reasons may be present to 

explain this occurrence including experience levels of the administrators and litigation 

considerations.  The pertinent results of this study are presented in Chapter III.      

Methodology Summary 

The study will consider and compare three different predictor models.  The first 

will be a linear regression of the ACT mathematics sub-score against the outcome 

variable of final grade in college algebra.  Colleges predominately use the mathematics 

sub-score as a single parameter placement.  This model provides a prediction baseline for 

future comparisons which is consistent with current practice.  By comparing the results to 

the current practices, results from the non-linear model and general college readiness 

model obtain a degree of practical validity.   

 The set of sub-scores will constitute a set of variables subjected to various 

combinations created through enumerative combinatorial techniques.  Pair-wise, triple, 

and quadruple multiplications will be viewed as variables of second order, third order, 

and fourth order terms respectively.  A pseudo non-linear predictor model will be 

generated from a correlated subset of the linear and combination variables.  Despite using 

multiple regression, the inherent non-linearity of the variables will be included through 

the addition of dimensions during the multiplication.  This model will be compared to the 
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results of the single-variable linear model and the multiple regression of the correlated 

subset contained in the set of four linear sub-scores. 

 The final model will be created using general college readiness as the independent 

variable.  Each sub-score will be dichotomized as pass or fail relative to the baseline 

college readiness standards.  The overall degree of college readiness will be compared to 

the base predictor model to determine if overall general development constitutes an 

improvement in the predictions of college algebra success.  It is also possible both 

models will be statistically significant when compared to the base model.  If both models 

are shown to be statistically significant, a further comparison between the pseudo non-

linear model and the general college readiness model will reveal which model better 

predicts college algebra success.         

Assumptions of the Study 

The following assumptions constitute the supporting structure of this study. 

1. A valid interpretational basis exists. 

2. A valid statistical basis exists. 

3. The data obtained will not be used for purposes beyond the scope of this study 

unless approval is granted by The University of Southern Mississippi, Jones 

County Junior College, and the researcher’s dissertation committee. 

4. Success in college algebra will be considered as the posting of a C or higher 

for the final grade in college algebra.   

5. General college readiness will be defined by the base parameters currently 

defining college readiness at Jones County Junior College.   

6. Security of the data will be maintained on an encrypted data storage device. 
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7. Data will be returned to the granting institution. 

8. The results of the study will be shared with all participating institutions.  

9. The demonstrated tendency of the literature to add large variable counts to 

improve predictions comes at the cost of practicality and decreasing likelihood 

of utilization by advisors.  Given the considerable coverage of linear models 

in the literature, a new line of thought is warranted.   

10. Instructors report a perceived sensitivity on initial conditions, a metaphorical 

chaotic structure, when advising college algebra students.  This perception 

supports the interpretational lens. 

11. Events occurring in nature, including human interactions, are non-linear and 

can be described in a Chaos Theory context. 

12. The use of a chaotic interpretational lens is based on the demonstrated 

difficulty of predicting college algebra success with small numbers of 

predictor variables in a linear model.  Previous research supports an 

examination using non-linear variables.  The literature base has not 

approached the possibility of a chaotic structure, but the lack of a considerable 

examination including non-linear variables supports the interpretational basis.    

13. The prediction of college algebra success can be modeled with non-linear 

equations and metaphorically chaotic interpretations.   

Interpretational Lens 

The results of this study will be interpreted through the lens of Chaos Theory.  

The premise relies on the concept of the changes present in a statistical system due to 

non-linear relationships.  While avoiding a purely mathematical chaos treatment, the 
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study examines the results with the idea of a non-linear aspect to human interactions.  In 

general practice, dynamic systems of nature are approximated with one or more linear 

equations applied individually or simultaneously.  These systems are more accurately 

described by non-linear systems of equations.  Numerous examples of non-linear models 

exist as descriptors of the events present in the real world.  Most notably, the set of 

second order, partial differential equations commonly known as the Theory of Relativity.  

For almost 100 years, these equations have stood as the single best approximation of the 

gravitational force at cosmic scales ever produced by the scientific mind.   

While non-linearity of the equations is a fundamental concept of Chaos Theory, 

not all non-linear systems are chaotic.  Chaotic systems also suffer a loss of obvious 

predictability.  These systems are deterministic; however, the effect of small 

perturbations in the initial conditions can cause drastic changes in the outcome of the 

system.  The concept of chaotic systems can be extrapolated to analogous ideas in a 

sociological context.  Numerous variables can effect academic performance.  As shown 

in the literature review, the number of independent variables introduced into linear 

models range from one to sixty-five.  The continuous increase in the number of 

independent variables attempts to model the large number of influencing factors present 

in academic performance.  The utility of such models is highly questionable.  Using the 

lens of Chaos Theory in a general interpretation, the modeling of success in college 

algebra may also follow a non-linear, possibly chaotic structure.  Using this idea, and 

considering the difference between success and non-success as a categorical analogue to 

a chaotic change, the inclusion of a small number of independent variables in a non-linear 

or pseudo non-linear model may allow for an improved outcome prediction with a 
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decrease in the resource requirements necessary to execute the model.  This may also 

provide enhancement of the range of valid application time found in the prediction 

equations.  Non-linear systems, although possibly chaotic, tend to be self-correcting, 

particularly when the mathematics of the system result in the presence of an attractor 

(Gleick, 1987).  This potential self-correction could possibly contribute to prolonged 

applicability of the resulting equation.  The determination of the presence of an attractor, 

and any prolongation of the validity timeframe of the equations, is beyond the scope of 

this study.   

Delimitations 

The results of this study are subject to the following delimitations.  All 

delimitations are considered in numerical progression. 

1. The subjects of this study have been limited to the records of students enrolled 

in college algebra at Jones County Junior College in Ellisville, MS during the 

prescribed timeframe.   

2. The data range has been limited to the fall and spring semesters between 

August 2014 and May 2016.  This accounts for the predictive accuracy loss 

seen after four years in the literature review. 

3. A related variable exists in the data range of the study.  This related variable is 

the pre-requisite intermediate algebra and/or co-requisite mathematics 

laboratory experience.  These are governed by the ACT mathematics sub-

score at the time of enrollment.  This variable will be detailed further in 

Chapter III. 
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4. The primary independent variables collected only include the four ACT sub-

scores. 

5. The data collected is a secondary reporting by Jones County Junior College.  

Data accuracy is limited to the accuracy of the college’s records. 

6. Student records in the study may not have complete scores available. 

7. Any variables not included are considered by the researcher to be beyond the 

scope of this study. 

Summary 

Based on the qualitative pilot study findings and consideration of the resource 

requirements of large scale models, the decision to examine various predictive potentials 

of ACT sub-score combinations appears wise.  Due to the findings from the pilot study, 

the inclusion of the mathematics sub-score, either individually or as a composite 

component, in any developed model will be necessary to enhance the willingness of the 

institutions and advisors to accept and implement the model.  Whether this is from legal 

considerations or the perceived face validity of the score regarding placement cannot be 

concluded from this study.  When considering the use of multi-variate predictions, it 

remains critically important to consider the balance of independent variable counts and 

practical applicability.  Previous research has indicated that advisors are receptive to the 

use of a multi-variate model.  Given the mixed opinions regarding the ACT, it does make 

sense to pursue enhancing the predictions made by the scores before considering 

abandonment of the entire concept.  Throughout the literature, the use of models with 

steadily increasing numbers of variables and loss of practicality constitutes a widespread 

trend.  The idea for using other sub-scores to predict college algebra success is hardly a 
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new one.  However, studies continually focus around the mathematics sub-score to the 

exclusion of the others.  A few studies have examined the use of other individual sub-

scores and a handful of multiplicative combinations.  However, a systematic examination 

of the combinations among the sub-scores has yet to be performed.  The reasons for the 

reluctance to examine these areas are a matter of speculation and beyond the current 

scope.  A combination of simplicity over time combined with reluctance to change, a 

persistent human condition, has likely contributed to this development.  Due to the needs 

of current institutions, and in the interest of the practicality of the results, the mathematics 

sub-score must remain in the developed models.  Beyond this, the overall goal remains 

the development of a feasibly implemented model structure which maximizes accuracy 

and minimizes the number of independent variables through increased efficiency of use 

regarding the variables present.  Furthermore, this model structure will either provide 

improved predictions over the mathematics sub-score alone or provide validation of the 

mathematics sub-score as the best predictor when the ACT score is used as the sole 

predictor. 
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CHAPTER II – LITERATURE REVIEW 

Introduction 

The pursuit to determine the indicators of success and generate equations for the 

prediction of success in college algebra can be traced through the literature for almost a 

century.  It has been clearly stated in the literature that placement systems are necessary 

to student success.  However, importance cannot overshadow the need to have the correct 

system.  Systems defined in the wrong context are detrimental to the overall achievement 

of students (Hassett, Downs, & Jenkins, 1992).  Efforts to produce a viable method of 

outcome prediction for these students began in the early twentieth century with the work 

of Orleans and his attempt to correlate IQ, arithmetic grades, and prognosis test results of 

late 1920’s undergraduate students to the course outcome of college algebra (Orleans, 

1934).  Since that time, numerous attempts have produced a wide range of results being 

reported regarding the ability to predict the outcome of the college algebra course, to 

determine the probability of success in the course, to generate comparative classification 

equations, or to simply determine the identity of various parameters indicative of success 

or non-success in college algebra.  These efforts have resulted in an extensive list of 

equations and variables, hereafter referred to as parameters unless the context of a 

particular equation is being discussed.  In the review of the literature, eighty-four 

different equations composed of ninety-three identified parameters have been identified.  

These do not include the extensive list of non-cognitive parameters and equations 

presented by Graybeal (Graybeal, 1958) or Cauthern’s equations containing sixty-five 

variables (Cauthern, 1979).  These works add an additional 100 or more potential 

parameters to the pool, and the significant number of equations, particularly in the work 
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of Graybeal, makes the exhaustive inclusion of his results unfeasible despite his work 

being regarded as foundational in this area of research.  Overall, this review focuses on 

the cognitive parameters identified in the literature; non-cognitive parameters will be 

discussed in the appropriate context of their cognitive counterparts. 

 As a matter of record, the difficulties present in determining a concise, practical 

set of parameters and equations may be rooted in the nature of the problem itself.  It is 

possible factors do not exist with a strong correlation to success in college algebra (Serna, 

2011).  The overall consensus of the literature would not support this result.  Considering 

the amount of variation in the utilized parameters, the lack of a strongly correlated set of 

parameters, as reported by Serna, may lie in the lack of a complete identification of the 

relative parameters at the current time, rather than a lack of existence.  Considering the 

large number of predictor equations in the literature, the latter is a more likely 

explanation.  It must be considered that the set of parameters may also change with time.  

The predictor equations have a window of viability ranging from their time of 

development up to approximately four years of valid application (Sawyer & Maxey, 

1979).  The reasons for the changing applicability of these equations originate in the ever 

changing populations to which they are applied.  It is also possible that the equations are 

linear approximations of a phenomenon that is non-linear.  As early as 1941, speculations 

regarding the possible non-linearity of the equations predicting college algebra success 

were voiced (Scott & Gill, 1941).  Even with the existence of such speculations, the 

tendency noted in the literature is to use a linear or pseudo-linear model.  This tendency 

has led to the implicit idea underlying the bulk of the present literature.  Most studies 

focus on the enhancement of prediction through increasing variable counts.  The rationale 
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for excluding non-linear analyses in the prediction of college algebra has not been 

explicitly discussed in the literature.     

It has been noted the prediction of success is considerably easier than the 

prediction of non-success (Hatch, 1981).  Support for this position is considerable, as 

examination of the results often show a prominent bend in the predictions toward better 

sensitivity, as opposed to specificity.  The numerous aspects are discussed in turn below.  

Accompanying tables pertinent to the section contain the highest correlation coefficient 

reported in the literature for the parameter under discussion and the level of reported 

significance.  Identification of the significance, or lack thereof, for a particular variable 

will be reserved for the appropriate table unless a comparison of significance figures is 

warranted, the level of significance is p < 0.01 or stronger, or the inclusion of a table is 

not indicated due to the reporting of a single parameter.  The inclusion of the tables 

demonstrates the establishment of a relationship for the listed variable in the literature.  

The tables are not exhaustive of the reported statistical parameters and are primarily 

intended to illustrate the variation in findings of the literature.  A complete list of the 

identified equations and variables has been given in Appendix A Tables A1 – A3.       

Multiple Parameter Predictions 

The accuracy of the predictions is an issue which has been discussed extensively 

in the literature.  While many institutions utilize a single parameter system during the 

placement of students in college algebra courses, it has been shown that the simultaneous 

use of multiple parameters increases the accuracy of placement (Ngo & Kwon, 2015).  

Prior to this, various authors demonstrated the superiority of the multiple parameter 

prediction method.  As a matter of completeness, it should be noted that while multiple 
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parameters are typically better than a prediction based on a single parameter, the 

subsequent addition of parameters does not guarantee a significant increase in the 

accuracy of the prediction.  This was seen in the work of Orleans.  Despite using all four 

possible multiple parameter combinations of IQ, prognosis tests, and arithmetic grades, 

the results were statistically the same (Orleans, 1934).  Regardless, considering the 

findings of Ngo and Kwon, the benefit of considering multiple parameters has been 

established.  In reviewing the use of prediction equations in the literature, it is evident 

that a common feature is the use of multiple parameters.   

 Overall, the wide variation of parameters, prediction equations, and equation 

classifications can be seen in the appendices.  The tables are inclusive of all parameters 

and equations given by the authors with the exception of the extensive list of non-

cognitive parameters, and associated equations, given by Graybeal.  Further, the large, 

multi-variate equations given by Cauthern only appear in compressed mathematical form 

in the full appendix table.  As was previously mentioned, the focus of this review is 

centered on the cognitive parameters associated with the prediction of college algebra 

success.  In the process of compiling the lists, some non-cognitive parameters achieved 

considerable prominence and warrant a brief discussion, as do some isolated parameters 

that cannot be excluded without removing other cognitive parameters or parent equations 

from the discussion.  These will be discussed before proceeding into the remainder of the 

cognitive parameters which cover demographic characteristics, placement testing, and the 

academic history of the student.  Each of these categories will examine various sub-

categories such as standardized versus non-standardized placement tests.  Since non-

cognitive parameters have extensive support from some authors, the list of non-cognitive 
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parameters achieving a significant literature aspect in the setting of their cognitive 

counterparts will be discussed first.   

Non-cognitive Parameters 

The non-cognitive parameters are a considerable source of interest in the 

literature, despite the lack of pertinence to the present study.  However, the practicality of 

the inclusion of these parameters in a prediction model for an advisor to use is 

problematic from the standpoint of the efficiency of application.  It is necessary to 

examine a few of the parameters, particularly given the extent to which Graybeal and 

Cauthern take these into account in their examination of college algebra success.  The 

relevance of non-cognitive parameters in the prediction of student success was 

established by Cauthern, specifically the inclusion of personality parameters (Cauthern, 

1979).  Later research indicates that non-cognitive parameters may be better predictors 

than their cognitive counterparts (Kamalvand, 1997).  Cauthern’s inclusion of over forty 

non-cognitive variables, with subsequent comparisons by sex, in her models for the 

prediction of college algebra and trigonometry success indicate the considerable value 

placed on these parameters by some researchers.  As with the previous multiple 

parameter models, the decision of which non-cognitive parameters to include is as 

complex as the decision to include them or not.  Nonetheless, several of these appear 

numerous times in the literature.   

 In general, the most prominent non-cognitive parameters present in the literature 

are the self-rating of mathematical ability (Kamalvand, 1997; Odell & Schumacher, 

1999) and the achievement expectancy of the student (Kamalvand, 1997).  These are 

typically reported in conjunction with one another, although Odell and Schumacher note 



 

27 

that the self-ability rating pertains to male students only.  Referencing the emphasis on 

multiple parameter models, the self-rating of mathematical ability and achievement 

expectancy were reported as a better predictor than the combination of ACT scores and 

the number of years of high school mathematics (Kamalvand, 1997).  Supporting these 

findings are other related, non-cognitive parameters.  The self-concept of the student has 

been found to be significant in multiple studies (Eldersveld & Baughman, 1986; Wheat, 

1990), as well as the attitude of the student towards mathematics (Gupta, Harris, Carrier, 

& Caron, 2006; Peteet, 1978; Rives, 1992; Sims, 1979).  The degree to which the attitude 

toward mathematics is important varies between each of the contributing studies.  

Significance was found in the structural equation model presented in Rives, 1992 while 

Gupta, et al., 2006 and Peteet, 1978 reported a positive correlation and classified it as a 

related parameter respectively.  Sims, 1979 reported that the attitude toward mathematics 

was not significant.  Considering the obvious intuitive relationship between the student’s 

attitude toward mathematics, the self-achievement rating in mathematics, and the 

expected achievement of the student, it is not surprising that these parameters appear 

prominently in the literature.  Additional personality parameters are present to a lesser 

degree but would contribute to the overall non-cognitive contribution of the individual 

student toward the prediction of success in college algebra.  These include the preferred 

test type and reasons female students give for good results (Odell & Schumacher, 1999), 

study habits (Peteet, 1978), general reasoning ability (Thompson, 1982), and the 

perception of the teacher (Wheat, Tunnell, & Munday, 1991).  Despite the suggested 

degree of contribution of these parameters to the overall prediction of college algebra 

success (Kamalvand, 1997), and the possibility that these would provide support for the 
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suggested non-linearity of the descriptor equation (Scott & Gill, 1941), the feasibility of 

usage in the advisement setting renders these parameters impractical from the standpoint 

of their application.  The largest identified statistics and significance findings for the non-

cognitive parameters are presented in Table 1. 

Table 1  

Statistical Values and Significance of Non-Cognitive Parameters 

________________________________________________________________________ 

  

Parameter     Reported Statistic     Statistic Value 

________________________________________________________________________ 

 

Achievement expectancy    χ2   5.34* 

 

Attitude towards mathematics   OR   0.05* 

 

General reasoning ability    F(1,37)  5.02* 

 

Math ability self-rating    χ2   28.27*** 

 

Preferred testing typea    Not Stated Directly  r > 0* 

 

Reasons for successa    Not Stated Directly  r < 0* 

 

Student self-concept     r   0.286*** 

  

Study habits      r   0.22* 

________________________________________________________________________ 

Note: *p < .05, **p < .01, ***p < .001, a Female Students Only 

 

Demographic Parameters 

Lower Prominence 

Demographic parameters are sometimes more readily evaluated when determining 

the proper placement of a student.  The inclusion of demographic parameters in the 

prediction of college algebra success has been shown to be correlated with the outcome 

of the course (Welch, Anderson, & Harris, 1982).  Several parameters have been included 
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in various models, but the consistency of their predictive value has been mixed.  These 

parameters include race, nationality, age, high school rank, sex, semester gaps, and an 

assortment of miscellaneous parameters.  Even though race, ethnicity, and nationality are 

not technically synonymous, the readings of the literature indicate their consideration is 

viewed synonymously.  With few exceptions, specifically the report of a positive 

correlation for people of Hispanic origin with college algebra success (Doyen, 2011) and 

the report of an increased probability of success by white students (Wolfe, 2012), the 

overall trend is that race, ethnicity, and nationality are not significant parameters in the 

prediction of college algebra success (Byrd, 1970; Creswell & Exezedis, 1981; Hunt, 

1987; Pedersen, 2004).  Upon further consideration, it is unlikely that the predictive 

nature of this parameter is solely governed by race, ethnicity, or nationality.  The more 

likely explanation for the lack of significance, but not a lack of correlation, would be the 

presence of related parameters corresponding to various socioeconomic status parameters 

associated with students of various racial, ethnic, or national backgrounds.   

