
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Honors Theses Honors College

5-2024

Reviving the Past: Enhancing Language Models with Historical Reviving the Past: Enhancing Language Models with Historical

Text Optimization Text Optimization

Heather D. Broome

Follow this and additional works at: https://aquila.usm.edu/honors_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Broome, Heather D., "Reviving the Past: Enhancing Language Models with Historical Text Optimization"
(2024). Honors Theses. 955.
https://aquila.usm.edu/honors_theses/955

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu, Jennie.Vance@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=aquila.usm.edu%2Fhonors_theses%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/955?utm_source=aquila.usm.edu%2Fhonors_theses%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu,%20Jennie.Vance@usm.edu

Reviving the Past: Enhancing Language Models with Historical Text Optimization

by

Heather Dixieanna Broome

A Thesis
Submitted to the Honors College of

The University of Southern Mississippi
in Partial Fulfillment

of Honors Requirements

May 2024

ii

Approved by:

Nick Rahimi, Ph.D., Thesis Advisor,
School of Computing Sciences and Computer
Engineering

Sarah Lee, Ph.D., Director,
School of Computing Sciences and Computer
Engineering

Joyce Inman, Ph.D., Dean
Honors College

iii

ABSTRACT

Recent advancements in Natural Language Processing (NLP) have brought

attention to the significant potential that exists for widespread applications of Large

Language Models (LLMs). As demands and expectations for LLMs rise, ensuring

efficiency and accuracy becomes paramount. Addressing these challenges requires more

than just optimizing current techniques; it urges novel approaches to NLP as a whole.

This study investigates novel data preprocessing methods designed to enhance LLM

performance by mitigating inefficiencies rooted in natural language, particularly by

simplifying the complexities presented by historical texts. Utilizing the classical text The

Odyssey by Homer, two preprocessing techniques are introduced: tokenization of names

and places, and substitution of outdated terms. After optimizing a Long Short-Term

Memory (LSTM) network to perform well with the original text, the study examined how

each methodology influenced the model's efficiency and precision through the analysis of

training time and loss metrics. Tokenization significantly reduced the training time of the

model by simplifying complex names and places, albeit with a slight degradation of

output quality. Substitution of outdated terms not only decreased the training time of the

model but also improved the model’s comprehension. This study successfully

demonstrated novel preprocessing methods for improving the efficiency of LLMs,

providing insight for future research and contributing to the ongoing mitigation of NLP

challenges.

Keywords: natural language processing, large language models, data preprocessing

techniques, historical text simplification, LSTM network, LSTM optimization

iv

DEDICATION

This thesis is dedicated to Rachandeep Singh Chahal. You have believed in me

since the very beginning. I am eternally grateful for you.

v

ACKNOWLEDGMENTS

First and foremost, I extend my deepest gratitude to the Honors College for their

continuous support of my personal and academic growth. Furthermore, I would like to

thank the School of Computing Sciences and Computer Engineering for the knowledge I

carry with me as I continue my education.

I would like to thank all of the amazing advisors and professors that have shaped

my journey. Dr. Nick Rahimi, thank you for providing me with mentorship and

opportunities—none of this would have been possible without you. Dr. Sarah Lee, thank

you for your continuous support and leadership. These past four years have been a truly

remarkable journey.

vi

TABLE OF CONTENTS

LIST OF TABLES... viii

LIST OF ILLUSTRATIONS... ix

LIST OF ABBREVIATIONS... x

CHAPTER I: INTRODUCTION.. 1

CHAPTER II: LITERATURE REVIEW ... 4

CHAPTER III: METHODOLOGY .. 9

Creating the Dataset .. 9

Building the Language Model .. 10

Optimizing the Dataset ... 15

Tokenizing Names and Places .. 16

Substituting Outdated Terms .. 18

CHAPTER IV: RESULTS.. 21

Impact of Tokenization ... 21

Impact of Substitution... 22

CHAPTER V: DISCUSSION... 24

CHAPTER VI: CONCLUSION ... 26

APPENDIX A: LSTM Implementation Code .. 27

APPENDIX B: Complete List of Term Substitutions .. 33

REFERENCES ... 34
vii

LIST OF TABLES

Table 1. Parameters of LSTM Model ... 13

Table 2. LSTM Output Before and After Parameter Tuning.. 15

Table 3. Tokenized Names ... 18

Table 4. Tokenized Places .. 18

Table 5. Outdated Term Substitutions .. 20

Table 6. Model Output After Tokenization .. 22

Table 7. Model Output After Substitution .. 23

Table 8. Complete List of Term Substitutions.. 33

viii

LIST OF ILLUSTRATIONS

Figure 1. RNN Architecture.. 4

Figure 2. LSTM Memory Cell .. 5

Figure 3. Original Training and Validation Loss Over Time ... 14

Figure 4. Training and Validation Loss Over Time After Tokenization 22

Figure 5. Training and Validation Loss Over Time After Substitution............................ 23

ix

LIST OF ABBREVIATIONS

GPT Generative Pre-trained Transformer

LM Language Model

LLM Large Language Model

LSTM Long Short-Term Memory

ML Machine Learning

NLP Natural Language Processing

RNN Recurrent Neural Network

x

CHAPTER I: INTRODUCTION

Human language has evolved over the past six million years, a testament to our

unique biology, anthropology, and cognitive sciences. This evolution is responsible for

the limitless complexity of natural language and the immense juxtaposition it creates

against the rigid, arithmetical nature of computing. This contrast has long rendered

Natural Language Processing (NLP) a significant challenge within the field of

computational science. However, in the age of Big Data, the capabilities of computational

models to decipher and emulate natural language are unparalleled. As the field seeks

novel ways to optimize and build upon these advancements, there is a need to adapt

natural language itself to the properties of computation.

