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ABSTRACT

Real-time strategy (RTS) games have provided a fertile ground for AI research with

notable recent successes based on deep reinforcement learning (RL). However, RL remains

a data-hungry approach featuring a high sample complexity. In this thesis, we focus on

a sample complexity reduction technique called reinforcement learning as a rehearsal

(RLaR), and on the RTS game of MicroRTS to formulate and evaluate it. RLaR has been

formulated in the context of action-value function based RL before. Here we formulate

it for a different RL framework, called actor-critic RL. We show that on the one hand the

actor-critic framework allows RLaR to be much simpler, but on the other hand it leaves room

for a key component of RLaR–a prediction function that relates a learner’s observations

with that of its opponent. This function, when leveraged for exploration, accelerates RL as

our experiments in MicroRTS show. Further experiments provide evidence that RLaR may

reduce actor noise compared to a variant that does not utilize RLaR’s exploration. This study

provides the first evaluation of RLaR’s efficacy in a domain with a large strategy space.
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Chapter 1

INTRODUCTION

Real-time strategy (RTS) games belong to the genre of 2-player strategy games where a
player’s goal is to build sufficient economic and military might to destroy the opponent. A
wide array of actions are available to a player, ranging from gathering resources, to building
bases that train and churn out soldiers, to attacking opponent’s units and bases to ultimately
destroy them. For over two decades, RTS games have provided a rich substrate for AI
research as they feature many of its key challenges, viz., complex dynamic environments with
incomplete information and partial observability (fog-of-war), simultaneous and durative
actions with potentially non-deterministic effects, real-time response, and unfathomably
large strategy spaces. Consequently, research focused on RTS games can have significant
potential impact in many real-world domains (e.g., business, finance, governance, etc.) as
they share many of the same challenges.

Reinforcement learning (RL) has been a popular technique for training AI agents for
computer games, including RTS games. Decades of research in this field boosted by the
deep learning revolution have culminated in spectacular successes recently, where trained
agents have matched and surpassed human expertise in domains where humans were once
considered invulnerable to AI [12, 25]. However, RL remains a data-hungry approach
that requires the agent to conduct a large number of simulations in order to comparatively
evaluate a vast space of strategic alternatives. This is often measured as sample complexity.
Despite decades worth of significant effort devoted toward reducing sample complexity,
it still takes hundreds of millions of samples/simulations to train an RL agent in complex
domains such as RTS games.

In this thesis, we focus on a sample complexity reduction technique called reinforcement
learning as a rehearsal (RLaR), and on the RTS game of MicroRTS to formulate and
evaluate it. RLaR has been formulated in the context of action-value function based RL
before [10]. Here we formulate it for a different RL framework, called actor-critic RL. We
show that on the one hand the actor-critic framework allows RLaR to be much simpler, but
on the other hand it leaves room for a key component of RLaR–a prediction function that
relates a learner’s observations with that of its opponent. This function, when leveraged for
exploration, accelerates RL as our experiments in MicroRTS show. Further experiments
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provide evidence that RLaR may reduce actor noise compared to a variant that does not
utilize RLaR’s exploration.

Figure 1.1: A state of MicroRTS game

Figure 1.1 represents a state of a game in MicroRTS. There are two players in the game,
red and blue, and their objective is to destroy all their opponent units. There are seven units
in the game, which are highlighted in Figure 1.1. Units owned by a player are outlined
in that player’s color (red or blue). The light green square boxes that contain a number is
the mineable resources available to both players. These units are not owned by any single
player. The light grey box that contains a number is called a base that produces workers. The
number in a base represents the amount of resources available to it for worker production.

