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Abstract
A numerical Gram–Schmidt orthonormalization procedure is presented for
constructing an orthonormal basis function set from a non-orthonormal set,
when the number of basis functions is large. This method will provide a
pedagogical illustration of the Gram–Schmidt procedure and can be presented
in classes on numerical methods or computational physics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Gram–Schmidt orthonormalization method is typically introduced to junior and senior
level undergraduate physics students as a way to construct a set of orthonormal basis functions
from a set of non-orthonormal basis functions [1–3]. An orthonormal set makes computations
in quantum mechanics much easier because the inner product takes on a simple form involving
a Dirac delta function [3]. The Gram–Schmidt procedure is easily implemented when only a
few orthonormal basis functions are needed, but numerical techniques are usually employed
when a larger set of orthonormal basis functions is needed. However, these techniques are
rarely taught in classes despite the practical advantages for solving many problems. We
present the analytical and numerical approach of constructing orthonormal basis functions via
the Gram–Schmidt procedure, and we discuss the limitations of the numerical approach.

The techniques presented here will provide students with a pedagogical example of how
to implement the Gram–Schmidt procedure when the basis function set is large. It can be
used in courses involving numerical methods or computational physics and is suitable for
presentation to undergraduate physics, engineering and mathematics students.

Before discussing orthonormalization, we first establish some notation. Let {|fi〉} be a set
of column vectors and let 〈fi | = |fi〉†, where |fi〉† is the complex conjugate and transpose of
|fi〉. The scalar product is defined as 〈fi |fj 〉 = α, where α is a real number. If the vectors |fi〉
0143-0807/10/030693+08$30.00 c© 2010 IOP Publishing Ltd Printed in the UK & the USA 693
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Figure 1. Left: two normalized but non-orthogonal vectors, |g1〉 and |g2〉. Right: an illustration of
the Gram–Schmidt method, where a set of orthonormal basis vectors |fi〉 is constructed from a set
of normalized but non-orthogonal basis vectors |gi〉. After equating |g1〉 to |f1〉, |g2〉 is projected
onto |f1〉 and the component parallel to |f1〉 is subtracted from |g2〉, resulting in |g2⊥〉. Finally,
|g2⊥〉 is normalized to |f2〉.

and |fj 〉 satisfy 〈fi |fj 〉 = δij , then these vectors are said to be orthonormal and the set {|fi〉}
is an orthonormal set. In this paper, the vector notation can be written in function language
as

〈r|fi〉 = fi(r)

and

〈fi |fj 〉 =
∫ ∞

0
f ∗

i (r)fj (r) dr.

Therefore, in function language, orthonormality means∫ ∞

0
f ∗

i (r)fj (r) dr = δij .

We are interested in orthonormalizing a set of functions {gi(r)} so that we obtain a new set
{fi(r)} which is orthonormal according to the conditions above.

2. The Gram–Schmidt method

The Gram–Schmidt method is used to construct an orthonormal set of basis vectors |fi〉 from
a set of non-orthogonal but normalized basis vectors |gi〉. The method is best illustrated
graphically as in figure 1. In this figure, two arbitrarily positioned vectors |g1〉 and |g2〉 are
chosen, which are normalized but not orthogonal. |g1〉 is chosen and set equal to |f1〉. We
will construct vectors orthogonal to the new normalized basis vector |f1〉. First, we construct
another vector |f2〉 which is orthogonal to |f1〉. To do this, we use the vectors |f1〉 and |g2〉.
We project 〈g2| onto |f1〉 giving the component of |g2〉 that is parallel to |f1〉. Now subtract
from |g2〉 the parallel component 〈g2|f1〉 along the |f1〉 direction giving

|g2⊥〉 = |g2〉 − 〈g2|f1〉|f1〉.
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Label this orthogonal vector as |g2⊥〉 since it is the component of |g2〉 perpendicular to |f1〉,
as seen in figure 1. Now that a vector orthogonal to |f1〉 has been constructed, the next step is
to find the normalization constant N2 such that |f2〉 = N2|g2⊥〉:

|f2〉 = N2(|g2〉 − 〈g2|f1〉|f1〉).
The normalization condition is 〈f2|f2〉 = 1, so that

N2
2 (〈g2| − 〈f1|g2〉〈f1|)(|g2〉 − 〈g2|f1〉|f1〉) = 1,

N2
2 (1 − 〈f1|g2〉2) = 1.

