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ABSTRACT 

INVESTIGATION INTO SELECT ISOQUINOLINES 

AS A PUTATIVE CAUSAL AGENT OF ETHANOL ADDICTION IN MAMMALS 

by Jacob Christopher Strawbridge 

May 2009 

Alcohol is the most abused drug in America today. The neurological root of the 

problem is still a much debated subject and many differing views exist on the nature of 

alcoholism, be it a social dysfunction or a neurochemical imbalance. Some researchers 

have proposed that a skewed metabolism of dopamine that results in the formation of 

tetrahydroisoquinoline (THIQ) alkaloids plays a major role in the neurochemical 

acquisition and maintenance of alcohol addiction. In an effort to better understand the 

relationship of THIQ's to alcohol addiction, a series of experiments have been conducted. 

The chiral separation via high pressure liquid chromatography (HPLC) of various 

salsolinol (SAL) and salsolinol-derived compounds using a macrocyclic substituted 

sugar, sulfated P-cyclodextrin, as a chiral mobile phase additive was investigated. These 

HPLC separations yield data on a cheap and effective method for resolving enantiomers 

of simple catecholamines. The second set of experiments involved measuring the ethanol 

intake of rats given intracerebro ventricular (ICV) injections of racemic 

tetrahydropapaveroline (THP) and R-(+)-THP. A similar experiment was conducted with 

tetrahydroberbine (THB). Finally, rats were administered ethanol solutions via gavage 

u 



and the local cerebrospinal fluid (CSF) in the lateral ventricle of the rats' brains was 

sampled via microdialysis. These dialysate solutions were assayed for THP concentration 

using high pressure liquid chromatography with electrochemical detection (HPLC-ECD). 

The results of our experiments indicate that THP is formed in vivo in the rat brain and 

THP levels increase in response to ethanol ingestion. This finding appears to support the 

hypothesis that THP plays an important role in the etiology or symptoms of alcoholism in 

humans. 

in 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Ethanol and Alcoholism 

Throughout history, ethanol has played an important part in human society. It 

has inspired uncounted artists, musicians, and poets. However, one cannot speak of 

ethanol without coming to grips with alcoholism. Alcoholism has been defined by 

Koob, a prominent addiction researcher, as a complex behavioral disorder 

characterized by excessive consumption of ethanol, the development of tolerance and 

dependence, and impairment in social and occupational functioning [1]. Alcoholism 

is a serious health concern in America, as alcohol is the most widely used 

psychoactive drug [2] and is the third leading cause of preventable death in America 

[3]. A relative comparison of the alcohol-related healthcare costs versus the 

corresponding health care costs for all other drugs of abuse can be seen in Figure 1 

[4]-



2 

Figure 1: Comparison of Estimates From the Major Cost-of-Illness Studies for 

Alcohol and Drug Abuse, Adjusted for Inflation and Population Growth [4] 

In January 1987, the National Institute of Alcohol Abuse and Alcoholism 

(NIAAA) stated that two-thirds of the American population drank ethanol. However, ten 

percent of those who drank accounted for one half of all the alcohol consumed [5]. In 

1994, it was estimated that nearly eight million Americans were alcoholics [6]. Clearly, 

the etiology of alcoholism merits further study. 

A better understanding of the phenomena associated with craving of ethanol and 

the reward mechanisms involved could lead to more efficient treatments for alcoholics. 

Due to the complexity of alcohol addiction in humans, a problem that has psychological, 

genetic, sociological, and ethical components, researchers rely on the use of animal 



models, genetic profiling of family histories, and anecdotal accounts to assess the 

neurochemistry of ethanol addiction. 

The metabolism of ethanol in the liver and brain of mammals is well established 

[7, 8]. As shown in Figure 2, ethanol is converted to acetaldehyde by alcohol 

dehydrogenase found in cytosol, the liquid component of the cytoplasm, and the cofactor 

nicotinamide adenine dinucleotide (NAD+). Acetaldehyde is then oxidized by an NAD+ -

dependent aldehyde dehydrogenase found in mitochondria and NAD+ to form the acetate 

ion. This acetate product is then eliminated from the body. 

CH3CHtOH Ethanol 

Alcohol dehydrogenase 

(Cytosol) 

OHl̂ C - H 
II Acetaldehyde 

Acetaldehyde 
dehydrogenase 

(Mitochondria) 

CH3C - O" 
li 
0 Acetate 

Figure 2: The Metabolism of Ethanol 
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Ethanol exerts its intoxicating effects on the central nervous system (CNS) by 

shifting the normal processes of information conduction and transmission in an indirect 

manner. A nerve cell must maintain a certain concentration of K+, CI", and Na+ in the 

extracellular fluid in order to generate action potentials and allow Ca+2 to release 

neurotransmitters. When an action potential reaches the terminus of the axon, ions 

enter the presynaptic terminal through voltage-gated ion channels specific for Ca+2 and 

signal the release of the stored dopamine into the synaptic cleft. 

Insights into the mechanisms by which ethanol affects CNS activity have been 

derived primarily from neurochemical assessments of ethanol's actions. Ethanol is known 

to inhibit sodium and potassium ion channels in the brain [9-12]. Ethanol has also been 

shown to increase calcium ion binding in the brains of rats and mice [13], resulting in a 

decrease in free calcium ions in select brain areas [14]. 

While these discoveries may help explain the effects of ethanol on nerve signal 

conductance, the complexity of the neural environment of even experimental animals has 

produced a controversy in the neuroscience community over the exact mechanism by 

which ethanol dependence operates. The current controversy revolves around the causal 

agents of dependence and whether changes in the dopaminergic, the endogenous opioid 

systems, or other circuits play the most important role in the etiology of alcoholism. 
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Dopamine as a Neurotransmitter 

Dopamine (DA) is one of the major neurotransmitters in the CNS. Figure 3 shows 

five of the prominent neurotransmitters. Dopamine, also called hydroxytyramine, is a 

monoamine intermediate formed from dihydroxyphenylalanine (DOPA) during the 

metabolism of the amino acid tyrosine [15]. Figure 4 demonstrates the synthesis of 

dopamine in the CNS. 

Figure 3: Five Major Simple Neurotransmitters 
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Figure 4: Dopamine Synthesis In Vivo From Tyrosine 

Dopamine is commonplace in the medial forebrain bundle and important in the 

substantia nigra, basal ganglia, and corpus striatum of the brain [16-19]. Figure 5 shows a 

variety of dopamine pathways located in the human brain. Dopamine can be both 

excitatory and inhibitory, depending on the postsynaptic receptor. It has been implicated 

in several functions, including locomotion, learning, attention, temperature regulation 

[15], and as a reinforcing agent for drugs of abuse via the nucleus accumbens and the 

mesolimbic reward pathway [1, 20-27]. 



frontal lobe 
basal ganglia 

Figure 5: An Overview of Dopamine Pathways in the Human Brain 

Dopamine, once synthesized, is stored in vesicles in the presynaptic neuron's 

terminal button. Ca ions enter the presynaptic axon and signal the release of dopamine 

into the synaptic cleft. This released dopamine then binds with postsynaptic receptors and 

generates a signal, either excitatory or inhibitory, in the postsynaptic neuron. This process 

is then repeated in the next series of dopaminergic neurons. A schematic of a normal 

dopaminergic synapse appears as Figure 6. 
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Figure 6: A Diagram of a Dopaminergic Synapse 

The metabolism of dopamine is, in part, a simple oxidation. Dopamine is oxidized 

by monoamine oxidase (MAO) to 3,4-dihydroxyphenylacetaldehyde (dopaldehyde). 

Dopaldehyde is oxidized by aldehyde dehydrogenase to form 3,4-dihydroxyphenylacetic 

acid (DOPAC). Figure 7 shows the known dopamine metabolism in mammals [28-31]. 



dopamine dopaldehyde DOPAC 

COOH 

Figure 7: Dopamine Metabolism 

Catecholamine Theory of Alcohol Addiction 

Two slightly different mechanisms for the development of alcoholism were 

suggested independently by separate groups some thirty years ago. The first involved the 

formation of tetrahydroisoquinoline (THIQ) alkaloids from the condensation of dopamine 

or DOPA with acetaldehyde, the first metabolite of ethanol [32]. This condensation 

reaction produced a 1-methyl-THIQ, salsolinol (SAL), and its carboxylated derivatives, 

the D and L isomers of 3-carboxysalsolinol (D-3-CSAL and L-3-CSAL). Another 

condensation of dopamine with pyruvic acid produces the 1-carboxysalsolinol (1-CSAL) 

derivative of SAL. Figure 8 shows the relevant reactions involved in these condensations. 

This theory was supported by the discovery that SAL could be formed in vitro by 

perfusing bovine adrenal gland homogenates with acetaldehyde solutions [32]. Further 

studies confirmed that SAL was formed in vivo in rat [33, 34] and in man [35, 36]. More 

recently, it was shown that the condensation of dopamine and acetaldehyde to form SAL 

is enzymatically driven, hence forming a majority of the R-(+)-isomer of SAL [37, 38]. 

Other studies have shown that intracerebroventricular (ICV) perfusion of SAL can elicit a 

drinking response from alcohol avoiding animals [39, 40]. Recently, SAL has been the 
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object of study because of the neurotoxicity of one of its metabolites that may be a 

contributing factor in the development of Parkinson's disease [41-43]. 

H O ^ 

H O " 

HCU 

H O " 

HO N 

H O " 

HO. 

HO' 

if^V 

Dopamine 

TPT" 
^ ^ 

L-DOPA 

XX 
D-DOPA 

N - " ^ V " " XT 

^ 
1 , + p u p u n » 

acetaldehyde 

H 
\ i - C O O H 

NH2 + CH3CHO 

^COOH 

XC + CH3CHO 

\ 
,1, + CH3COCOOH 

pyruvic acid 

H O . 

HO 

r"^V^i 

H3C" H 

R-(+)-SAL 

H O \ / 

^~ 1 I 

HO 

+ 

^ 

^ 

L-3-CSAL 

H 0 \ / 

HO 

^ > 

^ 

D-3-CSAL 

H O ^ 

' H O " 

f* 

H O . ^ ^ 

IT 
H O " ^ ^ " ^ ? 

'H* 

S-(-)-SAL 

H 
^ \ i - C O O H 

k ^ N H 

H VCH3 

^ COOH 

^ . N H 

H CH3 

H O O C ^ c H , 
D.L-1-CSAL 

^ N H 

CH3 

Figure 8: The Formation of SAL and CSAL 

Another group of researchers [31] proposed the second major catecholamine 

theory of alcoholism at virtually the same time. This theory held that the presence of 

acetaldehyde could inhibit the conversion of dopaldehyde to DOPAC, as acetaldehyde 

has a high affinity for aldehyde dehydrogenase also [31]. Alcohol, by way of its primary 

metabolite acetaldehyde, facilitates the formation of tetrahydropapaveroline (THP) by 

file:///i-COOH
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competitively inhibiting aldehyde dehydrogenase in vitro. Under circumstances of 

substantial alcohol ingestion in vivo, the limited ability of the brain to oxidize aldehydes 

could contribute to the formation of THP [28-31]. This inhibition would lead to high 

levels of dopaldehyde accumulating in the brain and could lead to the condensation of 

dopamine with dopaldehyde to form 1-benzyl-THIQ, tetrahydropapaveroline [31]. 

THIQ's were originally isolated in plants under strongly acidic conditions by the 

Pictet-Spengler condensation reaction [44]. It was subsequently demonstrated that THIQ 

alkaloids can be formed under physiologic conditions of pH and temperature from the 

condensation of aldehydes, such as acetaldehyde, with catecholamines, such as dopamine 

and its N-methyl congener, epinephrine [45]. 

Davis and Walsh found that THP could be formed in vitro by incubating rat brain 

stem homogenates rich in dopamine, with acetaldehyde and NADH, which is used as a 

cofactor to retard the further metabolism of acetaldehyde [31]. The presence of THP in 

rat brain was verified by infrared spectroscopy, gas chromatography, and thin-layer 

chromatography [29-31]. Other researchers used thin-layer chromatography to 

demonstrate the formation of THIQ alkaloids in vitro by perfusing bovine adrenal gland 

with dilute acetaldehyde solutions [32]. This hypothesis was also supported by reports 

that THP occurred in vivo in the brains of rats [33, 34, 46] and humans [35, 36, 47, 48]. 

Thus, buildup of THP following alcohol intake, might have pharmacological effects 

relevant to the etiology of alcoholism. 

Although the majority of ethanol is metabolized by alcohol dehydrogenase, 

catalase, a ubiquitous enzyme found in large amounts in peroxisomes, can oxidize 

ethanol as a co-substrate with hydrogen peroxide to yield water and acetaldehyde [49]. 
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Hydrogen peroxide is produced in brain tissue when monoamine oxidase (MAO) 

oxidizes biogenic amines. Thus, catalase can use hydrogen peroxide to metabolize 

ethanol to acetaldehyde in the brain, resulting in a large concentration of acetaldehyde 

localized at dopaminergic neurons [8]. 

Alternatively, acetaldehyde inhibits the degradation of dopamine to 

dihydroxyphenylacetic acid. This increases the availability of aldehydes for participation 

in a Pictet-Spengler condensation with intact dopamine. If aldehyde dehydrogenase is 

occupied with the metabolism of acetaldehyde, the biogenic aldehyde could condense 

with its parent amine, resulting in THP formation. In fact, a recent report has shown that 

pharmacological inhibition of MAO-A reduced the volitional consumption of ethanol, 

perhaps by preventing the formation of both biogenic aldehydes and acetaldehyde and 

preventing the formation of the alkaloidal products [8]. 

Since THP is a precursor in the synthesis of morphine and other alkaloids in 

Papaver somniferum, the opium poppy, it was suggested that the formation of THP might 

contribute to the development of addiction by acting as a false transmitter or opiate 

agonist [29, 31, 50]. Additionally, THP might be further metabolized to form the opiates 

themselves. Figure 9 shows this proposed "skewed" metabolism of dopamine resulting in 

the formation of THP and hypothesized pathways (appearing as a dashed reaction arrow) 

by which THP could be converted to opiate alkaloids and tetrahydroxyberberine 

compounds [31]. Recently, S-(-)-THP was documented as being present in human brain 

tissue at concentrations of 0.12 to 0.22 pmol/g [51]. Morphine has also been reported to 

be endogenous to the CNS [52]. 
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MAO 

N H . 

HO-

HO 

"CHO „ H ° -
//* 

HO-
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HO 

HO 

HO 

HO 
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Figure 9: Proposed Dopamine Metabolism Resulting in the Formation of 

THP and Possibly Opiate Alkaloids [31] 

While no conclusive evidence exists as yet for the formation of these opiate 

alkaloids directly from THP in vivo, the efficacy of THP in eliciting a volitional drinking 

response in experimental animals is well documented. Myers and Melchior reported 
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initially that ICV infusions of THP would induce spontaneous volitional consumption of 

relatively high concentrations of ethanol by Sprague-Dawley rats, an inbred strain that 

normally avoids even low levels of ethanol [53-55]. Perfusion cannulae were implanted 

in the lateral ventricle of rats by stereotaxic surgery. Figure 10 shows a cutaway diagram 

of the lateral ventricles (marked as LV) of a rat. It should be noted that the lateral 

ventricles serve as a reservoir of cerebrospinal fluid (CSF) for most of the medial 

forebrain bundle. 