2



Workers harvest resources from green box and either return them to bases, or use them to
build barracks (dark grey box). Barracks can only be built by a worker and it produces
soldiers. Soldiers are attack units that destroys opponent units. The three types of soldier
units are: light, ranged and heavy. Light units have low attack power but move fast, ranged
units attack from long ranged and heavy units move slow but have high attack power.
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Chapter 2

RELATED WORK

One of the earliest work that called for attention to RTS games as a challenging domain for
AI research was by M. Buro [2]. In that work, Buro identified a broad mix of AI challenges,
including resource management, opponent modeling and learning, real-time adversarial
planning, spatial and temporal reasoning, and decision making under uncertainty. Another
definitive account of task decomposition for RTS-playing AIs can be found in [28]. Due to
the sheer size of the strategy space as well as the availability of human play data, some of the
earliest AI approaches considered case based reasoning (CBR) and planning, e.g., [20, 16]
among many others. These approaches match a current situation with situations stored in
a knowledgbase of cases (from past/human play) to trigger the corresponding response,
leading to fast and real-time response despite the vastness of the strategy space. Sharma
et al. [20] combined CBR with reinforcement learning in a transfer learning context to
facilitate the reuse of tactical plan components. Ontañón et al. [16] demonstrated the utility
of case based planning for real-time decision making in the game of Wargus–a Warcraft II
clone.

Standard AI techniques for search, planning, state estimation, etc. have also long been
adapted to RTS and strategy games. For instance, Forbus et al. [6] applied qualitative spatial
information acquired from geometric and path-finding analyses to wargames. Weber et
al. [27] used a particle model with state estimation to track opponent units under fog-of-war.
Perkins [18] applied Voronoi tesselation followed by search space pruning to identify regions
and choke points in RTS maps. Churchill and Buro [4] used AI planning to optimize build
orders in StarCraft, taking into account timing and scheduling constraints. Churchill et
al. [5] also adapted the α-β pruning technique for durative actions for fast heuristic search
in RTS combat. Chung et al. [3] applied Monte Carlo planning to a version of Open RTS
(ORTS). Balla and Fern [1] applied the well-known Monte Carlo Tree Search algorithm
based on upper confidence bounds, called UCT, to tactical assault planning in Wargus. To
reduce the search space to a manageable size, most of these techniques rely on abstraction
in state and action spaces.

Learning techniques, specifically supervised learning and reinforcement learning (RL),
have also been applied to RTS games. Synnaeve and Bessiere [24] presented a Bayesian

4



learning framework to predict the opponent’s build tree based on replays, applied to StarCraft.
Wender and Watson [29] evaluated a range of major RL algorithms for decentralized
micromanagement in Broodwar (StarCraft). Marthi et al. [11] view an RTS player’s control
of a set of units as a robot with multiple effectors, and applied concurrent hierarchical
Q-learning to efficiently control units. However, all units are afforded Q-functions at the
bottom level. By contrast, Jaidee and Muñoz-Avila [9] use a single Q-function for each unit
type, thus significantly reducing learning complexity. Since the spectacular success of (deep-
) RL reported in Mnih et al.’s 2015 Nature article [12] where AI matched and even surpassed
human level play in a range of Atari games, deep-RL has become a staple for computer
games, including RTS games. Recently, (multi-agent) RL has achieved grandmaster-level
sophistication in StarCraft II [25].

In this thesis, we focus on MicroRTS (a.k.a µRTS) [17]–a girdworld RTS game devel-
oped by Santiago Ontañón for AI research and competition. It contains much of the same
components of an RTS game, but with less complex graphics. It has been the substrate of
RTS competitions held in conjunction with the IEEE Conference on Games (COG) since
2017. Other relevant competitions include the Open RTS (ORTS) game AI competition
(held from 2006-2009), AIIDE StarCraft AI competition and CIG/COG StarCraft RTS AI
competition, both held annually since 2010. The annual MicroRTS competitions feature
two tracks: the fully observable “Classic Track”, and the “Partial Observability” track that
simulates fog-of-war. We focus on the latter. The top two entries in the latest 2021 compe-
tition were MentalSealPO and MicroPhantom. Since MicroPhantom follows a published
methodology based on constraint programming and decision theory [19], we have chosen
this bot as the opponent against which we train our learning agents.
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Chapter 3