 Similar to race, nationality, or ethnicity, the age of the student is a variable that 

has received considerable attention but has a split opinion as to the level of importance.  

The reports examined in the literature are almost evenly split as to the relevance of the 

age of the student in the prediction of success in college algebra.  Age has been shown to 

be significant (Wolfe, 2012) in combination with other factors (Sims, 1979).  However, 

when considered independently of other parameters, including the findings by Sims who 

reports a lack of correlation, the significance of student age as a parameter in predicting 

college algebra success does not carry widespread support.  In addition to Sims, age has 

been found to be a non-significant parameter in numerous other reports (Pedersen, 2004; 
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Garcia, 1998; Harris, 1974; Long, 2003).  Conversely, an equivalent number of studies 

have shown age to be a reasonably strong correlation to success in college algebra, 

although Morgan did report a negative correlation while Peteet’s results specified the 

context of including course non-completers in the calculation (Byrd, 1970; Gupta, et al., 

2006; Morgan, 1970; Peteet, 1978; Wheat, 1990).  Given the apparent split opinion on the 

relevance of age, it is pertinent to consider that the presence of an age parameter could 

have a relationship with other parameters, such as the classification of a student as 

traditional or non-traditional during the enrollment process.  Overall, the presence of an 

even split opinion warrants further investigation into the relevance of age as a parameter.  

Statistical values and significance findings for the age parameter are presented in Table 2.   

 Other demographic parameters appear infrequently but still warrant mentioning 

due to the inclusion of these parameters in certain equations containing relevant cognitive 

parameters.  Many of these parameters make intuitive sense to the reader but have not 

been reported in the literature to the extent that the other parameters have.  These 

variables include variations in instructor characteristics (Spahr, 1983) and differences in 

the race of the instructor (Wilson, 2011).  The number of attempts in college algebra 

(Gonzales, 2012), number of missed classes, and the instructor rank all show positive 

correlations while the number of classes per week had a negative correlation.  Gupta, et 

al. reported that graduate student instructors had the highest positive correlation with 

student success in college algebra (Gupta, et al., 2006) and is consistent with other 

studies (Zientek, Ozel, Fong, & Griffin, 2013).  Finally, provided that the student does 

not attend a community college, the course load status of the student and classification 

(freshmen, etc…) were positively correlated with student success in college algebra 
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(Peteet, 1978).  These factors are consistent with previous demographic parameters.  

Higher classifications are directly related to age, and college status would correspond to 

the number of class hours per week.  As such, accounting for these parameters would 

likely help improve the accuracy of predictions and account for variations between 

students that more prominent parameters cannot resolve.  Statistical values and 

significance findings for the minor, non-cognitive parameters are presented in Table 2. 

Higher Prominence 

In the context of demographic parameters, three prominent parameters emerge in 

the literature as having value in predicting success in college algebra.  These parameters 

include sex, the number of semester gaps, and the student’s high school graduating class 

rank.  In general, the reports indicate a trend in higher GPAs for females with the course 

outcome, but females tend to have lower ACT scores entering the class (Burns, 1990).  

This could result in females being under-predicted for success and is supported in the 

reports where sex is considered as a parameter (Byrd, 1970; Bridgeman & Wendler, 

1991; Gupta, et al., 2006; Hunt, 1987; Prasad, 2015; Rives, 1992; Shepley, 1983; Spahr, 

1983; Wheat, 1990).  Sims also reported the correlation of sex within a combination of 

parameters but not as an individual parameter (Sims, 1979).  The findings by Rives show 

the interplay between the variables, and the structural equation model presented a 

significant relationship between sex and math preparation, attitude toward math, and the 

time gap since the last math was taken (Stones, Beckmann, & Stephens, 1980).  Rives 

also reported a female students had a negative correlation with the time gap parameter 

(Rives, 1992).   
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This was further supported by a finding of the high school class rank correlated 

parameter for males (Odell & Schumacher, 1999).  Conversely, other studies have not 

found significant relationships between sex and college algebra success (Harris, 1974; 

Jackson-Teal, 1990; Landerman, 1987; Pedersen, 2004).  The prominence of reports 

indicating a correlation between sex and college algebra success suggest that, although 

not unanimous (Creswell & Exezedis, 1981; House & Wohlt, 1989), the inclusion of sex 

in any model is worth considering.  Statistical values and significance findings pertaining 

to the sex parameter are shown in Table 2. 

 The number of semester gaps is a significant problem, particularly when 

considering the non-traditional student.  Overall, it is typically reported that longer gaps 

between mathematics courses correlate to poor outcomes in college algebra (Gonzales, 

2012; Gray, 1976; Kossack, 1942; Rives, 1992; Scott & Gill, 1941; Shepley, 1983), even 

though some findings do not report significance despite a concurrent correlation with an 

adverse outcome (Harris, 1974).  The presence of a correlation likely has connections, 

through other parameters, to differences in sex, particularly for females (Rives, 1992).  

The time gap also becomes relevant when considering the high school background and 

the presence of a fourth year elective (Burns, 1990).  Overall, the literature firmly 

supports the minimization of time gaps between mathematics courses.  Statistical values 

and significance findings pertaining to the time gap parameter are shown in Table 2. 

 Regarding high school graduating class rank, the reports in the literature show a 

mixed opinion regarding the value of the parameter.  In a ratio of approximately two to 

one, studies indicate that high school graduating class rank has a positive correlation with 

success in college algebra (Bromley & Carter, 1950; Graybeal, 1958; Lovering, 1989; 
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Schoepfle & Arnold, 1958).  Other studies do not fully support the correlation between 

high school graduating class rank and college algebra outcome (Douglass & Michaelson, 

1936; Garcia, 1998).  The overall significance of this parameter with outcomes in college 

algebra is possibly tied to other non-cognitive characteristics including the attitude 

towards math, work ethic, time since the last mathematics course, and other parameters 

associated with motivation to improve academic performance.  The amount of work ethic 

intuitively correlates with improved academic performance.  Statistical values and 

significance findings regarding the rank in the high school graduating class parameter are 

shown in Table 2. 

Placement Testing Parameters 

The literature contains extensive analyses of placement testing regarding the 

correct placement of students in college algebra and the accurate prediction of course 

outcomes.  Even though some researchers suggest the overuse of placement testing 

contributes to a considerable amount of misplaced students (Belfield & Crosta, 2012), 

their prominence in the literature is undeniable.  These placement tests fit into one of 

three general categories: ACT/SAT, ACE Psychological Examination, and miscellaneous 

placement tests.  The ACT/SAT category is the most extensively covered category 

insofar as the depth of analysis for a single test is concerned.  However, the amount of 

coverage for these two tests is not equally distributed.  ACT scores, and varying 

combinations of the sub-scores, have received a majority of the coverage in the literature 

in comparison to the SAT scores.  The majority of coverage is given to the ACT, which is 

likely due to a lack of agreement on the conclusions.  Overall, the literature is split 

regarding the ACT, and the value it has in placing students and predicting course 
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1987; Kohler, 1973), and statistical significance has been reported (Boyce, 1964; Case, 

1987; Dykes, 1980; Harris, 1974; Long, 2003; Wilson, 2011).  Statistical values and 

significance findings regarding the ACT parameter are shown in Table 3.    

 The ACT composite score, ACT sub-scores, SAT total score, and SAT sub-scores 

have been given support by the overall majority of the reports in the literature for their 

use as a predictor of college algebra success and have been indicated to contribute to 

proper placement (Prasad, 2015).  Further studies have shown that the scaled equivalence 

of the two testing forms, ACT and SAT, may also contain predictive value.  The ACT-

SAT equivalence scale shows a positive correlation with college algebra success (Bird, 

2012; Ingram, 2008).  The scaling used represents the cut-off scores as quartiles in a 

method developed for Ingram’s study (Bird, 2012).   

Overall, the large amount of literature support for these standardized assessments 

as placement parameters for students in college algebra makes their use feasible and 

practical.  The widespread use of this single parameter demonstrates the need for a 

practically feasible option in the advisement setting, considering the reported result that 

the ACE Compass Algebra Test is the only parameter that can successfully differentiate 

between successful and non-successful students (Self, 2010).  This finding draws support 

from a finding of statistical significance of p < .002 (Pedersen, 2004).  While it would 

make sense to use this test, provided support for the ACE Compass Algebra Test is 

substantial, the feasibility is questionable as most students enter college with ACT or 

SAT scores.  The use of the ACE Compass Algebra Test would require significant 

resources to test every incoming freshman.  As such, the ready availability of the 
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standardized test scores and their supported use in the literature makes their use more 

practical. 

 The ACE Psychological Examination is another standardized test that has 

received considerable attention in the literature.  However, unlike the ACT and SAT, 

support for the use of the ACE psychological examination is almost evenly split among 

researchers with multiple reports asserting that the examination has little to no 

correlational value in the outcome of students in college algebra courses (Barrett, 1952; 

Corotto, 1963, Douglass & Michaelson, 1936; Wallace 1951).  Contradictory findings 

indicate that particular sub-scores of the ACE psychological examination are correlated 

with college algebra success.  The test consists of the quantitative (Q) sub-score, 

language (L) sub-score, and total (T) score.  Q-scores (Bromley, 1950; Seigle, 1954) and 

L-scores (Seigle, 1954) and the overall test in general (Graybeal, 1958) have been shown 

to have a positive correlational value with college algebra success.  The use of the ACE 

psychological examination has not been recently examined in the literature.  Noting the 

time period of the reports, the split opinion on the value of the test, and the practical 

infeasibility of using the test in the advisement setting renders the overall value of the test 

in the modern setting questionable.  Statistical values and significance findings regarding 

the ACE psychological examination parameter are shown in Table 3. 

 The reporting of the value of placement testing in the prediction of college 

algebra success includes a wide spectrum of placement tests that have been analyzed with 

the general consensus that a placement exam is beneficial in predicting the success of the 

student in college algebra.  Despite this, a dissenting view has been reported by several 

authors.  These reports range from assertions of no correlation (Long, 2003; Wallace, 
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1951) to a variety of comparisons which state that placement exams are no better than 

high school grades or ACT (Shevel & Whitney, 1969) to the determination that a short 

placement exam is better than the SAT-Mathematics sub-score (Bridgeman & Wendler, 

1989) in predicting success in college algebra.  This conflicts with the trends in the 

literature which indicate a wide base of support for the SAT scores over the ACT scores.  

In contrast, Orleans found that the combination of the prognosis testing did not 

significantly change the results from combinations of parameters that did not include the 

prognosis testing (Orleans, 1934).  As noted, extensive reports differ from the negative 

view of placement testing as presented by the authors above.  These findings indicate that 

placement testing is correlated to college algebra success (Hunt, 1987; Neal, 1974) and 

has statistical significance in the correlation (Spahr, 1983), particularly for male students 

(Odell & Schumacher, 1999).  It is also reported as the most consistent (Perry, 1934) and 

best predictor available (Byrd, 1970; Perry, 1934).   

 The identity of the placement test carries far less consistency than the opinions 

regarding their use.  Mathematics aptitude testing (Anderson, Weaver, & Wolf, 1965), 

mathematics proficiency testing (Bromley, 1950), mathematics screening testing 

(Corotto, 1963), mathematics training testing with a fundamentals of algebra review 

(Keller & Jonah, 1948), and arithmetic testing (Graybeal, 1958) have all been shown as 

positive indicators of college algebra success with significance reported at the p < .01 

level (Corotto, 1963).  Specifically identified tests suffer from a progressively shrinking 

base of research despite being shown to be correlated to college algebra success.  The 

Cooperative Mathematics Test (Dykes, 1980; Kohler, 1973; Morgan, 1970), Ohio State 

Psychological Examination (Kinzer & Kinzer, 1953; Schoepfle & Arnold, 1958), 
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American Council on Education Comparative Mathematics Pretest (Boyce, 1964), Texas 

Academic Skills Test (Garcia, 1998; Kemble, 1995), Stanford Achievement Test (Peteet, 

1978), and the Mathematical Association of America placement test (Sims, 1979) have 

all been reported as being parameters having correlations to the success of students in 

college algebra.  The correlation of the Stanford Achievement Test is also dependent on 

the inclusion of non-completers and the student not being enrolled at a community 

college (Peteet, 1978).  Finally, the utilization of customized placement testing is also 

reported as being a correlated parameter.  These include the Kansas State Mathematics 

Assessment (Kingston & Anderson, 2013), Mississippi State University Mathematics 

Placement Test (Case, 1987), and the Washburn Entrance Examination (Seigle, 1954).  

Overall, the use of placement testing is problematic from an application standpoint and 

also the lack of substantial support despite extensive cross comparisons of the individual 

tests.  Since few of these tests are standardized against one another, the use of a national 

standard testing method such as the ACT or SAT is granted a considerable amount of 

face validity.  A summary of the prominent placement tests’ statistical values and their 

level of significance is presented in Table 3. 

Academic Background Parameters 

Academic background is of considerable interest in a large number of reports 

present in the literature.  The opinion is by no means unanimous regarding the value of 

the academic background as a parameter in predicting college algebra success, but the 

general trend suggests that the academic background, including course timing as 

previously discussed, is very important in the prediction of college algebra success.   
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Table 3  

Statistical Values and Significance of Placement Test Parameters 

________________________________________________________________________ 

  

Parameter    Reported Statistic      Statistic Value 

________________________________________________________________________ 

 

ACE Psychological Examination – T Score  r   0.288 

 

ACE Psychological Examination – L Score  r   0.194 

 

ACE Psychological Examination – Q Score  r   0.311 

 

ACT – Composite        Regression  Stated Significance 

 

ACT – English        Not Given  Stated Significance 

 

ACT – Mathematics     r   0.25* 

 

Σ ACT – English and ACT – Mathematics      Not Given  Stated Significance 

 

Cooperative Mathematics Test      Regression  Stated Significance 

 

Ohio State Psychological Examination  r   0.31** 

 

SAT – Mathematics     r   0.62** 

 

SAT – Verbal      r   0.62** 

 

SAT – Total      r   0.63** 

________________________________________________________________________ 

Note: *p < .05, **p < .01, ***p < .001 

 

This academic background takes many forms including variations of GPA, the identity of 

specific high school mathematics courses, high school mathematics GPA, previous 

mathematics achievement, developmental coursework, science coursework, and the 

combined mathematics and science achievement.  The GPA and identity of the high 

school mathematics courses are by far the most extensively researched.  While no 
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statistical significance was reported between high school GPA and college algebra 

success (Douglass & Michaelson, 1936; Long, 2003), high school GPA was indicated as 

the best predictor (Douglass & Michaelson, 1936; Scott-Clayton, 2012) suggesting a 

positive correlation.  Other research clearly states the value of the GPA in general 

(Ingram, 2008; Pedersen, 2004; Serna, 2011; Sigler, 2002), and the high school GPA in 

particular (Dykes, 1980; Garcia, 1998; Hatch, 1981; Prasad, 2015; Seigle, 1954).  

However, some correlation may be dependent on the student not having taken any college 

course work when considering the high school GPA (Seigle, 1954).  As a subgroup of the 

high school GPA, the high school mathematics GPA has almost exclusive support in the 

literature.  The positive correlation of the high school mathematics GPA has been 

extensively corroborated (Dykes, 1980, Graybeal, 1958; Hunt, 1987; Morgan, 1970; 

Schoepfle & Arnold, 1958; Shepley, 1983; Wheat, et al., 1991), while one study did not 

report significance of the high school mathematics GPA in predicting college algebra 

success (Jackson-Teal, 1990).   

 As with the GPA parameters above, the high school mathematics background is 

also extensively supported in the literature with few exceptions.  The high school 

mathematics background, including general mathematics (Scott, 1966), algebra I 

(Kemble, 1995; Neal, 1974; Scott, 1966), algebra II (Gray, 1976; Scott, 1966; Wilson & 

Gelso, 1967), the average of the algebra I and algebra II grades (Wilson & Gelso, 1967), 

geometry (Scott, 1966), and advanced mathematics or trigonometry with elementary 

analysis (Scott, 1966; Wheat, et al. 1991), have all been shown to have a positive 

correlation with outcomes in college algebra courses.  While these reports are in contrast 

to other findings indicating that high school algebra performance (Garcia, 1998) and high 
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school mathematics coursework (Jackson-Teal, 1990) are not significant predictors of 

college algebra success, the overall positive correlation is well established, even though 

not necessarily significant (Douglass & Michaelson, 1936), and should be considered 

when included with other aspects of high school achievement such as the overall volume 

of courses taken and the completion of ancillary coursework in the sciences.  Even 

though it has been reported that high school mathematics achievement is only a fair 

predictor when taken as a whole, which was substantiated by some of the courses being 

only strongly associated with freshmen college students.  This association widened to 

higher level students as the level of mathematics increased (Scott, 1966) and the overall 

support of the literature is that prior mathematics achievement is positively correlated and 

significant (Sims, 1979; Wheat, et al., 1991).  Further supporting the importance of the 

mathematical background are the findings that placement in an honors class is a positive 

indicator of success (Bird, 2012) as is the previous enrollment of a student in an algebra 

class (Doyen, 2011).  However, these findings are likely more associational and resultant, 

rather than causational, with regard to success in college algebra.  When factoring in 

ancillary coursework, science courses which were more strongly associated with 

mathematics, such as chemistry, were shown to be useful at all levels while life science 

and general science course work was found to be relevant to freshmen.  Overall, the 

influence of the ancillary coursework is limited since the combined mathematics and 

science achievement shows an overall correlation most prominently to freshmen and the 

combined number of science and mathematics courses is a poor predictor (Scott, 1966).   

In regard to the isolated mathematics preparation, numerous studies point to the 

importance of the extent of mathematics preparation (Rives, 1992), specifically the 
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number of units of high school mathematics in general (Anderson, et. al, 1965; Morgan, 

1970; Welch, et al, 1982) and algebra in particular (Scott & Gill, 1941), as being crucial 

to the accurate prediction of success in college algebra.  Significance of the algebra 

background has been reported at p < .001 (Welch, et al., 1982) and is regarded as the 

largest influence on the success of the student in college algebra (Scott & Gill, 1941).  

