
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Master's Theses 

6-2023 

PREDICTIVE ABILITY OF A 3D BODY SCANNING MOBILE PREDICTIVE ABILITY OF A 3D BODY SCANNING MOBILE 

APPLICATION FOR METABOLIC HEALTH RISK APPLICATION FOR METABOLIC HEALTH RISK 

Caleb Brandner 

Follow this and additional works at: https://aquila.usm.edu/masters_theses 

 Part of the Exercise Science Commons, and the Telemedicine Commons 

Recommended Citation Recommended Citation 
Brandner, Caleb, "PREDICTIVE ABILITY OF A 3D BODY SCANNING MOBILE APPLICATION FOR 
METABOLIC HEALTH RISK" (2023). Master's Theses. 983. 
https://aquila.usm.edu/masters_theses/983 

This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been 
accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For 
more information, please contact aquilastaff@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/masters_theses
https://aquila.usm.edu/masters_theses?utm_source=aquila.usm.edu%2Fmasters_theses%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1091?utm_source=aquila.usm.edu%2Fmasters_theses%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1367?utm_source=aquila.usm.edu%2Fmasters_theses%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/masters_theses/983?utm_source=aquila.usm.edu%2Fmasters_theses%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu


The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Master's Theses 

Summer 6-12-2023 

PREDICTIVE ABILITY OF A 3D BODY SCANNING MOBILE PREDICTIVE ABILITY OF A 3D BODY SCANNING MOBILE 

APPLICATION FOR METABOLIC HEALTH RISK APPLICATION FOR METABOLIC HEALTH RISK 

Caleb Brandner 

Follow this and additional works at: https://aquila.usm.edu/masters_theses 

 Part of the Exercise Science Commons, and the Telemedicine Commons 

Recommended Citation Recommended Citation 
Brandner, Caleb, "PREDICTIVE ABILITY OF A 3D BODY SCANNING MOBILE APPLICATION FOR 
METABOLIC HEALTH RISK" (2023). Master's Theses. 983. 
https://aquila.usm.edu/masters_theses/983 

This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been 
accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For 
more information, please contact aquilastaff@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/masters_theses
https://aquila.usm.edu/masters_theses?utm_source=aquila.usm.edu%2Fmasters_theses%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1091?utm_source=aquila.usm.edu%2Fmasters_theses%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1367?utm_source=aquila.usm.edu%2Fmasters_theses%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/masters_theses/983?utm_source=aquila.usm.edu%2Fmasters_theses%2F983&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu


PREDICTIVE ABILITY OF A 3D BODY SCANNING MOBILE APPLICATION FOR 

METABOLIC HEALTH RISK 

 
by 

 
Caleb Brandner 

A Thesis 
Submitted to the Graduate School, 

the College of Education and Human Sciences 
and the School of Kinesiology and Nutrition 

at The University of Southern Mississippi 
in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

Approved by: 
 

Dr. Austin Graybeal, Committee Chair 
Dr. Jon Stavres 

Dr. Riley Galloway 
Dr. Stephanie McCoy 

 
 
 
 
 
 
 
 
 
 
 
 

 
August 2023 



 

 

COPYRIGHT BY 

Caleb Brandner 

2023 

Published by the Graduate School  

 

 

 

 



 

ii 

ABSTRACT 

There is an increasing prevalence of obesity within the US and rising rates of 

metabolic syndrome among those aged 20-39 concurrent with a decrease in the reception 

of primary care. Limitations to healthcare including access, cost, and availability, 

highlighting the need for simple, efficient, and accessible cardiometabolic health risk 

screening. Given the surge in smartphone ownership over the last decade, this study 

sought to determine the predictive ability of a mobile 3D-optical (3DO) body 

composition assessment application in determining metabolic health risk. A total of 62 

participants (female: 36) underwent traditional anthropometric measurements, 3DO body 

scanning using a smartphone application, and the collection of chronic health biomarkers 

from capillary blood. Metabolic syndrome risk scores (MSs) were determined using 

previously generated sex- and race/ethnicity-specific equations. Three prediction models 

were produced using variables extracted from the 3DO scans (anthropometric, body 

composition, and combined models), with the final models produced by backwards 

regression. Sex specific models were also generated. The combined model including both 

body composition and anthropometric variables provided the strongest predictor of MSs 

(R² = 0.64, p < 0.001), with performance improving when separated into female (R² = 

0.77, p < 0.001) and male specific models (R² = 0.87, p = 0.002). The combined sex-

specific models did not reveal significant proportional biases (female: coefficient = 

0.138, p = 0.123, male: coefficient = -0.072, p = 0.142). The findings of this study 

provide preliminary evidence for the use of mobile 3DO scanning for cardiometabolic 

health risk screening. Thus, mobile 3DO scanning may provide an affordable, accessible, 

and easy to use tool that can be deployed remotely to improve healthcare access. 
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CHAPTER I - INTRODUCTION 

Obesity is defined as the excessive accumulation and storage of body fat and is 

traditionally classified by the relationship between body mass in kilograms and height in 

meters squared (a.k.a. body mass index [BMI], kg/m2). According to the National 

Institutes of Health, an individual with a BMI of 30 kg/m2 or greater is categorized as 

having obesity1, which poses a significant health risk. In fact, each additional 5 kg/m2 

increase in BMI beyond 25 kg/m2 is associated with a 30% increase in mortality risk2. 

There exists strong associations between obesity and type II diabetes (T2D), 

hypertension, dyslipidemia, heart disease, cerebrovascular disease, and respiratory 

disease, gastrointestinal complications, osteoarthritis, and some cancers3, making it a 

significant public health issue. Though the health risks associated with excessive body fat 

are well established in public health discourse, knowledge of the risks associated with 

obesity has done little to mitigate its prevalence. 

As of 2017-2018, 42.4% of US adults had a BMI classification of obese, an 

increase of 11.9% from 1999-20004. The increasing prevalence of obesity presents not 

only a public health risk, but a burden on medical spending. For individuals with obesity, 

annual medical spending costs an average of $2,505 more when compared to individuals 

classified as normal weight, and costs as much as $260.6 billion per year in annual 

medical spending in the US 5. BMI has been well validated for its role as an indicator of 

excess body fat6 making it a useful tool, but healthcare providers are not utilizing the 

information to address the growing obesity epidemic7. Yet, BMI may not accurately 

demonstrate the full picture of ones metabolic health risk and more information is 

necessary to determine ones health status8,9. 
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Of particular concern with the presence of obesity is the potential development of 

metabolic syndrome (MetS). MetS is characterized by abdominal obesity, hypertension, 

dyslipidemia, and impaired fasting glucose10, and is considered present if an individual 

has three or more of the following risk factors; high blood pressure (BP) (>130/85 

mmHg), high fasting blood glucose (FBG; >100 mg/dL), a waist circumference (WC) 

over 101.6 cm (men) or 88.9 cm (women), high fasting triglyceride (TG) levels (>150 

mg/dL), and low fasting high-density lipoprotein (HDL) cholesterol levels (<40 mg/dl for 

men, <50 mg/dL for women)11. Prevalence of MetS in the US from 2015-2016 was 

34.7% and though the overall increase in incidence was not significantly higher than 

previous years, there is a growing prevalence among those aged 20-39 years. From 2015-

2016, prevalence among those aged 20-39 was 21.3%, those aged 40-59 was 42%, and 

those aged ≥60 was 50.4%, indicating a trend for increasing incidence of MetS with 

increasing age12. 

Many methodologies currently exist to aid in the assessment and quantification of 

obesity and metabolic disease risk. While BMI provides limited information, it is one of 

the most widely used assessments for obesity and has been positively associated with 

systolic and diastolic BP, strongly positively associated with ischemic heart disease, and 

positively associated with stroke in middle aged individuals2. The higher the BMI the 

higher risk of coronary heart disease, stroke, cardiovascular disease (CVD), T2D, and all 

cause mortality13. Patient height and weight are often measured during normal physician 

visits and can be used for BMI calculations, but circumference measures such WC, hip 

circumference (HC) and waist-to-hip ratio (WHR), which may provide useful 
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information associated with metabolic health risk, are rarely collected during routine 

visits. 

Waist-related metrics can be utilized for predicting cardiovascular disease 

mortality14, obesity risk15, truncal adiposity, and metabolic complications16,8 and are 

strong and independent predictors of T2D17. The calculation of WHR demonstrates 

relative waist size and shows high correlation to fat mass (FM) around the viscera and 

abdominal organs18, and WC alone is an independent predictor of mortality19. As 

individual measures, taking both WC and HC measures together may provide a more 

robust understanding of mortality risk by providing measures of both upper- and lower-

body adiposity20. Specifically, the excessive accumulation of visceral adipose tissue 

(VAT) is a component of abdominal obesity and is associated with a higher mortality risk 

than BMI-defined obesity21 alone and has been implicated for its role in the development 

of insulin resistance22. Excess VAT may indicate dysfunctional lipid metabolism and 

increase the risk of hypertension, T2D, insulin resistance, stroke, inflammation, and 

dyslipidemia23. 

While circumference measures have the potential to serve as valuable assessment 

tools, the use of a tape measure requires accurate and consistent landmarking for 

measurement sites and is thus subject to variance in reliability across observers24. Even 

with reliable measurements of body circumference and BMI, these simplistic measures 

are limited by their superficial nature, which are more aligned with size and stature, and 

may not accurately reveal body tissue compositions associated with disease. Utilizing 

body fat percent (BF%) cutoff points of ≥ 25% for men and ≥ 35% for females, Peltz et 

al. observed that BMI failed to categorize 46.2% of men and 50.7% of women that were 
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identified as having obesity when utilizing BF% as assessed by bioelectrical impedance 

analysis (BIA)25. Utilizing the same BF% cutoff points, Frankenfield et al. noted similar 

discrepancies between BMI and BIA BF% assessments with 30% of men and 46% of 

women with BMIs below 30kg/m2 having a BF% above the obesity cutoff26, though it 

should be noted there are no conventional cutoffs for BF%. The presence of low fat-free 

mass (FFM) and high body fat that is descriptive of individuals with normal weight 

obesity has been implicated in the development of insulin resistance11,27,28 and endothelial 

dysfunction11,29. The risks associated with high BF% and low FFM highlight the 

important roles that both adiposity and lean tissue can have in regulating health status and 

indicates that direct measures of body composition may be needed for a more thorough 

screening of metabolic health risk.  

