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ABSTRACT 

This study presents the findings of fossil pollen analysis performed on terrestrial 

sediments preserved on the northern Gulf of Mexico continental shelf (site hereafter 

known as the Underwater Forest or DF).  This research aims to establish vegetation 

composition on a continental shelf glacial refuge and provide a better understanding of 

vegetation response to sea-level rise.  Two cores (15DF1 and 15DF3B) located at 

different locations within the forest were recovered and analyzed.  Pollen results from 

both cores were similar, with high percentages of Taxodium and Nyssa pollen in the 

lowermost sections reflecting an assemblage typical of contemporary baldcypress 

swamps.  Pollen assemblages then shift in both cores, as Poaeceae becomes dominant in 

the upper sections.  I interpret this as a transition from a baldcypress swamp to more open 

coastal marsh as marine transgression occurs.  During the marsh period in both cores, 

Alnus becomes a major taxon.  This rise in Alnus occurs with high percentages of 

Taxodium in Core 15DF1, but occurs with high percentages of Poaceae in Core 15DF3B, 

possibly indicating localized differences.  Radiocarbon dates of 15DF1 revealed an age of 

45,210 cal a BP placing the core in Marine Isotopic Stage (MIS) 3. An extrapolated 

optically-stimulated luminescence (OSL) date from a sister core to 15DF3B, revealed an 

age of 72,000 years (early MIS 4 or 5).  However, the pollen results from both cores 

indicate that the peat sections have recorded the same event in the paleoenvironment, 

making additional dates necessary to establish more reliable time control.   
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CHAPTER I - INTRODUCTION 

1.1 Background  

Numerous studies have been conducted using fossil pollen to track migration of 

vegetation as it moves northward following the retreat of major ice sheets after glacial 

events (Whitehead, 1964; Davis, 1983; Bryant Jr. and Holloway, 1985; Delcourt and 

Delcourt, 1987; Connor and Kvavadze, 2008; Ülker et al., 2018; Harbert and Nixon, 

2018).  Archives for these fossil pollen studies have mainly consisted of sediments taken 

from lakes, bogs, and swamps to analyze the change in vegetation dynamics during 

glacial transitions within North America (Brugam, 1978; Delcourt and Delcourt, 1987; 

Davis, 1983; Gavin et al., 2001; Breen et al., 2012).  Recently, studies of fossil pollen 

have moved to the ocean to focus specifically on tracking vegetation on the glacial 

refugia on the former continental shelf (Reese et al., 2018; DeLong et al., 2021; Gonzalez 

et al., 2017).   

These glacial refugia, geographic regions where both flora and fauna migrated to 

survive glacial events, are used to map the degree of suitable habitat available for 

vegetation, observe changes in genetic diversity, and act as protected areas to monitor 

species mortality rate as ice sheets advanced and sea levels dropped due to climate change 

(Shafer et al., 2010; Selwood and Zimmer, 2020).  Climate change and post glacial events 

have played a major role in the fluctuation of sea level increase and decrease.  Many tree 

taxa migrated equatorial during these periods and became buried as post-glacial sea levels 

rose.  With rising sea levels, most terrestrial sediments would have been completely erased 

or disturbed due to wave action and rising seas.  If these sediments were preserved, they 

would had to have undergone some sort of rapid burial to escape erosion.  Such a site has 
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been discovered, and ancient terrestrial peat has been recovered from the continental shelf 

in the Gulf of Mexico (Reese et al., 2018; DeLong et al., 2021; Gonzalez et al., 2017).  This 

archived paleoenvironmental data from the once exposed continental shelf site is extremely 

valuable, and rare, as it can provide information regarding vegetation response to sea level 

rise, having recorded a transgressive marine event. 

The Underwater Forest was first discovered in 2010 by divers approximately 13 

km off the coast of Gulf Shores, Alabama, and is located along the western edge of the 

paleo-Mobile River valley located along the eastern branch covering ~ 2 km2 of the 

northern Gulf of Mexico continental shelf (Figure 1.1) (Reese et al., 2018; DeLong et al., 

2021).  Today, it lies in approximately 18-20 m of water and the exposed cypress stumps 

were found in growth position rooted in the terrestrial sediment in a ~0.5 m deep trough 

believed to have once been covered by a Holocene sand sheet (Figure 1.2) (Reese et al., 

2018; DeLong et al., 2021).  

 

Figure 1.1 Map of the Gulf of Mexico region where the study site is located (Delong et 

al., 2020). 
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Figure 1.2 3D elevation map of the forest site with the trough encircled in red dashed 

lines (DeLong et al., 2020). 

The area in which the site resides in the Gulf of Mexico is, today, 

characteristically described as a complex and dynamic system of open ocean circulation 

and freshwater discharge due to sea level changes and an abundance of tropical storms 

(Gonzalez et al., 2017).  Before the forest was overtaken by marine conditions it 

represented an assemblage of vegetation typically found in a cypress-tupelo backwater 

environment, and the forest likely transitioned to a more open marsh environment after 

flooding occurred (Reese et al., 2018).  Though it is not clear how the underwater forest 

came to be preserved, the mostly likely explanation for the burial of the forest is rapid 

floodplain aggradation due to sea-level rise, or overbank flooding, which is independent 

of sea level change, during glacial age climate fluctuations (DeLong et al. 2021; 

Gonzalez et al., 2017; Reese et al., 2018).   

This underwater forest is the first of its kind to have been studied, making it 

extremely important in establishing vegetation dynamics on a continental shelf glacial 
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refuge.  The research from this study will build upon existing pollen studies by adding 

data points on the exposed continental shelf.  In this thesis, pollen will be analyzed from a 

new core from the Underwater Forest (core 15DF3B).  The results will be compared to 

the already published pollen data from core 15DF1 (Reese et al., 2018).  The cores are 

located roughly 560 m apart with core 15DF3B located at ~0.5 m lower bathymetry on 

the opposite side of the trough that contains the bulk of the preserved cypress stumps.  

From this study, I aim to provide additional information concerning the vegetation 

composition and dynamics of the site.  This information will lay the groundwork for 

helping us to understand vegetation response to sea level change in this particular area 

and establish vegetation dynamics on a continental shelf glacial refuge.  In addition to 

this, I aim to use this palynological information to address dating discrepancies between 

the two cores.  To accomplish these objectives, the results from this thesis will address 

the following research hypotheses: 

1.  There is transition from an older cypress marsh to more open-water community 

in core 15DF3B, similar to the results seen in core 15DF1. 

2. During this transition, the pollen in DF3B will show evidence of a similar no-

modern analog (cypress-alder) community. 

3. There is a difference in the age of the peat in core 15DF1, and core 15DF3B 

(using the extrapolated OSL date from 16DF3A), but similarities in pollen 

assemblages between the two cores will suggest that these events are coeval, and 

that a better dating control is needed. 
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CHAPTER II – LITERATURE REVIEW 

2.1 Overview  

Fossil pollen has been of great interest to scientists reconstructing past vegetation 

assemblages and tracking the migration of certain species as the climate has varied 

(Delcourt and Delcourt, 1987; Davis 1983; Bryant and Holloway, 1985; Connor and 

Kvavadaze, 2008; Dupont and Wyputta, 2003; Harbert and Nixon, 2018; Reese et al., 

2018; DeLong et al., 2021).  Sediments from swamps, lakes, and bogs are typically 

selected for fossil pollen studies, but palynologists have also studied fossil pollen 

preserved in marine sediments to reconstruct past vegetation and determine site specific 

changes occurring due to sea level change (Dimichele and Falcon-Lang, 2011; Brown 

and Pasternack, 2005; Tarasov et al., 2005; Sheldon and Tabor, 2009; Reese et al., 2018; 

DeLong et al., 2021).  Due to its unique composition and morphology, fossil pollen is 

found preserved in a variety of environments where sediments are undisturbed and anoxic 

(Grimm and Jacobson Jr., 1991; Jahren, 2004; Denk and Tekleva, 2006).  If conditions 

within an environment are right, pollen can be recovered and identified down to a 

significantly low taxonomic level, even after millions of years (Nielsen and Odgaard, 

2004).   

Because of this, pollen has been used worldwide to reconstruct and investigate 

vegetation response to glacial and interglacial transitions (Davis, 1983; Anderson et al., 

1989; Grimm and Jacobson Jr., 1992; Gavin et al., 2001; Gugger and Sugita, 2010; 

Shafer et al., 2010; Breen et al., 2012; Harbert and Nixon, 2018; Reese et al., 2018).  

From these studies, scientists have determined vegetation patterns and migration paths of 

plants as they retreated from an advancing ice sheet, and then reclaim the land these 
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glaciers once occupied (Delcourt and Delcourt, 1987; Aharon 2003; Flower et al., 2015).  

Though studies regarding fossil pollen are plentiful across most of North America and 

Europe the same cannot be said for the southern portion of the United States.  During the 

last glaciation, the Laurentide Ice Sheet (LIS) only extended as far south as 40° N in the 

United States (Delcourt and Delcourt,1987; Sugden, 1977).  Therefore, the deep lakes 

and depressions carved out by ice that create ideal archives for pollen are hard to find 

across the southern United States.  The southeast contains an abundance of oxbow lakes 

which are the results of river cutoffs making them very short-lived temporally, and do not 

contain pollen useful for reconstructing glacial-age plants (Bhattacharya et al. 2016; Shen 

et al. 2021).  Fossil pollen assemblages that do exist in the southeastern United States 

dating back to the last glaciation are highly deteriorated due to the varying composition 

or type of rocks, transport via wind or water, deposition environment, and microbial 

attacks within the sediment (Delcourt and Delcourt, 1980). 

  The recent discovery of the Underwater Forest on the Gulf of Mexico 

continental shelf is a unique site that could possibly aid in establishing the vegetation 

assemblage of a continental shelf glacial refuge, as well reconstruct vegetation migration 

of the southeastern U.S. during the last glacial period.  However, a thorough review of 

the use of pollen as a paleoenvironmental proxy, and a literature review of past pollen 

studies is needed in order to put our study site and palynological findings in perspective. 