Figure 10: A Sagittal Cutaway Diagram of a Rat Brain Showing the Lateral 

Ventricle (LV) and Other Prominent Brain Features 

The animals were then screened for alcohol preference using a three-bottle, 

twelve-day test. The bottle positions were randomized every day. One bottle was empty, 

the second contained water, and the third contained an ethanol solution in water. The 
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alcohol concentration was gradually increased from 3% by volume to 30% by volume 

over the twelve-day period [53]. Once baseline alcohol consumption for each animal was 

established, the pool of experimental rats was divided into two groups. One group was 

given ICV injections of a relatively high concentration of a racemic mixture of THP, and 

the other given a low dosage of racemic THP. The S-(-)-isomer was also tested. The ICV 

injections were made every fifteen minutes around the clock for fourteen days. 

The rats were then screened for alcohol preference using the same initial method. 

Drastic changes were noted in all of the rats' drinking preferences. Halfway through the 

twelve-day protocol, rats that avoided even low concentrations of alcohol drank 

increasing amounts [53]. Rats receiving the concentrated injections of THP increased 

their alcohol consumption to half of their daily fluid intake [53]. Rats receiving the low 

concentration doses of THP drank alcohol in concentrations of up to 25% by volume 

[53]. These changes persisted until the end of the twelve-day protocol, with some 

animals' blood ethanol levels reaching 0.2% [53]. Symptoms of intoxication such as 

ataxia were noted in these animals that drank heavily, as well as symptoms of withdrawal 

when these rats were not drinking ethanol, such as tremors, hyperactivity, rearing, 

chewing, and jerking motions [53]. 

Another team of researchers [56] replicated this experiment. They confirmed that 

ICV injections of 5.2 to 41.6 nmoles/day is sufficient to elevate a Sprague-Dawley rat's 

alcohol consumption but that doses of 104 nmoles/day produced an aversion to ethanol 

[56]. It was also reported that the highest volumes of alcohol consumption occurred when 

the alcohol solution was 11% to 15% by volume [56]. This group of rats refused higher 

concentrations of ethanol and their blood alcohol levels did not reach intoxication, 
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although some animals did develop seizures [56]. No other symptoms of intoxication or 

withdrawal were reported. THP-induced changes in alcohol preference in Sprague-

Dawley rats have been found to be very long lasting [53, 56, 57]. They may even be 

permanent, as animals injected with THP tested ten months later still exhibited a strong 

alcohol preference [56]. 

These studies [53, 56-59] suggest a possible role for THP in the etiology of 

ethanol craving. However, it remains to be seen whether THP acts as a false transmitter, 

or as a morphine precursor. All available evidence revolves around the treatment of 

experimental animals with morphine [60-72] or opiate antagonists such as naltrexone 

[73-83] or naltrindole [84, 85]. Morphine has been shown to potentiate alcohol drinking 

in rats with long term effects similar to those for THP-induced alcoholism [74]. Naloxone 

and naltrindole have been reported to reduce the alcohol intake of rats that prefer alcohol 

[63, 70, 74, 86]. So while no clear conclusions about the relationship between THP and 

the opioidergic neural circuits in the brains of mammals can be drawn, the circumstantial 

evidence points to some form of linkage between the two. 

A number of abused drugs, which have independent pharmacological effects and 

are otherwise classified as having separable sites and mechanism of action, all activate 

the mesolimbic dopamine path. Drugs as diverse as cocaine, alcohol, nicotine, and 

heroin have been shown to release dopamine from nerve terminals at the nucleus 

accumbens (NAcc) of the basal forebrain [24, 26, 27, 87]. Pretreatment with naloxone, an 

opioid antagonist which shows higher affinity for the \x opioid receptor [88, 89] or with 

naltrindole, a 8 opioid receptor antagonist [90], attenuated the release of dopamine at the 

NAcc evoked by administration of alcohol. Opiate antagonists, naltrexone and naloxone 
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have also been found to suppress volitional alcohol consumption initiated by THP 

infusion [74, 91, 92]. 

Mapping studies [93-95] have found that the ventral tegmental area (VTA) and 

the nucleus accumbens are among the most behaviorally responsive sites to THP 

microinfusion. Of the THIQ alkaloids, THP appears to be the most potent releaser of 

dopamine at forebrain sites, including the NAcc [96]. More recently, microinjections of 

THP into the VTA were found to augment extracellular efflux of dopamine from the core 

of the NAcc [97] of high ethanol preferring (HEP) rats. Conversely, THP suppressed 

dopamine efflux from the shell of the NAcc. Collectively, this evidence suggests that 

THP might exert behavioral actions via modulation of the mesolimbic dopamine circuit. 

While this hypothesis is supported by some investigators, others view THP-

induced alcohol consumption in experimental animals as a pharmacological effect [98, 

99]. These researchers call into question whether THIQ alkaloids are ever formed 

endogenously in quantities sufficient to exert a significant effect on the behavior of the 

animal. Still other researchers have called into question techniques used by investigators 

that have been able to simulate alcoholism using THIQ's such as THIQ purity, surgical 

techniques, dosing regimens, and animal care protocols [60, 100-102]. 

Nonetheless, there1 are few known compounds that exert such a profound effect on 

volitional consumption of alcohol. At the least, these compounds may have utility in 

probing sites and mechanisms in the central nervous system (CNS) involved in the 

mediation or control of alcohol consumption. 

Increases in alcohol consumption have been reported previously following central 

injection of racemic THP as well as the (S)-enantiomer of THP [53]. Heretofore there 
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have not been any published reports of alterations in alcohol preference induced by the 

(R)-enantiomer of THP. The (S)-enantiomer has been proposed to be a major precursor 

of morphine in the opium poppy [31]. It has been proposed that R-(+)-THP could be 

converted to morphine via a racemization reaction [103-107] and low doses of morphine 

have been found to promote alcohol consumption [64, 67, 70, 86, 108-110]. 

The (S)-enantiomer has been detected in the striatum of rats fed alcohol ad 

libitum for 18 months, suggesting that a THP biosynthetic pathway exists in the 

mammalian brain [111]. Moreover, a stereochemical analysis reported the presence of S-

(-)-THP, but not R-(+)-THP, in each of four human brains [51]. Thus, further 

investigation of the (R)-enantiomer may yield additional pertinent information. If R-(+)-

THP has no effect on alcohol consumption, then one might expect S-(-)-THP to be twice 

as effective as the racemic mixture. 

On the contrary, prior reports have not found substantial differences in efficacy 

between S-(-)-THP and racemic THP [53]. This suggests that the (R)-enantiomer should 

be capable of stimulating alcohol consumption. Alternative to the hypothesis that 

morphine is synthesized from the alkaloid, THP may act as an opiate agonist. Because of 

the relative symmetry of the molecule, receptors may be unable to distinguish between 

the two alkaloid isomers. In either scenario, one might expect each enantiomer to be 

equally effective. 

Experiments were conducted to re-evaluate whether, and to what degree, centrally 

administered (±)-THP or (+)-THP might induce alcohol consumption. Additional 

experiments evaluated whether simple repeated exposure to increasing concentrations of 

alcohol might result in volitional drinking. Control groups were used to evaluate whether 
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the stereotaxic procedure itself could impair the ability of the animal to discriminate 

between alcohol and water. 



CHAPTER II 

EXPERIMENTAL 

HPLC Resolution of the Enantiomers of Dihydroxyphenylalanine and Selected Salsolinol 

Derivatives Using Sulfated P-Cyclodextrin as a Chiral Mobile Phase Additive 

Reagents 

Racemic and optically active salsolinol was prepared in our laboratory using 

routes described in the literature [112]. Briefly, condensation of 3,4-

dimethoxyphenethylamine, the dimethoxy analog of dopamine, with acetic anhydride, 

subsequent cyclization to l-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline, followed by 

reduction with sodium borohydride in ethanol gave salsolidine (Figure 11), the 

dimethoxy analog of salsolinol. 

Figure 11: Structure of (A) S-(-)-salsolidine; (B) R-(+)-salsolidine 
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Demethylation of salsolidine in boiling concentrated hydrobromic acid gave 

racemic salsolinol in analytical purity. Resolution of salsolidine followed by hydrobromic 

acid catalyzed demethylation provided the optical isomers of salsolinol (Figure 12). 

Figure 12: Structure of (A) S-(-)-salsolinoI; (B) R-(+)-salsolinoI 

L-DOPA and racemic DL-DOPA (Figure 13) were obtained from commercial 

sources (Sigma-Aldrich, St. Louis, MO). 

Figure 13: Structure of (A) L-(-)-DOPA; (B) D-(+)-DOPA 

The 3-carboxy-tetrahydroisoquinoline derivatives were prepared by reaction of L-

DOPA or racemic DL-DOPA with acetaldehyde to give, respectively, L-3-
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carboxysalsolinol and DL-3-carboxysalsolinol (Figure 14). Crystallization during work

up provided the cis isomers as the major product [113]. 

i^cooi + CH3CHO 

NHfe 

B 

+ CH3CHO 

NH> 

Figure 14: Condensations of (A) L-DOPA with Acetaldehyde to Form L-3-

Carboxysalsolinol; (B) D-DOPA with Acetaldehyde to Form D-3-Carboxysalsolinol 

+ CH.COCOOH 
Nhfe 

H3C COOH 

Figure 15: Condensation of Dopamine with Pyruvic Acid to Form a Racemic Mix of 

1-Carboxysalsolinol 
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Racemic 1-carboxysalsolinol was synthesized in our laboratory using the reaction 

of dopamine with pyruvic acid (Figure 15) as described in the literature [114]. 

Sulfated P-cyclodextrin (lot number 09718HR) was purchased from Aldrich 

Chemical Co. Sulfated P-cyclodextrin is a cyclic sugar made up of seven glucose units 

joined "head-to-tail" by alpha-1,4 linkages and has several (13-19) of the 21 inner and 

outer rim hydroxyl groups converted to sulfate functionalities (Figure 16) [115-117]. 

Figure 16: Two Views of Sulfated P-Cyclodextrin (A) Side View; (B) Front as Seen 

From the Smaller Diameter "Inner" Rim 
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While direct molecular weight measurements were not available, carbon-

hydrogen analysis values provided by the vendor indicated an average molecular weight 

of 3,000 Daltons. 

Chromatography 

An isocratic HPLC consisting of a micrometering pump (Rainin XLS), a valve-

loop injector (Rheodyne 7125), a variable UV detector (PE SpectroMonitor III) set to 

measure absorbance at 280 nm, and a column oven (PE) were used in these studies. 

Subambient column temperatures were maintained using stirred water baths. 

Econosphere (4.6 mm ID x 250 mm, 5 jam ODS) and Adsorbosphere HS (4.6 mm ID x 

150 mm, 3 um ODS) reversed-phase columns, purchased from Alltech Associates (Grace 

Davison, Deerfield, IL) were employed. Econosphere columns were used primarily to 

chromatograph salsolinol while Adsorbosphere columns, which have greater carbon 

loading were used for the carboxylated substances. 

Mobile phases consisted of 0.05 M phosphoric acid with the pH adjusted to a 

value of 2.5 with sodium hydroxide. No adverse effects were noted from the use of 

acidic mobile phases. Sulfated P-cyclodextrin was added as indicated in the text, to give 

solutions of 0 to 2 mM. Concentrations greater than 1 mM for Econosphere columns and 

2 mM for Adsorbosphere columns gave retention times very near the void retention time, 

t0. Columns were equilibrated by passing 15 to 20 column volumes of mobile phase 

through them before measurements were made. 

Capacity factor, k', values were determined using the formula, 

*' = (tr - to)/t0, (Eqn. 1) 
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where tr is the retention time of an analyte peak and t0 the retention time of an unretained 

solute, obtained using injections of solutions of NaNC>3 or NaNC^. 

Resolution, Rs, was determined using the equation, 

Rs = 2At/(wj + w2), (Eqn. 2) 

where Atr is the difference in retention times between peaks and wi and W2 are the widths 

of the peaks of the two enantiomers. 

Selectivity, a, was calculated using the equation, 

a = k'2/k'i, (Eqn. 3) 

where the k' values are for two peaks of interest. 

Thermodynamics 

Thermodynamics operating during the chromatographic process were assessed 

using the van't Hoff expression [118, 119], 

Ink' = (-AH/RT) + (AS/R) + ln(/>. (Eqn. 4) 

In this expression k' is the capacity factor, R the gas constant, AH and AS the enthalpy 

and entropy of transfer of the solute from the mobile to the stationary phase, and § the 

volume phase ratio of the stationary and mobile phases. The value of 0.385 was used to 

approximate ty as suggested by Sander and Field for octadecasilyl (ODS) packings [120]. 

Approximately the same value for <|> was obtained when the method described by Cole 

and Dorsey [118, 119, 121] was used together with values of percentage carbon loading 

and mass of packing in a typical column obtained from the manufacturer. 



26 

Plots of Ink' vs. 1/T were obtained. Slopes of these lines were taken to be equal to 

-AH/R and the intercept to be equal to (AS/R) + ln<|). Uncertainties in (j) should affect all 

AS measurements equally. 

A Re-evaluation of the Role of Tetrahydropapaveroline in 

Ethanol Consumption in Adult Male Sprague-Dawley Rats 

Subjects 

Thirty-one (31) male Sprague-Dawley rats (Harlan, Indianapolis, IN) obtained 

from the Frederick, MD plant, weighing between 280 and 340 g at the time of surgery, 

were used for this experiment. Animals were housed individually in hanging 11 inch by 

15 inch wire cages on a reversed 12:12 light/dark cycle with light onset at 20:00. Food 

was available ad libitum. Room temperature was maintained at 23 ± 1 °C. All 

procedures involving animals were conducted in accordance with the NIH Guidelines for 

the Care and Use of Laboratory Animals and the guidelines set forth by the Institutional 

Animal Care and Use Committee (IACUC) of the University of Southern Mississippi 

(APPENDIX). 

Drug Preparation 
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Artificial cerebrospinal fluid was used as a vehicle solution for all experimental 

injections. A liter of artificial cerebrospinal fluid (aCSF) was made containing 7.46 g 

NaCl, 0.19 g KC1, 0.14 g CaCl2, and 0.19 g MgCl2 dissolved in deionized water to which 

was added 0.1 g ascorbic acid to retard the oxidation of THP. The aCSF was filtered 

through a 0.2 urn nylon filter. The THP used in these experiments was synthesized in 

our laboratory (Figure 17) [122-124]. Optically pure R-(+)-THP was synthesized in our 

laboratory by Kenneth D. McMurtrey using established methods [125]. 
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Figure 17: Synthesis of Racemic Tetrahydropapaveroline Hydrobromide 
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NMR Analysis 

A 350 MHz Bruker NMR was used to obtain proton nuclear magnetic resonance 

spectra for R-(+)-THP in D2O to obtain proof positive that our sample is in fact THP. 

Chiral and Achiral HPLC Analysis 

Samples of synthesized R-(+)-THP were chromatographed using both achiral and 

chiral reversed phase HPLC with a UV detector. An isocratic HPLC consisting of a 

micrometering pump (Rainin XLS), a valve-loop injector (Rheodyne 7125), and a 

variable UV detector (PE SpectroMonitor III) set to measure absorbance at 280 nm. The 

columns used were common octadecasilyl Luna (4.6 mm ID x 150 mm, 5um ODS-2), 

and Prodigy (4.6 mm ID x 150 mm, 5um ODS-2) reversed-phase columns, purchased 

from Phenomenex via Alltech Associates. 

