
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Master's Theses 

Spring 5-2022 

TEACHING OLD CALIPERS NEW TRICKS: USING CRANIOMETRICS TEACHING OLD CALIPERS NEW TRICKS: USING CRANIOMETRICS 

FOR ANCESTRY ADMIXTURE ESTIMATION VIA FUZZY MATH FOR ANCESTRY ADMIXTURE ESTIMATION VIA FUZZY MATH 

Kristi Carnahan 

Follow this and additional works at: https://aquila.usm.edu/masters_theses 

 Part of the Biological and Physical Anthropology Commons 

Recommended Citation Recommended Citation 
Carnahan, Kristi, "TEACHING OLD CALIPERS NEW TRICKS: USING CRANIOMETRICS FOR ANCESTRY 
ADMIXTURE ESTIMATION VIA FUZZY MATH" (2022). Master's Theses. 881. 
https://aquila.usm.edu/masters_theses/881 

This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been 
accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For 
more information, please contact aquilastaff@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/masters_theses
https://aquila.usm.edu/masters_theses?utm_source=aquila.usm.edu%2Fmasters_theses%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/320?utm_source=aquila.usm.edu%2Fmasters_theses%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/masters_theses/881?utm_source=aquila.usm.edu%2Fmasters_theses%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu


TEACHING OLD CALIPERS NEW TRICKS: 

USING CRANIOMETRICS FOR ANCESTRY ADMIXTURE ESTIMATION VIA 

FUZZY MATH 

 
 

by 

 

Kristi Carnahan 

A Thesis 

Submitted to the Graduate School, 

the College of Arts and Sciences 

and the School of Social Science and Global Studies 

at The University of Southern Mississippi 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Arts 

Approved by: 

 

Dr. Marie Danforth, Committee Chair 

Dr. Bridget Hayden 

Dr. Sharon Young 

 

 

 

 

 

 

 

 

 

 

May 2022 



 

 

COPYRIGHT BY 

Kristi Carnahan 

2022 

Published by the Graduate School  

 

 

 



 

ii 

ABSTRACT 

Cranial measurements have been a cornerstone of physical anthropology since its 

formation as a discipline in the early 1900s. However, most other ancestry determination 

methods come with a significant epistemological issue: they differentiate individuals into 

discrete categories without accounting for the issue of admixture. Advances in data 

mining and analysis techniques can now be used to help resolve this issue through soft 

computing, also known as “fuzzy math”. This type of advanced computational math 

requires specialized knowledge in computer programming, statistics, and data analysis 

techniques unless one is using computer programs specially designed to run these 

analyses.  

This project compiled a database from multiple open-source craniometrics data 

and utilized prepared packages within the R statistical environment to find a valid soft 

computing method for fuzzy ancestry determination that does not require extensive 

knowledge in computer programming or data mining. Exploration of database 

demographics notes an excess of White-identified individuals, and when tested, this 

demographic skew impacts the ability of the given package to return valid results. The 

package chosen was valid using the compiled database. Exploration of causes for the 

invalid results, including a significant White skew in the underlying database due to 

accessibility of metric databases, overfitting, and the inherent issues of admixture on 

craniometric research, are explored, and future directions discussed. 
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CHAPTER I - Introduction 

As far back as Plato and Dionysus, humans have been interested in identifying 

what separates them from other people, but the modern concept of race as a form of 

human variation began in earnest with European expansion into global commerce and 

colonization in the sixteenth century (Molnar 2006). With the publication and general 

acceptance of Darwin’s theories of evolution, the idea of racial differences as static and 

immutable lost significant credibility. Within 60 years of Darwin’s publication of On the 

Origin of Species, physical anthropology would be professionalized with a near-exclusive 

focus on identifying and classifying racial typologies.  

Cranial measurements have been a foundational metric in physical anthropology’s 

typological methodology since its formation as a discipline in the early 1900s. They 

quickly became a cornerstone in the metric determination of ancestry (formerly “race”), 

using methods such as the cephalic index (Armstrong-Fumero 2014). These methods 

attempt to identify and classify individuals based on craniofacial variation, which have 

been shown to change with both short- and long-term in the form of plasticity and secular 

change (Ousley, Jantz and Freid 2009).  

Plasticity is a temporary change whereupon bone adjusts to a variety of stressors 

placed upon it (Baab, et al. 2010, Evteev, et al. 2014). These stressors are caused by 

external factors, such as climate differences in humidity and temperature or cultural 

factors like food preparation practices and other subsistence methods, and intrinsic 

factors, such as sexual dimorphism and genetic inheritance (Ross, Ubelaker and 

Kimmerle 2011). When looking at correlating an individual’s variations into larger 

ancestry groups, these ancestry determination methods—such as the cephalic index—rely 
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upon secular change, the process by which once reversible traits become encoded 

genetically and passed down to future generations (Jantz and Jantz 2000). 

The cephalic index, as well as the majority of ancestry determination methods that 

would follow it, came with a significant epistemological issue:  it differentiated 

individuals into discrete categories without accounting for the issue of admixture more 

than in noting it as a complicating factor in determining an appropriate grouping for 20% 

or more of their samples (Hefner 2009). Giles and Elliot (1962) argue that the unknown 

amounts of admixture in non-White samples impacted their overall accuracy—ranging 

from 82% to 88%. Brues (1990) notes that the Howells’s (1973) multivariate analysis has 

a higher accuracy rate than Giles and Elliott’s bcause of the racial ambiguity of the 

source collections that Howell was able to circumvent with his sample methodology. All 

of these methods assigned the individual into a single, or “hard”, classification, despite 

the notation of their admixture and without attempting to explore methods that allowed 

for multi-categorical classifications, until more recent work.  

Admixture studies began initially in genetic studies but were largely avoided by 

craniometric studies until the late 2010s. The first significant publication of methodology 

whereby an anthropologist was able to successfully validate an admixture method was in 

2016, with Dr. Brigette Algee-Hewitt’s publication of “Population Inference from 

Contemporary American Craniometrics” in the American Journal of Physical 

Anthropology (AJPA).  She utilized soft computing, a form of data mining and analysis 

which allow for some measure of “imprecision, uncertainty, and partial truth” (Maimon 

and Rokach 2008b, 1), to allow for a larger amount of information given from the 

craniometric analysis. Instead of an individual being identified as “White” or “Black”, 
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their ancestry is more precisely expressed as overlapping classes—for example, as 50% 

Black, 30% White, and 20% Asian. However, this method required complex knowledge 

of computer programming, data mining, and statistical analysis to be validated. 

Knowing it is possible to get such information in a fully validated method was a 

significant step in bringing new, advanced statistical methods into bioanthropology. Yet 

the statistical and computational complexity of the methodology meant there was 

minimal application within bioanthropology as a field. Therefore, the goal of this 

research was to see if there was an equally valid but more accessible method that 

biological anthropologists could utilize to get a similar result. The author compiled an 

initial, unrefined database from two open source craniometric databases—the Forensic 

Data Bank maintained by the Forensic Anthropology Center at the University of 

Tennessee at Knoxville (UTK) and the online database of craniometrics from Latin 

American nations maintained by the Forensic Analysis Lab at North Carolina State 

University (NCSU). The databases were joined using Microsoft Access, then refined 

using measurements proven by Jantz and Jantz (2000) to demonstrate the most 

craniofacial variations in shape and size. Given the size and diversity of the databases, 

they offered the opportunity to create a statistically significant database for computational 

testing. If successful, this will offer an easily accessible program that is statistically 

robust and requires less coding knowledge to obtain valid information on admixture and 

ancestry of human crania, with subsequent applications across multiple biological 

anthropology fields. 
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CHAPTER II – Literature Review 

It only takes a quick glance around in a crowd to see the spectrum of human 

appearance, yet seeing variation does not easily translate into grasping its creation. 

People have always known that appearance was, in some way, inherited from our parents 

but little was understood beyond this. American biologists and anthropologists of the late 

19th and early 20th centuries assumed morphological stasis—no change in the facial shape 

or structure—until Franz Boas used craniometric studies to demonstrate the inherent 

plasticity of the human skull (Cartmill 1998). Since Boas’ initial publication, plasticity 

studies have compiled an extensive list of factors contributing to the final shape of the 

human body, most particularly the human skull (Hulse 1981).  

Historical Approaches to Human Variation 

Pre-Darwinian Approaches 

Molnar (2006, 3) places the curiosity regarding human variation that would lead 

to the modern conception of race as beginning in earnest in the late sixteenth century with 

European expansion into global exploration, trade and commerce, and colonization. 

Andrea Vesalius’s On the Fabric of the Human Body, which appeared in 1543, was an 

intentionally provocative work that illustrated human anatomy and variation in-depth 

through the use of detailed and accurate renderings of the body and is often posited as the 

first published work on modern morphological variation. Vesalius’s publication would be 

the first in what would become a major point of scientific and cultural curiosity that 

continued throughout the sixteenth and into the seventeenth centuries (Marks 2011). 

Scientific work done throughout the sixteenth century on human variation such as 

Vesalius, comparative anatomy such as Edward Tyson’s 1699 Orang-Outang sive Homo 
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Sylvestris, and discrediting entrenched biblically based beliefs such as Isaac de la 

Peyrère’s 1655 Pre-Adamites, converged in Carl Linnaeus’s taxonomic work Systema 

Naturae, published in 1735 (Marks 2011). The taxonomies within his work were not 

bereft of all religious doctrine, as their construction was in line with the commonly held 

view that species had been fixed in appearance and number since their creation; it also 

was not free from the misunderstandings created by purely visual discernment, such as 

the creation of four ‘subspecies’ of Homo sapiens—American, European, Asiatic, and 

Negro—based upon the visual differences in the cranial morphology of people 

discovered since Europe began its global explorations in the fifteenth century (Molnar 

2006). 

The premise underlying Linnaeus’s taxonomy of human variation as different 

subspecies was not frequently questioned at this time. Contemporaneous scientists 

critiqued the criteria upon which these categories were differentiated, but never critiqued 

the idea of multiple human ‘subspecies’ in and of itself. In 1779, Johann Blumenbach, 

often cited as ‘the father of physical anthropology,’ expanded this into five discrete 

categories—Caucasoid, Mongoloid, American Indian, Ethiopian, Malay—also based on 

cranial features, despite his observation of the overlapping nature of physical traits 

between these groups; Cuvier decreased the categories to three—Caucasoid, Mongoloid, 

Negroid—in 1817. Some scientists, such as Blumenbach and James Cowles Prichard, did 

question the arbitrary nature of these racial divisions; Blumenbach noted in his work that 

there was more variation between multiple individuals identified as African than there 

were between individuals labeled separately as African and European. Prichard 

eventually determined and published the belief that environmental influences were 
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responsible for much of human variation (Molnar 2006, Marks 2011). The debates 

between scientists regarding the extent and causal factors for human variation continue 

today, but the shape of these arguments was changed by the next major theoretical turn in 

science:  Darwinian evolution. 

Darwinian Evolution Emerges 

On November 24, 1859, Charles Darwin published On the Origin of Species by 

Means of Natural Selection. In this publication, he made the argument that natural 

selection—the inheritable evolution of species in response to external stressors—is a 

process of selective advantage wherein traits that allow organisms to successfully 

reproduce persist while those that hinder reproduction do not (Marks 2011). Since 

Darwin’s original publication, other methods besides natural selection have been 

theorized for macro- and micro-level evolution, such as niche construction, mutation, 

gene flow, and genetic drift. However, Darwin’s proposition of evolution had wide-

reaching, lasting consequences on how human history has developed; no longer could the 

idea of a fixed number and static appearance of species be supported. Instead, the 

prevailing belief was that we have been slowly changing over many years; this 

complicated the idea of racial differences, which by this time were well entrenched into 

society and the basis for ongoing structural violence such as slavery, indentured 

servitude, colonialism/imperialism, and more. Within 60 years of Darwin’s revelation, 

the field of physical anthropology would be professionalized by Aleš Hrdlička, focusing 

almost exclusively on classificatory and descriptive racial typologies. As a field known 

for its research focus on racial differences, much of the world looked to anthropology for 

cues on how to differentiate between races; discord amongst early physical 
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anthropologists on the cause and meaning of race demonstrated the complexity of the 

subject, which will be considered in the next section. 

Early Physical Anthropology 

Early physical anthropology relied heavily on measurements of the cranium 

(craniometrics) and observable but unmeasured morphological variations (non-metric 

traits) for racial classification (Armstrong-Fumero 2014, Hefner 2009); contemporary 

anthropologists continue to use both methods in current research. The underlying 

assumption of classification based on non-metric traits is the capacity for visual 

discernment, or the idea that simple observation allows sufficient evidence to 

successfully interpret complex phenomena. Fernando Armstrong-Fumero (2014) notes 

the persistence of this idea—that “seeing is believing”—not only in a variety of practices 

within physical anthropology, like ancestry determination, but more importantly in the 

public perception and understanding of race and ancestry. He suggests the entwining of 

visual discernment and scientific (more specifically, statistical) methods began as early as 

the works of Samuel Morton, one of the earliest physical anthropologists, in the first half 

of the 19th century (Armstrong-Fumero 2014).1 

Morton regularly used the cephalic index, one of the earliest forms of 

craniometrics, calculated as the ratio of cranial breath to cranial length. This proportion 

 
1 This is not to say that early 19th century scientists studying human variation disregarded 

measurements completely. Mathematician Francis Galton, founder of the Galton 

Laboratory for National Eugenics, focused was the development of biometrics to 

mathematically identify ‘normal’ human variation for a variety of physical and social 

traits, like body size and social achievement. Many at this time believed these traits were 

specific to different ‘racial stock’, which while problematic, their methods greatly 

improved the fields of mathematics and biometrics (Molnar 2006: 14). 
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was touted as an immutable physical trait able to assign individuals into discrete, 

essentialized, biologically determinant racial categories (Caspari 2003, Ta'ala 2015). 

Morton used rudimentary statistical analyses on this index and other craniometrics to 

justify the prevailing, but undeniably racist, views of the time, such as race being a 

biological truth that impacts moral and intellectual capacities. However, Morton 

admitted—though he did not see it as problematic—that his method often favored his 

opinion of race based on visual examination over any interpretations supported by his 

chosen statistical methods. “In several cases, Morton found himself sidelining the 

statistical material, or finding ways to explain why it diverged from conclusions that he 

derived through other means, and in which he seemed to place more faith” (Armstrong-

Fumero 2014, 6). Modern standards would consider Morton’s work to be superficially 

scientific at best, but in the 1800s, it effectively connected the idea that visual 

discernment can support and be supported by scientific inquiry (Armstrong-Fumero 

2014). While Samuel Morton’s investigative or interpretative methods did not stand the 

test of time, his work in measurement, incorporation of statistical methods, and reliance 

on visual discernment continue to impact biological anthropology research, for better or 

for worse; all three of these methods are still utilized across the field of anthropology as a 

whole, not just racial or ancestral classification within biological anthropology. 

Morton’s methods, and the cultural construction of race supporting them, 

continued with little dissent until the early twentieth century. Ales Hrdlička (1919, 22) 

wrote that the largest scientific goal of physical anthropology moving forward was “the 

gradual completion…of the study of the normal white man living under ordinary 

conditions. … Such knowledge of the white race is eventually indispensable for 
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anthropological comparisons.”  He goes on to discuss the necessity of a thorough study of 

more ‘primitive’ human races, stating there is “…not a single instance [that] we can say 

that we possess even a fairly complete record of any of the colored peoples. …It may not 

be of special benefit to the more primitive groups themselves, but we must have it not 

alone for descriptive and statistical purposes, but for a proper understanding of the 

fundamental problems of our own race and of humanity in general” (1919, 23). The view 

espoused here by Hrdlička became commonplace in the early 20th century, holding such a 

prominent place in physical anthropology that the field became known almost exclusively 

as ‘the study of race’ (Caspari 2003, 2009). 