Furthermore, the level of high school mathematics taken (Shepley, 1983), specific subject 

area of the last mathematics course taken, likelihood of exposure to mathematics (Harris, 

1974), and the presence of a fourth year mathematics elective (Burns, 1990) are 

significant predictors of success in college algebra.  The presence of these parameters 

likely influences the number of students who are eligible for registration in the class as 

students with more extensive high school backgrounds are more likely to have the 

necessary prerequisites to enter the class.  Given this connection, the statistical 

significance of the level of prerequisites required for course placement, reported at the p 

= 0.002 (Peteet, 1978), is in agreement with the positive correlation between the 

mathematical background and college algebra success.  Temperance must be included in 

the attributed value of the high school mathematics background toward the prediction of 

college algebra success.  As noted previously, the significance of the mathematics 

background and the identity of the last mathematics course taken is reduced once the first 

college mathematics course is taken (Seigle, 1954).  After this point, the best single 

prediction parameter becomes the grade in the last mathematics course (Seigle, 1954; 

Wining, 1956), which also holds true if the student is enrolled at a community college 

(Peteet, 1978).  Statistical values and significance findings regarding the GPA and 

background parameters are shown in Table 4.    
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 Considering the categorization of coursework in the mathematics background, and 

the prevalence of developmental mathematics in the current college setting, the overall 

impact of developmental coursework on college algebra success has received 

considerable attention in the literature.  The reported findings are not unanimous when 

considering the developmental mathematics background.  As a whole, the results tend to 

indicate that increases in the mathematical background correspond to a higher probability 

of success in college algebra.  The presence of developmental coursework as a binary 

parameter (Hatch, 1981) and intermediate algebra results (Doyen, 2011) are both 

regarded as positive, significant predictors of college algebra success due to the 

acquisition of the necessary fundamental mathematics skills (Gray, 1976).  However, the 

presence of gaps in the developmental coursework (Gonzales, 2012) and an increasing 

number of developmental courses (Gupta, et al., 2006) are associated with a negative 

outcome.  It is likely that these two parameters are related as the number of required 

developmental courses could increase the probability of a gap in the sequence due to non-

academic issues such as funding or a loss of motivation.  Further study reveals a 

connection between high school algebra and developmental mathematics.  If the student 

took developmental mathematics, the presence of two years of high school algebra gave 

them a better chance of success.  The association of these parameters is unclear given that 

previous studies show the connection of the latter parameter to an increased probability 

of college algebra success in its own right.  More importantly, a recent study shows that 

enrollment in developmental mathematics should not be viewed as an indicator of 

potential success in college algebra (Groce, 2015).  Statistical values and significance 

findings regarding the developmental coursework parameter are shown in Table 4.    
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Table 4  

Statistical Values and Significance of the Academic Background 

________________________________________________________________________ 

  

Parametera    Reported Statistic Statistic Value 

________________________________________________________________________ 

  

Overall GPA           F(1,328)  10.092* 

 

Developmental Coursework    r  +, Stated Significance 

 

High school mathematics GPA      Regression  +, Stated Significance 

 

High school mathematics background   

 

 Algebra I     t  Stated “Good” 

   

 Algebra II     t  Stated “Good” 

 

 Σ Algebra I and Algebra II Grades  r  r > 0  

  

 Geometry     t  Stated “Useful” 

 

 Trigonometry/Elementary Analysis  t  Stated “Very Useful” 

________________________________________________________________________ 

Note: *p < .05, **p < .01, ***p < .001, a This is not an exhaustive list 

 

The correlation of particular parameters to college algebra success has been 

shown to be well supported in the literature.  However, the development of equations 

containing these parameters can be equally complicated.  The choice of the included 

parameters is not always clear or easy.  Motivations of the researchers are also an 

influence when choosing the parameters to include.  In reviewing the prominent 

equations of the literature, care must be taken to compare similar types of equations to 

one another and consider the very nature of the equations themselves regarding what each 
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one is designed to predict, whether it be the outcome GPA, outcome grade, probability of 

success, or the comparative classification of students into different areas of coursework.   

Equations 

With all of the potential parameters, the lack of clearly definitive evidence 

regarding the applicability of the parameters to the general population. or changes in the 

population over time, the literature is saturated with a large number of equations 

including numerous single parameter equations, the small number of Cauthern’s 

equations containing large numbers of parameters, and Graybeal’s extensive list of 

equations that are numerous combinations of a large number of parameters.  Further 

issues of practicality and feasibility of use result in the removal of numerous equations 

from the list of models that are potential candidates for use by any institution.  Equations 

that require extensive testing or training to use are not useful to entities dependent on 

efficiency.  The need for equations based on cognitive variables that can be readily 

identified by an advisor or easily obtained is the standard for consideration.  To that end, 

the extended list of potential equations is reduced from eighty-four to eighteen via a set 

of cognitive and demographic variables that are known to be conveniently determined or 

somewhat easy to obtain.  In this list of 18 equations, three types emerge: single 

parameter predictor equations, multiple parameter predictor equations, and multiple 

parameter classification equations. 

When considering the single parameter equations, the ease of use is a very potent 

selling point.  However, it is necessary to look at what can happen when only one 

parameter is used.  Kinzer and Kinzer, 1953 provides an illustration of this problem.  The 

model by Kinzer and Kinzer utilizes the Ohio State Psychological Examination as the 
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independent variable in the predictor equation for college algebra success.  The input 

parameter is the score percentile on the OSPE with a regression constant of 1.26 and a 

beta coefficient of 0.0144 for the independent variable.  Outputs from this equation are 

the estimated outcome GPA in college algebra on a 4.0 scale.  The correlation coefficient 

(R) was found to be 0.31 and significant at the level of p < .01.  For the 1,244 cases in the 

study, the mean prediction value was 2.2 with a standard deviation of 1.2 giving a ±1 

standard deviation range of [1.0, 3.4] in the potential results.  This range is pertinent due 

to the following results.  Using the absolute percentile extremes of 0 and 100, the 

prediction suffers catastrophic fall-off as the percentiles on the OPSE vary toward the 

extremes.  In the calculation of hypothetical extremes, the maximum range for the 

predicted scores was [1.26, 2.7].  It is clearly noted here that the resulting scores are well 

within the ±1 standard deviation range.  As a normal distribution only contains 

approximately sixty-eight percent of the sample within the ±1 standard deviation range, 

the fall-off in the predictions is problematic.  From this, the equation will fail to 

accurately predict students falling in the grade ranges further away from the mean score 

of the OPSE.  As a matter of verification, the equation accurately predicts the criterion 

variable when the OPSE score is approximately the mean.  This substantiates the results 

noted previously.  Multiple predictors potentially improve the accuracy of the prediction 

models (Ngo & Kwon, 2015).   

While many authors use multiple parameter equations, it is less often that the 

results are directly compared to the single parameter equations corresponding to the set of 

parameters being used for predictions.  Beginning in the 1960’s, the combination of high 

school mathematics achievement, high school graduating class rank, mathematics 
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variable inclusion in the case of step-wise regression can alter the correlational values of 

a parameter.  Overall, prediction equations are as varied as the samples used to generate 

them, and it is possible that a single best predictor equation for college algebra, consistent 

across numerous samples and persistent over long periods of time, does not exist.  For a 

listing of the individual types of equations, see the appendix of additional tables.   

Table 5  

Statistical Values and Significance of Selected Multivariate Models 

________________________________________________________________________ 

  

Parametera    Reported Statistic  Statistic Value 

________________________________________________________________________ 

 

Model A      R          0.641** 

 

 High school mathematics achievement 

 High school class rank 

 Mathematics placement testing 

 SAT – Mathematics  

 SAT – Total  

 

Model B      r         0.62** 

     

 Placement Testing 

 High school algebra I 

 SAT scores 

 

Model C     Stated Relationship          ** 

 

 ACT Scoresb 

 High school gradesb 

________________________________________________________________________ 

Note: *p < .05, **p < .01, ***p < .001, a This list is not exhaustive of the literature, b Individual statistics report too due to the model 

description 
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CHAPTER III  - METHODOLOGY 

Introduction 

The basis for this study draws upon the results of a pilot study conducted during 

the 2015 – 2016 academic year.  During this time, the viewpoints of college algebra 

advisors on student placement and resultant outcomes demonstrated a gap in the research 

regarding the potential of the ACT scores in the prediction of college algebra success.  As 

noted in Chapter II, the literature contains extensive methodology and prediction 

equations for use in the advisement of college algebra students.  However, these methods 

suffer inherently from three issues.  First, approximately four years after development, a 

loss of predictive validity renders many of the models obsolete.  Second, single variate 

predictors suffer considerable falloff in the accuracy and precision of the predicted 

outcomes when the predictor variables represent extreme values.  Finally, the degree of 

resources required to implement the accurate, multi-variate models render their 

widespread use impractical.   

Support for the methodology is found in the work of Byrd (1970) which includes 

the use of mathematics and reading comprehension placement testing.  In this study, the 

scores on the individual tests were used in self-multiplicative and cross-multiplicative 

combinations of second order.  In the case of the self-multiplication of the mathematics 

placement test score and the cross-multiplication of the reading comprehension and 

mathematics placement test scores, statistical significance was found.  Furthermore, these 

two combinations were among the four best predictor variables in the study, and both 

were included in the multiple regression (Byrd, 1970).  With the lack of a comprehensive 

analysis of ACT sub-score multiplicative combinations, the predictive potential of the 
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ACT sub-scores remains unknown.  The current study utilizes combinatorial 

arrangements of the sub-scores to examine this predictive potential, maximize the 

predictive accuracy, and minimize the costs of implementation. 

With the need for an efficient, accurate, and cost effective model apparent, the 

development of this study centered on the pilot study results.  As shown in the summary 

below, advisors of all levels were open to the idea of multi-variate predictions for college 

algebra success.  Since the term multi-variate could result in shortcomings similar to 

those seen in previous studies, mathematical restrictions on the predictor variable 

combinations were utilized to limit this possibility.  In addition to providing a balance to 

the number of included variables, the mathematical restrictions helped retain the needed 

spirit of the models as indicated by the most important entities in this process, the 

advisors themselves. 

Qualitative Support 

During the preplanning stages of this study, it became necessary to consider 

certain qualitative aspects when determining the number of included independent 

variables and their appropriate combinations.  While numerical models can predict 

success with considerable accuracy, the more cumbersome the model, the less likely it is 

to be received and implemented in any considerable context.  This necessitated an 

examination of which variables are considered important in the placement of college 

algebra students.  Based on the goal of maximizing accuracy of the model and 

acceptability to the advisors, the opinions of college algebra advisors were evaluated in a 

pilot study.  Although general placement policies and procedures are determined at an 

administrative level, academic advisors are tasked with implementing any adopted 
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predictor models during their advisement sessions.  Results from this pilot investigation 

contained several variables that are beyond the scope of this overall study.  While these 

other variables may be important, consistency with the stated research goals limits the 

inclusion of these results to the opinions of college algebra advisors toward the ACT sub-

scores.  The inclusion of advisor beliefs and opinions regarding the ACT scores is 

justified by the tendency of humans to only embrace policies in which they believe. 

Faculty and students agree advising is important.  However, their outlook on the 

kind of advising that is appropriate frequently differs (Allen & Smith, 2008).  Often, 

more factors are present for the advisor to consider than for the student.  Since advisors 

are human, possessing emotional responses and subjective viewpoints, it cannot be 

assumed these aspects have no effect on the actions of the advisor.  The lack of mutual 

consideration regarding the viewpoints of the student and of the advisor could contribute 

to the anxiety present in the process, especially if the student begins to perceive that the 

advisor does not have their best interest at heart (Castor, 2005).  The role of the advisor 

as a student advocate is not always apparent (Petress, 1996).  When this occurs, 

recommendations from the advisor may be taken as a punitive measure instead of due 

consideration for the needs of the student. The response of the student could frustrate the 

advisor, as the advisor is providing a recommendation based on professional experience.  

This is not to say that all of the anxiety present in the advisement process is due to a lack 

of understanding between the student and his or her advisor, but much of it could 

possibly be eliminated by accounting for this lack of understanding.  The advisor often 

needs encouragement to know the students’ advisory needs are being met (Castor, 2005).  

In the setting of college algebra advisement, advisors possess personalities that are highly 
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mathematical.  A secure position often arises when sufficient numerical support can be 

obtained to substantiate the position.  Considerable anxiety and stress may occur when 

the numerical basis for advisement decisions is not sound, is questioned by the student, or 

the advisor does not trust it from the beginning.  By enhancing both the practicality and 

accuracy of a placement model, a reduction in the advisor’s anxiety and stress may occur 

through the provision of a sound mathematical basis for advisement decisions. 

 The degree of anxiety increases during the advisement of students with non-

STEM majors and their required mathematics courses.  Students arrive at college with 

sub-standard preparation in mathematics and many times do not have the basic 

mathematical concepts necessary to complete college algebra.  Even if the students have 

the necessary basic skills, they often possess insufficient placement test scores to be 

placed directly into college algebra.  A problem arises when they are confronted with this 

reality during their first advisement session.  These students often equate the presence of 

a high school diploma as being indicative of college readiness.  While a high school 

diploma, or its equivalent, is a necessary condition, it is hardly a sufficient one.  The task 

falls to the college advisor to present this reality to the student.  Being confronted with 

this aspect for the first time may cause the student to experience a range of attitudes 

towards the advisor ranging from mild resentment to a view of the advisor as an 

unfeeling, robotic entity enforcing the rulebook.  The unfortunate aspect is that the strain 

and anxiety the advisor experiences during this encounter does not receive considerable 

attention, much less being articulated in the form of an accepted construct.  Just as the 

student feels that the advisor does not understand his or her position, the feeling is mutual 

from the standpoint of the advisor.  Negative perceptions of the advisor may contribute to 
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a counterproductive advisement relationship (Knox, Schlosser, Pruitt, & Hill, 2006).  

Although beyond the scope of this study, the viewpoints of the advisor and the student 

can be shown to share many common aspects.     

In the setting of non-STEM mathematics courses, advisors often encounter the 

student who balks at the idea of taking remedial algebra for a variety of reasons.  

Students cannot understand why the advisor would want them to waste money taking a 

course that does not count toward a certificate or degree.  The student may also feel the 

advisor thinks they are not intelligent if they recommend a remedial course before taking 

college algebra.  The pilot study results explored the viewpoint of the advisor regarding 

the college algebra advising experience.  By investigating the viewpoints of the advisor 

towards the placement parameters, the identification of sub-score combinations deemed 

important to the advisor can be identified.  To that end, the view of the advisor towards 

the existing placement structures impacts the actions in the advisement process.  This will 

manifest in the expected degree of implementation for any identified, statistically 

significant model.   It is hoped that the pilot study presented below illustrates the attitudes 

of a selected sample of college algebra instructors toward the advisement process and 

which ACT sub-scores better predict college algebra success. 

Participants and Procedures 

The participants for the pilot study were chosen from a pool of college algebra 

instructors at community colleges in Mississippi.  Potential participants were initially 

notified via email about the study and asked to respond if they wished to discuss further 

participation.  Eight participants responded in the approved timeframe of the study.  The 

sample consisted of instructors and administrators functioning as both active and former 
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advisors.  Experience levels ranged from six to thirty-three years, and educational levels 

ranged from master’s degrees to doctorates.  Three different institutions were represented 

in the sample.  While all three institutions were in the southern portion of the state, the 

geographical variation ranged from the center of the state to the southern coast.  Based on 

the differences between participating institutions and the variation in personalities among 

the participants, the representativeness of the sample has been considered satisfactory.   

Instructor Thoughts on Placement 

Placement guidelines are a particularly sensitive issue, depending on the level of 

the participant.  Everyone agrees correct placement of the students during the advisement 

process constitutes the most significant factor present in college algebra success.  The 

point of contention involves the determination of which metric is best when it comes to 

predictions.  In general, advisors at the level of an instructor tend to have a less than 

optimistic view of placement testing, particularly standardized examinations.  Overall, 

the factors of importance for instructor level advisors include the high school 

background, high school GPA, high school mathematics background, the presence of 

time gaps, and the presence of a fourth year elective.  These variables are beyond the 

scope of the overall study, but they may constitute a possible explanation of any random 

error in the model predictions.    

 While there is a gap in the concept of what constitutes proper placement 

procedure, as a whole, advisors do agree on one thing.  The use of a single placement 

parameter is a highly unstable process and contains significant potential for error.  In 

every case, they agreed that the use of multiple parameters would provide a more stable, 

less error prone placement methodology.  However, the particular variables included in a 
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multi-variate placement model were subject to some debate.  Again, this divide seemed to 

manifest at the demarcation between the instructor and administrative levels.  Instructors 

appeared open to the inclusion of any variable that could be readily measured and shown 

to be predictive of college algebra success.  The administrators, although supportive, 

were concerned with the ability to obtain the necessary information, student reception of 

the new placement methods, and considerations of necessary weightings when including 

factors not typically used with college algebra placement and prediction.  Overall, the 

instructor level participants were openly agreeable to using a multi-variate predictor 

model and seemed quite eager to entertain the idea of an alternative placement procedure.  

The administrators were cautiously optimistic.  Despite openness to the idea, they had 

legitimate logistical concerns regarding implementation of an alternative model.  This is 

not to say that all instructors were unanimous in their support.  Some were quite satisfied 

with the current procedures and seemed content to stay with these procedures.   

Opinions of the ACT Score 

The opinions of the ACT score contained highly polarized positions.  Some 

participants felt confident in the ACT score’s ability to properly place the student.  

Particularly at the administrative level, the prevailing opinion was that the ACT 

constitutes a sufficient placement parameter.  Based on the context of the statements and 

the voice quality at the time, it appears the thought exists that the predictive abilities of 

the ACT score are acceptable and within an acceptable margin of error.  In contrast, the 

instructor level participants were not so optimistic of the ACT’s benefit in placing college 

algebra students.  Considerable skepticism emerged over the use of the test.  The apparent 

divide between the administrative level participants and the instructor level participants 
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manifests in the types of descriptions being used.  Phrases such as “pretty predictive,” 

“coin flip,” “good overall indicator,” “can predict,” and “plays a role” indicate the 

varying degrees to which the ACT is valued by people in advisor roles.   

 Further debate over the ACT involves the sub-scores that are used in the 

placement of college algebra students.  Almost exclusively, the mathematics sub-score 

determines student placement in college algebra.  With the apparent interest in a multi-

variate placement model, it would seem that further incorporation of the ACT sub-scores 

would be appropriate.  Before evaluating the opinion of individual scores, the ideas of 

interactions and counterbalancing of the scores, should be entertained.  In the scope of the 

current study, these ideas develop in the non-linear multiplicative combinations of the 

sub-scores and the general college readiness model.  Regarding the pilot study and 

without obvious correlation to the position of the participant, the opinions remain 

considerably diverse regarding the potential for a counterbalancing effect between the 

sub-scores.  Some felt that counterbalancing was distinctly possible; others were highly 

skeptical of it.  Even those who found it likely were hesitant about the applicability of 

such an effect.  Administrative level participants were hesitant due to potential liability 

implications of using scores other than mathematics to place a student in a mathematics 

class.  The emphasis was placed on ensuring the students understood why they were 

being placed in a class, and how they were placed.   