The mobile phase used for achiral analysis was 75 % 0.05 M phosphoric acid: 

25% acetonitrile with the pH adjusted to a value of 2.5 with sodium hydroxide. The 

mobile phase used for chiral analysis was 90 % 0.05 M phosphoric acid: 10% methanol 

with the pH adjusted to a value of 3.0 with sodium hydroxide. S-(3-CD was then added to 

this mobile phase in the amount of 2.0 g/L. These achiral and chiral mobile phases were 

used in concert to assay both the identity and the enantiomeric excess of our R-(+)-THP 

sample. In each case, the column was equilibrated by passing 15 to 20 column volumes 

of mobile phase through it before measurements were made. 

Grouping of Experimental Animals 

The Sprague-Dawley rats were split into experimental groups. Animals in one 

group received one of two doses of racemic THP in the amount of 0.65 ug/uL (n=6) or 

1.3 ug/uL (n=4) in aCSF. All other reagents were purchased from Sigma (St. Louis, 



MO). A counterpart solution of (+)-THP was prepared in a similar fashion. A second 

group of animals received one of two doses of the (+)-THP, either 0.66 ng/uL (n=8) or 

1.4 |ag/uL (n=4) in aCSF. Controls received either aCSF containing no racemic THP or 

(+)-THP, or no injections at all (n=9). 

Alcohol Preference Testing 

This experiment utilized the two-choice, three-bottle free access paradigm [126] 

of exposure to incremental concentrations of alcohol (3 to 30% over twelve days). Three 

calibrated 100 mL drinking tubes were positioned equidistantly at the front of each 

animal's cage. One tube contained a solution of ethanol in which the concentration was 

increased daily in the following manner: 3, 4, 5, 6, 7, 9, 11, 13, 15, 20, 25, and 30 

percent alcohol by volume. Each solution was prepared with 95% ethanol (Everclear 

drinking spirits) and distilled water. A second tube contained only water and the third 

tube was empty. 

These tubes were rotated each day according to a predetermined random sequence 

to prevent the development of a position habit. By raising the concentration of the 

ethanol offered, a baseline preference or aversion was established for each animal. Daily 

measures of alcohol and water consumption were taken at 16:00. To evaluate the 

possibility of fluid loss due to evaporation, an empty cage was fitted daily with the 

appropriate fluids. Metal trays lined with newsprint were carefully inspected (and 

replaced) daily for evidence of fluid spillage. Loss of fluid due to evaporation and 

spillage was negligible. 



Intraventricular Administration ofTHP 

Each rat was anesthetized with ketamine: xylazine anesthesia (25:5 mg/kg or 1 

mL/kg body weight; IP Figure 18) prior to stereotaxic surgery. 

Figure 18: Intraperitoneal (IP) Injection of Anesthetic 

Once anesthesia was confirmed via tail and foot pinch, the animal's head was 

shaved and placed into a Kopf stereotaxic instrument (Figure 19) with the head centered 

and the incisor bar set 3.0 mm above the interaural line. 
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Figure 19: Schematic of a Kopf Stereotaxic Surgical Instrument 

A stainless steel (22 ga., 13 mm in length) guide cannulae (Small Parts Inc., 

Miami Lakes, FL) was affixed to the probe holder of the Kopf apparatus. A small (ca. 1.5 

inches) longitudinal incision was made in the scalp with a scalpel. The incision was held 

open by hemostats. The fascia was then scraped away to reveal the skull. The skull is 

wiped and dried with surgical gauze and any bleeding is stopped with a surgical cautery 

(Aaron, Inc.). 

The tip of the guide cannula was placed at bregma, a landmark feature of the skull 

where the sagittal and coronal sutures meet (Figure 20). 



Figure 20: Schematic of Landmark Features Found on the Rat Skull 

Once bregma was located, the guide cannula tip was positioned above the lateral 

ventricles according to Paxinos and Watson [127]. The coordinates from bregma were: 

AP -0.5 mm; ML 1.5 mm; flat skull [127]. A mark was made at this point with a No. 2 

pencil. A burr hole was drilled through the skull at this mark. The guide cannula was 

swung aside on the boom arm and small surgical anchor screws (available from Small 

Parts, Inc.) were inserted into the calvarium (Figure 21). 
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Figure 21: Photograph of Placement of Stereotaxic Anchor Screws 

The guide cannula was inserted into the skull through the burr hole and lowered 

3.0 mm to the lateral ventricle of the animal [127]. Cranioplastic cement (Lang Dental) 

was packed around the screws and guide cannulae in a pedestal shape to fix them all in 

place. The incision was then closed around the pedestal with standard silk surgical 

sutures. 
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ICV Injections 

Dummy cannulae (28 ga. stainless steel tubing from Small Parts, Inc.) were 

prefitted to extend 0.5 mm beyond the tip of the guide cannula so that the tip of the 

injection cannula rested in the lumen of the lateral ventricle. This prefitted 13.5 mm 

length of 28 ga. stainless steel stylet was then inserted into the guide cannulae to prevent 

obstructions. Injection needles of the same length and material were attached by 

polyethylene tubing to a 50 uL tuberculin HPLC syringe. An automated Harvard 

Apparatus Model PHD 2000 (South Natick, MA) syringe pump was used to deliver 

intracerebroventricular (ICV) infusions of drug (or vehicle) in a volume of 5 uL per 

infusion over two minutes. Each animal received two injections (09:00 and 16:00) per 

day for three consecutive days. This dosing regimen has been shown previously with 

THP to induce significant increases in alcohol consumption [113]. The first injection 

commenced after a seven day post-surgery recovery period. 

Alcohol Preference Test Scheduling 

A twelve-day alcohol preference test was administered prior to the surgery. A 

second twelve-day alcohol preference post-test was given following the three injection 

days. In a subset of animals, three twelve-day tests were conducted: one sequence prior 

to surgery, a second sequence after surgery but prior to central injections, and the third 

sequence following three days of injections. In a subset of animals (n=15) that had been 

treated with either (±)-THP or (+)-THP, volumetric water and alcohol consumption was 

recorded every four hours around the clock to evaluate the distribution of alcohol and 

water consumption over the course of a 24 hour period. 
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Standard histological techniques were used to verify placement of guide cannulae. 

All animals were sacrificed with a lethal overdose of sodium pentobarbital (Nembutal, 

100 mg/kg BW), and perfused intracardially with 0.9% saline and 10% phosphate-

buffered formalin. The brains were removed and stored in formalin for at least 24 hours. 

Serial coronal sections (40 urn) were made in a cryostat (Microm HM 505 N) at -30 °C 

through the site of implant onto gelatinized glass slides which were stained with cresyl 

violet dye, then coverslipped. Cannula tip placements were visually compared to line 

drawings from a stereotaxic atlas [127]. 

Statistical Analyses 

All analyses were conducted using SPSS software. All values are expressed as 

mean ± SEM. The a level of significance used for all statistical tests was/? < 0.05. A 

one-way ANOVA for independent groups was used to compare the three control 

conditions: vehicle-treated animals, sham-operated animals, and naive animals. A 

mixed-model ANOVA (drug treatment over days) was used to analyze the effect of drug 

treatment. The Huyn-Feldt correction was used since there was a violation of the 

assumption of sphericity. Tukey's HSD post-hoc tests were used to compare treatment 

conditions. To evaluate whether differences in alcohol consumption were significant on 

each day, 95% confidence intervals were determined around the mean of the control 

condition for each day. To evaluate whether repeated exposure to alcohol caused any 

alteration in alcohol consumption, a one-way ANOVA for repeated measures was used 

on animals that had completed three consecutive twelve-day preference tests without 

receiving a drug treatment. 
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A Re-evaluation of the Role of Tetrahydropapaveroline in 

Ethanol Consumption in Another Population of Adult Sprague-Dawley Rats 

Subjects 

Subsequent to the first round of treatments performed on rats obtained from the 

Frederick, MD plant, ten (10) male Sprague-Dawley rats (Harlan, Indianapolis, IN) from 

the Prattville, AL plant weighing between 280 and 340 g at the time of surgery, were 

used for this experiment. All conditions with regards to housing, light cycle, temperature, 

and animal care were identical to the previous ICV experiment involving rats obtained 

from the Harlan site in Frederick, MD. All procedures involving animals were conducted 

in accordance with the NIH Guidelines for the Care and Use of Laboratory Animals and 

the guidelines set forth by the Institutional Animal Care and Use Committee (IACUC) of 

the University of Southern Mississippi (APPENDIX). 

Drug Preparation 

Artificial cerebrospinal fluid was used as a vehicle solution for all experimental 

injections. A liter of artificial cerebrospinal fluid (aCSF) was prepared in the same 

manner as the previous ICV experiment involving rats obtained from the Harlan site in 

Frederick, MD. The aCSF was filtered through a 0.2 um nylon filter. The THP used in 

these experiments was synthesized in our laboratory (Figure 17) [122-124]. Optically 

pure R-(+)-THP was synthesized in our laboratory by Kenneth D. McMurtrey using 

established methods [125]. All other reagents were purchased from Sigma (St. Louis, 

MO). 
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Grouping of Experimental Animals 

One group of animals received a dose of racemic THP in the amount of 0.65 

ug/uL in aCSF. A counterpart solution of R-(+)-THP was prepared in a similar fashion. 

A second group of animals received a dose of aCSF containing (+)-THP in the amount of 

0.67 ug/uL. Control animals received aCSF containing no THP. 

Animals in the first group received racemic THP in the amount of 0.65 ug/uL in 

aCSF (n=3). A counterpart solution of R-(+)-THP was prepared in a similar fashion. A 

second group of animals received R-(+)-THP in the amount 0.67 ug/uL in aCSF (n=3). 

Controls received either aCSF containing no THP (n=2), or no injections at all (n=2). 

Alcohol Preference Testing 

This experiment utilized the two-choice, three-bottle free access paradigm [126] 

of exposure to incremental concentrations of alcohol (3 to 30% over twelve days). Three 

calibrated 100 mL drinking tubes were positioned equidistantly at the front of each 

animal's cage. One tube contained a solution of ethanol in which the concentration was 

increased daily in the following manner: 3, 4, 5, 6, 7, 9, 11, 13, 15, 20, 25, and 30 

percent alcohol by volume. Each solution was prepared with 95% alcohol (Everclear 

drinking spirits) and distilled water. A second tube contained only water and the third 

tube was empty. These tubes were rotated each day according to a predetermined 

random sequence to prevent the development of a position habit. By raising the 

concentration of the ethanol offered, a baseline preference or aversion was established for 

each animal. Daily measures of alcohol and water consumption were taken at 16:00. To 

evaluate the possibility of fluid loss due to evaporation, an empty cage was fitted daily 

with the appropriate fluids. Metal trays lined with newsprint were carefully inspected 
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(and replaced) daily for evidence of fluid spillage. Loss of fluid due to evaporation and 

spillage was negligible. 

Intracerebroventricular Administration ofTHP 

Each rat was anesthetized with ketamine: xylazine anesthesia (25:5 mg/kg or 1 

mL/kg body weight; IP) prior to stereotaxic surgery. Once anesthesia was confirmed via 

tail and foot pinch, the animal was shaved and placed into a Kopf stereotaxic instrument 

with the head centered and the incisor bar set 3.0 mm above the interaural line. 

A stainless steel (22 ga., 13mm in length) guide cannulae (Small Parts Inc., 

Miami Lakes, FL) was affixed to the probe holder of the Kopf apparatus. A small (ca. 1.5 

inches) longitudinal incision was made in the scalp with a standard surgical scalpel. The 

incision was held open by hemostats. The fascia was then scraped away to reveal the 

skull. The skull is wiped and dried with surgical gauze and any bleeding is stopped with a 

surgical cautery. 

The tip of the guide cannula was placed at bregma, a landmark feature of the skull 

where the sagittal and coronal sutures meet. Once bregma was located, the guide cannula 

tip was positioned above the lateral ventricles according to Paxinos and Watson [127]. 

The coordinates from bregma were: AP -0.5 mm; ML 1.5 mm; flat skull [127]. A mark 

was made at this point with a No. 2 pencil. A burr hole was drilled through the skull at 

this mark. The guide cannula was swung aside on the boom arm and small surgical 

anchor screws (available from Small Parts, Inc.) were inserted into the calvarium. 

The guide cannula was inserted into the skull through the burr hole and lowered 

3.0 mm to the lateral ventricle of the animal. Cranioplastic cement (Lang Dental) was 

packed around the screws and guide cannulae in a pedestal shape to fix them all in place. 



39 

ICV Injections 

Dummy cannulae (28 ga. stainless steel tubing from Small Parts, Inc.) were 

prefitted to extend 0.5 mm beyond the tip of the guide cannula so that the tip of the 

injection cannula rested in the lumen of the lateral ventricle. This prefitted 13.5 mm 

length of 28 ga. stainless steel stylet was then inserted into the guide cannulae to prevent 

obstructions. Injection needles of the same length and material were attached by 

polyethylene tubing to a 50 uL tuberculin HPLC syringe. An automated Harvard 

Apparatus Model PHD 2000 (South Natick, MA) syringe pump was used to deliver 

intracerebroventricular (ICV) infusions of drug (or vehicle) in a volume of 5 uL per 

infusion over 2 minutes. Each animal received two injections (09:00 and 16:00) per day 

for three consecutive days. This dosing regimen has been shown previously with THP to 

induce significant increases in alcohol consumption [113]. The first injection 

commenced after a seven day post-surgery recovery period. 

Alcohol Preference Test Scheduling 

A twelve-day alcohol preference test was administered prior to the surgery. A 

second twelve-day alcohol preference post-test was given following the three injection 

days. In a subset of animals, three twelve-day tests were conducted (n=T0): one 

sequence prior to surgery, a second sequence after surgery but prior to central injections, 

and the third sequence following three days of injections. In a subset of animals (n=15) 

that had been treated with either THP racemate or R-(+)-THP, volumetric water and 

alcohol consumption was recorded every four hours around the clock to evaluate the 

distribution of alcohol and water consumption over the course of a 24 hour period. 
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Standard histological techniques were used to verify placement of guide cannulae. 

All animals were sacrificed with a lethal overdose of sodium pentobarbital (Nembutal, 

100 mg/kg BW), and perfused intracardially with 0.9% saline and 10% phosphate-

buffered formalin. The brains were removed and stored in formalin for at least 24 hours. 

Serial coronal sections (40 urn) were made in a cryostat (Microm HM 505 N) at -30 °C 

through the site of implant onto gelatinized glass slides which were stained with cresyl 

violet dye, then coverslipped. Cannula tip placements were visually compared to line 

drawings from a stereotaxic atlas [127]. 