The most accurate methods of assessing body composition are computed 

tomography (CT) and magnetic resonance imaging (MRI). MRI scans must use section-

by-section scanning in order to achieve full body analysis, which is time consuming, 

expensive, and my not be feasible for patients with claustrophobia due to the confined 

space of the scanner. CT scans are based on X-ray which requires the subject to be 

exposed to a substantial amount of radiation. Due to the limitations of MRI and CT, dual-

energy x-ray absorptiometry (DXA) is often utilized as the criterion single device body 

composition measure. DXA is noninvasive and can be completed quickly, and unlike CT, 

the X-ray exposure is minimal. Despite this, DXA scans are not widely available and can 

be expensive to access for body composition assessments. 

Bioelectrical impedance analysis (BIA) and bioelectrical spectroscopy (BIS) are 

additional non-invasive body composition technologies. Most traditional bioelectrical 
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impedance devices produce an electrical current which is sent through the body and 

estimates body composition from tissue impedance measurements (resistance and 

reactance).  However, given the influence of cellular hydration status on body 

composition estimates assessed by this method, pre-test standardization remains a major 

limitation of BIA and BIS devices. As such,  participants are required to be fasted and in 

a state of euhydration, where failure to adhere can result in meaningful changes in FM, 

FFM, and BF% values30. Further, differences exist in agreement between some single- 

and multi-frequency BIA (MFBIA) devices and BIS31,32. The variance in available 

technology limits the utility of the technology in clinical settings, highlighting the need 

for reliable non-invasive body composition and anthropometric assessment technology. 

Three-dimensional body surface scanning is a new technology that has the 

potential to provide both easily accessible anthropometric and body composition 

assessments. Three-dimensional scanners commonly deploy one of two technologies for 

data acquisition; 1) structured light scanners which emit infrared light patterns across the 

surface of an object and measures light deformation of the pattern to produce a depth 

image; or 2) time-of-flight scanners which utilize visible light or infrared light and 

calculates “round trip time” for photons moving from the image sensor to the object and 

back to the camera to calculate depth33,34. The depth data collected from the scanner 

sensors are used to generate surface shape and cloud points of digital data (3D 

mesh/avatar) which can be used for circumference measurements, linear dimensions, and 

anatomical volumes, from which proprietary software can estimate body composition33. 

Three-dimensional optical (3DO) scanning devices have been validated against a four-

compartment criterion model for assessment of BF%, demonstrating reliable estimates 
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with minor variance between devices35. 3DO scanning has demonstrated associations 

with VAT measurements from DXA and has shown significant correlations to specific 

biomarkers of metabolic health, such as HDL cholesterol, TG, glucose, insulin, and 

homeostatic model assessment of insulin resistance, making it a useful tool for 

monitoring metabolic health36. 

Recently, 3DO smartphone applications have been developed that utilize two-

dimensional photographs to estimate BF% and anthropometric data and has been 

validated against DXA for BF%37. Mobile 3DO (M-3DO) scanning presents an 

opportunity to collect user health information quickly, easily, and remotely at a low cost 

and without the need for technical expertise and in turn, improve access to metabolic 

health screening. With 85% of US adults reporting ownership of a smartphone as of 

202038 and a 41% growth in full or partial telehealth utilization in US hospitals from 

2010 to 201739, the further development and validation of mobile health assessment 

techniques may expand the scope and accessibility of mobile healthcare. Telemedicine 

programs have been utilized to manage diabetes care40, provide mental health 

interventions41, and chronic disease lifestyle improvement42, yet the utilization of 

smartphone technology for anthropometric assessments and metabolic disease risk 

screening has not been done. Therefore, the purpose of this thesis is to assess the 

predictive power of a commercially available 3DO scanning application to assess 

metabolic health risk. This information would have significant implications for 

improving what is possible with telemedicine and providing remote health risk screening. 

With an increasing prevalence of obesity in rural regions43 and among individuals of low 

socioeconomic status (SES) 44,45, healthcare access is imperative. It is hypothesized that 
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measurements obtained with 3DO scanning will correlate to MetS risk factors, thus 

providing a viable option for at-home health risk screening. 
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CHAPTER II - LITERATURE REVIEW 

2.1  Obesity and Metabolic Syndrome 

Obesity refers to the excessive accumulation of adipose tissue which is a product 

of chronic high energy intake and insufficient physical activity (PA) and is associated 

with several negative health outcomes1. This occurrence is dictated by the laws of 

thermodynamics, specifically the law of conservation of energy, where a positive shift in 

energy balance, defined as the rate of energy intake to the rate of energy output, will 

result in changes in body weight. Total daily energy expenditure (TDEE) can be broken 

down into three different components; resting metabolic rate, which is the energy 

required while lying supine, motionless, and awake; thermic effect of food, or the energy 

needed for digestion, absorption, and the metabolization or storage of nutrients; and the 

energy required for exercise or non-exercise activity46. Despite the relatively simple 

underlying mechanism of energy balance, in free living conditions some individuals are 

more prone to weight gain while others appear more resistant to weight changes47. Body 

size and composition are associated with one’s resting metabolic rate, where larger body 

sizes generally have greater FFM, which possess higher degrees of metabolic activity and 

thus, higher resting metabolic rate. Similarly, the energy cost of PA increases with larger 

body size, though an inverse relationship exists between body size and PA levels48. When 

normalizing estimations of energy expenditure (EE) for body size and composition, EE 

appears to remain stable throughout the adult life until approximately 63 years of age, 

though large variance in EE between individuals still exist49. 

Given the dual roles of energy intake and PA on energy balance, the simple 

suggestion to “eat less and move more” has become a commonly used heuristic to 
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promote weight loss, but neglects the complexity of the individual responses to exercise, 

diet, and personal environment (social, geographical), and socioeconomic status. For 

individuals with overweight or obesity, the ACSM recommends restricting energy intake 

to achieve 5-10% weight reduction within one year50 and increasing PA to meet or 

exceed the minimum ACSM guidelines of 30 min of moderate-intensity PA five times 

each week or 20 min of vigorous-intensity activity for three days each week to minimize 

health risks51. Despite the seemingly simplistic concept of energy balance, weight 

management proves far more complicated in practice. For example, EE appears to plateau 

with increasing PA levels. Pontzer et al. observed that individuals in the 60th to 100th 

percentiles of PA saw a plateau in additional EE that was statistically indistinguishable 

from zero52, suggesting that additional PA is not strictly additive in terms of EE. Further, 

success rates for sustaining body weight following weight loss interventions are 

exceedingly low, with only around 20% of individual’s from the general population 

reporting successful 1-year follow-up weight loss maintenance53. 

Individual differences in response to diet and exercise, as well as an individual’s 

environment and SES, add to the difficulty in addressing the prevalence of obesity. For 

instance, reductions in body weight induce concomitant decreases in EE. One study 

investigating individuals with obesity indicated that caloric restriction of 25% resulted in 

a lower TDEE at 6 months compared to baseline54. When accounting for how the changes 

in FM and FFM affect TDEE, the caloric restriction intervention accounted for a change 

in TDEE of -209±114 kcal/day at six weeks and caloric restriction plus exercise 

accounted for 129±86 kcal/day at six weeks54, which has been observed elsewhere55. 

Regarding income and obesity, it has been observed that individuals with low-income 
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were more likely to develop obesity and those with obesity were more likely to have 

lower wages56 and education57. Racial disparities in obesity prevalence exist, where non-

Hispanic Asian adults represent the lowest rates at 17.4% while non-Hispanic 

Black/African-American adults represent the highest rates at 49.6% followed by Hispanic 

(44.8%) and non-Hispanic white adults (42.2%)4. Benusic and Cheskin (2021) note that 

when income is controlled, there is no greater risk of obesity among Black or Hispanic 

populations when compared to White populations57. The complex interplay of variables 

that coincide with high incidences of obesity are important to understand as the 

comorbidities of obesity threaten the health of at-risk populations. 

The diagnosis of obesity is subject to many challenges, current evidence suggests 

that anywhere from 65% to 89.8% of individuals go undiagnosed58–60 despite 39% of 

adults having overweight or obesity, globally61. This does not account for the individuals 

in the US that go without a source of primary care, a number that is growing, as from 

2002-2015 there were significant reductions in reported primary care receipt for all age 

groups except for those in their 80s, with the largest decreases in younger age groups62. 

Given the relationships between obesity and T2D, hypertension, dyslipidemia, and CVD, 

a diagnosis of obesity is often the initial step in the treatment or prevention of these 

comorbidities. For individuals with obesity there is often an increased accumulation of 

lipids in the muscle and liver, increasing the risk of T2D63,64 which is characterized by 

insulin resistance. In a sample of individuals with overweight and obesity, Calanna 

observed that those with prediabetes and T2D had higher basal insulin levels than the 

control group and significantly higher prevalence of liver steatosis in prediabetic and 

T2D patients65 indicating excessive hepatic lipid storage. 4-hydroxynonenal, a biomarker 
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produced by the peroxidation of lipids, was observed by Ingram et al. to be significantly 

higher in insulin resistant individuals compared to those who were insulin sensitive, 

indicating the presence of elevated intramyocellular lipids in individuals with T2D66. 

The presence of T2D greatly raises the risk of developing severe complications. 

Without management, T2D can increase an individual’s risk of microvascular 

complications which could lead to the development of diabetic neuropathy, peripheral 

neuropathy, and diabetic retinopathy67. Diabetic neuropathy effects the peripheral 

nervous system, causing neurodegeneration starting with sensory axons, autonomic 

axons, and motor axons68. Peripheral neuropathy has a high prevalence rate, effecting 

28% of diabetic hospital patients, and in a literature review by Ziegler et al., it is noted 

that among individuals with idiopathic peripheral neuropathy, 35% to 62% of patients are 

reported to have prediabetes69. Diabetic retinopathy, a highly prevalent condition70 that 

causes damage to blood vessels of the retina, can potentially lead to vision impairment 

and blindness71. In T2D, damage to nerves caused by peripheral neuropathy can result in 

numbness or tingling in the feet leading to the reduced ability to sense pain and potential 

biomechanical abnormalities which, when in combination with repetitive external or 

minor trauma, can result in the development of foot ulcers72. It is predicted that between 

15-34% of persons with diabetes will be effected at some point by diabetic foot ulcers72. 

A major complicating factor with the occurrence of foot ulcers is concomitant circulation 

issues that lead to slow wound healing, which in combination with sensory deficiencies 

may lead to unnoticed infections and eventually amputation. In a study by Prompers et al. 

examining a cohort of 1,088 diabetic foot ulcer patients, it was observed that 23% of 
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patients had not healed with peripheral neuropathy and peripheral artery disease being 

noted as predictive of non-healing73. 