In recent years, Language Models (LMs) have empowered NLP in ways

previously considered impossible. The introduction of the Markov chain in 1906, which

predicted sequences of letters in a text, marked the beginning of what we now consider

language processing. The concept of sequential predictions has evolved from simple,

hand-computed frameworks to incredibly complex Large Language Models (LLMs).

Among the most advanced of these today is GPT-4, which predicts sequences of text

using 1.7 trillion parameters [1], [2].

The sophistication of LLMs has come with a growing need for data and

computational resources. A major determinant of the computational demand and runtime

for LLM training is the quality and breadth of training data. Although models have

continuously evolved to learn from broad, suboptimal text, the adaptation of training data

remains insufficient. Moreover, as the scale and architectural complexity of these models

grow, there are escalating concerns regarding the sheer energy consumption and

1

computational infrastructure required to support them [3]. Addressing these issues is

crucial not only for optimizing LLMs, but also to ensure that hardware and energy

sources can keep pace with the momentum in NLP progression.

This research aims to explore novel strategies for preprocessing historical text,

proposing and analyzing potential techniques for increased efficiency of LM training.

Large datasets, especially those containing historical text, carry obsolete writing patterns

and vocabulary that contribute little to the objectives of most LMs. By identifying and

mitigating these variables, this research aims to improve the speed and computational

demand of LMs while preserving the integrity of classical text.

The importance of this research is found in its real-world applications. As

language evolves and datasets continue to grow exponentially, the need to mitigate

computational demands will only increase. If methods of data optimization can be

applied in seconds while reducing a model’s training time by minutes or hours, then the

value of these techniques will be made clear. Furthermore, optimized datasets could be

reusable indefinitely, allowing future models to continually reap their benefits. Effective

pre-processing techniques will contribute to the field of NLP indefinitely.

In preparation for the core methodology to be applied, an LM is first designed,

implemented, and optimized to best fit the selected dataset. The core methodology is then

implemented, which contains two strategies: tokenization of proper nouns and

substitution of outdated terms. Through tokenization, the dataset's complexity is lowered

by reducing names and places into simple placeholders that are reinstated after the model

produces output. Through substitution, text normalization is applied to archaic language,

transforming it into a modern counterpart, which reduces the model’s archaic vocabulary

2

and increases the context surrounding modern vocabulary. Together, these methods

reduce the complexity and size of tokens that a model must comprehend during training.

This reduction is measured by a comparison of training losses, validation losses, and

training times before and after each technique is applied.

3

CHAPTER II: LITERATURE REVIEW

Over recent years, unprecedented strides have been made in machine

interpretation and generation of natural language. Developments have greatly revolved

around artificial neural networks for sequence modeling tasks, which involve training

neural networks on sequentially ordered data such as text, audio, or video. This literature

review will focus on three pivotal types of neural networks: Recurrent Neural Networks

(RNNs), Long Short-Term Memory (LSTM) networks, and Transformers. Each of these

have contributed significantly to the advancement of NLP and sequence modeling.

The first of these network architectures to be developed was the RNN. RNNs use

feedback loops between each sequential step in model training, allowing the network to

retain memory over time. While feedback loops played a crucial role in the advancement

of sequence modeling, they introduced the problem of vanishing and exploding gradients

[4]. In traditional RNNs, gradients may vanish when the weight passed by a feedback

loop is less than 1 and may explode when that weight is more than 1. This is caused by a

compounding multiplication of gradients during backpropagation. The architecture of an

RNN is illustrated in [5, Fig. 1]. Each network cluster represents the introduction of a

sequential token to the training set, such as a letter, word, or phrase. Between each time

step, denoted by ‘T’, weights are shared to retain memory and context.

Figure 1. RNN Architecture

4

Unlike traditional RNNs, LSTM networks effectively combat vanishing and

exploding gradients [6]. As illustrated in [7, Fig. 2], each cell in the LSTM architecture

consists of input, forget, and output gates. These cells are each connected by a distinct

cell state and hidden state. Long-term memory is represented by the cell state that is

modified via gates, utilizing a sigmoid activation function to ensure that information is

carefully added and forgotten. Short-term memory is represented by a hidden state that is

modified by activations (represented by ‘a’) and biases (represented by ‘b’). These states

methodically control the sharing of memory across each sequential input, making the

network less susceptible to the gradient issues of traditional RNNs. This structure is

further described in the Methodology section. In practice, the LSTM structure allows a

network to capture long-term dependencies across large datasets, which is crucial for

capturing sequential information and maintaining continuity in narrative and style.

Figure 2. LSTM Memory Cell

Despite the significant improvements in long-term contextualization made

possible by LSTMs, challenges still exist for the models. Specifically, the limited

window of context available for each hidden state may prevent broader contextual

dependencies from being recognized. This challenge led to the introduction of attention

5

mechanisms, which enabled neural networks to dynamically focus on sections of the

input sequence and assign sections with varying levels of importance [8]. These

mechanisms paved the way for the invention of Transformer models, avoiding recurrence

entirely for a route of self-attention [9]. This is especially notable, as it facilitated the

parallelization of LLM training and the creation of large pre-trained models.

In addition to utilizing novel attention mechanisms, the Transformer model

follows a novel, two-part structure: an encoder and a decoder. The encoder processes

input while the decoder generates output. The complexity of these models is significantly

higher than that of an LSTM, and both the encoder and decoder contain self-attention

structures with multiple heads and feed-forward neural networks. This multi-head

attention structure enables the dynamic focus capabilities of the model, allowing the

Transformer to capture long-term context that otherwise may have been missed.

In this research, an LSTM framework will be employed. Two critical

considerations are responsible for this decision: computational efficiency and the nature

of the dataset. Transformer models, while able to handle highly complex tasks, have a

parallel structure that requires significant computational resources. Furthermore, the

dataset employed in this research is relatively small, making an LSTM model particularly

fitting. LSTM models have lower computational demands while still being able to

effectively capture long-term dependencies and context in smaller datasets. Nonetheless,

acknowledgment of the Transformer model is necessary due to its unprecedented

significance in the field of NLP.