Thus, the normalization constant is

N2 =
√

1

1 − 〈f1|g2〉2
.

Now construct a vector orthonormal to both |f1〉 and |f2〉 by using the same procedure:

|f3〉 = N3[|g3〉 − 〈f2|g3〉|f2〉 − 〈f1|g3〉|f1〉],
where

N3 = 1√
1 − 〈f2|g3〉2 − 〈f1|g3〉2

.

In general, we may construct a set of orthonormal basis |fn〉 from a set of normalized but
non-orthogonal basis |gn〉 by using

|fn〉 = Nn

[
|gn〉 −

n−1∑
i=1

tin|fi〉
]

, (1)

where

Nn =
√

1

1 − ∑n−1
i=1 t2

in

, (2)

and

tin = 〈fi |gn〉.

3. Analytical approach

Now we switch to basis functions in Hilbert space [3], for the purpose of illustrating the
technique in quantum mechanics. As an example, we will construct an othornormal basis
fi(r) from the non-orthogonal but normalized functions. Next consider a three-dimensional
bound state problem. The reduced wavefunction must satisfy the boundary conditions. The
boundary conditions are that the reduced wavefunction vanishes at r = 0 and r = ∞. The
Gaussian function in the next equation is an example of a function that satisfies the radial part
of the three-dimensional bound state problem since it vanishes at r = 0 and r = ∞, thus
satisfying the boundary conditions for the reduced wavefunction:

gi(r) = N
g

i r e−ai r
2
, (3)

where the normalization factor is obtained by requiring that∫ ∞

0
g∗

i (r)gi(r) dr = 1,
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thereby giving

N
g

i =
√

4(2ai)
3
2√

π
, (4)

where ai is a constant which is later taken to be i2 where i = 1, 2, 3, . . . when the numerical
calculations are implemented. Projecting 〈r| onto equation (2),

f2(r) = N2[g2(r) − t21f1(r)]. (5)

The initial basis is chosen as f1(r) = g1(r). Thus,

f1(r) = N
g

1 r e−a1r
2
. (6)

From equations (5), (6) and (3) write

f2(r) = N2
(
N

g

2 r e−a2r
2 − t21N

g

1 r e−a1r
2)

, (7)

where

t21 =
∫ ∞

0
g2(r)f1(r) dr = N

g

2 N
g

1

∫ ∞

0
r2 e−(a1+a2)r

2
dr.

Use the normalization conditions to obtain

t21 =
√

4(2a2)
3
2√

π

√
4(2a1)

3
2√

π

∫ ∞

0
r2 e−(a1+a2)r

2
dr

=
√

4(2a2)
3
2√

π

√
4(2a1)

3
2√

π

√
π

4(a1 + a2)
3
2

= (4a1a2)
3
4

(a1 + a2)
3
2

. (8)

Now verify that the basis vectors are indeed orthonormal. Begin by showing that 〈f1|f1〉 = 1:

〈f1|f1〉 = (
N

g

1

)2
∫ ∞

0
r2 e−2a1r

2 = 4(2a1)
3
2√

π

√
π

4(2a1)
3
2

= 1.

Next, show that 〈f2|f2〉 = 1, via

〈f2|f2〉 = N2
2

(
N

g

2

)2
∫ ∞

0
r2 e−2a2r

2
dr + t2

21N
2
2

(
N

g

1

)2
∫ ∞

0
r2 e−2a1r

2
dr

− 2N2
2 N

g

2 N
g

1 t21

∫ ∞

0
r2 e−(a1+a2)r

2
dr.