 

 

 

 



 

7 

2.2 Using Fossil Pollen for Environmental Reconstruction 

The term ‘fossil pollen’ is quite misleading because fossil pollen actually has 

nothing to do with being fossilized.  Fossil pollen simply refers to an important type of 

proxy data that is used for reconstruction of past environments.  Fossil pollen is removed 

from the sediments in which they are embedded in by a series of chemical processes that 

remove any organics, clays, minerals, and other substances surrounding the actual pollen 

grain (Faegri and Iversen, 1964).  The pollen grain is quite resilient as it is made up of a 

thick layer of sporopollenin, which can only be broken down by microbial action, and 

repeated wet-dry events (Denk and Tekleva, 2006; May and Lacourse, 2012).  This 

makes pollen an ideal paleoenvironmental proxy that can be found in various locations to 

reconstruct vegetation across a wide temporal range. 

When pollen is deposited in an environment where it is not subject to external 

stressors, it can remain intact and identifiable for millions of years.  Ideal environments 

for fossil pollen include environments that contain anoxic sediments.  Anoxic sediments 

usually contain high amounts of organic matter and low amounts of oxygen.  When fossil 

pollen is embedded in these anoxic sediments it becomes well-preserved due to the low 

amount of biological disturbance occurring within the sediment, and the continuous 

accumulation of organic matter settling on top (Parducci et al., 2017).  If no physical or 

biological disturbance occurs during the interment period, the sediment will show a 

stratigraphy that accurately reflects the surrounding depositional environment (Brush, 

1989).  Should biological or physical disturbances occur, then the sediment will likely be 

disturbed and will not reflect an accurate representation of the surrounding area, making 

interpretation of changes occurring within the environment difficult to observe (Brush, 



 

8 

1989).  Therefore, good archives are an essential component to any successful 

palynological reconstruction.      

Suitable archives may be found anywhere but are most commonly found in deep, 

natural lakes as well as bogs, swamps, ice caps, and glaciers (Parducci et al., 2017).  

Naturally occurring lakes and the size of their catchment areas are crucial in the 

representation of pollen species from the surrounding area.  Lakes that are more open 

have larger catchment areas, which allows pollen to collect from regional and/or 

extraregional sources (Parducci et al., 2017).   Smaller catchment areas, or more enclosed 

catchment areas, typically contain local species (Parducci et al., 2017).  For successful 

reconstructions to occur it is essential to understand and identify suitable archives.   
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2.3 The Start of Palynology and Its Growth in Europe  

Modern Quaternary pollen analysis began in Europe with geologist Lennart von 

Post in 1916 (Gaillard et al., 2018; Edwards, 2018).  Von Post conducted many of his 

studies across his native Sweden after seeing the stratigraphical importance of pollen 

within peat bogs (Gaillard et al., 2018; Edwards, 2018; von Post, 1910).  He eventually 

developed his idea of expressing pollen counts as percentages and presenting these 

percentages in diagrams (Gaillard et al., 2018; Edwards, 2018).  Since the first 

presentation of his pollen diagrams in 1916, von Post’s research has outlined the 

principles, and methodology of modern day pollen analysis which largely influenced 

scientists to utilize peatlands and interglacial-glacial sediments worldwide (Birks and 

Berglund, 2018; von Post and Granlund, 1926; von Post 1926a; Granlund, 1932)  Von 

Post’s research paved the way for modern day studies which focus on fossil pollen 

existing during glacial and interglacial periods across the United States to determine how 

vegetation responded to the advance and retreat of ice sheets, and the fluctuations in 

global temperature and atmospheric conditions. 

Early palynology continued in Europe by scientists analyzing peat and bog 

sediments for paleoenvironmental reconstruction across various regions of the continent.  

Scientists have inferred long-term dynamics of forest composition relating to the 

reduction and extinction of species in southern Europe from fossil pollen assemblages 

located in marine and terrestrial sediments (Magri et al., 2017).  Throughout the 

Pleistocene, forest vegetation decreased as herbaceous steppe environments increased 

(Magri et al., 2017; Cheddadi and Bar-Hen, 2009).  Results revealed that the decrease in 

forest vegetation began in the early Pleistocene (Magri et al., 2017; Cheddadi and Bar-
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Hen, 2009).  Since the beginning of the Pleistocene, the cycle of glacial and interglacial 

periods led to an alteration in forest steppe vegetation in the Mediterranean (Magri et al., 

2017).  The cyclicity of the climate strongly reduced sub-tropical forests, which required 

high temperatures and precipitation and led to an increase in oak-dominated vegetation 

and coniferous forests at high altitudes (Magri et al., 2017).  Pollen results showed that 

forests continued to decrease, and steppe conditions increased during the Mid-Pleistocene 

Revolution between 1.2 – 0.5 Ma (Magri et al., 2017; Cheddadi and Bar-Hen, 2009).  

While most of these results focus on sites across southern Europe, other studies have 

focused on paleoenvironmental reconstruction of southwest Europe.      

Mountainous regions of southwest Europe, specifically the Picos de Europa, have 

long since been a source of studies pertaining to Quaternary glaciations (Serrano et al., 

2012).  Sediments from Campo Mayor Lake, located in between the Central and Eastern 

massifs of the Picos de Europa, which received high amounts of proglacial meltwater, 

and sedimentary load from the Las Salgardas glacier were used to provide high resolution 

records of environmental changes occurring during the Quaternary glaciation (Serrano et 

al., 2012).  Glacial lake deposits reflected periods of infilling due to increasing and 

decreasing glacial activity (Serrano et al., 2012).  From these glacial deposits, sediments 

dated back to Marine Isotopic Stage (MIS) 3 occurring between 60 and 25 ka B.P. 

(Serrano et al., 2012).  Many paleoenvironmental reconstructions are successful because 

when sediment loads are undisturbed, they provide a clear stratigraphical record of 

environmental changes.    

Results have shown that past biome distribution across Europe from the LGM 

differs greatly from the modern-day pattern (Peyron et al., 1998).  Poaceae and Artemisia 
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shows past landscapes in northwest Europe consisted of cool steppe vegetation found in 

very cold, dry conditions throughout the year (Peyron et al., 1998).  Past Mediterranean 

Sea records revealed much higher levels than at present in very cold, wet conditions 

(Peyron et al., 1998).  Pinus percentages were higher in the Mediterranean region than 

the northwest (Peyron et al., 1998).  Regions of the Mediterranean were found to have 

higher temperatures which explains the abundance of temperate summergreen and 

coniferous species (Peyron et al., 1998).  Past and present climates have been shown to 

differ greatly, but evidence of differentiation in regions containing similar vegetation 

existing in the same climate have also been proven.      

Other studies have shown that discrepancies can occur between regions that are 

characterized by similar vegetation during the LGM (Broström et al., 2008).  Picea, 

Fagus, and Plantago pollen obtained from moss polsters along the Jura Mountains were 

found in significantly higher percentages than the same species of pollen collected from 

lake sediments on the Swiss Plateau (Broström et al., 2008).  The difference in the 

percentages is likely due to the type of site in which pollen was collected from (moss 

polster vs. lake sediment), and environmental factors effecting the sites such as climate 

change, species composition, and vegetation structure (Broström et al., 2008).  Fossil 

pollen has been used to reconstruct past vegetation and climate gradients for the LGM, 

and more recently the Holocene.   

The Holocene epoch, beginning ~ 11, 650 cal yr B.P., provides many aspects that 

are essential in establishing chronologies of past climates (Mauri et al., 2015).  Evidence 

from fossil pollen sequences across Europe reveal a warming climate which later 

stabilized by a balanced cooling over southern Europe mid-Holocene (Davis et al., 2003).  
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This warming strongly influenced vegetation migration.  Pollen spectra from two lake 

basins revealed a highly diverse ecosystem consisting of steppe and tundra (Berglund et 

al., 2008).  Unstable soils favored Arctic tundra species such as Alnus, and southern 

steppe species like Poaceae (Berglund et al., 2008).  With increasing temperatures and 

humidity, shrubs and trees immigrated before vegetation decreased around 13,000 cal yr 

BP (Berglund et al., 2008).  The rapid climate change at 12,700 cal yr BP replaced sub-

Arctic woodlands with Arctic tundra ecosystems which inevitably led to a highly diverse 

ecosystem (Berglund et al., 2008).   

Similar to the climate change event at 12,700 cal yr BP, the cooling event at 8.2 

ka BP strongly effected the migration patterns of temperate broadleaved summer green, 

Boreal needle evergreen, and temperate broadleaved evergreen trees across Europe (Li et 

al., 2019).  Pollen records show temperate summer green trees and grasses immediately 

responded to cooling temperatures while temperate evergreen trees lagged behind in 

western Europe (Li et al., 2019).  Temperate summer green decreased in northern Europe 

at the start of the cooling before disappearing and dominating the southern regions (Li et 

al., 2019).  Conversely, grasses expand and dominate areas that were once previously 

occupied by temperate summer green species (Li et al., 2019).  Broadleaved evergreen 

trees slightly increase after cooling occurs, but northwestern broadleaved evergreens 

decreased as grass expanded and invaded southward (Li et al., 2019).  These European 

studies laid the groundwork for palynology, and as the study continued to evolve it was 

quickly utilized in regions outside of Europe and spread to North America where the first 

studies were conducted on bogs in southeastern Canada (Auer, 1927; Birks and Berglund, 

2018). 
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2.4 North American Glacial Age Pollen 

Pollen records from the LGM, which began ~20 ka in North America have proven 

to be particularly useful as they record abrupt changes occurring within the climate such 

as alternating warming and cooling events (Wang et al., 2019).  Fossil pollen sequences 

from glacial deposits located along the Illinois and Mississippi river valleys, have 

analyzed sediments believed to be deposited during the Pleistocene, beginning ~2.4 

million years ago, and Holocene, beginning ~11.6 ka, epochs (Curry and Follmer, 1992; 

Muhs et al., 2001).  As the climate warmed after the LGM, glaciers slowly retreated 

across the surface of the Earth creating pockets and basins in which glacial sediments 

containing fossil pollen were deposited (Lawson, 1982).  Glacial deposits found within 

river valleys and floodways in previously glaciated regions of North America have 

provided insight to the flow patterns of subglacial till deposited by glacier meltwater as it 

flowed southward toward previously unglaciated land (Dalton et al., 2018).  Scientists 

have been able to infer the direction in which glacial deposits traveled as ice sheets 

receded and melted, and the migration patterns of vegetation as they responded to the 

warming climate. 