Statistical Analyses 

All analyses were conducted using SPSS software. All values are expressed as 

mean ± SEM. The a level of significance used for all statistical tests was p < 0.05. A one

way ANOVA for independent groups was used to compare the control conditions. A 

mixed-model ANOVA (drug treatment over days) was used to analyze the effect of drug 

treatment. The Huyn-Feldt correction was used since there was a violation of the 

assumption of sphericity. Tukey's HSD post-hoc tests were used to compare treatment 

conditions. To evaluate whether differences in alcohol consumption were significant on 

each day, 95% confidence intervals were determined around the mean of the control 

condition for each day. To evaluate whether repeated exposure to alcohol caused any 

alteration in alcohol consumption, a one-way ANOVA for repeated measures was used 

on animals that had completed three consecutive twelve-day preference tests without 

receiving a drug treatment. 
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An Evaluation of the Role of 2,3,10,11 -Tetrahydroxyberbine in 

Ethanol Consumption in Adult Male Sprague-Dawley Rats 

Subjects 

Eleven (11) male Sprague-Dawley rats (Harlan, Indianapolis, IN) obtained from 

the Frederick, MD plant, weighing between 280 and 340 g at the time of surgery, were 

used for this experiment. All conditions with regards to housing, light cycle, temperature, 

and animal care were identical to the previous experiments involving ICV injections of 

THP. All procedures involving animals were conducted in accordance with the NIH 

Guidelines for the Care and Use of Laboratory Animals and the guidelines set forth by 

the Institutional Animal Care and Use Committee (IACUC) of the University of Southern 

Mississippi (APPENDIX). 

Drug Preparation 

Artificial cerebrospinal fluid was used as a vehicle solution for all experimental 

injections. A liter of artificial cerebrospinal fluid (aCSF) was prepared in the same 

manner as the previous experiments involving ICV injections of THP. Ascorbic acid was 

added in the amount of 0.1 g to retard the oxidation of THB (structure depicted in Figure 

22). The aCSF was filtered through a 0.2 um nylon filter. The THB used in these 

experiments was synthesized in our laboratory according to methods found in the 

literature [123, 124]. All other reagents were purchased from Sigma (St. Louis, MO). 
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Figure 22: Structure of THB 

Animals received a dose of THB in the amount of 0.65 [ig/[iL in aCSF (n=6) in 

the form of 5 ^L over a period of two minutes. Control animals received aCSF containing 

no THB in the same volume and time period (n=4). 

Alcohol Preference Testing 

This experiment utilized the two-choice, three-bottle free access paradigm [126] 

of exposure to incremental concentrations of alcohol (3 to 30% over twelve days). Three 

calibrated 100 mL drinking tubes were positioned equidistantly at the front of each 

animal's cage. One tube contained a solution of ethanol in which the concentration was 

increased daily in the following manner: 3, 4, 5, 6, 7, 9, 11, 13,15, 20, 25, and 30 

percent alcohol by volume. Each ethanol solution was prepared with 95% alcohol 

(Everclear drinking spirits) and distilled water. A second tube contained only water and 

the third tube was empty. These tubes were rotated each day according to a 

predetermined random sequence to prevent the development of a position habit. 

By raising the concentration of the ethanol offered, a baseline preference or 

aversion was established for each animal. Daily measures of alcohol and water 
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consumption were taken at 16:00. To evaluate the possibility of fluid loss due to 

evaporation, an empty cage was fitted daily with the appropriate fluids. Metal trays lined 

with newsprint were carefully inspected (and replaced) daily for evidence of fluid 

spillage. Loss of fluid due to evaporation and spillage was negligible. 

Intracerebroventricular Administration ofTHB 

Stainless steel (22 ga., 13mm in length) guide cannulae (Small Parts, Miami 

Lakes, FL) were stereotaxically implanted into the right lateral ventricle of each rat under 

ketamine: xylazine anesthesia (25:5 mg/kg body weight; IP) seven days prior to the 

beginning of central injections. The coordinates from bregma were AP -0.5 mm; ML 1.5 

mm; flat skull [127]. After anchor screws (available from Small Parts, Inc.) were 

inserted into the calvarium, cranioplastic cement (Lang Dental) was packed around the 

screws and guide cannulae to fix them in place. 

Dummy cannulae (28 ga. stainless steel tubing, Small Parts, Inc.) were prefitted 

to extend 0.5 mm beyond the tip of the guide cannula so that the tip of the injection 

cannula rested in the lumen of the lateral ventricle. These prefitted 13.5 mm lengths of 28 

ga. stainless steel stylets were then inserted into the guide cannulae to prevent 

obstructions. 

Injection needles of the same length were attached by polyethylene tubing to a 

50 pL tuberculin HPLC syringe. An automated Harvard Apparatus Model PHD 2000 

(South Natick, MA) syringe pump was used to deliver intracerebroventricular (ICV) 

infusions of drug (or vehicle) in a volume of 5 uL per infusion over 2 minutes. Each 

animal received two injections (09:00 and 16:00) per day for three consecutive days. 

This dosing regimen has been shown previously with THP to induce significant increases 
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in alcohol consumption [113]. The first injection day commenced after a seven day post-

surgery recovery period. 

A twelve-day alcohol preference test was administered prior to the surgery. A 

second twelve-day alcohol preference post-test was given following the three injection 

days. Standard histological techniques were used to verify placement of guide cannulae. 

All animals were sacrificed with a lethal overdose of sodium pentobarbital (Nembutal, 

100 mg/kg BW), and perfused intracardially with 0.9% saline and 10% phosphate-

buffered formalin. The brains were removed and stored in formalin for at least 24 hours. 

Serial coronal sections (40 urn) were made in a cryostat (Microm HM 505 N) at -30 ° C 

through the site of implant onto gelatinized glass slides which were stained with cresyl 

violet dye, then coverslipped. Cannula tip placements were visually compared to line 

drawings from a stereotaxic atlas [127]. 

Statistical Analyses 

All analyses were conducted using SPSS software. All values are expressed as 

mean±SEM. The a level of significance used for all statistical tests was p< 0.05. A 

one-way ANOVA for independent groups was used to compare the control conditions. A 

mixed-model ANOVA (drug treatment over days) was used to analyze the effect of drug 

treatment. The Huyn-Feldt correction was used since there was a violation of the 

assumption of sphericity. Tukey's HSD post-hoc tests were used to compare treatment 

conditions. To evaluate whether differences in alcohol consumption were significant on 

each day, 95% confidence intervals were determined around the mean of the control 

condition for each day. To evaluate whether repeated exposure to alcohol caused any 

alteration in alcohol consumption, a one-way ANOVA for repeated measures was used 
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on animals that had completed three consecutive twelve-day preference tests without 

receiving a drug treatment. 

Investigation of the Effects of Ethanol Consumption on Tetrahydropapaveroline Levels in 

the Cerebrospinal Fluid of Adult Male Sprague-Dawley Rats Using Microdialysis and 

High Pressure Liquid Chromatography with Electrochemical Detection 

Subjects 

Three (3) male Sprague-Dawley rats (Harlan, Indianapolis, IN), weighing 

between 280 and 340 g at the time of surgery, were used for this experiment. Animals 

were housed individually in hanging 11 inch X 15 inch wire cages on a reverse 12:12 

light/dark cycle with light onset at 20:00. Food was available ad libitum. Room 

temperature was maintained at 23 ± 1 ° C. All procedures involving animals were 

conducted in accordance with the NIH Guidelines for the Care and Use of Laboratory 

Animals and the guidelines set forth by the Institutional Animal Care and Use Committee 

(IACUC) of the University of Southern Mississippi (APPENDIX). 

Implantation of Microdialysis Probe Guide Cannulae 

Stainless steel (21.5 ga., 13 mm in length) guide cannulae (Small Parts, Miami 

Lakes, FL) were stereotaxically implanted into the right lateral ventricle of each rat under 

ketamine: xylazine anesthesia (25:5 mg/kg body weight; IP) seven days prior to the 

beginning of microdialysis sampling. The coordinates from bregma were AP -0.5 mm; 

ML 1.5 mm; flat skull [127]. After anchor screws (available from Small Parts, Inc.) were 

inserted into the calvarium, cranioplastic cement (Lang Dental) was packed around the 

screws and guide cannulae to fix them in place. 



Dummy cannulae (28 ga. stainless steel tubmg, Small Parts, Inc.) were prefitted to 

extend 0.5 mm beyond the tip of the guide cannula so that the tip of the dummy cannula 

would rest in the lumen of the lateral ventricle. These prefitted 13.5 mm lengths of 28 ga. 

stainless steel stylets were inserted into the guide cannulae to prevent obstructions. 

Microdialysis Recovery Determination 

In order to determine the optimal flow rate for microdialysis experiments, a 

simulation of microdialysis conditions was conducted. A 2mL aliquot of a 0.69 uM 

solution of THP in aCSF was placed in a 3 mL vial for each flow rate trial. A CMA/11 

microdialysis probe with a 2.0 mm cuprophane dialysis membrane having a 6,000 Dalton 

cutoff range was placed in the 0.69 uM "parent" solution and perfused with aCSF using a 

Harvard Apparatus syringe pump at 0.5, 1.0, and 1.5 uL/minute. Six 20 uL samples of 

dialysate were collected at each flow rate and THP concentration of each dialysate 

sample was determined using high pressure liquid chromatography with an 

electrochemical detector. 

The HPLC apparatus used consisted of a Rheodyne 7125 injector valve, a Rainin 

XLS delivery pump, a Econosphere (4.6 mm ID x 250 mm 5 urn ODS) HPLC column, 

and a BAS LC-3 amperometric detector using a glassy carbon electrode cell. The 

potential of the working electrode was set to 700 mV. The mobile phase consisted of 

0.05M NH4H2PO4 with a 5% acetonitrile component with a pH of 4.00. 

Microdialysis Sampling of Rat CSF 

An animal holding pen was constructed from a large (ca. 3.5 gallon) plastic 

planting pot available at any garden or home improvement store. The drain holes were 

blocked with a large paper plate and appropriate bedding and food pellets were placed in 
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the pen. Two iron ring stands were placed on either side of the holding pen and a crossbar 

transecting the diameter of the pen was suspended approximately six inches above the 

rim of the pen to act as a tether point for polyethylene tubing and dialysate collection 

vials (Figure 23). A drinking tube filled with water was clamped to one iron ring stand 

and lowered into the pen to provide animals with fluid ad libitum. 

Figure 23: Microdialysis Holding Pen and Support Setup 

A CMA/11 microdialysis probe was connected to a Harvard Apparatus syringe 

pump using approximately one meter of polyethylene tubing and CMA tubing 

connectors. The CMA/11 microdialysis probe is tipped with a 2.0 mm cuprophane 

membrane that allows the diffusion of neurotransmitters into the perfusate solution, aCSF 

prepared in the same fashion as the aCSF used for ICV injections. 



The syringe pump was set to deliver aCSF to the probe at 1.0 uL/min. After a 

visual inspection to insure that the dialysate fluid ran clear and the membrane was not 

perforated, approximately 200 cm of polyethylene collection tubing was connected using 

CMA tubing connectors. After a 30 minute equilibration period, the collection of dialysis 

samples began. Dialysate was collected from each animal in five 20 minute intervals. 

After collection of baseline THP samples for assessment of basal THP levels, rats were 

force fed via a gavage tube 5 mL of 20% ethanol in distilled water ten minutes prior to 

their introduction into the microdialysis chamber and subsequent insertion of the 

CMA/11 probe. 

HPLC Analysis of Ventricular CSF Using Amperometric Electrochemical Detection 

The HPLC apparatus used consisted of a Valco rotary injector valve, a LDC 

delivery pump, an Econosphere (4.6 mm ID x 250 mm, 5 urn ODS) HPLC column, and 

an amperometric detector using a glassy carbon electrode cell. Dr. Newton Fawcett of 

the University of Southern Mississippi chemistry and biochemistry department 

constructed this detector. This amperometric detector was used because of its excellent 

signal to noise ratio. Dr. Fawcett used high-grade gold connector pins, which last much 

longer and yield a better signal than conventional manufacturer components, in the circuit 

design. The potential of the working electrode was set to 700 mV. The mobile phase 

consisted of 0.05M NH4H2P04 buffered to a pH of 3.00 with NaOH. The column was 

flushed after each chromatographic run until THP was no longer detectable to avoid 

carryover into the next sample. 



CHAPTER III 

EXPERIMENTAL RESULTS, DISCUSSION, AND CONCLUSIONS 

Experimental Results on HPLC Resolution of the Enantiomers of 

Dihydroxyphenylalanine and Selected Salsolinol Derivatives Using Sulfated P-

Cyclodextrin as a Chiral Mobile Phase Additive 

Deng and co-workers used P-cyclodextrin (P-CD) in combination with ion-

pairing reagents such as sodium heptyl sulfate to separate the stereoisomers of salsolinol 

[128-131]. They reported modest maximum selectivity of approximately 1.08. This 

experiment examined the use of commercially available sulfated P-cyclodextrin (S-P-

CD) and demonstrates that it efficiently separates the stereoisomers of salsolinol when 

used alone without heptane sulfate or other ion-pairing reagents. 

Indeed, S-P-CD yields a selectivity of approximately 1.08 at even the very low 

concentration of 0.1 mM, whereas concentrations of about 15 mM are required for P-CD 

and these chiral separations are successful only in the presence of an ion-pairing 

reagent[128-131]. S-P-CD is capable of much greater degrees of separation of salsolinol 

enantiomers than P-CD. This experiment yielded an a value of 1.59 and a resolution of 

3.5 for R-(+)- and S-(-)-salsolinol using 1 mM S-P-CD concentration without an ion-

pairing reagent. Greater concentrations of S-P-CD should provide even greater a and Rs 

values. The limiting factor for salsolinol appears to be the very low retention times 

accompanying the use of higher concentrations of the chiral selector. With a 1 mM 

concentration of S-P-CD the value of k' for (+)-SAL is less than 1. 

Stoichiometry of the complex formed between SAL stereoisomers and sulfated p-

cyclodextrin appears to be 1:1. A study of the effects of increasing S-P-CD concentration 
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on retention of the stereoisomers of SAL indicates that variation of the reciprocal of the 

capacity factors of R-(+)-, and S-(-)-SAL are linear (Figure 24). This is the relationship 

expected if SAL and S-P-CD form a 1:1 complex [132]. 
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mM Sulfated P-CD 

Figure 24: Plot of the Reciprocal of the Capacity Factor Versus Varying 

Concentrations of Chiral Mobile Phase Additive 

L-DOPA, D-DOPA and related carboxylated derivatives of salsolinol were 

chromatographed on a Cis reversed phase column with an aqueous mobile phase 

containing varying amounts of the chiral selector, sulfated P-cyclodextrin (S-P-CD). In 

contrast to the linear relationships observed in the case of SAL stereoisomers, the 

carboxyl-substituted compounds give nonlinear curves when 1/k' for these materials is 

plotted against S-P-CD concentration (Figure 25). This nonlinearity is taken as evidence 



51 

that the equilibrium system between S-p-CD and the carboxylated compounds are more 

complex than that operating for salsolinol [132]. 