The actual ACT sub-scores were viewed in considerably different lights by many 

of the participants.  Again, like the counterbalancing effect, which centered on the 

reading and mathematics scores, the importance of the actual sub-scores was spread 

across the participants with no apparent correlation to the position of the participant.  
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Most did not consider the English sub-score to be of any importance.  While this is 

contrary to the findings by Hatch, 1981, it is not unexpected.  As would be considered 

normal, the mathematics score received the most emphasis.  The positive view toward the 

placement potential of the mathematics sub-score comprises the sole sub-score area 

where responses seemed to be skewed toward the administrator level participants.  A 

particularly interesting component of the responses to the mathematics scores were the 

opinions of the respondents on what the mathematics scores could predict.  In several 

cases across the range of participants, advisors seemed to feel the mathematics scores 

were more specific than sensitive.  In hindsight, this statement may account for the 

apparent disparity between the two groups of the sample with those of higher experience 

levels acknowledging this connection.  As administrators would typically be on the 

higher end of the experience range, this may explain the apparent connection between 

them and their favorable outlook on the mathematics sub-score.  The remainder of the 

sub-scores were viewed as either holistically important, in the case of the reading sub-

score, or being a result of the other three sub-scores, as was the case with the science 

reasoning sub-score.  To this end, the general consensus existed, although not unanimous, 

that the reading and science reasoning sub-scores possessed less importance than the 

mathematics sub-score; however, virtually all participants acknowledged the importance 

of an adequate level of reading comprehension.  The overall perceived value of the ACT 

score seems rooted in the lack of a better option for placement that is widely accepted.   

If the agreement on the ACT score is marginal, then the agreement on other 

testing parameters may best be described as diametrically opposed to one another.  The 

COMPASS test is a nationally recognized placement test for mathematics.  Although 
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falling out of favor in recent years, the opinions regarding the test among the participants 

remained strong.  The opinion of the advisors commonly fit one of two categories: 

“pretty good” and “useless.” 

With the current trend away from the COMPASS test, the lack of a better option 

seems to contribute greatly to the perceived hesitance to completely dismiss the ACT 

score on the part of many of the instructors.  During the course of the interviews, the tone 

of voice indicated that, while it was not highly viewed, a prominent amount of 

reservation was held when considering the abandonment of the concept.  The response to 

this seems to be the development of a number of secondary methods for assisting the 

placement process.  These include a form of self-assessment during the advisement 

session where the students are asked to evaluate themselves regarding their mathematical 

ability.  This was encountered on several occasions and does not appear to be unique to 

any one type of advisor.  A remaining subject of debate is whether this constitutes an 

actual placement parameter or a non-cognitive variable.  It is clear from the interviews 

that the advisors are not sold on the concept of exclusively using the ACT.  The impact 

this outlook has on their advisement practices, and whether this impact has resulted in the 

development of non-validated, secondary advisement techniques, including self-

assessment and stereotypes, remains to be seen.  It is entirely possible that the attitudes 

toward the use of the ACT stem from cases of misplacement and the emotional fallout 

that arises as a result of it.   

 The few items that were unanimous among the advisors interviewed included the 

confirmation that misplacement does occur from time to time.  What they do note, 

however, is that misplacement is almost always a case of over-placement where the 



 

64 

student had obtained a score on the ACT that does not truly reflect their ability.  

Commonly attributed to guessing correctly, the student is placed in a class that is too high 

for their ability.  Consequently, the student struggles and eventually stops-out.  This 

connects to the advisor’s internal locus regarding the assigned responsibility for the 

outcome of the student.  Despite numerous assertions by the participants that the 

students’ work ethic is paramount to their success, it continues to refer back to the degree 

of responsibility that the advisors place on themselves.  This internal locus results in key 

instances where the ACT has failed to accurately place, and the failure of the student to 

succeed has become personal to the advisor.  It is possible that this contributes to the 

view many advisors have regarding the adequacy of the ACT as a placement parameter.  

Regardless of the cause, this viewpoint contributes to a questioning stance among many 

advisors of the benefits in using the ACT over other placement parameters that the 

literature has shown to be valuable.   

Sample for the Current Study 

Sample Size 

The maximum sample size consisted of the total enrollment in college algebra for 

the fall and spring semesters of two academic years at Jones County Junior College.  

During the 2014 – 2015 and 2015 – 2016 academic semesters, a total of 3,593 students 

enrolled, attended the first day, and received one of the outcome variables described 

below in the course.  Yearly enrollments increased steadily over the study range during 

the fall semesters with respective enrollments of 997 and 1,064 students.  Spring semester 

enrollments showed only marginal increases in size over the same range and order of 746 

and 786.  Given the steady increase seen in both semesters, the presence of a substantial 
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recruitment initiative during the 2015 – 2016 school year as a result of decreased state 

funding allocations, and known higher enrollments in fall semesters due to the influx of 

high school graduates, the increases over the sample range are expected.  The maximum 

sample size was reduced due to the following restrictions.  Research goals necessitated 

the elimination of potential co-variates which were not part of the study and could likely 

alter the results.  These co-variates, and those included in the study, are accounted for in 

Chapter V.   

1. Students where the motivation and work ethic introduces a potentially chaotic 

factor were eliminated.  Online, mini-session, extension site, and dual 

enrollment students often require considerable motivation and work ethic to 

be successful.  Extension site courses are often heavily non-traditional and 

introduces an environmental variable also.  Due to this, these students were 

not included in the analysis.   

2. Course repeaters introduce an unstable factor in the area of content exposure, 

prior knowledge, and unknown work ethic.  Due to this, students repeating the 

course were not included in the analysis.   

3. Despite college policies and best attempts to carry complete records and 

enforce pre-requisites prior to enrollment, exceptions do exist.  Students with 

extensive, but aged, academic backgrounds are sometimes given exceptions to 

the ACT score requirements.  Other students may not have accessible records.  

Given the foundational nature of the ACT score on placement, imputation 

methods are likely not the best solution.  Due to the overall sample size and 
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small anticipated number of incomplete records, students with incomplete 

ACT score records were not included in the analysis.  

The institution removed the cases matching the exclusion criteria prior to issuing 

the data set.  A further issue arose with students receiving a withdrawal mark in the 

course.  As a withdrawal is not a true grade, it cannot be factored into the grade point 

average.  Since withdrawal occurs for many reasons which are beyond the scope of this 

study, and the inclusion of the withdrawal classification in the grade point average 

variable is problematic, the sample utilizes only those first time students who completed 

the course and received a grade.  A total of 1,266 student records were included in the 

analysis.  These records contained 406 for the fall of 2014, 206 for the spring of 2015, 

452 for the fall of 2015, and 202 for the spring of 2016.  This sample size was considered 

sufficient for criteria of best practices regarding the sample size.  The sample carries an 

approximate homogenous spread over the sample range given known factors, and carries 

consistent variation across subdivisions of the yearly count.  As such, the sample size was 

deemed sufficient and well-suited to the study.   

Sample Range 

The sample range of two academic years was designed to meet three criteria.  

First, the literature shows that prediction equations suffer from a loss of validity after four 

academic years.  The choice of two academic years gave a maximization of sample size 

while maintaining a considerable expectation of validity during, and within two academic 

years after, the completion of the study.  Second, the number of students enrolled in 

college algebra at Jones County Junior College during a two year span provides a strong 

database on which analyses and conclusions may be based.  The sample size has been 
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extensively discussed in a previous section.  Finally, the cut-off of the 2015 – 2016 

academic year prevents the introduction of the researcher as a confounding variable.  

During the 2016 – 2017 academic year, the researcher will have teaching duties in 

college algebra at Jones County Junior College.  Data from this year would introduce an 

unnecessary confound and thus were excluded.  Given the amount of cases present in a 

single academic year at Jones County Junior College, the consequences of exclusion were 

considered minimal.  Overall, the sample range satisfied these three criteria well and was 

deemed sufficient for the study. 

Sample Justification 

The choice of Jones County Junior College as the site for this study was based on 

three criteria considered as representative of the state community college population or 

taken to maximize the representativeness of the sample.  These three criteria were 

location, size, and commitment to equality.  All of the criteria focused on three key areas 

which would likely influence student success if one is out of range with respect to the 

other two.  Extreme locations are likely to skew the representativeness of the sample to 

the overall community population.  Extremes of size in either direction are likely to deter 

certain students from applying.  Extremes of equality likewise skew the sample due to 

ideological considerations which are out of the scope of this study.  Each of these factors 

are discussed below.   

Location.  The institution is located in the southern portion of the east central 

region of the State of Mississippi.  It is approximately six miles south of Laurel, MS, 20 

miles north of Hattiesburg, MS and 70 miles southwest of Meridian, MS.  Jones County 

Junior College constitutes the only community college presence in the area except for a 
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satellite campus of Pearl River Community College 30 miles to the south.  Due to the 

geographic area, the potential student base does not have profound competition outside of 

the Meridian metropolitan area or the multiple community colleges in Jackson, MS, 80 

miles to the northwest.  Furthermore, the reputation of Jones County Junior College in the 

area brings considerable draw from the students in the region and the state due to 

attributes such as high job placement rates, transfer rates, and academic rigor.  During the 

fall semester of 2015, 62 of 82 counties in Mississippi were represented at the college.  

These demographic characteristics are present across the spectrum of programs available 

at the college, and many of the programs require the college algebra component.  The 

industrial setting of the area further enhances the draw through potential job attainment 

and social structures present in Hattiesburg, MS and Laurel, MS.   

Size. The overall size of the college falls in the middle upper range of the 15 

community colleges in the state.  When considering the balance of student enrollment, 

campus size, number of campuses, and the ratio of satellite campuses to full campuses, 

Jones constitutes a solid, middle range example of the community colleges in the state.  

Taken in consideration with the geography of the region, Jones County Junior College 

serves as a maximization of student draw from the student body in the region balanced 

with the allocation of resources.  As such, this made the college a good choice for 

obtaining a balanced sample on the main campus.   

Equality of Ideology.  In regard to the final criteria, equality, Jones County Junior 

College has taken an expressed stance of equality during the 2015 – 2016 school year.  

Prior to this academic year, the State of Mississippi passed a controversial piece of 

legislation regarding the current national debate over business owners’ rights when 
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choosing to provide services to patrons identifying as gay, lesbian, bi-sexual, or trans-

gender.  After the passage of new law, the president of the college, Dr. Jesse Smith, took 

the opportunity to reiterate the college’s anti-discrimination policies regarding 

discrimination of all types.  The business of the institution revolves around the provision 

of solid educational backgrounds to any student wishing to attend.  Jones County Junior 

College saw a surge in enrollment during this academic year which resulted in an 

increase in state allocated funding.  Furthermore, incidents on campus after the passage 

of the law were isolated and minor.  The stance on equality factors heavily into the 

modern student’s choice as to which educational institution to attend.  This emphasis on 

equality enhanced the overall representativeness of the college population. 

Equality of Sample Demographics.  According to the college website, Jones 

County Junior College carries the following demographic makeup.  The racial and ethnic 

breakdown for the fall semester of the 2014 – 2015 school year was 64.2% white, 31.9% 

black, and 1.7% from other ethnic backgrounds.  The school carried a predominantly 

female student population during this term.  Females constituted 57.7%, compared to 

42.3%, of the student body with less than 1% not reporting (Jones County Junior College 

[JCJC], 2016).  Considering the overall state community college enrollment demographic 

percentages, as reported by the Mississippi Community College Board for the same term, 

the state community college student population was 54.6% white, 39.2% black, 61.3% 

female, and 38.7% male (MCCB, 2015).  Regarding these percentages, Jones County 

Junior College carries more gender equality in the overall student population than the 

state does as a whole.   
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The racial and ethnic makeup of the college does not equal the diversity present in 

the state population as a whole.  This is likely due to the rural geographical region which 

is typically skewed in the same direction.  However, the student body at the college is 

more diverse than the general population of the region.  Jones County, MS was 65.3% 

white and 28.6% black in 2014 (Cubit Planning Incorporated [CPI], 2016).  Even in light 

of the differences between the population of the college, the community college 

population as a whole, and the regional population, the literature consistently indicates 

that gender is more likely to be a significant factor than racial or ethnic identification.  

With the current demographics of the college and the widespread requirement of college 

algebra across the degree plans in a typical Mississippi community college, any lack of 

representativeness in the sample will likely be due to other unknown factors.   

Data Collection 

The methodology for this study was based on secondary data collection.  As the 

predictor variables are test scores and the outcome variable was the course outcome for 

each student in the collection range, primary data collection was not required.  Jones 

County Junior College provided the requested data for the specified range and the listed 

restrictions.  The requested data categories were the four ACT sub-scores, final course 

grades, the presence of the intermediate algebra pre-requisite, and the mathematics 

laboratory co-requisites.  The pre-requisite and co-requisite were reported as a single 

variable and likewise included in the analysis.  Data collection and storage methods were 

approved by both institutions before the study began.  Once approved, the data was 

provided by the data retrieval technician employed by Jones County Junior College.  The 

researcher did not request any identifying information such as student identification or 
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social security numbers.  Any identifiable information was removed by the data retrieval 

technician prior the data being given to the researcher.  No identifiable information was 

given to the researcher.  Furthermore, no identifiable information was discovered during 

the processing, analysis, or reporting of the results of this study.  Upon completion of the 

study, the data was returned to the data retrieval technician for Jones County Junior 

College for disposition.  

Variable Development 

The independent variables in this study included, or were derived from, the four 

sub-scores reported on the ACT.  In the list below, the linear variables are given first and 

assigned a coding schematic.  As the non-linear variables are multiplicative combinations 

of the base components in the linear variable list, the non-linear variables are listed by 

their coding scheme and then defined.  At this point, the differentiation of non-linear 

variables from interaction terms is undertaken.  The creation of the non-linear variables 

was not an analogous process to that of creating interaction terms in multiple regression.  

Non-linear variables were generated prior to the execution of the regression models.  

Another difference came in the interpretational stance undertaken during the analysis 

phase.  Inside multiple regression models, the non-linear variables are treated as 

interaction terms and interpreted in the traditional manner.  The presence of a significant 

interaction would preclude the interpretation of any significant main effects from the 

linear or self-multiplicative combinations.  Inside the context of the non-linear 

interpretational model, the non-linear terms, developed outside of the regression 

programming, were treated as independent terms from the parent terms that compose 
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them.  Analogous to the powers of a variable in a polynomial equation, this structure 

allowed for the interpretation of any significant result in the model.   

Linear Independent Variables 

The set of linear independent variables contains four terms corresponding to the 

set of ACT sub-scores commonly reported.  It does not include the newer writing score.  

All scores have an absolute range of [0,36].   

M – The sub-score for the ACT – Mathematics section.   

E – The sub-score for the ACT – English section. 

R – The sub-score for the ACT – Reading section. 

S – The sub-score for the ACT – Science Reasoning section.   

Combination Derivation 

The non-linear variables constitute a set of combinatorically derived arrangements 

of the linear independent variables.  The variables have a potential for up to four linear 

components with replication allowed.  This is based on the presence of four ACT sub-

scores.  Utilizing combinatorial arrangements, the total number of possible non-linear 

variables is summed over the set of sub-groups represented.  As such, the variable sets 

are referred to as first-order, second-order, third-order, and fourth-order in all subsequent 

discussions.  Before listing the total set of potential variables, the mathematical basis for 

their development is shown below. 

Development of the variables is based on a consideration of two sets (Lavrov, 

2014).  The first set, X, contains four indistinct elements.  The second set, Y, contains four 

distinct elements corresponding to the four linear variables previously defined.  The 

variables are based on the relational mapping of 𝑟: 𝑋 → 𝑌  where replacement is allowed.  
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Based on this, the general form for calculating the total number of unique combinations is 

given by the equation below where the number of elements in X increases from one to 

four.  

∑ (( 
𝑛

𝑘
 )) = ∑ (

𝑛 + 𝑘 − 1

𝑘
)

𝑛

𝑘=1

𝑛

𝑘=1

 

 

Based on ((𝑛
𝑘

)), which is the number of multi-sets containing k-elements drawn from the 

set X containing n-elements, summing over the set of possible values of k up to and 

including n, the general form reduces to the number of total possible combinations of the 

linear ACT sub-scores.  The total number of unique combinations represents the sum of 

the first n coefficients of the closed form expansion for the appropriate generating 

function.  This is shown in the derivation below.   
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Since we have defined the set X as having a maximum of four elements, the equation 

reduces to the following form. 
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By removing the zero-order term which corresponds to the empty set in X, the resultant 

sum reduces further to the original equation substituted for four elements in X. 
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Expansion gives the final calculation of the number of unique combinations of the four 

linear variables, including the four original variables.   
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= 69 

 Richard Stanley’s twelve-fold way gives a common analogy to interpret the 

equations derived above.  Considering four indistinct balls, the number of unique 

distributions can be visualized through their distribution into four distinctly labeled bins 

(Stanley, 2009).  By labeling the bins as the four linear variables corresponding to the 

mathematics, English, reading, and science sub-scores, the 69 possible distributions can 

be seen as the coded combinatorical arrangements.  Because the balls are indistinct, the 

order of ball placement does not matter.  This reduces the total number of distributions to 

the previously derived 69 extracted from the generating function coefficients.  The 

number of distributions in the group of associated order corresponds to the coefficient of 

identical order in the generating function expansion above.  Labels correspond to the 

previously described labeling convention for the ACT sub-scores.  Figure 1 shows the 

mapping model for the sub-score variables. 
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Figure 1. Sub-score combination development of EM2S. 

Note: Up to four of the indistinct objects in X can be mapped to one of the four distinct objects in Y.  Repetition is allowed.   

First Order Terms.  A total of four first order terms result from the linear term 

coefficient in the generating function. 

(
4

1
) =  

4!

3! 1!
= 4 

The four terms in this group are M, E, R, and S. 

Second Order Terms.  A total of 10 second order terms result from the quadratic 

term coefficient in the generating function.(5
2
) =  

5!

3!2!
= 10 

The 10 terms in this group are M2, E2, R2, S2, ME, MR, MS, ER, ES, and RS.  

Third Order Terms.  A total of 20 third order terms result from the cubic term 

coefficient in the generating function. 
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The 20 terms in this group are M3, E3, R3, S3, M2E, M2R, M2S, E2M, E2R, E2S, R2M, 

R2E, R2S, S2M, S2R, S2E, MRS, MES, MER, and ERS. 

Fourth Order Terms.  A total of 35 fourth order terms result from the quartic term 

coefficient in the generating function. 

(
7

4
) =  

7!

3! 4!
= 35 

The 35 terms in this group are M4, E4, R4, S4, M3E, M3R, M3S, M2E2, M2R2, M2S2, 

M2ER, M2ES, M2RS, MERS, E3M, E3R, E3S, E2R2, E2S2, E2RM, E2RS, E2MS, R3M, 

R3E, R3S, R2S2, R2EM, R2ER, R2ES, S3M, S3E, S3R, S2ME, S2MR, and S2ER.  Aside 

from the co-variates described below, the previously described independent variables 

constitute the parent variable group. 

The inclusion of variables above second order is designed to enhance the 

likelihood of detecting non-linear effects which may be present.  As the order of the 

variable increases, non-linear effects manifest at an increased rate.  With regard to the 

potential presence of a chaotic structure, the structure appears faster with the higher order 

terms.  Additionally, the inclusion of third order terms will provide a basis for a true 

chaotic examination in the future.  Period three models have a guaranteed chaotic 

character (Glieck, 1987) if the system receives sufficient stimuli.  The fourth order 

variables provided a balanced likelihood of detecting non-linear, non-chaotic 

components.  The restriction of terms to fourth order and below comes from the 

balancing of detection likelihood with the number of possible variable combinations.  
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General College Readiness Variables 

The number of unique combinations regarding the general college readiness 

model differs from the previous derivation.  Since the overall model depends on all four 

sub-scores simultaneously, summing across the range of possible values of k up to n is 

not necessary.  By definition, the value of each sub-score must be assigned 

simultaneously.  In this case, a differing order corresponds to a different college readiness 

combination.  Take the set X to contain exactly two distinct elements labeled pass (P) and 

fail (F) respectively.  Exactly four mappings from X occur onto the four elements of Y.  