Certain regions of the United States have provided useful pollen evidence to 

reconstruct vegetation assemblages in areas that were not previously glaciated.  Fossil 

pollen evidence from Texas suggests that certain areas in the region were once covered 

by large, wooded areas while other regions consisted of savannas (Bryant Jr. and 

Holloway, 1985).  The same pollen evidence from Texas suggests a north-south 

temperature gradient change existed during glacial and interglacial periods which likely 

effected the range and distribution of both plants and animals (Bryant Jr. and Holloway, 
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1985).  Research has shown that the vegetation of high-latitude regions in Alaska were 

especially sensitive to climate warming (Muhs et al., 2001).  Stratigraphic analysis of 

fossil pollen sequences reveals boreal species of Picea and Betula are found along these 

high latitudes and are representative of the present day Alaskan boreal forest (Muhs et al., 

2001). 

Paleorecords have reconstructed past climate and vegetation assemblages by 

analyzing dominant species in glacial pollen records and comparing the average 

temperature at which those species occur at today (Dalton et al., 2018).  Pollen studies 

have also indicated that plant taxa respond individualistically to climate change rather 

than shifting as a whole community of species (Wang et al., 2019; Prentice et al., 1991).  

Focusing on species-specific response to climate change has provided an improved 

resolution of pollen taxonomy and interpretation of post-glacial forest dynamics 

(Finkelstein et al., 2006; Delcourt and Delcourt, 1987).  Studies have focused on certain 

fossil pollen species by comparing them to modern day distributions to track their 

migration due to environmental changes during glacial and interglacial periods 

(Finkelstein et al., 2006; Delcourt and Delcourt, 1987; Gugger and Sugita, 2010).  Fossil 

pollen records of Abies have been synthesized to estimate the location of tree populations 

at the LGM, and their post-glacial range shifts (Gugger and Sugita, 2010).  Other species 

such as Picea, Quercus, Fraxinus, and Pinus have provided great insight to tree taxa 

migration as major glacial margins were shifting between 10,000 and 8,000 cal yr BP 

(Delcourt and Delcourt, 1987).   

In their landmark synthesis study, the Delcourt’s produced fossil pollen sequences 

from 162 different sites for Picea, Pinus, Fraxinus, Quercus, Carya, and Populus pollen 
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recovered from bogs and swamps (Delcourt and Delcourt, 1987).  These sequences were 

used to reconstruct paleoenvironmental maps at 4000-year intervals illustrating the 

shifting glacial margin of the LIS in North America (see Figure 2.1 for Pinus example) 

(Delcourt and Delcourt, 1987). 

Their results showed that tree taxa migrated and expanded their range northward 

toward newly deglaciated land as the southern margin of the LIS receded (Delcourt and 

Delcourt, 1987).  Much of the vegetation that existed in the unglaciated region south of 

the LIS consisted of boreal forest-tundra species like Picea (Jacobson Jr. et al., 1987; 

Webb III, 1987; Jackson et al., 2000; Yansa, 2006).  Boreal forest-tundra species were 

widespread along the southern margin of the LIS and migrated northeastward with the 

exception of Pinus which migrated in an east-west band south of the retreating ice, 

eventually expanding into the south where it occurs today (Jacobson Jr. et al., 1987; 

Delcourt and Delcourt, 1987).   

From 20 ka BP to 16.5 ka BP northern Diploxylon Pinus species composed >60% 

of forest compositions within the central Atlantic Coastal Plain, and southern 

Appalachian Mountains, while minor constituents appeared in full-glacial forests within 

the Mississippi Alluvial Valley (Figure 3) (Delcourt and Delcourt, 1987).  During this 

same time period, southern Haploxylon Pinus were primarily found in the southern 

Atlantic Coastal Plain before species percentages diminished to <20% west of the lower 

Mississippi Alluvial Valley (Delcourt and Delcourt, 1987).  It is hypothesized that the 

southern pines sought refuge on the exposed continental shelf in areas that have now been 

consumed by the Gulf of Mexico and southern Atlantic (Schmidtling and Hipkins, 1998).  

These pines are ‘missing’ from the Delcourt’s study as there were no cores recovered 
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from these coastal refuges.  This thesis adds additional information to the gap in the 

literature by providing a first look at these former glacial refuges on the exposed 

continental plain.   

As the climate warmed from 16.5 ka BP to 12.5 ka BP, northern pines began to 

diminish in areas it previously dominated and became locally extinct by 16 ka BP in the 

continental interior while southern pine species remained on the exposed, southern 

Coastal Plain (Delcourt and Delcourt, 1987).  

As the late Pleistocene transitioned to early Holocene at 12 ka BP, northern 

Diploxylon pines migrated northeastward and into southern New England by 12 ka BP, 

while the southern Haploxylon pines still had not made a significant appearance at the 

Delcourt’s sites during this time, and still lingered on the exposed coastal plain (Delcourt 

and Delcourt, 1987).  By 8 ka BP, Northern Diploxylon pines extended their range to 

53°N where pine now composed as much as 60% of forest species (Delcourt and 

Delcourt, 1987).  Southern Haploxylon pines migrated northward along the Atlantic 

Coastal Plain to southern Florida reaching >40% dominance as they emerged from their 

coastal refuge (Delcourt and Delcourt, 1987).  

 During the mid-Holocene interval at 4 ka BP, areas where northern Diploxylon 

pine once dominated extended northwestward from central Ontario across Manitoba, with 

the southern limit of northern Diploxylon pine extending from Minnesota and Wisconsin 

eastward across the Great Lakes and into New England (Delcourt and Delcourt, 1987).  

During this same interval, southern Haploxylon pines increased in dominance now 

comprising 40-60% of forests across the Gulf and Atlantic Coastal Plains (Delcourt and 

Delcourt, 1987).  By pre-settlement times at 500 BP, northern Diploxylon pines 
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dominated the western Great Lakes region and central Canada, while southern 

Haploxylon pines expanded their ranges northward west of the Mississippi Alluvial 

Valley and increased in dominance across the Gulf and Atlantic Coastal Plains along with 

the Florida peninsula (Delcourt and Delcourt, 1987).  

 

Figure 2.1 Images of paleo-reconstruction maps of Pinus found within forests from 20 ka 

BP to 500 BP borrowed from the Delcourt’s study (Delcourt and Delcourt, 1987). 
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Research has also shown that as the LIS retreated, summer monsoons intensified, 

depositing fossil pollen from glacial refuges into lake basins causing their levels to rise 

(Shuman et al., 2002).  Of importance in the Delcourt’s study is the scarcity of sites and 

pollen evidence from the extreme southern regions of the U.S., and the lack of sites from 

the once exposed continental shelf during the LGM.  Before the discovery of the 

Underwater Forest, there were no known methods of reconstruction for this environment 

on this glacial refuge.  Questions regarding the timing and migration of certain taxa into 

the refuge, and out of the refuge as sea levels rose again, and their newly formed 

communities, still remain unaddressed. 
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2.4.1 Important Considerations for Pollen Studies from a Glacial Refuge 

Several factors need to be considered when studying fossilized pollen from a 

glacial refuge.  The Quaternary Period began ~2.6 million years ago and extends to 

present day.  Throughout this period, the Earth has experienced repeated glacial and 

interglacial events, during which glaciers covered large landmasses of the world (the LIS 

of North America, and the Eurasian Ice Sheet of Europe), and warm periods when the 

glaciers melted.  The latest glacial-interglacial cycle to occur was the Wisconsin 

glaciation.  Approximately 100,000 years ago the Earth transitioned into a glacial period 

which reached its maximum extent, the Last Glacial Maximum (LGM), ~20,000 years 

ago (Baker et al., 1989; Clark and Mix, 2002).  As these continental sized glaciers grew 

thicker and denser, due to an accumulation of snowfall, they began to advance across the 

planet, lowering sea levels by as much as 120-135 m (Fowler, 1997; Clark and Mix, 

2002). 

During this period, the LIS covered most of North America and expanded into 

Wisconsin and further south marking the beginning of the Wisconsin glaciation ~31,500 

years ago (Baker et al., 1989).  As the glacier expanded across North America, vegetation 

migrated southward (Delcourt and Delcourt, 1987).  When the climate began to warm 

during the transition out of the stadial period, from 20 ka to 16.5 ka BP, the LIS, which 

extended south to ~40°N began, to recede causing sea levels to rise from glacial 

meltwater runoff (Delcourt and Delcourt, 1987).  Glacial deposits containing loess, 

sediment from rocks finely ground due to glaciers moving across the Earth’s surface, 

began to melt, and were deposited into surrounding waterways and drainage basins, such 
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as the Mississippi River, leading to the Gulf of Mexico (Delcourt and Delcourt 1987; 

Flower et al. 2004).   

Plant assemblages existing close to the edge of the ice sheet migrated onto the 

newly deglaciated land and slowly extended their ranges northward with the warmer 

climatic conditions.  Vegetation that existed in the southern part of unglaciated North 

America began to extend northward following the retreat of the ice sheet.  During this 

period of warming as vegetation migrated northward with the retreating ice sheet, 

meltwater from surrounding ice caps discharged into the ocean, causing sea levels to rise 

significantly (Aharon 2003).  As sea levels rose due to the influx of meltwater, flooding 

rapidly occurred burying, or erasing and washing away sediments containing fossilized 

pollen and plant macrofossils that were once above sea level. 
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2.5 Offshore Pollen Studies 

Terrestrial pollen sequences archived in marine sediments were once thought to 

be difficult to use in paleoenvironmental reconstructions because they contain pollen 

from large scale mixing from diverse sources (Scott et al., 2012).  However, due to the 

advancements in paleoenvironmental reconstruction scientists have been able to infer 

from marine sediment cores how vegetation responded to sea level changes along 

shorelines, and the continental shelf during glacial periods (Yu et al., 2017).  Pollen 

recovered from cores in the South China Sea show vegetation radically changed during 

the LGM to the post-glacial period as sea levels rose (Yu et al., 2017; Shu and Wang, 

2013).  Herbaceous taxa increased dramatically due to changes in precipitation during 

glacial periods while non-arboreal pollen species were shown to indicate a forest-steppe 

environment existing under precipitation levels less than half of the modern-day regime 

(Yu et al., 2017).   