Figure 25: Plot of the Reciprocal of Capacity Factor of Chiral Separations of DOPA, 

1-CSAL, and 3-CSAL Versus Chiral Mobile Phase Additive 

In an attempt to gain some insight into the mechanisms that may be operating, the 

effects of temperature on retention of the various carboxylated compounds were 

investigated with a mobile phase containing 2 mM S-P-CD. Representative 

chromatograms of resolution of the compounds studied are given in Figure 26. 
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Figure 26: Representative Chromatograms of Chiral Separations of (A) SAL 

at 20 °C; (B) DOPA at 35 °C; (C) 3-CSAL at 35 °C; (D) 3-CSAL at 0 °C; (E) 1-CSAL 

at 0 °C. All Chromatograms on Same Time Scale With Tick Marks at Five Minute 

Intervals 

Salsolinol separates well at room temperature (trace A) and 3-CSAL gives good 

resolution at 35 °C (trace C). Resolution of D- and L-DOPA is not complete at 35 °C 

(trace B), although resolution improves when the temperature of the column is decreased 
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(not shown). Lower temperatures generally improve resolution. This improvement is 

represented by chromatogram D which is the separation of D- and L-3-CSAL at 0 °C 

with a resolution slightly greater than 5. In contrast 1-CSAL isomers are separated only 

slightly (trace E). Even this degree of separation is achieved only at 0 °C. 

The data obtained were used to prepare van't Hoff plots (Figure 27). The most 

immediately obvious characteristic of these plots are the breaks in the curves immediately 

below room temperature, approximately 15 °C to 20 °C. Curves between 20 °C and 35 °C 

have different slopes and intercepts than those obtained from measurements between 0 °C 

and 13 °C. Different slopes and intercepts indicate differences in AH and AS values. 

When plotted seperately these two sections of the curve have differing slopes, indicating 

different enthalpy and entropy values. The "low temperature" van't Hoff plot appears as 

Figure 28. The "high temperature" van't Hoff plot appears as Figure 29. 
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Figure 27: Van't Hoff Plot for Chiral Separations of Selected Catecholamines 

Showing a Change in Slope Between "High Temperature" and "Low Temperature" 
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Figure 28: Van't Hoff Plot of Low Temperature Seperations of DOPA and 3-

CSAL with 2 mM Chiral Moile Phase Additive S-p-CD 
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Figure 29: Van't Hoff Plot of High Temperature Seperations of DOPA and 3-

CSAL with 2 mM Chiral Moile Phase Additive S-p-CD 
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Van't Hoff curves for the compounds using a mobile phase that did not contain 

the chiral selector were obtained and similar breaks were found. Thermodynamic data 

obtained from the slopes and intercepts of the curves are given in Tables 1-4. As may be 

seen, all thermodynamic variables are negative. Furthermore, absolute values for both 

AH0 and AS0 increase when the temperatures used in their determinations decrease. In all 

cases AH0 values are negative and thus favorable for retention, but in all cases AS0 values 

are also negative and therefore unfavorable. Contributions by unfavorable entropy values 

are more than offset by favorable enthalpy values. 

Table 1: Thermodynamic Variables Associated With Chromatography of the Test 

Substances with Mobile Phase Containing 2 mM S-P-CD Over Relatively High 

Temperatures (20 °C-35 °C) 

Substance 
L-DOPA 

D-DOPA 

L-3-CSAL 

D-3-CSAL 

AH°(kJ/mol) 
- 17.7 

-16.5 

-18.0 

-16.3 

AS°(J/Kmol) 
-45.0 

-41.3 

- 47.0 

-43.3 
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Table 2: Thermodynamic Variables Associated With Chromatography of the Test 

Substances with Mobile Phase Containing 2 mM S-P-CD Over Relatively Low 

Temperatures (0 °C-13 °C) 

Substance 
L-DOPA 

D-DOPA 

L-3-CSAL 

D-3-CSAL 

AH°(kJ/mol) 
-30.7 

-29.3 

-36.0 

-35.2 

AS°(J/Kmol) 
-87.8 

- 84.0 

- 107.8 

- 108.0 

Table 3: Thermodynamic Variables Associated With Chromatography of the Test 

Substances with Mobile Phase Containing no Chiral Selector S-P-CD Over 

Relatively High Temperatures (20 °C-35 °C) 

Substance 
DOPA 

3-CSAL 

1-CSAL 

SAL 

AH°(kJ/mol) 
-18.4 

-18.7 

-15.6 

-15.2 

AS°(J/Kmol) 
-49.1 

-50.0 

-39.2 

-33.2 



Table 4: Thermodynamic Variables Associated With Chromatography of the Test 

Substances with Mobile Phase Containing no Chiral Selector S-P-CD Over 

Relatively Low Temperatures (0 °C-13 °C) 

Substance 
DOPA 

3-CSAL 

1-CSAL 

SAL 

AH" (kJ/mol) 
-33.7 

-34.9 

-34.0 

-22.7 

AS" (J/Kmol) 
- 100.8 

-104.8 

-103.1 

- 57.8 

The breaks in the van't Hoff curves are interpreted in terms of the retention model 

developed by Dorsey and Dill [133]. These data indicate a phase transition in the 

stationary phase hydrocarbon chains occurring over approximately the 15 °C to 20 PC 

range. Such phase transitions in re versed-phase stationary phases are relatively well 

known. They have been described as a "reversible melting-like transition of long-chain 

hydrocarbon ligands" which occur in high bonding density monomeric silica based Cis 

packings in the vicinity of room temperature [119, 134, 135]. 

At higher temperatures the extended chains allow relatively easy penetration of 

solute molecules into the stationary phase while the more compacted chains at lower 

temperature provide less opportunity of solute penetration. The effect is most clearly 

seen in the entropy values. Entropies of retention are double in the negative unfavorable 

direction at lower temperatures than they are at higher ones. Absorption of solute 

molecules by the stationary phase at the lower temperature conformation is more costly 

in terms of the entropy of chain ordering if the chains are more compact at these 
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temperatures. 

The crural compound S-P-CD appears to be an efficient and cost effective chiral 

selector for resolution of salsolinol and 3-carboxysalsolinol optical isomers. However, it 

is less effective for D- and L-DOPA, giving complete resolution only at subambient 

temperatures. It is least effective of all for 1-carboxysalsolinol. Retention of these 

materials is promoted by favorable enthalpies which (except for the case of 1-CSAL) 

more than make up for unfavorable changes in entropy. 
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Experimental Results from ICV Injections of Relevant Compounds on Volitional Ethanol 

Consumption in Adult Male Sprague-Dawley Rats 

THP Characterization by Proton NMR 

A one dimensional proton NMR scan of the sample of R-(+)-THP in D2O yielded 

the following spectrum (Figure 30). 
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Figure 30: Proton NMR Spectrum and Peak Assignments for R-(+)-THP 
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Protons attached to aryl moieties (positions "a", "b", "g", "h", and "i") exhibit the 

greatest chemical shift and show as peaks from 6.7-6.5 ppm. The HDO peak from the 

exchange of labile hydrogen between the analyte and D2O solvent appears, as expected, 

as a large peak at approximately 4.7ppm. A chemical shift of approximately 4.45 ppm is 

observed for the proton in the position "e". Proton "d" is heavily split and shows as a 

multiplet from 3.3-3.1 ppm. Proton "c", attached to the nitrogen-containing portion of the 

molecule, overlaps slightly with proton "f" at approximately 2.8-2.7 ppm. These 

interpretations match those obtainable from the Sadtler Index [136] and those obtained by 

previous researchers [137, 138]. Hence, the identity of this sample of synthesized 

stereoisomer of THP is confirmed. 

HPLC Analysis in Achiral and Chiral Environments 

Injection of samples of R-(+)-THP and racemic THP onto a commercially 

available Cjg ODS HPLC column with an achiral mobile phase yielded the following 

chromatograms (Figure 31). Trace A is a sample of R-(+)-THP dissolved in a solution of 

identical composition as the mobile phase with sodium nitrate added as a to marker. Trace 

B is an identical solution that has been spiked with an additional aliquot of racemic THP. 

The coelution of these compounds from this column indicates that the samples behave 

identically in an achiral environment. This is indicative of extreme similarity in the 

hydrophilic nature of these compounds. 
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Figure 31: Achiral HPLC Chromatographs Showing Retention Times of (A) 

NaN03 and R-(+)-THP; (B) NaNOs, R-(+)-THP, and Racemic THP 

Additionally, samples of R-(+)-THP and racemic THP were injected onto a 

commercially available Cis ODS HPLC column with an chiral mobile phase (2.0 g/L S-P-

CD) yielded the following chromatograms (Figure 32). 
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Figure 32: Representative Chiral HPLC Chromatograms of (A) R-(+)-THP 

and NaN03; (B) NaN03 and THP Racemate; (C) NaN03, THP Racemate, and R-

(+)-THP 

Chromatogram A is a sample of R-(+)-THP dissolved in an aliquot of mobile 

phase with sodium nitrate added as a to marker. Trace B represents a sample of THP 

racemate chromatographed under the same conditions. The two peaks in chromatogram B 

proved to be of equal area after integration, verifying that the two THP stereoisomers are 

present in equal proportions in the racemate. Chromatogram C depicts an equimolar 

sample of R-(+)-THP and THP racemate. 

Upon integration, the leftmost peak of R-(+)-THP has doubled in area. This 

indicates that the sample of R-(+)-THP and the R-stereoisomer of the racemate coelute in 

a chiral environment. These data, when coupled with the proton NMR spectra, confirm 

the identification of both samples as authentic THP. 
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The Effect of ICV Injections ofTHP on Ethanol Consumption in Adult Male Sprague-

Dawley Rats Obtained from the Frederick, MD Harlan Site 

Only data from animals having cannulae tips within the right lateral ventricle or at 

the dorsal rim of the ventricle were included in the statistical analysis. Histological 40 um 

sections were made on a cryostat (Microm HM 505 N) at -30 °C and stained with cresyl 

violet. These sections were visually inspected on a lightfield microscope. A 

representative histological section is shown in Figure 33. 

Figure 33: Representative Coronal Brain Section Showing Typical Cannula 

Placement (Outlined Area Indicates Cannula Tract) 
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The control condition in this experiment consisted of CSF-treated animals, sham-

operated animals, and nai've animals. A one-way ANOVA for independent groups 

revealed no significant differences in alcohol intake between these three control 

conditions, F(2,6) = 2.21 A, p = 0.184. Hence, these data were collapsed into one control 

condition. From this analysis, one can rule out the possibility that the surgical procedure 

itself might affect an animal's preference for (or ability to discriminate between) the 

tastes of alcohol and water. 
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Figure 34: Graph Showing Ethanol Consumption in Response to 20 

nmoles/day ICV Injections of R-(+)-THP and Racemic THP 
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Figure 35: Graph Showing Ethanol Consumption in Response to 40 

nmoles/day ICV Injections of R-(+)-THP and Racemic THP 

The effect of acute ICV injections of (±)-THP or (+)-THP on the preference test is 

shown in Figures 34 and 35. The effects of the lower doses (0.65 and 0.66 (ig/uL) of 

either (±)-THP or (+)-THP on alcohol intake were strikingly different than the effects of 

the higher doses (1.3 and 1.4 (ig/uL) of either compound. As a result, separate mixed-

model ANOVA's were conducted for the lower and higher doses of the alkaloids. For 

the lower doses, the main effect of animals across days was significant, F(l 1,231 )=5.648, 

/K0.001. The main effect of drug treatment was also significant, F(2,21)=9.139, 
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/?<0.001. In addition, the interaction effect (drug treatment over days) was significant, 

F(22, 231)=3.847,/K0.001. 

The effects of lower doses of (±)-THP or (+)-THP are illustrated in Figure 34. 

Post-hoc comparisons revealed a significant increase in consumption of absolute alcohol 

following ICV administration of the lower dose (0.65 ug/uL) of (±)-THP,/?=0.002. 

Compared to controls, the lower dose (0.66 ug/uL) of (+)-THP also significantly 

enhanced alcohol intake, p=0.017. Differences in alcohol consumption between (±)-

THP-treated animals and (+)-THP-treated animals were not significant, ^=0.493. 

The 95% confidence interval test determined that low doses of (±)-THP resulted 

in a significant increase in intake of alcohol from 7%-13% concentrations of ethanol. 

Low doses of (+)-THP significantly enhanced consumption of alcohol from 4%-l 1% 

concentrations and again at 15%-20% concentrations. At no time did drug treatment 

result in a decrease in alcohol consumption relative to control. 

While lower doses of racemic THP induced a preference for alcohol across a mid-

range of ethanol concentrations, the magnitude of the increase was not as pronounced as 

those observed in the initial reports of THP-induced drinking [53, 139]. This may be due 

to differences in dosing regimen. For example, more dramatic increases have been 

observed across a similar range of doses (i.e., 0.1-10.0 |ig/uL), perhaps because the 

dosing regimen was extended throughout the entire 12-day preference test [53, 54, 74, 91, 

95, 101, 140-143]. Although less dramatic, the data reported here indicates that repeated 

central infusion of THP during the test period is not necessary to maintain a change in 

alcohol preference. 
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In contrast to the prominent effects of low doses, ICV administration of the higher 

doses of (±)-THP (1.3 M.g/uL) and (+)-THP (1.4 ug/uL) did not significantly alter alcohol 

consumption (Figure 35). A mixed-model ANOVA revealed that neither the main effect 

of animals across days nor the main effects of drug treatment were significant. 

Additionally, the interaction effect (drug treatment over days) was not significant. 

A summary of the average g/kg ethanol dosage consumed by each experimental 

group appears as Table 5. While these data are not as dramatic as those reported by other 

researchers [53-55, 58, 74, 91, 93, 95, 97, 141, 144-148], they are compelling 

nonetheless. 

Table 5: Average Grams of Ethanol per Kilogram Body Weight Consumed by Each 

Experimental Group Over the Course of the Entire ICV Experiment 

Experimental Group 

+THP (20 nmoles/day) 

+THP (20 nmoles/day) 

Control 

+THP (40 nmoles/day) 

+THP (40 nmoles/day) 

Number of Subjects 

6 

8 

9 

4 

4 

Mean g/kg 

1.83 ±0.25 

1.53 ±0.22 

0.69 ± 0.22 

0.45 ±0.18 

1.02 ±0.18 

A subset of animals from the control condition was subjected to three consecutive 

twelve-day alcohol preference tests due to the fact that previous researchers' report of 

habituation [149]. A one-way ANOVA for repeated measures revealed no significant 

differences in alcohol consumption among these animals, F(2,26)=0A52, p=0.642. 
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Repeated exposure to escalating concentrations of alcohol solutions alone did not alter 

alcohol intake. One can, therefore, rule out habituation or sensitization as possible 

explanations for changes in patterns of alcohol consumption in this experiment. 

In a subset of animals (n=17) treated with either (±)-THP or (+)-THP, alcohol and 

water measurements were taken every four hours around the clock during the twelve-day 

preference test (Figure 36). Most of the intake of both alcohol solutions and water 

occurred during the nocturnal period, with more than a two-fold decline in consumption 

of all fluid occurring immediately thereafter, in the first full four hours of light. Thus, it 

may be assumed that rats do, in fact drink at a specific point in their circadian cycle. 

Lights On 

H20 

EtOH 

Nil 

Lights Off 

X 

X 

I 

10 pm 2 am 6 am 10 am 2 pm 6 pm 

Time of Day 

Figure 36: Bar Graph Showing Fluid Consumption-Distribution For Four Hour 

Periods Across Twelve-Day Ethanol Preference Tests 
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Myers and associates have conducted numerous experiments demonstrating 

volitional alcohol consumption following ICV or site-specific injections of THP, as well 

as other THIQ alkaloids, in rats [150]. However, some investigators have not observed 

any drinking following ICV injections of THP [102]. Even if THP-induced drinking does 

occur, some investigators have expressed doubts concerning the potential relevance of 

these data [99, 151, 152]. Moreover, there are few laboratories that have actually 

confirmed the finding of an increase in alcohol consequent to THP administration [56, 

95, 142]. In the present study, it was found that both (±)-THP and (+)-THP (0.65-0.66 

ug/uL; ICV) induced significant increases in alcohol intake (Figure 34). Most of the 

alcohol was consumed within an eight hour period. 

