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ABSTRACT

In this thesis we shall perform the comparisons of a Krylov Subspace Spectral method

with Forward Euler, Backward Euler and Crank-Nicolson to solve the Cable Equation. The

Cable Equation measures action potentials in axons in a mammalian brain treated as an ideal

cable in the first part of the study. We shall subject this problem to the further assumption of

a non-ideal cable. Assume a non-uniform cross section area along the longitudinal axis. At

the present time, the effects of torsion, curvature and material capacitance are ignored. There

is particular interest to generalize the application of the PDEs including and other than Cable

Equation to the study of Neurodegenerative diseases like multiple sclerosis, Alzheimer’s,

Parkinsons etc. The ultimate goal would be to be able to study a broad application of

numerical methods to understand features of the human brain and its functions without

involving medically invasive procedures.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notations to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. In particular, the notation for partial derivatives varies extensively,
and the notation used is chosen for stylistic convenience based on the application.

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers, C for the complex field, Z for the integers, and Q for the rationals. Capital letters,
A,B, · · · are used to denote matrices, including capital greek letters, e.g., Λ for a diagnonal
matrix. Functions which are denoted in boldface type typically represent vector-valued
functions, and real-valued functions usually are set in lower case Roman or Greek letters.
Calligraphic letters, e.g., V, are used to denote spaces such as V denoting a vector space, H
denoting a Hilbert space, or F denoting a general function space. Lower case letters such as
i, j,k, l,m,n and sometimes p and d are used to denote indices.

Vectors are typset in square brackets, e.g., [·], and matrices are also typeset in square
brackets. In general the norms are typeset using double pairs of lines, e.g., || · ||, and the
absolute value of numbers is denoted using a single pairs of lines, e.g., | · |. Single pairs of
lines around matrices indicate the determinant of the matrix.
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Chapter 1

Introduction

1.1 What is the Cable Equation?

The Cable Equation has been a point of interest in computational neuroscience [3] since
the 1870s when it was first used to model neuronal electrotonic potential by Hermann.
However, experimental evidence for its applicability to model the behaviour of axons
surfaced prominently during the 1930s. Mainly due to its its mathematical advantages, over
the next few decades it became of prime importance in the field. Since then there have been
many important models built that contributed to the study of axonal potentials in a single
cable like an axon or a bundle of neurons.

1.2 The Cable Equation

Our primary goal is to study changes in axonal potentials with the help of the Cable
Equation [1] and extend this study by including changing parameters like cross-sectional
area of a cable, curvature of the surface, torsion, membrane resistivity and so forth. For
simplicity we shall start with the derivation of a second-order PDE for a non-uniform cable
whose cross-sectional area changes relative to a given function. The solution will be able to
predict potentials on the subsequent sections of the cable while analysing a smaller portion
in consideration. The Cable Equation as represented below gives us its relationship with
respect to space and time dependency

∂V
∂T

=
∂ 2V
∂X2 + f (V, t) (1.1)

where V is voltage, t is time and f (V, t)= Source term that depends on the voltage and the
time and

X =
x

λm
, T =

t
τm

(1.2)

X and T are used to non-dimensionalize the equation. And

λm =

√
Rm

p(ri + re)
,τm = RmCm (1.3)

1



p perimeter of the axon
ri,re membrane resistivity
Cm membrane capacitance
Rm membrane resistance

Here, V is our solution and it represents the potential in an axon at a particular point on
the cable at the considered time. This will be computed by considering a small section of
the cable i.e. finite cable that is divided in small sections for which the potential values are
known at a given time. This information will be used to compute the potential along further
points at the same given time.

The general assumption in our case would be that instead of a uniform linear cable
with circular cross-sectional area, we will be assuming a non-uniform cable with changing
circular cross-sectional area A(r), which changes longitudinally. Let r(x) be the radius of
the cable at the point x. This method can be applied to non-circular cross-sections as well.
However, to begin we have limited ourselves to assuming a circular cross-section for the
cable.