The consumption of highly processed food may be a causal factor in the 

development of a positive energy balance and subsequent weight gain. In a randomized 

controlled trial by Hall et al., 10 male and 10 female weight stable adults were admitted 

to a metabolic ward for 28 days where three daily energy and macronutrient matched 

meals were provided for ad libitum consumption74. During consumption of an ultra-

processed diet, energy consumption, carbohydrate and fat, and sodium intake were 

greater during the ultra-processed diet compared to the unprocessed diet74. In a cohort 

study on weight gain and BP, Sundström et al. observed that for each 10 kg weight gain 

between 20 years and mid-life there was a 2.2 mmHg and 1.7 mmHg systolic and 3.2 

mmHg and 2.4 mmHg diastolic increase in BP for men and women, respectively75. The 

excessive sodium consumption with ultra-processed may account for increases in BP 

associated with weight gain76,77. A lack of PA may also explain, in part, the increased BP 

with weight gain. There is a large body of literature exploring the role of PA in the 

prevention of hypertension, which indicates that individuals who regularly participate in 

PA (minimally meeting the ACSM recommendations) are at lower risk for developing 

hypertension78,79. In fact, among US adults the prevalence of low-HDL cholesterol from 

2011-2014 was highest in individuals who failed to meet PA guidelines (21%) compared 

to those who did (17.7%)80. 

Among preventable risk factors, high systolic BP is the leading cause of mortality 

worldwide and in 2017 accounted for 10.4 million deaths, globally81. Hypertension is a 

major concern in the presence of obesity and its relationship with obesity has been well 
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established in the literature82–84. The development of hypertension in obese individuals 

may be attributed to the excess accumulation of adipocytes leading to altered adipokine 

levels. In their review on the link between obesity and CVD, Nakamura et al. note that 

for individuals with obesity there is an upregulation in pro-inflammatory adipokine 

activity such as elevations in tumor necrosis factor-α and leptin as well as low levels of 

the anti-inflammatory adipokine, adiponectin85. In a study on 154 obese individuals, 

including 98 patients with some combination of hypertension, T2D, and dyslipidemia, 

Csongrádi et al. observed that adipokines were closely related to intima-media thickness 

which in turn had significant positive relationships with markers of hypercoagulation and 

impaired fibrinolysis, suggesting adipokine levels in obesity play a role in the 

development of atherosclerosis86. 

Atherogenesis appears to be triggered by a combination of the above mentioned 

obesity related changes in adipokine activity and increases in pro-inflammatory cytokines 

from excess adiposity as well as changes in vasoconstrictor hormones and increased 

expression of adhesion molecules that promote clotting in the inner surfaces of the 

arterial wall87,88. Impaired nitric oxide release may also be implicated with altered 

adipokine activity, leading to endothelial vasoconstriction, and dysfunction89. An increase 

in endothelial permeability allows low-density lipoproteins (LDL) to bind to the 

subendothelial space where they are oxidized and signal a pro-inflammatory protective 

mechanism; further signaling macrophages which become foam cells as they attack, 

consume, and become saturated with oxidized LDL90,91. If foam cells fail to remove the 

LDL, as in the presence of chronic elevated levels of LDL, apoptosis will occur causing 

the release of the macrophage’s lipid contents, promoting a cycle of increasing foam cell 
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accumulation90. Replication of foam cells can result in the formation of lesions, also 

known as fatty streaks, which are the first visible indicator in the progression of 

atherosclerosis and precede the formation of larger plaque structures90,92,93. More 

complex plaque structures are formed as the foam cells release cytokines and growth 

factors that stimulate vascular smooth muscle cell growth within the intima, forming a 

fibrous capsule over the fatty streak94,95. Yet, as macrophages continue to attack apoptotic 

cells within the extracellular matrix, they promote matrix-degrading enzymes, such as 

metalloproteinase, which break down the fibrous cap and structural scaffold of the 

plaque, making it vulnerable to rupture94,96.  

A large body of research exists that links the presence of obesity and it’s 

atherogenic effects to an increased risk for developing a wide range of comorbidities. In a 

review on obesity disease risk, Gadde et al. reported that increases in BMI are associated 

with higher risk of heart failure, atrial fibrillation, CVD, hypertension, and left ventricular 

hypertrophy97. The presence of chronic hypertension, atherosclerosis, and stenosis 

ultimately result in increased myocardial afterload which puts greater strain on the heart 

and can lead to hypertrophy of the left ventricle. According to the Framingham Heart 

Study, left ventricular hypertrophy is a strong independent predictor for both CVD and 

coronary artery disease (CAD)98. This is further supported by the LIFE study which 

found that patients with CAD had around 80% higher left ventricular mass and 20% 

greater left ventricular stress than those without99. Pathological left ventricular 

hypertrophy can decrease the contractility of the left ventricle resulting in reduced cardiac 

output and ability to meet the oxygen demands of the body, which can eventually lead to 

the symptoms of heart failure100. Additionally, occluded blood flow due to plaques in the 
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coronary arteries may prevent adequate oxygen delivery to the myocardium101. Heart 

failure can occur in both the left and right side, both of which can be caused by CAD, 

hypertension, and right-sided heart failure can also be caused by pulmonary valve 

stenosis and pulmonary embolism102. 

Atherosclerotic regions contribute to the development of peripheral arterial 

disease103, and lesions that are vulnerable to rupture are the main factor contributing to 

the development of luminal thrombosis94. In their review on sudden cardiac death, 

Virmani et al. note the prevalence of thrombi in sudden coronary death range anywhere 

from 20-70% and in acute myocardial infarction between 70-80%104. Gongora-Rivera et 

al. examined the prevalence of coronary atherosclerosis in patients with fatal strokes and 

reported that 72% had plaque occlusions and 38% stenoses causing occlusion greater than 

50%105. In a study on patients with pulmonary embolism, Keller et al. investigated the 

impact of symptomatic atherosclerosis, defined as the presence of concomitant CAD, 

myocardial infarction, ischemic stroke, peripheral arterial disease, and arterial 

atherosclerosis. Symptomatic atherosclerosis was associated with worse health outcomes 

than asymptomatic patients with pulmonary embolism, including increased in-hospital 

adverse events and death, independent of other risk factors106. Khan et al., in their review 

on venous thromboembolisms, report that among patients diagnosed with pulmonary 

embolism, the mortality rate is around 20% withing 1 year of diagnosis107, and 

Konstantinides et al. report that long-term follow up studies indicate that as much as 50% 

of patients who have suffered an acute pulmonary embolism episode have persistent 

reductions in quality of life108. The development of vascular diseases associated with 
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adiposity pose a serious health risk, with the contributing factors being descriptive of the 

clustering of risk factors associated with MetS. 

As previously discussed, MetS is a clustering of abdominal obesity, dyslipidemia, 

hypertension, and elevated FBG. The prevalence of MetS remains high in the US with a 

reported incidence of 23-34.7% from 2014-201612,109,110 with rates being lowest among 

adolescents and highest among those over 60 years of age4. Of particular concern, 

however, is the increased incidence from 16.2% in 2011-2012 to 21.3% in 2015-2016 in 

those aged 20 to 39 years12. Obesity rates have continued to rise in the among US, 

increasing from 33.7-39.6% and 16.8-17.2% from 2007-2008 to 2015-2016111, and up to 

42.4% for 2017-20184. While the incidence of obesity and diabetes continues to rise in 

the US, the overall incidence of MetS has not followed a similar trajectory 12,109. Given 

that the prevalence in obesity and MetS are misaligned despite their well-established 

associations, appropriate screening is critical.  

Screening of MetS risk requires assessment of each of the individuals risk factors, 

some of which are performed as part of regular physician visits, and others requiring 

more invasive testing. For assessments of fasting HDL, TG, and FBG, blood samples are 

drawn and analyzed for lipid and glucose levels. Blood glucose is traditionally measured 

with blood gas analyzers (BGAs), modern handheld BGAs, or cassette-based BGAs, 

which can produce accurate measurements of FBG112. Fasting venous blood samples can 

be drawn and analyzed for TG levels, LDL, HDL, and remnant cholesterol, which is 

composed of TG rich lipoproteins, very low-density lipoproteins, and intermediate-

density lipoproteins, and are quickly degraded113. Cassette based blood analysis can also 
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provide fast readings of total cholesterol, HDL, LDL, total-to-HDL ratio, and very-low-

density lipoprotein with overall correlation coefficients as high as 0.97114. 

Another MetS factors is BP, which is measured by inflating the cuff of a 

sphygmomanometer to occlude blood flow of the brachial artery of the upper arm and 

auscultating the brachial artery. With a stethoscope the observer can listen for the return 

of the pulse as air is slowly released and the cuff relaxes. The pressure at which the first 

sound of a pulse is heard, also known as the first Korotkoff sound, indicates the systolic 

BP, and the pressure at which final audible sound is heard corresponds to the diastolic 

BP. As discussed earlier, untreated hypertension can lead to the development of a wide 

range of comorbidities. In a large systematic review by Bundy et al., a linear relationship 

between systolic BP level and CVD, stroke, and coronary disease was observed, and the 

lowest risk for CVD and all-cause mortality exists amongst those with systolic BP around 

120-124 mmHg115. While bloodwork is needed for MetS screening, not all assessments 

are invasive. 

WC is a non-invasive test performed with a tape measure, usually landmarked at 

either the superior border of the iliac crest or midway between the lowest ribs and the 

iliac crest. There is currently no standardization for WC measurement landmarking 

despite evidence suggesting that the anatomical location of the measurement may 

contribute to considerable differences in health risks116. Some evidence suggests that 

midway between the lowest ribs and iliac crest provides the best measurement for central 

obesity117. WC provides a predictive measure for excess abdominal adiposity, and while 

not part of MetS screening, HC, and WHR may further help predict the risk of abdominal 

obesity. Abe et al. demonstrated a significant positive association with both BMI and WC 
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in prediction of diabetes118. Gadekar et al. observed very strong correlations between 

WHR and VAT as assessed by MFBIA, and moderate and strong correlations between 

VAT and WC for males and females, respectively20. Measures of WC and HC 

additionally allow some differentiation between upper and lower body adiposity, an 

important distinction with multiple large population studies demonstrating increased risk 

of metabolic complications with increasing WC and HC with having an inverse 

relationship119,120. Cameron et al. observed when accounting for both WC and HC, 

specifically in individuals with smaller waists who would not normally be identified as 

high risk, the number of individuals classified with a high mortality risk increased by 

19% and 18% for men and women, respectively20. In a review on the role of visceral 

adipose tissue and MetS, Wajchenberg notes that when compared to excess peripheral fat, 

central VAT is associated with higher incidence of insulin resistance, hyperlipidemia, and 

decreased HDL, independent of overall obesity8. Another review on the pathophysiology 

of visceral obesity by Tchernof and Després (2013) affirms the independent relationship 

between visceral adiposity and insulin resistance, as well as increased risk of 

atherosclerosis and thrombosis23. Given the pathogenic role of excess adiposity and 

adiposity distribution, more direct assessments of body composition may be warranted to 

better screen for disease risk. 