BACKGROUND

3.1 Reinforcement Learning

Reinforcement learning problems are modeled as Markov Decision Processes or MDPs [22].
An MDP is given by the tuple ⟨S,A,R,P⟩, where S is the set of environmental states that an
agent can occupy at any given time, A is the set of actions from which it can select one at a
given state, R : S×A 7→ R is the reward function, i.e., R(s,a) specifies the reward from the
environment that the agent gets for executing action a∈A in state s∈ S; P : S×A×S 7→ [0,1]
is the state transition probability function, i.e., P(s,a,s′) specifies the probability of the next
state in the Markov chain being s′ following the agent’s selection of action a in state s. The
agent’s goal is to learn a policy π : S 7→ A that maximizes the sum of current and future
rewards from any state s, given by,

V π(s0) = EP[R(s0,π(s0))+ γR(s1,π(s1))+ γ
2R(s2,π(s2))+ γ

3 . . .] (3.1)

where s0,s1,s2, . . . are successive samplings from the distribution P following the Markov
chain with policy π , and γ ∈ (0,1) is a discount factor.

In this thesis we consider policy search methods [23] explicitly maintain a policy πθ (a|s)
denoting the probability of taking action a in state s, with the distribution being parametrized
by θ . In this thesis we use a policy gradient method—belonging to the class of policy search
methods—where πθ (a|s) is differentiable w.r.t θ .

One popular policy gradient technique, called Advantage Actor-Critic (A2C), uses two
function approximations. One function approximation represents the actor, viz. πθ (a|s)
responsible for selecting an action given a state, as stated above. The other function
approximation represents the critic, viz., V π

φ
(s) which gives the value of the state s under

the actor policy π (in essence it critiques the actor’s performance), and is parametrized by φ .
Normally θ is improved by policy gradient, optimizing

J(θ) = Es∼dπθ ,a∼πθ
A(s,a) (3.2)

where dπθ (s) = ∑
∞
t=0 γ tPr(st = s|so,πθ ) is the discounted state distribution that results from

following policy πθ , and A(s,a) is called the advantage function that represents how much
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better (or worse) the value of taking action a in state s is compared to the average value from
state s. A simple yet good estimate of the advantage function is the temporal difference
(TD) error [23] given by

AT D(s,a) = rsa + γV π
φ (s′)−V π

φ (s) (3.3)

where rsa ∼ R(s,a) and s′ ∼ P(s,a, .). This estimate only depends on the reward and states
from the actual trajectories and the critic itself. While the mean squared TD errors (from
equation 3.3) is used as the loss function for updating the parameters φ of the critic network,
the actor network’s parameters θ are updated using the gradient [30]

∇θ J(θ) = Es∼dπθ ,a∼πθ
∇θ logπθ (a|s)AT D(s,a). (3.4)

In order to encourage exploration, an exploration bonus is added to the objective J(θ)

whereby the entropy of the policy πθ is also maximized, precluding the policy from settling
into deterministic actions that could foreclose exploration. This gives a more complete
expression for θ update:

∇θ J(θ) = Es∼dπθ

[
Ea∼πθ

∇θ logπθ (a|s)AT D(s,a)−β∇θ ∑
a

πθ (a|s) log(πθ (a|s))
]

(3.5)

where β is the entropy bonus weight.
When the MDP is partially observable (POMDP), the state is not directly observed.

Instead, the agent receives an observation, ω , that is (perhaps noisily) correlated with the
hidden state. A common technique is to simply replace the states in the above equations
with observations, or a history of past observations, as a sufficient statistic for the hidden
state. In training neural networks πθ and V π

φ
, history is accommodated via recurrence, e.g.,

using LSTM [7].
In this thesis, we use a variation of A2C, called A2C with self-imitation learning

(A2C+SIL) [15], where apart from the A2C loss functions a SIL loss function is added
where advantages corresponding only to positive experiences are used. In other words, states
where advantages are negative are zeroed out, thus simulating a learner’s desire to recreate
positive experiences from its past. This approach has been shown to be effective for hard
exploration tasks.