Deep sea cores also revealed that wind transport of highly productive pollen 

species, such as Pinus, were found to have high percentages in sediments that were 

farther from the shoreline and buried under higher sea levels (Yu et al., 2017; Shu and 

Wang, 2013).  These results indicate that wind transported species played an important 

role despite their transport limitation of river input into the deep ocean during periods 

when sea levels were high (Yu et al., 2017).  Sediment cores recovered from the Bohai 

Sea in north China show high percentages of Pinus along with Quercus, Carya, 

Liquidambar, and Betula indicating a highly diverse forest composition that received 

pollen from the surrounding region before being overtaken by rising sea levels and 

expanding water bodies (Shu and Wang, 2013).  Other regions of Asia have identified 
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TCT (Taxodiaceae-Cupressaceae-Taxaceae) pollen in marine sediments along the 

southern coastline of South Korea with deciduous angiosperms, along with Pinus, in 

upland areas (Yi et al., 2012).  This assemblage implies that coastal areas of Korea were 

likely dominated by swamp vegetation whereas upland areas consisted of mixed 

deciduous-conifer forests during the Pliocene (Yi et al., 2012).    

Marine pollen records from southwestern Africa show a change in vegetation 

distribution across various latitudes over the last 30,000 years (Dupont et al., 2007; Scott 

et al., 2012).  These varying latitudes represent the vegetational shift of open forest, 

savanna, montane, and desert fringe (Dupont et al., 2007; Scott et al., 2012).  Sediments 

dating to the last glacial period from the River Congo contained high percentages of 

Cyperaceae pollen that indicates the presence of swamps rather than savanna within the 

basin (Dupont et al., 2007).  Pollen percentages are highest in sediments deposited at the 

river mouth and suggest that this influx is linked to continental shelf erosion, and rising 

sea levels (Dupont et al., 2007).  Pollen samples dating to the early Miocene from the 

Niger Delta Basin in west Africa show an abundance of rain forest and freshwater swamp 

species indicating tropical paleoclimate conditions (Ogbahon, 2019).  Distribution 

patterns of grass and mangrove pollen suggest climate conditions fluctuated between dry 

and wet periods (Ogbahon, 2019).   

Marine sediments located in the Canary Islands have revealed vegetation changes 

over the last 9600 years in response to the changing climate (Nascimento et al., 2015).  

Pollen sequences representing hygrophilous trees were replaced by Monteverde forest 

taxa approximately 5500 years ago suggesting the climate was shifting towards drier 

conditions (Nascimento et al., 2015).  Forest composition shifted on Tenerife around 
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2000 years ago, eliminating species of Quercus and Carpinus from pollen records as a 

result of the appearance of the first human colonists (Nascimento et al., 2015).  

In addition to this, offshore pollen studies from South America have provided an 

extensive record of vegetation changes during glacial and interglacial periods.  A 50,000 

year-long record containing pollen embedded in sediments from the Amazon deep-sea 

fan, and the continental shelf, has been used to reconstruct past vegetation within the 

Amazon Basin (Haberle and Maslin, 1999).  Evidence revealed that tropical forests still 

dominated the Amazon during the last glacial period (Haberle and Maslin, 1999; 

Colinvaux et al., 1996).  However, forest composition varied due to reduced 

precipitation, atmospheric carbon dioxide, and considerable cooling of the climate 

(Haberle and Maslin, 1999).  Pollen analysis of the Amazon Basin shows forest 

assemblages appear to be characterized by continuous resorting of structure and 

composition throughout the LGM (Haberle and Maslin, 1999).  Andean taxa, which are 

now separated by altitude and temperature, were later incorporated into lowland 

communities (Haberle and Maslin, 1999).   

In other regions of South America, pollen sequences collected from swamp forest 

sediments along the coast of Chile indicate a humid phase occurred between ~9900 and 

8700 cal yr BP due to the presence of dense swamp forest taxa (Maldonado and 

Villagrán, 2006).  Pollen starved sediments containing little evidence pointing to semiarid 

vegetation assemblages imply that a period of extreme aridity occurred until 

approximately 5700 cal yr BP (Maldonado and Villagrán, 2006).  Pollen analysis shows 

that swamp vegetation recovered slowly due to a prominent moisture increase at ~4200 

cal yr BP, before a slightly less intense drought period occurred between ~3000 and 2200 
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cal yr BP (Maldonado and Villagrán, 2006).  Climate was highly variable at ~2200 cal yr 

BP, but swamp forest taxa successfully expanded while changes were occurring during 

the Holocene (Maldonado and Villagrán, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25 

2.6 Quaternary Dendrochronology and Baldcypress Reconstruction 

While pollen analysis is a commonly used method for reconstructing past 

environments, it is not the only method available.  Since glaciation did not occur in the 

southeastern United States, there is a lack of long-lived suitable archives containing well-

preserved fossil pollen, due to the high amount of deterioration, and lithological changes 

occurring within basins located in the southeast (Delcourt and Delcourt, 1980).  Many 

paleoenvironmental archives, such as lakes, that exist in the southern United States 

consist of meandering river floodplain ecosystems that lead into oxbow lakes which act 

as catchment areas of sediments and nutrients (Bhattacharya et al., 2016; Shen et al., in 

press).  Though oxbow lake sediments are effective palaeoecological archives, no oxbow 

lakes exist extending back to the LGM (Bhattacharya et al., 2016; Shen et al., in press; 

Bryant, 1985).  Therefore, dendrochronology is often used in conjunction with pollen 

analysis due to its reliability of using annual growth tree-ring dates to observe how 

vegetation has responded to changing climatic, and atmospheric conditions over an 

extended period of time. 

Andrew Douglass was the first to observe crosscut sections of trees deeming 

‘sensitive rings’ within the wood in 1904, and later publishing his idea in 1909 (McGraw, 

2003).  At first, tree ring chronologies were limited to about 4,000 years ago, but 

combined oak and pine chronologies from Hohenheim University have extended dates as 

far as 10,429 BP, and have become the backbone for Holocene radiocarbon calibration 

(Friedrich et al., 2004; McGraw, 2003; Mackay et al., 2003).  Evidence of 

dendrochronology studies has shown that casting a wide net over broad geographical 

distributions is essential because spatial reconstructions demand suitable networks of tree 
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ring dates across the world (Martinelli, 2003).  Well preserved tree-ring samples were 

obtained from oaks and pines in exposed gravel pits in southern Germany (Friedrich et 

al., 2004).  These species are made up of resistant heartwood making them preservable 

under anaerobic conditions over thousands of years (Friedrich et al., 2004; Becker and 

Kromer, 1986).  Tree-ring dates revealed that the trees died and were quickly buried in 

sediments by fluvial activity (Friedrich et al., 2004).  Chronologies also showed that large 

annual growth rings were prevalent due to the improved growing conditions on the 

floodplains after the mid-Holocene (Friedrich et al., 2004; Becker and Kromer, 1986). 

Other studies have shown many forested regions of the subarctic, subantarctic, 

and the tropics have proven particularly useful in dendrochronological reconstructions 

due to the high sensitivity of the tree species responding to climatic changes (Martinelli, 

2003; Mancini, 2002; Garibotti and Villalba, 2017; Mamet, 2012; Payette et al., 2002; 

Caetano-Andrade et al., 2020; Giraldo et al., 2020).  Dendrochronologic analysis of tree 

logs and stumps preserved in anoxic peat, mud, and lake sediments show that much of the 

Eurasia Artic region was ice-free and partly forested (Eronen and Jasinski, 2002).  As the 

Eurasian ice sheet melted, vegetation of tundra, steppe, and forest resided south near the 

ice border (Eronen and Jasinski, 2002).  These tree species were set to invade the newly 

deglaciated landscape 15-13 ka in Siberia, and 13.1 ka in Sweden (Eronen and Jasinski, 

2002; Hantemirov and Shiyatov, 2002).  Chronology studies of subantarctic species show 

that vegetation did not colonize until nearly a century after glaciers had retreated, and 

newly exposed surfaces for growth and colonization, such as moraines, had formed 

(Garibotti and Villalba, 2017).  Other regions containing subantarctic species show 
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contrasting chronologies with vegetation rapidly colonizing previously barren landscape 

to a forested area dominated by trees (Garibotti and Villalba, 2017). 

Certain regions of the tropics have also provided valuable insights to tree-ring 

chronologies due to their high sensitivity as the climate changes.  Tropical species located 

within the Chocó region of Colombia experience hydric seasonality, dry or flooding 

periods (Giraldo et al., 2020).  Even under these conditions tropical tree species can still 

experience growth periodicity showing visible growth rings that are useful in 

dendrochronology (Giraldo et al., 2020).  Tree-rings revealed an annual rainfall >7200 

mm dating 1000-670 y BP and indicate that tropical species are able to capture and 

record a span of historical overhauls embedded in the wood (Giraldo et al., 2020; 

Caetano-Andrade et al., 2020). 

Studies have also been conducted extensively across North America.  