The Transformer model is responsible for substantial advancements in NLP and

revolutionary inventions such as GPT (Generative Pre-trained Transformer) models.

6

These models utilize vast datasets to achieve state-of-the-art fluency and understanding

across a broad array of language-understanding tasks [1]. The transformer-based

architecture utilized by GPT allows the model to process tokens in parallel, making it

significantly more efficient and scalable than many past models. GPT-4 [10], one of the

most recent GPT models, performs extremely well on complex natural language

questions and knowledge-intensive trivia quizzes. This performance underscores the

continuing strides being made by the GPT series. More broadly, it represents the

continually growing capabilities of NLP models to master generalized knowledge without

a need for task-specific tuning.

While breakthroughs in network architecture have significantly advanced NLP,

techniques for the structural analysis of language within these models have also played a

crucial role. Parsing and masking have enhanced accuracy and efficiency within LLMs.

Parsing involves the analysis of elements within a sentence and their relationships to each

other [11]. Traditional RNNs and LSTMs linearly parse text and generate sentences

through probabilities. Not only does this lead some models to struggle with

grammatically correct sentence structure, but it also risks the overlooking of

dependencies between detached words. Parsing has become standard in advanced models,

including parallelized models such as Transformers.

Masking has also been beneficial for the advancement of LLMs. Masking

involves randomly obscuring portions of input text and prompting the model to predict

those portions [12]. This forces the model to rely on its understanding of context rather

than sequentially related probabilities alone. This more complex standard for predictions

during training allows for a better understanding of context and nuances to be established.

7

Both parsing and masking have allowed LLM development to emphasize bidirectional

context, broader generalization, and syntactical relationships.

Evolution from the linear processing of RNNs to the parallel and bidirectional

processing of Transformer models creates a clear trajectory for the advancement of NLP.

Improved model architecture and data analysis methods have undoubtedly revolutionized

the capabilities of LLMs. Still, there are many improvements to be made regarding

computational cost, overall efficiency, and output accuracy for each model type. This

makes it especially critical to ensure a nuanced approach to model selection and research

as a whole, with thorough consideration given to the intricacy of human communication.

8

CHAPTER III: METHODOLOGY

Creating the Dataset

The foundation of building an effective LM is the deliberate selection and

preprocessing of training data. In this research, The Odyssey by Homer was selected as

training data for the model. The specific translation, completed by Samuel Butler in 1900,

contains approximately 610,000 characters, making it a sufficiently large dataset for a

robust NLP model. This translation was chosen for various reasons. To begin, the work is

within the public domain, facilitating research use without copyright restrictions.

Additionally, Butler’s translation retains the integrity of the original writing. The use of

this slightly modern translation enhances the readability of the original text and the

output of models trained on it. This will facilitate a smoother process for future

modifications to the data as well as interpretations made from the resulting model output.

The Odyssey is an excellent source for training a LM. The epic contains elaborate

storytelling, rich vocabulary, and a long-form structure. These elements, along with the

mixture of narrative storytelling and direct dialogue, allow the model to capture many of

the complex factors of natural language. Perhaps the most critical attribute of The

Odyssey is its consistent style. Consistency enables the LM to quickly develop a stable

comprehension of the language, which is an especially important aspect given the limited

hardware available for this research. Although the hardware being used is powerful, it

does not compare to that which is used to train LLMs on broad and diverse datasets.

In order to ensure that the dataset was ready for use, some basic preprocessing

tasks were performed. Data preprocessing is necessary for any NLP research to ensure

that unintended characters and patterns are removed from the dataset before training takes

9

place. The preprocessing of The Odyssey involved the removal of excess whitespace.

Originally, newline characters were used to control the width of each row of text for

readability purposes. While formatting is useful for human readers, the newlines were

unrelated to the content of the story and would confuse a model during training. A Python

script was written to identify and eliminate each superfluous newline character. This was

carefully performed as newline characters indicating the separation of stanzas were

retained. In the original text file, stanzas were indicated by two consecutive newline

characters, allowing them to be easily differentiated from a simple line break. Given the

literary significance of poetic structure, retaining stanza breaks ensured the preservation

of the epic’s narrative and style.

Building the Language Model

This research utilized the LSTM network, an RNN most notable for its ability to

capture long-term dependencies in sequence modeling tasks. The LSTM model was

constructed using the Python programming language [13] and the PyTorch deep learning

framework [14], selected for the relative ease of model implementation and

experimentation. The implementation of a model as complex as the LSTM network is

challenging, and optimizing the model requires rigorous testing.

The LSTM model has a multi-gate structure with the following components: the

Forget Gate, Input Gate, and Output Gate [7]. The Forget Gate determines which memory

will be discarded from the cell state. The Input Gate determines which memory will be

added to the cell state. The Output Gate determines which memory will contribute to the

output of the given cycle. This architecture allows the LSTM to carefully retain and

10

discard short-term and long-term memory, which is crucial for maintaining long-term

dependencies while discarding unimportant information.

After implementing the LSTM model, the next essential step was hyperparameter

tuning. This involved fine-tuning various configurations to ensure the model was learning

effectively from the training data. In the initial phase of this process, the parameter

optimization was conducted using only Book 1 of the 24 books in The Odyssey. The

approach aimed to refine the model’s parameters in a confined environment, allowing the

tuning process to be guided early-on without exerting the time and resources necessary to

train on the entire text. However, after switching to the entire text, it quickly became

clear that the optimized parameters did not scale effectively. This emphasized the

challenges that come with long, complex datasets. Subsequently, the parameter fine-

tuning process followed many iterative adjustments which are detailed below.

The previously optimized parameters marked the initial values in this refinement

process. The model commenced with 100 epochs, a batch size of 128, a learning rate of

0.001, 128 hidden dimensions, 2 layers, and sequence lengths of 100. At this point, the

output was unintelligible.