3.2 Reinforcement Learning as a Rehearsal (RLaR)

RLaR [10] was designed for partially observable settings where a training stage could
be distinguished from an execution stage where the learned policy is applied/evaluated.
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Furthermore, it was formulated in context of Q-learning [26], where an action-value function
called Q-function is learned. It is related to the value function as follows:

V π(ω) = max
a

Qπ(ω,a).

Qπ(ω,a) represents the long term value from following action a upon receiving obser-
vation ω , and the policy π thereafter. A Q-learning agent learns the optimal Q-values,
Q∗(ω,a) ∀ω,a, and then constructs the optimal policy π∗(ω) = argmaxa Q∗(ω,a). RLaR
allows a learner to observe the hidden state (s that includes system state as well as op-
ponent’s observations and actions) in addition to its observation (ω), but only during the
training stage as if to practice/rehearse. A RLaR agent learns an augmented Q-function,
Q∗(s,ω,a), as well as an auxiliary predictor function (essentially a conditional probability
distribution) P(s|ω), during the training/rehearsal stage. During the execution stage, the
agent can construct a policy that no longer relies on hidden features, as

π
∗(ω) = argmax

a ∑
s

Q∗(s,ω,a)P(s|ω).

This approach has been shown to expedite RL in simple 2-agent tasks [10], as well as in a
larger swarm foraging task [14] more recently. In this thesis, we formulate RLaR within the
actor-critic framework instead of Q-learning, and evaluate its effectiveness in a game with a
large strategy space viz., MicroRTS.

3.3 MicroRTS

The components present in Microrts are bases, resources, barracks, worker units, and soldier
units. A game is played between two players (learning agent controls the blue team), and
the winner is determined when a player destroys all its opponent’s units, including base,
barracks and soldiers/units. If neither of the players is able to destroy it opponent’s units
within a given number of steps (3000 for this thesis), then it is a draw. Both the players are
given a worker unit, a base and 5 number of resources initially. Their locations, as well as
the locations of unowned mineable resources, are symmetric to prevent either player from
having an initial advantage. Worker units can harvest resources and build bases and barracks.
Barracks produce soldier units of three types: light, heavy and ranged. Light units have less
hitpoints whereas heavy units have high hitpoints, but both can only attack immediately
neighboring cells. By contrast, ranged units can attack from 3 grid cells away.

In this thesis, the learning agent is allowed to create up to NE = 70 units–a number
determined from game traces between MicroPhantom and MentalSealPO. We also limit the
map sizes to 16×16 in order to restrict training time. Actions available to a unit include

8



“noop”, “attack”, and 4 directions each of “move”, “harvest”, “return”, and “produce”,
leading to NA = 18 action types. Actions “attack” and “produce” are further qualified
by which location to attack and what type of unit to produce. Considering NT = 7 types
of units and up to 10 hitpoints, these choices lead to a state space of maximum size
(7 ∗ 10)70+70 ∗

( 256
70+70

)
≈ 10333, assuming both players are allowed up to 70 units. The

learner’s observation space is of maximum size (7∗10)70 ∗
(128

70

)
≈ 10166, assuming about

half of the grid space is available to locate its units. Its action space is of maximum size
1870 ≈ 1087, conservatively assuming only one attack location and one produce type per
unit. This leads to a strategy (mapping from observations to actions) space that is truly
unfathomable.
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Chapter 4

METHODOLOGY
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Figure 4.1: The actor network used for all three agent types. Neural network layers are
shaded in blue. Inputs (ω) are shaded in yellow, and outputs (samplings from softmax
layers) are shaded in pink. Here NE is the number of entities owned by any player, NA is the
number of actions allowed, NT is the number of entity-types that can be produced, and NL is
the number of locations that can be attacked. Masks are computed from inputs to suppress,
and thus reduce, the support of softmax distributions. For instance, only the visible locations
that contain opponent entities are allowed to be activated for sampling “Attack Location
Index”.