Dendrochronology analysis performed on fossil wood from a reservoir in Colorado was 

compared to modern trees revealing an age dating back to the Pleistocene era (Brown et 

al., 2014; Griggs et al., 2017).  Results show fossil trees likely grew under similar 

environmental conditions as today (Brown et al., 2014).  Fossil wood preserved in glacial 

deposits was found along the shoreline of Lake Michigan that became overrun by the LIS 

(Panyushkina and Leavitt, 2007).  Preserved remains of wood provided high resolution 

tree rings from a period of 14,000-4,000 yBP occurring in moist lowland and cedar 

swamps (Panyushkina and Leavitt, 2007).  Chronologies revealed that ring size changed 

and grew which is consistent with rising water levels due to the LIS (Panyushkina and 

Leavitt, 2007).  Other tree-ring data have shed light on glacier movement in Alaska 

showing glacial activity is consistent with fluctuations of tidewater (Wiles et al., 1999; 
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Payette et al., 2002).  Areas along the ice margin were overtaken by glacio-lacustrine and 

fluvial sediments that likely occurred during an ice advance before 500 cal yr A.D. 

(Wiles et al., 1999).  Though different trees have different growing rates, growth rings 

from different trees of varying species have shown a re-population of forestation 

following the retreat of ice sheets as early as 7th century A.D. (Wiles et al., 1999). 

Past dendrochronology studies from various regions of the world have proven to 

be useful.  However, for this thesis study, dendrochronology studies along the coastal 

regions of the United States are, perhaps, the most important regarding reconstruction of 

changing ecosystems over time.  Dendrochronology studies conducted in coastal forest 

ecosystems that were not previously glaciated across the world have provided 

groundbreaking information regarding sea level change, global temperature change, and 

storm intensity and frequency (Penland et al., 1990; Doody, 2004; Valiela, 2009; Tucker 

and Pearl, 2021).  These coastal ecosystems record the adaptation and impacts of global 

phenomena as they affect tree growth (Tucker and Pearl, 2021).  Many of these coastal 

ecosystems include baldcypress swamps, which are commonly found at edges of rivers 

and oxbow lakes in flood plains (Little, 1977).  Baldcypress is a long-lived deciduous 

conifer that is highly responsive to precipitation, temperature changes, and produces 

clear, and simple growth rings that can be used to date the exact year over a wide 

temporal scale (Stahle et al., 2011; Stahle et al., 2012; Brandon, 2013; Therrell et al., 

2020). 

Existing bald cypress forests have been extended with data from subfossil bald 

cypress wood to develop these exact chronologies and reconstruct climate change over a 

certain period of time (Stahle and Cleaveland, 1992; Stahle et al., 2011).  Reconstructions 
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made from precipitation, and drought index data derived from these long chronologies 

are commonly used to determine climate dynamics (Stahle et al., 2012).  The majority of 

these reconstructions are made from living trees and/or dead logs that are collected from 

the surface, submerged in the water, or partially buried in the sediment (Stahle et al., 

2012).  Chronologies available from bald cypress wood of living trees, and buried logs 

shows potential for millennia-long chronologies dating back to the late-Holocene (Stahle 

et al., 2012).  This chronology has been partially achieved in the southeastern United 

States in South Carolina, and recently in the Gulf of Mexico (Stahle et al., 2012; Reese et 

al., 2018; DeLong et al., 2021; Gonzalez et al., 2017).  Very few bald cypress forests 

located in wetland environments exist in the southeastern United States, and even fewer 

ancient bald cypress forests exist anywhere in the region (Stahle et al., 2011; Dimichele 

and Falcon-Lang, 2011).  However, the fossilized bald cypress stumps found in the 

Underwater Forest is the first ancient forest to exist in the southeast containing both bald 

cypress, and fossil pollen in an environment that was flooded due to sea level increase. 

Taking all these studies into consideration, it is clear that fossil pollen has been 

utilized across the planet extensively.  It has also been shown that dendrochronology has 

provided an excellent method of dating, and an additional source of information to aid in 

reconstructions of past environments.  Pollen sequences and subfossil wood have been 

analyzed from terrestrial sediments, glacial deposits, and lacustrine sediments. Despite all 

this, there are still no studies focusing on sites located offshore on the once exposed 

continental shelf.  If these sites do exist, they have not yet been discovered nor has any 

research about them been published.  The first site to bring forth new information about 
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fossil pollen from a glacial refuge existing within a marine environment in the 

southeastern United States is the Underwater Forest.
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CHAPTER III – STUDY AREA 

3.1 Geologic Setting 

The Underwater Forest resides in ~18 m of water within the Gulf of Mexico 

approximately 13 km off the coast of Gulf Shores, Alabama.  It is situated along the 

western edge of the paleo-Mobile River valley located along the eastern branch, covering 

approximately 2 km2 of the Northern Gulf of Mexico continental shelf (refer back to 

Figure 1.1) (Reese et al., 2018; DeLong et al., 2020; DeLong et al., 2021).  No surficial 

expressions of the paleo-valleys exist today likely due to the fact that they were filled 

with a combination of estuarine, marine, and deltaic sediments during and after sea level 

transgression (DeLong et al., 2020). 

The site is bordered to the north by the Alabama barrier islands, the St. Bernard 

Lobe of the Mississippi River Delta System, and Chandeleur Islands to the west, the 

carbonate-ramp platform of the Florida Peninsula to the east, and the DeSoto Canyon to 

the southeast (Figure 1.1) (DeLong et al., 2020).  The site is occupied in the Mississippi-

Alabama-Florida (MAFLA) sand sheet zone of the passive outer continental shelf 

northern Gulf of Mexico (Figure 1.1) (DeLong et al., 2021).  Evolution of the MAFLA 

sand sheet is believed to be largely tied to sandy sediment discharge from small rivers 

(DeLong et al., 2021).  Located below the sand sheet is a deep valley from the LGM 

carved out by the Mobile-Tensaw River System that was originally initiated before the 

Wisconsin Glaciation (DeLong et al., 2021).  The LGM was encompassed by MIS 2, 

followed by MIS 1, which experienced a slowing in sea level rise during the Holocene, 

allowing for the formation of coastal landforms to develop in the Gulf of Mexico which 

have since stabilized (Figure 3.1) (Gonzalez et al., 2017). 
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Figure 3.1 Global sea level variations for the last glacial interval. Core 15DF1 depth 

range and radiocarbon age are plotted on eustatic sea level maximum and minimum range 

(Gonzalez et al., 2017). 

 

The sea level curves seen in Figure 3.1 have been used to approximate a time 

frame in which the forest may have grown (Gonzalez et al., 2017).  At the 20 m depth 

level is an intersect of sea level near dates of ~10,000 ka, ~82,000 ka, ~115,000 ka, and 

~125,000 ka (Gonzalez et al., 2017).  Between ~80 ka to 10 ka global sea levels rose and 

fell below the modern water depth of the study site, and represent a period where the 

forest was likely alive, and the continental shelf was exposed as land which allowed for 

the establishment of terrestrial ecosystems (DeLong et al., 2020).  The forest is estimated 

to have grown between 74-45 ka before experiencing burial during the deglacial interval 

(18-10 ka) (DeLong et al., 2020).  However, it is also possible the forest site could have 

been buried by overbank flooding which occurred independently of sea level rise. 

The width of the shelf thins from 200 km to 50 km beginning near the Chandeleur 

Islands of Louisiana to the Florida panhandle (DeLong et al., 2020).  The portion of the 
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shelf located south of Alabama receives a generous amount of sediment mainly from the 

Mobile Bay, and barrier islands and spits (DeLong et al., 2020).  The Underwater Forest 

is believed to have once been covered by the MAFLA Holocene sand sheet and indicates 

a northwest-southeast shore oblique-ridge with trough morphology relief up to 5 m 

(DeLong et al., 2020; DeLong et al., 2021).  Figure 1.1 depicts the track of Hurricane 

Ivan in 2004, which caused extreme wave action that likely removed the sand sheet and 

resulted in substantial scouring of the seafloor, exposing the Underwater Forest site 

(DeLong et al., 2020; DeLong et al., 2021).   

Today, the site is composed of exposed bald cypress stumps in growth position, 

and fossil pollen embedded in terrestrial peat sediment overlain with sand and 

interbedded mud and clays (Reese et al., 2018; DeLong et al., 2021).  Other 

paleoenvironmental proxies found embedded in the terrestrial sediment include 

foraminifera and seeds (DeLong et al., 2020).  The seafloor of the forest contains a series 

of troughs and ridges extending northwest and southeast with 2-5 m vertical relief, and 

~0.5 km wavelength (Figure 3.2) (DeLong et al., 2021).  These stumps reside within and 

around a ~0.5-1 m deep trough that runs ~100 m long with <10° walls (Figure 5) 

(DeLong et al., 2021). 
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Figure 3.2 A 3D digital elevation model representing bathymetric data from 2015 and 

2016.  Red dashed lines represent the trough where tree stumps are exposed (DeLong et 

al., 2021). 

   

 

 

 

 

 

 

 

 

 

 

 



 

35 

3.2 Core Analyses 

3.2.1 Sediment Composition 

Previous studies have been conducted in the northern Gulf focusing on the 

Holocene evolution of Mobile Bay sediments (DeLong et al., 2020). These studies show 

seven environmental facies within the MAFLA area: lower shoreface, sand sheet, open 

bay or central estuary, lower bay shoreface, bay beach, and two Pleistocene soil horizons 

(DeLong et al., 2020).  The MAFLA is largely composed of Quaternary sediments 

deposited by small rivers during glacial intervals and shifting depocenters (DeLong et al., 

2020).  Analysis shows that Holocene sands at the site were overlain by Pleistocene 

coastal and terrestrial deposits (DeLong et al., 2020).  Cores collected from the forest 

contain multiple sediment types which allowed preservation of fossil pollen and wood in 

the peat sections (DeLong et al., 2020).  Sediment analysis further revealed that 

preservation was made possible by anoxic sediments, such as the peat from the top of the 

cores, that are typically found in swamp environments (DeLong et al., 2020). 

