
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Summer 8-2010

DNAgents: Genetically Engineered Intelligent Mobile Agents DNAgents: Genetically Engineered Intelligent Mobile Agents

Jeremy Otho Kackley
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Applied Mathematics Commons, Computer Sciences Commons, and the Mathematics

Commons

Recommended Citation Recommended Citation
Kackley, Jeremy Otho, "DNAgents: Genetically Engineered Intelligent Mobile Agents" (2010).
Dissertations. 986.
https://aquila.usm.edu/dissertations/986

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=aquila.usm.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=aquila.usm.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=aquila.usm.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=aquila.usm.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/986?utm_source=aquila.usm.edu%2Fdissertations%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

COPYRIGHT BY

JEREMY OTHO KACKLEY

2010

The University of Southern Mississippi

DNAGENTS:

GENETICALLY ENGINEERED INTELLIGENT MOBILE AGENTS

by

Jeremy Otho Kackley

Abstract of a Dissertation
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

August 2010

ABSTRACT

DNAGENTS:

GENETICALLY ENGINEERED INTELLIGENT MOBILE AGENTS

by Jeremy Otho Kackley

August 2010

Mobile agents are a useful paradigm for network coding providing many advantages

and disadvantages. Unfortunately, widespread adoption of mobile agents has been ham-

pered by the disadvantages, which could be said to outweigh the advantages. There is a

variety of ongoing work to address these issues, and this is discussed. Ultimately, genetic

algorithms are selected as the most interesting potential avenue. Genetic algorithms have

many potential benefits for mobile agents. The primary benefit is the potential for agents

to become even more adaptive to situational changes in the environment and/or emergent

security risks. There are secondary benefits such as the natural obfuscation of functions

inherent to genetic algorithms. Pitfalls also exist, namely the difficulty of defining a satis-

factory fitness function and the variable execution time of mobile agents arising from the

fact that it exists on a network. DNAgents 1.0, an original application of genetic algorithms

to mobile agents is implemented and discussed, and serves to highlight these difficulties.

Modifications of traditional genetic algorithms are also discussed. Ultimately, a combina-

tion of genetic algorithms and artificial life is considered to be the most appropriate ap-

proach to mobile agents. This allows the consideration of agents to be organisms, and the

network to be their environment. Towards this end, a novel framework called DNAgents

2.0 is designed and implemented. This framework allows the continual evolution of agents

in a network without having a seperate training and deployment phase. Parameters for this

new framework were defined and explored. Lastly, an experiment similar to DNAgents 1.0

is performed for comparative purposes against DNAgents 1.0 and to prove the viability of

this new framework.

ii

The University of Southern Mississippi

DNAGENTS:

GENETICALLY ENGINEERED INTELLIGENT MOBILE AGENTS

by

Jeremy Otho Kackley

A Dissertation
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved:

 Dr. Dia Ali
Director

 Dr. Joe Zhang

 Dr. Clifford Burgess

 Dr. Ras B. Pandey

 Dr. Jean Gourd

 Dr. Susan A. Siltanen
Dean of the Graduate School

August 2010

ACKNOWLEDGMENTS

In perfect honesty figuring out how to sufficiently thank everyone peripherally involved

in this endeavor in anything less than a book length manuscript is incredibly difficult. Cer-

tainly if I named everyone involved, it would simply be impossible. There is one name

that must be mentioned of course; without the assistance of Dr. Dia Ali this work would

have never been undertaken. There is no way to quantify the myriad ways in which he has

assisted and guided this effort. I am also thankful to my committee for going above and

beyond the call of duty in helping me refine these ideas. My colleagues in Tec 251, past

and present, were also of great help. Indeed, some of them were largely responsible for my

initial decision to pursue graduate school.

On a more personal note, my family has, despite changes and hardships during this

process, been extremely supportive of this decade-long detour from life called College. I

owe them more than can ever be said. In particular, I am grateful to my grandmother.

Although she did not live to see this work, she never doubted that I would ultimately be

successful.

Lastly, there are many friends who had to put up with tangential conversations. These

conversations lead to more insights than you know, so you did not suffer in vain. You all

know who you are, and have my sincere thanks.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

LIST OF ILLUSTRATIONS . vi

LIST OF TABLES . vii

1 INTRODUCTION . 1
1.1 Mobile Agents 1
1.2 Genetic Algorithms 1
1.3 Benefits of Genetic Mobile Agents 2
1.4 Pitfalls of Applying Genetic Algorithms to Mobile Agents 3
1.5 Toward a Better Solution: Artificial Life 4
1.6 Overview of the Dissertation 4
1.7 Contributions of the Dissertation 5
1.8 Dissertation Structure 6

2 MOBILE AGENTS . 7
2.1 Static Agents 7
2.2 Mobile Agents 7
2.3 Advantages of Mobile Agents 8
2.4 Disadvantages of Mobile Agents 9

3 GENETIC ALGORITHMS . 12
3.1 Overview of Genetic Algorithms 12
3.2 Selection 12
3.3 Crossover 16
3.4 Mutation 20
3.5 Termination 21
3.6 Other Types of Genetic Algorithms 21
3.7 Decentralized Genetic Algorithms 23
3.8 Applications of Genetic Algorithms 24

4 ARTIFICIAL LIFE: A DIFFERENT APPROACH TO EVOLUTION . . . 26
4.1 Introduction to Artificial Life 26
4.2 Common Features of Alife Simulations 27
4.3 Notable Alife Simulations 29

5 DNAGENTS 1.0: GENETIC MOBILE AGENTS 41

iv

5.1 Mobile Agent Concerns 41
5.2 Analysis of Possible Solutions 42
5.3 Other Approaches to Genetic Mobile Agents 46
5.4 Evolving Genetic Mobile Agents 50
5.5 Results of Evolving Mobile Agents 54
5.6 Genetic Mobile Agent Concerns 57
5.7 Considering Variations on Canonical Genetic Algorithms 58
5.8 In Consideration of Distributed Genetic Algorithms 60
5.9 Considering Artificial Life for Integration 61

6 DNAGENTS 2.0: AGENTS AS ORGANISMS 63
6.1 Algorithm Motivation 63
6.2 Algorithm Overview 65
6.3 Selection 66
6.4 Senescence, Revitalization, and Death 67
6.5 Proposed Experiments 68
6.6 Experimental Implementation: Evolving a Hopping Behavior 70
6.7 Results of Hopping Experiment 76

7 CONCLUSION . 84
7.1 Prelude 84
7.2 Summary 84
7.3 Future Work 85

BIBLIOGRAPHY . 88

INDEX . 98

v

LIST OF ILLUSTRATIONS

Figure

3.1 Roulette-wheel selection. 14
3.2 Stochastic universal sampling. 14
3.3 One-dimensional local population neighborhoods. 15
3.4 Two-dimensional local population neighborhoods 1. 15
3.5 Two-dimensional local population neighborhoods 2. 16
3.6 Discrete recombination. 17
3.7 Single-point crossover. 18
3.8 Cut-and-splice crossover. 19
3.9 Two-point crossover. 19
3.10 Uniform Crossover . 20
3.11 Virus Evolutionary Genetic Algorithms operations, adapted from [45]. 22
3.12 Genetic Programming Tree Structure for (4+5)∗ (10/13) 23

5.1 Early screenshot of Mobile Agent Simulator 50
5.2 Results of evolution in a static network with static insertion points. 54
5.3 Results of evolution in a random network with static insertion points. 55
5.4 Overall results of repeated reinsertion of handcrafted agent into generation 0. . 56
5.5 Graph illustrating very rapid improvment due to the reinsertion of a hand-

crafted solution. 56
5.6 Performance comparison of all agents. 57

6.1 Performance of Average Agents Seen (AAS) population control mechanism. . . 74
6.2 Performance of Agents Per Agency (APA) population control mechanism. . . . 74
6.3 Population changes for best average unique visit test. 78
6.4 Unique visit values for best average unique visit test. 78
6.5 Unique visits/tic values for best average unique visit test. 79
6.6 Agent age values for best average unique visit test. 79
6.7 Population changes for best unique visit/tic test. 80
6.8 Unique visit values for best unique visit/tic test. 81
6.9 Unique visits/tic values for best unique visit/tic test. 81
6.10 Agent age values for best unique visit/tic test. 82

vi

LIST OF TABLES

Table

4.1 Artificial Life Simulations . 29

5.1 Initial Instruction Set . 52
5.2 Genotype of a Simple Agent . 52
5.3 Initial Math Operations . 53
5.4 Initial Conditional and Utility Operations . 53
5.5 Initial Array Operations . 53

6.1 Algorithm Components . 65
6.2 Potential Selection Criteria . 66
6.3 Algorithm Parameters . 77

vii

1

Chapter 1

INTRODUCTION

1.1 Mobile Agents

Mobile agents are a very useful paradigm for implementing network and web centric
functions. In brief, mobile agents refer to intelligent agents that suspend their execution
on a platform and transmit themselves and their current state to a new platform, thereby
resuming execution. There are, unfortunately, a number of problems. Chiefly, these revolve
around security and robustness. Robustness refers to the ability of a mobile agent to survive
in a network. Security can refer to both the agent’s security and the security of the platform
providing support for the agent. For the purpose of this work, the focus is primarily on
agent security as opposed to the platform’s security; although this work may have bearing
in platform security in the future. Robustness can be difficult to achieve because network
applications can be very complex, and the network situation can vary over time. Similarly,
it is difficult to guarantee the security of anything, much less a mobile agent, due to the fact
that the situation is constantly evolving. In other words, both robustness and security are
difficult to solve and require continual work to maintain.

1.2 Genetic Algorithms

Another useful programming paradigm is the idea of genetic algorithms. In genetic
algorithms, random mutations and a selection process over a series of generations lead to an
emergent algorithm that is effective and efficient at a task. Interestingly enough, the result
of a genetic algorithm is seldom human-comprehensible. This would lend itself naturally
to security concerns; making it more difficult to discern the purpose of compromised code.
Additionally, the process which achieved the results itself is what is important, and this
whole process would not necessarily be evident to someone viewing a small sample of
produced emergent algorithms. This naturally reduces the value of an individual "solution."

Consider the combination of genetic algorithms and mobile agents. This has a many
fold benefit for mobile agents. The primary benefit is the potential for agents to become
even more adaptive to situational changes in the environment and/or emergent security
risks. There are secondary benefits such as the natural obfuscation of functions inherent to

2

genetic algorithms. Additionally, one of the problems facing the adoption of mobile agents
is the relative complexity of creating efficient algorithms to govern their behavior; evolving
that behavior might logically be a simpler task.

1.3 Benefits of Genetic Mobile Agents

Genetic algorithms have many properties that might be of benefit to the mobile agent
paradigm. These properties are mainly applicable to the security of agents, the robustness
of the agent, agent efficiency, and naturally mitigate complexity.

With respect to security of agents; the genetic programming subset of genetic algo-
rithms yields code that is naturally obfuscated. This is because genetic programming usu-
ally combines code in ways that a human programmer would not consider. This makes
it a challenge to understand even simple genetic programs. Additionally, the properties
conducive to making a programming language well suited to evolutionary algorithms do
not necessarily yield a language conducive to human-coding. In traditional mobile agents,
value is often placed upon the code of the agent. This is due to proprietary algorithms, and
the value of the man hours that went into the design of this agent. In genetic programming;
the candidate solutions are not as valuable; more value is put upon the mechanism and
methodology used to obtain the candidate solution.

Genetic algorithms are theoretically extremely well suited to the evolution of robust-
ness. It is, indeed, the original application of evolution: the survival of the fittest. Genetic
algorithms are uniquely suited to the evolution of agents that can survive, at least in theory.

While there are many applications of genetic algorithms, many of them boil down to
optimization problems. Genetic algorithms are well suited to trying two solutions and
picking the more efficient of the two. While this does not directly address the efficiency
concern of mobile agents, genetic algorithms could still be employed to increase the indi-
vidual efficiency of the agents themselves. That is, the fitness function could be defined,
hypothetically, to reward agents that used a minimum amount of memory and cycles to
achieve their answer; thus increasing efficiency with respect to host utilization.

Evolving solutions through genetic algorithms provides a level of abstraction for the
programmer. The programmer need not be directly involved with the agents themselves;
this could reduce some of the complexity inherent to the creation of mobile agents, since
the programmer need not write code themselves. The veracity of the evolved solution can
be tested through benchmarks; the code does not need to be examined or evaluated directly.

3

1.4 Pitfalls of Applying Genetic Algorithms to Mobile Agents

Unfortunately, in some senses, the traditional approach to genetic algorithms seems
poorly suited to mobile agents. The chief difficulty one encounters when trying to design
a complex genetic algorithm based mobile agent, is the difficulty of defining exactly what
is meant by survival. That is, it is difficult to decide how to measure the success of an
agent. In the simplest case, one might measure survival. What does it mean, really, that
an agent did not die? Consider the example: if you send 10 graduate students for pizza;
the overwhelming likelihood is that they will all survive. Even if some fail to survive
the trip, it does not necessary indicate a beneficial algorithm, perhaps they were simply
lucky. In theory, this would equalize over many generations, but the inherent difficulty
is distinguishing performance in any manner other than 0 or 1. This is not to say that
such a task is insurmountable; simply difficult. This primarily applies to the concept of
evolving survivability. Objective based performance is much easier to measure; but does
not necessarily lend itself to agents more capable of surviving. This difficulty somewhat
mitigates the potential complexity-reducing aspects of using genetic algorithms to evolve
agents. Additionally, even if satisfactorily quantified, it must be carefully balanced with
the agent’s success rate in order to produce a fitness value.

Another problem facing the combination of genetic algorithms and mobile agents has to
do with the inherent design of mobile agents. Mobile agents are designed to be mobile, and
choose to move around a network. Networks are generally not a static environment; ergo
there is some potential difficulty in training an algorithm on one network, then deploying it
on an almost certainly different network. This again is not insurmountable, but it seems that
mobile agents would benefit more from continual training; perhaps even after deployment.
The traditional genetic algorithm framework does not lend itself to this task. They are
simply not designed to operate in a distributed manner. They require global knowledge of
the solution set in order to rank the potential solutions.

There are well studied adaptations of this nature: distributed genetic algorithms. They
are divided into fine, and coarse grained approaches. Indeed, the fine grained approach
might work, and indeed be practical, if the genetic algorithm environment were distributed
as part of the agency framework. This distribution of the genetic algorithm environment
is necessary because even at their most fine grained, distributed genetic algorithms re-
quire global knowledge, locally. Still, this could be workable, with some major adapta-
tions; chiefly among them that distributed genetic algorithms are not designed for the high
amount of migration inherent to mobile agent algorithms. It also does nothing to address
the previously mentioned problem of quantifying survivability.

4

1.5 Toward a Better Solution: Artificial Life

There is a set of frameworks that do, by nature, address the primary issue of quantifying
survival. This area is the area of artificial life. In artificial life, organisms are created in
a "world" with very simplistic fitness models. Generally, fitness isn’t explicitly defined at
all. Fitness is an emergent feature of the world. There is debate that artificial life represents
more closely "natural" evolution. There are additional concepts such as reproduction, and
death, which are lacking from traditional and distributed genetic algorithms. In some cases,
organisms are rewarded or punished for certain types of behavior. Lastly, most approaches
to artificial life do not require any sort of global knowledge of the world; organisms can
only interact with nearby organisms, if at all. This would lend itself to complete distribution
in a much easier manner.

Consider the problem of adapting mobile agents to the paradigm of genetic algorithms
from a different point of view. What if agents were organisms? The network would be their
world. It would follow that agents would interact with it and each other, choosing when and
how to reproduce. Additionally, various actions will be rewarding, perhaps in the nature
of providing extended longevity. Through the mixture of reward, and punishment, the
ecosystem will help determine the exact mix of actions to take. This mix would naturally
vary with the network; agents adapting to a changing environment. The reward system
could also guide evolution in a particular direction, so that certain goals are achieved.

1.6 Overview of the Dissertation

In this work a review of the genetic algorithm, mobile agent, and artificial life paradigms
is presented. Chiefly, however, the focus is of course on mobile agents. Shortcomings in
the current state of mobile agent literature are highlighted, as well as attempts to resolve
this. Ultimately, this leads to the consideration of genetic algorithms for this task. Towards
this end, several anecdotal attempts at this are presented and discussed. DNAgents 1.0, an
original application of genetic algorithms to mobile agents, is also presented and discussed.
This attempt more than the others highlights the shortcomings of genetic algorithms when
applied to the domain of mobile agents, and artificial life is presented as an alternative to
genetic algorithms after a discussion of pertinent variations on genetic algorithms. This
ultimately brings the narrative to the primary purpose of this work: the introduction of the
framework of DNAgents 2.0. DNAgents 2.0 are suspended betwixt the related fields of ge-
netic algorithms and artificial life. It belongs to neither, and is well suited to the evolution
of mobile agents.

5

1.7 Contributions of the Dissertation

Specifically, there are two main contributions in this work. The first is the application
of a canonical genetic algorithm to mobile agents in DNAgents 1.0. DNAgents 1.0 was
successful in evolving agents for a simple task. DNAgents 1.0 also serves to highlight the
primary issues with combining genetic algorithms and mobile agents. These issues include
the difficulty of defining a suitable fitness function and the uncertainty of agent execution
time in a network environment. This sets the stage for the second contribution of this work:
the formulation of a framework for the evolution of genetic algorithms known as DNAgents
2.0.

DNAgents 2.0 are a combination of the core idea of genetic algorithms: optimization,
with the soul of artificial life: a quest for natural evolution. Chiefly it uses the analogy of
artificial life; artificial organisms, and applies this to agents. In DNAgents 2.0, agents are
considered organisms. The network is their world. This is a natural analogy. Towards this
end, agents do not have specific goals other than interaction, survival and reproduction. In
a nod towards genetic algorithms, a crossover mechanic is explicitly provided. This is a
depature from artificial life, where part of the goal is ususally to spontaenously evolve a
crossover mechanism using just mutation as a defined behavior. This framework provides
itself naturally to distribution, and indeed could theoretically operate in a global network
such as the Internet since agents are only truly concerned with their local contemporaries.
In some sense, this could be considered the ultimate multi-agent system.

Agents surviving in a network based world alone are not enough to truly evolve mobile
agents. This is due to the goal oriented nature of mobile agents. However, it is diffi-
cult to define fitness functions for mobile agents. DNAgents 2.0 avoids this through the the
concept of reward mechanisms, which reduce the likelihood of an agent expiring. This mit-
igates the difficult of defining a fitness function due to the possibility of defining a variety
of rewards. The agents then automatically find the proper balance of actions to optimally
solve the problem. Indeed, with the introduction of communication parameters, this might
involve inter-agent cooperation. Thus, the sole goal survival is expanded to the new goal
of survive well. The fittest solutions will survive longer, thus having more offspring and
distributing the optimal subprograms throughout the network. A final benefit of this ap-
proach is that it is designed to run continuously. This is a departure from most applications
of genetic algorithms, in which there is a training period followed by a deployment period.
This lends adaptability to the agents; as the network changes so too will their fitness; thus
the efficiency will gradually improve over time.

6

1.8 Dissertation Structure

In Chapter 2 an full overview of agents and mobile agents is given, as well as their
strengths, weaknesses, and the research that is ongoing in this field. In Chapter 3 an high-
level review of genetic algorithms is conducted touching on some of the variations of ge-
netic algorithms. In Chapter 4 the primary motivations of artificial life are discussed, as
well as the common features of artificial life simulations. A review of notable artificial life
simulations is also conducted in this chapter. In Chapter 5 a more focused review of the
challenges facing mobile agents is conducted, as well as a brief analysis of the approaches
attempting to solve these challenges. This chapter also introduces the idea of combin-
ing genetic algorithms and mobile agents and reviews some work in this area. Chapter 5
also introduces the first half of this work, a successful attempt at combining genetic algo-
rithms and mobile agents (DNAgents 1.0), as well as the results of this attempt. It goes
on to discuss the shortcomings of genetic algorithms when combined with mobile agents,
and introduces the concept of applying a new artificial life inspired algorithm to mobile
agents. This leads naturally to the second, and more important portion of this work, the
proposed framework of DNAgents 2.0. DNAgents 2.0 is defined and discussed in Chap-
ter 6. Implementation details as they affect the definition of the algorithm are discussed,
and experimental results provided. Finally, in Chapter 7 the major points of this work are
reviewed, as well as its contributions and implications.

7

Chapter 2

MOBILE AGENTS

2.1 Static Agents

In order to define a mobile agent, one first must define the concept of a static agent: one
that does not move. The analogy to a travel agent is often made in the literature. This is an
accurate description. An agent is an entity that performs a task on behalf of someone else.
The following characteristics are ascribed to agents [49]:

• Autonomy. Capability to perform tasks without intervention.

• Social Ability. Capability to communicate with other agents.

• Reactivity. Ability to react to environmental changes and events.

• Pro-activeness. Not strictly reactive; can chose to initiate change if necessary.

There is additionally a concept of agency; which refers in the broad sense to a store-
house for agents. In terms of software, it might implement an interface to data, or provide
secure mechanisms for intra-agent communication [49]. Agent’s are sometimes grouped
together into a hierarchy whereby higher level agents might utilize lower level agents to
perform specialized tasks, whilst the user only interacts with the high level agent [49].

2.2 Mobile Agents

Mobile agents in general refer to a set of self-contained algorithms (agents) that can
choose to suspend execution and move around the network, acting on behalf of an entity
[90]. Similarly to agents, they are said to exhibit features such as autonomy, social ability,
learning, and mobility. Autonomy refers to the fact that the agent executes within its own
execution environment, making its own decisions. Social ability refers to the ability to in-
teract with other agents and, implicitly, platforms. Learning can be more generally referred
to as adaptability; but defines the ability to react to its environment. The most important
characteristic of a mobile agent is mobility, and it is the defining difference between mobile
agents and regular agents, and is defined by the following steps [49]:

8

• The mobile agent halts execution upon reaching some predetermined state or event.

• The mobile agents current state is saved.

• The mobile agent is serialized into an array for transit.

• The agent is encoded into some common format for communication.

• The encoded agent is transferred to a remote host.

Mobile agents choose to migrate. This choice is the key distinguishing feature between
a mobile agent other types of mobile code such as process migration or code-on-demand.
Process migration refers, in general, to applications where an operating system of chooses
to execute a process on different processors; the choice to suspend execution and migrate
is not taken by the process itself but by some controlling entity. Code-on-demand appli-
cations refer to applications where code is downloaded from a server to a client machine
as needed upon the clients request [42]. The data being executed upon remains upon the
client machine.