The lack of effect of the higher doses (1.3-1.4 ug/uL; ICV) of either compound 

was unexpected (Figure 35 or Table 5). Duncan and Deitrich reported enhanced 

consumption of alcohol after ICV administration of THP at doses of 10.4 and 41.6 

nmoles/day [56]. The doses used in the present study are 20 and 40 nmoles of THP per 

day. The principle methodological difference between the two studies concerns the 

dosing regimen. In contrast to the shortened dosing regimen used here, Duncan and 

Deitrich gave injections of 0.02 ug/uL every 15 minutes around the clock, starting two 

days prior to and continuing throughout the preference test [56]. Given the minimal 

dosing regimen used in this study (i.e., two injections/day for three days), one might 

expect a response to the higher of the two doses tested. Alcohol consumption, instead, 

increased in response to the lower dose. 

Other investigators have reported similar findings. Clow et al. [142] found that 

the most marked behavioral response occurred in response to the lower of two doses (0.1 
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ug compared to 1.0 ug) of THP. Even lower doses (50 ng) of THP, delivered 

intraventricularly, have been shown to increase absolute intake of alcohol from 1.0 g/kg 

to 3.5 g/kg/day using the same dosing regimen as the one utilized presently [141]. Site-

specific injections of picomolar concentrations of THP into limbic structures have been 

found to enhance alcohol consumption [93, 94]. Thus, the efficacy of the lower dose of 

either (±)-THP or (+)-THP in the present study was not surprising. Additionally, our 

findings are consistent with prior reports [53, 56, 94, 139] which demonstrate that the 

augmented drinking response does not depend on continuous THP infusion. Enhanced 

drinking continues long after THP clearance. 

Diminishing alcohol consumption at higher doses of THP has been reported 

previously. Indeed, higher doses of THP are capable of attenuating alcohol consumption 

[94]. An inverted U-distribution best describes the dose-response function [150], with 

THP serving as an opiate agonist at lower doses and as an opiate antagonist at higher 

doses [94]. This may explain the lack of response to higher doses of THP tested in the 

present experiment. If relatively few injections of 1.3-1.4 ug/uL of THP are sufficient to 

induce such a ceiling effect [56], then why would a more chronic treatment regimen 

actually enhance alcohol intake? Perhaps a long-term alteration in receptor sensitivity 

occurs. Alternatively, perhaps molecular alterations in signal transduction processes may 

occur in response to chronic treatment with THP. 

While increases in alcohol consumption have been reported previously following 

ICV injection of (±)-THP and (-)-THP [53], this is the first known report of an increase in 

alcohol consumption caused by (+)-THP. The magnitude of the response did not differ 

significantly from the response to racemic THP. In fact, the response was extended to 
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higher concentrations (15% and 20%). These findings are consistent with previous 

reports that (-)-THP induces volitional alcohol intake comparable to (±)-THP [53]. 

Alternative to the hypothesis that morphine is synthesized from the alkaloid, THP 

may act as an opiate agonist. Because of the relative symmetry of the molecule, 

receptors may be unable to distinguish between the two isomers. In either case, one 

might expect both enantiomers would exhibit efficacy equal to the racemic mixture [53]. 

Unfortunately, this data cannot discriminate between these two hypotheses. 

Aldehydes form as a result of the enzymatic degradation of alcohol by alcohol 

dehydrogenase in the liver [31]. These peripherally formed aldehydes may react with 

catecholamines such as dopamine to form THP, as well as other THIQ alkaloids, shown 

to induce ethanol intake. The presumption that THIQ alkaloids are relevant to the 

etiology of alcoholism appears to rest on the assumption that peripherally formed THIQ 

alkaloids can cross the blood-brain barrier, and exert their behavioral effects by binding 

to centrally located receptors. Picomole quantities of THP have been detected in brain 

tissue using high performance liquid chromatography (HPLC) coupled with 

electrochemical detection following peripheral administration of either THP [153] or 

alcohol [154]. 

The highest concentrations of THP were found at axons associated with the 

mesolimbic reward system (e.g., olfactory bulb, frontal cortex, hypothalamus). 

Substantial basic and clinical research findings implicate opioid modulation of this 

dopamine circuit in alcohol addiction [155-157]. Given the structural similarity of THP 

to morphine, the presence of THP in the mesolimbic dopamine system is noteworthy. 

The discriminative stimulus effects of THP and ethanol are apparently dissimilar to those 
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of opiates [158]. Therefore, the biochemical connection is not likely to be direct. 

Nonetheless, once it has crossed over the blood brain barrier, THP was mostly highly 

concentrated in structures [154] that contain both dopamine and opioid receptors. 

The notion that ingested alcohol could conceivably lead to a buildup of THIQ 

levels in the brain has been experimentally tested [159]. Peripherally administered 

ethanol (2 g/kg; IP) resulted in an increase in THP and dopamine levels measured in the 

extracellular space of the nucleus accumbens in alcohol-preferring (AA) and alcohol-

avoiding (ANA) rats. AA rats were generally less sensitive to changes in THP, 

salsolinol, or dopamine than ANA rats. The increases in THP following ethanol 

administration were more pronounced in the ANA rats [159]. 

The fact that peripheral infusion of THP did not influence alcohol consumption in 

this experiment presents a dilemma for the multiple-metabolite theory. One plausible 

hypothesis is that endogenously formed THP does not contribute to any significant 

degree to the etiology of alcohol addiction. In this event, THP and other THIQ alkaloids 

are still pharmacological tools useful for investigating neural mechanisms that regulate 

alcohol ingestion. Since the necessary compounds for endogenous THP production are 

also present in the mammalian brain, it is also possible that centrally formed THP plays a 

role in alcohol consumption. However, the reason for the lack of response to chronic, 

peripheral infusion of THP remains unknown. 

The present experiments confirm previous reports of volitional alcohol 

consumption following central administration of THP. Increases'in alcohol intake were 

observed following administration of the racemic compound, as well as the R(+) - isomer 

of THP, but only at the lower doses tested (0.65-0.66 fig/uL). To our knowledge, the 
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finding that the R(+) - isomer of THP can potentiate alcohol consumption has not been 

reported previously. Increased alcohol consumption in response to low doses of racemic 

THP was observed mostly in the mid-range of concentrations tested (7-13%). The R(+) -

isomer compound induced significant alcohol intake across a mid-range of concentrations 

(4-11%), but also at much higher concentrations (15 and 20%). 

Furthermore, most of the ethanol was consumed within a four hour period each 

day, maximizing the pharmacological effects of ingested ethanol. At present, it is still 

unclear whether or not endogenous THP plays a significant role in the etiology and 

maintenance of alcohol addiction. Nonetheless, the present data verify that central 

administration of THP and its R(+) - isomer can significantly alter drinking behavior in 

rats such that unsweetened alcohol solutions become preferred over water. 

The Effect of ICV Injections of THP on Ethanol Consumption in Adult Male Sprague-

Dawley Rats Obtained from the Prattville, AL Harlan Site 

A population of adult male Sprague-Dawley rats was obtained from the Harlan 

site located in Prattville, AL. These animals were treated in exactly the same manner as 

the experimental animals obtained from the Frederick, MD site in regards to all 

experimental procedures and animal care. This population of rats already, on average, 

drank large amounts of ethanol prior to any ICV injections. 

This was odd, because the conventional animal research wisdom is that Sprague-

Dawley rats are alcohol-aversive. This occurrence of untreated animals drinking 

relatively large amounts of alcohol was heretofore unreported. When contacted about this 

anomalous behavior, representatives from Harlan, Inc. expressed little surprise. They 
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claimed that the outbred strains of laboratory rats that Harlan vends are isolated at each 

individual site. 

Therefore, rats from different plants could be considered, for all intents and 

purposes, to be separate strains with respect to many factors. These factors include heart 

disease, debilitating aging effects, growth curves, respiratory defects, and death rate. The 

representative knew nothing of the potential for alcohol drinking differences, but noted 

that very few labs specify which site they prefer their rats to be shipped from. Of these 

few labs, even fewer conduct addiction-related research, so it was not unusual that Harlan 

had no records of the propensity for these rats from the Prattville site to consume ethanol. 

Only data from animals having cannulae tips within the right lateral ventricle or at 

the dorsal rim of the ventricle were included in the statistical analysis. Histological 40 um 

sections were made on a Microtome cryostat and stained with cresyl violet. These 

sections were visually inspected on a lightfield microscope. Data from this population of 

rats is shown in Figure 37. 
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Figure 37: Bar Graph Depicting Total g/kg Consumption of Prattville, AL Rats 

Across Entire Twelve-Day Ethanol Screening (Rats 5,11, and 1 treated with (+)-

THP; Rats 7, 9,10, and 12 treated with aCSF; Rats 14,15, and 16 treated with THP 

racemate) 

As can be seen from the Figure 37, no THP treatments resulted in elevated 

ethanol consumption. In fact, the only animal to dramatically increase its ethanol 

consumption was Rat 7, a control animal. Control animals, rats 7, 9, 10, and 12, drank 

significantly more ethanol over the course of the experiment than treated animals. While 

rats treated with (+)-THP, rats 1,5, and 11, drank approximately the same amount of 

ethanol as other tested Sprague-Dawley rats from Frederick, MD, THP treatments 



resulted in a decrease in alcohol preference. Rats 14-16 drank elevated levels of ethanol 

before treatment and decreased their drinking with subsequent treatment of THP 

racemate. 

Presently, there is no satisfactory explanation for the behavior observed from 

these Prattville, AL rats. These rats may already have elevated levels of THP present in 

their brain. Raising the endogenous levels of THP through ICV injections may result in 

an aversive dose, as other researchers have observed in previous dose-response curve 

studies of THP [56, 142]. Alternately, the Prattville, AL Harlan plant may have 

unknowingly bred their rats selectively for a high ethanol preference, as Myers and co

workers have with their HEP rats [97, 160, 161]. 

The Effects of ICV Injections ofTHB on the Ethanol Preference of Adult Male Sprague-

Dawley Rats Obtained from Harlan's Frederick, MD Site 

Only data from animals having cannulae tips within the right lateral ventricle or at 

the dorsal rim of the ventricle were included in the statistical analysis. Histological 40 urn 

sections were made on a Microtome cryostat and stained with cresyl violet. These 

sections were visually inspected on a lightfield microscope. 

These experimental subjects were treated in the exact same manner as previous 

animals with regard to animal care, surgical, injection and cannulae placement 

verification procedures. The only notable difference in the treatment of these animals was 

in the identity of the tested compound. These animals were given ICV injections in the 

amount of 20 nmoles/day of THB. Data from this experimental group appears as Figure 

38. 
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Figure 38: Graph of Control and Experimental Groups of ICV THB-Treated Rats 

As can be seen in the graph, no significant increases are observed when the whole 

population of rats is examined. However, the large standard deviations are the result of 

three subjects' dramatic increases in ethanol consumption. 

As THB is not a precursor to biological opiate alkaloids [162], it is unlikely in the 

extreme that opiate biosynthesis plays any part in these observed results. Also, since 

THB, compared to THP, has a relatively low affinity for opioid receptors [163, 164], it is 

unlikely that this very limited success is due to THB acting as an opioid agonist. Rather, 

it is probably due to the action of THB on dopaminergic receptors, for which it has a 

relatively high affinity [164]. 
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Effects of Ethanol Consumption on Tetrahydropapaveroline Levels in the Cerebrospinal 

Fluid of Adult Male Sprague-Dawley Rats In Vivo 

Microdialysis Recovery Determination 

The amperometric electrochemical detector used in this series of experiments was 

calibrated by injecting various concentrations of THP Hydrobromide in artificial CSF 

(aCSF) onto the Cig ODS column used for future dialysate analyses and plotting the 

detector response as a function of peak area counts. This detector response is given in 

Figure 39. 

7 -

°o 6 

a 3 

s 
© 
U 4-

< 3 -

PH
 2 -

1 

A 

1 

1/ 

y = 4E+06x - 548673 

R2 = 0.9773 

0.5 1 1.5 

Amount Injected, ng 

2.5 

Figure 39: Detector Response of Amperometric Detector to THP 

Hydrobromide 

Flow rates of 0.5, 1.0, and 1.5 (j,L/minute were examined to determine the optimal 

flow rate for an in vivo microdialysis experiment. Since a calibration curve had been 
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established for the detector, determining the percentage of recovered from the dialysis of 

the 0.69 uM "parent" solution was a simple matter of measuring the concentration of the 

dialysate and expressing its concentration as a percentage of the "parent". Results from 

the flow rate experiment are seen as Figure 40. 

Figure 40: Percent Recovery of THP Hydrobromide in Dialysate Solution at Three 

Flow Rates as Measured by HPLC-ECD 

From this flow rate calibration, it can be seen that the optimal flow rate at which 

to operate a CMA/11 microdialysis probe for maximum recovery of THP Hydrobromide 

and repeatability is 1.0 uL/minute. This flow rate was used throughout the in vivo 

microdialysis experiment. 

In Vivo Microdialysis Results 
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Exposure to ethanol prior to collection of dialysate definitely increased 

endogenous THP levels when compared to basal levels. Representative chromatograms 

of analyzed dialysates appear as Figures 41 and 42. The circled peaks in Figures 41 and 

42 have retention times identical to those of prepared THP standards. 

Figure 41: Representative Chromatogram of Dialysate from Rat M2 Before Ethanol 

Exposure 
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Figure 42: Representative Chromatogram of Dialysate from Rat M2 After Ethanol 

Exposure 

The data from the in vivo microdialysis on the three experimental subjects appears 

as Figures 43-46. Amounts of THP in the dialysis solution were calculated using the 

detector response curve displayed as Figure 39. Application of the CMA/11 probe 

recoveries displayed in Figure 40 allows for the estimation of the concentration of THP in 

vivo within the lateral ventricles of the experimental subjects shown in Figures 47-49. 

This experiment was originally intended to be a larger study with seven experimental 

subjects, but three rats damaged their implants prior to final THP level assessment. One 

set of data was lost due to a loss of communication between the electrochemical detector 

and the HP 3 3 96A integrator. 
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Figure 43: Bar Graph showing Elevated Levels of Dialysis THP (Rat Ml) After 

Exposure to Ethanol 
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Figure 44: Bar Graph showing Elevated Levels of Dialysis THP (Rat M2) After 

Exposure to Ethanol 
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Figure 45: Bar Graph showing Elevated Levels of Dialysis THP (Rat M7) After 

Exposure to Ethanol 
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Figure 46: Composite Bar Graph showing Elevated Levels of Dialysis THP of All 

Rats After Exposure to Ethanol 
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Figure 47: Bar Graph showing Calculated In Vivo THP Concentration of the 

Lateral Ventricle (Rat Ml) 

Q. 
x 

CO 

o 
o 

1400 
1300 
1200 
1100 
1000 
900 
800 
700 4 
600 
500 i 
400 
300 
200 
100 
0 

-f i i £ 
± 

i i 

• prior to ethanol 

H after ethanol 

2 3 4 

Dialysis Period 

Figure 48: Bar Graph showing Calculated In Vivo THP Concentration of the 

Lateral Ventricle (Rat M2) 
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Figure 49: Bar Graph showing Calculated In Vivo THP Concentration of the 

Lateral Ventricle (Rat M7) 

General Discussion of the Relevance of Results 

Chiral HPLC columns for the separation of enantiomeric mixtures employing 

chiral stationary phases are quite expensive, have delicate bonded phases, and are well 

documented [116, 128, 165-168]. A desirable alternative to these columns would be a 

cheap and effective method of creating a chiral environment that aids in the separation of 

these stereoisomers. S-[3-CD is just such a compound. It vastly improves resolution of 

catecholamines compared to unsubstituted cyclodextrins [129, 130]. 