Along with Hrdlička, prominent twentieth century physical anthropologist Earnest 

Hooton followed closely in Morton’s footsteps in studies on the capacity to visually 

discern human variation. Hooton oversaw the doctoral studies of physical anthropologists 

at Harvard, one of the earliest of such programs in the United States. In total, he trained 

28 students who went on to accept positions across the United States and shape the field 

as we know it today (Caspari 2009). Methodologically, Hooton is most well-known for 

creating a standardized suite of non-metric traits he claimed were useful in classification, 

though not strictly for race or ancestry determination (Hefner 2009). His first paper 

published in the American Journal of Physical Anthropology (AJPA) suggested that 

Icelandic “Eskimo” populations could be distinguished from other populations through 

four non-metric craniofacial traits; however, he did not position these as strictly racial 

traits, but traits that were functionally developed as an adaptation to the frigid sub-Arctic 

temperatures (Caspari 2009).  
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Beyond their methodological approaches supporting visual discernment, Hrdlička 

and Hooton shared other theoretical foundations that led them be the only physical 

anthropologists to ever serve on the Committee on Anthropology of the National 

Research Council (NRC). The AJPA, first published in 1918, was established to be a way 

to further the main focus of the committee:  eugenic-based racial anthropology aligning 

with contemporaneous European physical anthropology. However, the appointment of 

only two physical anthropologists to the Committee on Anthropology (all the rest were 

pro-eugenics scientists from other scientific disciplines) created noticeable tension among 

much of the fledgling anthropology profession at the time; this tension was heightened by 

the fact that both anthropologists were pro-eugenics, leaving the committee with no 

member to temper its ideas with an alternative point of view. Many felt Franz Boas 

would have been an acceptable choice to serve on the committee as a non-eugenicist 

member (Caspari 2009). 

Franz Boas, a contemporary of Hrdlička and Hooton, was staunchly against 

eugenics and questioned anthropology’s understanding and use of race. While not the 

first to contest the idea of race as a biological reality, he was the first American-based 

anthropologist to put forth a report utilizing empirically collected and mathematically 

analyzed data (to the degree allowable at the time) to refute the idea of morphological 

stasis and a racial essence, disrupting the base assumption permeating anthropology at the 

time that race was a fixed biological reality (Caspari 2003; Gravlee, Bernard and Leonard 

2003). Analyzing multiple cranial measurements to examine the difference between 

European-born and US-born children of immigrants, Boas noted small but distinctive 

differences between these two groups. While the differences seem minute—less than a 



 

11 

centimeter—when individual measurements are considered, the suite of measurements 

shows significant changes in the overall form (both shape and size) of the cranium (Cole 

III 1996). Boas posited the changes seen were not based on racial changes but influenced 

by pre- and post-natal environments (Gravlee, Bernard and Leonard 2003).  

Despite Boas’ research, the belief in and attempts to scientifically determine 

biologically discrete racial categories stubbornly persisted within anthropology. In fact, 

some of his students continued searching for these categories despite their teacher’s 

findings (Anderson 2012). Boas’ students were not alone; over the remainder of the 

nineteenth and into the twentieth centuries, measurements and mathematical formulas 

became increasingly complex in the search for how they could accurately determine race 

(Selcer 2012). However, these early studies laid the groundwork for the refutation of 

biological race by anthropologists, a contentious debate in physical anthropology leading 

up to Washburn’s “new” physical anthropology (Washburn 1951) and Carlton Coon’s 

1962 publication The Origins of Human Race.  

The “New” Physical Anthropology 

The rise of Nazi Germany, the Holocaust and other atrocities during World War II 

demonstrated the undeniable racial biases of contemporaneous science. Physical 

anthropology, realizing its role in the eugenics movement so adamantly pursued by Nazi 

Germany, began to move away from these classificatory and descriptive research goals 

(Fuentes 2010). The shift away from typology began in earnest with Ashley Montagu’s 

Man’s Most Dangerous Myth:  The Fallacy of Race in 1942. However, this was not 

Montagu’s first attempt to move physical anthropology away from typological race 

studies and towards a broader, more (truly) anthropological base. In 1940, he published 
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the article entitled “A Cursory Examination of the Relations between Physical and Social 

Anthropology”, wherein he laid out a case for the integration of sociocultural factors into 

the biological exploration of humanity. In this publication, he notes: 

…not only have physical anthropologists a great deal to learn from the findings of social 

anthropologists, but we shall also see that unless they make certain of these findings part 

of their methodological procedures, much of their labor is likely to prove abortive. … 

The physical factors involved in social development, and the social factors involved in 

physical development are relationships of obvious importance which up to the present 

time have been virtually completely neglected by the anthropologist. (Ashely-Montagu 

1940, 42 - 43, 61).  

 

Within two years, he would publish his seminal work on the racial fallacy and call for a 

move away from the understanding of race as a biological concept and towards one 

reflecting ethnicity, with the understanding that ethnicity describes the sociocultural 

connection between people beyond their physical similarities. Montagu’s push away from 

racial science and towards a more culturally centered view of ethnicity received 

significant, though not unexpected, objections across the field. According to Littlefield 

and colleagues (1982), he was the sole champion of that fight until the early 1960s.  

While Montagu may have been alone in the fight to retire the use of race and 

rejoin two subfields that had been torn asunder in anthropology, there were others also 

working to move physical anthropology beyond the study of typological race. In this 

venture, Montagu was joined by Sherwood Washburn, most notably, and other 

anthropologists and scientists who would soon become proponents of the “modern 

synthesis” of evolutionary biology and physical anthropology, such as Theodosius 

Dobzhansky. In 1950, Washburn and Dobzhansky convened the Cold Spring Harbor 

Symposium to explore how the disjointed fields of evolutionary biology and physical 

anthropology could be united once again. At the next annual meeting of the American 

Association of Physical Anthropologists in 1951, Washburn called for a ‘new’ physical 
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anthropology which moved towards populational and evolutionary-level studies of 

humanity instead of the individualistic, typological and classificatory studies that were 

currently the focus. He went on to write multiple publications (e.g., Washburn 1951) and 

organize other conferences over the next few years to further develop this idea and its 

implementation steps (Ellison 2018). However important this paradigmatic shift was for 

expanding the breadth and goals of physical anthropology research, it has not fully 

eliminated race as a focus of research—especially in forensic studies. Instead, it has 

altered how biological anthropology conceptualizes and studies race and utilizes early 

methodological work (Ta'ala 2015). 

Accounting for Admixture 

Early attempts. Prior to studies at the population level, admixture—the 

phenotypic and genotypic results of interbreeding between individuals from previously 

geographically isolated populations—was seen more as a nuisance preventing the data 

from showing ‘pure’ racial typologies instead of an area of potential research. Early 

researchers such as Giles and Elliot (1962) and Howells (1973) noted that the presence of 

population admixture obscured their results, but their focus on discrete racial 

categorization produced a fixation on the assignment of “hard,” or single, classifications. 

Even today, biological anthropologists discuss admixture—especially within forensic 

anthropology—as a reason for misidentification or inconclusive results. This can be seen 

in discussions regarding the different accuracy rates of two seminal ancestry 

classification works:  Giles and Elliot’s discriminant function analysis based on three 

U.S.-based sample collections (1962) and Howells’s multivariate analysis based on 18 

different populations across the globe (1973).  
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Giles and Elliot collected eight measurements from individuals in the Terry 

collection (curated at that time in the Department of Anatomy at Washington University’s 

School of Medicine in St. Louis, Missouri, now located at the Smithsonian Institute in 

Washington, D.C.), the Todd collection (curated at that time in the Department of 

Anatomy at Western Reserve University’s School of Medicine in Cleveland, Ohio, now 

located at the Cleveland Museum of Natural History), and the Indian Knoll collection 

(still curated at the University of Kentucky) to formulate a series of equations to 

differentiate between White, Black, and Native American individuals. Their initial 

accuracy rates ranged between 82% and 88% overall (on both model and test case 

individuals), but a wider variation in accuracy of just the test cases, ranging from 76.9% 

accuracy in identifying Native American males to 100% accuracy in identifying White 

females. Giles and Elliot (1962) suggested that the unknown admixture amount in the 

non-White samples likely impacted accuracy. When discussing the collections used for 

their sample database, they noted a large chronological gap among the three collections 

(the Terry and Todd collections contain mostly 20th century White and Black individuals, 

while the Indian Knoll collection is a prehistoric Native American collection) but did not 

appear to factor in the impact secular change over the span of this chronological 

difference would have on the measurements upon which they were basing their linear 

regressions. Additionally, they assumed that “any person showing any phenotypic 

evidence of Negroid admixture was considered a ’Negro’” (148), which is a questionable 

practice and could have a significant impact on their identifications. Despite these 

limitations, they still created linear function equations to separate among White, Black, 
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and Native American skulls. The potential effects of secular change and obscure 

admixture could not outweigh the desire for discrete categorization. 

Between 1965 and 1980, Howells personally collected approximately 30 

measurements from over 2,500 crania in 18 populations and used these measurements to 

develop multivariate methods for ancestry classification (Howells 1973). In reporting the 

accuracy of his methods in his initial publication, Cranial Variation in Man, Howells 

notes that his multivariate methods accurately classified 92% of the crania used to 

develop the methods and an undisclosed “meager” number of crania not used in the 

development of his methods (Howells 1973, v). (The author also checked his results and 

different sections and could not find much more clarity on accuracy rates of the test cases 

alone. The test bank has 524 cases total, but all accuracy rates discuss more than 524 

cases total as the basis of their accuracy rates). Brues (1990) explains the higher accuracy 

rate in Howells’s (1973) multivariate analysis compared to those of Giles and Elliot’s 

(1962) as resulting from the “racial ambiguity of the Todd collection ‘Negroes,’ who 

must have included many with appreciable White admixture” (6). Hefner (2009) notes 

that “[w]hen ambiguous or discordant trait values are encountered, admixture or 

individual idiosyncrasy is invoked…” (986) and suggests that anthropologists who fall 

back onto admixture in these cases simply do not know enough about the variation of 

traits in the individual target populations—again, utilizing hard classification of single 

ancestries (994). 

More recent attempts. Anthropologists within and outside of the biological 

subfield criticize the ongoing practice of single, hard ancestral classifications as a 

reification of the biological race concept (Armstrong-Fumero 2014). As an alternative to 
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hard classification, the study of admixture provides several research opportunities, such 

as population structure, human migration, or the racialization process. Only very recently 

have anthropologists developed approaches using craniometrics to determine admixture 

proportions with the goal to further studies of cultural phenomena. Thus far only one 

researcher, Dr. Bridget Algee-Hewitt, has detailed a novel ancestry estimation method 

that accounts for admixture. In her 2011 dissertation, she used craniometric data in a 

finite mixture analysis to determine admixture proportions based on the statistical 

probability of inclusion into a group and has since utilized the method to further examine 

biogeographic population structure across space and time (Algee-Hewitt 2016, 2017a, 

2017b).  

Admixture has the potential to partially address the longstanding critique that 

ancestry estimation methods reify the biological race concept. A main tenet of racial 

typologies was the previous existence of pristine or pure races with traits that were once 

unique and well-delineated from one another but became muddied by European 

colonization and globalization (Cartmill 1998, 653). However, current research disproves 

this tenet. Research has consistently demonstrated that both phenotypic and genetic trait 

distributions geographically overlap in what is commonly referred to as clines (Caspari 

2003). Genetic evidence supports continued migration and subsequent gene flow between 

human populations, despite geographic distance (Cartmill 1998). This means that no 

population of Homo sapiens has ever been fully distinct from one another. Instead, 

genetic adaptations pass between populations by gene flow resulting from persistent 

human interbreeding despite variable amounts of geographic isolation over time. This is 

supported by the work of Algee-Hewitt (2017a) which demonstrates variances in 
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admixture proportions between four U.S. regions (Midwest, Northeast, South, and West) 

which align with unique, known population migration histories for these areas. Utilizing 

this method on a larger scale temporally and spatially may provide more tangible 

evidence that “pristine” races have never existed than current methods have thus far. 

Sources of Craniofacial Variation 

Plasticity and Secular Change 

Bone is a living tissue that is both solid and plastic; its hardened calcified form 

adjusts to an almost infinite number of factors and demands placed upon it. Early 

physical anthropologists attempted to find a static physical ‘essence’ that could 

accurately categorize people into discrete racial categories. However, this proved to be 

impossible because of the gradual rate of change among populations for any given trait 

and the adaptive process of human plasticity. Plasticity, a temporary change which allows 

adjustment to a variety of demands placed upon the bones, was first demonstrated in 

American anthropology by Franz Boas’ studies of immigrant families and cranial change 

(Gravlee, Bernard and Leonard 2003); plasticity studies have since expanded to include 

the entire skeletal system, not just the cranium (Jantz and Jantz 2000). Factors, such as 

humidity or temperature, create unique suites of morphological traits that are similar 

across regions which face similar environmental conditions; long-term differences in 

cultural strategies, such as subsistence practices, help humans adapt to their environment 

and create even more diversity within a given region (Baab, et al. 2010; Evteev, et al. 

2014; Maddux, et al. 2017; Menéndez, et al. 2014; Paschetta, et al. 2010). 

Plasticity persisting over long periods of time is known as secular change. As time 

progresses, small phenotypic changes may become encoded in the epigenetic, and then 
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the genetic, code, and passed onto future generations as heritable, permanent traits. The 

unique combinations of physical traits created by regional secular change and plasticity 

across the globe allow anthropologists to identify where ancestral groups settled and 

adapted over many thousands of years, the process of ancestry estimation (DiGangi and 

Hefner 2013, Menéndez, et al. 2014, Ross, Ubelaker and Kimmerle 2011). 

Anthropologists utilize this relationship between phenotype and genotype to use 

craniofacial morphology as a genetic proxy in studies in which genetic examination is 

inaccessible for any number of reasons, as well as in a number of other studies in human 

evolution (von Cramon-Taubadel and Lycett 2008, Roseman 2016), dietary 

reconstruction (Paschetta, et al. 2010, Perez, et al. 2011), population histories (especially 

migrations) (von Cramon-Taubadel 2011, Hughes, et al. 2013), and biodistance analysis 

(Stojanowski and Schillaci 2006, Wijsman and Neves 1986). 

Intrinsic and Extrinsic Factors in Cranial Morphology 

Since Boas’ initial publication, plasticity studies have demonstrated an impressive 

number of factors contributing to the final shape and size of the human body. Multiple 

extrinsic and intrinsic factors influence cranial morphology—including genetic 

inheritance, sexual dimorphism, climate, nutrition and health status, and dietary intake—

creating the craniofacial variation which grounds ancestry estimation and other variation-

based research (Ross, Ubelaker and Kimmerle 2011, Menéndez, et al. 2014). Extrinsic 

factors are those occurring outside the body, many of which necessitate a temporary 

adaptive response from the body. Anthropologists can group these factors based on 

whether they have a direct impact, such as environmental or biomechanical forces, or an 

indirect impact, such as cultural factors.  
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The environment is an omnipresent factor in human life, to which the body adapts 

through the process of acclimatization. Changes brought about by acclimatization can be 

reversed, but if an individual is continually exposed, and therefore adapting, to a specific 

environment throughout childhood and into puberty, the acclimatization adaptation 

largely become permanent after puberty (Frisancho 2010). Research demonstrates a 

correlation between mid-facial variation and environmental factors like temperature and 

humidity/aridity. Evteev and colleagues (2014) found a significant association between 

the nasal and maxillary shapes and the climate (either cold and dry North Asia or more 

temperate Eastern Asian). The relationship between geographically patterned climate and 

nasal form was supported by further research by Maddux et al. (2017), who showed that 

the bony nasal aperture and internal nasal fossa demonstrate changes related to 

ecogeographic variation, but the soft tissues of the nose do not.  