The second-order PDE essentially takes into account the potential across a small section
of longitudinal length and helps us predict the potential values at the given time on a point
further than the considered section. The process can be iterated to predict potentials along
the axonal length and upon comparison with real time potentials can be useful in detecting
changes in the cross-sectional area of an axon.

This process will be carried out in two parts:

• Triple Stencil: This stencil can carry out

(I − (1−θ)∆tL)
−→
V n+1 = (I +θ∆tL)

−→
V n

– θ=1: Forward Euler

– θ=0: Backward Euler

– θ= 1
2 :Crank-Nicolson

2



• Krylov Subspace Spectral method (KSS) using Block Lanczos

Here we provide an outline of what to expect within this thesis. Chapter 2 will be focused
on deriving the PDE that we shall be working on for the rest of the study. Chapter 3 will
give us a detailed introduction to the methods that we are using i.e. the triple stencil and
KSS using Block Lanczos. Chapter 4 contains a look at initial data and the numerical results
for all methods. Here, we also get a chance to compare these results based on grid size, time
stepping and method used. Lastly, we see the appendix broken down into main script and
separate functions that we have used for computing the above results.

3



Chapter 2

DERIVATION CABLE EQUATION

2.1 Derivation of the Cable Equation

We assume that the cable in consideration is circular along its longitudinal axis and
its cross-section will be varying according to some function A(x) [7]. Consider the circuit
below in figure

Figure 2.1: A Standard circuit set up resembling a small section of cable where the top most
part is extra-cellular membrane, the circuit itself in the middle is the cell membrane/ wall
and the bottom is the intra-cellular membrane

4



Vi(x, t) = Intra-cellular potential value w.r.t x and t

Ve = Extra-cellular potential value

Em = Membrane potential value

Rm = Membrane Resistance

Cm = Membrane Capacitance

Im(x, t) = Membrane current w.r.t x and t

Ii(x, t) = Intracellular current w.r.t x and t

Im(x, t) = Membrane current w.r.t x and t

The axial current Ie (extra-cellular current) and Ii (intra-cellular current) are ohmic, linear
functions of the voltage. Rc and rc are cytoplasmic resistance and cytoplasmic resistivity
respectively (intra-cellular) and Re and, Rc are sarcoplasmic resistance and sarcoplasmic
resistivity respectively (extra-cellular) and lastly Ac and Ae are respective cross section area.
We need both cross-section areas to imply that the extra-cellular resistance will be negligible
and hence can be ignored.

ri =
Rc

Ac
, re =

Re

Ae
. (2.1)

Since Ae is extra-cellular area, it can attain large values, as it accounts for all area outside of
the cable which is a large portion in comparison with the intra-cellular region. Hence, we
can say that

re ≈ 0. (2.2)

Using Ohm’s law of electrical resistance for a longitudinal cable, we have

V (x+∆x)−V (x, t) =−IL(x, t)RL (2.3)

where

RL =
rL∆x
A(x)

,

rL = ri,

RL = Ri,

A(x) = Ac.

5



Now we have the following equation to represent the longitudinal current IL,

IL =
−A(x)

rL

[V (x+∆x, t)−V (x, t)]
∆x

≈ −A(x)
rL

∂V (x, t)
∂x

(2.4)

Longitudinal current is made of two kinds of currents. The first is membrane current based
on its ionic movement Iion, and the second is the membrane current based on its capacitance
Icap where

Iion =
V (x, t)

rm
, (2.5)

Icap =
Cm∂V (x, t)

∂ t
, (2.6)

with

rm = membrane resistivity,

Cm = membrane capacitance.