2.3 Advantages of Mobile Agents

There are several key advantages to the mobile agent paradigm. These advantages
include:

• Reduction in network traffic

• Asynchronous

• Adaptive

• Tolerance

• Reduced Maintenance

• Portability

• Scalability

The reduction in network traffic is one of the chief motivations for exploration of the
mobile agent domain. This is accomplished due to the fact that in mobile agent architec-
ture, one only need to send the source code for the agent, and any associated data, to the
server once. Additionally, upon the completion of execution, the server sends the agent and

9

any processed data back, only once. This is in contrast to client-server models where com-
munication is back and forth and near-continuous for the duration of the task, consisting
of many messages. Additionally, due to relying only upon two transmissions per server;
agents inherently achieve a level of fault tolerance difficult to obtain with a client-server
model. This is due to the fact that if the network connection between client and server fail
during a traditional task being executed, then the task fails. In a mobile agent, this failure
has no impact upon the agent, and at the worst delays the return of the agent.

Due to the fact that mobile agents execute autonomously on a machine, their execution
is by nature asynchronous. Thus, it is trivial to achieve parallel processing of remote data
by simply sending agents to multiple data sources, leading to great scalability [50]. Agents
due to their nature operate on many operating systems and environments, and thus can
be said to be highly portable and adaptive. Lastly, the requisite maintenance is reduced
because only the agent generally has to change, and not any distributed platforms.

2.4 Disadvantages of Mobile Agents

There are some drawbacks, or potential pitfalls, of mobile agents, including:

• Security

• Authentication

• Trust

• Efficiency

• Complex to setup

• Increased complexity

These largely revolve around issues of trust[136, 106], and security. Trust refers, in
the broad sense, to how one determines how trustworthy an agent is. There is extensive
research dedicated to trying to determine if an agent is trustworthy, and the related concept
of reputation [77, 36]. Reputation refers to how reliable the community at large feels you to
be, while trust, more specifically, refers to an individual’s trust in you. The concept of trust
and reputation is applicable to both agents and hosts. These highlight the hosts view of
security; why should this remote code be allowed access to these resources [25]? There is
another aspect of host security; how to ensure that in spite of what the agent does, the host
remains secure and protected. There is a somewhat related area of trying to detect agents
that, while not necessarily hostile, might perform in a very inefficient manner; leading

10

to performance degradation [25]. The solutions that are proposed usually revolve around
the concept of a sandbox or safe language. A sandbox [7, 67, 49] refers to a protected,
encapsulated environment in which the agent runs. This environment essentially protects
the host from the agent by limiting what it can do, and is logically similar to a virtual
machine. There is a similar concept known as a safe language; a language designed to
purposefully limit what an agent can do to only safe actions that cannot unduly affect the
host [49].

While this is a serious concern, there is the related concern of ensuring the agents
security, which also has significant research dedicated to it [49]. The agents security is
more a question of how does the agent ensure that its data, which it is carrying into a
potentially hostile environment, is safe? The code of some agents might itself be sensitive,
so this is a concern as well.

It is generally accepted that protecting the agent is much harder than protecting the host.
In fact, there is a feeling that the problem might be intractable, and that it is better to detect
it and manage it [49]. Some ways of detecting and mitigating it include the use of multiple
agent systems [99, 135, 93, 137]. Multiple agent systems allow the encapsulation of aspects
of the algorithm, such that any one agent cannot give much of a view into what the whole
system is trying to accomplish, or give away a significant portion of any algorithm [49].
If redundant agents are employed these systems might also employ voting to determine
if any of them have been compromised, or if any of their data is suspect. An approach
to protecting the data is the encryption of the current data with a throw away key, thus
the data, if captured, is not easily interpretable [49, 58]. Additionally, if agents return
home frequently, compromises become less severe and easier to detect [49, 58]. If the
code of the agent itself is sensitive, it might be protected by encryption or obfuscation
[49, 27]. While it is impossible to allow a processor to execute instructions without it
gleaming something about the algorithm, if sufficiently obfuscated, this becomes quite
difficult [110, 49]. Encryption would only allow authorized hardware to execute the agent.
This is not in any way an exhaustive list of methods to protect the agents. With respect to
preventing compromise in the first place, the best approach appears to either be the use of
a set of trusted hosts [58] or secure hardware [49, 26, 27].

While it is true that mobile agents are naturally resistant to connection interruptions,
this does not necessarily make them perfectly fault tolerant. There is work into the issue
of fault tolerance, and agent fault tolerance [108, 115, 116]. Generally, these approaches
revolve around the concept of replication [88, 94]. Replication involves the copying of an
agent prior to movement. This copy resides on the host for a time, and if it doesn’t hear
back from its spawning agent, eventually continues execution. This is a generalization of

11

replication approaches; they can take several forms. At any rate, there is an issue with
replication: the exactly once property [108]. Basically, it is difficult to ensure that, in the
presence of replication, an agent’s task is executed once and only once.

In addition to the security and fault-tolerance concerns; there are issues of complexity.
Not only are mobile agent systems complex to setup initially[42], the systems themselves
are simply more complex in general than the existing paradigms such as client-server [42].
This hinders adoption, due primarily to the fact that there is no "killer" application that ab-
solutely requires them. There are attempts to model agent systems such as the API calculus
and its security-focused extension, API-S [49]. Among other things, these systems attempt
to aid the understanding of agent systems and their interactions. Due to their complexity, it
is difficult to model them directly, generally some level of abstraction is used [49].

Mobile agents have many applications; such as in resource discovery and monitoring
[129, 46, 38, 31, 33, 59], information retrieval [31, 50, 85, 20], and network management
[15, 95, 37, 5]. They are additionally useful in data replication, for remote data backup,
and data sharing [35], and for dynamic software deployment [53, 107].

12

Chapter 3

GENETIC ALGORITHMS

3.1 Overview of Genetic Algorithms

Genetic algorithms (GA) refers in the general case to a process for finding solutions
to optimization problems. GA’s function by formulating potential solutions to a problem
and testing them against the desired answer. In a sense, in GA’s the desired answer or
result is generally known and definable, but the exact method of achieving the answer is
not. For example, consider the knapsack problem: given a series of items with a weight
and a value, and a limit in weight which a knapsack can hold, determine the optimal set
of items to take, maximizing value, while not exceeding the weight limit of the knapsack
[80]. In the knapsack problem, the solution in a general sense is known: maximize value
while not exceeding the weight limit. The set or sets of items that comprise this solution is
not known.

From the solution, a fitness function may be defined. In the case of a knapsack problem,
the fitness function could be the combined value of a selection of items. Not all combina-
tions of items are valid, and in the event that the combined weight exceeds the weight
threshold of the knapsack, the fitness of that selection is zero. While it is somewhat trivial
to define a fitness function for the knapsack problem, for some problems it is extremely dif-
ficult or impossible to define a fitness function. In these cases interactive genetic algorithms
may be used.

Now that the fitness function is defined, the solution domain must be defined in a man-
ner conducive to genetic processes. In the case of the knapsack problem, this can be done
by assigning a bit to each potential item, such that the string of bits indicate the inclusion of
each item. GA’s function by initially generating many random solutions, and then selecting
among them based on the fitness function. The exact methods of selection, and the action
taken upon the fittest solutions vary. In general GA’s borrow from the biological concepts
of natural selection, crossover, and mutation. Through these processes, the solutions are
recombined over and over until a satisfactory fitness has been achieved.

3.2 Selection

13

Selection algorithms generally rank potential solutions by fitness, and provide a higher
chance for the fitter solutions to be selected. (Add more info on ranking).

In some cases, only the fittest solutions are selected. These cases are referred to as either
elitist selection algorithms or truncation selection algorithms because anything beyond the
fittest N solutions is truncated. In practice, elitist selection algorithms are rare due to poor
comparative performance, but they do exist [84]. They are mainly listed in the literature as
being used for breeders [16, 21, 30]. Generally, truncation algorithms suffer from a loss of
diversity in the population, this has been analyzed in the literature [16]. Additionally there
are some hybrid approaches [65, 12].

More commonly, genetic algorithms employ a method in which, while fitter solutions
have a higher probability to be selected, less fit solutions also have a chance to be selected.
There are a variety of methods, but the most common are roulette-wheel selection [4] and
tournament selection.

In roulette-wheel selection, a probability is assigned to each potential solution based
off its fitness. An example formula for calculating this value is given as:

pi =
fi

∑
N
j=1 f j

This formula ensures each solutions probability is between 0 and 1. The fitter solutions
will have a slightly higher probability, and less fit solutions a slightly lower probability, but
all solutions still have a chance to be selected. At this point, a random selection is made of
them. This is done by arranging the solutions in a line, with their corresponding probability
representing their ’slice’ of the line. The line ranges between 0 and 1. A random number
between 0 and 1 will fall within one of the solutions associated ranges, thus selecting that
solution. Figure 3.1 illustrates this process. The fact that less fit solutions can be selected
is important because although the whole of the solution might be weak, some component
of it might not be, and greater genetic diversity is generally a good thing. There are many
derivations of this algorithm, such as Stochastic universal sampling [4], which ensures a
minimum spread in addition to zero bias [4, 16].

14

Figure 3.1: Roulette-wheel selection.

Stochastic universal sampling [4] differs from roulette-wheel selection only in that in-
stead of selecting N random numbers from the line, it first picks a position between 0 and
1/N where N is the number of desired solutions to be selected. It then adds the value 1/N
to this value to pick the next value. Figure 3.2 illustrates this process. This allows for the
selection to be evenly distributed.

Figure 3.2: Stochastic universal sampling.

In tournament selection, a random set of individuals is chosen from the population, and
subsequently the best individual in that subset is picked to reproduce [47]. This is logi-
cally similar to the method by which tournaments of two player games, such as billiards,
are conducted. It is not limited to populations of size two, of course, as any game with a
set number of players can be conducted in tournament fashion, by conducting a series of
matches, and then conducting matches between the winners. The main variable in tourna-
ment selection is the size of the random subset of the population, sometimes referred to as
tour, which can range from a minimum of 2 to the size of the population.

Additionally, there is a concept called local selection. In local selection, half the mating
population is selected either randomly or by some other selection algorithm. Once half the
population is selected, then neighborhoods are defined for the selected population. These
mating individuals interact only with their neighborhood. Within the neighborhood the
mating partner is selected either randomly, or by selecting the fittest. Because of the over-

15

lap of these neighborhoods, genetic material can propagate across the entire population. Fu
et al [45] applied local selection to a Virus Evolutionary Genetic Algorithm. Virus Evolu-
tionary Genetic Algorithms are a derivation of genetic algorithms that are discussed in the
section on derivations of genetic algorithms. The properties of local selection in their work
helps to prevent premature convergence and helped maintain the diversity of the host pop-
ulation, and indirectly caused the elimination of ineffective strains due to the local survival
of the fittest host.

The neighborhoods can be defined in many ways, and Figures 3.3,3.4, and 3.5 illustrate
a few. Additionally these neighborhoods can be three-dimensional and include any com-
bination of one and two-dimensional definitions. An analysis and comparison of a form
of local selection and more traditional selection methods within massively parallel genetic
algorithms is given in [28].

Figure 3.3: One-dimensional local population neighborhoods.

Figure 3.4: Two-dimensional local population neighborhoods 1.

16

Figure 3.5: Two-dimensional local population neighborhoods 2.

In conclusion, generally speaking, truncation selection is much more likely than either
roulette-wheel selection or tournament selection to replace less-fit individuals with more
fit individuals. This causes overall a loss of diversity, and a lack of variance in the solution
set. Correspondingly, it causes the genetic algorithm to take longer to plateau. With re-
gards to diversity and variance, tournament and roulette-wheel selection perform similarly
[16]. While interesting, local selection does not directly contribute to a selection method,
although it can influence the overall algorithm positively by aiding in the preservation of
diversity in some schemes [45]. Local selection also is very applicable to the parallelization
of genetic algorithms.

3.3 Crossover

Crossover, sometimes referred to as recombination, draws inspiration from biological
reproduction. Specifically, the mechanism by which offspring are created that contain ge-
netic material from both parents. In this way, the individuals selected by the selection
algorithm are combined to produce unique offspring. In this section we discuss some of
the methods in which this operation takes place.

With regards to problems with real representations, or where the expected outcome is
a number of series of numbers which can be thought of as coordinates on the graph, the
term recombination is generally used to describe this process. There are many methods
for it in the literature including discrete recombination, intermediate recombination, line
and extended line recombination [84, 81]. These methods are discussed in brief because of
their pertinence to genetic algorithms, but detail is not used due to the focus of this work
being upon problems with binary representations.

17

Discrete recombination [84] allows each offspring to be randomly assigned a value
from one of its parents for each variable. There is no weight given to the various variables,
and by definition, both parents are potential offspring of this process, although with a large
number of variables this becomes increasingly unlikely. Figure 3.6 illustrates a simple
example of discrete recombination consisting of parents with only two variables, and thus
graphable on a two dimensional plane. Interestingly, discrete recombination can be applied
to both real number representations and binary representations, and theoretically to any
problem representation.

Figure 3.6: Discrete recombination.

Intermediate recombination [84] applies only to problems represented by real values.
The basic idea is to define offspring values near or between the values of the respective
parents. This can be expressed as the offspring’s value falls on the line between the values
for the respective parents. The algorithm allows the addition of a small constant to each
parent value to extend the line slightly. intermediate recombination can create an offspring
anywhere within the square defined by the four potential offspring in figure 3.6 and slightly
outside of it.

Line recombination [84] picks offspring on the line between the two parents. Once
again, consider figure 3.6 and the line between the two parents. If you extend this line a
small length in both directions, all the points on this line are valid positions for offspring.
This method as well only applies to problems with real number representations. There is an
extension of line recombination [81] which does not restrict offspring to the line between
the parents, but only to the domain of the variables. That is, the offspring can fall at any
point on the line upon which the parents lie, provided the value is not restricted by the

18

variable domain. Additionally, offspring are created based on a variable probability that
allows offspring to be more often chosen near their parents. If they fitness of the parents is
known, then the offspring are chosen in the direction of the fitter parent. Again, this applies
to real values, and not binary representations.

If a problem has a binary representation, the process of recombination is generally
referred to as crossover. In crossover, one or more slices of the parents is created and
exchanged and recombined to create new offspring. Crossover methods are differentiated
by the number of points used to define the slices.

In the simplest form of crossover, a single crossover point is picked. Two offspring
are created, one from the genetic material of parent a prior to the crossover point, and
one from the genetic material of parent b from the crossover point to the end of parent b.
Figure 3.7 illustrates single point crossover. If the parents are of the same length, then the
offspring will always be the same length. An interesting variation on single point crossover
exists, known as Cut and Splice crossover, which produces offspring of variable length
even if the parents are of uniform length. It functions by picking two crossover points, one
in each parent, and then splicing the resulting substrings together. Figure 3.8 illustrates
this method. There is an additional variation of single point crossover where the bits are
shuffled before crossover occurs, and unshuffled in reverse afterwards, thus removing any
positional bias [24].

Figure 3.7: Single-point crossover.

19

Figure 3.8: Cut-and-splice crossover.

Similarly, two crossover points can be picked, in stead of one. In this case, offspring
are formed by swapping the slice that lies between the two crossover points between each
organism, yielding two offspring. This is depicted in figure 3.9. Single and two-point
crossover are actually special cases of a more generic multi-point crossover algorithm. In
a variable crossover algorithm, N crossover points are selected, and two offspring are pro-
duced by selecting first from one parent and then from the second parent, starting with the
second defined slice. It is stated in the literature that single and two-point crossover are of-
ten the best choices, but for some problems multi-point crossover will yield better results,
possibly due to the fact that substrings with the key parameters for the solution of the prob-
lem do not necessarily lie adjacent to each other [18]. Additionally, the disruption caused
by multi-point crossover yields a more robust search due to decreasing the likelihood of
early convergence [118].

Figure 3.9: Two-point crossover.

There is an additional type of crossover known as uniform crossover [125], in which
each gene can individually be swapped. This can be done by generating a bit mask of
the same length as the parents chromosomal length, where each bit indicate which parent
contributes genetic material to the offspring. This concept is illustrated by figure 3.10.

20

Two offspring can be generated from a single bit mask by inverting the bit mask for the
second offspring. Note that in generating the bit mask, equal probability is given for each
parent to be selected. That is to say, there is an equal probability that each bit will be
1 or 0, with no weight given to any bit. Theoretically, this reduces the bias towards short
substrings inherent in single point crossover. A parameterized version of uniform crossover
that applies a probability to determine which parents bits are selected has been proposed.
This parameter controls the amount of disruption caused without introducing a bias towards
short substrings [119].

Figure 3.10: Uniform Crossover

3.4 Mutation

Mutation refers to the process in which individuals in the population are randomly
altered. These changes are generally small, and occur with a low probability after the off-
spring has been created via crossover. Generally, two parameters exist, mutation rate, and
mutation step size. Mutation rate refers to the amount of mutations that should occur, and
mutation step size refers to the amount of change that should occur upon mutation. These
two parameters are either constant over the course of all generations, or vary depending
on the previous generation. The following section discusses methods of defining these
parameters, as well as methods for dynamically selecting them.

The probability of mutating a variable is dependent upon the number of variables that
exist. That is, the more variables, the less likely it is that mutation should occur. There
is some debate as to what exact relationship this should be, but it has been reported that
1/N where N is the number of variables provides good results in a wide variety of cases
[84, 8, 9]. While this is not necessarily a good mutation rate for every problem, it is a useful
starting point.

Choosing a good mutation step size is more problematic, as it is dependent upon the
problem and can vary during the optimization process. When near optimal, small step

21

sizes are best. Conversely, at the beginning, large step sizes can, if successful, lead to much
quicker optimization. It has been proposed that a good mutation operator should produce
more small step sizes than large step sizes [81, 84].

It is also possible to adapt the values dynamically over the course of the algorithm.
This has been applied to evolutionary strategies[113, 103], evolutionary programming [43]
and other areas [86, 87, 54]. Allowing the mutation step and or rate to vary increases the
storage requirements of the algorithm, due to the fact that the variables must be stored for
each individual.

3.5 Termination

The final step of a genetic algorithm is termination. Termination is whenever the pro-
cesses of selection, mutation, and crossover cease. There are several reasons this can take
place, and generally the definition of when to terminate execution is somewhat dependent
upon the application domain. One possible termination condition is a satisfactory solution
being reached, that is, a solution that fits certain minimum criteria. Another, common con-
dition, is to terminate automatically after a certain number of generations. Additionally, a
termination condition in scheduling application often involves the resources to be allocated
or money to be spent being reached, or approached to within a specified minimum value.
Another possible termination point would be the difference between successive generations
becoming very small, or possibility negative. In other words, the algorithm plateaus, and
further executions do not appear to improve the answer, and might actually harm it. Lastly,
a human operator might be employed to observe the results, and decide manually to end
the simulation.

3.6 Other Types of Genetic Algorithms

Virus Evolutionary Genetic Algorithms (VEGA) was first proposed by Kubota in 1996
[72]. VEGA are a subset of genetic algorithms that consists of an additional population
known as the virus population. The standard population inherent to genetic algorithms is
known as a host population, and functions identically to the standard genetic algorithm.
The virus population interacts with the host population via the operations transduction and
reverse transcription. Transduction allows the absorption of material into the virus similar
to the way in which crossover works, by selecting a substring consisting of both viral code
and the original genetic material of the host, and copying it onto the virus thus replacing
the virus. The purpose and effect of these operations is to allow the virus population to
copy effective subsets of the genetic algorithm from the host population, and preserve them

22

against accidental destruction by crossover and mutation, thus causing the whole simu-
lation to converge on an optimal solution more quickly. Figure 3.11 demonstrates these
operations. These operations take place in a step that follows the mutation of the host pop-
ulation. Additionally, an improvement of it has been proposed that includes the theory of
static multiplication as well as optimizing the virus generation process leading to increased
performance [78]. Local selection has also been used to improve the results yielded by this
algorithm [45].

Figure 3.11: Virus Evolutionary Genetic Algorithms operations, adapted from [45].

There exists a subset of genetic algorithms called genetic programming. There are two
primary differences between genetic algorithms and genetic programming. In genetic al-
gorithms, the intent is to derive a solution, an answer, to a problem. Genetic algorithms
explore a search space, attempting to find a number. In genetic programming, the goal is
a program, or set of code, that can solve a problem. In a sense, genetic programming at-
tempts to find the function, instead of the solution. The other primary difference is that in
genetic algorithms, potential solutions are generally represented as variables and or num-
bers. Sometimes these numbers are represented in binary, and a single potential solution
might have many numbers or variables associated with it. In genetic programming, how-
ever, the solutions are represented by a set of code. There are two primary subsets of
genetic programming, the divide having to do with the representation of the solution. In
the majority of applications, the program is represented as a tree. In this tree, the nodes
are operands, and the leaves are operators. This lends itself very well to representing math-
ematical equations, and implementation within language such as LISP that support tree’s.

23

Figure 3.12 represents the function (4 + 5) ∗ (10/13) as a tree. Additionally, because not
every programming language or application lends itself well to a tree structure, genetic
programming can also be represented linearly. Most, but not all, methods applicable to
genetic algorithms can be equally applied to genetic programming, with some modification
as necessary. In particular, the methods that are applicable to binary data representations
can be easily applied, in most cases, to genetic programming. In the case of tree based
genetic algorithms, the nodes in the tree can be considered chromosomes for the purpose
of applying mutation and crossover operators, while in the linear representation, individual
instructions can be considered chromosomes.

Figure 3.12: Genetic Programming Tree Structure for (4+5)∗ (10/13)

An additional modification to genetic algorithms is evolutionary programming. The
primary difference between evolutionary programming and genetic algorithms is that evo-
lutionary programming does not use crossover [52].

Davidor introduced the Ecological genetic algorithm model [34]. In this model, se-
lection is local among individuals that exist in a grid. An individual interacts with their
immediate nieghbors and new individuals are inserted randomly into this grid. Upon inser-
tion, the difference in fitness between the existing algorithm at a cell and the new algorithm
is computed, with the fitter algorithm being the one that ’wins’ and survives [34]. Addi-
tionally, this model has been successfully parallelized, in a coarse way, refer to [22] for a
discussion.

3.7 Decentralized Genetic Algorithms

Due to limited computing resources, and the abundance of cheap machines, it is often
beneficial to execute processes in parallel. Genetic algorithms have been modified in such
a way as to be decentralized and thus executable in parallel on an array of machines or
processors. This can be done in several ways, and these ways are distinguishable by their
granularity. They can be either coarse, or fine grained. This granularity refers, at least

24

partially, to the type of topology the approach is suited to execute upon: coarse-grained ar-
chitectures with a few, powerful processors, or fine grained populations with many weaker
processors [111]. Additionally, some effort has been made to combine the two approaches
in a hierarchical model with the lower level being a fine grained GA and the upper level
being a corase-grained GA [22].