For this model, the set Y is the same as the previous set Y and contains four distinct 

elements corresponding to the four ACT sub-scores.  The following restrictions apply for 

this mapping.  First, every element in Y has exactly one element from X mapped to it.  As 

such, a surjective relationship exists.  Thus, each element in Y can be traced back to one 

of the two types of elements present, corresponding to which element in X is chosen.  

Based on this, a surjective relationship r: 𝑋 → 𝑌, exists with regard to the label of the 

element in X.  The lack of a unique functional mapping is inconsequential and the total 

number of possible combinations is 24 = 16 (Lavrov, 2014).  The general college 

readiness variable derivation is shown in Figure 2.   

Using Stanley’s method, the number of unique combinations corresponds to the 

sequential product of the possible choices for each element in Y.  Since each element in Y 

is independent of the others, the choice of subset in X for the next element is independent 

of the previous.  By taking the convention of M-E-R-S, the individual combinations 

become unique.  This ordering allows for classification based predictions of student 

outcomes in college algebra.   
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Figure 2. General college readiness variable derivation of PFPP. 

Note: A total of four mappings must occur from X to Y.  Repetition is allowed 

Choosing pass or fail to denote the score level for each category, the 16 possible 

combinations for the general college readiness variables are PPPP, PPPF, PPFP, PFPP, 

FPPP, PPFF, PFPF, FPPF, PFFP, FPFP, FFPP, FFFP, FFPF, FPFF, PFFF, and FFFF.  

Since pass or fail is a binary characteristic, dummy coding is not required.  This coding is 

based on the college readiness standards at Jones County Junior College of 19, 16, 18, 

and 18 respectively.  Classifications must be redefined in the context of other limits.  

Dependent Variable 

The selected dependent variable for all analyses in this study was the outcome in 

the college algebra.  This outcome was denoted by the final posted grade in the course.  

For this purpose, the pseudo-continuous values of the grade point average on a four point 

scale allowed the use of standard regression techniques.  By defining success as obtaining 
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a C or higher in the course, a prediction that is greater than or equal to two corresponds to 

a prediction of success.   

Course grade is a stable measure of the outcome in the course due to the nature of 

the community college system in Mississippi.  The Mississippi Community College 

Board establishes uniform policies regarding course objectives, grading, and articulation 

between the fifteen community colleges in the state.  Drawing on the mission of the 

community college system to enhance transfers to four-year institutions, utilization of a 

grade of C or higher as the mark for success is based on the articulation requirements in 

the state for satisfying the requirements of four year degree plans.   The uniformity of 

policies regarding community colleges in Mississippi enhances the stability of the 

variable.    

Requisite Variable 

It was initially intended to include two co-variates in the study.  However, due to 

the nature of the reporting in regard to the intermediate algebra and mathematics 

laboratory requisite courses, the initial analysis was reduced to a single co-variate.  

Further analysis revealed the lack of independence of covariance.  Due to the nature of 

the requisite variable, and the role it plays in mathematics education, this covariate was 

moved to the primary variable list and included in all analyses.  The requisite variable is 

described below.   

Beginning in the 2014 – 2015 academic year, students could be placed in one of 

two courses depending on the ACT mathematics sub-score.  Students with a sub-score of 

19 or higher were placed in college algebra.  Prior to this academic year, students with 

sub-scores below 19 were placed in intermediate algebra.  After the completion of 
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intermediate algebra, the student would be placed in college algebra regardless of their 

sub-score.  During the listed academic year, students with a 17 or 18 on the mathematics 

sub-score could also be placed directly into college algebra.  These students required a 

co-requisite mathematics laboratory to be placed into the course.  Intermediate algebra 

was not required for these students.  If the sub-score was less than 16, intermediate 

algebra was required.  Due to this, the intermediate algebra course and the co-requisite 

mathematics laboratory must be included in the study.  The purpose of this study is not to 

make comparisons regarding this variable; however, its influence is undoubtedly present, 

and thus inclusion was necessary.  Exclusion would have introduced error variance into 

the model due to its influence on the outcome for members of each placement group.     

Data Processes and Analysis 

Upon receipt of the data set, security was maintained through the use of an 

encrypted data storage device.  The storage device, and relevant data, was returned to the 

granting institution upon completion of the study.  The data analysis consisted of three 

phases: pre-processing, ANOVA, and multiple regression.  Actual data analysis consisted 

of the ANOVA and multiple regression phases.  All data phases were conducted with the 

Statistical Package for Social Sciences (SPSS) utilizing researcher written and 

preprogrammed codes that were prepared while awaiting data delivery.  Sensitivity and 

specificity calculations were performed in Microsoft Excel with researcher generated 

code.    

Pre-processing 

The pre-processing phase consisted of four components: data screening, recoding, 

correlation comparisons, and assumptions.   
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Data Screening.  First, the data was screened to check for missing or erroneous 

data points.  Extreme values were evaluated to ensure they were within the acceptable 

range of the ACT sub-scores.  The total number of missing data points was calculated at 

56, and the potential effect of exclusion on the results of the study was reviewed.  Due to 

the low number of missing data points relative to the overall sample size, the exclusion of 

cases with missing data points was inconsequential.  After the completion of data 

screening, the independent variables were calculated using the ‘recode into different 

variables’ function in SPSS.  Each calculation was manually spot checked to ensure 

accurate coding.   

Correlation Comparisons.  Based on the number of independent variables present, 

the checking of assumptions was delayed to carry out the restriction of variable 

candidates.  Restriction of variable candidates did not include the general college 

readiness components as only four variables exist in the 16 possible combinations.  First, 

the dependent variable, course outcome grade point average, was placed into a correlation 

matrix with the set of independent variables defined by the ACT sub-scores.  In the 

setting of multiple regression, the expectation is that the included independent variables 

have a high correlation to the dependent variable.  Out of the 69 variables, the 17 highest 

correlations were carried forward into the next step.  This was the result of a natural 

break point in the correlation figures. 

 The 17 independent variables carried forward were placed into a cross correlation 

matrix.  In analogous fashion to the previous matrix, the setting of multiple regression 

necessitates the limitation of cross correlation between the independent variables.  Due to 

considerable cross correlation resulting from the nature of the variables, all 17 variables 
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were carried forward as no logical exclusion criteria was apparent.  These 17 variables 

were exclusive to the four original linear variables.  As the four original variables 

constitute the comparison models, they must be included by default.   

 Analysis of Variance (ANOVA) and multiple regression carry assumptions under 

which the results must be interpreted.  Violations of assumptions may be mild or severe, 

depending on the test in question or the assumption being violated.  Overall, multiple 

regression, being an extension of Analysis of Variance (ANOVA), is robust to certain 

violations.  Given the sample size, the assumptions were not expected to be severely 

violated (Field, 2009).  A review of the assumptions is presented in Chapter IV. 

Assumptions of Correlation. Prior to the analysis, each of the assumptions of 

correlation were tested for violations.  

Variable Type 

All variables were continuous in nature. 

Linearity 

Scatterplots were used to determine the linearity of the relationship between the 

variables. 

Outliers 

Data screening was used to evaluate extreme values for consideration as outliers.  

All data points were within the accepted reporting range of the ACT score. 

Normality 

Distribution plots, skewness and kurtosis figures, and variable means were used to 

test for normality. 



 

83 

Assumptions of ANOVA.  Prior to the analysis, each of the assumptions of 

ANOVA was tested for violations. 

Normality 

Each sub-score was examined for normality through the generation of histograms 

in conjunction with skewness and kurtosis.  Given the sample size, skewness was not 

anticipated to be a problem considering the adjustment factor of 1.00 for sample sizes 

greater than 100.  The skewness value for each sub-score was evaluated in comparison to 

the normal skew of zero.  Furthermore, the kurtosis figures were compared to the normal 

kurtosis of 3.00.  Given the sample size, the kurtosis figure was expected to be of 

consequence.  However, in the event of significant kurtosis, the interpretation will be 

altered to account for kurtotic distributions.  In the event of leptokurtic distributions, the 

type I error rate will be viewed as potentially low.  Conversely, a platykurtic distribution 

will view the type I error rate as potentially high.   

Homogeneity of Variance 

This was tested with Levene’s Test of Homogeneity of Variance.  Given the 

sample size and the independence of the sub-test scores, the test is not expected to be 

significant.   

Dependent Variable Type 

The dependent variable is continuous in nature.  Each student is awarded specific 

values in the range of the dependent variable, but the sample average may be any value 

between 0.0 and 4.0 on the scale of grade point averages. 
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Random Independent Samples 

The study was conducted with a single sample of participants.  Students had four 

individual sub-scores present in the data set, however each sub-score is independent of 

the others due to the validation of the ACT testing procedures.     

Assumptions of Regression.  Prior to the analysis, each of the assumptions of 

regression were tested for violations. 

Variable Types 

The ACT sub-scores are continuous in nature.  The components in the categorical 

analyses are binary in nature removing the need for dummy coding except for the 

conversion to a numerical equivalent. 

Non-zero Variance 

All predictor variables have a non-zero variance. 

Multicollinearity 

All continuous independent variables were mean centered to maximize the 

reduction in multicollinearity.   

External Variable Correlation 

Possible external variables were considered as co-variates in the previous 

analyses.  Based on the results of this study, future studies may focus on the co-variate 

relationships.  However, for the scope of this study, unknown co-variates were not 

expected to impact the outcome variable in a systematic way.  It was initially proposed to 

include the intermediate algebra and co-requisite laboratories as a co-variate.  However, 

due to a prominent dependent variable relationship, it was decided to use this as a 

separate independent variable. 
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Homoscedasticity 

The variance of the residuals for each of the linear predictor variables was 

calculated and compared.  Predicted residuals for the dependent variable were plotted 

versus the actual residuals.  Homoscedasticity was verified visually. 

Independence of Errors 

A Durbin-Watson test was conducted and the resultant value compared to the 

expected value of 2.0 with an acceptable range of 1.0 – 3.0.  Again, due to the sample 

size, problems were not expected.   

Normality of Distributed Errors 

Skewness and kurtosis of the residuals for the independent variables were 

obtained and analyzed through standard acceptability criteria. 

Independence 

Each value of the outcome variable is a result of the scores for the individual 

participant.  Outcome variables are not correlated to other participants.   

Linearity 

Plots for each independent variable versus the dependent variable will be obtained 

and examined for linearity.   

ANOVA 

The 17 remaining independent variables were analyzed in comparison to the 

outcome variable through the implementation of a univariate ANOVA analysis.  This 

analysis compared the outcome GPA with the 18 independent variables.  The four linear 

variables, and the college readiness variables, were placed into the ANOVA for the 

testing of the homogeneity of variance assumption.  Given the nature of the study, no 
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planned contrasts were needed as the hypotheses do not specify any particular variable 

combination.  Post-hoc testing was not necessary since the variables did not contain any 

sub-groups.  Variables containing statistical significance and satisfactory effect size, 

examined on an individual basis, were carried forward into the regression analysis.   

Regression 

Regression analyses were performed to answer the research questions and test the 

research hypotheses.  For baseline comparison, a linear regression was generated for each 

of the variable M with and without the requisite variable.  Multiple regression equations 

were generated for the following combinations: M + E, E2, and the combination of 

M2E2, M3E, and E2MS.  The construction of these equations was based on the findings 

of the correlation and ANOVA analyses.  A final equation was generated using the 

dependent variable and the binary variables corresponding to college readiness.  Each 

regression analysis included the requisite variable except as noted.  The results from each 

of the multiple regression analyses were compared to the baseline model currently used 

in college algebra advisement, the ACT mathematics sub-score.  Sensitivity and 

specificity tables were used to examine the accuracy of each model compared to the 

baseline model. 

Conclusion 

This study was designed to provide a detailed analysis of the prediction potential 

in the ACT sub-scores.  By examining direct correlations and general college readiness, 

the ACT resource can be fully appreciated and utilized.  The generation of predictor 

equations with a limited number of independent variables, all of which may be calculated 

easily in a pre-developed graphical user interface (GUI), or spreadsheet, enhances the 
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probability of utilization in the advisement setting.  Furthermore, the analyses presented 

above allow for the recalculation of the equations after the four year time frame expires 

through the syntax which will be developed in the SPSS program.   
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CHAPTER IV – RESULTS 

General Descriptive Statistics of the Sample 

The results shown below are based on 1,266 cases of students attending Jones 

County Junior College and enrolling in college algebra based on the requirements 

outlined in Chapter III.  For this sample, the mean ACT sub-scores were 18.53 for the 

mathematics sub-score with a standard deviation of 3.08, 19.90 for the English sub-score 

with a standard deviation of 4.78, 20.61 for the reading sub-score with a standard 

deviation of 4.62, and 20.19 for the science sub-score with a standard deviation of 3.37.  

The mean final grade point average for the sample was 2.33 with a standard deviation of 

1.21.  All four sub-scores were spread over the average range [6.75, 34.75].  The 

narrowest range of 24 occurred in the mathematics sub-score and the maximum range of 

31 occurred in the reading sub-score.  The final grade point average varied over the full 

range of the variable, [0.0, 4.0].  The four sub-scores had mild positive skews in all four 

areas and were moderately platykurtic.  This indicates a clustering of the more extreme 

scores in the positive tail of the distributions.  Visual analysis verified this, and it is 

consistent with the requirement of college algebra in non-scientific fields where students 

with skill sets above college algebra opt to take the minimum mathematics course 

required in their field.  Thus, the distributions of the sample are explainable in the general 

student population.  The final grade point average revealed a mild negative skew and 

platykurtic distribution.  This is likely due to the same group of students causing the sub-

score skew above underperforming in college algebra due to lack of interest or 

application of abilities from a perceived lack of purpose.  However, it is consistent with 

the student population in general and thus not considered to be problematic.   
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Verification of Assumptions 

Correlation Assumptions 

Three of the processes in this study carried assumptions which were verified prior 

to proceeding with the analysis.  These included the correlation, ANOVA, and multiple 

regression processes.  All assumptions of correlation were satisfied with regard to the 

dependent variable correlations to the independent variables.  The inter-correlations of 

the independent variables were very strong, typically larger than .800.  This was expected 

due to the internal construction of the independent variables.  Thus, the full set of 17 

variables was carried forward and restricted through the assumptions of ANOVA.     

ANOVA Assumptions 

Two of the four assumptions of ANOVA were found to be satisfactorily met.  The 

normality of variance contained a minor violation with regard to the kurtosis figures of 

the distributions.  Distributions of the variables contained a platykurtic character.  This 

was not extreme and will be accounted for in Chapter V through a conservative analysis 

of the ANOVA and regression results due to the increased probability of a type I error.   

 The violation of the homogeneity of variance assumption was more severe.  Due 

to the exponentially increasing spread of the data with subsequent increases in order, 

many of the independent variables carried forward from the correlation with the 

dependent variable failed Levene’s test of homogeneity of variance.  Alternative 

processes were considered due to the severity of the violation including non-parametric 

analyses such as Friedman’s ANOVA.  After considering these options and further 

reviewing the data, only the variables with non-significant results on the Levene’s test 

were carried forward.  Three exceptions to this are present in the analysis.  The three 
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variables M2E2, E2MS, and M3E were statistically significant in the ANOVA despite 

failing Levene’s test.  A separate regression was carried out with these three variables.  

The violation of homogeneity of variance will be accounted for in the analysis of the 

regression results in Chapter V.   

Regression Assumptions 

All of the assumptions of regression were satisfied except for homoscedasticity, 

independence of errors, and linearity.  The violations of homoscedasticity were visually 

evaluated through scatterplots.  The linearity was deemed low, but a non-linear 

relationship was not seen in the scatterplots.  As such, violation of this assumption will 

result in lower accountings of variability in the regression models.  Likewise, the 

violation of homoscedasticity is minor.  The degree of violation is not expected to be a 

strong influence on the results of the study. 

 The violation of independence of errors was more severe.  All of the Durbin-

Watson test results were less than one.  This signifies a meaningful time sequence in the 

observation of the variables.  Due to the magnitude of the Durbin-Watson values, the 

impact of this time sequence is considerable and likely based on the implementation of 

the ACT as a whole.  While the study takes the four sub-scores of the ACT to be assigned 

simultaneously, simultaneous assignment is not actually the case.  Each subject area is 

given in a particular order, generally with the reading comprehension and science 

reasoning sections coming last.  Fatigue and other testing issues would likely contribute 

to alterations in the performance of the student on these sections.  As a result, the errors 

likely tend to cluster in the latter portions of the test.  This violation is likely the 

explanation for the noted lack of the reading comprehension and science reasoning scores 
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in the final analysis.  This will be accounted for in the limitation and further study section 

of Chapter V.        

Correlations for Variable Restriction 

Correlation of the dependent variable with all independent variables revealed 

positive, statistically significant correlations for the full complement of independent 

variables in the study.  Each set of variables was examined independently of the other 

sets to ensure the necessary variables were carried forward in the analysis.  In the overall 

analysis of the variables, all four linear variables were carried forward to ensure a sound 

comparison basis for the remaining models.  The mathematics and English sub-scores 

have considerably higher correlations with the outcome than the reading comprehension 

and science reasoning sub-scores.  All of the linear variables carried statistical 

significance of p < .001.  Correlations for the linear variables are shown in Table 6. 

Table 6  

Correlation of  College Algebra GPA with Linear Variables 

________________________________________________________________________ 

Variable   r   p-value   

________________________________________________________________________ 

 E    .350   <.001 

 M    .324   <.001 

 R    .284   <.001 

 S    .282   <.001 

________________________________________________________________________ 

Note: All variables were carried forward for the baseline analysis.  ANOVA restriction was also applied to this set of variables. 
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The general college readiness variable also showed statistically significant 

correlations in all four areas.  All sub-score areas carried a weaker correlations than their 

exact sub-score counterparts.  In contrast to the exact sub-scores, the mathematics and 

science general readiness scores were more highly correlated to the outcome grade than 

the English and reading general readiness scores.  However, since general college 

readiness constitutes a major area of emphasis in education, all four variables were 

carried into the ANOVA analysis without restriction.  All of the general college readiness 

variables carried statistical significance of p < .001.  Correlations for the general college 

readiness variables are shown in Table 7. 

Table 7  

Correlation of the GPA with General College Readiness Variables 

________________________________________________________________________ 

Variable   r   p-value   

________________________________________________________________________ 

 MGCR    .303   <.001 

 SGCR    .259   <.001 

 EGCR    .213   <.001 

 RGCR    .193   <.001 

________________________________________________________________________ 

Note: All variables were carried forward for the baseline analysis.  ANOVA restriction was also applied to this set of variables. 