Considering that the total longitudinal current is the sum of the capacitor current and ionic
current, we can say that

IL(x+∆x, t)− IL(x, t) = Itotal,

IL(x+∆x, t)− IL(x, t) = Icap + Iion. (2.7)

Substituting from (2.4) and (2.7) we obtain

−A(x)
rL

∂V (x, t)
∂x

+
−A(x+∆x)

rL

∂V (x+∆x, t)
∂x

=Cm
∂V (x, t)

∂ t
+

V (x, t)
rm

.

Dividing the above equation by Cm and rearranging the terms yields

1
rLCm

(
A(x+∆x)

∂V (x+∆x)
∂x

−A(x+∆x)
∂V (x, t)

∂x

)
=

∂V (x, t)
∂ t

+
V (x, t)
rmCm

.

6



For ∆x → 0 the preceding equation converges to

∂V (x, t)
∂ t

=
1

CmrL

∂

∂x

(
A(x)

∂V (x, t)
∂x

)
− V (x, t)

rmCm
. (2.8)

Above is the second-order PDE that we will be working with to solve for potential across
the cable. It must be noted that since the equation is dependent on A(x) we can work with
any shape of the cross-section as in vito the cross section of an axon is rarely uniform all
across its length.

7



Chapter 3

Methodology

3.1 Implicit Euler, Explicit Euler and Crank-Nicolson with Dirichlet BCs

We consider the derived cable equation and non-homogeneous Dirichlet BCs,

∂V (x, t)
∂ t

=
1

CmrL

∂

∂x

(
A(x)

∂V (x, t)
∂x

)
− V (x, t)

rmCm
(3.1)

This equation can be rewritten in the following simplied form

Vt = α(AVx)x −βV (3.2)

We will start with (3.2) and discretize the PDE in space to obtain the system of ODEs

−→
V t = L

−→
V (3.3)

This is further discretized in time to obtain

(I − (1−θ)∆tL)
−→
V n+1 = (I +θ∆tL)

−→
V n. (3.4)

Depending on the value of θ , we can categorize the methods as

θ = 0, Implicit Euler

θ = 1,Explicit Euler

θ =
1
2
,Crank-Nicholson

The coefficients are α = 1
cmrL

and β = 1
rmcm

and L is defined as,

L = αD+AD−−β I (3.5)

D+ =
1

∆x


−1 1 · · · 0
1 −1 · · · 0
...

... . . . ...
0 0 · · · −1


D− = −(D+)T

8



It is important to note that the relationship between D+ and D− must satisfy below condition
[6],

D+D− =
1

(∆x)2


−2 1 · · · 0
1 −2 · · · 0
...

... . . . ...
0 · · · 1 −2


A is the cross section area which depends on the radius of the cable and the radius of the
cable depends on x, these will be defined as

A(r) = πr2(x),

r(x) = acos(x)+bsin(x)+ c,

{a,b} = 0.1.

Now, we consider a section of cable of ∆x has unit length. This cable will be divided into
(N +1) sub-sections with (N +2) points. Starting from point 0 to point (N +1), we find
mid-point of each section. Then radius is computed at the mid points and radius gives us the
area values

−→
A .

Considering (3.2), we compute for (AVx)x as below using a centered difference stencil to
obtain the following matrix by using A⃗ above,

D+AD− =


−
(

A 1
2
+A 3

2

)
A 3

2
· · · 0

A 3
2

−
(

A 3
2
+A 5

2

)
· · · 0

...
... . . . ...

0 0 · · · −
(

An− 1
2
+An+ 1

2

)



Once we obtain A, we can substitute it in (3.5) to solve for L.
L now is input in (3.4) which gives us

−→
V n+1

9



3.2 Block Krylov Subspace Spectral Method

Krylov Subspace Spectral Methods were initially introduced to solve time-dependent,
variable-coefficient problems. Hence, it is an organic choice for a second-order PDE that we
have derived. It satisfies both important conditions– it is a time dependent problem and it
also contains a variable coefficient. While we work with KSS, we must remember that the
solution has a Fourier sine series expansion form and the coefficients of the solution have a
spatially discretized form. We will be using a block KSS method to compute each of these
coefficients individually to obtain our solution.