Direct impact to the cranium from biomechanical forces is generally restricted to 

areas of muscle movement and other load bearing forces of mastication. Paschetta and 

colleagues (2010) examined how masticatory loading changed craniofacial shape in the 

Ohio Valley by comparing the craniofacial shape of three prehistoric populations in the 

middle and upper Ohio Valley. Each population was from a different time period, and 

each had archaeological evidence of dietary changes as a result of subsistence and 

technological changes. Their results indicate that different levels of masticatory loading, 

approximated by changes in diet preparation and intake, alter cranial morphology at 

several points:  the temporal fossa at the attachment sites of masticatory muscles, the 

general shape of the neurocranium, the zygomatic arch, and the palate (Paschetta, et al. 

2010). 
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Intrinsic factors are internal physiological processes, some of which are under 

genetic control. One of the most commonly discussed intrinsic factors impacting 

craniofacial morphology is sexual dimorphism. Sexual dimorphism impacts the size, 

shape, and developmental timeline of the skull, with males having a larger size, more 

robust or pronounced cranial shapes, and development of features at a later age than their 

female counterparts. These attributes are generally regarded as under genetic control, due 

to the sex chromosomes and other genetic factors signaling the release of hormones 

throughout the lifetime; however, extrinsic factors such as dietary intake have been 

demonstrated to have a significant impact on the expression of sexually dimorphic traits, 

such as the impact of an individual’s nutritional status on their stature or the onset of 

menarche (Moore 2013). In recent literature (such as the sources discussed next), few 

intrinsic factors (like sexual dimorphism or age/ontogeny) are discussed in isolation 

because most depend upon or respond to extrinsic factors, making their independent 

impact difficult to tease apart. Factors like dietary intake and population disease loads 

have multifaceted impacts on the skeleton by their impact on both physiological functions 

and biomechanical forces. 

Cultural factors also have a profound, though more indirect, impact on 

craniofacial morphology. For example, Bigoni et al. (2013) explore the morphological 

impact of different socioeconomic statuses in a medieval Czech Republic population 

using geomorphometric shape analysis of skull asymmetry. Their results suggest that 

cranial morphology is impacted by socioeconomic classes due to differential experiences 

of developmental stress and the differences in types of and access to food resources 

between classes (Bigoni, et al. 2013). In another study exploring the morphological 
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impact of cultural differences, Weisensee and Jantz (2016) examined how the 

epidemiological transition—improved public health and medical initiatives resulting in 

decreased infant and child mortality and population disease load, and increased overall 

lifespan—changed cranial morphology of one United States and one Portuguese 

population over a time span of 150 years, and found that both populations experienced 

significant secular change but in different areas of the skull; that is to say while 

morphological change was present, the specific changes were population dependent and 

not uniform as many expected them to be. These public health initiatives, aimed at 

changing cultural norms around hygiene and illness, impacted intrinsic and extrinsic 

factors—dietary intake, nutritional status, and disease load of the populations—resulting 

in measurable differences in facial size and the size and shape of the cranial base and 

posterior and lateral cranial fossa.  

Most research exploring contributing factors of human craniofacial variability has 

been conducted within the last 100 years, give or take a decade. Sparked by empirical 

evidence gathered by Franz Boas, the father of American anthropology, the study of 

plasticity and morphological change continued in earnest after the first World War (Jantz 

and Jantz 2000). Human variation has been around as long as humans themselves, but the 

modern field of physical anthropology was founded upon and continues to influence the 

research and understanding of human variation. 

Ancestry Estimation Methods 

Ancestry estimations in bioarchaeology and forensic anthropology rely upon a 

correlation between biogeographic ancestry/origins and socially constructed racial 

categories (Ousley, Jantz and Freid 2009). Within bioarchaeology, this association allows 
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for a variety of studies, such as the process of identity formation (Knudson and 

Stojanowski 2009), racialization (Geller and Stojanowski 2016), mortuary practices of a 

given time and space (Rakita, et al. 2005), and other parts of the human experience for 

which race has had a biological or social impact. Within forensic anthropology, ancestry 

estimation methods apply what is known about ancestry from population level variation 

studies to help positively identify a decedent, as part of the biological profile. There are 

three methods used alone or in combination with one another in modern anthropological 

and forensic work to estimate ancestry:  DNA analysis, non-metric traits, and 

craniometrics. No method is perfect; each method has its strengths and its drawbacks.  

DNA Analysis 

Significant theoretical and methodological advances in ancestry estimation have 

come from the use of DNA (Algee-Hewitt 2016). Genetics researchers utilizes robust and 

revolutionary methods of estimating admixture proportions (‘soft’ labeling) over single-

category ancestry categorization (‘hard’ labeling) (Algee-Hewitt 2016; White, Black and 

Folkens 2012). Genotype determination starts with a “read” of the gene being mapped, 

where the allele is scanned and determined, or “called”, as either matching the reference 

allele or an alternative allele; this read is often done at least two times (often significantly 

more) on human genetic material because of the diploid nature of human cells. The 

proportion of reference to alternative allele reads determines the likelihood of a site being 

homozygous or heterozygous. Schraiber and Akey (2015) note a significant problem with 

low-depth scanning is that some alleles are only partially sampled by the reads (i.e., not 

read with every scan, but only on some of the scans) or not sampled at all by any reads. 

They note that “[a]ccurate calling of heterozygous sites requires high-coverage data to 
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mitigate the effects of sequencing errors and the stochasticity inherent in sampling each 

allele” (729).  

The process of determining ancestry and admixture from raw genetic information 

is complex and riddled with choices that may unintentionally impact later analyses, 

especially when looking to use this information for population history research (Schraiber 

and Akey 2015). The issues with the most potential for impacting current ancestry 

determination methods include cost and sequencing depth (high or low). Cost of genetic 

sequencing continually decreases, but the current cheaper alternatives are low-depth 

sequencing in which the chromosomes are sampled with replacement instead of directly 

testing the full genome; high quality, high-depth whole genome sequencing is still 

expensive, especially when more than one individual is involved (Skotte, Korneliussen 

and Albrechtsen 2013). Low-depth sequencing data retains most genomic information, 

making it an acceptable option for large-scale needs with proper methodological 

understanding and mitigation of the known issues, such as the model provided by Skotte, 

Korneiliussen, and Albrechtsen (2013). 

The issues in genetic testing of modern populations, such as with forensic cases, 

are compounded by multiple other factors when dealing with historic and prehistoric 

remains. Genetic analyses of historic or prehistoric remains come with definite 

drawbacks, including but not limited to sample size, high risk of contamination and 

taphonomy-related sample degradation, and destructiveness inherent in sample 

acquisition (White, Black and Folkens 2012). After death, the human body, including its 

DNA, begins to internally decompose and, depending on the circumstances of death and 

cultural burial rituals, may experience a variety of taphonomic degradation forces such as 
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water, animals, or insects. When examining human remains dating back thousands of 

years, very little of the remains have viable genetic material, causing most ancient DNA 

(aDNA) studies to work with small sample sizes of highly degraded material. Nieves-

Colón et al. (2018), when seeking to compare the efficacy of two different DNA 

extraction methods for individuals excavated from tropical or semi-tropical sites, had 

only twelve individuals with skeletal materials (teeth and the petrous portion of the 

temporal bone) adequate for DNA sequencing from the three sites (Tanzania, Mexico, 

and Puerto Rico) which fit the climatic restrictions of their study. Researchers at the 

Arizona State University Ancient DNA Laboratory extracted less than one hundred base 

pairs from each element provided for sampling, which is a typical finding for aDNA 

studies. Additionally, because historic and prehistoric samples are often handled by more 

than one individual prior to DNA extraction (during excavation, transport, cleaning, etc.), 

care must be taken to properly decontaminate the test specimen as well as prevent 

recontamination by researchers during the sampling and testing processes.  

Genetic testing of prehistoric and historic populations necessitates removal of part 

of the body for the testing, even on mummified remains. Because of the destructive 

nature of DNA analysis, descendants of some Indigenous groups limit or deny this testing 

(Mayes 2010); destructive testing of this nature without consultation or permission of 

descendant groups, despite the protections called for in the Native American Grave 

Protection and Repatriation Act of 1990, has caused increased tension between 

anthropologists and Indigenous tribes (see Balter 2017, Eveleth 2015). In order to 

continue our work without causing harm to living or past populations, anthropologists 

need robust, accurate, non-destructive methods for estimating ancestry and admixture. 
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Non-metric Traits 

One of two non-destructive methods available to anthropologists for ancestry and 

admixture estimation is the use of non-metric traits. Non-metric traits, also known as 

discrete traits, are the variable shape expressions of bones and teeth unrelated to 

pathology. According to Hefner (2009), there are three methods of identification and 

interpretation used by current methods on a regular basis:  1) description of the bone’s 

shape or readily observable feature (e.g., cranial suture pattern); 2) dichotomous 

designation (i.e., the presence or absence of a feature); or 3) categorization of a feature 

along a pre-determined nominal or ordinal scale (e.g., the degree of concavity seen on the 

nasal profile). Thus far, anatomical sites and the overall methodology have not changed 

significantly since Hooton’s work, but new statistical models and technological advances 

show potential for altering both the identification and interpretation of these traits. 

The strength of using this type of data lies in its ability to be utilized in any 

laboratory, because it does not require specialized equipment (though Hefner (2009) 

suggests an inexpensive contour gauge be used for better visualization of the nasal 

contour) and its ability to be applied to incomplete remains (White, Black and Folkens 

2012). However, the drawbacks of this method are substantial, including but not limited 

to subjectivity in scoring, variable rates of interobserver error, and minimal use of sound 

statistical analysis methods (Hefner 2009, Klales and Kenyhercz 2015). Hefner (2009, 

986) eloquently notes non-metric analysis as is generally used today is as much art as it is 

science, “an art that is intuitive, untestable, unempirical, and consequently unscientific.”  
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Craniometrics 

Craniometrics, the distance between two points on the cranium measured using 

calipers or (more recently) laser scanning technology and computer graphics software, 

circumvent some of the subjectivity in application of non-metric methods. Especially in 

early craniometric studies, the use of non-standardized points for measurements inhibited 

comparative studies using craniometric data. A century ago, German anthropologist 

Rudolf Martin (1928) gained scientific prominence throughout Germany and northern 

and western Europe for his standardization of anthropological measuring techniques and 

methods, including craniometric landmarks, in Lehrbuch der Anthropology. American 

anthropology did not directly adopt his methods, but many of the current point 

standards—including those of Howells (1973) as well as Buikstra and Ubelaker (1994)—

were influenced by his point definitions (Morris-Reich 2013).  

One of the seminal craniometric works for American anthropology was W. W. 

Howells’ 1973 publication Cranial Variation in Man. This work had two major 

consequences, one expected and one unexpected. One of Howell’s intentions, which he 

achieved, was to demonstrate the ability to apply mathematical methods of classification 

to ancestry estimation techniques. There is a noted shift in ancestry determination 

publications towards craniometrics and mathematical methods of classification, and away 

from non-metric modes. The second, and unintentional per Dr. Howells, consequence 

was the creation of a series of well-defined and illustrated landmark sites, measurements, 

indices, and angles for craniometric data collection which have become the cornerstone 

of craniometrics (Howells 1996). 
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Ancestral Admixture Estimation 

Admixture estimation provide a means to address the longstanding typological 

critique of physical anthropology methods and contribute to populational and 

evolutionary-level studies. A significant criticism of physical anthropology in the early 

twentieth century was the reliance on typological or classificatory models, where an 

entire population is described in terms of traits held by a limited number of individuals 

(DiGangi and Moore 2013). A better understanding of, and ability to detect, admixture 

diminishes this by showing the presence and broad variation of traits across global 

populations. Typological models were based on the idea that traits that were particularly 

advantageous in a specific climate will increase in frequency, based on the process of 

natural selection. While this fact does not preclude their appearance in other geographic 

areas, it was believed that if they do not confer any particularly strong advantage in that 

climate, the trait will have a generally lower expression frequency. Admixture analysis 

allows us to examine the expression frequency of different traits, which in turn can be 

used to explore how populations have interacted with one another as seen with increased 

gene flow between populations increasing the presence of traits between the populations 

and/or evolved over time due to other circumstances, such as climate change causing a 

decreased need for cold-adapted traits.  

In 1953, when Francis Watson and James Crick described the double helical 

structure of the DNA, scientific understanding and available technology moved genetic 

research into the world of molecular genetics (Gayon 2016), and physical anthropology 

was along for the ride. Investigations regarding racial admixture initially attempted to 

determine the correlation between morphological traits and perceived genetic admixture; 
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after amassing sufficient evidence to comfortably posit the phenotype is, in fact, 

generally indicative of the genotype, studies linking morphology to genetics all but 

disappeared. In the late twentieth century and into the twenty-first century, genetic 

admixture reigned supreme when looking for evidence of population variation and 

admixture (e.g., Chakraborty 1975, Relethford and Lees 1982, and Parra, et al. 2001).  

Algee-Hewitt (2016) notes a shift in human genetics research towards a 

population level approach to genetic analysis, which has resulted in greater understanding 

of the scope and consequences of admixture events, as seen in the population structure, 

ancestry proportions, and degrees of admixture among groups. Studies broaching these 

topics utilize both short and extended time frames to understand the genetic and 

phenotypic alterations and infer social changes associated with these admixture events. 

These correlative studies provide the groundwork for the study of biological distance, or 

biodistance, through the correlation of genotype and phenotype, and have created new 

analytical methodologies, such as unsupervised cluster modeling, for better visualization 

and understanding of hybrid populations (Algee-Hewitt 2016). 

Seeking characteristics which would differentiate races, intensive study on the 

impacts of racial admixture on cranial morphology was largely ignored. Despite the 

theoretical advances created by genetic admixture studies, Algee-Hewitt (2016) notes the 

near tunnel vision of craniometric studies on ancestries confined to a single large 

population (White, Black, Asian, etc.) as determined by supervised classificatory 

methods or cranial diversity studies requiring complex methodology. This tunnel vision 

had been in place since the earliest craniometric pursuits. Hrdlička (1919, 24) remarks on 

the importance of study of ‘primitive’ people because it was believed they are “less 
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mixed, less abnormal, less pathological, perhaps less aberrant than those of more 

civilized communities...” and called for “investigations into the physical, physiological, 

and intellectual effects of racial mixtures on progeny”, stating admixture as a serious 

concern for “many nations, particularly the American.” However, he notes that these are 

prospects for future investigations, not studies being actively engaged in the early 1900s.  