In pursuit of high-quality output, the epochs were first adjusted to 200. The

epochs, which represent the iterations a model executes when learning from training data,

proved to become more effective with this increase. The model’s writing was more

coherent, and the training and validation losses were both lowered while remaining

proportionate, indicating that overfitting had not been introduced by the change.

Although there were some misspellings and still no clear storyline in the output, this

improvement justified the increased runtime, so the adjustment was retained. The next

11

refinement was in adjusting the sequence lengths to 200, a decision which seemed

appropriate given the large increase in training data. The sequence length represents the

amount of tokens used to train a model during each epoch, and it is helpful to increase its

size with complex training sets where broader context is essential for the model’s

comprehension. This increase improved the model and eliminated misspellings.

However, the output still struggled to establish a clear storyline.

Next, the learning rate was reduced to 0.0001 and epochs were increased to 300.

The learning rate, which determines the step size made by the neural network as it adjusts

weights, improved the performance when decreased. The increased epochs helped reduce

the potential shortcomings that come with smaller steps, as simply decreasing the

learning rate may hinder the model’s ability to converge to the optimal loss given the

restricted number of iterations. An adjustment to the batch size, specifically a decrease to

64, tested the impact of a smaller sample size taken within each epoch. This modification,

despite the increase in training time, was kept due to its benefit in establishing clearer

output. Lastly, the number of hidden dimensions was increased to 256. Although more

dimensions within a neural network increase training time, the adjustment was deemed

necessary as it helped the model better understand nuances and complex relationships

between entities in the text. At this point, the model was considered optimized. Other

parameter values were tested yet did not benefit the model. These included increasing the

number of layers in the model to 3. Theoretically, this could have helped the model better

understand complex nuances, but it ultimately made the output less coherent.

12

Lastly, an appropriate optimizer and loss function were selected. In neural

networks, an optimizer manages learning rate throughout training. The optimizer used in

this research, Adam [15], is well-suited for dynamically adjusting the learning rate

effectively for complex datasets. A loss function measures the difference between a

model’s predicted sequence and actual sequence during training. The loss function used

in this research, CrossEntropyLoss [16], penalizes incorrect sequence prediction during

training. These functions are useful for enhancing and guiding text generation.

The exploration of hyperparameter testing was concluded at this stage. The model

had reached an excellent level of performance, which was deemed suitable for the

research objectives. The final hyperparameters, displayed in Table 1, represent a

configuration that effectively balanced the complexity of the dataset with the present

computational constraints.

Epochs 300
Batch Size 64
Learning Rate 0.0001
Hidden Dimensions 256
Number of Layers 2
Optimizer Adam
Loss Function CrossEntropyLoss

Table 1. Parameters of LSTM Model

A crucial measurement for the performance of an LM is loss, which quantifies the

difference between the model’s predictions and actual data. The lower the loss, the better

the performance. Two measurements for loss are used: training and validation loss. These

values represent the model’s ability to generalize training data and make accurate

predictions using unseen validation data. The losses achieved by the final LSTM are

displayed in Fig. 3. The optimal loss progression should display a steady decline that

13

slowly tapers off near its end, and this pattern can be observed in the fine-tuned LSTM.

The initial rapid decrease in loss signifies a period of quick learning, followed by an

eventual convergence indicating stability once the maximum amount of learning has

taken place. An important detail of this convergence is the close proximity between the

training and validation losses, suggesting that the model is not overfitting. This means

that the model is predicting sequences well even on unseen data, rather than simply

memorizing the training data.

Figure 3. Original Training and Validation Loss Over Time

The model’s refinement is demonstrated clearly by the comparison of text outputs

before and after fine-tuning. This comparison is displayed in Table 2, which contains the

first 500 characters of the LSTM model’s output before and after hyperparameter tuning.

Before fine-tuning, the model’s output was largely made up of obscure series of

characters. However, post-tuning, the output was intelligible, coherent, and accurately

reflecting the writing style of The Odyssey. This progression signified the model’s

suitability for its intended use in this research. The final model took approximately 1387

14

minutes to train with the final epoch reporting a training loss of 0.1018 and a validation

loss of 0.1092.

Before After
They saw," said he, 'Ulysses, noble, did not The ghosts of our ships, we found our

father, finging restre Diume or indeed come comrades lamenting us, and anxiously

away over her head and son. awaiting our return. We ran our vessel upon

"When we will anson to Dulicher side whether the sands and got out of her on to the sea

of priead when you can think that island such shore; we also landed the Cyclops' sheep, and

a noble monsmend among themselves. Then divided them equitably amongst us so that

Ulysses instagry, not even the gods down the none might have reason to complain. As for

ship bade for all that was chopping the ram, my companions agreed that I should

themselves of washed them to Aegout. have it as an extra share; so I sacrificed it on

Telemachus, marriel in husband of many the sea shore, and burned its thigh bones to

grorned him when the ship could be away the Jove, who is the lord of all. But he heeded not

body of my men with a good burden help you my sacrifice, and onl

to the h

Table 2. LSTM Output Before and After Parameter Tuning

Throughout this research, the LSTM training was conducted on an NVIDIA

GeForce RTX 3070 Ti Laptop GPU. This high-performance GPU provided the power

necessary to train on an extensive dataset within a reasonable timeframe.

Optimizing the Dataset

The primary objective of this research was to utilize and measure the effects of

various preprocessing strategies on the efficiency of an LSTM model. These strategies

focused on normalizing the text, modernizing outdated language, and simplifying

complex vocabulary. The section outlines each preprocessing technique and the

considerations behind their selection.