Sediment samples from all cores were found to be of Pleistocene age with river 

derived, back swamp, and deltaic plain interbedded mud and terrestrial peat along with 

woody remnants (Reese et al., 2018).  Gonzalez and others (2017) show sediment 

analysis from the ancient forest in composed of five facies: Holocene sand, Holocene 

interbedded sand and mud, late Pleistocene interbedded mud and peat, late Pleistocene 

interbedded sand, and mud, and late Pleistocene paleosol (Figure 3.3).  Facie 1 consisting 

of Holocene sand is characterized by light beige to gray, fine-medium grained quartz 

sand with an abundance of shell fragments (Gonzalez et al., 2017).  Facie 2 contains 

Holocene interbedded sand and mud of light to medium dark gray mud containing fine 
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grained sand and some shell fragments (Gonzalez et al., 2017).  Facie 3 of late 

Pleistocene interbedded mud and peat contains dark gray and tan to brown mud, peat, 

woody debris, microfossils, and seeds (Gonzalez et al., 2017; DeLong et al., 2020).  Facie 

4 is similar in pattern to facie 2, but contains more sand, is darker in color, has higher 

organic content, and contains no microfossils (DeLong et al., 2017).  Facie 5 is 

characterized as having light gray to yellow-orange silt and clay due to oxidation 

(DeLong et al., 2020).   

These Pleistocene deposits consist of the Citronelle Formation which is an 

extensive siliciclastic deltaic deposit found across the Gulf Coastal Plain (Gonzalez, 

2018).  Sediments can be frequently shifted on to the continental shelf due to the 

microtidal area of the Northern Gulf Coast, and are composed of silts, clays, and gravels 

that can be traced from Florida to Texas (Gonzalez, 2018; DeLong et al., 2020). 
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Figure 3.3 The three lithofacies found from sediment analysis.  Numbers indicate facies.  

Facies 1 Holocene sand (HS), facies 2 Holocene interbedded sand and mud (HISM), and 

facies 3 late Pleistocene interbedded mud and peat (LPIMP) (Gonzalez et al., 2017; 

DeLong et al., 2020). 
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3.2.2 Pollen 

Pollen analysis was performed on two cores, 15DF1 and 15DF3B (this thesis), 

and results for 15DF1 were published by Reese (2018).  Figures 3.4 and 3.6 show core 

15DF1, measuring at 4.9 m long, was taken at 15.3 meters below sea depth ~420 m 

northeast of the trough on a slightly elevated ridge (DeLong et al., 2020).  Figure 3.7B 

depicts the elevation where 15DF1 is located on the ridge northeast of the trough.  Core 

15DF3B measuring at 4.53 m long, and located ~560 m southwest of 15DF1, was taken 

from within the trough at a slightly lower elevation 15.8 meters below sea level (Figures 

3.5 and 3.6) (DeLong et al., 2020).  

 

Figure 3.4 Sample locations of micropaleontological and 14C analysis and view of 

lithofacies in core 15DF1. 
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Figure 3.5 Image of core 15DF3B lithofacies (Reese 2020). 

 

Figure 3.6 Bathymetric map of core locations.  The red circled area represents the trough 

containing the exposed stumps which are represented by the black dots (DeLong et al., 

2020). 
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Figure 3.7 3D subsurface model of the study site. (A) white dashed circle represents 

trough where stumps are exposed. (B) core 15DF1 displayed on the elevated ridge 

(DeLong et al., 2020). 
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3.2.3 Wood and Dendrochronology 

Five of twenty-three wood specimens collected by divers were visually identified 

as bald cypress due to volume of sample size (Figure 3.8) (DeLong et al., 2020).  One 

specimen of the twenty-three was identified as a palm but was very degraded, and 

therefore discarded as it could not be used for dendroclimatology (DeLong et al., 2020).  

Stumps were identified and confirmed as bald cypress due to a commonly found indicator 

of pinching rings and growth forms (DeLong et al., 2020).  DeLong and others (2020) 

noted that stumps from the Underwater Forest are similar to modern day baldcypress 

from Pascagoula, Mississippi.      

 

Figure 3.8 Twenty-three wood specimens collected in 2013 by divers.  The specimen 

identified as a palm (j-k) was discarded due to degradation (DeLong et al., 2020). 
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Twelve of the twenty-three wood samples were retained for dendrochronology 

analysis, but two samples were unsuccessful due to dating issues and disturbance caused 

by wood-boring organisms (DeLong et al., 2020).  The remaining ten samples were 

successfully cross dated against one another, developing a floating in time Submerged 

Forest tree-ring chronology (SFC) (DeLong et al., 2020).  A reliable 14C date could not be 

established because this chronology is floating in time, therefore, bald cypress references 

from Pascagoula, beginning at 1466 CE, could not be used to cross date against due to the 

time series (DeLong et al., 2020).  Radiocarbon and OSL results of wood specimens 

estimate the age of the forest is between 41.8 and 74 ka (DeLong et al., 2020).   
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3.2.4 Foraminifera 

Foraminifera found within the sediment were identified to the genus and species 

level when possible and compared to specimens at the LSU Natural Science Museum’s 

Collection of Fossil Protists and Invertebrates (DeLong et al., 2020).  Foraminifera was 

only found in facies with sandy sediments and interbedded sand and mud (DeLong et al., 

2020).  Both 15DF1 and 15DF3B contained foraminifera such as the genus Rosalina and 

Elphidium (DeLong et al., 2020).  Analysis of 15DF1 estimates foraminifera found 

within the core to be of Holocene age (Figure 3.9) (DeLong et al., 2020).      

 

Figure 3.9 Analysis of foraminifera in core 15DF1 (DeLong et al., 2020). 
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3.2.5 Seeds 

Figure 3.10 shows seeds that remained intact and were found preserved in mud 

and peat samples collected from core 15DF1 (DeLong et al., 2020).  Notable species 

include Taxodium, Liquidambar, and Nyssa (DeLong et al., 2020).  Only preliminary 

analysis of seed presence has been completed for core 15DF1, and seeds have been saved 

for future analysis (DeLong et al., 2020).   

 

Figure 3.10 Seeds from core 15DF1 found preserved in the peat section (DeLonget al., 

2020). 
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CHAPTER IV – METHODOLOGY 

4.1 Field Work 

The forest was initially discovered by divers in 2010.  In 2012, a survey was 

conducted revealing a 1.2 m deep depression and a 408 m long channel and was followed 

by diving operations in October of 2013 which recovered wood specimens (DeLong et 

al., 2020).  More fieldwork was conducted in 2015 and 2016 via the R/V Coastal Profiler 

which is owned by Louisiana State University’s (LSU) Coastal Studies Institute (DeLong 

et al., 2020).  Vibracores were retrieved from the site to analyze terrestrial sediments 

(DeLong et al., 2020).  A second collection was made in July 2021 via the Point Sur to 

retrieve more samples, but the expedition was largely unsuccessful.     

4.1.1 Vibracoring 

The samples collected from 2015 and 2016 using a 6 m long, 75 mm diameter 

aluminum tube attached to a vibrating head held together by a steel tripod deployed from 

the Coastal Profiler (DeLong et al., 2020).  Figure 4.1B depicts the vibracoring system 

during transit (DeLong et al., 2020).  The vibracoring system was submerged into the 

water and lowered onto the seafloor in water ranging from 14-18 m in depth with 

operations ceasing once the vibracore could not penetrate further into the seafloor 

(DeLong et al., 2020).  Cores were collected at various areas to target specific features of 

interest around the sediment ledge, in the depression, and where modern sediments were 

present in the east and south (Fig. 4.1A) (DeLong et al., 2020).  Sediment cores were cut 

onboard into 1.5 mm long sections, labeled, and sealed with tape for transport (DeLong et 

al., 2020).  Cores were transported to LSU, cut in the vertical position in order to preserve 

core integrity, and placed in a refrigeration unit at 4°C (DeLong et al., 2020). In 2016, a 
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total of five locations were sampled with two cores taken from each site with one core to 

be used for optically stimulated luminescence (OSL) dating, and the other for the core 

scanner (DeLong et al., 2020).  Cores collected for OSL dating were wrapped in black 

plastic bags to limit sunlight penetration which could affect sediments (DeLong et al., 

2020).   

 

 

Figure 4.1 (A) map of the study with all cores taken from 2015 and 2016 shown. (B) the 

vibracoring system used for sample collection in 2015 and 2016 (DeLong et al., 2020). 
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4.2 Laboratory Methods 

4.2.1 Pollen Processing  

Samples recovered from two cores at LSU, 15DF1 and 15DF3B, were analyzed 

and compared for pollen percentage similarities.  Previously, Reese et al. (2018) sampled 

the lower section of core 15DF1 (4.05-4.75 m) at LSU.  Samples were collected every 5 

cm with one sample taken from a small disjunct layer of peat at 3.23 m (Reese et al., 

2018).  At each level, 0.6 cm3 of material was extracted for pollen analysis.  In October of 

2020, core 15DF3B was sampled from 2.90 m to 4.20 m with samples collected every 5 

cm except for samples at 4.0-4.20 m which were collected every 10 cm due to a loss of 

sediment.  Each core sample, 15DF1 and 15DF3B, underwent the same processing 

technique (Faegri and Iversen, 1989).    

Before processing began, a single lycopodium tablet (batch no. 483216, count 

18583) was added to the sample to calculate pollen concentration.  Standard pollen 

processing procedures as set forth by Faegri and Iversen (1989) were followed.  Samples 

were subjected to chemical processing to aid in removal and breakdown of organic 

material.  Samples were first exposed to 10% hydrochloric acid (HCL) to remove 

carbonates.  10% potassium hydroxide (KOH) was added to deflocculate the sample and 

break down organics.  Hydrofluoric acid (HF) was used to dissolve any clay minerals and 

diatoms that may have been present followed by acetolysis solution for removal of 

cellulose.  The remaining residue was then stained with safranin, suspended in silicone 

oil, mounted on slides, and counted under a light microscope at 400x.  Pollen grains were 

counted until a minimum of 300 grains had been identified as per standard practice, 

including grains that were indeterminable.  Key to the Quaternary Pollen and Spores of 
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the Great Lakes Region (McAndrews et al., 1973) was used to identify pollen grains.  

Tilia software was used for pollen percentage calculations and concentrations as well as 

to present pollen assemblage results graphically (Grimm, 1991; Reese et al., 2018).   