Algee-Hewitt (2016) suggests the largest problem with traditional cranial metric 

and non-metric methods is their inability to address proportions of ancestral admixture, 

and instead proposes using statistical analysis methodology currently employed in genetic 

admixture testing. Since the practice of craniometrics as proxies for genetic markers has 

been well established using evolutionary models (see Strauss and Hubbe 2010, Hughes et 

al. 2013), she chose an unsupervised model of finite mixture analysis along with a 

traditional three contributor model to explore the underlying population structure and 

generate admixture proportions of self-declared American Black, White, Hispanic, Native 

American, and Asian individuals from the Forensic Anthropology Data Bank, a 

collection of measurements for over 3,400 individuals compiled from individuals in large 

skeletal collections (such as Terry collection curated at the Smithsonian Institution) 

measured by the database’s creators (Richard Jantz and Stephen Ousley) and cases 

supplied by over 100 forensic anthropologists across the United States (Forensic 

Anthropology Data Bank | Forensic Anthropology Center n.d.). This study is the only one 

found which uses only craniometrics and provides ancestry admixture proportion 

estimation. 
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Accuracy Rates 

Published accuracy rates within anthropology vary widely, and as such must be 

closely examined for true accuracy versus methodological choices which artificially 

inflate them. Using 99 identifications from recent Federal Bureau of Investigation (FBI) 

forensic cases that were positively identified using forensic anthropology ancestry 

estimation techniques, Thomas, Parks and Richard (2017) determined a correlation rate, 

which they term an accuracy rate, of 90.9% between the forensic anthropologist’s 

estimated ancestry (determined by unspecific methods) and the self-identified social race 

of the identified decedant (determined by driver’s license or other forms of identification 

after forensic identification). However, this study shows accuracy rates higher than 

normally seen in the literature. Liebenberg et al. (2015) found an accuracy rate of 40 – 

79% with five cranial indices (cranial index, upper facial index, orbital index, nasal 

index, and gnathic index) and 83 – 84% with linear discriminant analyses for a 

population of modern South Africans. Ousley et al. (2009) attempted ancestry 

determination using Howells’ global craniometric data to assess the ability of 

multivariate methods to classify individuals into ancestry groups consistent with the 

ancestry assigned by Howells and, further, to attempt classification by region or continent 

of this ancestry. They found with only 10 measurements, multivariate methods identified 

70% of individuals into the correct continent/region and 50% of individual ancestry was 

accurate; with 24 stepwise-selected variables, these methods identified 89% into the 

correct continent/region but only 75% of individual ancestry assignments were accurate. 

Hefner and Ousley (2014) utilized morphoscopic methods to determine ancestry using 10 
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different classification methods, with classification accuracy ranging form 66.4% 

(logistic regression) to 87.8% (neural network).  

Thomas and colleagues’ high accuracy rate likely results from three 

methodological choices:  the inclusion of only positively identified individuals that 

utilized craniometric analysis and had a determined ancestry (as opposed to a finding of 

“undetermined” ancestry), the collapsing of multiple Asian-based categories (Asian, 

Hispanic, and Native American) into one group, and the choice to consider the correct 

assignment of ancestry as equal whether one or multiple ancestries were estimated 

regardless of method used. When broken down further, they note that accuracy rates 

increased when one or more ancestries were estimated (90.9%, as previously mentioned) 

over ‘hard’ or single ancestry estimations (88.3%). Algee-Hewitt (2016) reports 71 – 

75% mean matching accuracy using the finite mixture analysis, when comparing the 

‘true’ identifier (the ancestry recorded in the FDB or Howells records) to the largest 

cluster membership proportion. The higher accuracy occurrs when she uses only three 

clusters, effectively collapsing the groups into White, Black, and Indigenous. As she 

determines accuracy using only the largest cluster membership, her accuracy rates may 

also demonstrate artificial inflation, as seen in Thomas and colleagues work, if she 

considered the top two cluster memberships. 

Confirmation and Cognitive Biases 

The methodological issues with Thomas, Parks, and Richard (2017) demonstrate 

multiple layers of confirmation bias. Kerstholt et al. (2010) define confirmation bias as 

“the tendency to selectively gather and process information such that it fits existing 

beliefs” (138); Thomas and colleagues leave much to be desired in determining and 
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discussing accuracy rates for forensic anthropological work. Choosing only cases with 

positively identified remains with ancestry estimation from skeletal remains only, they 

did not include any cases with an indeterminate ancestry estimation, citing “this study 

aims to examine the accuracy of ancestry esitmation when an estimation is offered” (2). 

Their methodological choice implies that because definitive ancestry could not be 

determined that no estimate was offered, when the opposite is true; ancestry estimation 

was attempted and could not be accurately determined, which is important to factor in 

when determining accuracy rates of current methods. While these cases would, 

undoubtedly, decrease the accuracy rate offered in the study, they also give a truer 

representation of the accuracy of ancestry estimation methods. By removing cases that 

would unquestionably decrease the accuracy rate, Thomas and colleagues carefully 

selected information with the potential to prove a pre-existing belief or idea about the 

accuracy of ancestry estimation methods, though this may not have been a conscious 

process. 

The other significant issues with the methodology employed by Thomas, Parks, 

and Richard (2017) are their choice of ancestral categories and their determination of 

“correct” classification when more than one ancestry was suggested. This study utilized 

only three ancestral categories:  White, Black, and Asian. They consciously collapsed 

Native Americans, Asian, and Hispanic populations into a single identificaiton category 

of Asian, despite the ongoing concern within bioarchaeology and forensic anthropology 

that the classifications of Asian and Hispanic are too broad to be operationally or 

contextually useful (see Spradley 2014, Tallman and Winburn 2015). This is, effectively, 

a single category for three-quarters or more of the global population, the epistemological 
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equivalent of hitting the broadside of a barn! This, again, effectively increases the 

accuracy rates they will determine, because a determination of Hispanic for an individual 

who self-identified as Asian will not be flagged as an inaccurate estimation; the 

probability of being wrong dropped from 80% (four out of five possible classification 

choices) to 60% (three out of five possible classification choices), with one of those 

classifications encompassing over 75% of the world population.  

Their determination of accuracy rate is further skewed when looking more closely 

at those instances where the forensic anthropologist suggested more than one possible 

ancestry. If the anthropologists suggested more than one possible ancestry, Thomas and 

colleagues considered the ancestry estimation to be correct if the identified ancestry 

matched either of the estimations; combined with the use of only three ancestry 

categories, this futher skews the actual accuracy of the methods. This, again, 

demonstrates their confirmation bias in their choosing an accuracy determination method 

that artificially inflates their accuracy rates. Thomas, Parks, and Richard (2017, 2) defend 

this choice stating “[a]lthough this may inflate the overall accuracy rate…it was 

considered correct because it did not falsely limit the pool of possible missing person 

matches”. However, given the breadth of populations included in their groups, more than 

one ancestry does not really assist the search either. Their methods created the illusion of 

improved accuracy, instead of giving a clear representation of the accuracy of current 

ancestry estimation methods used by forensic anthropologists. 

These issues demonstrate not only confirmation bias but also cognitive bias, or 

the influence of human cognitive processes on the decision-making process, in studies of 

ancestry determination. Cognitive bias, like confirmation bias, is receiving increased 
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study and scrutiny in forensic sciences within the last decade. Multiple studies have 

demonstrated that a priori information greatly impact the results across forensic science 

work (see Canter 2013; Fraser-Mackenzie, Dror, and Wertheim 2013; Nakhaeizadeh, 

Dror, and Morgan 2014; Nakhaeizadeh, Morgan, et al. 2018). For forensic anthropology 

specifically, Nakhaeizadeh, Mortan, et al. (2014, 2018) studied the impact of exposure to 

contextual information on the sex estimation, ancestry estimation using non-metric 

methods, and/or age estimations; both studies found that exposure to potentially skewing 

information significantly impacted the anthropologist’s results. the author found no 

studies on the potential for confirmation or cognitive bias in metric work, though this is a 

fruitful future direction. 

Confirmation and cognitive biases are issues receiving increased scrutiny within 

the forensic sciences (among other scientific fields); these studies have become so 

prevalent and important that a new subfield—cognitive forensics—has emerged as a 

focus within the forensic sciences (Nakhaeizadeh, Morgan, et al. 2018). Further research 

is needed on the extent of cognitive and confirmation bias in other anthropological 

methods, however, because the methods are only as good as the researcher. When applied 

properly, data mining and analysis techniques like unsupervised methods (discussed 

later) are well-suited to reduce cognitive and confirmation bias in data analysis. 

Data Mining and Analysis Techniques 

Soft Computing 

The statistical estimation of ancestral admixture utilizes a relatively new form of 

data mining and analysis called ‘soft computing’. According to Maimon and Rokach 

(2008a), data mining “tries to solve the crisis of information overload by exploring large 
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and complex bodies of data in order to discover useful patterns” (vii). In particular, 

methods within soft computing “exploit a tolerance for imprecision, uncertainty, and 

partial truth to achieve tractability, robustness, and low-cost solutions” (Maimon and 

Rokach 2008b, 1). The tolerance for overlapping mixed results separates soft computing 

from ‘hard’ computing. In the context of ancestry estimation, you can see the difference 

between ‘hard’ and ‘soft’ in the difference in information given when identifying an 

individual as “White” or “Black”—single, discrete “hard” classifications—and 

identifying them as expressing traits that are 50% Black, 30% White, and 20% Asian or 

other ancestry—‘soft’ classification that tolerates the limitations of skeletal variation and 

the clinal distribution of traits associated with human variation. The hard classification, 

including most of the current and traditional methods, carries the connotation or implicit 

suggestion that the individual’s self-identification aligns with the predominant ancestral 

geographic profile. Increased utilization of soft classification methods seeks to offset 

these ideas through demonstrating the lack of “pure” or single-origin ancestries. Further 

research, such as has been started by Algee-Hewitt (2017a, 2017b), demonstrates the 

differing population histories associated with different social race categorization and 

therefore the multiplicity of ways that one may present physically compared to their 

personal racial identification. 

Posterior Probabilities 

Soft computing for admixture estimation relies upon the abilities of these methods 

to supply posterior probabilities. Posterior probabilities are specific to Bayesian statistical 

analysis methods, combining information from prior probabilities and likelihood 

functions. Prior probabilities are the probability of an event occurring determined before, 
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or prior to, data collection, and is determined without factoring in any conditions on the 

realistic outcomes (i.e., probability of any and every theoretically possible outcome). 

Likelihood estimates are the probability of an event occurring based on current 

knowledge (i.e., after data collection) without considering outcomes that did not occur 

during the data collection. Posterior probabilities combine the information from these two 

theories, weighting the infinite probabilities of an event occurring (or in this case, 

membership in a cluster) based on the likelihood of such an event based on current 

knowledge; in shorthand, posterior probabilities are defined as prior probability 

multiplied by likelihood (Lee 2012). During the analysis, these probabilities are 

calculated based on the relative distance from the data point to the center, or centroid, of 

the various clusters (Moore 2013). Utilizing posterior probabilities in combination with 

fuzzy methods allows for the populational and evolutionary research discussed 

previously. No trait is assumed to be group-limited, but groups impacted by similar 

biogeographical influences can be connected by the strength and likelihood of trait 

expression in any given cluster. 

Clustering Methods 

Clustering analysis of continuous variables, like craniometrics, is based on the 

principles of distance and dissimilarity—the traits of those ‘inside’ the clusters are more 

similar to, and therefore of a ‘closer’ distance when graphed—to others in the cluster than 

to those ‘outside’ the cluster. Clustering methods generally take one of three approaches 

to cluster identification:  partitioned, hierarchical, and fuzzy. Both hierarchical and 

partitioned methods are considered ‘hard’ computing in their traditional forms, while 

fuzzy methods are, by definition, soft computing methods (Kubat 2017).  
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Partitioned and hierarchical methods are similar in outcome but different in 

approach. Both hierarchical and partitioning methods begin with a predetermined number 

of clusters as input by the researcher, into which they divide individual data points. 

Partitioning methods create clusters by minimizing the variation within each cluster, with 

a goal of the most homogenized clustering achievable given the level of heterogeneity 

inherent in most datasets. A strength inherent in partitioning methods is the ability for 

affiliation changes throughout the clustering process; the partitioning algorithm moves 

individual data points as it gains more data to minimize the differences within the cluster 

group (Sarstedt and Mooi 2014). One of the most well-known and commonly used cluster 

methods, k-means clustering, is a partitioning method. For data analysis purposes, k 

stands for the number of clusters, so the k-means clustering occurs through analysis of 

and relationship of data points to the mean—center or centroid—of the cluster. K-means 

clustering methods are commonly used in a variety of analyses due to the simplicity of its 

methodology (Kubat 2017). Everitt and colleagues (2011) note that the field of 

archaeology uses a variety of cluster analyses, including k-means clustering, to uncover 

patterns of artifact distribution over time and space.  

Hierarchical clustering is named after the structure created through the analysis, 

which resembles a hierarchy structure map. Unlike partitioned clustering, once a data 

point is assigned to a cluster during the hierarchical clustering process, it is not moved. 

As the process continues, the initial clusters are refined to smaller clusters until the best 

clustering fit has been achieved or the number of clusters indicated by the researcher has 

been met. Refinement occurs through one of two methods:  
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1) ‘bottom up’ or agglomerative approaches that build clusters by examining the 

relationship between individual data points and building clusters ‘up’ as they 

examine the relationship of each new data point to previously established 

ones,  

2) ‘top down’ or divisive approaches that build clusters by initially considering 

all data points as one cluster and building the clusters ‘down’ by examining 

the larger cluster for smaller, concentrated clusters.  

Hierarchical methods can be represented by a dendrogram, such as seen in taxonomic 

work (Everitt, et al. 2011, Sarstedt and Mooi 2014). Depending upon the purpose of the 

analysis, this approach can be useful. However, the rigidity of initial placement (once it is 

assigned, it is not moved from that place) makes hierarchical methods less than ideal for 

admixture analysis, compared to other methods that allow for reassignment to better 

fitting cluster as the algorithm gains more information. 

In the statistical and computational analysis jargon, methods that result in non-

discrete or overlapping clusters are ‘fuzzy’ clustering methods. Where partitioned and 

hierarchical methods give cluster assignments as either ‘in’ (noted as a 1) or ‘out’ (noted 

as a 0) of a single cluster (known as ‘crisp’ methods), fuzzy clustering indicates the 

strength or probability of membership in some or all clusters. Fuzzy clustering relies 

upon fuzzy logic, described by Everitt and colleagues (2011) as “an extension of Boolean 

logic in which the concepts of true and false are replaced by that of partial truth” (244). 

Obviously, not all clustering methods are fuzzy or can be modified to be fuzzy, but the 

number of fuzzy methods continually increases. Some initial fuzzy methods, such as the 

fuzzy k-means cluster and the fuzzy k-nearest neighbor, derived directly from traditional 
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hard computing methods. (Nearest neighbor is one of many different agglomerative 

hierarchical methods available.) 

Classification Methods Used in Anthropology 

Anthropologists have used some variation of hard and/or soft computing 

techniques for many years. Some of the earliest, and still more widely used, linear 

modeling methods are hard computing methods, such as discriminant function analyses. 

However, using craniometrics (specifically) in these methods is problematic because they 

invalidate multiple of the base assumptions of the methods (i.e., independence of the 

variables), therefore causing questionable validity of the results. Advances in 

computational science have developed a variety of nonlinear modeling techniques, like 

neural networks, capable of powerful analyses without the limitations imposed by linear 

modeling methods. 