An essential consideration behind each technique is the preprocessing through

Python scripts, a decision that underscores the pursuit of efficiency. Dynamic

preprocessing techniques such as masking are extremely common in LLMs, and

rightfully so, yet they require reapplication with each iteration of training. Python scripts,

15

on the other hand, modify the dataset once into a new version that can be used

indefinitely. In this research, scripts allow for a one-time application of tokenization for

names and places and substitution for text modernization. Once preprocessed, the dataset

can be used repeatedly without redundant measures increasing the computation load.

Furthermore, an explicit approach preserves reversibility for each method, which is

useful for restoring natural language in output. This method optimizes computational

resources, improves the reproducibility of the study, and allows for more direct

conclusions to be drawn on the effects of individual modifications.

Tokenizing Names and Places

The first technique employed was the tokenization of names and places.

Throughout The Odyssey and many archaic works in general, proper nouns are

particularly complex. While these terms are essential placeholders for understanding the

narrative as a whole, the exact composition of the term itself is typically unnecessary.

Therefore, representing names and places with generic tokens can help reduce the

model’s vocabulary size and, for works that use particularly long terms, significantly

reduce the dataset as a whole. Furthermore, generic tokens such as ‘N1’, ‘N2’, etc. for

names and ‘P1’, ‘P2’, etc. for places can help the model begin to quickly infer when

unfamiliar tokens represent a name or place. The use of a numeric token, which would

not occur naturally in The Odyssey, also eliminated false positives when reinstating terms

via a Python script in the output of the LSTM, as the placeholders would not have any

direct matches in the original dataset like a nickname or alias might.

In order to perform this tokenization, a Python script was designed to

systematically identify and tokenize the names and places within The Odyssey. The script

16

first extracted all words that began with a capital letter, as these were likely to be proper

nouns. To further refine the resulting list, the script was tailored to exclude words that

occurred less than ten times. This not only simplified the output into a list of more

relevant terms, but it also significantly reduced the inclusion of words that were

capitalized simply because they were at the beginning of sentences. Although that

exclusion could have been performed by ignoring words that came directly after a

newline or period, it would have conflicted with names or places being used to open a

sentence. This refinement allowed the remaining terms to be manually filtered.

When manually filtering the remaining terms, many criteria were considered.

Major characters who were central to the storyline and appeared frequently in the text,

such as Ulysses, Telemachus, and Penelope, were tokenized. Similarly, significant

locations like Ithaca and Troy were also tokenized. However, gods, mythical entities, and

terms referring to groups of people were intentionally not tokenized in this process. Gods

and mythical entities often represent broad thematic elements that may be diluted by

tokenization. This dilution would be exacerbated if the optimized text were combined

with a larger training dataset which may contain specific works relating to mythology.

Collective names like Achaeans and Phaeacians may create a similar issue, potentially

confusing the model with their varying contexts and connotations. Therefore, while the

tokenization of all names and places may streamline computational processing, the

preservation of gods, mythical entities, and collective terms in their original form was

necessary for the integrity of both the text and model.

The tokenized names, along with their total occurrences in the text, appear in

Table 3. Similarly, the tokenized places appear in Table 4.

17

Name Token Freq. Name Token Freq. Name Token Freq.
Ulysses N1 580 Euryclea N12 33 Eurylochus N23 13
Telemachus N2 259 Eurymachus N13 28 Irus N24 13
Penelope N3 104 Aegisthus N14 25 Dolius N25 12
Eumaeus N4 71 Pisistratus N15 23 Polybus N26 11
Menelaus N5 63 Helen N16 22 Medon N27 11
Alcinous N6 62 Melanthius N17 22 Theoclymenus N28 11
Antinous N7 58 Achilles N18 17 Philoetius N29 11
Laertes N8 45 Atreus N19 16 Icarius N30 10
Nestor N9 38 Autolycus N20 14 Peleus N31 10
Agamemnon N10 37 Nausicaa N21 13 Amphinomus N32 10
Calypso N11 34 Arete N22 13 Eurynome N33 10

Table 3. Tokenized Names

Place Token Freq.
Ithaca P1 91
Troy P2 68
Pylos P3 39
Olympus P4 12
Dulichium P5 12
Crete P6 12
Egypt P7 11
Lacedaemon P8 11

Table 4. Tokenized Places

Substituting Outdated Terms

The second technique employed was text normalization. This method involved

converting outdated terms into their modern equivalents. There were various reasons for

the modernization of certain terms, and the choice to do so was fully dependent on the

context of the dataset and its uses. For this research specifically, outdated language was

reduced due to its complex structure and spelling. Additionally, this study aimed to

improve efficiency by enabling the dataset to be reused, creating the potential for future

research to train the dataset alongside modern texts. Reducing the contrast between

historical text and modern language helped to limit the model’s need to learn outdated

vocabulary. Modernization across languages would allow future models to reduce their

18

vocabulary size while simultaneously gaining context on the meaning and history of

terms. It should be noted, however, that in cases where historical language is necessary,

such an adjustment would not have been appropriate.

This approach involved a multi-phased process to identify outdated terms and

replace them with their modern equivalents. First, a Python script was utilized to generate

a list of the top 100 most frequently used words within The Odyssey. While helpful, this

list predominantly consisted of prepositions, pronouns, and names, which limited its

potential insights into outdated terminology. To refine this search, the spaCy NLP library

[17] was employed to specifically extract nouns and adjectives, addressing the problems

present in the initial approach. The spaCy library simplified the extraction of outdated

terms, as these word classes were likely to consist of outdated terminology. The final

phase of this process involved manual review, where sections of the text were skimmed

for any frequent, clearly outdated words that may have been missed by previous methods.

Finally, a list of outdated terms was compiled. Each term was evaluated carefully

with consideration given to its exact meaning and whether an exact modern synonym

existed. For instance, the term "voyage" was retained despite its mildly archaic tone, as it

conveyed the sense of sea travel that is central to the epic's narrative. Similarly, the word

"swineherd," while outdated, was preserved due to the absence of a modern synonym that

explicitly implied the herding of pigs. Each substitution meticulously balanced the

importance of contextual richness with computational efficiency. By converting specific

terms to their modern equivalents, the training data became more compatible with

modern texts and, in many cases, reduced the length and complexity of certain tokens.