2.2 Body Composition 

Many different techniques exist for body composition estimation. While many are 

well validated, they are limited by expense and access, or are prone to error by procedure 

assumptions, proprietary equations, pre-assessment standardization, and technician 

competency. Both MRI and CT are considered the most accurate body composition 
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assessments for total, visceral, subcutaneous, and interstitial adiposity, as well as provide 

detailed segmental analysis of skeletal muscle121. The technology is a continuation from 

an older nuclear magnetic resonance technology which relied on the unique magnetic 

properties of atomic nuclei, specifically hydrogen, which exists in large enough quantities 

and with a sufficiently large nucleus to permit the production of images via the mapping 

of measured magnetic field gradients122. In 1975, Paul C. Lauterber demonstrated the that 

nuclear magnetic resonance could produce spatial information that generated multi-

dimensional images, paving the way for the modern MRI now used for detailed medical 

imaging123. In fact, MRI is equipped to determine the quantity and location of abdominal 

adipose tissue, specifically the more pathogenic visceral adipose tissue (VAT), which is 

highly associated with MetS124. While full body scans can be completed in as little as 10 

minutes, the analysis of the MRI image requires manual segmentation of the muscle can 

take up to several days125 in addition to the cost of assessment. 

CT is another method available for medical imaging. Instead of magnetic fields, 

CT utilizes X-rays that are rotated around a subject and projected through the plane of the 

area to be imaged. The technology was piloted in 1967 by Godfrey Hounsfield who first 

proposed X-ray beams could be directed through the body and through the attenuation of 

photons, producing cross-sectional images of the interior of the body126. The attenuation 

of X-ray beams provides information on the electron density distribution of the scanned 

areas121,127. Each X-ray beam yields a single pixel of information on tissue density, thus 

CT scans require a computer to convert the collected scan data into reconstructed detailed 

images of the scanned area128. Given the emission of X-rays in CT, there is exposure to a 

substantial dose of radiation, with a single abdominal scan exposing a patient to 3100 
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µSv compared to 0.96 µSv from a full body DXA scan129. Because X-rays emitted by CT 

are considerably greater than that of a conventional X-ray130, the risk may outweigh the 

benefit and limit the ability to perform routine assessments. 

DXA provides a strong alternative to both MRI and CT by quickly providing full 

body scans and exposing the subject to substantially lower radiation. In 1963, Cameron 

and Sorenson (1963) first demonstrated that by utilizing low-energy photon beams, bone 

mineral content (BMC) could be measured131. By 1981 the technology evolved into dual 

photon absorptiometry, which was first demonstrated by Mazess et al. to be suitable for 

total bone mineral density by scanning dry skeletons, and further showed reliability when 

scanning the skeletons along with materials to proxy soft tissue132. The clinical 

application of DXA is typically the diagnosis of osteoporosis through measurements of 

bone mineral density133. DXA utilizes dual X-ray beams passed through the subject at 

different frequencies, and like CT, assesses attenuation of photon energy which provides 

density information for each beam to differentiate between bone mineral, FM, and lean 

soft tissue134. DXA scans for VAT show high correlation to CT VAT assessments135, as 

well as high correlations of VAT measures when compared to MRI assessments136,137. 

DXA has demonstrated agreement with the 4-compartment model for BF% among 

adults138, children and adolescents139, producing estimates of BF% within 1% to 3% of 

multicomponent models140. Low coefficients of variation have been reported for DXA 

measures of FM, FFM, and BMC among athletic and active individuals141. Further, DXA 

has demonstrated the ability to produce accurate and reliable assessments of skeletal 

muscle in adults142, children, and late stage pubertal adolescents143. DXA measures of 

VAT have also been correlated with insulin resistance and low-HDL, diastolic BP, 
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decreased peak VO2, and high TG levels, supporting the use of DXA derived VAT for 

screening MetS risk144,145. DXA is not without limitations, however, as proportional 

biases exist with DXA tending to underestimate the BF% of leaner individuals146. Factors 

such as body size, sex, age, and disease state have all been shown to be independent 

contributors to the biases observed during DXA body composition assessments147, 

warranting careful consideration when deciding whether DXA is appropriate to use in 

different clinical populations. While the overall cost of a DXA scan is lower than MRI 

and CT, with substantially lower radiation exposure than CT, DXA remains a clinical 

assessment tool that is not universally accessible and can cost $125 or more out-of-

pocket148. 

Indirect measurements of body tissues may also be used to predict body 

composition based on differing densities of FM and FFM. Specifically, hydrostatic 

weighing (HW) and air displacement plethysmography (ADP) can be used to predict 

body composition based on the 2-compartment model, which separates the body into all 

fat and non-fat tissues. HW is based on Archimedes’ principle, which states that when a 

body is submersed in water, the upward force of buoyancy is equal to the weight of the 

fluid displaced by the body. Among body tissues, adipose is the only body tissue with a 

density less than water thus, differences in body composition at a fixed body weight will 

experience specific degrees of buoyancy. Due to the indirect nature of body volume 

assessment, the model used for converting densitometry to body composition must 

assume that the density of FM and FFM are constant121, and the assumed densities may 

differ across various groups149. For HW, participants are required to fully submerge 

themselves into a tank of water and maximally exhale to eliminate as much air from the 
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lungs as possible134. With 2-compartment models such as hydrostatic weighing, FFM 

density is assumed as a constant despite individual variations due to total body water and 

BMC thus, failure to directly assess residual volume within the lungs can affect the 

assessment of body density and predicted BF%, resulting in significant differences BF% 

values150. Expiration of residual lung volume underwater may be uncomfortable, require 

practice, and vary within individuals following weight changes or as age increases150; 

requiring careful consideration when deciding whether or not to use HW. 

ADP is a newer method that assesses BV and densitometry based on the amount 

of air displaced by a body within an environmentally controlled space. ADP relies on 

Boyle’s Law which states that there is an inverse relationship between pressure and 

volume of a gas when that gas is at room temperature. The most common tool for ADP is 

a BOD POD, which can be performed with significantly reduced participant burden, 

requiring only that the participant wear minimal, form fitting clothing and a swim cap to 

secure loose hair which may affect measurement accuracy. Residual lung volume is 

accounted for by the BOD POD system by utilizing pulmonary plethysmography to 

measure functional residual capacity, and like HW, body weight and body volume can be 

used to calculate body density which can then be used to estimate body BF% utilizing the 

Siri151 or Brozek152 equations. ADP assessment takes significantly less time, is less 

invasive, and is easier to access compared to HW. Further, ADP has demonstrated good 

test-retest reliability for assessment of body volume, FFM, resting metabolic rate, and 

BF%153. While more accessible than other body composition assessments ADP still 

requires access to a specialized facility with access to a BOD POD, and ADP may also be 

subject to significant error if a participant has loose clothing154 or excessive facial hair, 
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and while ADP underestimates BF% in obese individuals compared to DXA, it has 

shown to track changes in body composition similar to DXA145,155. 

While laboratory measurements provide the most robust assessments of body 

composition, mobile field-based assessments can provide access that would not otherwise 

be possible. Popular among field assessments are BIA and BIS, devices which predict 

body composition by measuring the electrical resistance of body tissue and differing 

hydration levels within body tissues. BIS assesses the impedance within an electrical 

circuit, which in the human body consists of intracellular fluid, extracellular fluid, and 

cell membrane capacitance measured by resistance and reactance, and thus measures of 

said variables can be performed156. The raw data from BIS can provide information of 

phase angle, an important measure of the integrity of the cell membrane. Higher phase 

angle values are associated with improved physical function157, while lower values are 

have been associated with increased mortality following ICU admission158, poorer 

survival in cancer patients159, and malnutrition160. Preassessment standardization is 

important for bioelectrical measures, which can be influenced by hydration status and 

food intake. Standardization requires assessment take place with an 8 hr fast from food 

and water and in a state of euhydration, which is necessary for both BIS and BIA to 

produce the most accurate and reliable results. 

BIA is similar to BIS, but prediction of body composition requires population 

specific equations to convert impedance measures to BF%. BIA devices can utilize either 

single frequency BIA, which sends a single 50 kHz, or multi-frequency BIA (MFBIA) 

which sends multiple currents across various frequencies. Single frequency BIA is 

limited by the 50 kHz frequency which cannot completely penetrate tissue161 and has 
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shown poor agreement for VAT measurement compared to CT162. While MFBIA has 

demonstrated some correlation to VAT compared to CT, it did not significantly correlate 

with metabolic disease markers163. Relative to DXA, MFBIA has shown a significant 

correlation with BF% and significant correlations with whole-body FFM164 and 

segmental FFM, but consistently underestimates both FM and BF% while overestimating 

FFM165. Given the strong correlations, and despite absolute differences, MFBIA shows 

no significant difference to DXA when tracking changes in FM, FFM, and BF% over 

time166,167. BIS and BIA can provide valuable tools for tracking changes in body 

composition, but the highest quality devices can be expensive and not widely accessible. 

Further burden may be introduced by the need to standardize measurements for the most 

reliable assessments which requires subjects to refrain from consumption of food or 

liquids, and alcohol, caffeine, or other diuretics, and refrain from exercising for at least 8 

hours prior to assessment168. 

Among the most widely accessible body composition assessment techniques are 

skinfold (SKF) measurements. The only tool required for SKF assessment is a SKF 

caliper, which measures the thickness of SKF from various body sites, and through 

specific equations can predict body density and composition. The most commonly used 

equations were developed by Jackson and Pollock for both men169 and women170. These 

equations utilize seven SKF sites, taken at the chest, triceps, axilla, subscapular, 

abdominal, suprailiac, and thigh169. While BF% calculated from SKF agree with DXA 

derived BF%, SKF tends to underestimate BF% in both obese and non-obese females171, 

and biases are found with SKF BF% across ethnic groups172. There exists a wide array of 

available equations that use as little as two or as many as seven skinfold sites, with 2-, 3-, 
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and 7-site equations having demonstrated agreement with DXA BF%173. SKF equations 

are limited by their reliance on a 2-compartment model, though 4-compartment validated 

equations may help improve accuracy174,175. As a simple measurement, SKF is a desirable 

field measure, but it's validity is dependent on utilizing the correct equations, and it’s 

reliability dependent on the observer’s skill and ability to produce consistent 

measurements176. 

2.3 Smartphone 3D Body Scanning Applications 

With the computational power of a personal computer, the capabilities of the 

modern smartphone have far surpassed simple communication. Utilizing the built in 

camera and microphone, smartphones and smartphone-connected wearables can capture 

cardiovascular activity data such as heart rate and heart rate variability, eye health, 

respiratory and lung health, and skin health177. The presence of motion sensors such as 

accelerometers, gyroscopes, proximity sensors, and global positioning systems allows for 

the collection of measures such as daily activity, fall tracking, and sleep monitoring177. 