Discriminant function analysis. Discriminant function analyses (DFAs) are a form 

of linear modeling used to isolate or identify at least two variables that identify or predict 

membership in two or more groups. This analysis class includes two-group discriminant 

function, stepwise discriminant analyses, and canonical analyses, and requires base 

assumptions of normal distribution of data, homogeneity of variance and covariance, and 

independence of variables. Two-group discriminant functions are analogous to multiple 

regression and, similarly, can be expressed in a linear equation with a regression 

coefficient, correlating to the possibility of group membership, for each variable. When 

attempting to understand the impact of variables on group membership, researchers can 

utilize stepwise discriminant function analyses to create different models of the group by 

including or excluding variables to see which variables have the largest impact on group 



 

40 

membership. Finally, the most complex version of discriminant function analyses is the 

canonical analysis. This is used to differentiate between multiple groups by determining a 

series of ‘functions’, where the first function is a suite of variables that provides the most 

differentiation between groups, the second function provides the next most amount of 

differentiation, etc. Each function will be independent of one another, in that their 

discriminatory capabilities will not overlap with that of any other function (Statsoft, Inc. 

2013). 

Because of their differential capabilities, DFAs have been extensively used in 

bioanthropological studies since the discipline as a whole has moved—in theory, even if 

not fully in practice—towards population level studies. Theoretically, this makes sense, 

as DFAs can analyze multiple variables and help delineate otherwise obscure differences 

between two populations. While not the first to use it, Giles and Elliot (1962) utilized this 

method in what has become a seminal work in racial classification using craniometrics 

(discussed earlier). Dividing the sample by known or estimated sex, they used eight 

cranial measurements to create two series of formulas (one for males and one for 

females) by which researchers could delineate—in hard classifications—between White, 

Negro, and American Indian individuals. Giles and Elliot also used five cranial 

measurements to create a discriminant function formula by which researchers could 

determine the sex of an individual (Giles and Elliot 1963). While these two publications 

are not the only ones to utilize discriminant function analysis, they are some of the 

earliest to do so and are still widely recognized within the field for their groundbreaking 

nature.  
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DFAs are created on the basis of larger-scale collections or populations, common 

uses of discriminant functions within the forensic branch of bioanthropology tend to 

remain individualized—to classify an individual whose status is otherwise unknown or 

questionable, such as seen in the computer program FORDISC, which uses DFA to 

determine ancestry and sex of individuals (Jantz and Ousley 2005). FORDISC utilizes a 

customizable database comprised of measurements from Howells’ global database and 

the FDB as a basis for its analysis; users can choose which populations to include in their 

analysis, and proper selection of incorporated populations has been shown to have a 

significant impact on the results. Recent criticism of the program has focused on accuracy 

rates, even with appropriate population base selection, (Ubelaker, Ross and Graver 2002, 

Elliott and Collard 2009) and the limitations of the current database for the global 

population, especially those of significant admixture (L'Abbé, et al. 2013, Urbanová, et 

al. 2014, Dudzik and Jantz 2016). 

Additionally, variables used in the analysis should be carefully selected to ensure 

their independence from one another to meet the underlying assumptions of DFAs. This 

method relies on assumptions that cannot always be met with real-life datasets. 

Specifically, DFA assumes that variables are not correlated with one another (non-

collinearity), that each independent variable is normally distributed (multivariate 

normality), and that variation between the group variables equals the variation between 

the prediction variables (homoscedasticity) (Statsoft, Inc. 2013). Cluster analyses require 

none of these assumptions because the main goal of cluster analyses is to discover or 

uncover groups within the data (Everitt, et al. 2011). The potential redundancy of 

variables, as seen in craniometrics, would undermine the overall validity of the results 
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(Statsoft, Inc. 2013). Additionally, the independence of craniometric variables is 

questionable because of the overlap in measurements (e.g., biorbital breadth includes 

interorbital breadth and the majority of the orbital breadth measurements) and the 

interrelationship between measurements (i.e., when one measurement—like the nasal 

height—changes, it will often necessitate a change in other measurements—like the 

upper facial height).  

Without assurance of these assumptions always being met, the validity of the 

testing is compromised. However, advances in computational methods have created a 

variety of powerful, nonlinear modeling techniques, such as neural networks, which do 

not have the same base assumptions of variable independence or normal distribution of 

variables. These methods require varying levels of technical and theoretical 

understanding, but their potential for revealing previously obscure differences or 

information about populations is thus far under-explored within anthropology. 

Neural networks. Neural networks are a class of nonlinear modeling techniques 

that can identify patterns or relationships between variables in datasets and model 

complex functions, without many of the validity issues that plague linear modeling 

methods. Computational—artificial—neural networks (ANNs) are based on the human 

brain—the biological neural network—and have been used for a variety of data mining 

tasks, including classification, clustering, and predictions. The increased use of neural 

networks is related to two important features:  their power and user accessibility (Statsoft, 

Inc. 2013, Zhang 2008). 

The power of neural networks comes from four central characteristics of this 

class:  1) adaptive, data-driven learning, 2) processing of complex 
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relationships/functions, 3) non-linear modeling, 4) ability to process large amounts of 

imprecise data, including non-metric data such as the non-metric traits used in biological 

anthropology. ANNs, like biological neural networks, learn from experience, meaning 

they require training algorithms, where they use representative data to discover and 

understand the structure of the data it will be processing. The output of neural networks 

improves through the innate learning of the algorithms as more data is received and 

processed, which contributes significantly to the user-friendliness of the method, as it 

does not necessarily require any reprogramming or adjustment of the algorithm if the user 

has completed the appropriate preparatory work and chosen the correct neural network 

for the analysis (Zhang 2008, Statsoft, Inc. 2013, Hefner and Ousley 2014). 

Despite the power of ANN to work with metric data, all instances of neural 

network usage in biological anthropology thus far have used non-metric variables. Hefner 

and Ousley (2014) were the first to apply ANN to biological anthropology work with 

skeletal work, in their exploration of eleven statistical methods, ranging from logistic 

regression to neural networks, for their accuracy in determining ancestry based on six 

cranial morphoscopic traits. They found that ANNs had the highest rate of correct 

classification of the methods used, with multiple other nonlinear, machine learning 

methods (random forest modeling, support vector machine) having similar but slightly 

lower accuracy rates. Comparably, Cavalli, Lusnig, and Trentin (2017) used the shape of 

the calvarium as determined from computed tomography (CT) scans and a pattern 

recognition ANN to determine sex on a total of 1,700 individuals, achieving an accuracy 

rate of approximately 81% using multiple classifiers. However, this study has a grave 

limitation in that it was only completed on healthy, adult Caucasian individuals, so its 
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accuracy and validity on any other ancestry or on those with potential health issues 

impacting the shape or size of the cranium is questionable at this time. Finally, Trentin, 

Lusnig, and Cavalli (2018), developed a new type of neural network, called a Parzen 

neural network and used it to determine sex on 1,400 healthy, adult Caucasian individuals 

based on cranial CT morphology. Again, their work suffers from sampling limitations, 

but with an accuracy rate of 81%, also shows the power of ANNs, especially for non-

metric traits, as are commonly used in biological anthropology.  

Bioanthropology as a whole has, at least theoretically, attempted to correct and 

move beyond its early beginnings as a predominantly racial science, which included a 

significant reliance upon visual discernment over mathematical or statistical evidence. 

Biometric data as collected from human skeletal remains has come with its own set of 

challenges when attempting statistical analysis, such as issues of discrete classification or 

finding a reasonable number of measurements that neither overfit the data nor violate the 

basic assumptions of the statistical model being utilized. The more recent trend towards 

soft, or fuzzy, computing is one attempt to help address these technical issues, as well as 

relevant cultural issues, such as the critique of hard (single) classification as a reification 

of the concept of biological race. However, knowing these methods can help address 

these issues does very little if the methods themselves are not approachable by more than 

a small number of bioanthropologists. The research developed for this thesis, as 

explained in the next chapter, is an exploration of the possibility ways in which valid 

methods could be made approachable to a wider selection of researchers. 
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CHAPTER III  - Materials and Methods 

The materials and methods described in the following sections were developed to 

test multiple hypotheses on the capability of the FANNY package in the R environment 

to accurately determine ancestry using craniometric measurements. If found to be 

adequately accurate, this package offers the ability to determine ancestry admixture rates 

as well as “hard” ancestry determination. The main goal of this research is test if 

FANNY, part of the open-source package ‘cluster’ in the R environment, is a valid, 

reliable, and stable method for accurately estimating ancestry of a large sample of diverse 

crania compiled from freely available craniometric databases. Accuracy rates, used for 

determining validity, reliability, and stability, will be established by comparing the 

ancestry determined or self-identified in their respective source database (Forensic 

Databank (FDB) at the University of Tennessee-Knoxville or NCSU’s online database of 

craniometrics from Latin American nations) with the ancestry determined to be the 

largest proportion of the individual’s; my goal is that the accuracy rates will meet or 

exceed 70%, putting them equal with other craniometric methods. If FANNY is found to 

be valid, reliable, and stable, it would create easier access for many bioanthropologists to 

explore the use of fuzzy methods in their own work. 

Materials 

Craniometric Databases. 

A persistent issue in forensic anthropology research is procuring an adequately- 

sized sample representative of the time period under question. This research combined 

two existing craniometric databases, the Forensic Anthropology Databank and North 

Carolina State University’s database, to create the needed sample.  
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Forensic Anthropology Databank. Drs. Douglas Ousley and Richard Jantz created 

the Forensic Anthropology Data Bank (FDB) in 1986 with the assistance of a National 

Institute of Justice grant to act as a repository for demographic and skeletal data from 

three sources of modern remains:  identified and unidentified forensic cases contributed 

by forensic anthropologists nationwide, including over 400 cases analyzed by J. 

Lawrence Angel, and the donated remains curated by the Forensic Anthropology Center 

at the University of Tennessee at Knoxville (UTK). The FDB currently contains over 

4,000 individuals and regularly adds others submitted by forensic anthropologists across 

the United States. Most individuals have confirmed basic demographic data (sex, race, 

birth year, age at death), but some individuals have only demographics determined from 

skeletal analysis, no confirmed data (Forensic Anthropology Data Bank | Forensic 

Anthropology Center n.d.). Measurements used in the FDB primarily follow the 

definitions set by W.W. Howells (1973), and all others can be found in the informational 

package that comes with the FORDISC program (personal communication with Dr. 

Jantz, 2017). Through email correspondence, Dr. Jantz has graciously supplied 

craniometric data from the entire FDB, containing 2519 individuals total, 2481 of whom 

have between 1 and 61 measurements. Sampling procedure will be discussed below. 

NCSU database. North Caroline State University’s (NCSU) Forensic Analysis 

Lab, under the direction of Dr. Ann H. Ross, maintains an online database of 

craniometrics from a variety of Latin American nations, found at 

https://sites.google.com/a/ncsu.edu/craniometrics-database/database. This database was 

initially created to investigate admixture in “Hispanic” populations. Samples include 

individuals from pre-contact societies through modern forensic cases. Because of the 
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extensive time period of this database, the integrated search function was used to obtain 

only forensic cases to minimize the chance of secular change issues; the search returned a 

total of 20 cases from Panama and Peru. These cases were exported to an Excel document 

and subjected to the sampling procedures discussed below (NCSU Forensic Analysis 

Lab, n.d.). Because of the limited scope of the database (i.e., only cases from Latin 

America), there is no designated race on these individuals when exported, so all were 

assigned the label of “Hispanic” in the database to be used for later accuracy assessment. 

The nationalities of the individualities were placed under ethnicity. 

Software Programs 

Readily available software resources make combining, refining, and testing large 

datasets easier and faster than ever before. This research utilizes two software programs 

to complete its research. While Microsoft Office software is not free, anyone can have 

access to it for a fee, or a similar database program capable of the same work, such as 

LibreOffice, for free (Smith 2021); Microsoft Access, the database program of Microsoft 

Office, is used to compile databases and refine them to create the main sample database 

(Microsoft Office Support 2018). It used the open-source computer software known as 

the R environment to create randomly generate test and split datasets (detailed below) 

and complete the necessary statistical tests (The R Foundation n.d.). 

Microsoft Access. Microsoft Access is the database management software 

included in the suite of Microsoft Office products. Utilizing a database, as opposed to a 

spreadsheet, helps prevent inconsistent or redundant data entry and expands the 

functionality of the data to include multiple types of search queries, forms, reports, and 

more (Microsoft Office Support 2018). For this research, the FDB and NCSU databases 
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were uploaded as separate tables within a single database, and append queries were 

utilized to create the main sample database (discussed later). 

R Statistical Environment. Though fuzzy testing is becoming increasingly 

common, there are very few commercial sources that support this testing without buying 

additional upgrades; even with the upgrades, one must still know how to compile and 

execute some form of computer coding to use the software and its upgrades to complete 

the needed testing. Given this, the most accessible software for this testing is the free, 

open-source computer environment of R, as it requires a similar level of computer coding 

knowledge but is free and open to the public (The R Foundation n.d.). 

There are two components of the R environment:  the programming language and 

the software suite. The R Foundation, which created and maintains the software, 

describes the language as “well-developed, simple and effective” (The R Foundation 

n.d.). For those who are not familiar with the language, there are multiple free, online 

tutorials, such as DataCamp (https://www.datacamp.com/courses/free-introduction-to-r), 

that teach the programming language. The software suite allows for statistical analysis 

and graphic representation of large volume datasets through individual programming of 

programs, an extensive collection of ‘packages’ created and published for R by other 

users, or some mixture of the two. This research utilizes ‘packages’ found in R that were 

programmed and released for general use by individuals throughout the world. These 

coding packages are available for search and download through the Comprehensive R 

Archive Network (CRAN), a series of globally mirrored servers maintained by the R 

Project specifically for package storage and distribution.  
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Utilizing k-means clustering allows variability in number of clusters. Increasing 

the number of clusters could reveal underlying biogeographic patterning to the 

craniometric data that is lost due to the way in which current identification nomenclature 

groups large geographic areas into a singular identity, such as Asian and Hispanic 

populations. This research tests the algorithm using between three and eight designated 

clusters, assessing for clustering composition and reliability of each cluster designation, 

with the goal of assessing the potential of these algorithms to differentiate smaller 

clusters aligned with the regional biogeographical patterning instead of larger continental 

patterns. 

Sampling and Database Demographics 

Sampling. Of the 2,481 FDB individuals with measurements, 2,451 individuals in 

total have an associated social race. The author combined those individuals from the FDB 

with those from the NCSU database sample. To ensure the data provided for the analysis 

represents both general skull shape and mid-facial differences, the combined sample was 

then further refined by craniofacial markers. In assessing for craniofacial changes 

between the mid-nineteenth and twentieth centuries, Jantz and Jantz (2000) used five 

craniofacial markers to look for changes in the shape and size of the cranial value and 

anterior face:  glabello-occipital length (GOL), basion-bregma height (BBH), maximum 

cranial breadth (XCB), bizygomatic breadth (ZYB), and nasion-prosthion height (NPH). 

While these areas are subject to secular change (morphological changes over time), they 

are also the minimum number of areas which ensure adequate representation of 

craniofacial shape and size variation across this sample. All available measurements on 

included individuals were used in the analysis, not just the five measurements used to 
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refine the sample. This was intended to offset the secular change presented by these 

measurements by having measurements across the spectrum of susceptibility, including 

those with very little demonstrable change over time.  

Both data sets (FDB and NCSU) were uploaded to Microsoft Access and append 

queries used to create the sample based on the presence of a social race and the five 

craniofacial markers (see Figure 1). From an initial pool of 2,539 individuals, this creates 

a final sample of 1,924 individuals. The social race of all individuals was then 

standardized to reflect five categorizations based on the FDB system:  White (W), Black 

(B), Native American (NA), Asian (EA), and Hispanic (H). The individuals who had an 

already admixed designation retained their original designation. The random number 

generator contained in the R environment, coded as the command “sample” (see Figure 

2), was used to generate a testbank containing 500 randomly chosen individuals; the rest 

of the sample (1,424 individuals) was designated as the main sample (uploaded into R as 

“S1”). Two databases were created for the main sample, one containing all variables as 

described above and one with only the five variables used to cull the original database 

into the sample database (GOL, BBH, XCB, ZYB, and NPH). The variable limited 

sample was used to test the hypothesis that too many variables can decrease the accuracy 

(discussed later). 