Evaluating the integrals and using the normalization conditions gives

〈f2|f2〉 = 4N2
2 (2a2)

3
2√

π

√
π

4(2a2)
3
2

+
4N2

2 (2a1)
3
2√

π

√
π

4(2a1)
3
2

− 2N2
2 t21

√
4(2a2)

3
2√

π

√
4(2a1)

3
2√

π

√
π

4(a1 + a2)
3
2

.

Simplifying and using equation (8),

〈f2|f2〉 = N2
2

[
1 − t2

21

] = 1 − t2
21

1 − t2
21

= 1.

The last step is to verify the orthogonality of |f1〉 and |f2〉. Thus,

〈f1|f2〉 = N
g

1 N2

[
N

g

2

∫ ∞

0
r2 e−(a1+a2)r

2
dr − N

g

1 t21

∫ ∞

0
r2 e−2a1r

2
dr

]
= 0.

As we have seen, constructing and verifying the orthonormal basis analytically can be
time consuming. We now devise a numerical scheme for generating the orthonormal basis
and use numerical integration to verify orthonormality.
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4. Computational approach

We will construct the orthonormal basis functions fi(r) using the non-orthogonal but
normalized functions gi(r). We have shown that the orthonormal basis may be expressed
in equation (1) as

|fn〉 = Nn

[
|gn〉 −

n−1∑
i=1

tin|fi〉
]

, (9)

where

tin = 〈fi |gn〉 =
∫ ∞

0
fi(r)gn(r) dr,

and the normalization is given by equation (2). As can be seen in equation (1), tin should be
computed before generating the orthonormal basis. Projecting 〈gj | onto equation (1) gives

〈gj |fn〉 = Nn

[
〈gj |gn〉 −

n−1∑
i=1

tin〈gj |fi〉
]

.

We define Gjn ≡ 〈gj |gn〉 and project with 〈gj | onto equation (1) to obtain the recursive
relation

tjn = Nn

[
Gjn −

n−1∑
i=1

tintij

]
, (10)

where j > n > i. An expression for Gjn is

Gjn = N
g

j Ng
n

√
π

4(aj + an)
3
2

,

where the normalization constants are given by equation (4). We note that since the functions
g(r) and f (r) are real, tin = tni and Gin = Gni . As described in the analytical approach,
|f1〉 = |g1〉. Next, we calculate the elements in which tj1 = Gj1. Then, a general tjn is
calculated from equation (10) by iteration.

We can construct a matrix from the inner product of the orthonormalized basis functions,

D =

⎛
⎜⎜⎜⎝

〈f1|f1〉 〈f1|f2〉 · · · 〈f1|fm〉
〈f2|f1〉 〈f2|f2〉 · · · 〈f2|fm〉

...
...

. . .
...

〈fm|f1〉 〈fm|f2〉 · · · 〈fm|fm〉,

⎞
⎟⎟⎟⎠ (11)

where m is the total number of orthonormal basis functions. Since the matrix elements of D
are 〈fi |fj 〉,

〈fi |fj 〉 =
∫ ∞

0
fi(r)fj (r) dr.

If |fi〉 and |fj 〉 are indeed orthonormal, then D should be the identity matrix. However, in
practice, D will deviate from the identity matrix when a large number of functions are used.
The reason for this is that orthogonality comes from the cancellation of the oscillatory features
from the functions. As we increase the number of functions, the numerical cancellations
of the functional oscillations become inaccurate because of the limitations of machine
precision.

The deviation of the D matrix from the identity matrix depends on m.
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The orthonormal basis functions were constructed numerically, and thus the analytical
functional forms of all of the orthonormal basis functions are not required. The advantage of the
numerical approach is that the student does not have to manipulate the cumbersome analytical
functional forms. Since the basis functions were constructed numerically, one can compute
the matrix elements of D and verify the orthonormality of 〈fi |fj 〉 using a numerical integration
method known as Gaussian quadrature [1, 4], which is now discussed for completeness.