Radiocarbon dating was performed on sediment from core 15DF1 (Table 4.1).  A 

sub-sample of sediment located within the peat section was extracted from the 4.14 m 

depth along with seven additional samples taken at depths: 3.22 m, 4.05 m, 4.19 m, 4.56 

m, 4.07 m, and a duplicate sample of 4.14 m (Gonzalez et al., 2017; Reese et al., 2018).  

Samples were sent to Beta Analytic, Inc. for dating (Gonzalez et al., 2017; Reese et al., 

2018).  Dates from the sub-sample taken at 4.14 m revealed a 14C age of 37.35 ± 0.33 ka 

(41.83 cal ka with a range of 42.235 to 41.350 cal ka) (Gonzalez et al., 2017).  The 

radiocarbon date for the sample taken at 4.05 m, which is located between the 

interbedded mud and peat and overlain by interbedded mud and sand, had an age of 41.83 

± 0.88 ka (with a median calibration age of 45.210 cal ka and range of 46.690 to 43.625 

cal ka) making this sample older than peat from the 4.14 m sample (Gonzalez et al., 

2017; Reese et al., 2018).  The six other samples came back radiocarbon ‘dead’ 

(Gonzalez et al., 2017; Reese et al., 2018).  These dates have been interpreted with 

caution as they are near the radiocarbon reliable detection limit (Gonzalez et al., 2017; 

DeLong et al., 2020).  
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Table 4.1 Radiocarbon dating results from core DF1 (Reese et al., 2018). 

 

 Only one sample from core 15DF3B, taken from the interbedded mud and peat 

section, at 3.1 m was sent for radiocarbon dating, and came back radiocarbon ‘dead’ 

(DeLong et al., 2020).  A date from a sister core, 16DF3A, located less than half a meter 

from 15DF3B was extrapolated and used as a dating control for 15DF3B (Fig. 4.1A).  

Core 16DF3A was taken at 15.8 m below sea level measuring at 2.32 m in length 

(DeLong et al., 2020).  A sample from 16DF3A was taken at 2.12 m from the interbedded 

mud and peat section and subjected to optically stimulated luminescence (OSL) dating 

(Table 4.2) (DeLong et al., 2020).  An OSL date for 16DF3A was returned revealing an 

age of 72 ± 8 ka (DeLong et al., 2020).     

 

 

Table 4.2 Optically Stimulated Luminescence Date (OSL) of 16DF3A (DeLong et al., 

2021). 
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CHAPTER V – RESULTS 

5.1 Core 15DF1 

Figure 5.1 represents pollen analysis of core DF1 published by Reese and others 

(2018).  Quercus (oak), Carpinus (hornbeam), Carya (hickory), Ulmus (elm), 

Liquidambar (sweetgum), Betula (birch), and Fraxinus (ash) were found in the 

lowermost regions of the core as minor components (Reese et al., 2018).  Pinus (pine) 

was also found throughout the core but never exceeded >20%.  DF1 is found to have high 

percentages of Taxodium, Nyssa (tupelo), and Cyperaceae (sedges) in the lower zones of 

the core between 4.75-4.55 m (Reese et al., 2018).  Cypress and tupelo decrease 

dramatically at 4.5 m and Poaceae (grass) becomes dominant appearing in all samples 

minus a few near the top mud and peat section at 4.05 m (Reese et al., 2018).  Grass 

declines for a brief period at 4.3-4.2 m and Typha (cattail) and Alnus (alder) begin to 

appear at 4.05 m (Reese et al., 2018).  Also, within this same range, cypress experiences 

another spike minus the presence of tupelo (Reese et al., 2018).  Grass shows dominance 

once again at the top mud/peat section while cypress, alder, and birch decline at 4.2 m 

(Reese et al., 2018).  The presence of pollen was found within a disjunct peat layer at 

3.23 m separated by interbedded sand and mud (Reese et al., 2018).  Pollen grains were 

poorly preserved with nearly 20% of the grains indeterminable while grain concentrations 

were highest in the lower regions and decreased ascending the core (Reese et al., 2018). 
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Figure 5.1 Pollen analysis of core 15DF1 (Reese et al., 2018). 
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5.2 Core 15DF3B 

High percentage of Taxodium, Nyssa, and Quercus are found in the lowermost 

zones of the core (Fig. 5.2).  Taxodium is prevalent throughout the core at percentages 

>60% in the lowermost zones of the core, but a decrease is shown at 3.35 m with 

Taxodium holding steady before rapidly decreasing at 3.20 m at percentages <20%.  

Quercus is seen throughout the lower zones of the core but rapidly decreases at 3.25 m at 

percentages <10%.  Poaceae is also found in the lower zones of the core and increases 

moving up the core with the highest percentages beginning at 3.25 m.  Carya, Fraxinus, 

and Cyperaceae are seen as minor components in the lower zones of the core, but 

Cyperaceae extends into the uppermost levels. 

At the 3.25 m level is a transition from a swamp type community to more open 

marsh dominated community.  Poaceae is found at consistently higher percentages, which 

occurs with a drop in Taxodium.  In this upper section, Alnus is also found in higher 

percentages, spiking to >20% at 3.10 m.  Pinus is prevalent in all zones of the core but 

never exceeds >20%.  Betula, Ulmus, Liquidambar, Salix, Carpinus, Ostrya, and 

Apiaceae vary throughout the core with no species exceeding >10%.  Preservation of this 

sample was relatively good with <10% of pollen grains indeterminable.   
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Figure 5.2 Pollen analysis of core 15DF3B. 
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5.3 Comparison of Core 15DF1 and 15DF3B  

Core DF1 and DF3B show similarities in pollen assemblages as the forest 

experiences transitions.  Both cores show high percentages of Taxodium in the lowermost 

zones and share pollen assemblages typically found within a cypress backwater 

community (Schafale, 2012).  The rise in Poaceae, and Typha at 3.20 m in core DF3B 

indicate marsh type conditions.  Core DF1 transitions from swamp to open marsh, to 

cypress/alnus community and back to open marsh.  High percentages of Nyssa and 

Poaceae are found in lowermost zones of DF1 whereas DF3B shows high percentages of 

Nyssa throughout the core, and Poaceae in the upper zones of the core.   

Pinus fluctuates throughout both cores reaching percentages just greater than 20% 

at 3.23 m in core DF1, but never exceeds >20% throughout all layers of DF3B.  Quercus 

spikes in the lowest layer of DF3B at 4.20 m >30% whereas DF1 shows a spike in 

Quercus in the top layer at 3.23 m.  Cyperaceae is found throughout the lower zones of 

DF1 at 4.75-4.05 m while DF3B shows Cyperaceae throughout the core. Both cores 

show minor components of Fraxinus, Betula, Ulmus, Liquidambar, Carpinus, Carya, and 

Ostrya.  Core DF1 contained a zone of interbedded sand and mud, found above the peat 

section from 4.0-3.25 m, that was found to be absent of pollen.  Layers of DF3B that 

were not sampled for pollen analysis were found to have similar interbedded sand and 

mud below a surficial sandy unit at 0.60-2.96 m (DeLong et al., 2021).
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CHAPTER VI – DISCUSSION 

The analysis of fossil pollen embedded in terrestrial sediments has aided in 

establishing vegetation dynamics by adding data points, on a continental shelf glacial 

refuge, in a region that experienced fluctuating sea levels during a glacial period.  The 

results of pollen analysis from core 15DF3B show a similar transition from an older 

cypress marsh to a more open-water community as previously seen in core 15DF1.  Core 

15DF3B experiences a spike in alder pollen from 3.15-2.95 m, similar to the spike in 

alder pollen as seen in core 15DF1 from 4.3-4.2 m.  This section of both cores may 

represent a no-modern analog community dominated by Alnus.  Though the pollen 

signatures in this section from each core are not identical, these inconsistencies may be 

due to the slight elevation difference between the two cores.  Other minor differences 

seen in pollen signatures between the cores may likely be due to micro topographic 

features of the site, core compaction during collection, length of cores, and the physical 

location of the cores within the study site.  The extrapolated date from sister core, 

16DF3A, suggests that the age of the peat in core 15DF3B is older than the peat in core 

15DF1.  Due to the lack of available dates for each core this date should be inferred with 

extreme caution.  However, the similarities in pollen assemblages between 15DF3B and 

15DF1 suggest that these sediments were deposited at the same time, and during the same 

event. 
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6.1 Justification of Classification of Transitional Communities in Cores 

While the similarities in pollen signatures of cores 15DF1 and 15DF3B have 

already been mentioned, a more in-depth discussion is needed to fully understand the 

significance of these similarities, and what these results, overall, mean.  Previous studies 

of baldcypress swamps have shown that Taxodium (cypress) percentages can range from 

20-70% (Frey, 1951; Reese and Liu, 2001; Brugam et al., 2007; Ryu et al., 2018). 

Greater than 60% Taxodium is seen in the first zone (cypress swamp) of core 

15DF1 and 15DF3B.  Core 15DF1 also has >15% Nyssa (tupelo), which typically stays a 

minor component in baldcypress swamps between 5-20%, in the first zone 

(cypress/tupelo backwater) (Frey, 1951; Reese and Liu, 2001; Brugam et al., 2007; Ryu 

et al., 2018).  Nyssa is also present in the first zone of core 15DF3B, but percentages do 

not exceed >15.5%.  The minor components of the assemblage, Pinus, Carya, Betula, 

Ulmus, Fraxinus, Liquidambar, and Ostrya are also common components of the 

bottomland hardwoods that often surround that surround baldcypress swamps, but 

percentages never exceed 20% (Frey, 1951; Reese and Liu, 2001; Brugam et al., 2007; 

Ryu et al., 2018).  These species are all present in the first zone of 15DF1 and 15DF3B at 

percentages <20%.  Species of Quercus found near baldcypress swamps have been found 

at fluctuating percentages as seen in core 15DF1 at <15%, and >20% in core 15DF3B 

(Reese and Liu, 2001; Brugam et al., 2007; Willard et al., 2010; Ryu et al., 2018).      