The main sample was then split into multiple separate, smaller databases, again 

using the R random number generator. First, two databases were created for stability 

Figure 1 Partial Microsoft Access Append Query for FDB Demonstrating Use of Refinement Criteria 
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testing by splitting the main sample into two equal sized secondary testbanks (712 

individuals each; see Figure 2). The third and fourth databases were created to determine 

if the disproportionately high number of White individuals in the main sample would 

impact the accuracy of the clustering method. The third database totaled 60 individuals—

all available EA and admixed individuals (n=20) plus ten individuals from each of the 

four remaining ancestry categories (W, B, H, NA, n=40). The fourth database followed 

the same pattern as the third, but with a larger number of individuals; it included all 

available EA, NA, and admixed individuals (n=37) plus 50 randomly selected individuals 

from the remaining ancestry categories (W, B, H, n=150) for a total of 187 individuals. 

Database demographics. Understanding the demographic representation of the 

data is important for result interpretation. The full sample database contained 1,924 

individuals with birth years ranging from 1892 to 1990 and ages (both estimated and 

known) ranging from 16 years old to 101 years old. Each individual had a known or 

estimated sex, designated as male (M), female (F), or unknown (U). Table 1 (below) 

demonstrates the demographic makeup of the full sample by age and sex.  

 

Figure 2 R Coding to Create and Export Test and Split Databases from Main Sample (S1) 
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Table 1 Full Sample Demographics by Race and Sex 

Designation Male Female Unknown Total 

Black (B) 250 162  412 

East Asian (EA) 6 7  13 

Hispanic (H) 180 44 4 228 

Native American (NA) 19 7  26 

White (W) 768 463 1 1,232 

B/NA 2   2 

W/B 2 1  3 

W/EA 1 1  2 

W/H 1 4  5 

W/NA 1   1 

Total 1,230 689 5 1924 

 

The demographics show a disproportionate amount of White, male, and White 

male individuals within the sample; Whites and males make up the majority of their 

respective samples by size (approximately 64%), and there are almost twice as many 

White males (768 or 40% of the total sample) as any other category. The reality of 

donation-based collections, such as the FDB, is that they reflect the demographics of the 

society from which they are derived. Despite contributions of forensic anthropologists 

around the US, the primary source of participating individuals is Tennessee and 

surrounding areas; the latest census bureau statistics estimated Tennessee to be 79% 

White, slightly higher than their representation in the current sample (United States 

Census Bureau 2016). 

Tests of stability and reliability (discussed later) are also impacted by the 

demographics of their respective databanks. The demographics of each sample set are 

detailed in Tables 2 through 5. 
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Table 2 Test Bank Demographics by Race and Sex 

Designation Male Female Unknown Total 

B 60 41  101 

EA 2 2  4 

H 60 13 2 75 

NA 6 3  9 

W 197 112  309 

W/EA 1   1 

W/H  1  1 

Total 326 172 2 500 

 

Table 3 Initial Testing Sample Demographics by Race and Sex 

Designation Male Female Unknown Total 

B 190 121  311 

EA 4 5  9 

H 120 31 2 153 

NA 13 4  17 

W 571 351 1 923 

B/NA 2   2 

W/B 2 1  3 

W/EA  1  1 

W/H 1 3  4 

W/NA 1   1 

Total 904 517 3 1424 

 

Table 4 Split Table #1 Demographics by Race and Sex 

Designation Male Female Unknown Total 

B 101 58  159 

EA 2 3  5 

H 60 16 2 78 

NA 7 3  10 

W 278 174 1 453 

B/NA 2   2 

W/B 2 1  3 

W/H  2  2 

Total 452 257 3 712 
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Table 5 Split Table #2 Demographics by Race and Sex 

Designation Male Female Unknown Total 

B 89 63  152 

EA 2 2  4 

H 60 15  75 

NA 6 1  7 

W 293 177  470 

W/EA  1  1 

W/H 1 1  2 

W/NA 1   1 

Total 452 260 0 712 

 

There is a risk with random sampling of skewed representation in any given 

sample, but each of the data sets demonstrated the same approximate proportions as the 

larger, full sample (i.e., approximately twice as many males than females, Whites than 

other social race, etc.). Only the second split table (Figure 7) lacked any individuals of 

unknown sex. The test bank had only two individuals with originally designated 

admixture, which was half as many as the other datasets in this research. 

Variable determination and missing values. A common concern in forensic and 

bioarchaeological skeletal analysis is an inability to obtain complete measurements on 

remains because of issues like taphonomy, antemortem and/or postmortem treatment of 

the body, and issues with full skeletal recovery and preservation. As a result, it may not 

be feasible to obtain many cranial measurements. Missing values create an issue for 

cluster analysis, as the algorithm determines clusters based on comparison of all 

variables. Missing values must be addressed to avoid—or at least be aware of—the 

potential for skewing the results. There are multiple ways to deal with the issue of 

missing values, with varying impacts upon the resulting analysis.  
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The two simplest ways of dealing with missing values are 1) to replace the empty 

cell with a “0” or 2) to replace the empty cell with the mean value of that variable. The 

most significant drawback of the first method is that potential for a heavy skew of the 

centroid (which is determined by the average of all individuals in the cluster), depending 

on how many individuals have missing values for a given variable. Therefore, this 

research utilized the second option, determining the mean measurement (i.e., not 

including the individuals with missing variables) for each variable using the 

AVERAGEIF function in Microsoft Excel and using it to replace any missing values. 

This helped prevent skewing the data towards lower centroids due to the presence of 

zeros in the absence of any given measurement. However, having too many individuals 

with the average inserted can also skew the data, though not as drastically as having 

zeroes. To minimize this, each variable was examined to determine how many 

individuals have missing values, and those for which more than 10% of individuals (from 

the sample as a whole [n=1924]) with a missing value were eliminated from the variable 

pool. For all remaining variables, the mean was inserted into any empty cells for that 

variable, as discussed above. Following these parameters, this research utilizes a total of 

22 variables that were included in both the FDB and NCSU databases. The variable 

names and abbreviations are detailed in Table 6 and were measured in accordance with 

W.W. Howells (1973) published instructions. 
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Table 6 Variables Included, Measured According to Howells (1973) Instructions 

Abbreviation Name Abbreviation Name 

BNL Cranial Base Length MDH Mastoid Height 

BBH Basion-Bregma Height OBH Orbital Height 

NLH Nasal Height OBB Orbital Breadth 

NLB Nasal Breadth DKB Interorbital Breadth 

ZYB Bizygomatic Breadth EKB Biorbital Breadth 

AUB Biauricular Breadth FRC Frontal Chord 

BPL Basion-Prosthion Length PAC Parietal Chord 

NPH Nasion-Prosthion Height OCC Occipital Chord 

GOL Maximum Cranial 

Length 

MAL Maxillo-Alveolar 

Length 

XCB Maximum Cranial 

Breadth 

FOL Foramen Magnum 

Length 

WFB Minimum Frontal 

Breadth 

FOB Foramen Magnum 

Breadth 

  

Methods 

Clustering Method and Package Selection 

Posterior probabilities obtained from any fuzzy method will be, in part, dependent 

upon the clustering method chosen. Multiple pre-existing R packages exist for most 

clustering methods, so each must be examined to ensure use of the most appropriate 

package. In the case of fuzzy k-means clustering, the method of choice for this research 

(discussed next), there are five pre-existing R packages (ppclust, fclust, FuzzyR, 

RCmdr.FuzzyPlugin, and FANNY) available for data processing. 

Clustering method. Ancestry estimation focuses on biogeographic skeletal 

features, expecting some features to cluster together and overlap based on the limited 

number of biological responses to geographic environments. As such, the most 

appropriate soft computing methods for admixture estimation should also focus on fuzzy 

clustering methods with the ability to identify posterior probabilities for cluster 

membership. With the ongoing advancements in soft computing, there are now multiple 
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‘fuzzy’ options for k-means clustering. Theoretical simplicity, flexible affiliation of the 

traditional method, and the ability to modify the traditional algorithm to allow cluster 

overlap, or ‘fuzzify’ the cluster boundaries made k-means clustering an excellent option 

for this project’s goal of extending the approachability of admixture estimation.  

Package selection. Once the appropriate clustering method was determined, 

published R packages were examined for applicability and ease of use. The CRAN site 

maintains a list of available packages written and published by individuals or groups in 

several fields, from horticulture to psychology. A search of that site provided five 

packages likely to fit the needs of this research:  ppclust, FuzzyR, fclust, R Commander 

with the fuzzy numbers extension, and FANNY.  

The package ppclust (Cebeci, et al. 2018) provides a range of probabilistic and 

possibilistic cluster analysis algorithms, including fuzzy and hard c-means clustering, 

fuzzy possibilistic product partition c-means clustering, and modified fuzzy possibilistic 

c-means clustering. Because of the variety of algorithms provided, ppclust is an excellent 

package for those well-versed in the differences between the different clustering 

algorithms, as the differences are nuanced but important depending on the type and 

amount of data being tested; this same variety, however, makes it a difficult package to 

be used by beginners to both cluster analysis and R programming. 

The second package explored, FuzzyR, ultimately suffered from many of the 

same setbacks as ppclust—namely, an abundance of algorithmic options with the 

potential to overwhelm novices to the field. However, FuzzyR has one addition which 

works in its favor despite the number of algorithms present:  a graphical user interface 

(GUI). The software program of R is a command line program, meaning that each line is 
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its own command enacted by the program, like Figure 2. GUIs utilize graphics, such as 

windows, buttons, or boxes, to provide a visual interface which controls the program; 

these have become the norm in software programs, such as the Windows or Mac software 

GUIs (see Figure 3). GUIs lessen the tension of computer use and make novice users feel 

more comfortable (Levy 2018). 

 

Figure 3 Windows with the GUI of Google Chrome 

The third available package, fclust, focuses on fuzzy k-means cluster techniques. 

It includes a basic fuzzy k¬-means algorithm (FKM) along with 15 variations of the 

algorithm designed for specific purposes. This package is a line-command only (Giordani 

and Brigida Ferraro 2018). The ability to choose only the fuzzy k-means algorithm made 

this package more appealing than the previous two mentioned, but the variety of other 

algorithms and the lack of GUI made it less appealing than the next package option, 

RcmdrPlugin.FuzzyClust. 

The fourth package was explored for this research based on two criteria:  GUI 

interface and limited choice of algorithms. This package requires the use of an interface 
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package called, Rcmdr, to function. R Commander is a GUI for R that is regularly 

updated, as well as modifiable for specialized tasks through the use of plug-in packages, 

such as the fuzzy clustering plug-in used in this research (Fox and Bouchet-Valat 2017). 

Once both packages are installed and the R Commander GUI initiated (see Figure 4), the 

fuzzy cluster plugin is engaged, giving the GUI the ability to complete the two fuzzy 

cluster algorithms included in the program:  fuzzy k-means and Gustafson Kessel. 

 

Figure 4 Code to Install Rcmdr and RcmdrPlugin.FuzzyClust Packages, and Start the R 

commander GUI 

The intuitive, easy-to-use design of R Commander, as well as the limited options 

of the fuzzy cluster plug-in, make it an excellent choice for novices (see Figure 5).  

 

Figure 5 Initiating the Fuzzy Cluster Plugin with the R Commander GUI 
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The R Commander fuzzy cluster allows for customization of cluster numbers and 

fuzzifier factor, as well as individual determination of variables used to create the 

clusters. For this research, all available craniometrics were used as variables. The data 

was tested starting with the cluster number at three and increasing to eight; the fuzzifier 

factor, which determines the amount of allowable group overlap, was kept stable at two 

for all tests.  

Once the analysis is completed, a results screen is generated with a visual 

scatterplot based on the first two principal components analyses, the table of cluster 

membership probabilities, cluster centroid information, and statistical tests of validation 

and group differences (multivariate analysis of variance or MANOVA) (see Figure 6). 

The program automatically saves generated reports as text documents; the charts are later 

transferred to a spreadsheet for further analysis. 

The Rcmdr.FuzzyPlugin was the most visually user-friendly option because of the 

GUI used and provided a wealth of information about the data, but the program overall 

was less than ideal because of the manner of data output and the difficulty in adequately 

and accurately identifying centroids and any surrounding individuals. Centroids of the 

Figure 6 Fuzzy Cluster Results GUI with Report Generator 
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individual clusters were given as the average numbers for each measurement, requiring 

the author to separate out all the individuals in a cluster then try to find individuals with 

similar numbers to average to determine ancestry identification for each cluster. This 

could end up with anywhere from three to six individuals, none with more similar 

numbers than any other, making it difficult to determine which one(s) would be closest to 

the true centroid. Easy identification of the centroids was essential to cluster assignment 

and therefore tests of validity, stability, and reliability, so this method was given high 

potential for use in this research, but the author wanted to explore the last previously 

formulated coding collection, FANNY, as a possible better fit. 

Within the ‘cluster’ package is a class, or subset of programming, specific to 

fuzzy cluster analyses, known as FANNY. An immediate downfall of FANNY is that it is 

a line command program and not a GUI. However, the coding necessary to obtain results 

is less intensive and has fewer options (overall) than previous line command package 

options. Additionally, exporting results from FANNY can be individualized to only the 

information needed by the researcher, instead of having to save everything, as was done 

in the Rcmdr.FuzzyPlugin exports. Finally, the programming can be utilized by the 

‘fviz_cluster’ class within the ‘factoextra’ package for visualization purposes; this is an 

improvement over the data visualization from Rcmdr.FuzzyPlugin because fviz_cluster 

allows individualization of the data plots, including the inclusion of identified cluster 

centers instead of having to attempt to find individuals closest to the centroid 

measurements as was done by Rcmdr.FuzzyPlugin. For these reasons, the author felt the 

FANNY class of the cluster package was the best option for testing purposes for this 

research project. 
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FANNY allowed the individualization of several details pertinent to fuzzy 

analyses, including the number of desired clusters (where k must be greater than 0 but no 

more than half the number of observations included in the analysis), the ability to use 

dissimilarity matrices or standardized data instead of observed variable matrices, 

different calculating metric (Euclidean, Manhattan, or squared Euclidean), specifying the 

maximum number of testing iterations (default set to 500), and more. This research tested 

the capabilities of this program to separate the data into between three and seven clusters. 

Because the data used was actual observational data, it was not considered standardized 

or a dissimilarity matrix, so the author included information to reflect this in the coding 

(stand = FALSE). According to the package reference manual, the squared Euclidean 

metric “is equivalent (but somewhat slower) to computing so called ‘fuzzy c-means’” 

(Maechler, et al. 2019, 38), so the author specified this metric (metric=”SqEuclidean”) as 

seen in Figure 7. 

 

Figure 7 Coding for FANNY Class Testing of the Initial Sample into 3 Clusters 

Results from testing was then exported using the ‘xlsx’ package. This package has 

multiple functionalities, including use in reading and importing, creating and exporting 

to, and formatting existing Microsoft Excel files. It also allows the user to import 

multiple different datasets into the same Excel file using the “append” function 

(append=TRUE), which creates a new sheet within the file and writes the data there. 