To begin understanding Krylov Subspace Spectral methods, let’s consider the following
one-dimensional initial boundary value problem:

ut +Lu = 0, on (0,2π)× (0,∞)

u(x,0) = f (x),0 < x < 2π

u(0, t) = u(2π, t), t > 0

Let S(t) = exp(−Lt) represent the exact solution operator. Then, by approximating
the Fourier components, which are obtained if we apply the exact solution operator to the
computed solution ũ(x, tn), the solution at time tn+1 can be obtained as

û(ω, tn+1) =

〈
1

2π
eiωx,S(∆t)ũ(x, tn)

〉
(3.6)

We consider an N-point uniform grid with spacing ∆x = 2π/N. Then, we discretize the
functions on periodic domain [0,2π], while the operator L and the solution operator S(∆t)

can be approximated by N ×N matrices that represent linear operators on the space of grid
functions. Next we can obtain the bilinear form for ũ,

û(ω, tn+1)≈
√

∆xêH
ω SN(∆t)un. (3.7)

10



We have

[êw] j =
1√
N

eiω j∆x, [un] j = u( j∆x, tn),

SN(t) = exp(−LNt), [LN ] jk =−p[D2
N ]+q( j∆x), (3.8)

where DN is a discretization of the differentiation operator that is defined on the space of
grid functions.

Our primary task is to approximate (3.7) for û(ω, tn+1):

û(ω, tn+1) = êH
ω un+1 = êH

ω SN(∆t)un (3.9)

Considering the above form, we will use Golub and Meurant’s method to approximate
expressions of the form [5, 8]

uT f (A)v (3.10)

where u and v are N-vectors and A is an N ×N symmetric positive definite matrix. The
function f is assumed to be analytic on the domain that contains the eigenvalues of A,
implying that it has a converging Taylor series on that domain.

Our task is to implement this method with A = LN , where LN is the spatially discretized
operator defined in (3.9). f (λ ) = exp(−λ t) for some t, and vectors êω and un play the roles
of the vectors u and v

Considering the fact that the matrix A is symmetric positive definite, we can say that its
eigenvalues will be all real. Hence we can say that

b = λ1 ≥ λ2 · · · ≥ λN = a > 0,

and the eigenvectors which are orthogonal will be represented as q j, j = 1,2 . . .N; they also
correspond to the eigenvalues λ j, j = 1,2 . . . ,N respectively. That allows us to redefine our
initial expression as

uT f (A)v =
N

∑
j=1

f (λ j)uT q jqT
j v.

11



Assume that a = λN is the smallest eigenvalue and b = λ1 is the largest eigenvalue. We
define the measure α(λ ) as

α(λ ) =


0, if λ < a

∑
N
j=i α jβ j, if λi ≤ λ < λi−1, i = 2, . . . ,N,

∑
N
j=1 α jβ j, if b ≤ λ

(3.11)

and we have α j = uT q j and β j = qT
j v. If this quantity is positive and increasing then we can

express it as Riemann-Stieltjes integral

uT f (A)v = I[ f ] =
∫ b

a
f (λ )dα(λ ).

We can bound the above integral using Gauss quadrature rules and obtain an approximation
of the form

I[ f ] =
K

∑
j=1

w j f (t j)+R[ f ]

where the nodes t j, j = 1, . . .K, and the weights w j, j = 1 . . . ,K, can be obtained using the
symmetric Lanczos algorithm if u = v and if u ̸= v then we use the unsymmetric Lanczos
algorithm [4]. In next section we are going to have a detailed look at the block formulation
approach.