19

Incidentally, the vocabulary present in the text was reduced, as 20 of the 26 terms

that served as replacements were already present in the original text. This overlap in

vocabulary allowed the model to learn more efficiently, as it minimized the introduction

of new terms and reinforced existing linguistic patterns. The final substitutions, along

with their total occurrences, are illustrated in Table 5. It should be noted that past, active,

and plural versions of some terms were also present in the text and were substituted

accordingly for consistency. The frequency counts in Table 5 include the occurrences of

these varied forms. For a detailed enumeration of the exact substitutions, their

frequencies, and indications of whether a term was pre-existing in the original text, refer

to Appendix B.

Original Token Replacement Token Frequency
shall should 207
round around 130
whereon where 55
foremost leading 12
cloak jacket 57
cloister walkway 60
ere before 9
hecatomb sacrifice 15
perish die 26
supper dinner 37
quarrel fight 11
estate property 26
to-morrow tomorrow 14
till until 155
yoke harness 13
folly foolishness 10
converse talk 17

Table 5. Outdated Term Substitutions

20

CHAPTER IV: RESULTS

The results of this research represent a thorough examination of the impacts of

tokenization and substitution on the LSTM model. The ultimate goal was to observe an

increase in efficiency for the LSTM model’s computational efficiency.

Impact of Tokenization

The process of tokenizing common character names and places into standardized

representations played a critical role in increasing the computational efficiency of the

model. This tokenization reduced the size of the training dataset, allowing the model to

train more quickly. This resulted in a total training time of 1316 minutes, demonstrating

that the tokenization decreased training time by approximately 71 minutes when

compared to the original model.

Despite the improvement in training time, tokenization resulted in lower quality

output from the model. The final training and validation losses were higher than those of

the original model, with the final epoch achieving a training loss of 0.1021 and a

validation loss of 0.1097. This signifies an increase of training loss by 0.0003 and

validation loss by 0.0005. The complete training and validation loss curves after

tokenization are depicted in Fig. 4. This deterioration of the model’s understanding of the

text reveals a disadvantage of tokenization. This can be observed in Table 6, which

displays the first 500 characters of the model’s output after tokenization.

21

Figure 4. Training and Validation Loss Over Time After Tokenization

Output After Tokenization
They took me in and was kind to me, but I need say no more about this,

for I told you and your noble wife all about it yesterday, and I hate saying

the same thing over and over again."

Thus did he speak, and they all held their peace throughout the covered

cloister, enthralled by the charm of his story, they became mend

youthough they wanted me by the hand. "fout is not your fill, either

bronze- for there wereding meen than Ne6 may be pig to harn work.

When they had done dinner they the jar roffi

Table 6. Model Output After Tokenization

Impact of Substitution

The process of substituting archaic words for their modern equivalents

successfully increased the computational efficiency of the model. This substitution

reduced the complexity of the training dataset by condensing the model’s overall

vocabulary to a more manageable size. This simplification resulted in a total training time

of 1361 minutes, demonstrating that the substitution decreased training time by

approximately 26 minutes when compared to the original model.

22

The final training and validation losses were also lower than those of the original

model, with the final epoch achieving a training loss of 0.0999 and a validation loss of

0.1079. This signifies a decrease of training loss by 0.0019 and validation loss by 0.0013.

The complete training and validation loss curves are depicted in Fig. 5, illustrating the

model’s learning progression over time. This graph demonstrates the model’s improved

understanding of the text, highlighting the effectiveness of archaic term substitution for

optimizing language model efficiency and performance. Table 7 displays the first 500

characters of the model’s output after substitution.

Figure 5. Training and Validation Loss Over Time After Substitution

Output After Substitution
The old man of the sea told me, so much will I tell you in full. He said he

could see Ulysses on an island sorrowing bitterly in the house of the

nymph Calypso, who was keeping him prisoner, and he could not reach

his home, for he had no ships nor sailors to take him over the sea.'This

was what Menelaus told me, and when I had heard his story I came away;

the gods then gave me a fair wind and soon brought me safe home

again."

With these words he moved the heart of Penelope. Then Theoclymenus

said

Table 7. Model Output After Substitution

23

CHAPTER V: DISCUSSION

This study explored preprocessing strategies to boost LM efficiency by

simplifying complex and outdated terms within historical text. The methodology was

primarily motivated by the escalating scale, complexity, and computational demands of

LLMs. While traditional preprocessing approaches focus on formatting and quality

improvements, this research introduced the idea of addressing redundant and dynamically

evolving natural language constructs as essential preprocessing considerations. By

focusing on these constructs and emphasizing their presence in outdated language,

methodologies were successfully developed and applied to improve the efficiency of

LSTM training on historical text.

The application of the tokenization process to frequently occurring names and

places within The Odyssey significantly enhanced the training efficiency of an LSTM

model. This improvement, demonstrated by a significant reduction in training time,

highlighted the computational load imposed by complex historical names and places.

Nonetheless, this research noted a slight decline in output quality, suggesting that

artificial placeholders may interfere with the learning trajectory of LMs.

The substitution process, which involved replacing outdated terms with their

modern equivalents, not only improved training efficiency but also strengthened the

model’s understanding of the text. This improvement, demonstrated by a reduction in

both the training time and loss metrics, highlighted the computational demand and

complexity that is introduced by obsolete language. By modernizing the language, the

model gained a finer understanding of historical nuances, thereby boosting both its

applicability and efficiency.

24

These results offer compelling evidence for the effectiveness of preprocessing

techniques specifically tailored to historical text. These techniques aid in the

improvement of various NLP applications, particularly those that require significant

amounts of data spanning various eras. As natural language continues to evolve, these

findings support the incorporation of similar techniques to mitigate challenges introduced

by that evolution. Furthermore, these techniques offer insight for future NLP research,

emphasizing the importance of striking a balance between the simplification of data and

the retention of linguistic richness.