Using this package, the author was able to export all FANNY results into a single file for 

each sample and number of clusters tested (see Figure 8). 
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Figure 8 Coding for Data Export using 'xlsx' Package 

Finally, results were visualized using the ‘fviz_cluster’ class of the ‘factoextra’ 

package. This package allowed significant personalization of each graph to make the data 

more comprehensible (see Figure 9).  

 

Figure 9 Coding for Data Visualization using the 'factoextra' Package 

This included plotting of the cluster center (show.clust.cent=TRUE), which made 

identification of individuals closest to the centroid more manageable than previous 

programs explored. It also allowed the author to use different sizes for the individual 

points within the plot as well as their labels, to make them more easily visualized 

(pointsize=0.5, labelsize=2). Finally, the program has a “repel” function (repel=TRUE) 

which, when activated, keeps the program from “overplotting” or putting in every text 

label for each point. This, again, makes understanding key aspects of the data easier for 

the user. The cluster plots for the five variable testing (discussed later) can be found in 

Appendix A. 

Validity, Stability, and Reliability Testing 

While traditional and fuzzy k-means clustering are well-documented and 

researched statistical methods, each application of an analytical method to new data must 
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address three major concerns—validity, stability, and reliability—before researchers can 

approach interpretation.  

Validity. Concurrent validity is the ability of a method to differentiate between the 

groups for which it was developed to discern (Trochim 2006). Because there is no way to 

trace full ancestry for any person or group, especially considering rapidly increasing 

globalization, the groups (classes) available to validate the methodology are social race 

groups. One’s self-identification with a given racial group does not equate to any single 

geographic ancestry population, but research has revealed patterns within the U.S. 

regarding biogeographic ancestry, population histories, and racial self-identification 

(Ousley, Jantz and Freid 2009, Algee-Hewitt 2017a). While not a perfect measure and 

seemingly counter-intuitive, as one attraction of admixture estimation is the potential to 

move away from hard classification, it was the only categorization available for cluster 

validation.  

Fuzzy k-means clustering is a form of ‘unsupervised’ clustering, meaning that it is 

completed without class identifiers, to ensure the relationships are based off the variable 

data and not influenced by class data. Utilizing the class of the cluster centroid, each data 

point was identified by that label (as, for example, predominantly White or Black 

ancestry) (Everitt, et al. 2011). For points of overlap, labels were assigned according to 

the highest posterior probability. These were then compared to the recorded class labels 

to determine the accuracy, or validity, rate. Finally, the relationship of this accuracy rate 

to other published accuracy rates—in this case, Algee-Hewitt’s (2016) finite mixture 

analysis of 71 – 75% mean matching accuracy—was explored as a means of ensuring a 

minimum level of accuracy (Kubat 2017).  
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Reliability. Reliability is the ability of the method to produce consistent results 

over time. As such, reliability is tested by “critically revisiting and replicating the 

clustering results at a later point in time”, preferably with a newly collected dataset 

(Sarstedt and Mooi 2014, 260). Large datasets of newly collected craniometrics are 

difficult to obtain, leaving three options to test reliability:  1) running the entire data set at 

a later date, 2) using random sampling of the entire data set to create a test bank, or 3) 

using Howells’ world-wide craniometrics data set as an alternative data set, though not 

newly collected. The author tested the initial reliability of the algorithm, regardless of its 

validity, by running the initial sample through the program on different dates using the 

same code and comparing the number of individuals in each cluster to ensure the 

underlying algorithm was reliable (regardless of validity). The algorithm was found to be 

reliable to itself using the initial sample dataset, allowing the author to focus on ensuring 

it would then be reliable in how it was categorizing individuals using a different method. 

Given how temporally expansive Howell’s dataset is (extending from prehistoric 

groups to the 1970s), there are issues with the potential for craniofacial changes over time 

impacting the accuracy of the results. Because of these issues, this research used a 

random subsampling of 500 individuals to use as a test databank, created using the 

imbedded random number generator (RNG) in R (see Figure 10).  
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Figure 10 Use of Imbedded Random Number Generator for Subsample Creation 

To get a sampling that is replicable in the future, the author set a “seed”, or 

starting number, for use by the RNG algorithm. This allowed any future testing to start at 

the same point in the data and pull the sample according to the same algorithm, 

improving the replicability of future testing. The author then created an “index” 

command, which tells the program to use the RNG to sample the entire initial sample 

(labeled as “s1” for this program) for a total of 500 individuals, and to not replace drawn 

numbers back into the pool of potential sample subjects to prevent individual duplication 

within the new subsample. This test bank was labeled as “t1” and subsequently 

downloaded into a file named “TestBank.csv”. The remaining sample was compiled into 

a sample bank labeled “t2” using the negate function of the index, which told the program 

to use all individuals not included in the original index. This bank (t2) was then 

downloaded into a file named “InitialSample.csv”. This file was used for initial testing 

and was split again for testing of methodological stability, discussed in the next section. 

Stability. Stability is the ability of the method to consistently identify and cluster 

the same (or similar) individuals. There are multiple ways to test stability of a method, 

but the two most common methods are the inter-methodology comparison and split 



 

67 

datasets. For inter-methodology comparison, the researcher runs the given dataset 

through a different clustering method and compares cluster affiliations. Significant 

change in cluster affiliations (more than 20% difference is the widely accepted standard) 

should trigger a reassessment of the clustering methods, variables used, and program set-

up (Kubat 2017). The second method to ascertain stability is the ‘split dataset’ method, in 

which the dataset under question is split into two separate subsets and run through the 

program. Cluster centroids are then compared using traditional comparative methods 

(independent samples t-test and/or analysis of variance [ANOVA]) for significant 

differences. This research used the latter procedure—splitting the initial dataset used—to 

explore the stability of fuzzy k-means clustering methods on datasets of different sizes 

(Sarstedt and Mooi 2014). 

Summary 

Testing for the validity, stability, and reliability of statistical methods required a 

sample of adequate number and, hopefully, physical diversity, while controlling for 

issues such as the significant cranial plasticity that has been demonstrated over hundreds 

of years. For this reason, the sample used for this research was restricted to more modern 

samples; this allowed for control over plasticity over time while allowing for an excellent 

sample size. The sample for this research was compiled from multiple open-source 

compilations, including UTK’s Forensic Data Bank and NCSU’s online craniometric 

database of Latin American individuals. The sample was the parsed using Microsoft 

Access from the original 2,539 individuals to the sample of 1,924 used for testing by 

eliminating individuals that did not have five measurements (TKB) that have been shown 

to have the most craniofacial variability. Further random sampling into testbanks and 
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split databases utilized the imbedded random number generator found within the R 

environment. 

The author explored five different packages within the R environment for their 

ability to perform fuzzy k-means clustering tests, their ease of use, and the effort involved 

in determining their validity, stability, and reliability from their results and export 

methods. From the five packages (ppclust, fclust, FuzzyR, Rcmdr.FuzzyPlugin, and 

FANNY), this research utilized FANNY in conjunction with the ‘xlsx’ and ‘factoextra’ 

packages for testing, data export, and results visualization. While FANNY is a line 

command programming option, it is easy to use, with clear instructions for which 

functions and metrics to use for the data type (observed variables) and statistical method 

(fuzzy k-means) used in this research. Data was easily exported using the ‘xlsx’ package 

into single Microsoft Excel files for each sample and cluster number. Data was then 

visualized using the ‘fviz_cluster’ class of the ‘factoextra’ package, which allowed for 

individualization of each graph to fit its needs. 
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CHAPTER IV – Results and Discussion 

Admixed ancestry determination as calculated using fuzzy math could have 

applications across biological anthropology, from understanding historical population 

movements to forensic identification of individuals. Currently there are multiple pre-

coded, readily available statistical packages that are readily accessible for researchers 

without a strong background in coding and statistical computations. However, they still 

need to be tested for their ability to accurately differentiate between groups using criteria 

applicable to bioanthropological studies, such as the craniometrics used in this research. 

As such, the goal of this research was to determine the accuracy of FANNY, a readily 

available package within the R environment, in clustering groups into ancestral groups 

using a series of cranial measurements. An extensive databank of craniometrics was 

sourced from multiple databases stored either online for open use (such as the North 

Carolina State University Forensic Analysis Lab) or available via email, such as the FDB. 

Testing databases were created and clustered using the FANNY and cluster charting 

packages. FANNY does not allow blank variable fields, so means were determined based 

on all available data for the variable and input for all missing variables. Centroids were 

identified by determining the ancestry as indicated in the initial database for at least three 

individuals closest to the centroid and used to label clusters as based on majority rule.  

After the initial testing, it became evident that other variables impacting the 

accuracy of the results needed to be explored, namely the high number of variables 

initially used (22) and the disproportionate number of White individuals in the sample 

(924 out of 1,424). Consequently, further databases were created with fewer variables (5) 

and more proportionate ancestry representations and subjected to the same testing 
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procedures with variable results on the accuracy rates. The implications of these findings 

are discussed in more detail below. 

Results 

To explore the effectiveness of pre-coded, fuzzy math statistical programs in 

assessing admixture, a broad base sampling of 2,539 was compiled from UTK’s FDB and 

NCSU’s open-access database online. It was then parsed down from 2,539 to 1,924 

individuals using five measurements previously determined by Jantz and Jantz (2000) to 

show the most craniofacial variation with minimal impact without being significantly 

impacted by cranial plasticity:  glabello-occipital length (GOL), basion-bregma height 

(BBH), maximum cranial breadth (XCB), bizygomatic breadth (ZYB), and nasion-

prosthion height (NPH). These measurements were the only ones mandated in the 

creation of the databank, meaning any of the other 22 variables could be missing for the 

remaining sample. However, the package used for testing, FANNY, does not allow blank 

variable fields. In the first attempt to overcome this, an average of all available data for 

each variable was compiled then input in all blank fields. This choice likely influenced 

grouping choices made by the program, contributing to the high number of clusters 

designated as White.  

The FANNY package was used to cluster the initial sample of 1,424 individuals 

into three, four, five, six, and seven different groups (see Table 7 for total number of 

individuals for each cluster by test). The k-6 testing, which limits the total results groups 

to six, returned hard clustering of only five groups, despite giving posterior probabilities 

of cluster membership for six clusters for each individual; no individual or group in this 

test scored a sufficiently high likelihood of membership in the sixth group (i.e., none 
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were sufficiently different enough from membership in the other five groups) to be ‘hard 

clustered’ into the sixth group. All other tests returned the designated number of groups, 

but it should be noted that the final cluster (7) in the k-7 test contains only one 

individual—number 181. Apart from the k-3 test, cluster 1 was the largest cluster; the 

cluster size for clusters 1 and 2 were approximately the same in the k-3 test. 

Table 7 Total Number of Individuals in Each Cluster, by k-test, for the Initial Sample 

 

This method demonstrated a large skew towards one cluster grouping over all the 

others; in every test except k-3, the first group included the largest number of individuals. 

While not unexpected—there was a higher probability that the program would get a 

White individual over any other individual due to the high skew—it is worth mentioning 

due to the presence of the skew. The program noted not only that many individuals 

belonged together, but also likely began grouping them from the start of the run. FANNY 

also demonstrated this recognition across almost all initial sample testing—the largest 

group was consistently the first one, and, as demonstrated later, identified as White per 

centroid. Additionally, in the k-3 test, the first cluster was only marginally smaller than 

the second and largest cluster. As will be discussed later, the first cluster was also 

consistently designated as White. As such, the test did, in some respect, recognize the 

skew towards White individuals within the sample and grouped them accordingly.  

Test/Cluster 1 2 3 4 5 6 7 

K-3 532 574 318 — — — — 

K-4 658 427 333 6 — — — 

K-5 692 253 123 354 2 — — 

K-6 527 410 318 164 5 — — 

K-7 700 289 30 320 75 9 1 
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Identifying the overall cluster label for ancestry was complicated by the 

overwhelming presence of White identified individuals in the sample. For all five tests, 

cluster 1 was overwhelmingly White, with over 70% of the cluster identified as such. 

Additionally, and unsurprisingly, the centroids also designated cluster 1 as White across 

all tests on the initial sample. Twenty-one of the total 24 clusters were at least 50% or 

more White; the three exceptions were cluster 4 in the k-4 test (n=6) and clusters 3 and 7 

in the k-7 test (n=30 and 1, respectively).  

Table 8 Breakdown of Races Included in Each Cluster for the k-7 Test--Initial Sample 

 

Only two of the 24 clusters identified across the five tests had individuals easily 

designated as centroids:  clusters 5 and 7, both of the k-7 test. Of these clusters, Cluster 5 

was the only one with more than one individual in the cluster; the k-7 test singled out 

individual 181 as its own cluster (7), making it both the centroid and the entire cluster. 

For the remaining clusters, up to three of the individuals closest to the centroid were 

Race 1 2 3 4 5 6 7 

B 132 

 (18.9%) 

63 

 (21.8%) 

12 

 (40.0%) 

77  

(24.1%) 

25  

(33.3%) 

2  

(22.2%) 

0.0% 

B/NA 2  

(0.3%) 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

EA 1  

(0.1%) 

3  

(1.0%) 

0.0% 5  

(1.6%) 

0.0% 0.0% 0.0% 

H 54  

(7.7%) 

45 

(15.6%) 

5  

(16.7%) 

36  

(11.3%) 

10 

 (13.3%) 

3 

 (33.3%) 

0.0% 

NA 6  

(0.9%) 

6  

(2.1%) 

1  

(3.3%) 

4  

(1.3%) 

0.0% 0.0% 0.0% 

W 502 

(71.7%) 

171 

(59.2%) 

12 

(40.0%) 

193 

(60.3%) 

40 

 (53.3%) 

4 

 (44.4%) 

1 

(100.0%) 

W/B 2  

(0.3%) 

0.0% 0.0% 1  

(0.3%) 

0.0% 0.0% 0.0% 

W/EA 0.0% 0.0% 0.0% 1  

(0.3%) 

0.0% 0.0% 0.0% 

W/H 0.0% 1  

(0.3%) 

0.0% 3  

(0.9%) 

0.0% 0.0% 0.0% 

W/NA 1  

(0.1%) 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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recorded. The majority ancestry was used when possible; otherwise, the clusters were 

designated as “admixed” if consistent ancestries were not noted.  

Table 9 Race Designation by Cluster--Initial Sample, 22 Variables 

Test/Cluster 1 2 3 4 5 6 7 

K-3 White White Admixed — — — — 

K-4 White White White White — — — 

K-5 White White Black White White — — 

K-6 White White White White White — — 

K-7 White Hispanic Admixed White White Hispanic White 

 

The variation and spread of White individuals in each test technically invalidated 

this method, without needing to test on smaller samples or for stability and reliability. In 

all tests except k-7, the majority of clusters were designated as White by centroids, 

leaving over 30% of the sample misidentified. Of the 24 identified clusters, only four of 

them had a non-White designation—cluster 3 in the k-3, k-5, and k-7 tests, and cluster 2 

in the k-7 test. This raised three issues that may impact validity that needed to be 

explored:  the effect of using database-wide means as substitutes for missing variables, 

overfitting (i.e., too many test variables), and representative sample proportions.  