We apply actor-critic learning to MicroRTS using deep neural networks. The archi-
tectures of these networks are described next. Despite the existence of an OpenAI Gym
framework [8] for RL in MicroRTS, we develop our own framework to gain the ability
to (a) pass the hidden state to the RLaR agent, and (b) select an opponent of our choice
(MicroPhantom for this thesis).
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4.1 Actor Network

The architecture of the actor network, πθ , is shown in Fig. 4.1, and is used for all versions
of RL studied here. Its input is the learner’s observation at step t, ωt , consisting of the
following components

Scalar Features: Binary encoding of scalar features, e.g., time, score, resources;

Own Entities: Sparse encoding of its own units (their types, locations, health and re-
source);

Other Entities: Similar sparse encoding of other visible units either owned by the oppo-
nent, or unowned (e.g., harvestable resources);

Map: A grid encoding of all visible units with their types.

The actor’s output specifies the learner’s action at step t, at . This is sampled from 3 soft-max
probability distributions to yield the following:

Action Index: For each of up to NE (=70 in our experiments) units that the learner owns,
one of (NA=) 18 indices that encode noop, attack, and 4 directions each of move,
harvest, return, and produce;

Produce Type Index: If the produce action is selected for any of up to NE units, the type
index (from a set of NT = 7 possible types) of what that unit will produce;

Attack Location Index: If the attack action is selected for any of up to NE units, the target
location of the attack from a set of NL (= 256) possible locations.

The soft-max layers are also provided with masks that reduce the support of the distributions,
by deactivating elements that are invalid. Examples include movement directions that are
blocked, harvest directions that do not contain resources, return directions that do not contain
any self-base, produce types that are disallowed or require more resources than the agent/unit
possesses, attack locations that are invisible or do not contain opponent units, etc. These
masks allow the distributions to be learned rapidly despite the large strategy space, and are
computable from ωt and the information available from the unit_type_table provided at the
beginning of the game. Similar invalid action masks are also used in [8].
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Figure 4.2: The critic network used for RLAlpha and RLaR agents. Neural network layers
are shaded in blue. Inputs are shaded in yellow. ωt and ω

−
t contain the same components

(from the perspectives of the player and its opponent, respectively) as shown in Fig. 4.1’s
input.

4.2 Critic Network

Let st = (ω1:t ,a1:t−1) be the observation-action history of the learner, and s−t = (ω−
1:t ,a

−
1:t−1)

be that of the opponent. Normally the opponent’s observations are not available to a learner,
hence for baseline RL the critic network learns the function Vφ (st) as described in Sec-
tion 3.1. A distinct feature of RLaR is that both the learner and opponent’s observations are
available to the learner during the training stage, and accommodated in its critic, V π

φ
(st ,s−t ).

Following [10], s−t can be marginalized out to compute a policy as

π
∗ = argmax

π
∑
s−t

P(s−t |st ,π)V π(st ,s−t ),

using the learned auxiliary distribution P(s−t |st ,π). However, the actor-critic framework’s
clean separation of the policy from the value function makes this unnecessary. Since only
the actor is needed after the training stage, and the critic is discarded, the accommodation of
s−t in V is immaterial as long as the actor network is independent of s−t . Thus, for actor-critic
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training a simpler strategy is to exclude s−t altogether from the actor network, i.e., πθ (a|st)

instead of πθ (a|st ,s−t ). This obviates the need for marginalization in the actor, and allows
us to use the actor network from Sec. 4.1 for all methods. Notice that s−t still impacts the
actor updates since V is needed in equation 3.4 via equation 3.3. This strategy is followed
in AlphaStar [25], hence we call this approach RLAlpha and include it as a baseline in our
experimental study. Both RLAlpha and RLaR use the critic network architecture shown in
Fig. 4.2. While NA,NT are small and are converted to one-hot representation, NL is large
and is therefore embedded. The critic for baseline RL simply omits ω

−
t and a−t in its input,

and is not shown separately. In contrast with the standard practice of combining the actor
and critic networks to enable shared layers, we separate these networks such that the critics
of the RL variants studied can be built incrementally without touching the actor.
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Figure 4.3: The prediction network used for the RLaR agent. Neural network layers are
shaded in blue. Inputs are shaded in yellow. One of the inputs is from the output layer of
the policy/actor network (πt−1) shown in Fig. 4.1. This network minimizes 2 standard loss
components: latent loss (KL divergence between the captured distribution and standard
Gaussians (N(0, I)), shown in red double-headed arrow), and a reconstruction loss measured
by the cross entropy between the input ω

−
t and predicted ω̂

−
t . A third loss function (entropy

of the captured conditional distribution) is added to the actor network’s loss, and does not
participate in training this network.