For future work, this research proposes many compelling investigations. The

effects of tokenization and substitution on leading LLMs, especially Transformers, justify

additional investigation. Furthermore, the development of an automated end-to-end

framework for the tokenization and substitution of complex historical terms could

streamline the incorporation of classical texts in certain NLP applications. An end-to-end

framework would also facilitate research on the scalability of these techniques and their

effects across various languages and dialects. This research not only advances our

understanding of NLP techniques but also lays the foundation for future work in

harnessing the full potential of historical texts within broader applications.

25

CHAPTER VI: CONCLUSION

This investigation has underscored the significant potential of historical

considerations in data preprocessing techniques. By refining complex historical literature,

it is not only possible to improve the efficiency and accuracy of LMs but also to expand

their applications. By investigating the effects of tokenization and substitution for

outdated terms in historical text, this research demonstrated notable improvements in

LSTM model efficiency and accuracy. The demonstration and analyses of these

techniques provide insight for future research and contribute to the ongoing mitigation of

NLP challenges. Advanced historical text processing contributes not only to technology

but to the preservation and accessibility of historical literature, signifying a pivotal step

toward a deeper understanding and portrayal of evolution within NLP

26

APPENDIX A: LSTM IMPLEMENTATION CODE

import torch

import torch.nn as nn

import numpy as np

import random

from torch.utils.data import Dataset, DataLoader

import time

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

print(torch.cuda.is_available())

print(torch.cuda.get_device_name(0))

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

torch.manual_seed(42)

np.random.seed(42)

random.seed(42)

Load in dataset

with open('C://Users//path_to_dataset.txt, 'r', encoding='utf-8') as f:

text = f.read()

Encode characters to integers

chars = tuple(set(text))

int2char = dict(enumerate(chars))

char2int = {ch: ii for ii, ch in int2char.items()}

encoded = np.array([char2int[ch] for ch in text])

seq_length = 200

batch_size = 64

Create training examples

def create_sequences(encoded_text, seq_length):

inputs = []

targets = []

for i in range(0, len(encoded_text) - seq_length, 1):

sequence_in = encoded_text[i:i + seq_length]

sequence_out = encoded_text[i+1:i+seq_length+1]

inputs.append(sequence_in)

targets.append(sequence_out)

return inputs, targets

27

https://torch.nn

inputs, targets = create_sequences(encoded, seq_length)

Define the dataset

class CharDataset(Dataset):

def __init__(self, inputs, targets):

self.inputs = inputs

self.targets = targets

def __len__(self):

return len(self.inputs)

def __getitem__(self, idx):

return torch.tensor(self.inputs[idx], dtype=torch.long),

torch.tensor(self.targets[idx], dtype=torch.long)

train_inputs, val_inputs, train_targets, val_targets = train_test_split(

inputs, targets, test_size=0.1, random_state=42) # 10% for validation

train_dataset = CharDataset(train_inputs, train_targets)

val_dataset = CharDataset(val_inputs, val_targets)

train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True)

val_dataloader = DataLoader(val_dataset, batch_size, shuffle=False)

Define the model

class LSTMModel(nn.Module):

def __init__(self, input_size, output_size, hidden_dim, n_layers):

super(LSTMModel, self).__init__()

self.hidden_dim = hidden_dim

self.n_layers = n_layers

self.output_size = output_size

self.lstm = nn.LSTM(input_size, hidden_dim, n_layers,

batch_first=True)

self.fc = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden):

out, hidden = self.lstm(x, hidden)

out = out.contiguous().view(-1, self.hidden_dim)

out = self.fc(out)

28

return out, hidden

def init_hidden(self, batch_size):

weight = next(self.parameters()).data

hidden = (weight.new_zeros(self.n_layers, batch_size, self.hidden_dim,

device=device),

weight.new_zeros(self.n_layers, batch_size, self.hidden_dim,

device=device))

return hidden

Define the hyperparameters

input_size = len(chars)

output_size = len(chars)

hidden_dim = 256

n_layers = 2

epochs = 300

model = LSTMModel(input_size, output_size, hidden_dim, n_layers).to(device)

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

Start timer

print ("Training started.")

start_time = time.time()

train_losses = []

val_losses = []

model = model.to(device)

Training phase

for epoch in range(epochs):

model.train()

train_loss = 0

for inputs, targets in train_dataloader:

inputs, targets = inputs.to(device), targets.to(device)

current_batch_size = inputs.size(0)

h = model.init_hidden(current_batch_size)

h = tuple(h_state.to(device) for h_state in h)

29

inputs = nn.functional.one_hot(inputs.to(torch.int64),

input_size).float().to(device)

targets = targets.to(torch.int64).to(device)

model.zero_grad()

output, h = model(inputs, h)

output = output.view(-1, model.output_size)

loss = criterion(output, targets.view(-1))

train_loss += loss.item()

loss.backward()

optimizer.step()

average_train_loss = train_loss / len(train_dataloader)

train_losses.append(average_train_loss)

Validation phase

model.eval()

val_loss = 0

with torch.no_grad():

for inputs, targets in val_dataloader:

inputs, targets = inputs.to(device), targets.to(device)

current_batch_size = inputs.size(0)

h = model.init_hidden(current_batch_size)

h = tuple([each.data.to(device) for each in h])

inputs = inputs.to(torch.int64)

inputs = nn.functional.one_hot(inputs,

input_size).float().to(device)

targets = targets.to(torch.int64).to(device)

output, h = model(inputs, h)

output = output.view(-1, model.output_size)

loss = criterion(output, targets.view(-1))

val_loss += loss.item()

average_val_loss = val_loss / len(val_dataloader)

val_losses.append(average_val_loss)

print(f'Epoch: {epoch + 1}, Training Loss: {average_train_loss:.4f},

Validation Loss: {average_val_loss:.4f}')