Issues Impacting Testing Validity 

Insisting everyone included in the sample had every measurement (over the 

allotted five) would have decreased the sample, potentially to levels too small to be 

statistically significant. A different way to deal with the blank datapoints would have 

been to substitute mean values based on designated ancestry associations (when 

possible), either 1) based on values averages from the data provided within the database 

or 2) based on averages by ancestry for all the measurements included in the 22-variable 

database published in other studies using the FDB published averages. Addressing the 

latter, no such publications could be easily accessed.  
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Addressing the former, there were two issues. First, there were no group averages 

possible for some of the measurements, because the collective group had no 

measurements for those variables. Additionally, this issue had already been corrected, to 

some degree, with the adjusted database created with only five variables to address the 

possibility of overfitting (discussed later). Finally, there would have been a question of 

how to best determine the mean for individuals with designated admixture (e.g., East 

Asian/White or Native American/White), but whose admixture groups did not have 

enough individuals to make an average measurement calculate a reliable mean. One 

possible way to create idealized means for these purposes would have been to determine 

averages for each of the two separate groups involved in the admixture (e.g., East Asian 

and White), but it was unclear at the time how accurate this method might have been in 

reflecting the actual averages of those admixed communities. Given that the testing on 

the initial sample never proved adequately valid, further testing on reliability and stability 

would have been unnecessary. However, the patterns seen in testing of the initial sample 

and subsequent subsegments of the initial sample revealed issues with the database 

formation and sample selection, the most significant of which is the disproportionate 

number of White individuals within readily available research databases such as the FDB. 

These issues are important to understand not only for the use of data mining and soft 

computing techniques in bioanthropology, but to any research done using freely available 

databases such as the FDB going forward. 

The second concern addressed was the question of variable impact on validity, or 

the idea that the sample uses too many variables (the 22 different measurements) which 

may unnecessarily obscure the test data. This issue, known as overfitting, has been 
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documented in previous craniometric work with by Hefner and Ousley (2014) and 

Monsalve and Hefner (2016). Determining the precise number of variables to use to 

minimize overfitting while maximizing the variability within the available data has been 

an ongoing dilemma for research such as this anthropological research. Given the 

potential skew issues arising from the use of database-wide averages to fill missing 

measurements, the only option to avoid this issue while checking for overfitting was to 

use only the initial five variables employed to parse the full database into a testable 

database. Therefore, to address this concern, a variable-limited version of the initial 

sample of 1,424 individuals was created using five measurements determined by Jantz 

and Jantz (2000) to show the most craniofacial variation without being significantly 

impacted by cranial plasticity:  glabello-occipital length (GOL), basion-bregma height 

(BBH), maximum cranial breadth (XCB), bizygomatic breadth (ZYB), and nasion-

prosthion height (NPH). The new variable-limited initial sample set was subjected to the 

same series of FANNY tests as the original sample—attempting between three and seven 

clusters (see Table 4 for total number of individuals for each cluster by test and Appendix 

A for representative cluster plots). 

Table 10 Total Number of Individuals Per Cluster by Test Using the Five Variable Initial 

Sample 

Test/Cluster 1 2 3 4 5 6 7 

K-3 486 443 495 — — — — 

K-4 331 384 339 370 — — — 

K-5 249 319 293 277 286 — — 

K-6 241 276 247 207 209 244 — 

K-7 147 260 199 182 233 188 215 

 

Limiting the variables, interestingly, resulted in more evenly distributed groups, 

despite the known numerical skew of White individuals (see table 4). The ability of the 
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variable limiting to create more evenly distributed groups added support for the 

investigation of this method using a more proportionate sample. The more proportionate 

groupings meant that no group was comprised of less than one hundred individuals, but 

White individuals still dominated since every cluster in every test was at least 50% 

White. Table 5 shows the count and percentage breakdown of the clusters in the k-7 test 

of the five-variable initial sample, demonstrating the continued impact of the high 

number of White individuals on this test.  

Table 11 Breakdown of Races by Cluster for the k-7 Test--Five Variable Initial Sample 

 

Using the same method of identifying at least three individuals closest to the 

centroid and basing cluster designation on the majority rule, we saw more clusters 

designated as non-White (seven out of 25 clusters as compared to the five out of 24 

clusters of the initial method). However, this method did not solve the immediate validity 

issue, as the spread of White individuals across all groups continued to skew centroids 

towards White and impact the accuracy rate of the method (see Table 6). Even with an 

Race 1 2 3 4 5 6 7 

B 

19  

(12.93%) 

30  

(11.54%) 

43  

(21.61%) 

34 

 (18.68%) 

79  

(33.91%) 

40  

(21.28%) 

60  

(30.70%) 

B/NA 0.00% 

1  

(0.38%) 0.00% 

1 

(0.55%) 0.00% 0.00% 0.00% 

EA 0.00% 0.00% 

2  

(1.01%) 

1  

(0.55%) 0.00% 

4  

(2.13%) 

2  

(0.93%) 

H 

6  

(4.08%) 

12  

(4.62%) 

20  

(10.05%) 

35  

(19.23%) 

15  

(6.44%) 

39  

(20.74%) 

26  

(12.09%) 

NA 

1  

(0.68%) 

1  

(0.38%) 

1  

(0.50%) 

5 

 (2.75%) 

2 

 (0.86%) 

4 

 (2.13%) 

3  

(1.40%) 

W 

120  

(81.63%) 

216  

(83.08%) 

132  

(66.33%) 

104  

(57.14%) 

137 

 (58.80%) 

99 

 (52.66%) 

115  

(53.49%) 

W/B 

1  

(0.68%) 0.00% 

1  

(0.50%) 

1 

 (0.55%) 0.00% 0.00% 0.00% 

W/EA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1  

(0.47%) 

W/H 0.00% 0.00% 0.00% 0.00% 0.00% 

2 

 (1.06%) 

2  

(0.93%) 

W/NA 0.00% 0.00% 0.00% 

1 

 (0.55%) 0.00% 0.00% 0.00% 
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increased number of groups designated as non-White, over 30% of the sample would be 

incorrectly identified between misidentified White individuals in the non-White clusters 

and misidentified non-White individuals in the White clusters. 

Table 12 Race Designation for Each Cluster using Centroids--Five Variable Initial 

Sample 

Test/Cluster 1 2 3 4 5 6 7 

K-3 White Black Admixed — — — — 

K-4 White White White White — — — 

K-5 Admixed White White White White — — 

K-6 Black White White White White White — 

K-7 White Black Black Black White Admixed White 

 

Decreasing the variables created two interesting results across the cluster testing. 

The first and most noticeable result was that across all cluster tests, the number of 

individuals included in each cluster was more evenly distributed than with the larger 

variable sampling. Interpreting this change was difficult; the biggest concern was that 

decreasing the variables decreased the tests sensitivity to the skew of the White 

population within the sample. However, this could also have been a result of eliminating 

the potential skew issues inherent in taking the average of the measurements from a 

database whose composition already skewed heavily to White individuals.  

The second result noted from the limited variable testing was the slight increase in 

clusters identified as non-White. In the initial 22-variable testing, only 5 out of 24 

clusters were identified as non-White, while the limited, 5-variable testing designated 8 

clusters out of 25 clusters as non-White. For both databases, the k-4 cluster test produced 

only White centroids. However, the limited variable testing designated at least one non-

White centroid for every other test, with the k-3 test having 2 out of the 3 clusters (up an 
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increase from 1 out of 3) as non-White and k-7 designating having 4 non-White clusters 

out of 7 (an increase from 3 out of 7). When combined with the more even distribution of 

individuals among groups in this restricted variable testing, the higher number of non-

White clusters in the k¬-3 and k-7 tests pushed the number of misidentified individuals 

from non-White to White; the two clusters of non-White individuals in the k-3 testing 

included a total of 938 individuals, while the four clusters in the k-7 testing included 829 

individuals. For each of these tests, at least 50% of the White individuals in the data set 

were identified as non-White instead of as White, effectively mirroring the 

misidentification issue seen with the 22-variable testing results. This meant that, while 

the increased number of non-White-identified groups was initially encouraging to see, its 

importance was negated somewhat for the k-3 and k-7 test groups by the even 

distribution of individuals in the group, which decreased accuracy and therefore the 

validity of the test.  

The skew created by the disproportionate representation in the sample impacted 

the validity in both previous tests, using 22 variables and 5 variables, respectively. This 

suggested that a possible solution to the issue of validity could be the creation of a more 

proportionate testing sample. However, the small number of individuals in the Native 

American and Hispanic groups within this compiled database prevented the creation of a 

sample base that was both proportional across all ancestry groups and of an adequate 

sample size (preferably, greater than 100 individuals). This issue was a significant 

drawback throughout the research, and at this point became a deterrent unable to be 

overcome by this research project. 
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CHAPTER V – Conclusions and Future Directions 

The focus of this research was assessing the validity of the FANNY package in 

providing reasonably accurate (70% or more) ancestry determinations. A craniometric 

database was created from the Forensic Databank developed and maintained by the 

University of Tennessee-Knoxville and the online database of craniometrics from various 

Latin American nations maintained by North Carolina State University. The combined 

database of over 2,000 individuals was refined to ensure every individual had a baseline 

five craniometrics (GOL, BBH, XCB, ZYB, NPH) that were previously shown as useful 

for identifying craniofacial variation without being greatly affected by more temporary 

cranial plasticity (Jantz and Jantz 2000). A random number generator was used to create 

separate sample and test banks for validity, stability, and reliability testing.  

The sample databank was tested using FANNY, a previously validated package 

for fuzzy k-means clustering via the R statistical program. Multiple iterations of the test 

were completed, looking at the package’s ability to cluster into anywhere from three to 

seven groups, as well as using between 5 and 22 variables to cluster the sample bank. The 

results of this research demonstrated that, while there is underlying promise to the 

program, there are multiple issues the program could not overcome, and therefore none of 

the tests passed the threshold for validity.  

When looking from the systemic view, an important issue underlying the validity 

of the study lies with the significant White skew in the underlying database used for this 

research. The database was approximately 64% White (932 White individuals out of the 

1,424 total). There are multiple possible reasons for the disproportionately high number 

of White individuals compared to non-White individuals, including the limited number of 
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readily available/freely accessible metric databases, issues inherent to the post-mortem 

body donation process, and issues with determination of ancestry on unknown individuals 

within these databases. 

The Forensic Databank is a valuable research resource, widely known in the 

bioarchaeology and forensic anthropology fields as an excellent source for research 

requiring metric variables. It is easy to obtain information from the databank, involving 

only an email detailing the desired data sent to the curators, who in turn prepare an 

appropriate spreadsheet. North Carolina State University’s metric skeletal database is 

even easier to access than the FDB, as it can be easily downloaded from their website in 

full. However, these are the only anthropological databases with relevant forensic cases 

readily available in the US. There are multiple collections of human remains appropriate 

for forensic anthropology work, especially outside of the United States, but they are not 

as well-known and require significant internet searching or notation from other 

publications to find. Once located, they require an application to access, travel to the 

curation site, and researcher measurement of each cranium. Development of accurate and 

readily accessible databanks on a global scale would go far to in increasing the POC 

representation in ongoing research. 

A significant portion of the FDB is comprised of individuals whose remains were 

donated, whether by their stated wish and pre-planning or by the choice of their families 

after their death. However, they arguably form a highly selective sample. Many 

individuals may choose not to donate their remains based on an underlying issue not 

addressed by any of these methods of decedent donation, such as mistrust of the 

biomedical and medicolegal system. However, peer-reviewed data on the reasons behind 
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lack of body donation or participation in post-mortem research opportunities in POC 

communities is nearly non-existent, and this presents its own set of challenges 

considering the very real impact that it imparts upon biomedical and medicolegal studies. 

However, there is a small subset of articles which notate the low number of post-mortem 

donations among minority populations (Goldberg, et al. 2020).  

This issue, however, remains a double-edged sword. While the academic and 

medicolegal research would greatly benefit from inclusion of minority communities 

specifically to address issues related to them, it should not be done with the purpose of 

increasing or equalizing numbers in research studies alone. Researchers should engage 

communities of color to help answer questions they may have about their family and 

communities that can be answered by our postmortem research, or existing research that 

can be furthered through postmortem research. Bioanthropologists can also work with 

rapidly expanding data sets obtained using geomorphometrics, including increasing 

research on the correlation between geomorphometric measurements and those of dry 

bones. This would enable, such that we can use of data readily available through CAT 

scans or other noninvasive techniques taken on the living to further refine and expand our 

datasets to include more members of minority communities to better serve them in the 

contexts that we are able. 

There is an abundance of future directions that this research study brought to 

light, likely more than the author can begin to enumerate. However, there are two 

significant fields of improvement to which the author believes this research should bring 

attention:  variable management and data availability. 
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Databanks, such as FDB, give an impressive number of measurements per 

individual whenever available, and the increasing use of three-dimensional measuring 

techniques and technology, such as geomorphometrics, are soon to make the number of 

variables practically infinite. Yet there is very little research on which variables or 

combinations of variables show the most distinctions. As our data sources and 

technologies change, these should be an ongoing and upfront focus. It has been shown 

that too many variables are as problematic as too few because of the issue of overfitting. 

Admixture through globalization, along with other physiological reactions to geographic 

and climate changes (among other things), will continue to impact the shapes of human 

bodies and create an ongoing need for routine research on what measurements are 

showing the highest variability between groups or individuals at any given time. As we 

look more into newer, technologically based research models such as shape analysis 

using geomorphometrics, researchers should regularly check for secular changes that 

impact findings and determine what measurements truly give the greatest variability 

across the body. 

Making databanks readily available and easily accessible should also be a top 

priority, but neither of these does any good if there is significant skew within the 

databanks themselves. Post-mortem researchers most often rely on an individual’s or 

family’s willingness to donate remains to generate our data, yet the communities we need 

the most are also the most vulnerable among us. Research into non-invasive methods, 

such as measurements from computed tomography scans, that can be used accurately for 

post-mortem analysis contexts would be a high value option. However, the best option 

would be to work with those most impacted by the subject matter in which we study 
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(such as discussed in Franklin et al. 2020 and Flewellen et al. 2021) would be a 

significant step in rebuilding the trust between minority communities and biomedical and 

bioarchaeological researchers. 

Ancestry determination within the field of anthropology is rife with issues. Most 

widely used ancestry determination methods in anthropology currently place an 

individual within a single classification, despite the complicating issues spanning 

historical contexts of population movement, colonization and globalization, rapidly 

changing climates, subsistence patterns, and the complex interplay between social race 

and ancestral biogeographic traits. Advanced statistical and computational methods, if 

they can be validated as stable and reliable for use with the data that anthropological 

explorations can provide (such as craniometrics), offer an opportunity for a more nuanced 

exploration of human variation. A more nuanced understanding of human variation can 

be used as educational tools for the general public, for helping obtain more geographic 

understanding of biogeographic variation to help more accurately identify forensic cases, 

and can help to deepen the biocultural understanding of population movement and 

interactions across space and time. 

Methods that can help shed light on any of these complexities are not regularly 

used by anthropologists due to significant barriers. Lack of knowledge of advances in 

data mining and computational statistics, lack of knowledge of complex computer coding 

needed to run the tests, and cost or operational barriers to using user-friendly software 

made to help the average user are a few of the issues facing anthropologists who could 

most benefit from the advanced methods. However, we must not put all our faith into 

more advanced methodology, because despite advances in mathematics, data mining, and 
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computational statistics, the complexity of human variation may not be something that 

can be encoded and identified by measurements and machines. 

 



 

 

APPENDIX Cluster Plots for Initial Sample Tests K-3 through K-7 

Figure A1. Cluster Plot for Initial Sample K-3 Testing with 5 Variables 

 

Figure A2. Cluster Plot for Initial Sample K-4 Testing with 5 Variables 

 



 

 

Figure A3. Cluster Plot for Initial Sample K-5 Testing with 5 Variables 

 

Figure A4. Cluster Plot for Initial Sample K-6 Testing with 5 Variables 

 

 



 

 

Figure A5. Cluster Plot for Initial Sample K-7 Testing with 5 Variables 
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