12



3.2.1 Block Gaussian Quadrature

Consider the generalization of the form (3.10) with two starting vectors u and v,

[u v]T f (A)[u v].

we obtain below matrix of dimension 2 × 2,∫ b

a
f (λ )dµ(λ ) =

[
uT f (A)u uT f (A)v
vT f (A)u vT f (A)u

]
where µ(λ ) is a matrix function of λ , and each of entry of it is a measure of the form α(λ ).
Consider that the integral

∫ b
a f (λ )dµ(λ ) is a 2 × 2 matrix and the most general K-node

quadrature rule has the following formation,

∫ b

a
f (λ )dµ(λ ) =

K

∑
j=1

Wj f (Tj)Wj + error (3.12)

where Tj and Wj are both symmetric. The above equation can be simplified using

Tj = Q jΛ jQT
j

where Q j is the eigenvector matrix and Λ j is the 2 × 2 matrix with the eigenvalues.
Therefore

K

∑
j=1

Wj f (Tj)Wj =
K

∑
j=1

WjQ j f (Λ j)QT
j Wj.

Rewriting the equation,

WjQ j f (Λ j)QT
j Wj = f (λ1)z1zT

1 + f (λ2)z2zT
2 ,

for zk =WjQ jek for k = 1,2, which yields

∫ b

a
f (λ )dµ(λ ) =

K

∑
j=1

f (t j)v jvT
j + error,

where v j is a 2 × 2 vector and t j is a scalar.

13



Now, we need the scalar nodes t j and the associated vectors v j. From [8], we know that
there exists orthogonal matrix polynomials such that

λ p j−1(λ ) = p j(λ )B j + p j−1(λ )M j + p j−2(λ )BT
j−1,

with p0 = I2 and p−1 = 0. Rewriting the above equation, we obtain

λ [p0(λ ), . . . , pK−1(λ )] = [p0(λ ), . . . , pK−1(λ )]τK +[0, . . . ,0, pK(λ )BK],

where

τK =


M1 BT

1
B1 M2 BT

2
. . . . . . . . .

BK−2 MK−1 BT
K−1

BK−1 MK

 (3.13)

where τK is a block-tridiagonal matrix. Hence we define the quadrature rule as

∫ b

a
f (λ )dµ(λ ) =

2K

∑
j=1

f (λ j)v jvT
j + error. (3.14)

where 2K is the order of the matrix τK , λ j is one of its eigenvalues, and u j is the vector with
the first two elements of corresponding normalized eigenvector.

Now, we apply the block Lanczos algorithm to compute M j and B j. For X1 as a N ×2
known matrix, such that XT

1 X1 = I2, we assume X0 = 0 for given dimensions. For j = 1, . . . ,
compute

M j = XT
j AX j,

R j = AX j −X jM j −X j−1BT
j−1,

X j+1B j = R j.
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The very last step is the QR decomposition for R j such that it is coherent with the
condition X j is N × 2, with XT

j X j = I2. The matrix B2 is 2×2 upper triangular. M j is
the coefficient matrix with same dimensions and is symmetric. R j can eventually be rank
deficient and if it turns out to be so, B j will be singular in such situation.
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3.2.2 Block KSS (Spectral) Method

Here, we dive into the block KSS method. It should be noted that êω is a vector that
discretizes a Fourier basis function êiωx). We define

R0 = [êω un]

where ω is a wave number and ω = (−N
2 +1), . . . , N

2 . Upon computing the QR factorization
we obtain

R0 = X1(ω)B0(ω)

which gives us

X1 = [êω un
ω/∥un

ω∥2], B0(ω) =

[
1 êH

ω un

0 ∥un
ω∥2

]
,

where
un

ω = un − êH
ω un.

Now, the goal is to obtain the Gauss Quadrature rule. The output of a Block Lanczos
algorithm gives us the below block-tridiagonal matrix. The eigenvalues and eigenvectors
of this matrix gives us nodes and weights, respectively, for the quadrature rule. The output
matrix is

TK(ω) =


M1(ω) B1(ω)H

B1(ω) M2(ω) B2(ω)H

. . . . . . . . .
BK−1(ω) MK−1(ω) Bk−1(ω)H

BK−1(ω) MK(ω)

 .