30

https://average_val_loss:.4f
https://average_train_loss:.4f

Stop the timer

print("Training finished!")

end_time = time.time()

elapsed_time = end_time - start_time

print(f"Training completed in: {elapsed_time // 60} min {elapsed_time % 60}

sec")

Text generation

def predict(model, character, hidden=None, top_k=None):

model.eval()

model.to(device)

x = torch.tensor([[char2int[character]]], dtype=torch.long).to(device)

x = nn.functional.one_hot(x, num_classes=len(chars)).float().to(device)

if hidden:

hidden = tuple([each.data.to(device) for each in hidden])

out, hidden = model(x, hidden)

p = nn.functional.softmax(out, dim=1).data

if top_k is None:

top_ch = torch.arange(len(chars))

else:

p, top_ch = p.topk(top_k)

p = p.cpu().numpy().squeeze()

top_ch = top_ch.cpu().numpy().squeeze()

char = np.random.choice(top_ch, p=p/p.sum())

return int2char[char], hidden

def generate_text(model, size, prime='The', top_k=None):

model.eval()

chars = [ch for ch in prime]

h = model.init_hidden(1)

for ch in prime[:-1]:

char, h = predict(model, ch, h, top_k=top_k)

31

char = prime[-1]

for _ in range(size):

char, h = predict(model, char, h, top_k=top_k)

chars.append(char)

return ''.join(chars)

generated_text = generate_text(model, 2000, prime="The", top_k=5)

print(generated_text)

32

APPENDIX B: COMPLETE LIST OF TERM SUBSTITUTIONS

Original Token Replacement Token Frequency Pre-existing
shall should 207 ✓

round around 130 ✓

whereon where 55 ✓

foremost leading 12 ✓

cloak jacket 42 ×
cloaks jackets 15 ×
cloister walkway 40 ×
cloisters walkways 20 ×
ere before 9 ✓

hecatomb sacrifice 4 ✓

hecatombs sacrifices 11 ✓

perish die 9 ✓

perished died 17 ✓

supper dinner 34 ✓

suppers dinners 3 ✓

quarrel fight 10 ✓

quarreled fought 1 ✓

estate property 25 ✓

estates properties 1 ×
to-morrow tomorrow 14 ✓

till until 155 ✓

yoke harness 8 ✓

yoked harnessed 5 ✓

folly foolishness 10 ×
converse talk 16 ✓

conversing talking 1 ✓

Table 8. Complete List of Term Substitutions

33

REFERENCES

[1] H. Li, “Language Models: Past, Present, and Future,” Commun. ACM, vol.

65, no. 7, pp. 56-63, June 2022.

[2] X. Ding et al., “HPC-GPT: Integrating Large Language Model for High-

Performance Computing,” In Workshops of The International Conference on

High Performance Computing, Network, Storage, and Analysis (SC-W 2023),

pp. 951-960, Nov. 2023.

[3] C. Kachris, "A Survey on Hardware Accelerators for Large Language

Models," arXiv preprint arXiv:2401.09890, Jan. 2024.

[4] Y. Bengio, P. Simard, and P. Frasconi, “Learning Long-Term Dependencies

with Gradient Descent is Difficult,” IEEE Transactions on Neural Networks,

vol. 5, no. 2, pp. 157-166, Mar. 1994.

[5] I. Sutskever, M. Martens, and G. Hinton, “Generating Text with Recurrent

Neural Networks,” In Proceedings of the 28th International Conference on

Machine Learning (ICML-11), pp. 1017-1024, Jan. 2011.

[6] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735-1780, Dec. 1997.

34

[7] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM Neural Networks for

Language Modeling,” In Proceedings of the 13th Annual Conference of the

International Speech Communication Association, pp. 194-197, Sep. 2012.

[8] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-

Based Models for Speech Recognition,” in Proceedings of the 28th

International Conference on Neural Information Processing Systems, vol. 1,

pp. 577–585, Dec. 2015.

[9] A. Vaswani et al., “Attention is All you Need,” in Proceedings of the 31st

International Conference on Neural Information Processing Systems, pp.

6000-6010, Dec. 2017.

[10] T. Brown et al., “Language Models are Few-Shot Learners,” Advances in

Neural Information Processing Systems, vol. 33, pp. 1877–1901, July 2020.

[11] G. Ferraro and H. Suominen, “Transformer Semantic Parsing,” in

Proceedings of the 18th Annual Workshop of the Australasian Language

Technology Association, pp. 121-126, Dec. 2020.

[12] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” in

Proceedings of the 17th Annual Conference of the North American Chapter

of the Association for Computational Linguistics, pp. 4171–4186, June 2019.

35

[13] G. Rossum and F. Drake, Python 3 Reference Manual. Scotts Valley, CA:

CreateSpace, 2009.

[14] A. Paszke et al., "PyTorch: An Imperative Style, High-Performance Deep

Learning Library," in Proceedings of the 33rd Conference on Neural

Information Processing Systems, pp. 8024-8035, Dec. 2019.

[15] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in

Proceedings of the 3rd International Conference for Learning

Representations, Dec. 2013.

[16] A. Mao, M. Mohri, and Y. Zhong, "Cross-Entropy Loss Functions:

Theoretical Analysis and Applications," in Proceedings of the 40th

International Conference on Machine Learning, pp. 23803-23828, July 2023.

[17] S. Jugran, A. Kumar, B. Tyagi, and V. Anand, “Extractive Automatic Text

Summarization using SpaCy in Python & NLP,” in Proceedings of the 2021

International Conference on Advance Computing and Innovative

Technologies in Engineering, pp. 582–585, Mar. 2021.

36

	Reviving the Past: Enhancing Language Models with Historical Text Optimization
	Recommended Citation

	tmp.1716401442.pdf.CNZbN