In coarse-grained decentralized genetic algorithms, the population is segregated into
non-overlapping populations. Each subgroup is executed in a centralized fashion usually
indistinguishable from a traditional genetic algorithm. A migration operation that takes
place after the process of crossover and mutation is introduced to allow interaction between
the entire population. If no migration operation is defined, this is equivalent of running
several parallel, but independent genetic algorithms [111].

A fine grained genetic algorithm is defined in such a way that the local neighborhoods
overlap. Each individual in the simulation is responsible for interacting with their neigh-
bors and choosing who to reproduce with. The overlapping neighborhoods allow implicit
migration of information across the whole simulation [111].

Local selection, discussed earlier, describes methods of defining these populations and
their neighborhoods. There is also research into the idea of segregating the population due
to the fact that segregating populations allows them to maintain diversity far longer than a
traditional genetic algorithm with random, universal reproduction [111, 114]. That is to say,
the segregated populations generally tend to be similar to each other, but dissimilar to other
populations. There are other methods to accomplish nonrandom reproduction this besides
segregation and migration, such as tagging subpopulations and restricting reproduction to
be only between these defined subpopulations, or by introducing a distance metric that
restricts mating to being between similar individuals [111].

3.8 Applications of Genetic Algorithms

Genetic algorithms have been applied to many many problems successfully. Examples
from computing include microcode compaction, traveling salesman [48], and job schedul-
ing [11]. Commercially speaking, they have been applied to the problem of determining
proper placement for cell phone towers weighing coverage against costs and other consider-
ations [98]. The field of education has benefited from the application of genetic algorithms
to the generation of time tables for schools successfully [96]. Genetic algorithms have also
been applied to Lego Mindstorm robots [112] and robotics in general [40], which could im-
pact industry. Genetic algorithms have even been applied to network coding [66]. Genetic
algorithms have even been applied to military applications, such as the generation of plans

25

for the joint suppression of enemy air defense [105]. Medically, they have been applied to
drug scheduling for chemotherapy [75].

A VEGA based algorithm has been developed to aid in the resolution of the problem of
scheduling N tasks with different due dates and ready states [114]. Their results show that
their VEGA based algorithm outperforms the GA based algorithm, due to the exchange of
genetic information within a generation provided by the viral properties of the VEGA.

Genetic programming has been applied to the detection of munitions in an Air force
shooting range [44], reducing the number of false alarms required to clean the site of mu-
nitions. They have also been applied to creating variations of buffer overflow attacks for
the purpose of improving detection and defense methods with the data generated by their
’white hat’ attacker. The buffer attacks developed by them obfuscated the purpose of the
code, and were able to defeat the popular ’Snort’ Intrusion Detection System. They use a
linear genetic programming method, and define an instruction set of operands and opcodes
which consist of bits, similar to assembly code [63].

26

Chapter 4

ARTIFICIAL LIFE: A DIFFERENT APPROACH TO EVOLUTION

4.1 Introduction to Artificial Life

Artificial life refers to the study of the logic of living systems in artificial environments.
Chris Langdon defines it as "the study of man-made systems that exhibit behaviors charac-
teristic of natural living systems [74]." The phrase "locating life-as-we-know-it within the
larger picture of life-as-it-could-be" is also often quoted [74]. In some sense, evolutionary
algorithms can be seen as a subset of, or at least a field related to artificial life. Artificial
life involves the study of these principles, while evolutionary algorithms attempts to apply
the mechanisms of life to optimization problems.

There are two main connotations associated with the word artificial life. They are, re-
spectively, weak or strong artificial life. Proponents of weak artificial life see their creations
as simulations of life, perhaps useful for deriving knowledge about living things, but not
living themselves [17, 117]. Conversely, proponents of strong artificial life see their cre-
ations as being as deserving of the title living as living things in the world, at least in theory,
if not currently in practice [74, 101]. There is additionally a hybrid school of thought that,
while it thinks life must be embedded in physical matter, simulated physics might even-
tually be sufficient for this, if treated in a scientific manner [89, 124]. Most applications
involving artificial life that have a practical payoff are of a weak nature; in the sense that
they use artificial life for the purpose of achieving some payoff in the real world. This actu-
ally forms the bulk of research into this area, although there is research into strong artificial
life. The focus of the remainder of this section focuses on weak artificial life.

There are two main areas of artificial life algorithms, learning based and evolution
based. Learning based artificial life algorithms generally revolve around neural networks.
Evolutionary based neural networks typically revolve around genetic algorithms [52]. Ad-
ditionally, it is possible to combine the two areas, and some work has been done to this
effect. such as attempting to capture the "Baldwin" effect. The Baldwin effect refers to
how learning, particularly capability to learn, can influence evolution, possibly leading
eventually to encoded behavior [83]. The focus of this work is on the evolutionary models
of artificial life, rather than models involving learning.

27

Most work in artificial life can be traced back, in some sense, to Von Neumann’s de-
scription of a self replicating automation. Von Neumann proposed a machine that could,
given resources, produce a copy of itself. Mutations could be passed down to its offspring,
thus allowing evolution [126]. Conway’s Game of Life is also interesting, and somewhat
influential. In this way, many approaches to artificial life revolve around cellular automata,
although this is not necessarily an algorithm, but more of a platform upon which many
simulators are built [52]. Again, the focus of this work is not on cellular automata, but on
agent based systems, and thus this aspect of artificial life is not discussed in detail. For this
reason, the next section discusses notable work that has been done with respect to evolving
code or gene based entities, such as Tierra. Table 4.1 lists the simulators discussed in this
work.

4.2 Common Features of Alife Simulations

This section attempts to summarize some of the common features of artificial life sim-
ulations. All artificial life simulations begin with the concept of a world, which might be
defined as:

• A grid-like structure of cells, similar in some sense to Conway’s "Game of Life."
This is not always a two dimensional grid, and occasionally one-dimensional. The
organisms may or may not be able to move between cells. This is the most common
representation.

• A two-dimensional plane. This is distinct from the 2D grid in that this plane is not
subdivided. Of the simulators surveyed, Darwinbots is the only one exhibiting this
sort of world.

• A fully three-dimensional world. This world may or may not simulate aspects of
physics such as gravity.

All simulations that have evolution as an aspect, and thus all that are discussed in this
text, additionally have the idea of DNA or Genotype. Genotype is distinct from phenotype
in that all organisms of the same species will share a genotype, but their specific state in
the world, or phenotype, differs. Some common features of genotypes are

• Usually, but not always, is some sort of specialized programming language.

• Usually represented as a string, often of numbers, to ease the application of mutation
and crossover to it.

28

• The execution mechanism for this language varies greatly, some examples include

– Stack-based

– Event-driven

– Jumps and or breakpoints

• Similarly, the data storage mechanism for this language varies; data stacks and vari-
ables are common, but some implementations include registers.

• The language defined is extremely robust; literally no instruction can cause a crash,
and any program is valid in the strictest sense.

In a few sims, the concept of a fitness function, or guided evolution, is used, but in
most there is no explicitly defined fitness function. The focus is on attempting to simulate
natural evolution, which is assumed to be unguided. Thus, the rules of the simulation are
set, and organisms are left to find novel ways of exploiting these rules through mutation and
or experimentation. There is a goal of emergent complexity, which is taken to the extreme
in simulations like Amoeba and Tierra. Usually, but not always, the system is seeded with
a hand-crafted replicator which is then allowed to reproduce.

While the concept of mutation is virtually universal in Artificial Life simulations, the
concept of crossover, or sexual reproduction, is rarely explicitly defined. The reason for
this is related to the goal of emergent complexity; there is hope that sexual reproduction
will spontaneously emerge.

In most artificial life simulations, organisms are capable of some interaction with their
environment and each other. This allows mechanisms such as parasitism to evolve, whereby
organisms exploit each other in order to reproduce. Organisms can often kill each other,
and do as a means of gaining resources, but this is less common in the extremely bottoms-
up approaches such as Tierra. The higher-level simulations generally allow communication
and cooperation between entities, although usually this is reserved for multi-cellular enti-
ties. Multi-cellular entities themselves are composed of more than one "cell" but operate
cooperatively with each other. Generally they are connected and reliant on each other. In
some simulations death of key linking cells leads to fission, in other simulations it leads to
the death of the smaller piece; or of the organism as a whole. Some of the very high level
simulations implement senses, such as vision, touch, or smell. This is more common in the
3D or 2D implementations that allow movement; many of the grid-based implementations
do not allow movement.

29

Lastly, almost all simulations provide a mechanism to control population. How this
is accomplished depends on structure. The grid-based algorithms generally restrict cycles
in the sense that each organism is allowed a certain number for each global cycle. There
might be reward or punishment mechanisms to reduce or increase this number, and there
is implicit reward in that organisms that operate more efficiently in terms of instructions
will naturally out-compete more wasteful organisms. When these simulations, which are
rigidly defined in terms of space, run out of space, culling is implemented. Sometimes,
culling is implemented on creation, such that the very act of creating offspring replaces
some neighbor. In the less structured simulations, the concept of energy is often used.
There might be a constant inflow and outflow of energy in the system, or a static amount
of energy that is recycled continuously through the population. One implementation even
includes the concept of waste, which is created as a byproduct of energy use, and will
eventually lead to death.

4.3 Notable Alife Simulations

Now that artificial life has been defined, and its general characteristics defined, it is ap-
propriate to spend some time discussing some of the notable simulations in detail. Thusly,
this section is divided into a number of subsections discussing notable artificial life simu-
lations in detail.

Table 4.1: Artificial Life Simulations
Simulation Year
Bugs 1989
Coreworld 1990
Tierra 1991
Avida 1993
Amoeba 1996
Evolve 4.0 1996-2007
Darwinbots 2003-2008
Framsticks 1996-2009
Evita 1999
Physis 2003
Breve 2006+
Evogrid 2009

4.3.1 CoreWorld

Coreworld was developed by Ramussen in the early 1990s. It was influenced by the
computer game "Core Wars." In this approach a one-dimensional address space is ini-

30

tialized with assembly-level instructions. A number of execution points are distributed
through the address space, controlling the order in which instructions are executed. Each
address has a resource value associated with it, with execution being dependent upon lo-
cal resources being sufficient. Noise is introduced by the introduction of new instruction
pointers to the system with a random, but low probability. The purpose of this work was to
attempt to observe the emergence of self-organizing and cooperative structures [128, 124].

4.3.2 Tierra

A program called "Tierra" was created by Tom Ray. Ray’s view was that, essentially,
systems in which artificial selection is introduced with predefined fitness functions are in-
herently limited and dead ended, mostly due to natural selection producing much more
innovative and complex fitness functions than humans ever could [101]. Tierra defined an
instruction set that was robust to mutations, and thus evolvable. The instruction set was
made robust by providing template-driven addressing for instructions, thus increasing the
number of functional programs in any population. Evolution begins by the introduction of
a hand-written self replicating program ancestor into the memory space. During each iter-
ation, each program in the address space is allowed to execute a set number of instructions,
thus avoiding the problem of halting due to poor code. Instructions are not necessarily con-
cretely defined, there is a probability of error. For example, a copy operation might mutate
a byte of the data it is copying instead of performing a perfect copy. Programs are also sub-
ject to random mutations at a low rate. These two features cause variations of the original
program to appear as execution occurs, and if they maintain the ability to self-replicate, can
continue to appear in the address space. Programs are easily mutable because the instruc-
tion set consists of operations represented by 5 bit numbers. This implies that an organism
or program is simply a string of numbers, and is thus easily modifiable by genetic operators
[52]. The simulation defines a reaper operation which periodically kills off some members
of the population to avoid completely filling memory. The order of the queue for death
is determined primarily by a merit system, and secondly by age. There is a mechanism
for giving a program a demerit whenever it generates an error code in an instruction; thus
encouraging tighter, less erroneous programs due to the merits increasing the likelihood of
death. Additionally, Tierra allows for the possibility of rewarding organisms for executing
hard instructions [52]. That is, programs which reproduce quickly with relatively few er-
rors tend to dominate the population [52]. Interesting results have been observed, such as
the evolution of parasite programs that run another programs copying procedure to copy
themselves [101, 52, 128].

31

In Tierra there is no explicitly defined fitness function [52]. This is achieved due to
the fact that in Tierra there are two essential resources, cpu-time and space. Programs
which allocate more of these two resources are by definition "fitter" than the rest of the
population, thus the fitness function is implied, not explicit [52]. Tierra approaches the
problem of artificial life evolution from the bottom up. This makes high level abilities such
as learning difficult to obtain, and even low level abilities such as multicellularity have
proven difficult [52]. It has been reported in studies that the evolvability of the system is
closely tied to the underlying instruction set [128]. Ray also proposed a distributed version
of Tierra, known as NetTierra. It was to be distributed among several Universities, with
the idea that the increased space and number of organisms and interaction between them
would might lead to its own self-sustained evolutionary dynamic [104].

4.3.3 Amoeba

In 1996, Andrew Pargellis created a program called Amoeba. Amoeba is very rem-
iniscent of Tierra, but there is a few important differences. Instead of being seeded with
self-reproducing organisms, Amoeba is seeded with random pieces of instructions, and over
time the semi-successful execution of these instructions leads to the spontaneous appear-
ance of self reproducing organism. This is accomplished due to the simulation executing
any executable instruction it finds, and over the course of many iterations, this leads to
code capable of copying itself. Additionally, the copy instruction introduces mutations, as
in Tierra. Lastly, if the address space becomes full, a percentage of the cells are cleared,
and some are filled with new random instructions [133]. Amoeba is an attempt to simulate
the theoretical primordial soup from which life first arose on Earth. Pargellis went on to
propose Amoeba-II; which allows the system to partially define its own genetic code [104].

4.3.4 EvoGrid

A more recent attempt to model the pre-biotic chemical soup that lead to the evolution
of life is the EvoGrid [32]. The EvoGrid is a recent proposal to create a worldwide grid
of computers to simulate the conditions prior to the emergence of life on earth. A second
set of computers will search through the grid for life-like emergence and report back on
them. This work is in its early stages, but theoretically could have applicability to both
the modeling of chemical evolution to aid attempts to create artificial life in a lab, and in
studying emergent self-organization [32].

4.3.5 Avida

32

"Avida" is an artificial life system that was introduced by Adamai and Brown in a paper
in 1994 [2]. It was inspired by Tierra and is similar in some respects; although it is designed
to be more parallelizable. It combines some aspects of cell automata with the code based
aspects of Tierra. Each organism, or string as they refer to it in their paper, occupies a cell
in a two dimensional grid in the shape of a torus. The string itself is composed of a series
of numbers representing instructions in an instruction set. The definition of this instruction
set can vary, the only requirements is that it provide a mechanism for self replication.

Death occurs in Avida by the replacement of the oldest cell in the immediate neighbor-
hood upon each creation of a child string. That is, in order for a cell to replicate itself, it
must replace one of its neighbors, and the oldest is replaced. Additionally, during the copy
procedure strings are subject to modification. In other words, copies are not guaranteed to
be exact, and are changed probabilistically. This is the primary mechanism for evolution
in the system, as it is in Tierra. Adamai and Brown indicate that, in both Tierra and Avida,
more complicated mechanisms of modification emerge, such as insertion or deletion of in-
structions, and doubling of the genome, emerge from this simple modification scheme. For
this reason, they chose not to include an explicit crossover operation or sexual reproduction
scheme [2].

Adamai and Brown state that they abstain from the flawed execution of instructions;
unlike in Tierra where instructions can execute imperfectly. The cited reason is that they
do not feel it is a crucial feature in their simulation. Parallel execution is obtained by
allotting each cell of the grid a time slice. Once its time slice is completed, each cell is
in some defined state. Once every cell has had its time-slice, and computed its next state,
the entire grid is updated at once to the next state. This is akin to the way in which cell
automata update. If the time slice is kept small enough, a string is unable to affect its
local neighborhood unduly in the allotted time, such as by reproducing twice. There is a
conflict in that Adamai and Brown define reward for the correct execution of user-defined
tasks, in the form of bonus time slices. This conflict is resolved by a mechanism that keeps
the average time slice constant while allowing individual’s to have more or less than the
average dependent upon their individual bonus [2].

4.3.6 Physis

A somewhat radical departure from the mold established by Tierra was proposed by
Egri-Nagy and Nehaniv in 2003 [39]. In their Physis simulator they propose the incor-
poration of the processor definition and instruction set to the genome, and allowing these
definitions to be modified along with the actual executable code. Simulation is initialized,

33

as in Tierra, by the insertion of a hand-crafted replicator. This replicator consists of a
processor definition, an instruction set definition, and executable code.

Processor modification is accomplished by allowing for universal processors with vari-
able numbers of register, stacks, and queues. This is defined in the genome by a series of
R’s, S’s, and Q’s. Stacks and queue’s can be separated from each other by a blank, or B.
In their paper, they give an example processor definition as the string "RRSSSBSS", which
translates to a processor with 2 registers, and 2 stacks of size 3 and 2 [39].

Allowing for a modifiable instruction set is accomplished by first defining a set of primi-
tive, RISC like instructions. These operations provide functions like load, store, basic math
and comparison operations, etc. A full list is available in [39]. Instructions themselves are
represented by integers, and operations, if required, are integers as well, though they are
modulus’d by the number of components, e.g. the number of registers, to ensure a valid
address. From these primitives new instructions are defined. These defined instructions are
the actual instructions that the organism can execute.

The reported results were somewhat mixed. They reported modification of the pro-
cessor definition in their experiments, but the modified definition did not achieve domi-
nance. Additionally, while it should be possible for the number of defined instructions to
change, this behavior was not observed. The instructions themselves were modified, how-
ever. Chiefly, they demonstrated the evolutionary potential of universal processors to be
equal to that of fixed processors [39].

4.3.7 Cosmos

Cosmos is another artificial life simulator. It is again a cellular based arrangement of
organisms. Cells in cosmos can only read code in its own cell, unlike some other simula-
tors such as Tierra. Communication between organisms is achieved by message passing.
This message passing takes the form of two stores that respectively hold messages being
composed, and received messages. Once composed, messages can be broadcast to the local
environment. Additionally, messages can be received with a command as well. Reproduc-
tion is achieved by writing genetic information into a special store, and then executing a
divide instruction. This divide instruction causes the information in this store, called the
nuclear working memory, to a nearby grid location. In order for an organism to execute
instructions, cells must pay a fee in energy tokens. Cell’s gain energy tokens from the en-
vironment, tokens being distributed to each cell in numbers defined by various distribution
schemes, and this is also used to determine cell death. Energy tokens are also removed
from the environment periodically, although it is not necessary that the same amount will

34

be removed as added; this can lead to a sparseness or abundance of tokens. Additionally, in
the event of a full memory space, cells with the lowest number of tokens are culled. Thus, a
cell must balance action with hoarding of its energy stores. Upon death, unused tokens are
returned to the environment. Execution itself is controlled by bit strings called regressors
and progressors. Interestingly, these can be included in messages, and if a cell does not
protect itself against this, execution will begin in the message in a form of parasitism or
attack [127].

Organisms in Cosmos can consist of more than one cell. The logical restrictions of
adjacency apply to this. Multi-cellular programs can share energy between its cells, and
due to the fact that cells can die at different times, and individual cells can chose to die via a
kill command, implicit fission is possible whereby a single organism becomes two. There is
a cost in energy tokens associated with being part of a multi-cellular organism. Organisms,
whether single-celled or multi-cellular, can move about the grid, although in the case of a
multi-cellular organism this is a vote. Additionally, cells trying to move against each other
incur a friction parameter, which will limit the amount of movement possible [127].

The programming language for Cosmos is similar to that used by Tierra, with additional
operations defined to account for the additional features of Cosmos. Jumps are replaced by
Cosmos concept of promoters and repressors. Promoters are strings that exist on a special
store. The promoter at the top of the store is the currently active promoter, and execution
begins at the point that the promoter maps to in the genome. If non-existent, or upon
execution termination due to a repressor or end of the genome, that promoter is moved to the
bottom of the promoter store. Repressors work similarly, although all are active at any time.
Essentially, if execution reaches a position that a repressor maps to, execution stops. In a
way, repressors are akin to break points, and promoters are akin to jumps. As mentioned
above, both may be communicated to other cells, allowing for parasitism or attacks as in
viruses or bacteria, as well as specialization in a multi-cellular organism. Mutation occurs
at a low rate throughout Cosmos, and can affect any cell structure. Additionally, as in other
artificial life simulators, instructions can randomly execute in a flawed manner and thus
produce abnormal results [127].

4.3.8 Evita

Evita is an artificial simulator akin to Avida and Tierra, but no code parasitism is al-
lowed, and interaction is restricted to adjacent cells in a two dimensional grid. The simula-
tion begins with the seeding of a self-reproducer, which then reproduces into nearby cells.
If no unoccupied cell exists, the system selects one of the oldest neighbors at random and

35

replaces it. Mutation chance is based on each instruction, thus longer programs are more
likely to mutate [13].

4.3.9 Bugs

Bugs is an agent-based model wherein the aforementioned agents move about their
world, sensing it, ingesting resources, reproducing and dying dependent upon internal re-
source levels. Resources are distributed about the environment, and are replenished upon
consumption. Movement is governed by a "Sensorimotor" map; a table of behavioral rules
of the form If X sensed then Y. Agents receive sensory input about resources only. Agents
that try to move onto an occupied position randomly walk to another position. Agents must
consume resources to exist or move, or to reproduce asexually. The Sensorimotor map is
passed along to offspring, although mutations can occur. There is no defined fitness func-
tion, fitness being implicit through the fact that poor amps will lead to agents being out
competed and dying off. Population size is indicative of the relative fitness of the dominant
maps [13].

4.3.10 Framsticks

Framsticks [70, 69, 71] is a 3D artificial life simulation. The organisms in this case
are "stick" figures. Framsticks incorporates neural networks into its framework, in addi-
tion to genetic algorithms. Unlike some other simulators, such as Tierra, the evolutionary
techniques in framsticks are much closer to traditional genetic algorithms, with crossover,
selection strategies, and fitness functions defined. In theory, the creator’s hope to move
towards an open-ended evolutionary model, one possible way of doing so is to define "life
span" as the fitness function, which implies ability to survive and reproduce are the selec-
tion pressures [69, 71].

The world of framsticks is a 3D simulation, although physical interactions are some-
times limited, such as the ability of entities to collide with themselves. There is a necessity
to simplify things for the purpose of speed [70]. The system also limits the number of
simultaneous individuals being simulated, for purposes of speed and interactivity [70].