The self-multiplicative and cross-multiplicative combinations carried statistical 

significance across the complete complement of variables.  Due to the constraints of the 

study, and the need to limit the variables carried forward, the correlation figures were 

examined to determine if a natural, logical break point was present.  Two criteria were 
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used in determining the location of the division of this set of variables.  First, correlations 

with r < 0.300 were removed due to the weak relationship.  A natural break point was 

present at r = 0.325; however, this would have greatly increased the number of variables.  

This was further refined to remove any correlation with r < 0.330 due to the balancing of 

the number of variables.  Due to the systematically high inter-correlations that were 

present, the previous break point provided the best balance of the two considerations.  In 

total, 17 of the independent variables, one self-multiplicative combination and 16 cross-

multiplicative combinations, were carried forward to the ANOVA process.  All of the 

self-multiplicative and cross-multiplicative variables carried statistical significance of p < 

.001.  Correlations for the 17 self-multiplicative and cross-multiplicative combinations 

are shown in Table 8. 

Table 8  

ACT Outcome Correlations for ANOVA Input Variables 

________________________________________________________________________ 

Variable   r   p-value   

________________________________________________________________________ 

 ME    .372   <.001  

 M2E    .355   <.001  

 MES    .354   <.001  

 E2M    .352   <.001  

 ES    .350   <.001  

 MER    .346   <.001  

 E2    .342   <.001  
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Table 8 (continued). 

________________________________________________________________________ 

Variable   r   p-value   

________________________________________________________________________ 

 M2E2    .341   <.001  

 E2S    .338   <.001   

 MR    .338   <.001  

 M2ES    .338   <.001  

 E2MS    .336   <.001  

 M2ER    .336   <.001  

 M3E    .335   <.001  

M2R    .334   <.001  

MS    .331   <.001  

 ER    .331   <.001  

________________________________________________________________________ 

Note: Variables are ordered in decreasing magnitude of the correlation strength for purposes of determining selection for the ANOVA 

analysis.  Variables not carried forward are omitted from the table for brevity.  A complete listing of the correlations can be found in 

the Appendix B Table A1. 

ANOVA for Variable Restriction 

Failure of Levene’s test for homogeneity of variance resulted in the exclusion of 

14 variables from the set of self-multiplicative and cross-multiplicative combinations.  In 

all 14 instances, the variables had non-significant F-statistics and thus were excluded due 

to two criteria.  The three remaining variables, M2E2, E2MS, and M3E, were carried 

forward into an isolated regression due to the failed homogeneity of variance test, but a 

considerable effect size was present.  Further discussion of this will be in Chapter V.  The 
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remaining ANOVA analyses had satisfactory homogeneity of variance but resulted in the 

exclusion of two linear variables, R and S, and one general college readiness variable, 

RGCR, from further analysis.  In every case, except M2E2, E2MS, and M3E, the 

variables suffered from considerably weak effect sizes.  Given the larger effect sizes for 

the M2E2, E2MS, and M3E variables, despite the possibility of severely unstable 

predictions and inflated type I errors, these variables warrant an additional step in the 

analysis.   The remaining variables from the ANOVA analyses failed to pass Levene’s 

test, did not achieve statistical significance, and were subsequently excluded from further 

analysis.  The ANOVA analyses are shown in Table 9. 

Regression Models 

Six regression models were generated with the variables brought forward from the 

ANOVA analysis.  All of the regression models suffered from low R2 values.  On 

average, the models accounted for 13% of the variation present in the model.  The low 

effect sizes observed in the ANOVA analyses manifested in the small magnitude 

unstandardized β-coefficients.  In multiple cases, the unstandardized β did not have 

statistical significance in the regression model.  Also of note, the requisite variable, due 

to an inverse correlation, -.210 at p < .001, is included in all five of the regression 

models.  This was expected as the variable is typically associated with lower achieving 

students.  Despite achieving satisfactory grades in the intermediate algebra course, and 

being placed in the course due to the completion of remediation, these students often lag 

behind their direct placement counterparts in college algebra.  Even without statistical 

significance in some models, it is an important practical variable.  The six regression 

models, R2 values, and unstandardized β-coefficients are shown in Tables 10 – 12.   
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The composition of the regression models is intended to maximize the component 

of practical applicability.  Specifically, three criteria were used to determine the exact 

model composition.  These criteria were ease of applicability, Levene’s test and ANOVA 

results, and the design of the current study.  Based on these criteria, the E2 model is 

separate from the other non-linear variables.  The remainder of the models followed the 

guidelines outlined in Chapter III.   

Table 9  

ANOVA Results for Variables with Statistical Significance 

________________________________________________________________________ 

Variable Levene  F-value df  η2  p 

________________________________________________________________________ 

 M  Pass  2.791  19, 1164 .044           <.001 

E  Pass  1.733  28, 1167 .023  .011 

E2  Pass  7.082  29, 1236 .142           <.001 

E2MS  Fail  1.658  664, 601 .570  .012 

M3E  Fail  1.814  245, 1020 .303           <.001 

M2E2  Fail  2.317  169, 1096 .263           <.001  

MGCR  Pass  31.388  1, 1261 .024           <.001 

EGCR  Pass  12.165  1, 1261 .010  .001 

RGCR  Pass  11.289  1, 1261 .007  .003 

________________________________________________________________________ 

Note: The failed homogeneity of variance test is addressed in the interpretation of the model using these variables.  Only variables 

with statistically significant F-statistics are reported here for brevity.  A complete listing of the ANOVA results can be found in the 

Appendix B Table A5. 
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Table 10  

Regression Table for Stable Variable Models 

________________________________________________________________________ 

Variable           Unstandardized β            p-value    

________________________________________________________________________ 

Math Model     R2 = .138    

Constant           2.267  

M_Cent             .003             <.001    

Math Model     R2 = .139    

Constant           2.302  

M_Cent             .003             <.001 

Requisite             -.092    .228 

Math and English Model     R2 = .139    

Constant           2.304   

M_Cent             .003             <.001 

E_Cent             .0004    .455 

Requisite             -.099    .197 

English Squared (E2) Model     R2 = .125    

Constant           2.369  

E2_Cent             .002             <.001 

Requisite             -.252             <.001 

________________________________________________________________________ 

Note: All variables used in the regression model were mean centered to reduce multicollinearity.  
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Table 11  

Regression Table for General College Readiness 

________________________________________________________________________ 

Variable   Unstandardized β  p-value   

________________________________________________________________________ 

 Constant                                1.695  

MGCR    .593    <.001 

EGCR    .316    .001 

RGCR    .242    .004 

Requisite   -.090    .265 

________________________________________________________________________ 

Note: General college readiness variables are binary and thus centering was not necessary.  R2 = .117. 

Table 12  

Regression Table for Unstable Variable Model 

________________________________________________________________________ 

Variable   Unstandardized β  p-value   

________________________________________________________________________ 

 Constant   2.352  

M3E    1.24x10-6   .327 

E2MS    1.57x10-6   .264 

M2E2    1.43x10-7   .949 

Requisite   -.196    .010 

________________________________________________________________________ 

Note: The predictions of this model can vary considerably with very small changes in the initial conditions.  R2 = .123. 
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Sensitivity and Specificity of the Models 

Each model was used to calculate the predicted outcome of the course based on 

the scale of pass or fail.  Using Microsoft Excel programming, sensitivity and specificity 

figures were calculated for each of the six models generated in the regression analyses.  

Overall, the models had an average sensitivity of 80.3% and an average specificity of 

35.8%.  However, the range of the sensitivity figures in the models, [77.4, 81.7] was 

considerably tighter than the range of the specificity figures, [30.3, 38.8].  This is 

expected due to the utilization of the ACT scores almost to exclusion in this study.  

Prediction models with the ACT scores generally have considerably better sensitivity 

than specificity.  Since the variables are based on the ACT scores, it is understandable 

that this tendency carried forward through the analysis and manifested in the results.  

Sensitivity and specificity figures are shown in the Tables 13 – 18.  In addition to the 

regression models, the current placement parameter, an ACT mathematics sub-score 

greater than 19, was used to calculate sensitivity and specificity figures for comparison to 

the regression models.  Predictions for the current model are shown in Table 19. 

 The predictions for the current model seen in Table 19 illustrate the problem with 

single parameter predictions.  The sensitivity and specificity figures are consistent with 

the models generated in this study; however, they are at the extremes of the upper range 

in sensitivity and the lower range in sensitivity.  Despite being consistent with the models 

in these figures, the current placement structure, when used to exclusion, brings in the 

problem of incorrectly classifying students.  When examining the figures in Table 19, it is 

necessary to consider the actual pass – fail rate of this sample which was 970 (76.6%) 

and 296 (23.4%) respectively. 
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Table 13  

Sensitivity and Specificity of the Math Model 

________________________________________________________________________ 

 Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

Actual Outcome   Pass   Fail    

         _________________________________ 

 

Predicted Outcome         

   Pass   885 (77.4%)  259 (22.6%) 

  Fail   85 (69.7%)  37 (30.3%) 

________________________________________________________________________ 

Note: This model includes the mathematics score without consideration of the requisite variable. 
 

Table 14  

Sensitivity and Specificity of the Math with Requisite Model 

________________________________________________________________________ 

 Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

Actual Outcome   Pass   Fail    

         _________________________________ 

 

Predicted Outcome         

   Pass   740 (80%)  185 (20%) 

  Fail   230 (67.4%)  111 (32.6%) 

________________________________________________________________________ 

Note: This model considers the requisite variable in conjunction with the mathematics sub-score. 

 



 

101 

Table 15  

Sensitivity and Specificity of the Math and English Model 

________________________________________________________________________ 

 Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

Actual Outcome   Pass   Fail    

         _________________________________ 

 

Predicted Outcome         

   Pass   776 (81.7%)  174 (18.3%) 

  Fail   194 (61.4%)  122 (38.6%) 

________________________________________________________________________ 

Note: The reading and science sub-scores were excluded, due to a lack of statistical significance in the ANOVA.  The requisite 

variable is included in this model. 

Table 16  

Sensitivity and Specificity of the E2 Model 

________________________________________________________________________ 

 Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

Actual Outcome   Pass   Fail    

         _________________________________ 

 

Predicted Outcome         

   Pass   781 (81.0%)  183 (19.0%) 

  Fail   189 (62.6%)  113 (37.4%) 

________________________________________________________________________ 

Note: The variable E2 is the squared English sub-score.  The requisite variable is included in this model. 
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Table 17  

Sensitivity and Specificity of the M3E/E2MS/M2E2 Model 

________________________________________________________________________ 

 Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

Actual Outcome   Pass   Fail    

         _________________________________ 

 

Predicted Outcome         

   Pass   789 (80.6%)  190 (19.4%) 

  Fail   181 (63.0%)  106 (36.9%) 

________________________________________________________________________ 

Note: This model is most likely highly unstable and sensitive to initial conditions, due to a violation of homogeneity of variance.  The 

requisite variable is included in this model. 

 

Table 18  

Sensitivity and Specificity of the General College Readiness Model 

________________________________________________________________________ 

 Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

Actual Outcome   Pass   Fail    

         _________________________________ 

 

Predicted Outcome         

   Pass   798 (81.0%)  187 (19.0%) 

  Fail   172 (61.2%)  109 (38.8%) 

________________________________________________________________________ 

Note: General college readiness excluded the science sub-score, due to a lack of statistical significance in the ANOVA.  The requisite 

variable is included in this model. 
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Table 19  

Sensitivity and Specificity of the Current Placement Model 

________________________________________________________________________ 

 Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

Actual Outcome   Pass   Fail    

         _________________________________ 

 

Predicted Outcome         

   Pass   428 (88.6%)  55 (11.4%) 

  Fail   542 (69.2%)  241 (30.8%) 

________________________________________________________________________ 

Note:  The cutoff for placement without consideration of the requisite variable is a mathematics sub-score of 19. 

 

The regression models differ from the currently used predictor models in college 

algebra in the number of cases where students were incorrectly classified.  The figures for 

these students vary in two ways.  First, the group of students wrongly predicted to fail 

decreases considerably between the regression models as compared to the current 

placement parameter.  However, the number of students wrongly predicted to pass 

increases by a factor of three to five times over the current model.  Based on these results, 

the generated models are balanced with the current model in benefit versus risk.  Use of a 

particular model should be governed whether the goal is classification or preventing a 

wrong classification.  Many factors come into play in this type of analysis which are 

beyond the scope of this study and likely beyond the ability of the ACT scores to 

adequately measure.  Overall, the exclusion of the majority of variables due to a lack of 

homogeneity of variance and statistical significance considerably hinders the 
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development of newer models from this study.  However, the sensitivity and specificity 

tables provide a new interpretation of the current placement models, and these results 

provide a measure of validation of the current placement parameters.  Many of the results 

in this study are supported by the previous findings in the literature, particularly the 

inclusion of the English sub-score as a prominent parameter in placement of students in 

college algebra.  This will be examined further in Chapter V. 
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CHAPTER V – DISCUSSION 

Hypothesis Tests 

Acceptance, or rejection, of the research hypotheses was undertaken based on the 

results presented in Chapter IV.   

Hypothesis one stated that cross-multiplicative combinations of the ACT sub-

scores would significantly correlate with college algebra success.  Based on the 

correlations presented in Table 8 and Appendix B Table A4, this hypothesis is accepted.  

All cross-multiplicative variable correlations with the outcome grade in college algebra 

had positive correlations, although mild to moderate in magnitude, with statistical 

significance at the p < .001 level.  Of the 69 variable combinations developed in this 

study, 53 were cross multiplicative combinations. 

Hypothesis two stated that self-multiplicative combinations of the ACT sub-

scores would significantly correlate with college algebra success.  Based on the 

correlations presented in Table 8 and Appendix B Table A4, this hypothesis is accepted.  

All self-multiplicative variable correlations with the outcome grade in college algebra 

had positive correlations, although mild to moderate in magnitude, with statistical 

significance at the p < .001 level.  Of the 69 variable combinations developed in this 

study, 12 were cross multiplicative combinations. 

Hypothesis three stated that cross-variable combinations of the ACT sub-scores 

would have higher correlations with college algebra success than the self-multiplicative 

combinations of the ACT sub-scores.  Based on the correlations presented in Table 8 and 

Appendix B Table A4, this hypothesis is accepted.  Of the 17 constructed variables 

carried forward into the ANOVA analysis, 16 were cross-variable combinations.  
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Inclusion of the linear variables would add one additional self-multiplicative variable to 

the list.  However, this variable, M, would be the fifth highest correlation given its 

inclusion.  Considering that M is not a true self-multiplicative variable, this inclusion is 

not warranted.   

Hypothesis four stated that the inclusion of significantly correlated cross-variable 

and self-multiplicative sub-scores in the regression model would give predictions of 

college algebra success that are significantly different than predictions of the linear 

regression model of the ACT mathematics sub-score alone.  Based on the R2 values 

reported in Tables 10 – 12, and the sensitivity and specificity analyses reported in Tables 

13 – 18, this hypothesis is rejected.  All models involving self-multiplicative and cross-

multiplicative variables accounted for approximately the same amount of variance as 

their linear counterparts and the sensitivity and specificity figures, although numerically 

better, carry no practical benefit over their linear counterparts.   

Hypothesis five stated that the overall general college readiness model would 

provide better predictions of college algebra success than the ACT mathematics sub-

score alone.  Based on the results reported in Tables 13 – 18, this hypothesis is accepted.  

The general college readiness model had an improvement in specificity of over 8%, and a 

global decrease in the percentage of erroneous placement predictions based on this 

sample.   

Hypothesis six stated that there will be no statistically significant difference in the 

model predictions containing higher order terms when compared with the predictions of 

college algebra success using overall college readiness.  Based on the results reported in 

Tables 13 – 18, this hypothesis is accepted.  Sensitivity and specificity figures show that 
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the general college readiness model and the models containing higher order terms are 

roughly equivalent in the percentages of correctly, and incorrectly, predicted outcomes.    

Research Questions 

The results presented in Chapter IV and the results of the hypothesis tests were 

used to answer the research questions addressed by this study.   

 Research question one asked if cross-variable or self-multiplicative 

combinations of the ACT sub-scores correlated with mathematical success.  Based on the 

results presented here, cross-multiplicative and self-multiplicative terms do have a 

positive, statistically significant correlation with mathematics success.   

Research question two asked if cross-variable or self-multiplicative combinations 

of the ACT sub-scores correlated better with college algebra success than the 

mathematics sub-score.  Based on the results presented here, there are four cross-

multiplicative variables that have higher correlations with mathematical success than the 

ACT mathematics sub-score.  These were ME, M2E, MES, and E2M.  None of the self-

multiplicative combinations had higher correlations than the mathematics sub-score.  

Considering the r-values of these four scores when compared with the mathematics sub-

score, only ME correlates at a considerably higher level, .372, when compared to the 

mathematics sub-score, .350.  Given the nature of the results of this study, and the fact 

that both the mathematics and English linear sub-scores both correlated very highly with 

mathematics success, this is likely a natural consequence of the combination used.   

 Research question three asked if the inclusion of multiplicative combinations of 

the ACT sub-scores, second through fourth order terms, improved the predictions of 

outcome in college algebra as compared to the linear regression of the ACT mathematics 
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sub-score.  Given the limited number of variables carried forward from the ANOVA 

analysis, this question is inconclusive.  However, given the sensitivity and specificity 

predictions for the non-linear variables carried forward, it is doubtful that the inclusion of 

higher order combinations will present any better results than currently obtained through 

the linear models.   

 Research question four asked if overall general college readiness would provide a 

better prediction of college algebra success than the mathematics sub-score.  Based on the 

results presented here, general college readiness does provide a better prediction of 

college algebra success than the mathematics sub-score model alone.  In particular, the 

percentage of erroneous predictions decreases considerably.   

 Research question five asked if the overall general college readiness could predict 

college algebra success better than the model that includes cross-variable and self-

multiplicative combinations of the sub-scores.  Based on the results presented here, there 

is no practical difference between the general college readiness model and the models 

containing the cross-multiplicative and self-multiplicative variables.   

Withdrawals 

 The number of withdrawals from the college algebra course constituted a 

considerable portion of the reported data set.  Considering the number of students who 

withdrew from the course in this sample, 675, and the prevailing difficulty of 

incorporating a grade of W into a grade point average calculation, a subsequent analysis 

was warranted to determine if the ACT scores could be used to predict the probability of 

a student withdrawing from the course.  In many cases, getting the student to persist in 

the course can be the key to success as opposed to the actual abilities of the student.  As 
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such, predicting a withdrawal may provide a more practical application of the ACT 

scores that predicting the outcome of a student that persists in the course.  A logistical 

regression model, using withdrawal as a binary outcome was constructed and analyzed in 

order to incorporate the students with a grade of W into the context of this study.  Using 

the four linear sub-scores of the ACT, the logistical regression was statistically 

significant at the p < .05 level.  With regard to the ACT sub-scores, only the English sub-

score carried statistical significance in the regression.  The prediction equation for this is 

based on an exponential function and is given below. 

Probability of Withdrawal (PW) = 𝑒
0.497−0.008∗𝑀−0.078∗𝐸+0.026∗𝑅−0.004∗𝑆

1.497−0.008∗𝑀−0.078∗𝐸+0.026∗𝑅−0.004∗𝑆 

Overall, the model was very good at predicting a student who would persist based on the 

ACT scores.  Predictions regarding which students would not persist based on the ACT 

scores were extremely poor.  These results are presented in Table 20.   