 Both cores transition from a cypress swamp dominated community to 

more open marsh.  Cypress decreases to <30% followed by tupelo at <10% in both cores.  

Commonly found marsh-type plants such as Poaceae and Cyperaceae, (Clark and 

Patterson III, 1985; Byrne et al., 1998; Finklestein and Davis, 2005; Ward, et al., 2008; 
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Clark, 1986), begin to increase with Poaceae exceeding >40%, and Cyperaceae 

fluctuating between 10-20% (Figure 18).  Pinus, Quercus, Carya, Fraxinus, Liquidambar 

and other species are still seen as minor components though percentages do fluctuate 

throughout the levels of each core.  During this marsh period Alnus increases exceeding 

>20% in both cores , but cypress, again, decreases to <20% in 15DF1, and greater than 

20% but still below 30% in 15DF3B.   

Core 15DF1 again transitions from open marsh to a cypress/alnus community.  

There are several possible explanations for this transition and the significance it holds.  

Alder pollen is typically found alongside Betula, Fraxinus, Celtis, Ulmus, Carpinus, 

Liquidambar, Quercus, Taxodium, Poaceae, and others, in wet habitats such as floodplain 

forests, bogs, swamps, and along banks and bars of the Atlantic Coastal Plain region 

(Furlow, 1979; Schafale, 2012; Willard et al., 2015; Gagnon et al., 2021; Hupp, 2000).  

This same vegetation assemblage is found in the floodplain environment of the 

Underwater Forest.  Furthermore, floodplain environments have little topographic relief 

and even the slightest difference in elevation can alter the vegetation composition.  A 

small difference in elevation is seen between cores 15DF1 (15.3 mbsl) and 15DF3B (15.8 

mbsl), and likely explains the contrast between pollen assemblages.  In addition to the 

difference in elevation, the physical location of the cores within the site also explains the 

appearance of a cypress/alnus community in core 15DF1.   

Reese and others (2018) hypothesized that the spike in cypress and alder in core 

15DF1 was representative of a no-modern analog cypress/Alnus community that shares 

similarities with the modern day Atlantic Coastal Plain Blackwater Levee/Bar forest 

assemblage.  Previous studies have shown that alder and cypress occur along levees in 
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the Atlantic Coastal Plain, usually accompanied by very small amounts of Betula and 

Fraxinus (Schafale, 2012).  These levees are ridges that are formed when coarse substrate 

is deposited along a bank during periods of high, or rising sea levels, and experience 

frequent flooding (Willard et al., 2015; Hupp, 2000; Furlow, 1979; Gagnon et al., 2021; 

Schafale, 2012).  They typically consist of sandy, well drained sediments, and can be 

bordered by a cypress swamp (Schafale, 2012).  These distinguishing features are all seen 

in the physical location, and pollen assemblage of core 15DF1.  Geophysical data results 

of the Underwater Forest site show core 15DF1 is located along a ridge consisting of 

sandy substrate, surrounded by a series of troughs, that were likely flooded due to rising 

sea levels (DeLong et al., 2020; DeLong et al., 2021).  Pollen analysis results show less 

than 10% Betula and less than 5% Fraxinus in the cypress/Alnus community transitional 

zone (Reese et al., 2018).  Also seen in the pollen assemblage of core 15DF1 is a slight 

spike in Poaceae.  Other studies that have recorded increased percentages of Poaceae 

suggest the spike in grass is due to the environmental transition into a marsh type 

community when sea levels have risen, and salinity has increased (Willard et al., 2015; 

Gagnon et al., 2021; Hupp, 2000).  All this information further supports the hypothesis of 

the presence of a no-modern analog cypress/Alnus community in core 15DF1 (Reese et 

al., 2018.   

Core 15DF3B is located within the trough in the floodplain.  Usually, floodplain 

environments contain very fine sediments, such as clay and peat, but coarser sediments 

are often found within a floodplain when overbank flooding occurs (Willard et al., 2015; 

Hupp, 2000; Schafale, 2012; Gagnon et al., 2021).  Core 15DF3B was found to contain 

these same fine sediments in addition to the longest recorded peat section of all cores 
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(DeLong et al., 2020; DeLong et al., 2021).  Taking all this information regarding 

floodplain environments into consideration, it is likely that as sea levels were rising 

during a period of marine transgression, sediment containing alder and cypress pollen 

from the ridge, where core 15DF1 is located, was washed down the bank, and deposited 

into the trough where core 15DF3B is now located.  However, due to the 

geomorphological differences between the cores, a cypress/Alnus community is not seen 

in core 15DF3B. 
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6.1.1 Uncertainty of Radiocarbon Dates 

The radiocarbon dating results of core 15DF1, compared to the lack of dating 

results of core 15DF3B, and the result of the extrapolated date from the sister core 

presents a conundrum.  The peat collected from core 15DF1 revealed two conventional, 

inverted dates of ~45-41 ka.  The inversion of the dates may suggest bioturbation or other 

factors that call the reliability of these dates into question.  If these dates are correct, it 

would place the deposition of this sediment during MIS 3, a period where global ice 

volume was beginning to decrease slightly resulting in somewhat higher sea levels 

(Figure 6.1) (Reese et al., 2018; DeLong et al., 2020; DeLong et al. 2021; Gonzalez et al., 

2017; Siddall et al., 2008; Simms et al., 2009).  Previous studies have documented the 

deposition of sediments, with similar facies and in a setting similar to the Underwater 

Forest, occurring during MIS 3 in the northwestern Gulf of Mexico area (Anderson et al., 

2016; Simms et al., 2009; Siddall et al., 2008).  This information further supports that the 

radiocarbon dates returned for core 15DF1 might be correct, and that the period in which 

sediments were deposited was indeed MIS 3.   
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Figure 6.1 Sea level estimates for the last 140 ka. A. Marine oxygen isotope records from 

core MD952042 with MIS 3 occurring between 60 and 25 ka BP (Siddall et al., 2008). B. 

Sea level estimates with radiocarbon and OSL (green dots and red squares) dating results. 

The gray dashed box outlines the OSL date of core 16DF3A at ~72 ka.  Interval 3 

represents MIS 3 and the green dots represent the two radiocarbon dates returned from 

core 15DF1 (Waelbroeck et al., 2002; DeLong et al., 2020). 

 

Samples collected from core 15DF3B for radiocarbon dating were returned 

radiocarbon ‘dead’.  OSL dating was used as an alternate absolute method of dating to 

extend the age range of sediments from the radiocarbon results (Gonzalez et al., 2017).  

Sister core, 16DF3A, was collected at 15.8 mbsl, and sampled at 2.12 m revealing an 

OSL date of 72±8 ka.  If this date is correct, this would place sediment from core 

15DF3B, at a much earlier time than 15DF1, and 16DF3A being deposited during MIS 

5a-4, a period of rapid cooling where global ice volume was increased, and sea levels 

were decreased (Shackleton et al., 2021; Simms et al., 2009; Potter et al., 2004).  

However, the global sea level estimates suggest that sea levels were much higher during 
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MIS 3 when 15DF1 occurred, and not lower as seen during MIS 5a-4 when 16DF3A 

occurred.  
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CHAPTER VII – CONCLUSION 

The research summarized in this thesis aimed to provide additional information 

concerning the vegetation composition and dynamics of a preserved Pleistocene cypress 

forest using fossil pollen analysis from core 15DF3B.  We hypothesized that this forest 

was buried due to rapid floodplain aggradation caused by increasing sea levels, or 

overbank flooding, during glacial age climate fluctuations.  With additional pollen 

analysis from previously published results by Reese and others (2018) of core 15DF1, we 

have provided supplementary information that establish vegetation dynamics on a 

continental shelf glacial refuge, and the likely cause of burial. 

Pollen analysis from both cores revealed the occurrence of similar transitional 

communities, and similarities in overall pollen signatures.  In these transitional 

communities was the appearance of a possible no-modern analog cypress/alder 

community in core 15DF1.  The same appearance of cypress and alder was seen in core 

15DF3B but at lower percentages.  This was likely due to the physical location of the 

cores and the geomorphology within the site.  Core 15DF1’s location along the ridge 

likely experienced overbank flooding, which resulted in the deposition of coarser 

sediment containing cypress and alder fossil pollen into the trough where 15DF3B is 

located. 

Peat sampled from core 15DF1 revealed a radiocarbon date of ~45,210 cal y BP, 

and ~41,830 cal y BP, placing it during MIS 3 when sea levels were regularly fluctuating, 

and global ice volume was decreased.  All samples collected from 15DF3B for 

radiocarbon dating were returned ‘dead’.  The extrapolated date from sister core 16DF3A 

revealed an OSL date of 72±8 ka, placing it during MIS 5a-4 when sea levels were 
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decreased, and global ice volume was increased due to a period of cooling.  Despite the 

two different dates, the pollen results lead us to believe that these sediments were 

deposited at the same time.  It would be unlikely to find such similar pollen assemblages, 

as well as similar transitional communities within the pollen assemblages at two different 

time periods.  Therefore, we believe that it is more likely that the radiocarbon and OSL 

dates are erroneous due to the date and range limits for radiocarbon, and the large error 

bars associated with OSL dating. 

Though this study has aided in establishing additional data points regarding 

vegetation dynamics of a continental shelf glacial refuge using fossil pollen, the full 

composition of this Underwater Forest is still unknown.  In order to exactly understand 

how this forest came to be additional work is needed across a large scale.  More cores 

need to be recovered and analyzed for fossil pollen, and compared to previously 

published findings to help reconstruct the vegetation assemblage before it was overtaken 

by marine conditions. 

Future studies would benefit most from a more reliable chronology.  The lack of 

radiocarbon and OSL dates in this study leaves unanswered questions that cause us to 

rely more heavily on what little evidence has already been proposed.  This forest contains 

a wealth of information that is crucial to our understanding of past vegetation dynamics, 

and with additional pollen analysis, and a consistent method of dating, a more 

comprehensive explanation of this site is possible. 
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