The organisms themselves, as mentioned, are comprised of "sticks." These sticks are
connected by musculature. More formally, the organisms are composed of sticks, neurons,
receptors, and effectors. Sticks correspond to body parts, having attributes such as health or
strength [71]. Effectors correspond to muscles, and again have attributes such as strength,
or range of motion [71]. Receptors correspond to senses, with examples being equilibrium,
smell, and touch [70]. Neurons are neural networks, unrestricted with size. This allows for

36

intelligence, although the degree is uncertain [70].
Evolution in framsticks is handled similarly to genetic algorithms, with crossover and

mutation being defined [70]. They propose the use of similarity to encourage population
diversity; with similarity to competing organisms lowering the organisms corresponding
fitness. While similarity can be computed in several ways, the system they use is a heuristic
algorithm that treats both individuals as graphs [70]. The type of selection model can vary,
from the traditional roulette-wheel selection [69] to one at a time selection. Tournament
selection, or the combination of the various schemes for use in separate populations is also
mentioned [70]. The sim records several parameters over the life of the organism, such as
age, distance traveled, or average velocity, and these can make up the fitness function for
the purpose of directed evolution [69].

Significant time is devoted to the genotype representation in framsticks. They include
the neural networks in their genotype, although it is unclear if the ’state’ of these networks
is also included, or simply their configuration. Multiple encodings are defined, with a basic
encoding that corresponds to simply a list of all the components of an organism, and all
their attributes. Two other encodings are discussed at length, a tree-like representation that
allows for connections to be moved around without being broken. Most interestingly, they
discuss a developmental encoding, whereby a phenotype is created by the differentiation of
cells as they divide [70, 69]. In testing, the higher level encodings performed better, possi-
bly because of the fact that they restrict the problem space [70]. All encodings define their
own mutation, crossover, and optional repair methods. The repair method is more neces-
sary in higher-level encodings whereby invalid creatures might be created, and attempts to
fix these simple errors [69, 70]. Other encodings were mentioned, but not defined [69].

Results with framsticks were reported for the evolution of many walking/swimming
organisms [69, 71]. In these simulations, the evolution of concepts of movement was ob-
served. Good ideas evolved once, and then were propagated widely by crossover until
being replaced by a better method [69]. Additionally, a height fitness function was used
to compare the different encoding methods [70]. It is noted that evolution is an extremely
effective way of finding errors in the simulation, due to the organisms discovering and
ruthlessly exploiting them [71].

4.3.11 Darwinbots

Darwinbots [29] is an artificial life simulator currently under development. In it, the
world is comprised of a flat plane, upon which the ’bots’ move and interact. Unlike many
artificial life simulations, it is not subdivided into cells.

37

The bots themselves are two dimensional, with their behavior being defined by their
dna. They can see omni directionally, and detect collisions with and attacks by other bots.
Actions require energy to execute, and the execution of actions produces waste. This leads
to a balancing act between energy and waste. This is an act that the bot will eventually
lose, due to all mechanisms for waste management being imperfect by design. This waste
accumulation will eventually lead to a condition defined as "Alzheimer’s." This condition
causes the insertion of random numbers into random places, causing the bot increasingly
to malfunction. This eventually leads to death. Bots acquire energy either from the en-
vironment in the case of vegetables, or from eating other bots as animals, and can store
it as body. Bots can interact with each other through various "shots" which are projec-
tiles and can serve as attacks, attempts to feed, communication, or infection. Interaction
is also possible through ties, which can also be used for feeding. Ties can also be allowed
to "harden" and become permanent, leading to the formation of multi-cellular organisms,
or multibots. Multibots can share information, energy, and protection. Bots can die due
to waste accumulation, or through losing more than 50% of its current energy in a single
cycle [29].

Reproduction in Darwinbots is handled by commands, and occurs whenever a certain
energy threshold is reached. This threshold is defined by the organism. Once reproduction
occurs, children are temporarily tied to their parent for 15 cycles by a birth tie. They inherit
some memory from their parent immediately, and through the birth tie. Children also inherit
a portion of the parents body and energy, and the whole of the parents DNA. This DNA
is subject to mutation, and this is the main agent of change in Darwinbots. Darwinbots,
as with most artificial life sims, defines no artificial fitness function, selection and fitness
being an emergent phenomena [29].

The structure of the DNA in the current version of darwinbots (2.0) is designed around
the concept of daemons. These daemons are triggers that wait for some action to occur,
then execute. These daemons are represented by genes in darwinbots, with the triggering
action appearing at the beginning of the gene. The instructions within the gene themselves
are restricted from having jumps or cycles. Execution is stack based, and memory is also
provided for the preservation of information between cycles. The creators propose a more
complicated encoding for the next version, but that is not discussed here, primarily for lack
of detail. Information can be found on the website [29].

Several interesting behaviors are listed, but it is unclear if these behaviors emerged
naturally, or were designed. They include swarming of groups of bots being aware of each
other and choosing to move in the same direction, and bots creating a permanent tie to a
vegetable and using it as a portable food source, while keeping it alive. Many commonly

38

evolved behaviors are also listed, some interesting ones including Big Berthas, Cancerous
Bots, Cannibots and Lame Bots. Big Berthas are bots that lose the capability to reproduce,
and increase in size until they become semi-immortal and kill off the rest of the population
until only they remain. At this point, they die due to waste. Cancerous bots are bots that
continually reproduce, leading to spikes in population size, although this is beneficial for a
vegetable. Lame bots are bots that lose the ability to move, and again this is not necessarily
a bad thing if there is a stable nearby food source [29].

4.3.12 Evolve

Ken Stauffer wrote a cell-based artificial life simulation called Evolve in 1996. Various
updates continued through Evolve 4.0 in 2007 [123]. Evolve 4.0 is somewhat similar to
Tierra and Avida in that it is based on a cellular automata, and the cells have a program-
ming language that they executed. Evolve allows multi-cellular organisms. Organisms are
always composed of adjacent cells, and in the event of cell death causing an invalid or-
ganism, the simulation partitions the organism, and kills the smallest partition. Cells make
the choice to ’grow’ into multi-cellular organisms through a command. Additionally, cells
within an organism have the ability to move around. Organisms themselves move as a
whole, assuming that the destination is empty. Unlike in Cosmos, there is no concept of
friction, the organism simply does not move. Within an organism, cells can communicate
through setting a ’mood’ value that other cells can read, and by sending a message to ad-
jacent cells or broadcasting it to all cells in an organism. This is similar to the mechanism
described in Cosmos, although in this case it cannot include executable code, or occur
between organisms [123].

Evolve allows organisms to use a data stack to receive data. To regulate the use of this
stack, the concept of energy is introduced. There is a finite, constant amount of energy in
the system. Organisms must maintain at least one energy to exist, and it costs energy to
maintain more than 50 items on the data stack. Additionally, energy is required to create
offspring. Almost no other operations require energy, however. Thus, its primary purpose
is to encourage responsible use of the stack [123]. If organisms do not have at least 1
energy, they die, and any energy expended towards having more than 50 items on the data
stack becomes organic material, a resource. Organisms in Evolve can gain energy by eating
organic material or other cells.

The genotype for evolve consists of a programming language known as KFORTH,
which is based upon the FORTH programming language. This language is tabular, with
elements representing numbers or instructions, and rows representing code blocks. Ex-

39

ecution starts at row 0, element 0. During execution, numbers are pushed onto the data
stack, while instructions are executed. At the end of the row, the previous ’start’ location
is removed from the call stack. There are operations, such as call, that push a new code
block onto the call stack. the if and ifelse instructions call a new code block if a condition
is met. This structure makes mutation and crossover simple and fast to perform, while also
ensuring executable code [123].

Reproduction in Evolve is handled through spores. Spores are created with energy from
the creator, and if eaten give that energy to the eating organism. Additionally, they can be
fertilized, creating a new organism. During fertilization, the organism might choose to pro-
vide additional energy, but this is optional. If fertilized, the new organism’s energy is the
sum of the initial energy and any energy provided during fertilization. If fertilized asexu-
ally, then genetic code is inherited from parent, though possibly with mutations. Mutations
may affect single instructions or whole code blocks, and include duplication, deletion,
insertion, transposition, and modification. If fertilized sexually, then uniform crossover is
performed between the two parents, with respect to code blocks. That is, uniform crossover
determines which parent contributes which code block to the offspring. If lengths differ,
then the organism automatically receives code blocks from the longer parent [123].

Evolve’s language provides primitives for looking around, with one of the goals of the
simulation being the evolution of organisms that look around a lot. Another stated goal
was the evolution of interesting, possibly intelligent behavior. Stauffer planned to run the
simulation continuously for a whole year, but it is unclear what results were gleaned from
this process, or if it was even completed. The last available snapshot is on day 298 [123].

Although not strictly an artificial life simulator, Hicks and Driscol showed that the
3D virtual environments of games can be used as a viable simulation environment for the
evolution of AI software agents [56].

4.3.13 Breve

Another simulation environment of note is the Breve simulation environment [68]. This
is a tool set allowing for the relatively rapid implementation of artificial life and distributed
systems simulations, particularly by users from a non-programming background. It pro-
vides modules for the 3D rendering of scenes, physical simulation of the environment,
collision detection, event detection and scheduling, and other things. It is worth mention-
ing here for completeness, as well as the 3D aspects of the environment, which have proven
useful to aid in the interpretation of behaviors. This is illustrated in a paper by Spector and
Klein in which the 3D aspects of Breve allowed them to notice multi-cellular organisms

40

in their evolutionary swarm algorithm [121]. There were further experiments where they
added musical notes to this simulation, generated from the interactions between the beings
in the swarm algorithm [120].

41

Chapter 5

DNAGENTS 1.0: GENETIC MOBILE AGENTS

5.1 Mobile Agent Concerns

It is clear that mobile agents are a promising avenue of investigation. There are many
advantages, as shown in section 2.3. These include reduced network traffic, their inherent
parallel nature, adaptiveness, tolerance of intermittent connections, reduced maintenance,
and portability. There are also, unfortunately, disadvantages which were discussed in sec-
tion 2.4. These include security, robustness, efficiency, complexity of agents and of the
framework, and authentication. Unfortunately, the relative scarcity of mobile agent im-
plementations in the real world would indicate that the advantages do not overcome the
disadvantages. Thus, we must set ourselves to the task of addressing these concerns.

One could spend a great deal of time discussing approaches to the various disadvantages
of mobile agents. The focus of this work is on addressing security, robustness, efficiency,
and the complexity; thus discussion of authentication approaches is minimized, except
where it connects with the other disadvantages.

Mobile agent security is one of the largest areas of concerns, with a great deal of work.
This work can largely be classified into work on the security of the host environment, and
security of the agent. The approaches to securing each, while related, are distinct, so can
be discussed separately. Host security can be further subidivdied into the concepts of Iden-
tification and authentication, and the Sandbox/Safe Language concept. The related, but
distinct area of the security of the actual agents is generally accepted to be much harder.
There are several areas attempting to address this such as detecting and managing compro-
mise [99, 27, 61, 58], trusted nodes [58], secure hardware [27, 26], and protecting the code
[110].

Another major disadvantage of mobile agents is the insurance of robustness. This area
is also known as fault tolerance; and is a major field of inquiry in and of itself, beyond the
application of fault tolerance to mobile agents [115, 116, 94]. Replication is one major way
of ensuring fault tolerance [88], but it becomes difficult to ensure the exactly-once principle
[107], which is very important to mobile agents.

The last major disadvantage of mobile agents that is of interest is the question of their
efficiency and their complexity. The major approach to combating the complexity of mobile

42

agents and improving their efficiency is the development of modeling systems such as the
API calculus [97], and the API-S security extension to it [49].

5.2 Analysis of Possible Solutions

Having identified again the major disadvantages of mobile agents, it is now possible to
discuss possible solutions to these. Approaches to host security are discued in sections 5.2.1
and 5.2.2. The other aspect of security, agent security, is covered in sections 5.2.2 and
5.2.4. Next robustness is addressed in section 5.2.5. Lastly, approaches to minimizing
compromise are presented in section 5.2.6.

5.2.1 Identification and Authentication

The concept behind identification and authentication as a method of increasing host
security stems from the idea of "trust." Trust in this context refers not to specific imple-
mentations to ensure trust, but to the concept. If an individual and his associations are
known, then a judgment about whether or not he should be allowed into a server can be
made. As an analogy, consider a uniformed officer. The average person would not invite
a stranger into their home, but the average person would be much more likely to allow a
representative of authority, such as a uniformed police officer, into their home. Now, it
is possible for anyone to pass themselves off as a police officer, with varying degrees of
success. Authentication and Identification try to ensure that this does not happen. Gener-
ally, these approaches revolve around uniquely and reliably identifying an agent, possibly
including its point of origin, and making a judgment about the trustworthiness of that agent
[136]. For example, by applying a signature to the code that if tampered with, no longer
validates. To put it differently, if the signature is intact, then one can be assured that the
agent was in fact written by a certain entity and the trustworthiness of that entity is trans-
ferred to the agent. Similarly the entity is accountable in some sense, for the agents actions.
This functions reasonably well assuming that there are no mechanism by which the identity
of an agent can be copied. A related mechanism is to in addition to identifying an agent or
type of agent, is to try to ascertain its trustworthiness by surveying other "peers". Rather,
the agent’s reputation is an aggregate of the reported experience with that agent by many
nodes [36]. Similarly, this functions well if there is no means to change the identity of an
agent. There is another mechanism for disruption with a reputation based system, in that it
is difficult to ensure that an agents reputation cannot be tampered with by false or malicious
reporting, for instance.

43

5.2.2 Safe Languages and Sandboxes

The other major mechanism for ensuring agency security stems from the idea of making
it impossible for an agent to do any real or lasting harm to the agency. One example of this
type of approach is a "safe language." A safe language is a language designed such that no
actions can be taken which damage the host; its a restricted language in which the agent
has limited power. This is difficult to design, perhaps, and can limit the usefulness of the
agent, but is effective. A related and more common method, is the concept of a sandbox.
The sandbox refers to a virtualized, limited, encapsulated environment in which the agent
has limited access to local resources, so any disruption the agent can inflict is localized and
minimized [7, 67].

5.2.3 Detecting and Managing Compromise

To move on to the concept of protecting the agent, the first and biggest category is
the detect and manage category. These approaches generally assume that it will happen,
and seek to minimize the damage when it does occur. One method of doing so is the use
of multiple agents, as in [99]. Multiple agents can address security in several ways; by
distributing the algorithm to many agents and compartmentalizing each agents involve-
ment, one can protect the overall algorithm from compromise[27]. By parallelizing the
search process through multiple identical or redundant agents, one can help ensure the task
completes successfully in spite of compromise or bad information(bad information can be
identified through mechanisms such as voting [93]). These two approaches to multiple
agents are by no means mutually exclusive.

Two other mechanisms for managing compromise are the encrpyion of partial results,
such as in [61]. In this sort of approach, at each step the partial results are encrypted in such
a way that the home system can decrypt it, but the agent itself lacks the mechanism to do
so. In this way, if the agent is compromised at the next step in the algorithm, at most only
the current step the agent is working on is compromised, previous data and steps are still
encrypted, and possessing the agent does not help the malicious entity in decrypting the
data since the agent only has the mechanism for encrypting the data. A similar approach
involves the agent returning home frequently, and offloading any partial results or sensitive
data. This type of approach is described in [58]. While these approaches have focused on
protecting the data, the code might also be important as well. Two major approaches to
doing so are obfuscation and encryption. Obfuscation is a process by which all meaningful
whitespace and variable names are removed from the code in order to make it as unreadable
to humans as possible. This attempts to make it more difficult to determine the contents of

44

the code. Encryption of the code ensures that the code cannot even be executed unless either
the encrpyion protocol is compromised, or the host is authorized to do so. Descriptions of
measures to protect the code are described in [110]. Generally, encrpyion is only as strong
as the encryption algorithm, but encrpyion can be quite strong and works well in practice.

5.2.4 Avoiding Compromise

The other major approaches to agent security involve means in which to avoid compro-
mise. It was proposed in [58] to compile a list of trusted nodes; nodes that were trusted
not to be compromised. Presumably this list would be periodically re-evaluated. This is a
good idea, although the trustworthiness of nodes might change rapidly, as compromise is
by nature an unanticipated, and generally a temporary condition. Secure or tamper-proof
hardware has been proposed as a workaround to this problem in [27] and [26]. This would
solve the issue, if the list of visitable nodes only contained nodes with secure, tamper-proof
hardware, then nearly all forms of compromise would be eliminated. There is a much
higher cost associated with this approach than all others, unfortunately, which makes it
unlikely to be implemented widely.

5.2.5 Fault Tolerance

Somewhat ironically, one of the selling points of mobile agents is their increased fault
tolerance compared to traditional client-server architectures and protocols. It is also one of
their weaknesses, in that although yes, they are less susceptible to flaky Internet connec-
tions, they do exist in the network and are thus subject to link outages and node failures.
Ensuring that agents are not blocked, or prevented from completing their task by a node or
link failure, agent redundancy is usually used. While redundancy in agents makes it easy to
recover from an individual link or node failure, it becomes correspondingly more difficult
to ensure that each action is executed exactly once. This is partly due to the uncertaintity
the Internet adds to the theoretically simple action of detecting a crash: in an environment
such as the Internet it is difficult to accurately and reliably detect a crash. The uncertainty
of when or if to relaunch or restart execution from a redundant agent leads to uncertainty
about whether or not an agent will execute exactly once. The exactly-once property is not
significantly important for all applications; search queries and any kind of data gathering
agent does not suffer from this. On the other hand, it is of paramount importance for an
agent that takes an action on behalf of a user, such as a financial transaction.

One type of approach to providing mobile agent fault tolerance in the use of multiple
agents for redundancy, but requiring the group of agents to vote on whether or not an

45

action was successfully completed. This is comparable to the multi-agent approach to
security where agents vote on whether or not data has been compromised. One approach,
proposed in [108] proposes that an agent at a node pick a primary destination node, and
send an active copy of itself to that node. It also, simultaneously sends observer copies
of itself to N alternative execution points. In the event of no failure, the observer copies
do nothing; but in the event of failure, they allow the agent to resume execution from that
node instead. To further ensure that actions happen only once, it requires a majority vote
of all N copies and the active agent before a commit can occur, or the decision to resume
execution. This type of mechanism of sending copies to alternative points of execution, or
reserving copies, is known as replication. The approach in [108] makes the assumption that
their are sufficient available redundant execution points. Indeed, as the agent gets closer to
finishing its tour of steps, called stages in their algorithm, the potential restart points begins
to shrink, and the algorithm is more prone to blocking. Most approaches to fault tolerance
ensure that the agent will "survive" fault through replication, and go about ensuring the
exactly-once property by introducing some sort of protocol for inter-agent communication
that attempts to ensure the agents as a whole act to a single purpose, such as [94] which
models agent execution as a series of agreement problems. Alternatively, one can attempt
to modify the platform itself, the agency, in order to attempt to ensure this property[51]
through the accurate detection of fault or crashing. There has been quite a bit of work in
this area, but the problem has not been completely solved.

5.2.6 Combating Complexity

The last major disadvantage of mobile agents has to do with their complexity. Simply
put, mobile agents are more complicated than client-server approaches and protocols. They
violate most security assumption, and many other assumptions that other similar protocols
are build upon. This can make understanding them difficult. Indeed, correctly implement-
ing both the platform or framework itself can be difficult. On top of this, implementing
an effective mobile agent is also difficult. There isn’t much being done to combat this
complexity. On the understanding approach, modeling tools such as an extension of the
Pi Calculus for mobile agents, API, have been created [97]. Similarly, others have since
extended API to handle some security specific situations and concerns [49]. While these
models are effective tools for studying the implications of various effects to mobile agents,
they do not directly combat the underlying problem that mobile agents are complicated to
implement and use effectively. Indeed, it is uncertain how to go about providing this, and
this is truthfully possibly one of the greatest obstacles to widespread use of mobile agents,

46

after security. Of those that understand them, many rightly fear them for the security im-
plications, and to those that fail to fully understand mobile agents the advantages are not
apparent.

5.3 Other Approaches to Genetic Mobile Agents

There is another possibility for addressing the concerns with mobile agents: applying
genetic algorithms to mobile agents. A full review of genetic algorithms is provided in
chapter 3.1 Genetic algorithms have several aspects that might naturally compliment mo-
bile agent concerns such as security, robustness, efficiency, and complexity.

The natural obfuscation of candidate solutions inherent to genetic algorithms is of ben-
efit to security concerns; it is often difficult to understand exactly how a particular solution
arrived at by a genetic algorithm works, much less reverse engineer it. The code of the
solution is seldom encoded in a way that makes it easily human readable, and seldom fol-
lows any logical patterns that a human can pick up on easily. Rather, genetic algorithms
find ways to do things, they are not always the way a human would do the same thing. All
this makes it more difficult to compromise code. Additionally, the importance of a genetic
algorithm lies in the methodology used to generate the candidate solution, not on an indi-
vidual candidate solution. This alleviates some concern about preventing the algorithm of
the agent itself being compromised.

Genetic algorithms are based on evolutionary theory. This seems a natural fit for im-
proving somethings robustness and efficiency. That is, evolutionary theory states that the
fittest candidate is more likely to survive to reproduce, thus over time all candidates im-
prove. While genetic algorithms artificially define a specific fitness function, it is difficult
to evolve a solution that isn’t capable of surviving. While this might require tweaking for
optimal results, it would seem that genetic algorithms would simply tend towards providing
a solution more capable of persisting through disruption, and thus, more robust. Similarly,
genetic algorithms are primarily used in optimization problems. Again, this naturally seems
to fit the desire to make mobile agents more efficient.

Lastly, genetic algorithms would provide a degree of abstraction. This could potentially
simplify the creation of mobile agents; the user only needs define the goal, not all the steps.
Genetic algorithms are generally used to find solutions to difficult problems. If it were
simple to find an optimal solution to the problem, why use a genetic algorithm? Indeed, it
is largely the purpose of genetic algorithms to solve difficult problems.

It should not be terribly surprising at this point that others have tried to apply genetic
algorithms to mobile agents. It is somewhat surprising that there has not been a great deal

47

of work in this area. In a cursory look at the material, it might sound like some attempts
at artificial life (for a discussion of artificial life in general see chapter 4.1) use the term
Agent, and also use aspect of genetic algorithms, they are distinct from genetic algorithms,
and their concept of agent refers to the original definition of agent, and is distinctive from
mobile agents. A notable example of this is the Bugs simulator, discussed in section 4.3.9.
Artificial life as it relates to the evolution of mobile agents is discussed later in section 5.9.
The actual work combining genetic algorithms and mobile agents has revolved around
evolving neural networks to control agents [19], using layered learning to evolve teams of
agents for multi-agent systems [57], evolving behavior graphs for agents[62], and evolving
communication behaviors for multi-agent systems [79]. This might not be a completely ex-
haustive list of attempts to apply genetic algorithms to mobile agents, but it does comprise
the prominent and easily discovered attempts at the time of this writing.