Table 20  

Sensitivity and Specificity of the Logistic Withdrawal Equation 

________________________________________________________________________ 

 Outcome Type          Sensitivity        Specificity 

________________________________________________________________________ 

Actual Outcome   Persist   Withdraw   

         _________________________________ 

 

Predicted Outcome         

   Persist   1265   645 

  Withdraw  36   30 

________________________________________________________________________ 

Note: This includes all 1,976 students in the reported data. 
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M3E/E2MS/M2E2 Model 

The model incorporating the three cross-multiplicative variables carried forward 

through the analyses is a highly unstable model.  This is due to the severe violation of 

homogeneity of variance present in the ANOVA with these variables.  Under normal 

conditions, this would render the model useless.  At the minimum, the predictions made 

by the model are highly dependent upon initial conditions, can vary considerably with 

their predictive sensitivity and specificity, and are at a profound risk of type I error.  

However, given the interpretational lens of Chaos Theory, this model bears further 

scrutiny with regard to the potential chaotic nature.  With this model, the prediction 

equation is given below.   

Outcome GPA (OGPA) = 2.352 + 1.24x10-6*M3E_Cent + 1.57x10-6*E2MS_Cent + 

1.43x10-7*M2E2_Cent - .196*Requisite  

Three distinct characteristics of this equation support the further examination of 

its potential chaotic properties.  Since regression translates instability into other forms, a 

chaotic nature may not be readily apparent.  It is hasty to dismiss the idea of an 

underlying chaotic principle.  The equation can be partially factored and placed in the 

following form.  It should be noted that the factor pulled out of the equation is the 

variable with the highest correlation to college algebra success in this study.    

Outcome GPA (OGPA) = 2.352 – 0.195*Requisite + M_Cent*E_Cent*(1.31x10-6* 

M2_Cent + 1.66x10-6*ES_Cent + 1.43x10-7*M2E2_Cent) 

The presence of a second order factor could indicate a driving factor that, when pushed to 

extremes, would be suggestive of underlying chaotic tendencies in the prediction of 

college algebra success and the completion of the course.  This is not conclusive, but 
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merely suggestive that more research is indicated in this area as many chaotic systems fit 

the form above where the driving factor can be mathematically extracted from the 

variables.  This is seen prominently in the time dependent, growth-difference equations in 

population biology.   

Appropriateness of the Lens 

Whether or not the lens of Chaos Theory is appropriate depends on the scale of 

the problem examined.  In the context of this study, given the results present in the ACT 

sub-scores, the lens of Chaos Theory is likely not the best choice.  The problem lies in the 

static approximation of the study versus the context of Chaos Theory.  In chaotic systems, 

the outcomes of the system are highly dependent on initial conditions, but they also 

change with time.  As time progresses, each experience, much like previous experience in 

college algebra, alters the outcome of the next.  In the context of biological systems, 

growth-difference equations determine the population density for the next growth year.  

As such, a change over time is a prerequisite for a truly chaotic system.  The first 

suggestions of this were seen in the study where the violation present in the Durbin-

Watson statistics indicated observations which were changing in time.  Since the study 

was designed to treat the events as static and simultaneous, it was not designed to 

definitively detect the presence of a chaotic system.  However, given the poor accounting 

of variability in the models, both linear and non-linear, it is not possible to definitively 

state that a chaotic interpretation is inappropriate in a longitudinal study of a restricted 

sample of college algebra students over the course of a term with more variables included 

in the analysis.  Furthermore, the likelihood is that a longitudinal analysis of students 

progressing through a course sequence, where performance in a previous course would 
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influence performance in the next course, would be a more appropriate use of the Chaos 

Theory lens.  A final note of support for the examination of a chaotic interpretation in 

other research comes from the equivalent predictions of the general college readiness and 

the non-linear variables.  Even though the conclusions are not definitive with these 

models, the presence of similar results in both models refers back to the fractal 

interpretation of Chaos Theory.  Due to the results presented earlier, except for the 

analysis of the M3E/E2MS/M2E2 model, further use of the Chaos Theory lens is not 

indicated in this study.   

Interpretations 

The results of this study do not demonstrate a conclusively better method for 

predicting college algebra success when compared to the use of the ACT mathematics 

sub-score alone in the context of regression.  With so many factors influencing the 

success of a student in the course, perhaps the largest one being the fact that most 

students who take college algebra are not STEM majors, it is more difficult to predict the 

outcome of this course than a higher level mathematics course where ability levels and 

interest are more consistent among the sample and thus removed from the prediction 

model.  Furthermore, the sensitivity and specificity predictions between the current 

methods and the proposed models vary considerably depending on what the advisor is 

looking to determine.  As such, it is highly recommended that the goals of advisement be 

determined prior to the student arriving for placement into the college algebra class in 

order to prevent the exacerbation of frustrations on the part of the advisor and the student.  

To this end, the following interpretations and implications are offered in the context of 

the results presented in Chapter IV.   
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Predicting a Pass 

When predicting a pass, in terms of sensitivity, the models presented in this study 

are decidedly inferior to the current method of using the ACT mathematics sub-score.  

The current model is very conservative in predicting a passing grade for a student in 

college algebra.  As a result, the current predictor model is more accurate at predicting 

which students will pass and has fewer erroneous pass predictions.  Based on this, the 

continued use of the present model in placement students predicted to pass is supported.   

Predicting a Fail 

When predicting a fail, in terms of specificity, the models presented in this study 

are superior to the current model.  Each of the alternative models in this study are roughly 

equivalent in specificity predictions, and therefore the choice of a model is at the 

discretion of the advisor.  Furthermore, the benefits of these models extend into a 

considerably decreased number of erroneous fail predictions.  This further indicates that 

the current model is insufficient to determine when a student is not properly prepared to 

succeed in the course.   However, the term insufficient is relative in this case.  While 

these models do have higher specificity, they suffer large increases in the number of 

students erroneously predicted to pass.   

General College Readiness Model 

The general college readiness model does not provide any practically different 

predictions from the other models present in this study.  It follows the same general trend 

as the other models reflecting a loss of sensitivity in favor of increased specificity.  

However, as with the other models, the rate of erroneous predictions with the general 

college readiness models is balanced between erroneous pass and erroneous fail 
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predictions.  In comparison to the current model, it is best to consider the exact goal of 

implementing the model before deciding on which model to use. 

When considering a general college readiness model, it is necessary to examine 

the utilization of placement cut-off scores instead of regression based prediction models.  

Calculations involving each of the four sub-scores show that the college readiness cut-off 

scores provide comparable amounts of sensitivity and specificity across the four subject 

areas.  As was previously noted, the mathematics sub-score alone provides the best 

sensitivity when using a cut-off placement model.  However, each of the other sub-scores 

provides a higher specificity rating, albeit at the expense of decreased sensitivity in the 

model.  The rate of erroneous failing predictions decreases by over 60% when compared 

with the mathematics sub-score, but the three remaining sub-scores carry an increased 

rate of erroneous pass predictions when compared to the mathematics sub-score.  These 

results are shown in Table 21.   

Table 21    

Sensitivity and Specificity Comparisons of the Four ACT Sub-scores 

________________________________________________________________________ 

 Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

Math 

 

Actual Outcome  Pass   Fail    

    _________________________________ 

 

Predicted Outcome         

   Pass   428 (88.6%)  55 (11.4%) 

  Fail   542 (69.3%)  241 (30.7%) 
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Table 21 (continued). 

________________________________________________________________________ 

Outcome Type          Sensitivity       Specificity 

________________________________________________________________________ 

English 

 

Actual Outcome  Pass   Fail    

    _________________________________ 

 

Predicted Outcome         

   Pass   819 (79.5%)  211 (20.5%) 

  Fail   151 (64.0%)  85 (36.0%) 

Reading 

 

Actual Outcome  Pass   Fail    

    _________________________________ 

 

Predicted Outcome         

   Pass   769 (80.5%)  186 (19.5%) 

  Fail   201 (64.6%)  110 (35.4%) 

Science 

 

Actual Outcome  Pass   Fail    

    _________________________________ 

 

Predicted Outcome         

   Pass   810 (79.0%)  215 (21.0%) 

  Fail   160 (66.4%)  81 (33.6%) 

________________________________________________________________________ 

Note: The individual sub-scores are binary coded and counted to give the percentages.    
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The general college readiness model enables the use of a classification table based on the 

binary coding of the four sub-scores.  The cumulative pass percentage, fail percentage, 

and odds ratio for each of the possible combinations is given in Table 22.  While some of 

the combinations do not contain sufficient data points to consider the overall structure to 

be reliable, the structure reveals two results that are important for the placement of 

students in college algebra.  First, a counterbalancing effect is possible when this 

classification method is used.  This is observed in the higher passing percentages even in 

the student with a deficient mathematics sub-score.  This counterbalancing enables 

advisors faced with a deficient mathematics sub-score to ascertain the odds of passing for 

the student in question and render appropriate advisement.  Second, even students on the 

lower range of college readiness have passing odds that are marginally in their favor.  

This suggests that factors other than test scores play a considerable role in the success of 

a student in college algebra.  However, it must be considered that these marginally 

favorable odds are based on students having the intermediate algebra prerequisite or the 

laboratory co-requisite.     

Implications 

  The results of this study carry several prominent implications for further study 

and consideration with regard to placement in college algebra.   

1. If the current model predicts that a student will pass, further analysis is not 

necessary unless prominent issues present themselves which are of concern to 

the advisor.   
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Table 22  

Classification Table for General College Readiness Combinations 

________________________________________________________________________ 

Combination  Pass Probability Fail Probability N  Odds 

________________________________________________________________________ 

PPPP   .8927   .1073   410  8.32 

PPPF   0   .1000   10  0 

PPFP   .8286   .1714   35  4.83  

PFPP   .1000   0   3  * 

FPPP   .7540   .2460   378  3.06 

PPFF   .6667   .3333   3  2.00  

PFPF   .1000   0   2  * 

FPPF   .7286   .2714   70  2.68 

PFFP   .8571   .1429   14  6.00 

FPFP   .6375   .3625   80  1.76 

FFPP   .6327   .3673   49  1.72 

FFFP   .5893   .4107   56  1.43 

FFPF   .6667   .3333   33  2.00 

FPFF   .5909   .4091   44  1.44 

PFFF   .8333   .1667   6  5.00 

FFFF   .5890   .4110   73  1.43 

________________________________________________________________________ 

Note: *Odds ratios could not be calculated due to the lack of negative outcome data elements.  Students constituting the lower 

combinations have taken intermediate algebra or the concurrent laboratory experience. 
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2. If the current model predicts that a student will fail, the advisor should 

consider alternative evaluation techniques before placing the student into 

remedial coursework.  The use of other models with better specificity would 

help the advisor render a recommendation to the student regarding placement.  

Support for this is drawn from the literature in the recommendation of a co-

requisite laboratory over remedial coursework (Remediation, 2012). 

3. The presence of intermediate algebra constitutes a negative correlation with 

the outcome of the student in college algebra, and it should be a warning sign 

to the advisor before placing the student in that course.   

4. When faced with uncertain circumstances, the consultation of the English sub-

score is supported by this study and previous studies in the literature, Case, 

1987 and Hatch, 1981.   

5. The continued correlation of the English score to the outcome in college 

algebra is suggestive of similar systematic approaches in the two subjects.   

6. The results of this study indicate that the ACT scores possess a limited 

amount of predictive potential, and their value, particularly regarding the 

specificity of predictions, should not be overemphasized.   

7. When using ACT scores alone, it is not likely that sensitivity and specificity 

will increase to the point of obtaining a satisfactory single model. 

8. The literature has indicated that the inclusion of non-cognitive parameters is 

not only beneficial, but likely necessary, to improve the outcome predictions 

of the college algebra course.   
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9. Given the odds ratios of the classification table, the presence of 

counterbalancing is a distinct possibility.  As such, the utilization of a 

counterbalancing concept in the ACT scores to place students above their 

indicated ability level may be cautiously factored in during advisement. 

10. Caution is advised when moving between models for advisement as the 

context of the models changes with regard to the predictions.   

Limitations 

This study helps to establish the limitations of the use of the ACT scores in 

predicting college algebra success.  By isolating the research to the sub-scores and the 

presence or absence of the requisite variable, the extreme limitations of the ACT in being 

a universal predictor of college algebra success is illustrated.  Due to this, it is advised 

that further research involving the ACT be focused on supportive, ideally synergistic 

factors to support the results from the ACT.  Furthermore, the ACT scores contain an 

inverse relationship in the sensitivity and specificity and an inverse relationship between 

erroneous pass and fail predictions.  Gains in one area by altering the combinations of the 

scores come at the expense of the other.  Directly proportional improvements in these 

predictions are limited by the number of non-cognitive variables present. 

Future Research 

Based on the earlier presented results, the following areas of research are 

suggested as potential follow up research to the previous study.  In the present study, the 

basis for the development and implementation arose from the presence of significant 

results by Byrd, 1970.  The lack of a comprehensive analysis of non-linear combinations 

in the literature left open the question of what predictive potential the ACT sub-scores 
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had with regard to college algebra.  Based on the results, it is not considered likely that 

pure mathematical combinations of the ACT scores will provide any meaningful results 

beyond this point.  Further considerations of a chaotic interpretation in that regard is also 

considered to be a non-fruitful venture.  With the results presented here, it is assumed that 

the ACT scores can only account for approximately 13% of the variability present in the 

outcomes of college algebra students.  Based on this, it is recommended that future 

research examine the following areas. 

1. Drawing on the literature base, the pilot study and the current study, the 

careful addition of non-cognitive terms such as gender and mathematical self-

assessment would likely be beneficial.   

2. A time dependent study of sequential courses to determine the presence of a 

chaotic tendency in mathematical achievement would help to determine 

whether any non-linear character was chaotic in nature.  This would need to 

be a longitudinal study with a cyclic predictor equation.   

3. An in-depth, focused assessment of the role of English proficiency in 

mathematical achievement is indicated.  Considering findings by Case, 1987, 

Hatch, 1981, and the current study, the continued exclusion of the English 

score in examining mathematical outcomes should be verified or abandoned.   

4. Enhancement of the general college readiness model would also be indicated 

given the balance of increased error predictions with improvements in 

sensitivity and specificity.   

5. A detailed analysis of predicting persistence in the course is indicated by the 

results of the logistic regression mentioned previously in this Chapter. 
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Conclusion 

This study has served as a focused analysis of the predictive potential in the ACT 

sub-scores.  While the developed models do not differ considerably from the current 

methods, this study serves to validate the current method of placing students in college 

algebra.  Since the ACT mathematics sub-score is a nationally accepted placement 

criterion, and considerably more cost effective than developing individual placement 

tests, support for its continued use is present in the results.  Extension of these results to 

other subject areas is not likely to change the outcome predictions, although it could 

potentially support current placement procedures in those areas.  As a result of the 

outcomes found in this study, the continued, cautious use of the current placement model 

remains the optimal course of action at the present time.   
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APPENDIX A – Parameters and Equations 

Table A1.  

Complete Parameter List 

________________________________________________________________________ 

Parameter Label (Xi)  Description 

________________________________________________________________________ 

  X1   ACT-Composite 

  X2   ACT-Math 

  X3   Iowa Mathematics Test 

X4   ACT-English 

X5   Iowa Chemistry Test 

X6   Personality Rating 

X7   SAT-Math 

X8   SAT-Verbal 

X9   ACE Psychological Examination – Q Score 

X10   ACE Psychological Examination – L Score 

X11   ACE Psychological Examination – T Score 

X12 Coop. General Achievement Test (Math 

Proficiency) 

X13   Percentile Rank (HS* Graduating Class) 

X14   Mathematics Achievement Test Score 

X15   Self-Concept in Mathematics 
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Table A1 (continued). 

________________________________________________________________________ 

Parameter Label (Xi)  Description 

________________________________________________________________________ 

X16   Perception of the Mathematics Teacher 

X17   Chronological Age 

X18   Gender 

X19 Trigonometry/ Elem. Analysis Grade in HS 

(Binomial) 

X20   Algebra II Grade in HS 

X21   Number of Years/Units of HS Algebra 

X22   Years Between HS Math and College Algebra 

X23   College Board Mathematics Aptitude Test 

X24   Number of Years of HS Math 

X25   HS Mathematics GPA (4 Point Scale) 

X26   Age in Months Beyond 17 Years 

X27   Placement Test Score 

X28   HS Mathematics Experience Score**  

X29   Kansas State Assessment - Math 

X30   Ohio State Psychological Examination 

X31   Reading Comp. Score – ACE English Test 

X32   Overall GPA in HS 
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Table A1 (continued). 

________________________________________________________________________ 

Parameter Label (Xi)  Description 

________________________________________________________________________ 

X33   Mathematics Anxiety 

X34   Test Anxiety 

X35   Blame A*** 

X36   Blame B**** 

X37   View of SAT-Math 

X38   Preferred Test Type***** 

X39   Expected Outcome 

X40   Race of the Professor 

X41   Traditional or Non-Traditional Classification 

X42   Enrollment in Remedial Coursework 

X43   HS Trigonometry Grade 

X44   HS Trigonometry/Elem. Analysis Grade 

X45   HS Geometry Grade 

X46   Coop. Algebra Test Elem. Analysis - Quadratics 

X47   First Quarter College GPA 

X48 Admission Type – General Education or High 

School  

X49   Level of Math Course (Invariate – College Algebra) 
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Table A1 (continued). 

________________________________________________________________________ 

Parameter Label (Xi)  Description 

________________________________________________________________________ 

X50   College Algebra Grade Desired 

X51   Level of HS Math Taken 

X52   HS Algebra I Grade 

X53   Cooperative Mathematics Test Algebra II 

X54   Placement Level 

X55   Semesters Between Math Courses 

X56   Total Terms Enrolled 

X57   Number of College Algebra Attempts 

X58   Texas Academic Skills Program Test 

X59   Texas Assessment of Academic Skills 

X60   Number of Units of HS Geometry 

X61   ACT-SAT Coding****** 

X62   Cumulative GPA 

X63   Age (0-20 Years) 

X64   Age (20-25 Years) 

X65   Sex – Male  

X66   Race – White  

X67   Mathematics Placement Squared 
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Table A1 (continued). 

________________________________________________________________________ 

Parameter Label (Xi)  Description 

________________________________________________________________________ 

X68   Reading Comprehension Squared 

X69   Study Habits/Attitude Squared 

X70   X68 x X69 

X71   Beginning Algebra Grade 

X72   Stanford TASK 

X73   Algebra I in HS (Binary)  

X74   Algebra II in HS (Binary) 

X75   Geometry in HS (Binary) 

X76   Business Mathematics in HS (Binary) 

X77   General Mathematics I in HS 

X78   General Mathematics II in HS 

X79   Grade in Last HS Mathematics Course 

X80   Probably Secondary Mathematics Exposure 

X81   Number of College Mathematics Courses 

X82   Last Math Course Grade (HS or College) 

X83   Likes Mathematics 

X84   Educational Goal 

X85   Race – Black  
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Table A1 (continued). 