4.3 Prediction Network for RLaR

Although the auxiliary distribution P(s−t |st ,π) was shown to be unnecessary for actor-critic
in Sec. 4.2, there are still good reasons to learn it. An important feature of RLaR (as
explained in [10]) is a principled incentive for exploration,

πexplore = argmin
π

−∑
s−t

P(s−t |st ,π) logP(s−t |st ,π), (4.1)
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that seeks to reduce the entropy of the prediction P(s−t |st ,π). Ideally, if P(s−t |st ,π) is 1
then st is perfectly predictive of s−t under the current policy π , and the RLaR agent is truly
independent of s−t . While RLAlpha does not have any incentive for this exploration, we can
still endow RLaR with this capability for the following potential benefits:

• πexplore may reduce noise in actor updates. Consider two situations where the learner
observes st in both, but the opponent observes s−t,1 in one, and s−t,2 in another. While
the critic can distinguish these situations being privy to s−t,1 and s−t,2, the actor cannot.
If V π

φ
(st ,s−t,1) ̸=V π

φ
(st ,s−t,2), then the resulting updates will appear as noise to the actor.

However, if P(s−t |st ,π) = 1 then (st ,s−t ) ≡ st under π , and the above situation will
not materialize. Thus πexplore may push the actor toward generating situations where
the updates are more stable.

• In the context of MicroRTS (and RTS games in general), πexplore may encourage
spying. In the partially observable setting of MicroRTS, a player can observe the set
union of what its units can observe depending on their locations. Therefore, with
strategically located units (a.k.a spies), a learner could make ω

−
t ⊂ ωt , which would

also minimize the entropy of P(ω−
t |ωt ,π). While spying may not be a worthwhile goal

in and of itself, choosing actions with the knowledge of the opponent’s configuration
may be more desirable than without. Specifically, the success of the learned policy
may be less dependent on the opponent’s strategy, and more robust against other
strategies.

Consequently, we seek to minimize the entropy of the distribution P(ω−
t |ω1:t ,π1:t−1), which

reflects the objective of equation 4.1 more closely than P(s−t |st ,π) in the context of Mi-
croRTS. In particular, the condition (ω1:t ,π1:t−1) subsumes (st ,π) as the action history
embedded in st is sampled from the policy history π1:t−1. Although MicroRTS allows the
opponent’s actions a−t−1 to be observed partly/wholly as a part of ωt with sufficient proximity,
we focus on the prediction of ω

−
t alone, rather than s−t in order to restrict the size of the

prediction network.
To capture the conditional distribution P(ω−

t |ω1:t ,π1:t−1), we use a probabilistic auto-
encoder (shown in Fig. 4.3) similar to [21], albeit with an additional objective. In par-
ticular, an encoder network learns a latent representation of ω

−
t notated by latent vari-

able Z, thus capturing the distribution P(Z|ω−
t ,ω1:t ,π1:t−1). A decoder network is then

tasked with reconstructing ω
−
t given inputs Z and ω1:t ,π1:t−1, thus inferring the distribution

P(ω−
t |Z,ω1:t ,π1:t−1). Unlike [21], we do not use this auto-encoder as a generative model;

yet we perform standard optimization of the variational evidence lower bound (ELBO) by
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minimizing the latent and reconstruction losses to update the predictor network, since it
allows the latent variables to be distributed as P(Z|ω1:t ,π1:t−1). Our objective, in addition to
the ELBO, is to minimize the entropy of this distribution. In order to serve as the exploration
component (equation 4.1), the gradients resulting from this entropy loss is only used to
update the actor network, not the predictor network itself. The predictor update is solely
based on the ELBO.
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Chapter 5