5.3.1 Evolving Neural Networks for Agent Control

Braun et al [19] drew an association between intelligence and control mechanism. That
is, intelligence for an agent is defined as a problem of optimizing its control scheme; ergo
the application of a genetic algorithm to aid the search for the optimal parameters for the
control scheme of mobile agents. The author defends the selection of neural networks
as being the control scheme most commonly associated with intelligence, but admits this
selection is somewhat arbitrary. There are two types of optimization to consider; the op-
timization of connectivity and the optimization of weights. The connectivity can be con-
sidered a design problem; what is the optimal design for the neural network. The weights
problem corresponds to a learning problem. Thus, this approach uses genetic program-
ming to optimize the design of the neural network, and as a second level each individual is
trained by a local heuristic. This is not an entirely unique approach, in that genetic algo-
rithms have been applied to the optimization of neural networks in prior work. It is unique
in the application to mobile agents. While this work is interesting, it does not necessarily
demonstrate a capability to overcome any of the other issues inherent to mobile agents;
indeed it adds complexity. This is not to say that it is a flawed approach, simply that this
work demonstrates genetic algorithms and neural networks can be evolved to effectively
control agents; not that these agents are more secure or resistant to fault.

5.3.2 Using Layered Learning to Evolve Teams of Agents

48

The second approach that will be examined is an application of layered learning to
multi-agent systems described in a work by Hsu et al [57]. The "goal" in this work is to use
layered learning to evolve agents capable of working together to play soccer. While this
involves agents, and not mobile agents, it is an example of using genetic programming to
evolve team-based behavior. Layered learning using genetic programming involves evolv-
ing solutions using a population of solutions to a simpler problem. Specifically, in layered
learning a problem is divided into a hierarchy of subproblems. Then, starting at the leaves
of this hierarchy, solutions to each subproblem are evolved. These solutions are then used
as seed population for the parent nodes. The authors were successful in evolving intelligent
agents for a cooperative Multi-agent-system task, namely soccer. Partly this is due to the
ease with which a cooperative task such as soccer can be decomposed into subtasks. This
is akin to the way in which groups of humans learn to play soccer. This is not a weakness
of the approach per se, but it does not necessarily follow that the approach is applicable to
mobile agents.

5.3.3 Evolving Behavior Graphs Using Genetic Programming

It was proposed by Katagiri [62] to evolve "intelligent" behavior in agents by represent-
ing various simple actions as nodes in a graph, and intelligent behavior as a transition order
across that graph. Rather, the nodes represent actions, and the links represent the order of
the actions. Nodes are divided into judge nodes and process nodes. These nodes correspond
to judgment or process actions that are predefined by the user as possible actions. Execu-
tion is taken by visiting the nodes, although unlike regular genetic programming execution
does not resume from the root node for the next action, the argument in the paper is that
this allows previous states to affect future states. The initial connectivity between nodes
is randomly selected, then subsequently the optimal connectivity is evolved through basic
behaviors such as crossover and mutation. Their results indicate that their method, genetic
network programming, has better generalization flexibility than regular genetic program-
ming. For the purposes of this work, it is an interesting approach, but does not deal with
mobile agents directly. While the idea of predefining possible actions and then selecting
the optimal set and sequence of actions would be an interesting methodology to attempt
to choose between competeting survival parameters, it is at this point pure speculation and
indeed outside the scope of the work in question; [62]. It is also somewhat outside the
scope of this work, in that the goal of this work is to evolve behaviors themselves, and not
select between existing behaviors.

49

5.3.4 Evolving Communication Behaviors for Multi-Agent Systems

The focus in Mackin’s[79] work is on the evolution of communications behaviors for
multi-agent systems. To review, a multi-agent system is a system in which multiple inde-
pendent agents cooperate with each other to complete related tasks. This is an important
and worthwhile endeavor, chiefly because effective communication systems for multi-agent
systems can be complex and difficult to design, yet are essential to the success of nearly
all multi-agent systems. Specifically, this work applies a specific type of genetic program-
ming to this problem, primarily to increase the ability of the mutli-agent system to react
to a changing environment. That is, predefined communication protocols, while effective,
limit the systems flexibility and hamper its autonomy. The form of genetic programming
they use, Automatically Defined Function genetic programming is somewhat similar to the
layered learning method described previously, indeed that paper makes reference to it in
contrast to itself. It revolves around decomposing the problem into individually solved
subproblems. The results of this work were promising, the work demonstrating that it is
possible to evolve an efficient communication mechanism without prior knowledge of the
domain. This work is applicable to the question of efficiency and complexity in mobile
agents, but does not neceseisarily indicate any advantages for security. Indeed it does how-
ever show that genetic algorithms is a promising avenue of investigation; if its possible to
have agents dynamically evolve an effective communication protocol, why not a security
protocol?

5.3.5 In Summary

While there has been some work applying genetic algorithms to concepts such as au-
tonomous agents, this work is mostly focused on agents, and much if it is targeted at a
robotics domain. While some of this might be applicable to the problem of mobile agents,
it has not been applied to it, to date. While in some sense mobile agents are descended
from agents, their domain is very different, and many of the challenges are different, ergo
the approaches to solve complexity issues with agents do not solve these problems with
mobile agents. Similar, agent security and mobile agent security are drastically different,
as is agent and mobile agent robustness, both due to the Internet’s inherent uncertainty. All
this leads to the conclusion that this is a promising area, and that further investigation is
warranted.

Various methods for addressing mobile agent concerns were discussed previously. This
conversation lead to the discussion of various attempts to combine agents and genetic al-

50

gorithms, and the promising nature of combining genetic algorithms with mobile agents.
Towards that goal, in this chapter two things are presented. First, the initial attempt to apply
canonical genetic algorithms to mobile agents is presented. This attempt was successful if
not completely ideally optimal, and more importantly it highlighted some concerns with
applying genetic algorithms to the domain of mobile agents. This is followed by a discus-
sion of various modifications to genetic algorithms that might address these shortcomings,
and ultimately the second, more major part of this work, the description of a variation of
genetic algorithms, called DNAgents, that is more well suited to the domain of mobile
agents.

5.4 Evolving Genetic Mobile Agents

In order to set about evolving genetic mobile agents, one must first have a mechanism
to simulate a network. Mobile Agent Simulator (MAS) was developed for the purpose of
simulating agents, due to the lack of a pre-existing mobile agent simulator [60]. Figure 5.1
depicts an early version of the visualization component of Mobile Agent Simulator. The
simulator is discussed in more detail in [60]; although any modifications to it necessary
for various experiments, and the aspects of it that directly impact those experiments, will
be discussed as necessary. It should be noted that the simulator includes an execution
environment for code, similar in structure to assembly or machine code. Discussion of
the simulator is limited primarily to discussing the agent language, as the language that
comprises the genotypes has a great impact upon the ease of evolving solutions.

Figure 5.1: Early screenshot of Mobile Agent Simulator

With a simulator in place, the task of evolving agents could commence. First, what
would be an appropriate early task to attempt to evolve agents for? While things such as

51

survival were considered, ultimately it was decided that for a starting point the evolution of
an agent capable of exploring the network would be a good starting point. This algorithm
could in the future be of benefit to search algorithms, so this is a worthy starting point.

Towards that end a mutation operator was implemented along with Elitist selection,
and an initial population of 100 agents comprised of 25 lines of random code each were
created. Specifically, in the selection algorithm the lower ranking half of the population is
replaced with new individuals. The agents were created by selecting first a random number
between 0 and the number of defined instructions, then two random numbers between 0 and
100. The 100 was arbitrarily chosen as the upper limit for identifiers. A random network
was generated, and the agents were executed for a generation consisting of 15 seconds of
simulation time. Movement within the simulation is not free; transit time is computed and
an explanation of the algorithm can be found in [60]. The fitness function was defined
as the number of unique nodes visited, which was tracked within the simulation, and not
by the agents themselves. It is worth noting that the previously described implementation
differs not at all from the canonical, traditional genetic algorithm described in chapter 3.1.

These random starter algorithms did not perform very well; although due to the number
of instructions possible, and the number of lines that comprised them, they would often visit
one or two nodes simply through luck, and because undeclared variables return a zero, so
calling send with an invalid variable attempts to visit node zero. After several generations,
the interaction between mutation and elitist ranking caused agents with several sends to be
more favored. Very little looping was evidenced, but agents continued to visit more nodes,
reaching about 8 unique visits in the 15 second generations. Eventually, code appeared
that mirrored very closely the hand-written code, except with no looping. Looping was the
last thing to evolve, and ironically the code that was first observed looping was essentially
the hand-written code described above, but with a few extra operations that were ’jumped’
over.

In order to describe the evolution of agents, a necessary discussion of the agent language
is required. The initial language was very simple, consisting of only a few operations,
described in table 5.1. These were the bare minimum instructions required to have an
agent visit nodes in a network, and included no conditional operations. With respect to
the simulator, variables are currently referred to by a numerical ID; for example variable
1. At the time of this experiment, there were no logical limits on the number of variables
an agent could have. Additionally, it should be noted that all commands are valid, and
none are capable of causing a crash. For instance, trying to jump before or after the agents
code is ignored. The first agent, handwritten for testing purposes and depicted in table 5.2,
serves to illustrate the genotype. For clarity, the actual genotype of this agent is represented

52

by the string 110410120712322220500.

Table 5.1: Initial Instruction Set
Instruction Description
NoOp Does nothing.
Alloc X Allocate variable referred to by id X.
Store X,Y Stores integer X in address Y
Jump Line Jumps to line specified by the number; not a variable
GetNumNeighbors X Store in X the number of neighbors of the current node.
GetNeighbor X,Y Get neighbor X and store it in Y
Random X,Y Selects a random number between 0 and X, and stores it in Y.
Send X Transfer agent to node X.

Table 5.2: Genotype of a Simple Agent
Instruction Operand 1 Operand 2 Translation

1 1 0 allocate memory location 1
4 1 0 1=mynode.getnumneighbors()
1 2 0 allocate memory location 2
7 1 2 2=rand(0,1)
3 2 2 2=mynode.getneighbor(2)
2 2 0 send agent to node 2
5 0 0 jump to line 0

These results, while interesting, are not groundbreaking. The very narrow scope of the
agent language led naturally to the result that was observed. Put differently, the search
space was very narrow. Thus more complexity was added to the language in the hopes of
evolving an agent even better at this ’hopping’ behavior. Table 5.3 lists the math operations,
table 5.4 lists the conditional operations and utility operations, and table 5.5 lists the array
operations that were added to the language at this point. These additions greatly increase
the size of the language, and the performance the agents are capable of. It is notable that
while the conditional and math operations continue to perform in a way similar to most
assembly languages, the array operations begin to add complex behavior not often found in
an assembly language. As before, an agent was written by hand for testing the functionality
and to provide a performance baseline. It, on average, visited between 40 and 50 nodes.

53

Table 5.3: Initial Math Operations
Instruction Description
Add X,Y Adds integers X to Y and leaves the result on the adder
Sub X,Y Same as add, but for subtraction
Mul X,Y Multiplication Operator.
Div X,Y Division operator.
Cmp X,Y Performs comparison, setting flags on adder indicating relationship

Table 5.4: Initial Conditional and Utility Operations
Instruction Description
JGT Line Jump to line specified by number if adder greater than flag set.
JLT Line Jump to line specified by number if adder less than flag set.
JEQ Line Jump to line specified by number if adder equal flag set.
JNEQ Line Jump to line specified by number if adder less than flag set.
Load X Takes the value in X and pushes it onto the adder.
Unload X Takes the value from the adder and puts it in X.
Incr X Takes value stored in X and increases it by one.
Decr X Takes value stored in X and decreases it by one.

Table 5.5: Initial Array Operations
Instruction Description
New X Creates new array at ID X; separate from variable memory.
AddVal X,Y Adds value X to array Y
GetVal X,Y Gets value at index X from array Y and stores on adder
Pop X Removes last value added to array X, and puts it on adder
RemoveAt X,Y Removes value at position X from array y
RemoveVal X,Y Removes value X from array Y
Contains X,Y If array Y contains value X, adder EQ condition set
Empty X removes all values from array X.
Copy X,Y Copies all values from array X into array Y.

Crossover was implemented, another initial population created, and evolution begun
again. The method of crossover was taking the top 10%, creating 40% of the population
from them, and then creating the other 50% of the population by mutation. After 5,000
generations of crossover and mutation, code was producd that perofrmed approximately as
well as the handcrafted code. This evolution was done with random insertion points and
randomly generated networks, and again the simulation time was 15 seconds. Note that
peak perfromance was gained within approximately 200 generations, and it did not change
much for the remaining iterations.

54

5.5 Results of Evolving Mobile Agents

At this point it was speculated that totally random networks and totally random insertion
points were unfair, so experiments were performed. Each generation of this simulation
consisted of 25 seconds of simulation time, or 25,000 tics, and populations consisted of
1,000 individuals. This time value is the value used for all remaining graphs in this section.
Figure 5.2 illustrates the overall performance of the top 5 agents in each generation for
the entire simulation in a nonrandom network and nonrandom insertion point. Figure 5.3
illustrates the performance of a random network with nonrandom insertion. The top 10%
refers to the 100 individuals with the highest number of unique visits. Surprisingly, despite
the assumption that nonrandom networks would perform better; this was not observed in
the trials. At any rate, logically, random networks with nonrandom networks are more in
line with the goals of this experiment; the evolution of an agent that can explore and learn
the network dynamically, not the evolution of an agent that racially remembers a network.

Figure 5.2: Results of evolution in a static network with static insertion points.

55

Figure 5.3: Results of evolution in a random network with static insertion points.

Figure 5.4 illustrates the overall results of an experiment with reinserting the hand-
crafted agent generation 0. It is evident from the graph that the resultant agent outperforms
both by a significant margin. Figure 5.5 illustrates the result of the first 100 generations
after insertion, and the rapid improvement. While it was evident from these results that the
evolved agent outperformed IDA, averages were computed by running each agent through
2 separate trials of 25 second explorations of 10,000 random networks. Figure 5.6 shows
the result of these trials, which were applied to the result of the simulations. On average;
the agent evolved from reinserting IDA, known as IDA-ReInsert, outperformed IDA by
about 7 values. IDARI’s minimums were significantly higher, however. More disturbing,
however, the result of purely random code is not competitive with IDA, this indicates that
evolving the proper use of arrays is perhaps too difficult, or selection pressure is insuffi-
ciently high. Better results might be obtainable through the use of better selection methods,
or with lower mutation percentages, as well.

56

Figure 5.4: Overall results of repeated reinsertion of handcrafted agent into generation 0.

Figure 5.5: Graph illustrating very rapid improvment due to the reinsertion of a handcrafted
solution.

57

Figure 5.6: Performance comparison of all agents.

5.6 Genetic Mobile Agent Concerns

The results of this work are interesting, but do raise some concerns. While combining
Genetic algorithms is clearly feasible, and shows promise, the fitness function is extremely
difficult to define. For instance; how does one rank the various actions that are important;
for virtually every agent, searching the network and dynamically learning it is an important
behavior; but it is not the only behavior. It might be difficult to craft a fitness function to
balance "hopping" with other behaviors. Additionally, some behaviors exhibit an all-or-
nothing type metric; for instance, placing an order. How to distinguish between one agent
and another, accurately, for ranking purposes?

Another, more serious concern, is not all agents are designed such that their perfor-
mance can be measured in a timely manner. This is an issue due to the generational nature
of genetic algorithms. One can easily envision agents that never return. For instance:

• A crawler that occasionally sends back updates, but continuously attempts to discover
new resources.

• Autonomous Intrusion Detection Systems implemented as agents; only return or
communicate on a success; the absence of which does not necessarily indicate poor

58

performance on the agent’s part.

• Autonomous agents in simulations that potentially run continuously, such as bot de-
tection in online games or even opponents in online games or simulations.

Even for tasks that do not end, the network is by nature malleable. Thus, any attempt at
evolving mobile agents is aiming towards a moving target. The moving target in this case is
the optimal way to react to a network, an environment that changes. Thus, evolution must,
in some sense, be continuous. In addition, it must be distributed; while for early experi-
mentation a simulator is sufficient, ultimately for the end product, a distributed version that
runs in real networks would be preferable; ergo it is safe to assume non-global knowledge
as a constraint. This leads to a discussion of some variations on genetic algorithms as well
as distributed genetic algorithms.

5.7 Considering Variations on Canonical Genetic Algorithms

The traditional approach to genetic algorithms, or the Canonical Genetic Algorithm,
is discussed extensively in chapter 3.1. Indeed, the preceding section described in detail
an implementation of a traditional genetic algorithm for the purposes of evolving mobile
agents. It was found lacking. There are modifications to the traditional scheme of genetic
algorithms that are worth considering for mobile agents: steady state genetic algorithms,
continuous genetic algorithms, and self adapting mutation rates.

5.7.1 Steady State Genetic Algorithms

Steady state genetic algorithms generally have a fixed population size. Periodically
an individual is selected by some criteria to be replaced by a new individual created by
crossover of the surviving population. The criteria for selecting this individual varies, but
often includes worst solution or fitness rating, or the oldest solution. The selection step,
in this algorithm, is performed on crossover: several solutions are created by crossover,
cloned, and then mutated, with the best being selected. This means that steady state genetic
algorithms require the evaluation of many potential solutions at each instance of crossover.
This is workable for solutions with a fixed or small evaluation time; in the case of mobile
agents, they need to be continually re-evaluated, and cannot be evaluated in this way. That
is to say, theoretically in simulation a prediction of their behavior could be performed in or-
der to select the new individual to join the population. In practice, this would be somewhat
impractical to truly evaluate the agents in a real-world environment, due to the nature of
the delays involving with evaluating agent performance meaningful. Mobile agents simply

59

do not have a fixed execution time. Put differently, it takes time to determine if a potential
solution is viable with mobile agents.

5.7.2 Continuous Genetic Algorithms

A more promising modification of genetic algorithms are continuous genetic algo-
rithms. Continuous genetic algorithms are designed to explore a ’moving’ search space.
That is, the ’goal’ or fitness value is influenced by environmental factors, that are changing.
These algorithms propose new crossover or mutation operators in order to in some sense
avoid convergence. Convergence is the tendency of search algorithms such as genetic al-
gorithms to converge towards an optimal solution by eliminating less optimal solution sets
as it begins to fully search the problem space. That is to say, the nearer to convergence the
algorithm is the more uniform the set of solutions become, and the less variation occurs.
Thus, convergence can be negative when the fitness requirement can change radically; too
specialzied a solution will be unable to quickly adapt to a changing environment. Some
of these algorithms instead cause the algorithm to enter a state of extremely high muta-
tion called hypermutation periodically to partially reset the solution set. These algorithms
seem fairly appropriate for mobile agents, although they do not contain any special logic
for distributing the process appropriately; and are not necessarily designed to be run for-
ever; they are designed to produce an widely applicable solution instead of an optimal one.
Additionally, the proposed algorithms do not address the need for decentralization.

5.7.3 Self-Adapting Mutation Rates

Lastly, some genetic algorithms have self-adapting mutation rates. This is not neces-
sarily a great departure from canonical genetic algorithms, which sometimes have variable
mutation rates. It can be, as some algorithms have proposed encoding the mutation rate
as part of the solution. That is, the solution set contains a set of potential solutions, and
each solution has its own individual mutation rate. Thus, the algorithm convergence both
on an optimal mutation rate, and an optimal solution, simultaneously. This is an interesting
idea, that might be applicable to genetic mobile agents. This process does not necessarily
produce a solution that is adaptive; the focus is more on automatically selecting the appro-
priate mutation rate in order to speed up convergence. That is, the goal is the improvement
of the performance of the algorithm; not necessarily of the solution. Although, solution
quality is not compromised, it is simply not the goal of these algorithms to produce highly
adaptive solutions like mobile agents calls for. Similarly to continuous genetic algorithms,
they do not address the issues with the network environment working against centralized

60

selection. This leads us to the discussion of distributed or decentralized genetic algorithms.

5.8 In Consideration of Distributed Genetic Algorithms

As in Canonical Genetic Algorithms, in Distributed Genetic Algorithms a population
of potential solutions exists. In Distributed Genetic Algorithms, however, the population
is distributed according to the system architecture, with migration between populations oc-
curring periodically. Generally, one can think of each island as an independent canonical
genetic algorithm. Obviously, knowledge of the system architecture is required to imple-
ment this. There is another approach for extremely fine grained architectures that consists
of a series of overlapping neighborhoods that interact with their neighbors for selection,
without migrating solutions. The fine grained approach is more of a depature from tra-
ditional genetic algorithm than the coarse-grained approach. These two approaches can
be hybridized, in some sense, by having a coarse-grained collection on fine grained al-
gorithms. There is also another type of distributed genetic algorithm, in which only the
evaluation process is distributed, selection still being global. That is, candidate solutions
are distributed for evaluation, and the fitness value is returned.

Coarse-grained genetic algorithms seem somewhat poorly suited due to a difficulty of
deciding how to implement them on a network. While each node could be considered a
system in the architecture, mobile agents would have such a high degree of mobility that
the individual systems would be unable to observe much of their behavior; ergo they would
be reliant upon the individuals themselves to tell them their behavior. It seems perhaps
more logical to offload this behavior to the individuals, themselves, and allow them to
self-rank.

Similarly, fine grained and hybrid approaches would require a great deal more network
communication, though it would be possible through applying a topology to the network,
and allowing each node to communicate with its neighbors when performing selection and
ranking. Again, while the algorithm would have access to more observations of the agents,
to truly have an idea of how they are performing would require relying upon them to report
actions. So, again, we return to the idea of agents being self-ranking.

Lastly, distribution of the evaluation method and centralization of the selection method
works counter to the whole idea of mobile agents; the removal of a central authority or
client-server type mechanism. Additionally, since the agents are naturally already dis-
tributed in the medium (network) simply allowing themselves to self-rank makes a great
deal of sense.

This leads naturally to a discussion of self-ranking agents. If agents were allowed to

61

rank themselves, and thus decide what combinations of locally present potential solutions
should be combined; then they could be said to be organisms. If treating them as organisms,
we should consider the area of artificial life, which deals with the creation and evolution of
artificial organisms in an electronic medium.

5.9 Considering Artificial Life for Integration

There are a wide variety of artificial life simulators, and an overview of the individual
simulators and their common features is given in a previous chapter. Still it seems perti-
nent to consider their common features. They universally have some concept of a world,
generally two dimensional. While many of these representations are grid-based, some are
planar. In comparison, a network can be represented as a two dimensional graph, so it is
not too much of as stretch to go from a two dimensional planar world or grid-based world
to a graph based world.

All artificial life simulations have the concept of DNA. This DNA takes the form of a
programming language, and is generally similar to programming languages defined for ge-
netic programming; or indeed to that defined previously for the initial attempt at combining
genetic algorithms to mobile agents. Thus again, this is an extremely painless matching.