________________________________________________________________________ 

Parameter Label (Xi)  Description 

________________________________________________________________________  

X86   Race – Mexican  

X87   Race – Oriental  

X88   Race – Other  

X89   Lowest HS Math Grade 

X90   Number of Different HS Mathematics Teachers 

X91   Mother’s Educational Level 

X92   Kuder Preference Record 

X93   Basic Skills in Arithmetic 

∑ibixi   1st Grouping of numerous non-cognitive variables 

∑jbjxj   2nd Grouping of numerous non-cognitive variables 

________________________________________________________________________ 

Note: * High School, ** Score based on high school mathematics background, *** Blame A: 1-5, Bad results attributed to poor effort 

– teacher, **** Blame B: 1-5, Good results attributed to work effort – teacher, ***** Preferred Test Type: 1-5, Standardized – 

Classroom, ****** ACT-SAT Coding: Equivalence scale for score comparison, See Figure 2, a May not be exhaustive of the literature 
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Table A2.  

Complete Equation List 

______________________________________________________________________________________________________ 

 

Equation            Reference 

______________________________________________________________________________________________________ 

1. Y = 20.618 + 0.059*X23 + 1.999*X24 + 6.447*X25       Anderson 

2. Y = 0.031*X13 + 0.012*X9 + 0.016*X12        Bromley & Carter 

3.  Y = -16.73 + 1.52*X27 + 10.92*X63 + 9.80*X64 +        Byrd 

7.16*X65 + 7.11*X66 – 0.157*X67 + 0.003*X68 + 0.001*X69 – 0.002*X70 

4.  Y = -20.38 + 3.75*X27 + 9.20*X63 + 7.81*X64 +        Byrd 

6.46*X65 + 6.22*X66 – 0.269*X67 + 0.004*X68 + 0.001*X69 – 0.003*X70 

5.  Y = 0.0271*X17 + 2.0781*X66 + 0.6329*X85 +        Cauthern 

0.6775*X86 + 0.7194*X87 + 1.8525*X88 – 0.1113*X32 + 0.1609*X24 + 0.0924*X81 –  

0.1404*X82 – 0.1380*X22 + 0.1339*X16 – 0.1720*X83 + 0.0632*X84 + 0.1239*X8 +  

0.5576*X7 + ∑ 𝑏𝑖𝑋𝑖𝑖  
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Table A2 (continued). 

______________________________________________________________________________________________________ 

Equation            Reference 

______________________________________________________________________________________________________ 

6.  Y = 0.0221*X17 + 0.6329*X85 + 0.6775*X86 +        Cauthern 

0.7194*X87 + 1.8525*X88 – 0.1481*X32 + 0.0755*X24 – 0.0496*X81 – 0.0400*X82 –  

0.1646*X22 – 0.0663*X16 – 0.0861*X83 + 0.0076*X84 – 0.0970*X8 + 0.4470*X7 + ∑ 𝑏𝑗𝑋𝑗𝑗  

7.  Y = -3.32350 + 0.48388*X25 + 0.06098*X53 +        Dykes 

0.04703*X2 + 0.55741*X32 + 0.01532*X1 

8.  Y = 0.18 + 0.512*X39 + 0.193*X22 + 0.030*X33 + 0.294*X18    Eldersveld & Baughman 

9.  Y = -3.966 + 0.079*X32          Garcia 

10.  Y = eA / (1 + eA)           Gonzales 

A = -4.83 + 0.57*X54 – 0.49*X55 + 0.72*X56 + 1.55*X57 

11.  Y = 0.3700 – 0.0752*X32 + 0.1456*X77 + 0.0283*X78 –       Gray 

0.0345*X76 + 0.1871*X73 + 0.2005*X74 + 0.1589*X75 +  

0.0979*X19 + 0.0000*X1 + 0.0515*X2 + 1.5815*X42 
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Table A2 (continued). 

______________________________________________________________________________________________________ 

Equation            Reference 

______________________________________________________________________________________________________ 

12.  Y = 2.5936 – 0.2877*X32 + 0.2111*X77 – 0.1048*X78 –       Gray 

0.0650*X76 + 0.3403*X73 + 0.1648*X74 + 0.0886*X75 +  

0.1094*X19 + 0.0067*X1 – 0.0076*X2 

13. Y = -0.5526 + 0.1343*X32 + 0.1198*X77 + 0.0078*X78 –       Gray 

0.0000*X76 + 0.2485*X75 + 0.1945*X19 + 0.0376*X1 + 0.0499*X2 + 1.6826*X42 

14. Y = 1.5912 + 0.1833*X73 + 0.3197*X74 + 1.2127*X42      Gray 

15. Y = 2.1948 + 0.2636*X73 + 0.6556*X42        Gray 

16. Y = 2.4561 + 0.2609*X73          Gray 

17. Y = 2.2360 + 0.3533*X74 + 1.2650*X42        Gray 

18. Y = 3.3595 – 0.0488*X76 + 0.6243*X42        Gray 

19. Y = 2.9431 + 0.2531*X74          Gray 

20. Y = 3.6113 – 0.0562*X76          Gray 
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Table A2 (continued). 

______________________________________________________________________________________________________ 

Equation            Reference 

______________________________________________________________________________________________________

21. Y = -1.0709 + 0.2592*X32 + 0.1417*X77 + 0.0237*X78 –       Gray 

0.0042*X76 + 0.2984*X75 + 0.0816*X1 + 1.4338*X42 

22. Y = -1.0749 + 0.2332*X32 + 0.1150*X77 + 0.0335*X78 –       Gray 

0.0027*X76 + 0.2752*X75 + 0.0211*X1 + 0.0744*X2 + 1.7330*X42 

23. Y = [7*X12 + 67]/10           Graybeal 

24. Y = [6*X12 + 2*X93 – 49]/10          Graybeal 

25. Y = [4*X46 + 2*X92 + 16]/10          Graybeal 

26. Y = [7*X12 – 17*X90 + 113]/10         Graybeal 

27. Y = [6*X12 + 3*X89 – 180]/10         Graybeal 

28. Y = [6*X12 + 3*X89 – 16*X90 – 4*X91 – 114]/10       Graybeal 

29. Y = -8.9248 + 0.6353*X18 + 0.3163*X17 + 0.4830*X79 +       Harris 

0.1772*X80 + 0.3131*X22 + 0.0737*X2 
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Table A2 (continued). 

______________________________________________________________________________________________________ 

Equation            Reference 

______________________________________________________________________________________________________

30. Y = -11.1438 + 0.4275*X17 + 0.5386*X79 + 0.1971*X80 + 0.6364*X22 + 0.0908*X2  Harris 

31. Y = -2.0680 + 0.1473*X17 + 0.3096*X79 + 0.0814*X80 – 0.6071*X22 + 0.0471*X2   Harris 

32. P(F) = -16.74283 + 1.075782*X4 + 0.4027003*X42 + 0.001613599*X32    Hatch 

33. P(P) = -19.03984 + 0.9917614*X4 + 0.5675454*X42 + 0.00488476*X32    Hatch 

34. P(F) = -50.46481 + 0.4513944*X4 + 0.4251321*X5 +      Hatch  

23.62224*X32 + 76.99379*X21 – 3.315796*X52 + 215.8287*X60 – 6.764862*X45 

35. P(P) = -53.39410 + 0.4204521*X4 + 0.5154282*X5 +       Hatch 

24.56654*X32 + 75.64114*X21 – 3.190538*X52 + 212.5094*X60 – 6.614612*X45 

36. Y = 0.1172 + 0.0523*X2 – 1.9742*X13 + 0.0429*X27      Hunt 

37. Y = 0.1746 + 0.0299*X2 – 2.3598*X13 + 0.0703*X27      Hunt 

38. Lk = ln [θk/(1 - θk) θk = -0.6480 + 0.4195*X61       Ingram 
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Table A2 (continued). 

______________________________________________________________________________________________________ 

Equation            Reference 

______________________________________________________________________________________________________

39. Cumulative Odds = Cjk / (1 – Cjk)         Ingram 

C2k = -1.3311 + 0.2531*X61 + 0.4642*X60 

40. Y = 0.30*X7            Kemble 

41. Y = 0.32*X58            Kemble 

42. Y = 0.32*X59            Kemble 

43. Y = 0.39*X52            Kemble 

44. Y = 0.16*X7 + 0.23*X58          Kemble 

45. Y = 0.17*X7 + 0.22*X59          Kemble 

46. Y = 0.25*X7 + 0.36*X52          Kemble 

47. Y = 0.23*X58 + 0.21*X59          Kemble 

48. Y = 0.26*X58 + 0.34*X52          Kemble 

49. Y = 0.23*X59 + 0.33*X52          Kemble 
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Table A2 (continued). 

______________________________________________________________________________________________________ 

Equation            Reference 

______________________________________________________________________________________________________

50. Y = 0.10*X7 + 0.10*X58 + 0.10*X59         Kemble 

51. Y = 0.15*X7 + 0.18*X59 + 0.34*X52         Kemble 

52. Y = 0.17*X7 + 0.14*X58 + 0.34*X52         Kemble 

53. Y = 0.20*X58 + 0.15*X59 + 0.32*X52         Kemble 

54. Y = 0.10*X7 + 0.16*X59 + 0.11*X58 + 0.32*X52       Kemble 

55. P = e-4.77 + 0.08*X
29/(1 + e-4.77 + 0.08*X

29)         Kingston & Anderson 

56. Y = 1.26 + 0.0144*X30          Kinzer & Kinzer 

57. Y = 1.51279 + 0.1330046*X27 + 0.7089780*X28       Kossack 

58. Y = 0.01602799*X23 + 0.09726042*X24 + 0.19494335*X25 -0.00494199*X26   Morgan 

59. Y = -18.01642 + 0.52422*X52 + 0.02697*X7 + 0.51721*X8 + 0.02837*X27   Neal 

60. Y = 5.86182 + 0.17929*X52 + 0.02207*X7 + 0.59141*X8 + 0.05293*X27    Neal 

61. Y = -4.11 + 0.20*X13 + 0.041*X27 + 0.238*X33 + 0.160*X34 + 0.089*X35 + 0.211*X37  Odell & Schumacher 
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Table A2 (continued). 

______________________________________________________________________________________________________ 

Equation            Reference 

______________________________________________________________________________________________________

62. Y = -5.224 + 0.286*X38 + 0.005*X7 – 0.180*X36 + 0.003*X8 + 0.199*X15    Odell & Schumacher 

63. Y = -1.39 + 0.23*X3 + 0.15*X5 + 0.27*X6        Perry 

64. Y = -5.15 + 0.10*X72 + 0.12*X17         Peteet 

65. Y = -1.552433 + 1.153045*X21 – 0.086975*X22       Scott & Gill 

66. Y = -1.4697 + 0.2405*X9 + 1.1388*X21 + 0.1370*X32 + 0.232*X10 + 0.0016*X31   Seigle 

67. *X2 = 9.43 + 3.58*X49 + 1.40*X50 – 1.07*X18       Shepley 

68. *X2 = -0.21 + 3.74*X51 + 2.65*X25 – 1.60*X18 – 0.75*X22      Shepley 

69. *X1 = 6.62 + 2.72*X51 + 1.84*X25 – 0.64*X18 – 0.25*X22      Shepley 

70. **A = 0.9873 + 0.1902*X48 -0.0322*X17 -0.0016*X18 – 0.6144*X47 (Overall)    Sigler 

71. **A = 0.4417 + 0.0256*X48 – 0.0231*X17 + 0.1546*X18 – 0.5898*X47 (White)    Sigler 

72. **A = 1.2003 + 0.2085*X48 – 0.0225*X17 + 0.1595*X18 – 0.6415*X47 (Hispanic)   Sigler 

73. **A = 0.4417 + 0.0256*X48 – 0.0231*X17 + 0.1546*X18 – 0.5898*X47 (Black)    Sigler 
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Table A2 (continued). 

______________________________________________________________________________________________________ 

Equation            Reference 

______________________________________________________________________________________________________

74. Y = 0.18 + 0.23*X27 + 0.05*X17 + 0.67*X18        Sims 

75. Y = 60.060 + 1.092*X43 + 0.499*X17 + 1.366*X20 + 1.014*X44     Wheat 

76. Y = 29.596 + 0.604X14 + 0.469*X16 + 0.806*X43 + 0.408*X17 + 0.758*X44 + 1.000*X45  Wheat 

77. Y = 13.342 + 0.754*X14 + 0.640*X15 + 0.535*X16      Wheat, Tunnell, & Munday 

78. Y = 25.345 + 0.816*X15 + 0.544*X14 + 0.337*X17 + 1.007*X19 + 3.41*X18  Wheat, Tunnell, & Munday 

79. Y = 8.881 + 1.793*X18 + 3.283*X40 – 2.317*X41 + 1.618*X2 + 8.279*X42    Wilson 

80. Y = Ŷ + (Σxy/ΣX20^2)*(X20 – Xavg)         Wilson & Gelso 

81. Y = 38.70 + 0.641*X9           Wining 

82. Y = 46.09 + 0.321*X10          Wining 

83. Y = 31.60 + 0.349*X11          Wining 

84. Y = -9.71 + 1.012*X71          Wining 
________________________________________________________________________________________________________________________________________ 

Note: *Author’s notation retained, **Refer back to equation 10, a May not be exhaustive of the literature 
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Table A3.  

Equation Categories 

______________________________________________________________________________________________________ 

 

 Category    Equation Numbers  Reference  

______________________________________________________________________________________________________ 

 

Comparative Classification Equations 2-3, 32-35   Byrd; Hatch 

 

Ethnicity Equations    70-73    Sigler 

 

Gender Difference Equations   5-6, 30-31, 60-62  Harris; Cauthern; Neal; Odell & Schumacher 

 
aPractical Quantitative Variables 9, 14-20, 32-33, 40, 43, Garcia; Gray; Hatch, Kemble; Scott & Gill;  

Shepley;  

 

46, 65, 68-69, 75, 84  Wheat; Wining 

 

Probability and odds equations  10, 38-39, 55, 70-73  Gonzales; Ingram; Kingston & Anderson; Sigler   

______________________________________________________________________________________________________ 

 
Note a Practical is defined as parameters readily available or easily obtained by an academic advisor. 

 



 

138 

APPENDIX B – Correlations and ANOVA 

Table A4.  

Complete ACT Outcome GPA – Independent Variable Correlations 

________________________________________________________________________ 

Variable   r   p-value   

________________________________________________________________________ 

 ME    .372   <.001  

 M2E    .355   <.001  

 MES    .354   <.001  

 E2M    .352   <.001  

 ES    .350   <.001  

 M    .350   <.001 

 MER    .346   <.001  

 E2    .342   <.001  

 M2E2    .341   <.001  

 E2S    .338   <.001   

 MR    .338   <.001  

 M2ES    .338   <.001  

 E2MS    .336   <.001  

 M2ER    .336   <.001  

 M3E    .335   <.001  

 M2R    .334   <.001  

 MS    .331   <.001  
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Table A4 (continued). 

________________________________________________________________________ 

Variable   r   p-value   

________________________________________________________________________ 

ER    .331   <.001 

MERS    .329   <.001 

MRS    .329   <.001 

 S2E    .329   <.001 

 S2ME    .328   <.001 

 ERS    .328   <.001 

 E2RM    .327   <.001 

 E3M    .326   <.001 

 M2S    .326   <.001  

 E3    .324   <.001 

 E    .324   <.001 

 E2R    .323   <.001 

 M2RS    .322   <.001 

 M3R    .321   <.001 

 M2    .321   <.001 

 E2S2    .320   <.001 

 E3S    .316   <.001 

 E2RS    .314   <.001 

 R2EM    .313   <.001 
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Table A4 (continued). 

________________________________________________________________________ 

Variable   r   p-value   

________________________________________________________________________ 

 M3S    .313   <.001 

 S2M    .313   <.001 

M3    .313   <.001 

M2R2    .312   <.001 

M2S2    .310   <.001 

 R2M    .310   <.001 

 S2ER    .310   <.001 

 S2MR    .308   <.001 

 RS    .308   <.001 

 S3E    .305   <.001 

 R2E    .303   <.001 

 MGCR    .303   <.001 

 M4    .303   <.001 

 E3R    .302   <.001 

 E4    .300   <.001 

 R2ES    .299   <.001 

 S2R    .298   <.001 

 E2R2    .295   <.001 

 S3M    .293   <.001 
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Table A4 (continued). 

________________________________________________________________________ 

Variable   r   p-value   

________________________________________________________________________ 

 R2S    .290   <.001 

 R3M    .285   <.001 

 R    .284   <.001 

 R2S2    .282   <.001 

S2    .282   <.001 

S    .282   <.001 

S3R    .281   <.001 

 R2ER    .277   <.001 

 R3E    .277   <.001 

 R2    .277   <.001 

 S3    .273   <.001 

 R3S    .270   <.001 

 R3    .265   <.001 

 S4    .263   <.001 

 SGCR    .259   <.001 

 R4    .250   <.001 

 EGCR    .213   <.001 

 RGCR    .193   <.001 
______________________________________________________________________________ 

Note: Variables are ordered in decreasing magnitude of the correlation strength for purposes of determining selection for the ANOVA 

analysis.   
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Table A5.  

Correlations for ANOVA Input Variables 

________________________________________________________________________ 

Variable Levene  F  df   η2  p  

________________________________________________________________________ 

 ME  Pass  .937  106, 587 .145  .654 

 M2E  Pass  .861  191, 825 .166  .899  

 MES  Pass  .962  294, 465 .478  .641 

 E2M  Pass  1.088  189, 813 .202  .220 

 ES  Pass  .804  103, 587 .124  .915 

 MER  Pass  1.054  357, 465 .447  .296  

 E2*  Pass  7.082  29, 1236 .142  <.001 

 M2E2* Fail  2.317  169, 1096 .263  <.001  

 E2S  Pass  .930  210, 813 .194  .739 

 MR  Pass  .955  109, 587 .151  .610 

 M2ES  Pass  1.001  315, 266 .542  .499 

 E2MS* Fail  1.658  664, 601 .570  .012 

 M2ER  Pass  1.287  388, 266 .594  .494 

 M3E*  Fail  1.814  245, 1020 .303  <.001 

 M2R  Pass  .846  198, 825 .169  .926 

 MS  Pass  .807  80, 587 .099  .883 

 ER  Pass  1.072  116, 587 .175  .302 

 M*  Pass  2.791  19, 1164 .044  <.001  
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Table A5 (continued). 

________________________________________________________________________ 

Variable Levene  F  df   η2  p  

________________________________________________________________________ 

E*  Pass  1.733  28, 1167 .023  .011 

R  Pass  1.054  26, 1164 .023  .390 

 S  Pass  .803  26, 1164 .018  .747 

 MGCR* Pass  31.388  1, 1261 .024  <.001  

 EGCR* Pass  12.165  1, 1261 .010  .001 

 RGCR* Pass  11.289  1, 1261 .007  .003 

 SGCR  Pass  .512  1, 1261 <.001  .475 

________________________________________________________________________ 

Note: Non-linear variables are ordered in decreasing magnitude of the correlation strength for purposes of determining selection for 

the ANOVA analysis.  The four linear variables and the four general college readiness variables are listed in the predetermined 

nomenclature for the study. *Variable was carried forward into regression. 
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