Given the prevalence of obesity and metabolic disease, many health and fitness 

applications focus on providing tools to support weight loss. In a retrospective cohort 

study by Chin et al., the data from 35,921 users of a popular weight loss app collected 

across 76 weeks showed 77.9% of users reported a decrease in body weight while using 

the app178. A recent randomized controlled trial by Cho et al. looked at the effectiveness 

of smartphone-based lifestyle coaching, finding that application use supported BF% 

reduction although it did not yield changes in systolic BP178. Despite such positive 

potential, the overabundance of commercially available apps may result in varying levels 

of effectiveness, which necessitates caution when seeking weight loss support from this 
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technology179. While the body of literature investigating the efficacy of mobile 

application interventions for weight loss continues to grow180, there is little current 

research exploring the use of smartphone technology for assessing or screening for 

metabolic health risk. 

Recently, body scanning, which utilizes either 2- or 3-dimensional imaging, has 

shown promise as a quick and non-invasive alternative to traditional body composition 

assessments. The proprietary nature of the 3DO scanning technology presents a major 

limitation, but it is a limitation shared by nearly all body composition prediction methods. 

While 3DO scanning is still a relatively new technology for anthropometric assessments, 

the burgeoning research continues to indicate that the technology has promise as an 

alternative assessment tool for body composition. Tinsley et al. have demonstrated strong 

equivalence between body composition measurements from commercially available 3DO 

scanners (±1.3% BF%, ±1.0 kg FM, ±2.7 kg FFM)35 and 4-compartment model 

estimates. Further, 3DO scanning has produced fat mass index (FMI) values comparable 

to both BIA and skinfold assessments as well as VAT measurements comparable to 

DXA36. 3DO scanning has also demonstrated strong associations in adolescents when 

compared to DXA measures of BF%, FM, FFM, and VAT181. Tian et al. demonstrated 

that two dimensional photographs taken with a consumer level digital single-lens reflex 

camera can successfully predict 3D body shape and from that, body composition182. 

While the body of literature supporting the efficacy of 3DO scanning for body 

composition continues to grow, newer research has begun to validate its use for more 

anthropometric measures and health risk screening. 
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In comparison to standard tape circumference measures, 3DO scanning has 

demonstrated strong associations for WC and HC measures and body surface area 

(BSA)181. To account for software differences between devices, Sobhiyeh et al. 

developed a “universal” software for standardizing anthropometric body dimensions 

gathered from different devices34. Measurements of WC and HC from the three 

commercially available 3DO devices used were highly correlated (R2: 0.95 – 0.97) when 

compared to conventional tape measure assessments34. In an analysis examining the test-

retest reliability of four commercially available 3DO scanners utilizing each device’s 

prepackaged software, Tinsley et al. observed high precision for all device’s individual 

circumference measures and high precision between the averages of all body regions  

measured by each device183 suggesting manufacturer software reliability. Bourgeois et al. 

have also demonstrated significant correlations between 3DO circumference 

measurements and flexible tape measures (R2: 0.71 – 0.96) for three 3DO systems with 

proprietary image processing software184. Despite the aforementioned benefits of 3DO 

scanning, the technology is expensive and limited to research and fitness/ health club 

settings.  

The high-quality cameras found on modern smartphones may provide an 

opportunity to make important health metrics from 3DO scanning broadly accessible. 

Preliminary findings on M-3DO via smartphones indicate that M-3DO circumference 

measurements agree with conventional tape measurements185,186. In assessing the validity 

of a commercially available M-3DO application, Neufeld et al. observed acceptable 

validity in WHR measurements compared to tape measurements, despite poor agreement 

on absolute measures, and agreement with both BIA and SKF187. BF% produced from 
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two two-dimensional images taken on a smartphone camera and processed using a trained 

convolutional neural network has shown to be highly associated with BF% produced by 

DXA for both males and females; even outperforming BIA and ADP37,186. Much of the 

findings on mobile body scanning are preliminary, but the technology may have the 

potential to provide access to high quality anthropometric evaluations to every 

smartphone owner, bridging the gap between physician and patient. While 3DO scanning 

has shown correlation with biomarkers of MetS36, there is currently no literature 

investigating such relationships with M-3DO. Thus, the purpose of this thesis is to 

determine the predictive ability of a validated M-3DO application for determining 

metabolic health risks in adults.  
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CHAPTER III - Methods 

3.1 Participants 

For this cross-sectional study, we prospectively recruited 62 participants, between 

the ages of 18 and 75 years (29.52 ± 11.21). Participants were excluded if they were 

younger than 18 or older than 75, were missing any limbs or part of a limb that may 

influence assessment accuracy; had any injury or mobility limitation that would prevent 

participation; were pregnant; breast feeding; or lactating. The study began in November 

2022 and continued until March 2023. Further, the study was conducted according to the 

guidelines set forth by the Declaration of Helsinki and all procedures involving human 

participants were approved by the University of Southern Mississippi ethics committee 

(IRB #22-1012). Written and informed consent was obtained prior to participation. 

Participants were recruited by word of mouth and through digital advertisements 

posted/sent around the USM campus and through USM newsletters, newspapers, and 

social media platforms, and announcements made in classrooms or virtual classrooms of 

faculty or staff in the School of Kinesiology & Nutrition at the University of Southern 

Mississippi, as well as surrounding communities such as medical clinics and churches. 

Prior to posting advertisements, permission was obtained from medical clinics, churches, 

or any additional community entity. To prevent the possibility of undue influence or 

coercion, potential participants were informed that participation was completely 

voluntary and that they were able to withdraw at any time without penalty. 

3.2 Procedures 

Participants reported to the laboratory following ≥ 8 h of abstention from food, 

beverages, supplements and medications, and abstention from exercise for ≥ 24 h. 
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Adherence to pre-participation protocols were confirmed by an investigator during pre-

assessment screening. Upon completion of pre-assessment screening, participants were 

instructed to remove externally worn metal and all other accessories, and complete body 

composition and anthropometric assessments in the following sequence: body mass, 

height, body circumferences, traditional booth 3DO scanning, and smartphone 3DO 

application. After a minimum of five minutes in a seated position with feet flat on the 

floor, resting BP was assessed using a digital BP monitor (HEM-907XL, Kyoto, Japan). 

Following BP assessments, height was collected using a stadiometer (SECA 769, 

Hamburg, Germany) and weight using a calibrated digital scale (SECA, Hamburg, 

Germany). WC was collected using a standard spring-loaded aluminum tape measure, 

wrapped around the torso horizontally with minimal tension to avoid compression of the 

skin and subcutaneous adipose layer. The tape measure was placed in the horizontal plane 

around the abdomen at the level of the uppermost level of superior iliac crest188. 

Following anthropometric and 3DO scans, fasting blood lipids and FBG were assessed 

using a point-of-care cholesterol analyzer (Cholestech LDX Analyzer, Abbot®, Abbott 

Park, IL). 

3.3 Mobile 3-Dimensional Imaging Analysis 

Body composition estimates from traditional 3DO scanning were performed using 

the Mobile+Fit Booth (Size Stream LLC, Cary, NC, USA) (3DOBooth) and smartphone 

estimates was performed using the MeThreeSixty® application (Size Stream LLC, Cary, 

NC) on an iPhone 12 Pro® (Apple Inc., Cupertino, CA, USA) (3DOApp) (MeThreeSixty®, 

Size Stream LLC, Cary, NC, USA). Both the 3DOBooth and 3DOApp have been reported to 

produce acceptable reliability for anthropometric measurements when compared to a 
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reference tape measure185. For both the 3DOBooth and 3DOApp, participants were 

instructed to wear tight fitting clothing, remove any external accessories, and tie long hair 

up so that none fall below the shoulders. The 3DO-T encloses the participant in a booth 

comprised of three walls and a curtain used for entry, with the participant instructed to 

stand at the end of the booth opposite the 3DO scanner. The participant was instructed to 

enter the booth, and the curtain was closed prior to beginning the scan to ensure 

consistent lighting. 

Procedures for 3DO-SM have been described elsewhere189,190 but are summarized 

below. The phone was placed on a fixed tripod at an approximated average waist height 

(91.0 cm) for all participants and the participants were set up to stand at a distance 

deemed acceptable by the application. Each assessment consisted of two images where 1) 

the participant was facing the camera with arms and feet positioned away from the torso 

to a position deemed acceptable by the manufacturer and 2) the participant was turned to 

their left side so that their right shoulder was facing the camera and standing with hands 

and feet together and aligned so that they were within the silhouette of the trunk. 

3.4 Metabolic Health Assessment 

The metabolic health markers LDL, HDL, TG, and FBG were assessed by 

fingerstick using a capillary blood analyzer. The analyzer was calibrated each day prior to 

testing and multi-analyte controls were conducted based on the manufacturer 

recommendations. Following standard sanitation and preparatory procedures, 40 µL of 

blood were collected from the fingertip into heparin-lithium lined capillary blood tubes 

and placed into individual cassettes (Cholestech LDX Lipid Profile●GLU, Abbot®, San 

Jose, CA, USA) for analysis. TG measurements > 650 mg/dL are not recorded using this 
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device, and measurements of HDL are not recorded for TG > 650 mg/dL. Thus, 

participants with TG > 650 mg/dL (n = 2) had their TG recorded as 650 and their HDL 

recorded as the average of sex, race/ethnicity, and MetS classification matched adults. BP 

was measured using a manual sphygmomanometer and BP cuff after the participant had 

been seated for ≥ 5 min with their feet flat on the floor. For the assessment, the BP cuff 

was placed around the arm to occlude the brachial artery upon inflation. The cuff was 

manually inflated to ~ 20 mmHg above systolic BP. Elevated BP was defined as systolic 

between 120 and 129 mmHg and diastolic ≤ 80 mmHg, and hypertension was be defined 

as systolic ≥ 130 mmHg and diastolic ≥ 80 mmHg191.  