In a departure from genetic algorithms, very few artificial life simulations actually in-
clude a fitness function. This is due to the focus in artificial life generally being to mimic
natural evolution, which is assumed to be unguided. Or rather, guided only through en-
vironmental pressures, which by nature change. Ergo, artificial life can generally be said
to ’set up rules’ and then allow genetic-algorithm like organisms to find novel ways of
exploiting the rules in order to thrive. This sounds promising; given the nebulous nature
of trying to define a fitness function for ’survival,’ and the general difficulty of defining a
fitness function for mobile agents, period.

While mutation is practically universally present in artificial life, crossover is seldom
defined. This goes back to trying to model natural evolution; it is thought that reproduction
is a result of evolutionary pressure, not a mechanism of it. Ergo; an organism capable of
reproducing itself sexually or otherwise is more fit than an organism incapable of it. This is
the first situation in which artificial life might seem to be poorly suited to the evolution of
mobile agents; although the first iteration of genetic mobile agents did not include crossover
and was successful. Indeed, from the section of genetic algorithms early, crossover is not
strictly necessary for evolution, it simply makes convergence quicker. Indeed, it would be
easy enough to add crossover back to artificial life.

Lastly, artificial life simulations provide their "organisms" with various mechanisms for

62

interacting with their environment and each other. This allows mechanisms such as para-
sitism and predation to evolve as the organisms exploit their fellows and their environment.
Communication and cooperation are also possible. This is again a natural fit for mobile
agents in the network; they often communicate with each other, interact with servers, and
cooperate to perform a task more efficiently. Ergo, these are easily translatable. Addition-
ally, in artificial life sometimes certain behaviors (such as killing each other) is encouraged
by reward mechanisms such as "energy." Energy is a resource, and is generally required for
some other behavior such as reproduction. This encourages the evolution of some sort of
life-cycle or behavior cycle, by which the organisms performs some action to gain energy,
then once it gains enough, reproduces. It is also possible to invert the logic, and ’remove’ a
resource, such as energy as punishment to discourage bad behavior, such as in one notable
simulation in which organisms are encouraged to be ’efficient’ in using their storage space
due to extra space costing energy. This is again naturally translatable to mobile agents. op-
eration are also possible. This is again a natural fit for mobile agents in the network; they
often communicate with each other, interact with servers, and cooperate to perform a task
more efficiently. Ergo, these are easily translatable. Additionally, in artificial life some-
times certain behaviors (such as killing each other) is encouraged by reward mechanisms
such as energy. Energy is a resource, and is generally required for some other behavior
such as reproduction. This encourages the evolution of some sort of life-cycle or behav-
ior cycle, by which the organisms performs some action to gain energy, then once it gains
enough, reproduces. It is also possible to invert the logic, and ’remove’ a resource, such
as energy as punishment to discourage bad behavior, such as in one notable simulation in
which organisms are encouraged to be ’efficient’ in using their storage space due to extra
space costing energy. This is again naturally translatable to mobile agents.

In conclusion, while pure genetic algorithms seem to cause issues when combined with
mobile agents; mobile agents as organisms in artificial life simulations seems like a natural
match. Unfortunately, while in the strictest sense artificial life can be considered a type
of evolutionary algorithm; generally they are rather aimless. It is this that necessitates the
combination with some of the ’goal oriented’ nature of genetic algorithms with the different
approach of artificial life in order to more efficiently evolve agents. This brings us to the
purpose of this document: DNAgents.

63

Chapter 6

DNAGENTS 2.0: AGENTS AS ORGANISMS

The previous chapter discussed the motivation for and benefit of combining genetic
algorithms. It also discussed at length DNAgents 1.0, in particular the difficulties that
arose in implementing it. The chapter went on to discuss various modifications of genetic
algorithms that were considered for inclusion into DNAgents, but ultimately found lacking.
It ended with a discussion of artificial life, which again, while promising, was not quite
sufficient in itself. This chapter begins with a further elaboration of the motivation behind
DNAgents 2.0 in section 6.1. While the motivation for combining genetic algorithms and
mobile agents has been discussed at length, this is not the only motivation for this direction.
In some sense, DNAgents 2.0 is motivated by "What may be" instead of purely a reaction
to "what is." It is this potential that section 6.1 attempts to show. This is followed by an
overview of DNAgents 2.0 in section 6.2. The various new mechanisms introduced by
this new framework are discussed in sections 6.3 and 6.4. Experiments are proposed in
section 6.5, with an actual experiments implementation and its impact upon the algorithm
being discussed in section 6.6. Finally, the results of this experiment are discussed in
section 6.7.

6.1 Algorithm Motivation

It is becoming increasingly difficult to safeguard the network against intrusion and at-
tack. It is possible that a sort of pseudo-lifeform might be created to reside in the network,
and protect its environment. This perhaps sounds a bit like science fiction, but this pseudo-
organism might take the form of a mobile agent capable of evolution. Specifically:

• A Strain of agents exist within the network.

• This strain is capable of reproduction, and evolution.

– Attempts to discover new exploits and viruses through evolution.

– Disseminates this information through both communication and genetics to its
fellows.

64

– Attempts to attack and destroy any examples of the virus or exploit it discovers,
continuously.

• The most important part of this potential strain of agents is that it is omnipresent, and
continuous.

It might be instinctual to disregard this as a ’neat’ idea but otherwise fantastic and un-
believable, and furthermore unnecessary. This is perhaps true, at the current time. On
the other hand, if the potential for the creation of this sort of artificial immune system is
remotely possible, then certainly its dark counterpart is also possible. What if, through
maliciousness or greed or some misplaced emotion, someone were to create a strain of en-
tities that existed solely to discover and exploit these hacks; and to avoid detection. The
chief means of detecting viruses and exploits currently is the identification of non variant
substrings that comprise whatever specific security loophole it relies upon. In the nature
of natural selection, these evolving exploits would not necessarily need to hang on to old
exploits, and indeed, keeping only the most current exploit would be a survival mecha-
nism against detection. It would be difficult to defend against this threat with conventional
methods, if it is indeed possible; thus it is worth investigating the benign counterpart.

For this sort of task traditional genetic algorithms are a bit lacking due to their gen-
erational nature and artificially defined fitness function. For this purpose and others, a
biologically inspired framework that contains much of genetic algorithms, but not all, is
proposed in the following section.

While there has been a great deal of work on evolutionary programming, there has been
relatively little work with regards to applying evolutionary programming specifically to the
area of mobile agents. The preceding sections have talked about attempts to combine these
as well as the underlying issues. This leads to the conclusion that this relative scarcity is
due in part to the complexity of defining a fitness function for mobile agents, and partly
due to the decentralized nature of mobile agents and their "black hat" counterpart, viruses.
In fact, due to the fact that some never report back, it is difficult or possibly impossible for
a central authority to gauge their fitness. It can be difficult to even define a fitness metric
for these incredibly complex applications.

Consider a mobile agent, and what is desirable for it. Certainly there is a task, which we
assume to be defined by the user, and thus outside the realm of our evolutionary algorithm,
for the moment. In addition to this, there is the concept of managing an itinerary: which
nodes to visit, how to visit them, how to stay alive, what happens if a failure occurs. How do
these various sub goals factor into the definition of a fitness function? It certainly defines
a huge search space. Assuming that a reliable fitness function is derived for these; they

65

would have to keep a record, in some way, of their fitness. This could be accomplished
by computing their fitness function themselves or by carrying a log of information back
to the central server. Furthermore, it is necessary for the agents to return home so that
selection and crossover can occur. Due to the vagaries of network traffic in the Internet,
the obvious application space for a mobile agent, it is difficult to ensure that all agents will
return. Successful agents might not even return, dying after their task is accomplished.
Some tasks that do not require the agent to return at all, such as network monitoring or
intrusion detection. Lastly, assuming the adequate definition of a fitness function, which
is very non-trivial, and the insurance that enough of a test population returns in a timely
enough manner to facilitate useful reproduction, the task itself does have an impact upon
the fitness function. This is a very difficult problem; staggering even; although for some
’base cases’ it might be more tenantable, such as network exploration and discovery.

6.2 Algorithm Overview

This work proposes a novel method of applying evolutionary programming to mobile
code. The proposed method mirrors, in some sense, the broader scope of artificial life
simulation, rather than the focused area of genetic algorithms. It seems that due to the
mobile aspects of mobile agents, they can be thought of as living beings. These beings
live within a world of machines. Thus, it seems logical to allow them to evolve within this
world directly, in a completely decentralized manner. Table 6.1 lists the major components
of the proposed algorithm.

Table 6.1: Algorithm Components
Component Description
Selection How and when mating occurs
Senescence The aging process
Revitalization Reward mechanism, counters effects of senescence.
Death Death of individuals

The broad idea is, in summary, to allow individuals to semi-freely interact with their
environment, and reproduce. All individuals age naturally, over time. This aging process
can be represented as an increasing chance of failure, or death. Death can be postponed by
doing beneficial actions, as defined by the user. The definition of ’beneficial’ and ’detri-
mental’ actions takes the place of the traditional fitness function, and should be easier to
define for complicated problems such as mobile agents. Death generally occurs eventually,
although it could be possible to allow for a biologically immortal organism. Additionally,

66

death can occur as a function of the environment; accidental death, as it were. The four
stages listed in 6.1 are discussed in sections 6.3 and 6.4.

6.2.1 Possible Applications

This algorithm is extremely applicable to concepts such as mobile agents, especially for
applications involving virus or intrusion detection. Currently, when applying evolutionary
programming or neural networks to a problem such as intrusion detection, the monitor must
be trained to the network. At some point, training ends, and the monitor must be retrained
occasionally to maintain security. Theoretically, if successful, an algorithm like this need
not end; the population will shift over time to encounter new threats. Individuals could be
trained separately, and introduced into the environment to influence the whole population
by interbreeding.

6.3 Selection

In genetic algorithms the algorithm itself defines criteria for mate selection, usually
universally among a pool of all individuals, or within a predefined local community. This
process takes place between generations, all at once. The translation of this stage into
a process that occurs continually is proposed, allowing reproduction and mate selection
to occur on an ad hoc basis. It can either managed by the individuals themselves, or by
the algorithm. There are several potential methods by which the individuals could select
potential mates, and a non-exhaustive list is presented in table 6.2

Table 6.2: Potential Selection Criteria
Criterion Description
Difference How different or similar are the two mates.
Random Select completely at random, or probabilistically.
Age How old is the individual
Fitness How successful has the individual been.
Energy Based "Energy" is required for reproduction.
Dynamic A mixture of the above methods.

Selecting based on difference or similarity could be used to encourage or discourage
diversity in the population. This can be calculated by checking for similar instructions be-
tween the two individuals. Theoretically, the offspring of similar individuals would gain
little from mating. Random selection refers to either probabilistic or completely random
selection, upon encountering an individual there is a preset probability that mating will oc-
cur. Age based selection assumes, to an extent, a hostile environment. Additionally, with

67

the inclusion of the concept of senescence, as defined below, the older an individual is the
more fit they are. Fitness implies that the individuals could share their respective history;
in the case of viral strains this could be a list of exploits found. The fitness method assumes
that some metric for measuring success exists, provided outside the direct context of this
algorithm, and is very similar to the fitness function of traditional genetic algorithms. Dy-
namic selection is included to indicate that these are not necessarily all or nothing selection
schemes, and can be freely combined as necessary or desired.

Completely unregulated reproduction could be problematic, so it might be necessary
to introduce additional control features. For instance, population could be maintained to
a fixed size by restricting each individual to exactly one mating. In the case of restricted
mating, however, some mechanism must exist to maintain population equilibrium. It might
be more beneficial to define a territoriality metric that restricts population to network size;
individuals choose not to interbreed while they are encountering other individuals too often.

Crossover and mutation can and should function similarly to the way in which they
function in genetic algorithms. Any crossover or mutation metric can be applied. Tech-
nically, this proposes the use of genetic programming, although no necessary distinction
is made between linear or tree-based genetic programming. With some modification, any
crossover scheme should be applicable; but if genetic programming style representations is
used, then of course some methods are excluded. This is covered in the pertinent section
on genetic algorithms.

6.4 Senescence, Revitalization, and Death

This section discusses the processes of senescence, revitalization, and death as they re-
late to DNAgents 2.0. Senescence is the mechanism through which agents decay, while
revitalization is the inverse of this process. Ultimately senescence leads to death, al-
though sufficient revitalization might postpone this indefinitely. Each process is discussed
in greater detail in its own subsection.

6.4.1 Senescence

The word senescence refers to biological processes that take place in organisms as they
age. For the purposes of this algorithm, this takes the form of an increasing probability
to die naturally. Optionally, a flat value can be used, and allowed to tick up or down,
death occurring when this value reaches zero. The testing of both possibilities could yield
interesting results. The probability of death, however, bears a closer parallel to natural
biology. The older an organism becomes, generally the greater the chance of some failure

68

occurring. This does not necessarily correspond to a certainty, however. In fact, some
research indicates that senescence effectively plateau’s for some species, at certain ages.

The minimum and maximum values for senescence could have an interesting impact
upon the algorithm, and testing will have to be performed to derive optimal values. If
senescence were allowed to decrease to a value that is, or is effectively zero, then an organ-
ism could, through success, become biologically immortal. Biologically immortal beings
do not age, and unless they encounter trauma, do not die.

6.4.2 Revitalization

Revitalization is the concept that through some positive action, an individual is re-
warded. This could be in the form of extended life expectancy, by reducing their effective
senescence. While this has no real biological parallel, it is a useful tool for encouraging
certain behaviors. Through the process of revitalization, more fit solutions will survive
longer, and thus interact more. Their offspring will likewise encompass a larger percentage
of the population pool. Through this process interaction, the algorithm will move towards
the fittest solution. This concept can be inverted, such that individuals are punished for
negative action, and thus age faster.

6.4.3 Death

Death is the cessation of biological function. If essentially uncontrolled reproduction
occurs, some mechanism must exist to control this process. Artificial life simulations often
rely on the concept of limited food. Since introducing the concept of senescence, individ-
uals will expire eventually. Additionally, the environment itself could be hostile, leading
to even more population control. As a last ditch effort to manage population levels, a food
type resource could be abstracted as a ratio between network size and population size.

6.5 Proposed Experiments

Previously, the Mobile Agent Simulator was used to evolve, using a traditional genetic
algorithm, a hopping behavior. This algorithm is discussed previously in section 5.4, as
it was a major part of what lead to this algorithm. Regardless, it performed well enough.
An obvious first experiment would be to apply a version of the proposed algorithm to the
same problem, with the goal being to at least approach similar performance, to prove the
viability of the assumption that senescence and death will lead to a more fit population over
time.

69

Once a base line is established, experiments can be made with the various selection
criteria described in table 6.2, as well as with the reproduction control methods discussed
above. This will yield comparative results about the performance of the various operators.
In a similar fashion, accumulating senescence can be compared to probabilistic senescence,
as well as different methods of population control. If done correctly, it should be trivial to
turn these various features on and off, so that comparative data can be collected for future
experiments.

It might be interesting to define operations relating to reproduction selection, to allow
the individuals themselves input into how they reproduce. If practical, it might allow for
the further relaxation of the selection mechanic. Population control is actually a bigger
problem, and it is difficult to envision a way to encourage individuals to control their own
population. Although, it might be possible to define a reward behavior based around min-
imizing the amount of competition, assuming a mechanism for individuals killing each
other.

Once the behaviors have been played with in a known situation, it would be useful to at-
tempt the evolution of a detection behavior. For this experiment, the individuals are search-
ing for suspicious behavior on the network, and this can be represented as a probabilistic
chance to detect a compromised platform. Once a compromised platform is detected, it
could be represented as variable, such that if that exploit is in place on another machine,
any agent with that variable could detect it with much greater certainty. This experiment
should also reward the hopping behavior discussed above, since wide dissemination is also
a desirable trait for an intrusion detection system. Interesting mechanics that could be in-
troduced in this simulation include the ability to trade information among each other, for
the purpose of disseminating detection behavior as far as possible. This should have an
impact on reproduction behavior as well. To test the interplay of the detection and prop-
agation behaviors, random exploits could be introduced to random nodes in the network,
either permanently, or with short duration to increase the difficulty of detection. The simu-
lation itself could record the number of ’successful’ breaches, while analysis of the agents
would yield values for the number of detected breaches. Additionally, a reporting mech-
anism could be employed, which introduces a third behavior to the simulation: reporting.
Thus, three levels of success could be defined: detection, dissemination, and reporting. It
might be useful to treat this as three different experiments.

A further possible refinement of the detection experiment might be to introduce hostile
agents similar in nature to our agents, but as a separate non-interbreeding population. This
second population would attempt to exploit platforms, while the benign agents would at-
tempt to detect this exploitation, and possibly combat them. Operations might be defined

70

for the detection of hostile agents, the spoofing of agents, and attack and defend operations.
That is, the hostile agents would attempt to discover and exploit security loopholes while
avoiding death, while the benign agents would attempt to detect exploits, the agents that
are doing the exploitation, and attack and destroy them. Again, both populations could eas-
ily be tracked in the simulation, as well as their interactions. Again, it might be useful to
treat this as three separate experiments: a ’white hat’ detection scheme with the attacker’s
abstracted out and not actually existing, a ’black hat’ experiment with the detectors being
abstract or possibly nonexistent, and lastly a simulation involving two separate strains of
genetic beings. Preventing the cross-pollination of these populations, particularly if the
attackers can spoof the defenders, might yield interesting results.

A potentially better method of exploring attack procedures might be to allow the agents
and or viruses access to each others memory, assuming they have exploit-level privileges
on the system. The underlying assumption here is that for a normal program, executing in
memory, the operating system will attempt to prevent it from modifying the memory and
instructions of other programs. This assumption leads to the requirement of exploit-level
privileges, which is simply an abstraction for whatever process is required to gain access
to other programs on the stack. At any rate, modification of other programs memory and
the gaining of information about that programs memory could be defined as a series of
operations. These operations could be designed to fail with some probability; obviously
modifying memory is a risky operation and could lead to several outcomes. This can be
experimented with both ways, without any possible failure of the attack mechanism, and
with failure. Failure could take the form of modifying one’s own memory by mistake,
causing the operating system to kill your process, or causing the operating system itself to
fail.

Future research could attempt to encourage the formation of communities of individu-
als, although this is somewhat outside the scope of this work.

6.6 Experimental Implementation: Evolving a Hopping Behavior

As stated above, Mobile Agent Simulator, MAS, provided the simulation environment.
On top of this environment an implementation of the proposed algorithm was created. Cur-
rently, every 1000 ms of simulation time, each agent pair currently on each node is consid-
ered for reproduction by any active reproduction mechanisms. An additional mechanism,
called cloning, was introduced to prevent premature die offs. Additionally, there is no
mechanism in the algorithm for controlling population at a fixed rate; the death mechanic
does serve to provide selection pressure and some means of population control; it does

71

not restrict the number of individuals alive at one time to a fixed value. For this reason,
a population capping mechanism was added. Speaking of death, both tic-based and prob-
ability based death were implemented and tested; although the focus was on probability
based. Mutation is not limited to crossover behaviors, and can happen periodically to ex-
isting agents. Also experimentations were performed with allowing mutation to decrease
over time, as agents are rewarded, although there is a min and max chance of mutation.
If varied, offspring and clones inherit the average of their parents mutation chance; ergo
in the later stages there is a low rate of mutation. The rest of this section is organized as
follows: First a discussion of the additions of the cloning and population control mecha-
nisms, which were unforeseen but necessary. This is followed by a discussion of the actual
implementation of the Reproduction, death, and reward mechanics.

It is beneficial at this point to introduce some basic terminology at this point. Generally
constants or parameters in formula are represented by characters from the latin alphabet.
Variables that are measured by the simulation are represented by lower case greek letters.
Upper case greek letters are reserved for the formula defining the major componets of the
algorithm, and are referred to in the glossary as functions. Additionally, often variables
and functions are defined in terms of an agent or agency, which are represented by the
subscripts x or n, respectively. More formally x ∈ {1 . . .X} where X denotes the total
number of agents. Similarly n ∈ {1 . . .N} where N denotes the total number of agencies.
The various constants, variables, and functions are defined as encounted in the text.

6.6.1 Cloning

Initial experimentation lead frequently to unexpected die offs. This is partly due to
the fitness/reward mechanic used; agents were rewarded for discovering new nodes. Once
an agent evolved code capable of migration, generally they ended up isolated, and died
alone in the middle of nowhere. Rarely, an agent came back to civilization through chance,
and spread his "optimal" subprogram, leading to a mass exodus. This exodus was usually
followed by a golden age of evolution. Rarely, this exodus lead to a mass extinction because
the majority of good agents ended up alone and ran out of life due to senescence. Once
this occurrence was observed; a cloning mechanism was added to the algorithm to preserve
optimal subprograms that get isolated from the "swarm." More formally: If an agent finds
itself alone, with no compatible agents to cross-breed with, it can clone itself.

Cloning was initially implemented as a carte-blanch right; each agent is always capable
of self-cloning if it finds itself alone. This lead to many many copies of the first successful
agent, and greatly decreased diversity in the early simulation. The mechanic was later

72

changed to a one time action: each agent is capable of reproducing itself by cloning once
and only once. This mechanism lead to the desired effect; the clone is capable of copying
itself also, ergo even in isolation, a successful ’strain’ of agents can persist indefinitely
in isolation without succumbing to the death mechanism. Note that this does not prevent
agents from becoming subject to foul play, and at this state of the simulation failure was
not turned on; ergo in networks with high failure rates, a greater degree of cloning might
perform better. Indeed, similar to mutation, cloning might eventually be varied according
to an agents obseverations of the network; in great isolation an increased degree of cloning
might be desirable; which would lead to recombination of the solution that lead to the
isolationism, and perhaps improve the solution. This needs to be studied further.

Another conceived attempt to fix the die off problem was setting ’successful’ agents
as immortal until they had reproduced. This was experimented with as both a toggle-
based system where a reward toggled immortality until reproduction occurred, and a in-
crement/decrement system where multiple rewards could stack immortality counters and
agents could not die until they ran out of counters by reproducing. Cloning performed bet-
ter, although this does not necessarily mean these approaches are invalid and could not be
fruitful with further investigation; early implementation simply did not indicate that they
were. Lastly, it is worth noting that although cloning was introduced to solve the problem
of mass-extinctions, sometimes the average-performance goes from better to worse. That
is to say, it fluctuates, and this could be because of isolated die offs of promising strains.
It could also be caused by the nature of the changing fitness landscape. It is not even
necessarily a bad thing; a adaptive algorithm is prized over an optimal one.