EXPERIMENTAL RESULTS

We experiment with the three methods discussed in Section 4, viz., baseline RL, RLAlpha,
and RLaR. For baseline RL, we use the advantage actor-critic (A2C) algorithm described in
Section 3.1, modified with self-imitation learning [15], A2C+SIL. Both RLAlpha and RLaR
are built on top of A2C+SIL, thus sharing this common baseline. We train each variant
in four different maps, shown in Fig. 5.1. We selected these maps to incorporate variety
of difficulty. For instance, the map “basesWorkers12x12F” (Fig. 5.1(a)) has the resources
(bright green cells) in (relatively) opposite and non-corner locations, compared to other
maps. The map “FourBasesWorkers12x12” (Fig. 5.1(c)) contains more initial bases and
resources than other maps. Finally, the map “LetMeOut” (Fig. 5.1(d)) has a very different
layout than other maps, where the players are walled (dark green cells) off, with doorways
initially blocked by resources (although the blue agent had cleared one doorway by the
time the screenshot was taken). Games are capped at a maximum of 3000 steps. We use a
sparse reward scheme, with 0 reward for any intermediate step, and non-zero rewards only
for terminal steps: +1000 for a win, −1000 for a loss, 50+ score for a draw (i.e., when a
game does not complete within 3000 steps), where score is the learner’s MicroRTS assigned
terminal score that reflects the strength/weakness of its final position in the absence of a
clear winner. 50 bonus points are added for drawn games in order avoid 0 returns for the
entire trajectory when score = 0. The rest of the parameters are set as follows:

• γ = 0.999

• β = 0.005

• Actor learning rate = 5×10−5

• Critic learning rate = 5×10−4

The learning curves corresponding to the 4 maps are shown in Fig. 5.2, over a series
of 5500 games. Each curve is averaged over 6 independent trials, with half standard
deviation bands shown in corresponding colors. The initial policy/actor for all versions
were trained by supervised learning from a set of games played between MicroPhantom
and MentalSeal. This results in positive initial performance of all variants, as seen in
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(a) basesWorkers12x12F (b) complexBasesWorkers12x12

(c) FourBasesWorkers12x12

(d) LetMeOut

Figure 5.1: The 4 maps used in our experiments. White cells are unobserved, purple cells
are observed by both blue and red teams. The learning agents always assume the role of the
blue team, but there is no advantage to either role due to initial symmetry. The red team is
MicroPhantom.

Figs. 5.2(b-d), although the trained initial policy was practically useless in (a). The learning
curves demonstrate a superior learning rate for RLaR, and also serve as an ablation for the
predictor network as that is the only difference between RLAlpha and RLaR. Also note
that a total reward approaching +1000 indicates that the agent has learned to almost always
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Figure 5.2: Learning curves of RLAlpha (RLAlpha+A2C+SIL) and RLaR
(RLaR+A2C+SIL) against MicroPhantom in 4 maps. Baseline RL (A2C+SIL) is
excluded due to poor performance. The terminal reward for win/loss/draw are +1000/-
1000/+50. The initial policy/actor was trained by supervised learning from games between
MentalSeal and MicroPhantom on large set of maps, but performs poorly in (a).

defeat MicroPhantom. Videos of trained RLaR policy against MicroPhantom are posted
at https://tinyurl.com/y3xhb9nt

Baseline RL is not shown in Fig. 5.2 as its performance is poor in comparison with
RLAlpha and RLaR. In particular, starting with the trained initial policy, baseline RL
essentially unlearns it, dropping the total reward to -1000 (even in maps (b-d)) before
improving it again. Essentially, baseline RL is unable to leverage the initial policy at
all, requiring more time to learn. We show the performance of the learned policy at the
end of 5500 games for all three variants in Table 5.1. Table 5.1 clearly demonstrates
the futility of single agent (baseline A2C+SIL) RL in the face of a large strategy space.
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Table 5.1: Performance of trained policies for 3 variants in 4 maps.