3.5 Metabolic Health Risk Score 

Calculation of MetS severity (MSs) were conducted using sex and race/ethnicity 

specific MetS risk score equations produced by Gurka192 (2-5):  

(1) 𝑀𝑎𝑙𝑒 𝑁𝑜𝑛 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 𝑊ℎ𝑖𝑡𝑒 =  −5.4559 + 0.0125(𝑊𝐶) − 0.0251(𝐻𝐷𝐿) +

0.0047(𝑆𝐵𝑃) + 0.08244(𝐼𝑛(𝑇𝑟𝑖)) + 0.0105(𝐺𝑙𝑢) 

(2) 𝑀𝑎𝑙𝑒 𝑁𝑜𝑛 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 𝐵𝑙𝑎𝑐𝑘 =  −6.3767 + 0.0232(𝑊𝐶) − 0.0175(𝐻𝐷𝐿) +

0.0040(𝑆𝐵𝑃) + 0.5400(𝐼𝑛(𝑇𝑟𝑖)) + 0.0203(𝐺𝑙𝑢) 

(3) 𝑀𝑎𝑙𝑒 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 =  −5.5541 + 0.0135(𝑊𝐶) − 0.0278(𝐻𝐷𝐿) +

0.0054(𝑆𝐵𝑃) + 0.8340(𝐼𝑛(𝑇𝑟𝑖)) + 0.0105(𝐺𝑙𝑢) 

(4) 𝐹𝑒𝑚𝑎𝑙𝑒 𝑁𝑜𝑛 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 𝑊ℎ𝑖𝑡𝑒 =  −7.2591 + 0.0254(𝑊𝐶) − 0.0120(𝐻𝐷𝐿) +

0.0075(𝑆𝐵𝑃) + 0.5800(𝐼𝑛(𝑇𝑟𝑖)) + 0.0203(𝐺𝑙𝑢) 

(5) 𝐹𝑒𝑚𝑎𝑙𝑒 𝑁𝑜𝑛 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 𝐵𝑙𝑎𝑐𝑘 =  −7.1913 + 0.0304(𝑊𝐶) − 0.0095(𝐻𝐷𝐿) +

0.0054(𝑆𝐵𝑃) + 0.4455(𝐼𝑛(𝑇𝑟𝑖)) + 0.0225(𝐺𝑙𝑢) 
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(6) 𝐹𝑒𝑚𝑎𝑙𝑒 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 =  −7.7641 + 0.0162(𝑊𝐶) − 0.0157(𝐻𝐷𝐿) +

0.0084(𝑆𝐵𝑃) + 0.8872(𝐼𝑛(𝑇𝑟𝑖)) + 0.0206(𝐺𝑙𝑢) 

3.6 Prediction Modelling 

Body Composition and anthropometric variables were extracted from each 3DO 

scanning technique to determine their ability to predict MetS. Variables produced from 

each 3DO scanning technique were included into the omnibus regression model 

predicting MSs. Backwards stepwise regression was used to produce a final model.  

3.7 Statistical Analyses 

Precision error (PE), root mean square coefficients of determination (RMS-

CV%), and two-way, random effects, absolute agreement intraclass correlation 

coefficients (ICC) were used to determine the test-retest reliability and precision between 

body composition and body circumference metrics produced by the 3DOBooth and 

3DOApp; each of which employ the same algorithms to produce these estimates.  

Following determination of acceptable inter-device precision, body composition 

estimates produced by the 3DOApp were entered as predictor variables for MetS in linear 

regression models which included: BF%, FM, FFM, and BSA; WC, stomach (SC), hip, 

shoulder width (SW), chest (ChC), upper arm (AC), forearm (FC), thigh (TC), and calf 

(CC); and common body composition indices produced by the 3DO model including fat 

mass index (FMI), fat-free mass index (FFMI), WHR, and waist-to-height ratio (WHt). 

FMI and FFMI were calculated as the tissue in question (in kgs) divided by height (in 

meters) squared. WHR was calculated as the WC divided by the HC and WHt was 

calculated as WC divided by height (in cm). Because the device produces individual 

appendicular circumference estimates, all appendicular circumference (i.e., estimates 
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pertaining to the arms and legs) predictor variables were averages of the left and right 

sides. To account for the influence of stature, height, weight, and BMI were also included 

as predictor variables. 

To develop prediction equations for MSs, backwards linear regressions were 

conducted for the total sample, and males and females independently across three 

separate models. The “body composition” model included BF%, FM, FFM, FMI, FFMI, 

and BSA. The “anthropometric” model included height, weight, BMI, WC, SC, HC, SW, 

ChC, AC, FC, TC, and CC. The “combined” model included all measures from the 

preceding models. Final models were determined as those producing the highest adjusted 

R2 and lowest mean square error (MSE). 

Following the creation of each individual model, the performance of each model 

in predicting MetS-S was assessed using paired t-tests, Pearson correlations (r), 

coefficients of determination (R2), and individual error was assessed using root mean 

square error and Bland-Altman analyses. Mean differences were defined as the predicted 

MSs minus the actual MSs. Statistical significance was determined at p < 0.05 and all 

data was analyzed using IBM SPSS version 27 and Microsoft Excel version 16. 
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CHAPTER IV - RESULTS 

4.1 Participants 

Participant characteristics are demonstrated in Table 4.1. Among participants with 

less than three MetS risk factors, 48.4% (n = 30) had at least one risk factor. In addition, 

33% were classified as having obesity. 

Table 4.1 Physical characteristics of study participants 
  Total Male Female 
Sex  62 (100%) 26 (42%) 36 (58%) 
Anthropometry Age (years) 29.52 ± 11.21 28.96 ± 9.46 29.92 ± 12.44 
 Height (cm) 168.29 ± 

10.41 
177.21 ± 8.19 161.84 ± 6.25 

 Weight (kg) 79.89 ± 22.65 93.92 ± 21.03 69.76 ± 18.07 
 BMI (kg/m2) 27.93 ± 6.42 29.85 ± 6.43 26.55 ± 6.13 
 Body Fat (%)* 28.98 ± 7.62 24.17 ± 7.56 32.45 ± 5.54 
 FM (kg)* 23.69 ± 11.18 24.00 ± 12.31 23.46 ± 10.47 
 FFM (kg)* 80.04 ± 22.70 94.10 ± 21.06 69.88 ± 18.11 
 Waist (cm) 89.36 ± 16.16 96.85 ± 15.56 83.95 ± 14.51 
 Hip (cm) 105.51 ± 

11.32 
107.68 ± 
10.57 

104.94 ± 
11.73 

 WHR 0.87 ± 0.07 0.90 ± 0.07 0.85 ± 0.07 
     
Race White 44 (71%) 16 (62%) 28 (78%) 
 Black/AA 16 (26%) 10 (38%) 6 (17%) 
 Asian 2 (3%) 0 (0%) 2 (5%) 
     
Ethnicity Hispanic 8 (13%) 3 (12%) 5 (14%) 
     
BMI 
Classification 

Normal Weight 
(< 25 kg/m2) 

19 (31%) 4 (15%) 15 (42%) 

 Overweight (25 
- 30 kg/m2) 

23 (37%) 10 (38%) 13 (36%) 

 Class I Obesity 
(30 - 35 kg/m2) 

11 (18%) 8 (31%) 3 (8%) 

 Class II or 
Higher Obesity 
(> 35 kg/m2) 

9 (15%) 4 (15%) 5 (14%) 

Note: BMI, body mass index; AA, African American; FM, fat mass; FFM, fat-free mass; WHR, waist-to-hip ratio.  
Data are presented as n (% of the column total) 
*Estimates produced by 3DO-SM 
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4.2 Precision Analyses 

Results of the precision analysis are reported in Table 2. ICC for all variables 

ranged from 0.881 to 0.991 (all p < 0.001), indicating adequate test-retest reliability 

between devices (smartphone and tablet-based applications). PE ranged from 0.00 to 2.56 

for all anthropometric variables and 0.41 to 1.25 across all body composition variables, 

and 61.4 for BSA. FM and FMI had the highest root mean square coefficient of variation 

for all variables (4.59 and 4.35, respectively). 

4.3 Body Composition Models 

For the total sample, the final model included the variables BF% and FFMI which 

produced an R2 of 0.49 (r: 0.70, MSE: 0.34, p = 0.001). For the females only sample, the 

final model included BF% and had an R2 of 0.52 (r: 0.72, MSE: 0.253, p < 0.001). For 

the males only sample, the final model included FMI (Table 4.2) and had an R2 of 0.43 (r: 

0.66, MSE: 0.476, p < 0.001). 

Table 4.2 Body composition model summary 
 β (95%CI) r (R2) p-value 
Total    

BF% 0.043 (0.023, 0.063) 0.47 (0.22) < 0.001 
FFMI 0.120 (0.077, 0.163) 0.57 (0.32) < 0.001 

    
Females    

BF% 0.093 (0.093, 0.124) 0.72 (0.52) < 0.001 
    
Males    

FMI 0.148 (0.077, 0.22) 0.66 (0.43) < 0.001 
Note: BF%, body fat percentage; FFMI, fat free mass index; FMI, fat mass index 

4.4 Anthropometric Models 

For the total sample, the final model included the anthropometric variables WHt, 

SC, HC, AC, FC, ChC, and SW and had an R2 of 0.60 (r: 0.77, MSE: 0.289, p < 0.001). 

For the females only sample, the final model included the anthropometric variables WHt, 



 

37 

BMI, WC, and ChC and had an R2 of 0.64 (r: 0.80, MSE: 0.207, p < 0.001). The final 

model for male participants included the anthropometric variables BMI, WC, SC, weight, 

AC, CC, and FC (Table 3) which produced an R2 of 0.65 (r: 0.81, MSE: 0.391, p = 

0.003). 

Table 4.3 Anthropometric model summary 
 β (95%CI) r (R2) p-value 
Total    

WHt 16.19 (8.04, 24.34) 0.72 (0.52) < 0.001 
Stomach -0.07 (-0.14, -0.01) 0.68 (0.46) 0.027 

Hip 0.05 (0.00, 0.10) 0.63 (0.40) 0.037 
Biceps -0.28 (-0.50, -0.06) 0.60 (0.36) 0.015 

Forearm 0.47 (0.11, 0.83) 0.53 (0.28) 0.012 
Chest 0.06 (-0.02, 0.13) 0.66 (0.44) 0.132 

Shoulder -0.72 (-1.44, 0.01) 0.56 (0.31) 0.052 
    
Females    

WHt 13.27 (3.16, 23.37) 0.78 (0.61) 0.012 
BMI -0.09 (-0.12, 0.03) 0.68 (0.46) 0.197 
Waist -0.09 (-0.20, 0.03) 0.74 (0.55) 0.131 
Chest 0.08 (-0.01, 0.17) 0.74 (0.55) 0.089 

    
Males    

BMI 0.42 (0.17, 0.67) 0.67 (0.45) 0.003 
Waist -0.06 (-0.16, 0.04) 0.63 (0.40) 0.250 

Stomach 0.02 (-0.07, 0.11) 0.62 (0.38) 0.673 
Weight -0.10 (-0.19, -0.01) 0.62 (0.38) 0.035 
Biceps -1.12 (-1.87, -0.36) 0.54 (0.29) 0.006 
Calf 0.25 (-0.25, 0.75) 0.56 (0.31) 0.314 

Forearm 1.72 (0.37, 3.08) 0.55 (0.30) 0.016 
Note: WHt, waist-to-height ratio; BMI, body mass index 

4.5 Combined Models 

For the total sample, the final model included the variables BF%, FM, FMI, 

FFMI, SW, ChC, AC, SC, HC, and WHt and had an R2 of 0.64 (r: 0.80, MSE: 0.270, p < 

0.001). For the females only sample, the final model included the variables BF%, FM, 

FMI, BSA, SW, ChC, FC, SC, and WHR and had an R2 of 0.77 (r: 0.88, MSE: 0.160, p < 

0.001). For the males only sample, the final model included the variables BF%, FFM, 
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FMI, FFMI, BMI, WC, SC, weight, AC, CC, and FC (Table 4.3) and had an R2 of 0.87 (r: 

0.93, MSE: 0.220, p = 0.002). 