6.6.2 Population Control

A population control mechanism was overlooked in designing the algorithm. While in
simulation, it is easy to restrict the number of agents to a given number. In the field, this
will be impossible because no one node is going to be privy to the number of agents in
existence. Two obvious mechanisms for controlling population in a distributed manner are
capping the number of agents on each agency at a given time and preventing reproduction
if the average number of agents seen is too high. In both cases, the theoretical ’desired’
agents on a per-agency basis is given by

νn =
d
N

where d represents the desired number of agents in the population.
Initially had decent results with capping the agents in existence on each agency by

73

preventing agents from reproducing if there are νn or more agents on a given agency. This
works fairly well for the early to middle simulation.

Eventually this mechanism breaks down and population grows prohibitively large. One
possible reason for this is that the "edges" of the graph, i.e. poorly connected nodes, my
act as spawning areas, the results of which migrate inward and spend most of their time
in well-connected nodes. That is, agents are continually created in sparse areas, and then
move to more populated areas, causing a population imbalance.

Alternatively; it could be because the agents have no way of knowing if agents are
inbound to a node when they decide to reproduce. That is to say, if the majority of agents are
in transit, agents that are not in transit might decide to reproduce when they really should
not. This is complicated by the selection pressure of this experiment, which encourages
exploration, and the fact that agents cannot choose to suicide while in transit. That is,
agents are encouraged to develop algorithms that spend the majority of their time in transit,
which complicates culling in a way that normally would not exist.

The other method of capping reproduction is agent based. Each agent keeps track the
average number of agents seen, and only reproduces if the average falls below the threshold,
which is calculated currently in the same way as νn. The average agents seen is calculated
by

ςx =
σx

φx

where σx represents the total number of agents encountered by x, and φx represents
the total number of agencies visited by x. This mechanism performs better than the other
mechanism; since agents are not as likely to spend enough time visiting the sparse nodes
for their average agents seen value to fall below νn. It does not eliminate this phenomena,
nor does it address the issue of agents in transit. More work is required to find a satisfactory
way of managing the total number of agents. This method does perform better, on average,
than the first mechanism.

Both population control mechanisms generally stabilize at some point. Figure 6.1 illus-
trates a fairly typical execution for the Average Agents Seen population control mechanism.
Figure 6.2 illustrates the major problem with the Agency-based population cap mechanism.
These are fairly typical examples of their performance; while the Agency based mecha-
nism stabilizes for awhile, becoming unstable in the later simulation. The Average Agents
Seen mechanism occasionally explodes, but generally re-stabilizes. By contrast, the agency
based population cap has not been observed to re-stabilize after a population explosion. As
said above, more experimentation into the reasons behind this, and investigation into better

74

population control mechanisms is needed.

Figure 6.1: Performance of Average Agents Seen (AAS) population control mechanism.

Figure 6.2: Performance of Agents Per Agency (APA) population control mechanism.

6.6.3 Reproduction

While in section 6.2 it was speculated that the agents could evolve the reproduction
choices; at this point the choice-by-algorithm aspect has been investigated. Similarly,

75

many potential mechanics for reproduction were proposed, but the full comparison of all
these mechanics is beyond the scope of this work. Random reproduction was implemented
to provide a baseline for determining the actual influence of reproduction on the simula-
tion. Age-based reproduction was picked, somewhat arbitrarily, as another mechanic to
implement and experiment. Lastly, while this section is primarily concerned with the re-
production selection process, it is worth mentioning that in this experiment crossover was
implemented as single-point crossover. Also, the population control mechanism supersedes
reproduction currently; the decision making process for reproduction is only entered in to
if the population control mechanism authorizes it. Both types of reproduction occur every
1,000 tics of simulation time.

Random based reproduction, perhaps more accurately called pseudo-random reproduc-
tion, is performed based on a flat chance. That is, each agent, if eligible for reproduction
based on its environment, has a percent chance to reproduce. This percent chance is input
as a parameter by the user. As expected, the combination of the death and reward mech-
anism proved sufficient for evolution to occur even without guided reproductive selection.
Also expected, the performance wasn’t exemplary.

Age-based reproduction was something of a challenge to implement due to the restric-
tion against global knowledge. First, a given agents age is given by αx, while the oldest
local agent is given by γx. The actual formula to determine if they reproduce is defined in
terms of an agent, x and its potential partner, y, and is given by:

∆x,y = (αx/γx > t)∧ (αy/γx > t)

The constant t is a constant threshold value. It is trivially observable that using the
oldest global age instead of γx would produce slightly better results; this implementation
still produces workable results without violating the distributed requirement. Alternatively,
using the oldest observed age was considered, but disregarded due to poor initial perfor-
mance. The superiority of inferiority of this approach was not quantitatively proven one
way or the other, this the selection of this formula to represent age is somewhat arbitrary.

6.6.4 Death

The primary mechanic investigated so far is probability based death. While tic-based
death was implemented and limited experimentation carried out, initial results leaned to-
wards probabilistic based death. This is in keeping with the assumption that probabilistic
based death would increase the churn of the problem space, ultimately aiding evolution.
Tic-based death was implemented pretty much as described, with a flat, parameter-based

76

number of tics being gifted to an agent upon birth, and this number can be changed due to
rewards and punishments. Probabilistic based death is controlled by a parameter that is the
minimum chance for death. This probability increases each time the agent is considered
for death, and survives. Formally, the probability of death is given by:

Ωx = m+ sαx−∑λx

The constant m is the minimum chance for death, while the constant s is the relationship
between age and senesence. The variable αx is the agents age, and λx represents a given
reward for an agent x. The formula for λx is given in the following section. The number
of tics between death evaluations is the same as the number of tics between chances for
reproduction, 1,000. Currently the constant s is equivalent to 1

10,000 , which indicates how
often the chance of death is incremented; in effect 1

10 of a percent each 1,000 tics. Death
occurs after reproduction and growth so it would be possible to reproduce and expire in the
same ’tic.’

6.6.5 Rewards

Due to the goal of the experiment: evolving a hopping behavior, the reward mechanism
revolves around unique-visits. This is the same goal as the initial experimentation with
traditional genetic algorithms. The attempt was made to emphasize time by making the
reward a percent based on performance instead of a flat reduction, although per the design
specifications the chance cannot go lower than the minimum chance to die. The formula
for agent rewards is given by:

λx = r
υx

αx

The constant r refers to the user parameter reward increment, while υx is the number
of inque visits attained by the agent. αx is as always the age of the agent. The constant
r is a user parameter, and indicates a ballpark figure for the size of the reduction in death
chance. Thus, agents are rewarded based on the ratio of success’s to their age; older agents
are rewarded less for the same work, while younger agents are rewarded more.

6.7 Results of Hopping Experiment

With a functional, parameterized implementation in place, the next step is to find base-
line values for those parameters that perform well. Table 6.3 lists and defines the parameters
tested. Mutation chance for all the tests started at 0.1%. Age Threshold (t) was allowed

77

to vary between 0.5 and 0.9. Min Senescence (m) was allowed to vary between 10 and
-1000. Reward Size (r) was allowed to vary between 5 and 1000. Each test was ran for
1000 12,000 tic intervals. Values were reported and saved for each interval. The main
performance evaluation for performance were Average Unique Visits and Average Unique
Visits per Tic.

Table 6.3: Algorithm Parameters
Parameter Description
Age Treshold t as defined in section 6.6.3.
Min Senescence Minimum and Starting Senescence (m).
Reward Size r as defined in section 6.6.5.
Mutation Variation If mutation is allowed to vary.

6.7.1 Best Average Unique Visits

The parameters which yielded the best Average Unique Visits were an age threshold
of 0.7, 0 Min Senescence, a Reward Size of 1000, and non variable mutation. Figure 6.3
displays the population changes for this test. After a period of initial churn, most agents
were living to fruition, and thus there were not a great deal of deaths or births. Figure 6.4
shows number of unique visits at each interval. The fact that the max was always 100 is
not terribly significant. Unlike the genetic algorithm test, some agent is always around
who has eventually managed to explore the whole network. The average and min visits
are much more telling. Also, the standard deviation would seem to indicate that it was
still moving towards an optimal solution when stopped. Figure 6.5 shows similar values
for the unique visits per tic. In this graph, all the values stay fairly stable, which indicates
that although they were visiting many nodes, they were not improving the speed at which
they did it. When taken together with the previous graph, it would indicate an increasingly
thorough algorithm; as evidenced by the climb of the min visits. Or, perhaps, an algorithm
increasingly resistant to churn. Finally, figure 6.6 shows the average, min, and max ages for
agents at each interval. As you can see, the average age climbs for awhile, and eventually
stabilizes. The max age is quite high, which again would indicate that these agents are
’slow and steady’ as opposed to quick.

78

Figure 6.3: Population changes for best average unique visit test.

Figure 6.4: Unique visit values for best average unique visit test.

79

Figure 6.5: Unique visits/tic values for best average unique visit test.

Figure 6.6: Agent age values for best average unique visit test.

6.7.2 Best Average Unique Visits per Tic

The parameters which yielded the best Unique Visits per Tic were an age threshold of
0.5, 0 minimum chance for death, and a reward size of 15. This test also allowed for vari-
able mutation. Figure 6.7 shows the population changes over the course of this test, and
again, after an initial period of churn things stabilized fairly nicely; with a fairly constant
rate of cloning throughout the simulation, births and deaths dropped off to very low levels.
This makes sense, again, as it implies that the agents in the simulation are leading fairly
’full’ lives, ergo, there is a low amount of churn from death. The primary difference be-
tween this simulation and the previous one, is that there is slightly more churn in this one.

80

This is probably due to the smaller reward percent; it is harder for agents to stick around.
Figure 6.8 shows the unique visits statistic from this simulation. Again, the max UV stays
at 100, because at least one agent is always capable of lingering long enough to fully visit
the network. Figure 6.9 shows the Unique Visits per tic performance of this test; and this is
the metric for which this test was the highest rated. The Max UV tic varies wildly, since this
value is a ratio involving time, and is generally a very small number, these variations look
huge but are probably not statistically significant. The average value is much more useful;
it indicates a period of steady improvement over the first half of the simulation where it
then appears to plateau. While this seems like a very small number, it should be noted that
the network size was 100 nodes; ergo the denominators max value is 100, while the divisor
is the age in tics of the agent. Given that each mark on this graph represents a jump in
12,0000 tics, the tiny numbers become more understandable. Lastly, figure 6.10 shows the
age statistics for the simulation.

Figure 6.7: Population changes for best unique visit/tic test.

81

Figure 6.8: Unique visit values for best unique visit/tic test.

Figure 6.9: Unique visits/tic values for best unique visit/tic test.

82

Figure 6.10: Agent age values for best unique visit/tic test.

6.7.3 Considering the Implications of the Test Results.

After comparing the simulation results, it is fairly apparent that the optimal value for
minimum death (m) is 0. The effect of this value is that if agents continue to perform, they
are effectively immortal, although they cannot ’store’ performance. This has an interesting
effect in the first simulation, of apparently encouraging agents to linger; that is, slow and
steady definitely won the race, and produced better average Unique Visits values. This
was further compounded by the large reward values for successes; an occasional reward
was sufficient to reset their chance of death. This was not the case in the second discussed
simulation, and predictably the average UV values were not as high, although the rate of
Unique visits as measured by unique visits per tic was higher. Tests were ran with negative
minimum death, and minimum death above 0, but they did not perform competitively.

With regards to the age threshold (t, the results are less conclusive. No values were
tested below 0.5. This value measures the ’closeness’ of an agent to the local oldest agent
before it decides to breed. Put differently, 0.5 means that both breeding pairs must be at
least half as old as the oldest local agent in order to reproduce. One conclusion that can
be drawn from the lack of performance evidenced by high threshold values of 0.8 and 0.9
is that they were too exclusive, and poor at exploring the problem domain. The threshold
value of 0.7 probably performed well because of other factors such as the high reward
setting, but this does not conclusively prove that it is a poor value. It is evident that lower
age thresholds would logically increase churn, which might explain why the second test
evidenced the best rate of unique visits, although the max rates shown in figure 6.9 were
not very stable in that simulation, unlike in the first simulation, shown in figure 6.5.

83

The results would seem to indicate that smaller reward values (r) increase the selection
pressure to perform quickly; the average rate of unique visits in figure 6.9 is equal to the
maximum value from the first test shown in figure 6.5. The large rewards in the first simu-
lation made it less vital to immediately discover a new node, while in the second simulation
agents would have died from senescence if they had not kept a fairly high rate of discovery.
Unfortunately, the results did not conclusively prove one way or another whether variable
mutation is superior to non variable mutation.

84

Chapter 7

CONCLUSION

This work has visited many subjects and discussed many things. It is necessary now to
draw to a close, and it seems appropriate to revisit the major points. A brief review of the
background material and justification for this work is provided in section 7.1. A summary
of the contributions of this work and their logical implications is provided in section 7.2.
Lastly, we take a look at the possible future directions for this work in section 7.3.

7.1 Prelude

This work looked at mobile agents fairly extensively. They provide many advantages
over the classic client-server architecture. The chief benefit is the potential to be much more
efficient in the consumption of resources, and more resistant to fault. Mobile agents are
unfortunately not without faults such as security concerns, fault concerns, and complexity
issues.

Many approaches to ensuring security, fault tolerance, and reducing complexity were
naturally examined as part of this work. In some sense, all are somewhat lacking, at least
in the sense of being comprehensiveness. Indeed, the very fact that mobile agents are still
not widely adopted would indicate that the problems have not been adequately solved.

Genetic algorithms were the next major topic explored in this work. Genetic algorithms
are a rich optimization technique with a great depth of work. At the core of things, though,
is an analogy to natural evolution. The survival of the fittest. This is modified through
the mechanisms of selection, which in the case of most genetic algorithms is much more
goal-based than natural evolution. Regardless, an optimization strategy designed at its core
around survival is naturally attractive to a field that suffers from security and fault concerns.
Genetic algorithms also remove the programmer from the complexity of the solution, in
some sense. Lastly, genetic algorithms have been successfully applied to some agent based
problems. This work considered these implications, and together with the failings of other
approaches, a worthy case for applying genetic algorithms to mobile agents was made.

7.2 Summary

The next major aspect of this work was an actual implementation of genetic mobile

85

agents. This was called DNAgents 1.0, and was successful. This endeavor did highlight
some difficulties, unfortunately. The chief problems resolve around fitness and selection.
Fitness proved to be tricky to define adequately for mobile agents. Additionally, even when
adequately defined, it is even more difficult to measure. This is primarily due to the fact
that mobile agent tasks are often unbounded with respect to time. Put differently, it is hard
to predict, due to the network, how long a task will take, and thus how successful an agent
is. Indeed, it is sometimes even difficult to rank agents other than in a black and white
manner: succeed or fail. This complicates selection, which is reliant upon ranking agents
respective of each other. DNAgents 1.0 served to nicely illustrate these issues, and lead
to the considerations of various modifications to genetic algorithms such as distributed ge-
netic algorithms, continuous genetic algorithms, and steady state genetic algorithms. These
variations were ultimately found to be as problematic as traditional genetic algorithms and
were thus disregarded. Artificial life was also considered, as it takes genetic algorithms
back to their origins in some sense, with a stronger focus on natural evolution and less
emphasis on ranking.

Unfortunately, artificial life itself is somewhat lacking, at least as a strategy to evolve
goal-based agents, but it lead to DNAgents 2.0. That is, what was needed was neither
genetic algorithms nor artificial life. A new framework that combined the best aspects of
both seemed appropriate, and well suited to mobile agents. The key part of this is the
analogy of considering mobile agents as organisms, and the network as their world. This
allows for a much more ad-hoc selection and culling mechanism, with much less emphasis
on ranking and selection. Fitness is still encouraged, and here the goal-oriented nature
of genetic algorithms and mobile agents is telling, by a revitalization mechanism. This
mechanism interacts with the culling mechanism of senescence to provide a direction for
the evolution of agents beyond survival. By far the greatest benefit of this framework
is that evolution need not ever end; it could continually occur within an active network.
With a framework formulated, an experiment was implemented, which lead to a few new
mechanisms that were not quite anticipated being created, such as cloning and population
control. Ultimately, the experiment was successful and provided a basis for analyzing the
parameters of the algorithm. The results of this were presented, and discussed, and are
promising.

7.3 Future Work

While DNAgents 2.0 were successful, the entirety of the vision was not explored in the
context of this work. Firstly, many potential mechanisms for selection behavior in DNA-

86

gents 2.0 were proposed, including random, age-based, energy-based, difference-based,
fitness-based, and dynamic. These behaviors were all defined and discussed, but only ran-
dom and age-based behaviors were investigated in the experimentation conducted. This
was partially due to the fact that age-based selection functioned, but also partially due to
scope and scale. This work is not insurmountable, but time constrained prevented it. Ad-
ditionally, even if all possible selection behaviors were experimented with, it would be
incorrect to assume that this is an exhaustive list of possible selection behaviors.

Similarly, there were two proposed death mechanisms: senescence-based and tic-based.
While both seemed to work in the experimentation, early on the decision was made to focus
on senescence-based because early results seemed to favor it. This does not exclude tic-
based death from being considered at all, and more experimentation might be worthwhile.
Again, it is not necessarily the only two mechanisms for measuring death that might be
viable, and attempting to define new ones might provide interesting results.

The implementation of DNAgents 2.0 only experimented with fairly standard mutation
and crossover mechanisms borrowed from genetic algorithms. There are many variations
on crossover that might produce different results, and some variations on mutation such as
allowing self-selection of mutation rates, which might prove beneficial, but were not quan-
titatively explored. Another obvious future task would be the application of this framework
to the other proposed experiments that were not undertaken, or new experiments. That is,
apply it to the evolution of agents for other tasks besides exploration.

Early in the experimentation on DNAgents 2.0, problems with extinction and then over-
population were encountered. Quick brainstorming lead to fairly basic mechanisms to
counter this. In the case of extinction, a cloning behavior was introduced, and proved suc-
cessful. Another possibility would be allowing for temporary immortality of successful
agents that had never reproduced, thus preserving useful genes that temporarily separate
from the main population. This was not experimented with because allowing each agent
to produce one clone if alone on an agency proved so successful. This of course lead ul-
timately to overpopulation, which was caused by an oversight. If agents exist, and are
not limited by some artificial mechanism, they can quickly overpopulate. Some selection
mechanisms, such as energy, would avoid this problem entirely by artificially limiting the
number of existent agents. In this case, two simple behaviors were experimented with:
limiting agent reproduction based on the number of agents locally present on the node, and
based on the average number of agents seen by the agent. The latter method performed
better. Again, a major potential area for improving the framework would be improving
these admittedly primitive population control mechanisms, or simply replacing them.

Lastly it would be useful to revisit the ultimate motivation for a mechanism such as

87

DNAgents 2.0. This motivation at its most simple is that a population of agents continu-
ously self-adapting to a changing network are theoretically much more flexible than human
beings ever could be. That is to say, especially with respect to security, that if the agents
were continuously attempting to detect and ultimately solve security vulnerabilities in a
platform, the rate of response could be much greater than the turn around required for hu-
man operators to notice a problem, investigate it, and then devise a solution. Certainly the
dark reflection of this is absolutely terrifying: malicious agents that continuously try to
exploit. While none of this is currently in existence, a framework such as DNAgents 2.0
that allows for the continuous optimization of mobile agents might be the first step towards
such a state, and is thus worthwhile.

88

BIBLIOGRAPHY

[1] Adel M. Abunawass. Biologically based machine learning paradigms: an introductory
course. SIGCSE Bull., 24(1):87–91, 1992.

[2] Chris Adami and C. Titus Brown. Evolutionary learning in the 2d artificial life "avida"’.
Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, pages 377–382, September 1994.

[3] Christos Ampatzis, Elio Tuci, Vito Trianni, and Marco Dorigo. Evolution of signaling in
a multi-robot system: Categorization and communication. Adaptive Behavior - Animals,
Animats, Software Agents, Robots, Adaptive Systems, 16(1):5–26, 2008.

[4] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings
of the Second International Conference on Genetic Algorithms and their Application, pages
14–21, New York, NY, USA, 1987. ACM.

[5] M. Baldi and G.P. Picco. Evaluating the tradeoffs of mobile code design paradigms in net-
work management applications. In Proceedings of the 20th international conference on Soft-
ware engineering, pages 146–155. IEEE Computer Society Washington, DC, USA, 1998.

[6] Edwin Roger Banks, Paul Agarwal, Marshall McBride, and Claudette Owens. A comparison
of selection, recombination, and mutation parameter importance over a set of fifteen opti-
mization tasks. In GECCO ’09: Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference, pages 1971–1976, New York, NY, USA,
2009. ACM.

[7] J. Baumann, F. Hohl, K. Rothermel, and M. Straßer. Mole–Concepts of a mobile agent
system. World Wide Web, 1(3):123–137, 1998.

[8] T Bäck. Optimal mutation rates in genetic search. In Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 2–8. Morgan Kaufmann Publishers, 1993.

[9] T Bäck. Evolutionary Algorithms in Theory and Practice - Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University Press, 1996.

[10] Thomas Bäck. Selective pressure in evolutionary algorithms: A characterization of selection
mechanisms. In Proceedings of the First IEEE Conference on Evolutionary Computation.
IEEE World Congress on Computational Intelligence (ICEC94)., pages 57–62. IEEE, 1994.

[11] Steven Beaty, Darrell Whitley, and Gearold Johnson. Motivation and framework for using
genetic algorithms for microcode compaction. SIGMICRO Newsl., 22(1):20–27, 1991.

[12] Padmanabha V. Bedarhally, Rafael A. Perez, and Weon S. Chung. A family elitist approach
in genetic algorithms. In SAC ’96: Proceedings of the 1996 ACM symposium on Applied
Computing, pages 238–244, New York, NY, USA, 1996. ACM.

89

[13] M.A. Bedau, E. Snyder, C.T. Brown, and N.H. Packard. A comparison of evolutionary activ-
ity in artificial evolving systems and in the biosphere. In Proceedings of the Fourth European
Conference on Artificial Life, pages 125–134. MIT Press, 1997.

[14] Mark A. Bedau, John S. McCaskill, Norman H. Packard, Steen Rasmussen, Chris Adami,
David G. Green, Takashi Ikegami, Kunihiko Kaneko, and Thomas S. Ray. Open problems in
artificial life. Artif. Life, 6(4):363–376, 2000.

[15] A. Bieszczad, B. Pagurek, and T. White. Mobile agents for network management. IEEE
Communications Surveys, 1(1):2–9, 1998.

[16] T. Blickle and L. Thiele. A comparison of selection schemes used in genetic algorithms.
Technical report, Computer Engineering and Communication Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH), Zürich, Switzerland, 1995.

[17] Margaret A. Boden. Is metabolism necessary? British Journal for the Philosophy of Science,
50, 1999.

[18] L. Booker. Improving search in genetic algorithms. In Genetic Algorithms and Simulated
Annealing., pages 61–73. Morgan Kaufmann Publishers, San Mateo, California, USA, 1987.