The Next step will be to find each of these Fourier components of the solution as

[ûn+1]ω = [BH
0 EH

12 exp(−TK(ω)∆t)E12B0]12

where

E12 = [e1 e2] =


1 0
0 1
0 0
...

...
0 0


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Note that the above discussion is about a PDE with periodic boundary condition with a
Fourier series in complex exponential form. Our PDE has Dirichlet boundary conditions
with a Fourier sine series. Since our problem in consideration has different boundary condi-
tions it is safe to assume that the solution will have a different form from as seen above.

It is to be emphasized that to compute the quantity EH
12 exp(−TK(ω)∆t)E12 we have to

evaluate the eigenvalues and eigenvectors of TK(ω) to effectively find the nodes and weights
for the Gaussian Quadrature.

The KSS methods require O(N logN) flops per time step which is comparable to some
of the other time stepping methods. In the next chapter, we are going to present and further
discuss the process used to solve our PDE and its comparison with other methods.

17



Chapter 4

Numerical Results

4.1 Comparison of the methods

This section contains the numerical results for all the methods and their comparison.
Forward Euler will be used to compute a reference solution because of the error convergence
and other solutions will be compared to this one. Reference solution comes from using the
Forward Euler method with the following parameters:

Figure 4.1: Forward Euler displaying a smooth solution for a very small time step
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The initial data consists of potential values from a human brain and its graphical representa-
tion looks like:

Figure 4.2: Usual range for potentials in human axon ranges from -75mV to -55mV as
displayed in this graph
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4.1.1 Results for Backward Euler

With given parameters, below are the results for Backward Euler:

(a) (b)

(c) (d)

Figure 4.3: Backward Euler shows excessive damping with every reduced time step
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4.1.2 Results for Forward Euler

(a) (b)

(c) (d)

Figure 4.4: Forward Euler displays very unstable solution for moderately chosen time step.
To obtain a desirable solution, we must choose a very small time step for this method

Forward Euler was expected to give us unstable behaviour for large time steps as
compared to Backward Euler or Crank-Nicolson. This is easily observed from the solution
whose order ranges up to 10200 and above. The behaviour however, changes as displayed
in 4.1. Though the first three graphs show similar behaviour with instability the last graph
given the small time step does not duplicate the same behaviour. However, we can confirm
its undesirable nature from given order of 10170.
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4.1.3 Results for Crank-Nicolson

(a) (b)

(c) (d)

Figure 4.5: Crank Nicholson shows an oscillating behavior in the solution. This behaviour
is explain below

Consider the Crank-Nicolson solution:

−→
V n+1 =

(
I − ∆t

2
L
)−1(

I +
∆t
2

L
)
−→
V n.

Let µ be an eigenvalue of the solution operator matrix L. We can define µ as,

µ =
1+ ∆t

2 λ

1− ∆t
2 λ

where λ is an eigenvalue of L.
For a given basis function of the form sin(kπx), depending on the coefficient k the

eigenvalues can have very large values. Assuming that λ is very large, the second term of
each portion of µ becomes the dominating quantity. Given the opposite signs of numerator
and denominator, this is what leads to the alternating effect as we have observed above.
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4.1.4 Results for Krylov Subspace Spectral Method

(a) (b)

(c) (d)

Figure 4.6: We can see that KSS method produces a smooth solution that is directly
comparable to the reference solution

KSS gives us a solution comparable to our reference solution. An advantage is that it
can obtain similar accuracy with much larger time steps which saves us computational time
and expense. We can clearly state that considering a problem of this nature, KSS is a far
superior method as compared to its competitive methods.
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4.2 Comparing the results for larger grid sizes

For following results, we will be using grid sizes of n = 511, n = 1023 and n = 2047,
respectively. The initial data plot is represented as below:

(a)

(b)

(c)

Figure 4.7: The initial data on larger grid sizes
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4.2.1 Results for Backward Euler Method

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.8: Backward Euler with a larger grid size becomes an increasingly unsuitable
method for solving a PDE as ours
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4.2.2 Results for Forward Euler Method

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Forward Euler displays similar behaviour and can be considered unstable even
at larger grid sizes unless the time steps in consideration are very small
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4.2.3 Results for Crank-Nicolson Method

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: For larger grid sizes, we still observe the previously noted alternating behaviour
of the solution
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4.2.4 Results for Krylov Subspace Spectral Method

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.11: For larger grid sizes, we still observe the previously observed smoothness of
the solution
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4.3 Error Comparison

Following are the observed errors for each method:

Backward Euler (∆t= 0.1, 0.05, 0.01. 0.005)
m=8 m=9 m=10 m=11
1 1 1 1
1 1 1.0325 ×106 1
1 1 1.0803 ×1030 1

Forward Euler (∆t= 0.1, 0.05, 0.01. 0.005)
m=8 m=9 m=10 m=11
1.4787×1030 1.3052×1036 8.2565×1039 6.2057×1045

4.1864×1084 3.095×1066 NaN 2.0371×1088

5.1830×10205 9.8026×10265 NaN NaN
Crank Nicolson (∆t= 0.1, 0.05, 0.01. 0.005)

m=8 m=9 m=10 m=11
3.9163 2.9964 0.9993 0.9997
3.1075 2.8802 0.9995 0.9997
1.1886 42.8691 1.4339 1.3993

KSS (∆t= 0.1, 0.05, 0.01. 0.005)
m=8 m=9 m=10 m=11
2.6523×10−4 3.7474×10−4 0.9903 0.9904
7.3782×10−5 1.2398×10−4 0.9903 0.9904
4.8695×10−5 4.1961×10−5 0.9903 0.9904

The cases of m = 10 and m = 11 for KSS ended with unexpected results that have been
speculated to improve if we further reduce the time-step for the reference solution and
re-compute the error. However, at the present moment this is outside the scope of this thesis.
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4.4 Conclusion

Considering the preceding results with respect to changing grid size and changing time
step in comparison to the reference solution we have chosen, we can conclude that KSS
gives us significant improvement as compared to other methods. Backward Euler being
unconditionally stable, tends to lead to excessive damping. On similar note, Forward Euler
is unstable unless time steps chosen are very small. Crank-Nicolson theoretically expected
to achieve second-order accuracy has been inconclusive the this instance. However, this
would not the most suitable method to deal with a second order Cable Equation.

4.5 Where do we go from here?

This thesis is helping us prepare a solid foundation for using numerical methods to
be applied to problems based in Computational Neuroscience. Strictly speaking of the
Cable equation, the following are some research ideas gathered from [2] and [9] that can be
explored using our methods:

• Using the solution of Cable equation as reverse f unctions to approximate the area of
cross sections to detect anomalous changes for early detection in Neuro-degenerative
proteins

• Building and solving first order PDEs to approximate pressure release in patients
suffering stroke related swelling in the brain in order to minimize nerve damage

• Better understanding of fundamentals of certain conditions as Depression, ADD,
ADHD, etc with study of behaviour of action potentials

• Comparing chemical changes (ionic charges, levels of chemicals, relative intake
of medications) to behavioural changes in order to give better understanding of
functioning of a healthy brain
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Appendix A

MATLAB CODE

The first part of the code chooses grid points, time length, time steps, constant coefficients
and builds the differential operator. Then it calls two different functions "triple stencil" and
"kss

%loop this to compare reference Solution and computed solution

%this calls triplestencil.m

%enter all varying parameter informatoin

prompt1 = "theta=?"; %bwd euler=0, fwd euler=1, crank-nicholson=0.5

theta = input(prompt1);

prompt2 = "dt=?" %0.05, 0.01, 0.005

dt = input(prompt2);

prompt3 = "m=?"; %m=8,9,10,11

m = input(prompt3);