Maps RL(A2C+SIL) RLAlpha RLaR
Fig. 5.1(a) −998.7±2.0 −515.9±164.9 -249.7±161.0
Fig. 5.1(b) 591.9±73.1 943.6±18.5 977.8±8.9
Fig. 5.1(c) 254.8±118.9 916.5±26.4 949.4±11.5
Fig. 5.1(d) 125.5±290.7 933.5±12.5 979.6±4.1

Although the centralized (i.e., joint) critic of RLAlpha brings it closer to RLaR, Table 5.1
also demonstrates the scope for further improvement in terms of a principled exploration
component that is unique to RLaR.
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Figure 5.3: Plots showing the number of steps that the learner needs before at least one of
its units gets within a distance threshold of 4.0 of the opponent’s base, thereby bringing it
within the radius of the learner’s visibility.

In order to further evaluate the impact of RLaR’s characteristic exploration, we conduct
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a second experiment. In this experiment, we note the number of steps in a game that it
takes the learner to get close enough to the opponent’s base, i.e., for any of its units to
get within a distance threshold of the opponent’s base. When there are multiple opponent
bases, we take the centroid of their locations. This can be viewed as a rough measure of
how quickly the learner deploys spies. The results are shown in Fig. 5.3 for a distance
threshold of 4.0–sufficient to bring it within the observable radius. The first observation
is that this measure does not correlate accurately with learning performance (Fig. 5.2), as
early spying can end in failure while late spying can still end in victory. Neither is it a
measure of the effectiveness of spying, as observing the opponent’s base does not mean
all of the opponent’s units are also visible. However, another observation from Fig. 5.3
is that while the trend is expected to be decreasing with continued learning, this does not
occur reliably with RLAlpha. Particularly in Fig. 5.3 (b) and (d), we notice spikes where
the learner appears to be regressing in terms of this measure. RLaR, by contrast, achieves a
steadier acceleration toward proximity. As proximity is a reliable predictor of the opponent’s
observation in MicroRTS, we speculate that this is a direct result of RLaR’s use of predictor
based exploration.
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Chapter 6

CONCLUSION

We have presented a principled formulation of reinforcement learning as a rehearsal (RLaR)
for the first time within the actor-critic framework. We have shown how a key component of
RLaR, a prediction function that correlates the opponent’s observations to the learner’s own
observations, can be constructed within a deep learning pipeline. Although the formulation
is in the context of MicroRTS, it can be easily extended to other RTS games, e.g., StarCraft.
We have experimentally validated two of the benefits of RLaR compared to a variant that
has all the same features as RLaR except the prediction function. Consistent with previous
findings on RLaR in smaller strategy spaces, we have shown that RLaR improves learning
speed even in a domain with a large strategy space such as MicroRTS. A second experiment
has shown that RLaR achieves visibility of the opponent’s base more predictably as learning
progresses. We speculate that this might be indirect evidence of noise reduction in actor
updates–a second benefit of our approach–and at least partly responsible for improved
learning rate of RLaR.

Reward shaping [13] is a well-established technique in RL where domain/prior knowl-
edge is often used to supplement the reward function, in order to shape and accelerate
learning. It is conceivable that a shaping function that rewards a learner for observing
more of the opponent’s units and penalizes it for observing less, could achieve similar
learning speedup as RLaR in this thesis, because that is a known effect of reward shaping.
Additionally, it might also achieve similar noise reduction, since the effect of such shaping
on the actor in terms of the generated trajectories is likely to be similar. Further experiments
can be conducted in the future to evaluate these intuitions. In contrast with this potentially
alternative approach, we have relied on a simple (sparse) reward scheme in this thesis, and
avoided explicit domain-specific reward engineering. More importantly, our approach is
more general than reward shaping, as shaping functions can vary from domain to domain,
but entropy minimization of the prediction function is a general principle that does not need
domain-specific engineering, and can benefit domains well beyond RTS games.
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