[19] H. Braun. Evolution| a Paradigm for Constructing Intelligent Agents. Prerational Intelli-
gence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, page 279,
2001.

[20] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko, and D. Rus. Mobile agents in
distributed information retrieval. Intelligent Information Agents, pages 355–395, 1999.

[21] M.G. Bulmer. The Mathematical Theory of Quantitative Genetics. Clarendon Press, Oxford,
1980.

[22] Erick Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs Pralleles, Reseaux
Et Systems Repartis, 10, 1998.

[23] Erick Cantu-Paz and David E. Goldberg. Efficient parallel genetic algorithms: Theory and
practice. In Computer Methods in Applied Mechanics and Engineering. press, 2000.

[24] Rich Caruana, Larry J. Eshelman, and J. David Schaffer. Representation and hidden bias
ii: Eliminating defining length bias in genetic search via shuffle crossover. In IJCAI, pages
750–755, 1989.

[25] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents: Are they a good idea? Lecture
Notes in Computer Science, 1222:25–45, 1997.

[26] D.M. Chess. Security issues in mobile code systems. Lecture Notes in Computer Science,
1419:1–14, 1998.

[27] J. Claessens, B. Preneel, and J. Vandewalle. (How) can mobile agents do secure electronic
transactions on untrusted hosts? A survey of the security issues and the current solutions.
ACM Transactions on Internet Technology, 3(1):28–48, 2003.

[28] Robert J. Collins and David R. Jefferson. Selection in massively parallel genetic algorithms.
In Fourth International Conference on Genetic Algorithms, 1991.

90

[29] Carlo Comis. Darwinbots, July 2008. http://www.darwinbots.com/.

[30] J.F. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper and Row,
New York, 1970.

[31] Jonathan Dale and David C. Deroure. A mobile agent architecture for distributed information
management. Technical report, In Proceedings of the International Workshop on the Virtual
Multicomputer, 1997.

[32] B. Damer and R. El. The EvoGrid. Technoetic Arts: a Journal of Speculative Research,
7(2):175–190, 2009.

[33] P. Dasgupta. Improving peer-to-peer resource discovery using mobile agent based referrals.
In Proc. of the Int. Workshop on Agents and Peer-to-Peer Computing, Springer-Verlag, Lec-
ture Notes on Computer Science, volume 2872, pages 186–197. Springer, 2004.

[34] Y. Davidor, T. Yamada, and R. Nakano. The ECOlogical framework II: Improving GA per-
formance at virtually zero cost. In Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 171–176, 1993.

[35] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The Bayou
architecture: Support for data sharing among mobile users. In Proc. of IEEE Workshop on
Mobile Computing Systems & Applications, pages 2–7. Citeseer, 1994.

[36] G. Derbas, A. Kayssi, H. Artail, and A. Chehab. Trummar-a trust model for mobile agent
systems based on reputation. In Proceedings of the IEEE/ACS International Conference on
Pervasive Services (ICPS Ś04), Beirut, Lebanon. Citeseer, 2004.

[37] T.C. Du, E.Y. Li, and A.P. Chang. Mobile agents in distributed network management. Com-
munications of the ACM, 46(7):132, 2003.

[38] C.R. Dunne. Using mobile agents for network resource discovery in peer-to-peer networks.
ACM SIGecom Exchanges, 2(3):1–9, 2001.

[39] A. Egri-Nagy and C.L. Nehaniv. Evolvability of the genotype-phenotype relation in popula-
tions of self-replicating digital organisms in a tierra-like system. Advances in Artificial Life,
pages 238–247, 2003.

[40] Khaled El-Sawi. Guided Genetic Evolution: A Framework for the Evolution of Autonomous
Robotic Controllers. PhD thesis, The University of Southern Mississippi, August 2006.

[41] K. Fall. Network emulation in the Vint/NS simulator. In IEEE International Symposium on
Computers and Communications, 1999. Proceedings, pages 244–250, 1999.

[42] S. Fischmeister. Mobile code paradigms, 2002. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.95.9290&rep=rep1&type=pdf.

[43] D. B. Fogel. Evolutionary computation: toward a new philosophy of machine intelligence.
IEEE Press, New York, 1995.

[44] Frank D. Francone, Larry M. Deschaine, and Jeffrey J. Warren. Discrimination of munitions
and explosives of concern at f.e. warren afb using linear genetic programming. In GECCO
’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation,
pages 1999–2006, New York, NY, USA, 2007. ACM.

91

[45] Ping Fu, Jia qing Qiao, and Hong tao Yin. A virus evolutionary genetic algorithm using
local selection. Innovative Computing ,Information and Control, International Conference
on, 0:582, 2007.

[46] M. Fukuda, Y. Tanaka, N. Suzuki, L.F. Bic, and S. Kobayashi. A mobile-agent-based pc grid.
In Autonomic Computing Workshop, pages 142–150. Citeseer, 2003.

[47] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic
algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 69–93.
Morgan Kaufmann Publishers, San Mateo, California, 1991. Lectures in Applied Mathemat-
ics, Vol. 22, Part 1.

[48] Jonatan Gómez, Roberto Poveda, and Elizabeth León. Grisland: a parallel genetic algo-
rithm for finding near optimal solutions to the traveling salesman problem. In GECCO ’09:
Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Com-
putation Conference, pages 2035–2040, New York, NY, USA, 2009. ACM.

[49] Jean Gourd. API-S Calculus: Formal Modeling for Secure Mobile intelligent Agent Systems.
PhD thesis, The University of Southern Mississippi, August 2007.

[50] R.S. Gray, D. Kotz, R.A. Peterson, J. Barton, D. Chacon, P. Gerken, M. Hofmann, J. Brad-
shaw, M. Breedy, R. Jeffers, et al. Mobile-agent versus client/server performance: Scalability
in an information-retrieval task. Lecture notes in computer science, pages 229–243, 2001.

[51] Z. Guessoum, N. Faci, and J.P. Briot. Adaptive replication of large-scale multi-agent
systems–towards a fault-tolerant multi-agent platform. Software Engineering for Multi-Agent
Systems IV, pages 238–253, 2006.

[52] Howard Gutowitz. Artificial-life simulators and their applications, 1995.

[53] R.S. Hall, D. Heimbigner, and A.L. Wolf. A cooperative approach to support software de-
ployment using the software dock. In Proc. IntŠl Conf. Software Eng.,(ICSEŠ99), pages 174
– 183, 1999.

[54] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the adaptation of arbitrary mutation dis-
tributions in evolution strategies: The generating set adaptation. In Proceedings of the Sixth
International Conference on Genetic Algorithms, pages 57–64. Morgan Kaufmann Publish-
ers, 1995.

[55] Francisco Herrera and Manuel Lozano. Adaptation of genetic algorithm parameters based on
fuzzy logic controllers. In Genetic Algorithms and Soft Computing, pages 95–125. Physica-
Verlag, 1996.

[56] Jonathan R. Hicks and Joseph A. Driscoll. Evolution of artificial agents in a realistic virtual
environment. In ACM-SE 43: Proceedings of the 43rd annual Southeast regional conference,
pages 365–369, New York, NY, USA, 2005. ACM.

[57] W.H. Hsu and S.M. Gustafson. Genetic programming and multi-agent layered learning by
reinforcements. In Genetic and Evolutionary Computation Conference, pages 764–771. Cite-
seer, 2002.

92

[58] W. Jansen and T. Karygiannis. NIST special publication 800-19–mobile agent security.
Gaithersburg, MD: National Institute of Standards and Technology, 1999.

[59] K. Jun, L. Boloni, K. Palacz, and D.C. Marinescu. Agent-based resource discovery. In 9th
Heterogeneous Computing Workshop, pages 43–52. Press, 2000.

[60] J. Kackley, P. Wahjudi, and Ali D. A mobile agent simulator. In 2009 International Confer-
ence on Industry, Engineering, and Management Systems, 2009.

[61] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the computation results of free-roaming
agents. Personal and Ubiquitous Computing, 2(2):92–99, 1998.

[62] H. Katagiri, K. Hirasama, and J. Hu. Genetic network programming-application to intelligent
agents. In 2000 IEEE International Conference on Systems, Man, and Cybernetics, volume 5,
pages 3829–3834, 2000.

[63] Hilmi Güneş Kayacik, Malcolm Heywood, and Nur Zincir-Heywood. On evolving buffer
overflow attacks using genetic programming. In GECCO ’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pages 1667–1674, New York, NY,
USA, 2006. ACM.

[64] Robert E. Keller and Wolfgang Banzhaf. Genetic programming using genotype-phenotype
mapping from linear genomes into linear phenotypes. In GECCO ’96: Proceedings of the
First Annual Conference on Genetic Programming, pages 116–122, Cambridge, MA, USA,
1996. MIT Press.

[65] Jin-Lee Kim. Permutation-based elitist genetic algorithm using serial scheme for large-sized
resource-constrained project scheduling. In WSC ’07: Proceedings of the 39th conference on
Winter simulation, pages 2112–2118, Piscataway, NJ, USA, 2007. IEEE Press.

[66] Minkyu Kim, Varun Aggarwal, Una-May O’Reilly, and Muriel Medard. A doubly distributed
genetic algorithm for network coding. In GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, pages 1272–1279, New York, NY, USA,
2007. ACM.

[67] J. Kiniry and D. Zimmerman. A hands-on look at Java mobile agents. IEEE Internet Com-
puting, 1(4):21–30, 1997.

[68] J. Klein. breve: a 3d simulation environment for the simulation of decentralized systems and
artificial life. In Proceedings of Artificial Life VIII, the 8th International Conference on the
Simulation and Synthesis of Living Systems, pages 329 – 334. The MIT Press, 2002.

[69] Maciej Komosinski. The world of framsticks: Simulation, evolution, interaction. In VW
’00: Proceedings of the Second International Conference on Virtual Worlds, pages 214–224,
London, UK, 2000. Springer-Verlag.

[70] Maciej Komosinski. The framsticks system: versatile simulator of 3d agents and their evolu-
tion, 2003.

[71] Maciej Komosinski and Szymon Ulatowski. Framsticks: Towards a simulation of a nature-
like world, creatures and evolution. In ECAL ’99: Proceedings of the 5th European Confer-
ence on Advances in Artificial Life, pages 261–265, London, UK, 1999. Springer-Verlag.

93

[72] Naoyuki Kubota and Koji Shimojima. Virus-evolutionary genetic algorithm- ecological
model on planar grid. In Fuzzy Information Processing Society, Biennial Conference of the
North American proceeding, pages 505–509, 1996.

[73] Christopher G. Langton. Studying artifical life with cellular automata. Physica D, pages
120–149, 1986.

[74] Christopher G. Langton. Artifical life. Santa Fe Institute Studies in the Sciences of Complex-
ity, 6:1–47, 1988.

[75] Yong Liang, Kwong-Sak Lueng, and Tony Shu Kam Mok. Automating the drug scheduling
with different toxicity clearance in cancer chemotherapy via evolutionary computation. In
GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary compu-
tation, pages 1705–1712, New York, NY, USA, 2006. ACM.

[76] Cláudio F. Lima, Kumara Sastry, David E. Goldberg, and Fernando G. Lobo. Combining
competent crossover and mutation operators: a probabilistic model building approach. In
GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary computation,
pages 735–742, New York, NY, USA, 2005. ACM.

[77] J. Liu and V. Issarny. Enhanced reputation mechanism for mobile ad hoc networks. Lecture
Notes in Computer Science, 2995:48–62, 2004.

[78] JingJing Liu. Research on an improved virus evolutionary genetic algorithm. Information
Engineering, International Conference on, 2:114–116, 2009.

[79] KJ Mackin and E. Tazaki. Unsupervised training of multiobjective agent communication
usinggenetic programming. In Knowledge-Based Intelligent Engineering Systems and Allied
Technologies, 2000. Proceedings. Fourth International Conference on, volume 2, pages 738
– 741, 2000.

[80] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley and Sons., Boston, MA 02116, 1990.

[81] H Mühlenbein. The breeder genetic algorithm - a provable optimal search algorithm and its
application. In Colloquium on Applications of Genetic Algorithms, London, 1994.

[82] Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Analysis of selection, mutation and re-
combination in genetic algorithms. Neural Network World, 3:907–933, 1993.

[83] Melanie Mitchell and Stephanie Forrest. Genetic algorithms and artificial life. Artificial Life,
1993.

[84] H. Muhlenbein and D. Schlierkamp-Vosen. Predictive models for the breeder genetic algo-
rithm. In Evolutionary Computation, pages 25–49, 1993.

[85] E. Olougouna and S. Pierre. Mobile agents and their use for information retrieval: A brief
overview and an elaborate case study. IEEE network, page 34, 2002.

[86] A. Ostermeier, A. Gawelczyk, and N. Hansen. A derandomized approach to self adaptation
of evolution strategies. Technical report, TU, Berlin, 1993.

94

[87] A. Ostermeier, A. Gawelczyk, and N. Hansen. Step-size adaptation based on non-local use
of selection information. In Parallel Problem Solving from Nature - PPSN III: International
Conference on Evolutionary Computation. Vol. 866 of Lecture Notes in Computer Science,
pages 189–198. Springer-Verlag, 1994.

[88] T. Park, I. Byun, H. Kim, and H. Yeom. The performance of checkpointing and replication
schemes for fault tolerant mobile agent systems. In PROCEEDINGS OF THE SYMPOSIUM
ON RELIABLE DISTRIBUTED SYSTEMS, pages 256–261, 2002.

[89] H.H. Pattee. Simulations,realizations, and theories of life. Santa Fe Institute Studies in the
Sciences of Complexity, 6:63–77, 1988.

[90] V.A. Pham and A. Karmouch. Mobile software agents: An overview. IEEE Communications
magazine, 36(7):26–37, 1998.

[91] Alan Piszcz and Terence Soule. A survey of mutation techniques in genetic programming.
In GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 951–952, New York, NY, USA, 2006. ACM.

[92] Alan Piszcz and Terence Soule. A survey of mutation techniques in genetic programming.
In GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 951–952, New York, NY, USA, 2006. ACM.

[93] J. Pitt, L. Kamara, M. Sergot, and A. Artikis. Voting in multi-agent systems. The Computer
Journal, 49(2):156, 2006.

[94] S. Pleisch and A. Schiper. Fatomas-a fault-tolerant mobile agent system based on the agent-
dependent approach. In Proc. of Int. Conference on Dependable Systems and Networks
(DSNŠ01), pages 215–224, 2001.

[95] A. Puliafito and O. Tomarchio. Using mobile agents to implement flexible network manage-
ment strategies. Computer Communications, 23(8):708–719, 2000.

[96] Rushil Raghavjee and Nelishia Pillay. An application of genetic algorithms to the school
timetabling problem. In SAICSIT ’08: Proceedings of the 2008 annual research conference
of the South African Institute of Computer Scientists and Information Technologists on IT
research in developing countries, pages 193–199, New York, NY, USA, 2008. ACM.

[97] S. Rahimi. API-Calculus for Intelligent-Agent Formal Modeling and its Application in Dis-
tributed Geospatial Data Conflation. PhD thesis, University of Southern Mississippi, 2002.

[98] Larry Raisanen and Roger M. Whitaker. Comparison and evaluation of multiple objective
genetic algorithms for the antenna placement problem. Mob. Netw. Appl., 10(1-2):79–88,
2005.

[99] S.D. Ramchurn, D. Huynh, and N.R. Jennings. Trust in multi-agent systems. The Knowledge
Engineering Review, 19(01):1–25, 2005.

[100] Steen Rasmussen, Michael J. Raven, Gordon N. Keating, and Mark A. Bedau. Collective
intelligence of the artificial life community on its own successes, failures, and future. Artif.
Life, 9(2):207–235, 2003.

95

[101] Thomas S. Ray. An approach to the synthesis of life. Santa Fe Institute Studies in the Sciences
of Complexity, 10:371–408, 1991.

[102] Thomas S. Ray. An evolutionary approach to synthetic biology: zen and the art of creating
life. Artificial Life 1, pages 195–226, 1994.

[103] I. Rechenberg. Evolutionsstrategie. Frommann-Holzboog, Stuttgart, 1994.

[104] Jean-Philippe Rennard. Perspectives for Strong Artificial Life. 2004.

[105] Jeffrey P. Ridder and Jason C. HandUber. Mission planning for joint suppression of enemy
air defenses using a genetic algorithm. In GECCO ’05: Proceedings of the 2005 conference
on Genetic and evolutionary computation, pages 1929–1936, New York, NY, USA, 2005.
ACM.

[106] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents. Journal
of Automated Reasoning, 31(3):335–370, 2003.

[107] K. Rothermel, F. Hohl, and Informatik Gesellschaft fur. Mobile agents. Citeseer, 1998.

[108] K. Rothermel and M. Straßer. A fault-tolerant protocol for providing the exactly-once prop-
erty of mobile agents. In Proceedings of the Symposium on Reliable Distributed Systems,
pages 100–108. IEEE Computer Society Press, 1998.

[109] Franz Rothlauf. Representations for evolutionary algorithms. In GECCO ’09: Proceed-
ings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation
Conference, pages 3131–3156, New York, NY, USA, 2009. ACM.

[110] T. Sander and C.F. Tschudin. Protecting mobile agents against malicious hosts. Lecture
Notes in Computer Science, 1419:44–60, 1998.

[111] Jayshree A. Sarma. An Analysis of Decentralized and Spatially Distributd Genetic Algo-
rithms. PhD thesis, George Mason University, 1998.

[112] Jacob B. Schrum. Study and comparison of genetic algorithms when applied to lego mind-
storms robots. J. Comput. Small Coll., 19(4):353–353, 2004.

[113] H.P. Schwefel. Numerical optimization of computer models. Wiley and Sons, Chichester,
1981.

[114] Hu Shicheng, Chu Dianhui, and Xu Xiaofei. A virus evolution genetic algorithm for schedul-
ing problem with penalties of independent tasks on a single machine. Intelligent Systems,
WRI Global Congress on, 1:574–578, 2009.

[115] F.M.A. Silva and R. Popescu-Zeletin. An approach for providing mobile agent fault tol-
erance. In Second International Workshop on Mobile Agents, volume 1477, pages 14–25.
Springer, 1998.

[116] L. Silva, V. Batista, and J. Silva. Fault-tolerant execution of mobile agents. In Proc. of the
International Conference on Dependable Systems and Networks, pages 135–143, 2000.

[117] Elliott Sober. Learning from functionalism|prospects for strong artificial life. Santa Fe Insti-
tute Studies in the Sciences of Complexity, 10, 1991.

96

[118] W.M. Spears and K. A De Jong. An analysis of multi-point crossover. In Foundations of
Genetic Algorithms., pages 301–315. Morgan Kaufmann Publishers, San Mateo, California,
USA, 1991.

[119] W.M. Spears and K.A. De Jong. On the virtues of parameterized uniform crossover. In
R. Belew and L. Booker, editors, Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 230–237, 1991.

[120] L. Spector and J. Klein. Complex adaptive music systems in the breve simulation environ-
ment. In Proc. ALife VIII Workshops, pages 17–24. Citeseer, 2002.

[121] Lee Spector and Jon Klein. Evolutionary dynamics discovered via visualization in the breve
simulation environment. In The 8th International Conference on the Simulation and Synthesis
of Living Systems, Artificial Life VIII, 2002.

[122] M. Srinivas and Lalit M. Patnaik. Genetic algorithms: A survey. Computer, 27(6):17–26,
1994.

[123] Ken Stauffer. Evolve 4.0, July 2007. http://www.stauffercom.com/evolve4/index.
html.

[124] Carsten Knudsen Steen Rasmussen and Rasmus Feldberg. Dynamics of programmable mat-
ter. 10:211–254, 1991.

[125] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the 3rd In-
ternational Conference on Genetic Algorithms, pages 2–9, San Francisco, CA, USA, 1989.
Morgan Kaufmann Publishers Inc.

[126] T. Taylor. 1 Creativity in Evolution: Individuals, Interactions, and Environments. Creative
evolutionary systems, 2001.

[127] Tim Taylor. The cosmos artificial life system. Mind, 75:527–541, 1997.

[128] Timothy John Taylor. From Artificial Evolution to Artificial Life. PhD thesis, University of
Edinburgh, 1999.

[129] O. Tomarchio, L. Vita, and A. Puliafito. Active monitoring in grid environments using mobile
agent technology. In Active middleware services: from the proceedings of the 2nd annual
Workshop on Active Middleware Services, page 57. Kluwer Academic Pub, 2000.

[130] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary algorithms:
Analyzing the state-of-the-art, 2000.

[131] Sébastien Verel. Fitness landscapes and graphs: multimodularity, ruggedness and neutrality.
In GECCO ’09: Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference, pages 3593–3656, New York, NY, USA, 2009. ACM.

[132] John F. Walker and James H. Oliver. A survey of artificial life and evolutionary robotics,
1997.

[133] Mark Ward. Virtual Organisms: The Startling World of Artificial Life. Thomas Dunne Books,
2000.

97

[134] David C. Wedge and Douglas B. Kell. Rapid prediction of optimum population size in genetic
programming using a novel genotype -: fitness correlation. In GECCO ’08: Proceedings of
the 10th annual conference on Genetic and evolutionary computation, pages 1315–1322,
New York, NY, USA, 2008. ACM.

[135] G. Weiss. Multiagent systems: a modern approach to distributed artificial intelligence. The
MIT Press, 2000.

[136] U.G. Wilhelm, S. Staamann, and L. Buttyan. On the problem of trust in mobile agent systems.
In Symposium on Network and Distributed System Security, pages 114–124. Citeseer, 1998.

[137] H.C. Wong and K. Sycara. Adding security and trust to multiagent systems. Applied Artificial
Intelligence, 14(9):927–941, 2000.

[138] Carl Zimmer. Testing darwin. Discover Magazine, Februrary 2005. http://
discovermagazine.com/2005/feb/cover.

98

INDEX

artificial life, 26
simulators

Amoeba, 31
Avida, 31
Breve, 39
Bugs, 35
Coreworld, 29
Cosmos, 33
Darwinbots, 36
Evita, 34
EvoGrid, 31
Evolve, 38
Framsticks, 35
Physis, 32
Tierra, 30

crossover, 16

decentralized genetic algorithm, 23
coarse grained, 24
fine grained, 24

ECO genetic algorithm, 23

Genetic Mobile Agents
Other Approaches, 46

Behavior Graphs, 48
Communication Behaviors, 49
Layered Learning, 47
Neural Networks, 47

Traditional Genetic Algorithms, 50
genetic programming, 22

mutation, 20

recombination, 16

selection, 12
elitist, 13
local, 14, 24

roulette-wheel, 13
stochastic universal sampling, 14
tournament, 14
truncation, 13

VEGA, 22

	DNAgents: Genetically Engineered Intelligent Mobile Agents
	Recommended Citation