%constant coefficients of differential operator

a=0.1;

b=0.1;

c=1;

t=1;

cm=0.5;

rl=180;

rm=0.5;

alpha=1/(cm*rl);

beta=1/(cm*rm);

%choose number of points

n=((2^(m)-1));

h=1/(n+1);

x=linspace(0, 1, n+2);
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x=x’;

%defining zero vectors that fills in afterwards

xavg=zeros(n+1,1);

r=zeros(n+1,1);

A=zeros(n+1,1);

Adiag=zeros(n,1);

%for loop that will computer Am

for i=1:n+1

xavg(i)=(x(i)+x(i+1))/2;

for j=1:n+1

r(j)=(a*(cos(xavg(j))))+(b*(sin(xavg(j))))+(c);

A(j)=(pi)*((r(j))^2);

end

for k=1:n

Adiag(k)=-(A(k)+A(k+1));

end

end

Am=(spdiags([A(2:n+1) Adiag A(1:n)],-1:1,n,n))/(h^2);

L=alpha*Am-beta*speye(n,n);

%calling triple stencil+

V=readtable(’voltage_allrep.txt’);

V=table2array(V);

V=V(1:n,1);

Vt=triplestencil(L,V,t,dt,theta,n);

plot(Vt);

%calling fourier basis vectors

V_tnp1=fourierbasisvectors(V,n,L,dt,t);
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The first function we have used is named "triple stencil" based on the fact that it implements
Backward Euler, Forward Euler and Crank-Nicolson with respect to θ

%triple stencil function

function V=triplestencil(L,V,t,dt,theta,n)

timesteps=t/dt;

RHS=((eye(n,n)+(theta*dt*L)));

LHS=gausselimA((eye(n,n)-((1-theta)*dt*L)));

plot(V)

title(’Initial data for action potential in a mammalian brain’)

ax=gca;

ax.FontSize=10;

pause

for i=1:timesteps

if theta==0

V=forwsub(LHS,V);

Vtnp1=backsub(LHS,V); %vref comes from BW euler

else

if theta==1

Vtnp1=RHS*V;

else

V=forwsub(LHS,(RHS*V));

Vtnp1=backsub(LHS,V);

end

end

if rem(i,100)==0

plot(V);

xlabel(’x’)

ylabel(’Potential values: V in mV’)

title({[ ’t=’ num2str(t) ’, Grid size n=’ num2str(n) ’,...

dt=’ num2str(dt) ]})

ax=gca;

ax.FontSize=10;

pause(0.01)

end

end
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end

The next function we have build is called "kss" which used fourier basis vectors to compute
fourier sine coefficients of the solution.

function V_tnp1=kss(V,n,L,dt,t)

timesteps=t/dt;

I=eye(n,n);

S=mydst(I);

S=S’;

V_np1=zeros(n,1);

for j=1:timesteps

for i=1:n

R0=[S(:,i) V];

[X1, B0]=qr(R0, "econ");

M1=X1’*L*X1;

R1=L*X1-X1*M1;

[X2,B1]=qr(R1,"econ");

M2=X2’*L*X2;

Tau2=[M1 B1’;B1 M2];

Tauexp=expm(Tau2*dt);

V_np1_t=B0’*Tauexp(1:2,1:2)*B0;

V_np1(i,1)=V_np1_t(1,2);

end

V_tnp1=myidst(V_np1);

if rem(i,100)==0

plot(V_tnp1);

xlabel(’x’)

ylabel(’Potential values: V in mV’)

title({[ ’t=’ num2str(t) ’, Grid size n=’ num2str(n) ’...

dt=’ num2str(dt) ]})

ax=gca;

ax.FontSize=10;

pause(0.01)

end

end
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