While several researchers have conducted studies of cyclized macromolecules or 

ion-pairing agents in HPLC mobile phase additives [115, 117, 129-131, 169,170], no 

published studies have used subambient temperatures to enhance the thermodynamics of 

file://�/AC/C/
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separations. The separation of carboxylated salsolinol derivatives using chiral mobile 

phase additives is difficult, at best. However, subambient temperatures coupled with the 

chiral mobile phase additive S-[3-CD allow meager resolution of even these traditionally 

inseparable enantiomers. 

Chiral recognition is an important function for biological systems. Just as only 

one stereoisomer of glucose is important for terran biosystems, only one isomer of 

morphine, the S-isomer, has analgesic effects. Likewise, it was previously thought that 

only one isomer of THP was effective at eliciting an alcohol-drinking response in 

aversive animals. Only the S-isomer was singled out for further study by Myers and co

workers [58] or Duncan and Deitrich [56]. Sango et al. found only the S-isomer of THP 

to be present in the brains of rats exposed to ethanol [51]. Tabakoff et al. found S-(-)-

THP to be present biological fluids of human alcoholics [171]. The experiment conducted 

with ICV THP injections in Sprague-Dawley rats indicate that R-(+)-THP is just as 

effective at evoking alcohol-addictive responses from rats. 

Whether this result is due to the conversion of R-(+)-THP to the S-isomer or the 

inability of THP-reactive receptors to distinguish between the two is unclear. Also 

unclear is the precise manner in which THP evokes alcohol drinking in aversive rats. 

THP may be converted to morphine in vivo [52, 103, 104, 106, 107, 111, 112, 172-175], 

or THP may act as an opiate agonist and bind with opioid receptors found in the brain 

[146, 163, 164, 176, 177]. It was suggested by one group of researchers that THP may 

have a two-pronged effect, binding with dopaminergic and opioid receptors alike [164], 

depending on the conformational rotamers of THP. 
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THB has very little affinity for opiate receptors, but a much larger affinity for 

dopaminergic neuroreceptors [164]. Hence, it is reasonable to surmise that if THB is 

successful at evoking volitional alcohol consumption in ethanol-aversive rats, 

dopaminergic neurons may be more involved than receptors that are selective for opiates 

in the etiology of alcoholism. However, if THB is unsuccessful at evoking volitional 

alcohol drinking, the converse is most likely true. Since ICV injections of THB were 

successful in inducing alcohol consumption in few experimental animals, it is likely that 

the truth is more complicated than this hypothesis. 

Nonetheless, one fact is undeniable. The gastric gavage of solutions relatively 

high in ethanol concentration did result in a marked increase in endogenously formed 

THP in experimental animals. This fact alone implicates tetrahydroisoquinolines in the 

etiology of alcohol addiction and vindicates the theories of early alcohol addiction 

researchers such as Davis and Walsh [28-31] and Myers [53-55, 58, 96, 139, 178, 179]. 

It is noteworthy that, during the microdialysis experiment, the maximum levels of 

THP were detected within the first three periods of the experiment. THP levels then 

appeared to drop towards basal concentrations. This increase in initial endogenous levels 

of THP following alcohol exposure is startling. While one researcher has assayed THP 

concentration in brain tissues following ethanol exposure [154], no other researcher to 

date has published such a change in THP levels in CSF in "real time" from a freely 

behaving subject [33, 159, 180-189]. While not conclusive by any means, these 

experiments, both the ICV administration of THP and the dialysis of THP from CSF 

following the administration of an ethanol solution, definitely lend credence to the theory 
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that THP and related alkaloids play an important role in the acquisition and maintenance 

of alcohol addiction. 

Observation of the amounts of THP detected in the CSF through microdialysis 

indicate that endogenous THP levels, both basal and elevated through ethanol 

administration, in the lateral ventricle CSF are approximately four orders of magnitude 

less than the demonstrated effective ICV dose of 20 nanomoles of THP per day. This 

finding would appear to support earlier reports that ICV doses as low as 50 ng are 

sufficient to induce elevated ethanol consumption in rats [141]. 

Future experiments expanding on this line of research should replicate these 

experiments with much larger experimental groups from varied rat colonies and facilities. 

Additionally, future experiments should explore the relationship of opiate receptor 

density versus ethanol consumption elicited via ICV injection of THP. Also of interest is 

the relative persistence of endogenously formed THP within the CSF of subject Ml. 

Whether this is a function of relatively low metabolic rate of the disposition of THP 

within this particular subject is, as yet, unclear. Future researchers should also focus on 

the determination of individual neurochemical and neuroanatomical variations as 

contributing factors to the etiology of alcohol addiction. 
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APPENDIX 

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) PROPOSAL 

University of Southern Mississippi 
Application for Use of Animal Subjects 

Principal Investigator's Name (Please Print): 
John G. McCoy 

Office Phone Number: «H-2«M6I7 

Department: 
Psychology 

Mail Box: 5025 

Signature Approvals 

H-l-ol 
Pririefpal Investigator 

jartment Cnair J 

Date 

Depart 

£& 
Date 

D/te / lACUUCha 

IACUC Official Approval 

MJU- 0D > 
Protocol # 

V^Ar 
Expiration Date 

Renewal # Expiration Date 

Renewal # Expiration Date 



I, FUNDING INFORMATION 

Is this application associated with a grant? 0Yes QMo 
If yes, list the title used on the grant application to assure proper notification of the 
approval to the funding agency. 

If no and you do not require verification of approval for an outside funding source, you 
may list the fund source as "departmental." The duration dates for departmentally funded 
projects must not exceed three years. 

Funding Agency or Fund Source: 
NIH: Academic Research and Enhancement Award (AREA); and NIB (Center for Psychiatric Neuroscience Small Grant) 

Grant or Project Title: 

Modeling Alcohol Addiction: Role of Mammalian Alkaloids 

Grant or Project Duration (beginning and ending dates): 6/1/03 - 6/1/06 

This application is (check one) 
0New 
•Addendum/Modification 
•Renewal (required every three years and must be reviewed by IACUC to ensure that all 
current federal guidelines are being met) 



91 

II. ASSURANCE STATEMENTS 

PRINCIPAL INVESTIGATOR 
I certify that I have truthfully and completely described the use of animals for this project/grant 
and that I will notify the Institutional Animal Care and Research Advisory Committee in writing 
of any changes in this information prior to proceeding with the animal use. Furthermore, the 
activities I plan do not unnecessarily duplicate previous experiments. 

As a Principal Investigator, I accept and will conform to all federal, state, and institutional laws 
or guidelines concerning: care and use of animals in research, teaching, or testing; efforts to 
minimize animal pain and distress; training of any research personnel or students handling 
animals as described herein; and consideration of alternatives to animal use in research. 

1 ^ 4-7-aj 
Principal Investigator's Signature Date 

CO-INVESTIGATOR 
I understand that my name is listed on this project as a co-investigator. I have read this 
application and understand that only the described procedures are to be conducted. 

Name (typed) Signature 
J Ken D. McMurtrey; Ph.D. V0l*JftLAs&i i[/o)03 

RESEARCH ASSOCIATE 

I understand that my name is listed on this project as a research associate (this would include all 
graduate and/or undergraduate students involved in this project). I have read this application and 
understand that only the described procedures are to be conducted. 

Name (typed) Signature / / , . 

1 J- ChTis Strawbridge Ljf^ ^ MAA*J%S4^ VlP/oS 

DEPARTMENT CHAIR APPROVAL 
I understand that responsibility for assessing the quality of animal research must be shared by 
both the department and the IACUC. My signature as Department Chair certifies that the 
proposed research has been reviewed and approved as having scientific merit. 

^Hr^n ^ ~ci 
loTDepsfrt: Signature 6t Department Chair Date 



III. NONTECHNICAL (LAY) SUMMARY OF PROJECT 

The lay summary should be written in non-scientific terms that can easily be understood by a 
layperson and should include the following: 
* a description of the potential benefits of the project 
* an overview of the goals of the project 
* a statement that mentions all of the species to be used and their importance to the project 

Please limit your description to the space provided in the box below. 

Ingested ethanol is metabolized, to a large extent, by liver alcohol dehydrogenase to acetaldehyde, which can condense with 
dopamine to form salsolinol (SAL). Alternatively, dopaldehyde can condense with dopamine to form tetrahydropapaveroline 
(THP). another isoquinoline alkaloids. Patients with alcoholic parents had lowered (R)-SAL and (S)-SAL levels compared 
with family history negative alcoholics, suggesting genetic association of disturbance of SAL biosynthesis and alcoholism. In 
rats, intraventrentricular injections of SAL or THP have been shown to induce long-lasting preferences for alcohol solutions 
over water. However, the critical issue is not whether TIQ's can have behavioral effects, but whether endogenously formed 
TlQ's are produced in sufficient amounts to exert a significant influence on volitional alcohol consumption. Only one 
published report has attempted to address this issue. These results were consistent with the hypothesis that alcohol infusion 
can influence central formation of TIQ's. 

The proposed experiments will evaluate levels of SAL or THP from the shell and core of the nucleus accumbens using in vivo 
microdialysis following oral infusion of ethanol (1.0, 1.5, 2.0 or 2.5 g ethanol/kg), delivered by gavage in a 5 mL volume. 
Sprague-Dawley rats will be used. To evaluate whether voluntary versus involuntary oral administration of ethanol influences 
extracellular SAL levels differentially, separate experiments will employ the 12-day "step-up" procedure in which animals are 
free to select an escalating concentration of ethanol or water. Briefly, three graduated 100 mL drinking tubes, were placed in 
front of each animal's cage. One tube contained deionized water. A second tube was empty, and a third contained an alcohol 
solution in water that increased in ethanol concentration over the course of the 12 days. The concentration of ethanol 
(Everclear) was increased each day in the following manner: 2, 3, 4, 5, 7, 9, 11, 13, 15, 20, 25, and 30% ethanol by volume. 
Prior experiments in our laboratory and others have confirmed that most Sprague-Dawley rats avoid even low concentrations 
of ethanol in this paradigm. However, a smaller percentage of animals will voluntarily select even high concentrations of 
unsweetened ethanol (15-20%) over water. These alcohol-preferring animals can be used to evaluate the effects of voluntary 
ethanol consumption on SAL levels in the nucleus accumbens. The proposed experiments will shed light on the unresolved 
and controversial issue of whether endogenously formed T1Q alkaloids may be involved in the etiology and/or maintenance of 
an addiction to alcohol. 
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Type of animal (one per form) 

Amphibians Birds Fish Mice 

Rabbits Reptiles * Rats 
Other (please specify) 

Sex </ Male Female Either or mixed 

Strain/sDecieS Sprague-Dawley rats (Harlan, Indainapolis, IN) 

Size or Age 60 days of age 

1. Why must you use animals in the proposed studies? 

The proposed set of experiments examine the hypothesis that endogenous THP formation in the brain may be a 
critical factor in the etiology of alcohol addiction. To answer this question directiy, a microdiaylsis tube is inserted 
through a surgically implanted chronic, indwelling metal cannula. For obvious reasons, it is impossible to conduct 
this experimental procedure in humans. An in vivo model is necessary to ascertain whether or not THP formation 
occurs in the brain in sufficient quantities to influence further drinking behavior of the animal. The findings will be 
important from both a theoretical and clinical point of view. From the a clinical viewpoint, it would provide a 
potential target for development of new pharmacological approaches to treat alcoholism. 

Was a literature search performed to ensure that there is no duplication with the work that 
is being proposed? ^ Yes No 
If yes, then please provide details about the method used for the literature search (i.e. 
database used) including when the search was performed and what keywords were used. 

An Internet search using Pubmed was conducted in March 2003. The following keywords were used: 
tetrydropapaveroline, salsolinol, microdialsysis, isoquinoline alkaloids. 
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V. NUMBER OF ANIMALS TO BE USED PER YEAR 

Please explain how you determined the number of animals needed to accomplish the proposed research. 
For experiments in which there will be statistical analysis of data collected from the animals, please 
briefly describe the type of analysis that will be performed and how that effected the number of animals 
to be used per group (or per time point) for each experiment or each series of similar experiments. 

Levels of THP will be assessed via microdiaiysis following either involuntary oral administration of ethanol or voluntary consumption 
of ethanol. The experimental procedure for involuntary oral administration of ethanol is as follows. Levels of THP will be assessed 
following oral administration of 1.0, 1.5, 2.0 or 2.5 g ethanol/kg, delivered by gavage in a 5 mL volume. Control animals will receive 
an equal volume of water by gavage. Power analyses were conducted utilizing GPOWER(Faul &Erdfefder, 1992) to determine the 
sample size for this experiment. Based on the power observed in previous experiment (Sallstrom et ah, 1999), a strong effect size is 
expected. Current anlysis revealed that a total sample size of N = 55 ( n = 11 per group) should be sufficient to observe significant 
differences between groups and achieve an anticipated power greater than 0.80. 

Another N = 55 ( n = 11 per group ) animals will be used to evaluate Salsolinol following oral administration of 1.0, 1.5,2.0 or 2.5 g 
ethanol/kg, delivered by gavage in a 5 mL volume or an equal volume of the vehicle. The rationale for the number of animals is the 
same as for the THP experiments (above). 

Write the number of animals to be used per procedure category for each year of the project in the table 
below; (If you write in the number of animals for one year only, the Committee will assume that 
number is adequate for the full duration of the project.) If an animal will be used for procedures of 
varying categories, write the number only in the category for the maximum level of pain/distress that the 
animal may experience. Please see the instruction sheet for examples of experimental use of animals 
and the category applicable for that research. 

Category 

1 

2a 

2b 

2c 

3 

Description of Procedure Category 

Procedure will produce minimal, transient, or no 
pain/distress (e.g. minor injections or collections) 

Nonsurgical procedures will be performed using 
anesthetics, analgesics or tranqulizers to alleviate 

possible pain/distress. 

Nonsurvival surgical procedure will be performed 
using anesthetics, analgesics or tranquilizers to 

alleviate possible pain/distress. 

Survival surgical procedures will be performed 
using anesthetics, analgesics or tranquilizers to 

alleviate possible pain/distress. 

Procedures mav produce pain/distress which will not 
be relived by anesthetics, analgesics, or tranquilizers, 

Numbers of Animals 
per Year 

1 

37 

2 

37 

3 

36 
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VI. EXPERIMENTAL PROCEDURES 

In this section a technical description of the use of the animals in the proposed research to be conducted should 
be given. This section can be either written in a narrative description or drawn as a flow diagram (examples are 
given in the instructions that accompany this form). Either choice should include all technical details necessary 
for the committee to fully understand the use of the animals in the proposed research. The type of information 
that should be included is the number of animals to be used per procedure, the treatment and control groups, 
duration of the proposed research, care of the animals during the proposed research, and what will be done with 
the animals at the end of the research. Conciseness will be appreciated, but you may use additional pages if 
necessary. 