5. Gaussian quadrature

Gaussian quadrature [1, 4] is a useful computational tool used to perform numerical integration.
It approximates an integral using the following relation:∫ 1

−1
f (x) dx ≈

n−1∑
i=0

wif (xi), (12)

where f is the function, xi are the roots of the Legendre polynomials, n is the number
of Gaussian points (number of roots of the Legendre polynomial), and wi are the weights
determined from the derivatives of the Legendre polynomials P ′

l (xi) evaluated at xi. The
weights are determined using

wi = 2(
1 − x2

i

)
[P ′

l (xi)]2
.

The limits of the integrals must be transformed such that equation (12) is satisfied.
This can be done with a suitable substitution of the variable. If one has an integral of the
form

∫ ∞
0 f (x ′) dx ′, the following transformation may be used before implementing Gaussian

quadrature:

x ′ = tan
[π

4
(x + 1)

]
.

Using the above substitution, x ′ → 0 as x → −1 and x ′ → ∞ as x → 1 gives∫ ∞

0
f (x ′) dx ′ =

∫ 1

−1
f

{
tan

[π

4
(x + 1)

]} π

4
sec2

[π

4
(x + 1)

]
dx

≈
n−1∑
i=0

f
{

tan
[π

4
(xi + 1)

]} π

4
wi sec2

[π

4
(xi + 1)

]
.

After this transformation, Gaussian quadrature is applied to evaluate the integral.

6. Results

In figure 2, we have plotted the first two orthonormal basis functions, f1(r) and f2(r), generated
from the non-orthonormal basis functions defined in equation (3). The solid and dashed lines
represent the orthonormal functions calculated numerically with the Gram–Schmidt method,
and the circles and triangles represent the functions generated analytically as in equations (6)
and (7). The analytical results are in excellent agreement with numerical results.

Next, in figure 3, we have plotted the ith orthonormalized basis function, where i = 1, 5
and 10. The numerical procedure is advantageous because the student will be able to
obtain many orthonormalized functions without having to calculate each orthonormal function
analytically. It would be a very time consuming task to calculate ten orthonormal functions
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Figure 2. The first two orthonormal basis functions f1(r) and f2(r) are plotted. The solid and
dashed lines represent the numerically calculated orthonormal functions generated by the Gram–
Schmidt method. The circles and triangles represent the analytically calculated orthonormal
functions.
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Figure 3. A plot of three orthonormal basis functions. Each orthonormal function is generated
numerically using the Gram–Schmidt method.

analytically. This method proves to be efficient and is simple enough to be included in an
introductory quantum mechanics course.

Although the numerical approach is simple and efficient, students should be aware of its
limitations. If we construct a matrix D from the inner product of orthonormal basis vectors,
as in equation (11), and compare it with the identity matrix, we may identify the limitations
of the numerical approach. In figure 4, we have plotted the maximum difference between
the D matrix and the identity matrix with respect to the size of the D matrix. Note that the
deviation of D from the identity matrix is negligible for matrix sizes of 10 × 10 or smaller.
Afterwards the deviation increases more quickly for larger matrix sizes, as explained in
section 4.
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Figure 4. The maximum difference between the D matrix and the identity matrix with respect to
the size of the D matrix.

7. Conclusions

The Gram–Schmidt orthonormalization procedure has been applied to a set of non-orthogonal
basis functions and a numerical scheme was devised. This scheme will be useful when
the set of basis functions is large. The method can be used as a numerical assignment in
quantum mechanics classes. It can also be used in numerical analysis or computational physics
courses as a numerical example of a technique that is widely used in physics, engineering and
mathematics. Students will gain experience in Gram–Schmidt orthonormalization, Hilbert
space methods, Gaussian integration and general numerical techniques.
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