Table 4.4 Combined models summary 
 β (95%CI) r (R2) p-value 
Total    

BF% 0.12 (0.01, 0.22) 0.47 (0.22) 0.029 
FM 0.12 (0.06, 0.34) 0.66 (0.43) 0.005 
FMI -0.91 (-1.44, -0.37) 0.63 (0.40) 0.001 

FFMI 0.24 (0.07, 0.42) 0.57 (0.32) 0.006 
Shoulder -0.67 (-1.54, 0.20) 0.56 (0.31) 0.129 

Chest 0.05 (-0.03, 0.13) 0.66 (0.43) 0.234 
Biceps -0.09 (-0.20, 0.03) 0.60 (0.36) 0.127 

Stomach -0.12 (-0.21, -0.03) 0.68 (0.46) 0.010 
Hip 0.07 (0.02, 0.13) 0.63 (0.39) 0.013 
WHt 25.61 (11.66, 39.56) 0.72 (0.52) 0.001 

    
Females    

BF% 0.13 (0.02, 0.24) 0.72 (0.52) 0.026 
FM 0.24 (0.05, 0.43) 0.68 (0.46) 0.016 
FMI -0.77 (-1.29, -0.25) 0.70 (0.49) 0.005 
BSA -0.01 (-0.11, -0.00) 0.59 (0.35) 0.002 

Shoulder -0.65 (-2.00, 0.70) 0.72 (0.72) 0.329 
Chest 0.17 (0.06, 0.28) 0.74 (0.55) 0.004 

Forearm 0.58 (0.25, 0.92) 0.67 (0.44) 0.001 
Stomach -0.02 (-0.11, 0.08) 0.72 (0.52) 0.730 

WHR -5.48 (-12.02, 1.06) 0.58 (0.34) 0.097 
    
Males    

BF% 0.49 (0.14, 0.84) 0.63 (0.39) 0.011 
FFM -0.37 (-0.72, -0.02) 0.50 (0.25) 0.042 
FMI -0.92 (-1.69, -0.15) 0.66 (0.43) 0.024 

FFMI 1.65 (0.51, 2.78) 0.62 (0.39) 0.008 
Biceps -1.10 (-1.87, -0.15) 0.54 (0.29) 0.009 

Forearm 1.05 (-0.45, 2.54) 0.55 (0.31) 0.153 
Stomach -0.19 (-0.34, -0.04) 0.62 (0.38) 0.019 

Hip -0.56 (-1.30, 0.19) 0.64 (0.41) 0.131 
Thigh 0.15 (-0.03, 0.33) 0.55 (0.30) 0.091 
Calf 0.47 (-0.14, 1.09) 0.55 (0.30) 0.119 

Waist 1.02 (0.20, 1.85) 0.65 (0.42) 0.019 
WHR -58.80 (-144.69, 27.10) 0.54 (0.30) 0.162 
WHt -49.22 (-134.45, 36.01) 0.66 (0.43) 0.232 

Note: BF%, body fat percent; FM, fat mass; FMI, fat mass index; FFMI, fat-free mass index; WHt, waist-to-height  

ratio; BSA, body surface area; FFM, fat-free mass; WHR, waist-to-hip ratio 
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4.6 Prediction Equation Agreement Analysis 

Prediction equations developed using body composition variables for the total 

sample produced a total error (TE) of 0.57 with limits of agreement (LOA) of ±1.12. 

Coefficients for the total sample indicated proportional bias; where MSs was 

underestimated with increasing MSs (ß = -0.413, p < 0.001) (Figure 1.1). 

Prediction equations developed using body composition variables for the female 

sample produced a TE of 0.58 with LOA of ±0.97. Coefficients for the total sample 

indicated proportional bias; where MSs was underestimated with increasing MSs (ß = -

0.375, p = 0.008) (Figure 1.2). 

Prediction equations developed using body composition variables for the male 

sample produced a TE of 0.66 with LOA ±1.33. Coefficients for the total sample 

indicated proportional bias; where MSs was underestimated with increasing MSs (ß = -

0.492, p = 0.010) (Figure 1.3). 
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Figure 1.1 Body Composition Total Model  

 
Figure 1.2 Body Composition Female Model 

 

Figure 1.3 Body Composition Male Model 
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Prediction equations developed using anthropometric variables for the total 

sample produced a TE of 0.50 with LOA of ± 0.99. Coefficients for the total sample 

indicated proportional bias; where MSs was underestimated with increasing MSs (ß = -

0.285, p = 0.002) (Figure 1.4). 

Prediction equations developed using anthropometric variables for the female 

sample produced TE of 0.42 with LOA of ±0.84. Coefficients for the total sample 

indicated proportional bias; where MSs was underestimated with increasing MSs (ß = -

0.245, p = 0.036) (Figure 1.5). 

Prediction equations developed using anthropometric variables for the male 

sample produced a TE of 0.46 with LOA of ±0.93. Coefficients for the total sample 

indicated no proportional bias (ß = -0.175, p = 0.142) (Figure 1.6). 
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Figure 1.4 Anthropometric Total Model 

 

Figure 1.5 Anthropometric Female Model 

 

Figure 1.6 Anthropometric Male Model 
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Prediction equations developed using all variables for the total sample produced a 

TE of 0.47 and LOA that ranged from -0.94 to 0.94. Coefficients for the total sample 

indicated proportional bias; where MSs was underestimated with increasing MSs (ß = -

0.243, p = 0.005) (Figure 1.7). 

Prediction equations developed using all variables for the female sample produced 

a TE of 0.34 and LOA that ranged from -0.67 to 0.67. Coefficients for the total sample 

indicated no presence of proportional bias (ß = -0.137, p = 0.123) (Figure 1.8). 

Prediction equations developed using all variables for the male sample produced 

TE of 0.32 and LOA that ranged from -0.64 to 0.64. Coefficients for the total sample 

indicated no presence of proportional bias (ß = -0.072, p = 0.142) (Figure 1.9).  
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Figure 1.7 Combined Variables - Total Model 

 

Figure 1.8 Combined Variables - Female Model 

 

Figure 1.9 Combined Variables - Male Model 
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CHAPTER V – DISCUSSION 

This study sought to determine the predictive ability of a validated M-3DO 

application for predicting metabolic health risk as defined by an existing continuous MSs 

score192. While investigations from our laboratory and others have demonstrated the 

accuracy of M-3DO scanning techniques for both body composition and whole-body 

anthropometrics, there are no studies, to our knowledge, that have utilized M-3DO to 

evaluate a constellation of chronic disease risk factors; evaluations that would typically 

require in-person medical screening visits. Given that impairments in cardiometabolic 

health are typically obesity-driven, our study showed that M-3DO methods that can 

leverage this relationship (body size and cardiometabolic health risk) may offer utility in 

the prediction of cardiometabolic health status. While other laboratory and field based 

methods of health screening have also been shown to predict markers of cardiometabolic 

health193,194, this study is unique in that it may be the first body composition method 

equipped to provide these assessments remotely regardless of geographical location and 

without the need for additional devices, or a trained technician, which is invaluable now 

that increasing remote healthcare assessments are becoming a hallmark of improving 

access to diagnostic care. As such, the primary findings of the current investigation were: 

1) All linear models demonstrated utility in the prediction of MSs, although models 

including both anthropometric and body composition components led to collective 

improvements in model performance; 2) Prediction models that were sex specific, 

compared to models that jointly included both males and females, resulted in model 

improvement; also demonstrating improvements in proportional bias on most occasions; 

3) Body composition and anthropometric components retained in the models varied by 
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sex, likely due to the differential contributions of these body composition components on 

cardiometabolic disease risks between males and females. The findings of this 

investigation indicate that M-3DO derived measurements of body composition and 

anthropometry may offer utility in evaluating cardiometabolic health risk; particularly for 

those in rural or low SES communities with limited access to traditional metabolic health 

screening. 

While BMI is broadly used for the evaluation of obesity and obesity-related 

cardiometabolic health risks, there are sizeable limitations to this approach, where more 

comprehensive metrics may provide better insight. As such, a major component of our 

study design was to determine the utility of a previously validated M-3DO body 

composition assessment method in the prediction of MSs. For the final prediction 

equations produced by our body composition specific models in the total sample, only 

BF% and FFMI were retained; accounting for 47%-57% of the variance in MSs. 

Interestingly, both metrics demonstrated significant and positive coefficients indicating 

that both were positively associated with MSs. While studies show that increasing BF% 

is associated with worsening cardiometabolic health, the inclusion of FFMI is 

noteworthy, given that FFM is generally considered to be more protective of metabolic 

health risks195. At the extremes of obesity, FFM increases concurrent with increases in 

FM and thus, it is likely that the inclusion of FFMI in the current model is more 

representative of overall body size which would, theoretically, increase cardiometabolic 

disease risk. Further insight to this may be revealed in our sex specific body composition 

models, which showed that the female model retained only BF% while the male model 

retained only FMI. Because, mathematically, FMI and FFMI are the residuals of each 
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other in regard to total body weight, it is possible that, in the total model, covariance in 

these components resulted in the elimination of one of these variables; with the 

eliminated variable being FMI. Although FMI would typically be more indicative of 

metabolic disease risk compared to FFMI, FMI was likely eliminated due to the similar 

absolute FM that existed between males and females. Because FFM is likely more 

protective of metabolic health risk, and because males have a greater capacity to gain 

FFM compared to females, it is likely that FFMI was included in the model for the total 

sample because females (who have a lower capacity to gain FFM) with excessive FFM 

similar to that of their male counterparts likely experience this as a function of larger 

overall body size which would, at some point, blunt the protective effects of FFM. Thus, 

when sex specific equations were generated, the models may have been able to detect the 

more deleterious effects of FM.  

Circumference measurements such as WC, HC, WHR, and WHt are commonly 

used to evaluate cardiometabolic disease risk. Though useful, the measures’ central focus 

may omit other potentially impactful anthropometric measures indicative of larger body 

size. Segmental anthropometrics require additional measures not often captured in normal 

health screening, but the further delineation of body segments (similar to DXA), such as 

specific truncal regions (i.e., chest, shoulders, stomach, etc.) and upper and lower 

appendages, may help to further identify cardiometabolic disease risks. Accordingly, 

another major component of our study was evaluating anthropometric measurements 

from the M-3DO application for the prediction of MSs. For the final prediction equations 

produced by our anthropometric specific model in the total sample, WHt, SC, HC, AC, 

FC, ChC, and SW were retained; accounting for 28%-52% of the variance in MSs. 
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Interestingly, all the variables included in the model were related to upper body 

anthropometrics, with the exception of HC and WHt. This is noteworthy given that in our 

final model for the total sample, HC was found to have a positive association with MSs. 

It is traditionally believed that adipose deposition favoring the gluteofemoral area is more 

protective of cardiometabolic disease development; yet the expected negative 

associations with HC were not observed in our model. This observation may suggest that 

there is a point where larger body sizes, indicated by greater HC and truncal measures 

that are associated with increased whole-body FM, renders the potential benefits of 

increased HC negligible; or, in more extreme cases of body size, to levels where HC 

becomes a positive risk factor. Increases in body size, composed of both FM and FFM, 

are traditionally reflected by increases in BMI, which itself is positively associated with 

cardiometabolic disease risks. However, this was not the case in our final female model, 

where BMI failed to demonstrate an expected positive association with MSs. When FM 

increases disproportionately in the absence of an elevated BMI (in regard to FFM during 

whole-body weight increase), the result is often a normal-weight obese phenotype; where 

individuals present with normal weight but, due to elevated FM and low FFM, also 

present with increased cardiometabolic health risks similar to their obese 

counterparts21,196. Thus, it is possible that BMI was included due to the disproportionate 

overlap between BMI and FM accretion, evident by the inclusion of BF% in the female 

body composition model. This may also be why BMI was included in the male model, 

however, the retention of specific variables not retained for females (i.e., upper body 

measures) may be more indicative of increases in FFM rather than FM.  This may be 

supported by the observation that the male group in this study had a mean BMI higher 
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than the female group despite that HC and FM were similar between the sex groups. 

Additional variables included in the male model were WC, SC, weight, AC, CC, and FC. 

In males, increased biceps size is most likely associated with increased lean body mass 

which is demonstrated by the negative association with MSs. Interestingly, while AC was 

negatively associated with MSs, FC was positively associated with MSs. Previous studies 

have shown that FC is positively associated with MetS, especially in the presence of 

obesity197. Overall, these data showed that sex specific equations were able to better 

detect the health risks associated with the distinct anthropometric characteristics of males 

and females and highlight the importance of creating sex specific prediction models in 

the context of chronic disease risk.  

Although body composition and anthropometric measures have well-

demonstrated associations with cardiometabolic risk factors, there are inherent strengths 

and weaknesses associated with both approaches194. Thus, combining both measures 

should, theoretically, rectify the weaknesses of each, providing the most robust 

assessment. Accordingly, for the final model, including both sets of variables was able to 

account for the unique effects of both whole-body and regional measures. The combined 

model in the total sample included the variables BF%, FM, FMI, FFMI, SW, ChC, AC, 

SC, HC, and WHt; each accounting for 22% - 52% of variance in MSs. FM, FFMI, HC 

and WHt were all positively associated with MSs, of which all but FM were observed in 

the prior models, suggesting that when males and females are grouped these variables 

exert a unique effect on MetS. Further, AC was associated with lower MSs in the total 

model; yet, when divided by sex-group, these variables remained in the male model only. 

Together, the findings suggest that the disproportionate upper body adipose deposition, 
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which may occur in tandem with increased FFM, may attenuate the protective benefits of 

FFM. FM and BF% remained strong positive predictors of MSs, but the role of FMI may 

largely depend on body fat distribution which becomes more apparent within the sex-

specific models. Among differences between the models, ChC was included within the 

female model which is notable as for females, increases in BMI and WC are associated 

with breast size and VAT198  and in whom upper body adiposity is more detrimental to 

cardiometabolic health than in males199,200. The female model also retained FM and BSA 

which may both be attributable to higher BF (which has a greater volume by weight than 

FFM) that is commonly observed in females201. For males, the central measures of WHt 

and WC were likely retained given that the FM distribution around the abdomen, which 

is typical for males, is associated with increased abdominal VAT and metabolic health 

risk23. Notably, of the appendicular circumferences, only AC was negatively associated 

with MSs while FC, TC, and CC had a positive association. Among those variables, AC 

was the strongest negative predictor, and, as previously mentioned, is likely more 

representative of total body FFM and its protective effects against cardiometabolic health 

risks. Similar to the positive relationship observed between HC and MSs in the total 

anthropometric model, the inclusion of TC and CC as positive predictors in the male 

model may be due to larger body sizes that are more reflective of greater FM 

accumulation at the extremes of body size. Ultimately, the combination of body 

composition and anthropometric variables in conjunction with sex-specific equations 

allows regression models to provide the strongest equations for the prediction of MSs; as 

was observed in the present study.  
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Considering the variance accounted for by each of the aforementioned models, 

there is sound reason to hypothesize that these smartphone-based techniques are highly 

predictive of MetS. As such, our study sought to determine the predictive capacity of this 

technique to determine its utility in remote-diagnostic care. The performance of our 

prediction equations differed across model types and by sex within each model type. For 

the total models, TE was lowest in the combined model (±0.47) followed by the 

anthropometric (±0.50) and body composition models (± 0.57). Similarly, the combined 

total model had the lowest, albeit high, LOA (±0.94) followed by the anthropometric and 

body composition models (±0.99 and ±1.12, respectively). All total models demonstrated 

significant proportional bias where, as body size increased, MSs was underestimated. The 

largest proportional bias was observed with the body composition model (ß = -0.413, p < 

0.001), followed by the anthropometric and combined models (ß = -0.285, p = 0.002, and 

ß = -0.243, p = 0.005, respectively). For the total models, the performance of the models 

improved with the number of variables included. The additional variables included likely 

helped the models account for more of the variation between the males and females 

within the models, whereas with less variables, as seen in the body composition model, 

sex differences had to be reduced to the lowest common similarity to fit the model. 

Interestingly, for the sex-specific body composition and anthropometric models, the total 

number of variables retained were either less or the same as the total models; where the 

variables retained may have better accounted for the variances between sex-groups. The 

sex-specific body composition model yielded improvements in the female model, though 

proportional bias remained significant (TE = ±0.58, LOA = ±0.97, ß = -0.375, p = 0.008), 

while decrements in the male model performance were observed (TE = ±0.66, LOA = 
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±1.33, ß = -0.492, p = 0.01). For the male model, more participants fell below the lower 

LOA with greater outliers than the female model. Those presenting with higher MSs but 

smaller body size likely accounted for the higher LOA and increased proportional bias, 

especially with nearly all body sizes above the median falling within the LOA. For the 

sex-specific anthropometric models, TE and LOA were improved for both the female 

(±0.542 and ±0.84) and male models (±0.46 and ±0.93), while only the male model 

observed non-significant proportional bias (ß = -0.175, p = 0.142). As previously 

discussed, the presence of normal-weight obesity may have resulted in the observed 

proportional bias. Among females, 78% were normal or overweight compared to 53% 

among males; yet FM was not distinguishable between the two groups. The sex-specific 

combined models yielded the lowest TE (female: ±0.34, male: ±0.32) and LOA (female: 

±0.67, male: ±0.64). Further, when divided by sex, the proportional bias within the 

models were no longer significant (male: ß = -0.072, p = 0.142, female: ß = -0.137, p = 

0.123). The reduction of proportional bias within the female combined model may be 

attributable to the combination of body composition variables, which capture more 

information on health risk than BMI and anthropometric measures alone. This 

observation may indicate where the distribution of excess FM is occurring and the role 

that it has on cardiometabolic health. 

There are several strengths and limitations of the current study that warrant 

discussion. First, our study included a relatively small number of participants. Despite 

this, the models produced in the current study were able to significantly predict MSs; 

accounting for a large portion of the variance in MSs. Our sample also included a broad 

range of body compositions and degrees of metabolic health risk, where we had an 
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overweight and obesity prevalence of 70%, with 19% having at least three MetS risk 

factors and 48.2% having one to two risk factors. Our study also had an uneven 

distribution of races and ethnicities, particularly for Asian (3%) and Hispanic (13%) 

participants. However, our study had a more representative sample of Black/AA 

participants (26%), amounting to a combined 41% racial/ethnic minority sample. There 

are also potential limitations within the MSs equation. For instance, only SBP is included 

in the equation despite that DBP is a MetS classification criteria and that DBP may 

independently predict adverse cardiovascular outcomes202. However, considering that 

SBP and DBP share a strong linear relationship, it is likely that elevated DBP was, in 

part, reflected in the SBP values included in the equation. In addition to the inclusion of 

TG, a strong predictor of CVD risk203, HDL was included as a predictor variable. HDL is 

commonly considered a negative risk factor for CVD, and increased HDL levels are 

associated atherosclerosis regression204. However, the risk associated with HDL may not 

capture the full picture of health risk when TC levels are excessively high or low; as the 

HDL quality may be altered, exerting a more pro-inflammatory, pro-atherosclerotic 

effect205. The MSs equation also does not actively account for medication use, thus 

reducing the impact that a controlled risk factor has on the MSs score. Development of 

the equation used for MSs calculation was developed in healthy individuals, though it 

was cross-validated in individuals with known disease which may support its use for 

individuals of worsened health status 192. In regard to our methodology, we used a single 

smartphone to produce our equations which may result in error if these equations are 

employed on different smartphones; however, measurements produced by the 

MeThreeSixty® application demonstrate acceptable reliability across smartphone tpyes206, 
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and our study demonstrated the reliability between smartphone and tablet based systems. 

Our study also employed scanning procedures that followed manufacturer guidelines and 

were closely monitored by investigators, which may not be the technique employed 

outside of a laboratory setting. However, assuming that patient information is accurately 

uploaded, and the instructions provided prior to initiation of the scan are followed, the 

device should theoretically demonstrate acceptable accuracy outside of a laboratory 

setting; although more research is necessary to determine the validity of this technique 

outside of a research environment where it will likely be employed.  

In conclusion, the findings of this study provide preliminary evidence for the 

potential of 3DO smartphone technology as a novel, accessible, and easy to use tool that 

can be employed for remote health screening. As telemedicine aims to bridge the gap 

between physicians and patients, the emergence of user-friendly, at-home screening tools 

signifies a significant stride in narrowing the healthcare access gap. 3DO scanning 

technology can provide an efficient and remotely deployable tool for health risk 

identification which can inform vital healthcare interventions. Such innovative tools hold 

immense promise in promoting improved health outcomes for individuals and 

communities alike. 
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