Although rats are known to be relatively resistant to infections, subacute infections resulting in behavioral and physiological changes have been 
demonstrated (Bradfield et a!., 1992). The risk of postoperative infection will be minimized by adhering to aseptic surgical practices 
(Cunliff-Beamer, 1993/4). Our facility and procedures have been reviewed by Tom Ricks, D.V.M. (see below). We have a lab area dedicated to 
stereotaxic surgical procedures which is equipped with mounted surgical lighting. An industrial steam pressure cleaner is used to wash animal 
cages / racks. Glassware is cleaned with Alconox / Liquiox. Quatricide PV brand germicide is also used for cage cleaning. Instruments, gauze 
pads, and cotton tip swabs will be initially sterilized in an autoclave (121 °C for 15 min) in Johnson Science Tower. When multiple surgeries are 
performed per day, instruments are washed with disinfectant and re-sterilized with a portable Hot Bead Sterilizer. Sterile surgical drapes may be 
used to cover the animal and also help to prevent hypothermia. A 60-W desk lamp will also be used to warm the animal while it is anesthetized. 
Lab coats and sterile gloves are worn by the surgeon. The immediate surgical area is sterilized using 70% ethyl alcohol. During surgery, 
instruments will be maintained in a solution of Zephiran chloride. 

Surgical Procedures: For microdialysis experiments, animals will be anesthetized with ketamine/xylazine anesthesia (25:5 mg/kg body weight; 
IM). Atropine (0.3 ml of a 0.54 mg/ml) solution may also be administered if excessive secretions of the mouth and lung are present. Also, a 
2-ounce rubber squeeze ball and tube will be used to aspirate mucous from the back of the tongue if breathing becomes labored. The animals head 
from behind the tips of the ears to the eyes and across the skull will be shaved with an electric razor prior to the incision. Chlorhexiderm Surgical 
Scrub will be used to clean the incision site. The incision will be about 2.5 cm in length and will be performed using sterile #10 scalpel. 
Following the initial incision, the periosteum is scraped to either side of the skull and the membrane is then clipped with bulldog clamps. After 
cleaning and drying of the skull with cotton swabs and saline, a pencil point is made at the designated coordinates. Both bregma and lambda 
reference points are used to verify the appropriate site for drilling. Following the implant of the cannula for microdialysis probe, the entire area is 
cleaned with Betadine or Chlorhexiderm. Dissolved silk suture (3.0) is used to sew the fascia and skin together around the area of the pedestal 
holding the cannula or probe. 

The implementation of the guide cannula and the microdialysis probe into the nucleus accumbens will follow procedures for which there is an 
established precedent (Sallstrom et al., 1999). Under ketamine / xylazine anesthesia, a guide cannula will be implanted. Using the bregma 
reference point, stereotaxic coordinates will be anterior 1.7 mm, lateral 1.3 and ventral -6.5 mm (Paxinos and Watson, 1986). The rats will be 
placed individually in a macrolon cage (size 34 X 30 X 25 cm) and tethered to the swivel in a noise-insulated room with two cages present. After 
three days, a CMA 10 probe (2 mm dialysis membrane) will be inserted and perfused with artificial cerebrospinal fluid (aCSF: 137 mM Na+, 1.2 
mM Ca2+, 2,4 mM K+, 144.2 mM CI -, 1.2 mM Mg 2+, 0.9 mM NaH2P04.H2O and 1A mM Na2HP04.2H20; pH 7.0) at a flow rate 1.0 *i/min, 
with sampling at intervals of 20 minutes for up to 200 minutes following oral gavage administration. There will be a 24 hour delay before 
collection of dialysate begins in order to minimize stress associated with implantation of the intracerebral dialysis probe. The first 5 samples 
determine basal levels of THP or salsolinol from CSF prior to ethanol administration. 

Experimental Procedure: Levels of THP or salsolinol wiil be assessed following oral administration of ethanol. Levels of THP will be assessed 
following oral administration of 1.0, 1.5, 2.0 or 2.5 g ethanol/kg, delivered by gavage in a 5 mL volume. A 5 mL oral infusion of 20% ethanol by 
gavage would equate to a 2.63 g/kg dose for a typical 300 g rat. This amount has been shown to induce clear signs of intoxication (Cowen, Chen, 
Jarrott & Lawrence, 1998). Animals in the control group wiil receive oral infusion of an equal volume of water. Our dose range of ethanol is 
comparable to those evaluated by other investigators (Lucas & McMillan, 2002; Fadda, Mosca, Columba & Gessa, 1989). 

Perfusion for Histology: After completion of the experiment, the position of the probe will be evaluated by fixing the brain in a formalin solution 
by cardiac perfusion. Animals will be deeply anesthetized with an IP injection of 60 mg/kg sodium pentobarbital. A lack of response to a paw 
pinch is necessary before the perfusion procedure begins. With the rat laying on its back, the paws are pinned to a dissecting tray at an angle so 
that the runoff of blood, saline, or fixative can be collected in the basin. Large scissors are used to cut through the abdominal wall (with the scissor 
tips pointed upward to avoid cutting organs. The incision is made about halfway between the animal's pelvic region and ribcage. A cut is made 
anteriorly until the sternum is reached and then cut laterally along either border of the ribs. The body wall is then pinned back so that the 
diaphragm is exposed. A cut is made along the border between the diaphragm and the ribs, exposing the heart and lungs. A cut is made on either 
side of the ribs as laterally as possible, forming a flap that can be lifted up. A hemostat is attached to the sternum, the ribs are lifted anteriorly, and 
the heart is exposed. The pericardium around the heart may be removed with a pair of blunt forceps, A cannula is inserted into a small incision in 
the left ventricle and another incision is made in the right atrium with fine-tip forcep to drain blood (exsanguination). When the fluid leaving the 
heart is clear (using about 150 ml of saline), the valve to the saline is shut off and the valve from the formalin container is opened up and 300-400 
ml of formaline is slowly infused into the animal. 

Bleeding Procedure: Blood alcohol level will be tested in a subset of animals treated with ethanol. Blood will be drawn by tail snip procedure in 
which an incision is made on the last 1 mm of tissue. Blood is drawn into heparinized capillary tubes and transferred into aliquots for storage at 
-80 degree F freezer. 
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VII. ANIMAL DISPOSITION 

Based on the "Report of the AVMA Panel on Euthanasia 2000" the following methods of euthanasia are 
considered either acceptable or conditionally acceptable. Place a checkmark next to the procedure(s) that will 
be used to euthanize any animals for this project. The animals will be euthanized by the attending veterinarian, 
the animal facility supervisor, a laboratory animal technician, or a researcher who has received special 
permission from the attending veterinarian and the IACUC. If the researcher is desiring special permission to 
perform the euthanasia please indicate in the appropriate space below. You must provide scientific justification 
(including a detailed literature search) in order to obtain approval for a method not listed below. If the species 
you are working with is not listed below, please consult with the attending veterinarian for an acceptable 
method prior to submission of this form. 

Species 
Amphibians 

Birds 

Fish 

Rabbits 

Reptiles 

Rodents 

Acceptable Method 
Barbiturates 
Inhalant anesthetics 
C0 2 

Double pithing 
IMS 
MS 222 
Benzocaine hydrochloride 

Barbiturates 
Inhalant anesthetics 
C0 2 

Barbiturates 
2-phenoxyethanol 

co2 
TMS 
MS 222 
Benzocaine hydrochloride 

Barbiturates 
Inhalant anesthetics 
C0 2 

Barbiturates 
Inhalant anesthetics 

co2 

f Barbiturates 
Inhalant anesthetics 

• CO, 

Conditionally Acceptable Meth 
Decapitation and pithing 
Stunning and decapitation 

Cervical dislocation 
Decapitation 

Decapitation and pithing 
Stunning and 

decapitation/pithing 

Decapitation and pithing 
Stunning and decapitation 

Decapitation 
Cervical dislocation 

(in mice and rats (< 200 g)) 



VII. ANIMAL DISPOSITION fCONT.) 

Species not listed above will need to be specified here along with the method of euthanasia to be 
employed and the signature of the attending veterinarian acknowledging that this method is acceptable. 

Signature of attending veterinarian Date 

Does the researcher desire permission to perform the euthanasia? "' Yes No 
If yes, then please specify why you wish to perform the euthanasia yourself. 
To ensure that the microdialysis probes are localized within the nucleus accumbens, histological sectioning and staining of brain tissue 
is necessary. Cryosectioning, in turn, requires that the brain tissue be fixed using formalin solution. Thus, intracardial perfusions are 
necessary for these experiments. 

Will you have tissues that may be made available to other investigators with approved, active protocols? 
Please note that the other investigator can have an approved, active protocol with either our institution 
or another institution. If the other investigator is at another institution a copy of their approved, active 
protocol will be necessary to have on file before the tissues can be released. Yes ^ No 
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VIII. FACILITIES FOR ANIMAL USE 

Where will the animals be housed? 
Johnson Science Tower animal facility 
(rabbits must be maintained in this facility, as well as all animals involved in biohazardous 
research that aren't being conducted at the Toxicology laboratory at GCRL or animals involved 
in surgical procedures) 

"* Owings-McQuagge animal facility 
(only rodents may be maintained in this facility) 
Wet lab in Walker Science Building 
(only fish, reptiles, and amphibians may be maintained in this facility) 

Toxicology laboratory at GCRL 
Wet lab facilities at GCRL 
Field (requires information to be provided in Appendix H) 
other (specify) 

Describe any special housing requirements that may be needed, especially if the animal will be exposed 
to hazardous materials. 

Will animals be maintained outside the above stated facility overnight for periods longer than twelve 
hours? Yes *' No 
If yes, provide the following information: 
a. Proposed location(s) where animals will be housed?_ 

b. Estimated number of animals or cages to be housed at any given times? 

Length of time animals will be.housed? 

d. Reason(s) why animals must be housed outside designated animal facilities? (Note: convenience 
is not adequate justification for housing outside of approved animal facilities) 
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IX. ANIMAL MEDICAL EMERGENCIES 

In the table below, list the names of individuals who have authority to approve animal treatment or euthanasia. 
If the designated individual(s) cannot be reached, then the Animal Research Facility veterinarian will provide 
supportive care or euthanatize animals suffering unrelenting pain. 

Name 

John G. McCoy 

Julie Rich 

Work Phone Number 

266-4617 

266-5617 

Emergency Phone Number 

266-5197 

297-8936 



X. REQUIRED APPENDICES 
(This page MUST be submitted with the application) 

A. ANTIBODY PRODUCTION 
Will animals be used for antibody production? 
If yes, then complete and attach Appendix A. 

B. NONSURGICAL PROCEDURES NOT INCLUDING ANTIBODY 
PRODUCTION 
Will animals be subjected to nonsurgical procedures (i.e. injections (not including those 
routinely used to administer euthanasia agents), radiographs, oral treatments, etc.? 
If yes, then complete and attach Appendix B. 

C. BREEDING COLONIES 
Will pregnant animals be required or will a breeding colony be established specifically 
for this project? 
If yes, then complete and attach Appendix C. 

D. SURGICAL PROCEDURES 
Will animals be subjected to nonsurvival and/or survival surgical procedures? 
If yes, then complete and attach Appendix D. 

E. PROLONGED PHYSICAL RESTRAINT OF UNANESTHETIZED ANIMALS 
Will unanesthetized animals be subjected to physical restraint for periods of longer than 
one hour? 
If yes, then complete and attach Appendix E. & 

F. PROCEDURES INVOLVING PAIN/DISTRESS WITHOUT PAIN/DISTRESS 
MEDICATION 
Will animals be subjected to procedures that may produce pain/distress which will not be 
relieved by anaesthetics, analgesics, or tranquilizers? 
If yes, then complete and attach Appendix F. 

G. USE OF GENETICALLY MANIPULATED ANIMALS 
Will genetically manipulated animals be used? 
If yes, then complete and attach Appendix G. 

H. WILD ANIMAL AND/OR FIELD RESEARCH 
Will wild animals be used in this research and/or will wild animals be held in the field 
while research is being conducted on them? 
If yes, then complete and attach Appendix H. 

I. SAFETY 
Will living animals be exposed to any of the following: recombinant DNA, infectious 
agents, toxic chemicals, flammable or explosive materials, and/or carcinogens? 
If yes, then complete and attach Appendix I. 

Yes? • 

• 

• 

No? • 

• 

• 

• 

• 

• 

* 

• 



NONSURGICAL PROCEDURES NOT INCLUDING ANTIBODY PRODUCTION 

Place a check by the procedures that will be used in this application. 

0Oral treatments 
DTopicai applications 
•Radiographs 
I lExercise studies 
•Environmental 02 variations 
•Blood pressure monitoring 

[EJnjections (IV, SQ, IM, etc.) 
•Non-surgical catheter use 
•intranasal administrations 
•Abnormal noise levels 
•Abnormal light levels or cycles 
•Food or fluid restrictions 

•Exposure to abnormal temperature dOther (describe) 

0Blood collections 
•Fluid collections 
•Behavioral studies 
•E.K.G. 
•Ocular exams 
•irradiation 

Will the use of paralytics be required for these procedures? 
•Yes BNo 
(Paralyzing drugs must be used only while the animals are fully anesthetized/sedated. If paralytics will 
be used, blood pressure and heart rate must be monitored. Describe the methods that will, be used to 
monitor for possible elevations in blood pressure and heart rate to ensure that adequate levels of 
anesthesia/sedation are maintained while the animals are paralyzed). 

Will the use of anesthetics be required for these procedures? 0Yes IZ]No 
List the anesthetic agent(s) that will be used. 

Agent 

ketamine/xylazine anesthesia 

Dose (mg/kg body wt) 

25:5 mg/kg body weight 

Route 

IM 

Frequency 

Once prior to surgery 

fOcJ^ 
of the appropriate animal facility supervisor and/or attending veterinarian 

Briefly describe the technique to be used for the procedure(s). Include in your description the frequency 
and the maximum number of procedures to be conducted per animal. 
An intramuscular injection of ketamine / xylazine anesthesia (25:5 mg/kg BW) will be given prior stereotaxic surgery (one cannula 
implant per animal). This anesthetic takes full effect within about 20 minutes. The surgical stage of anesthesia is characterized by 
reduced muscle tone, no spontaneous movement, no reaction to painful stimuli (paw or tail pinch) and lack of eyeblink when eyelid is 
touched. Respiration should be regular. Because ketamine prevents the eyelids from closing, an eye lubricant (Paralube Vet ointment) 
is applied. 



SURGICAL P R O C E D U R E S 

An investigator planning on performing surgical procedures must submit documented proof of formal training 
with this application. The training must have occurred within the last five years. Even with documentation it 
will still be necessary for all initial surgical procedures to be performed under the supervision of the attending 
veterinarian or an approved substitute. The following questions should be filled out with the assistance of the 
animal facility supervisor and/or the attending veterinarian. Questions 4 through 6 and 11 require the signature 
of the animal facility supervisor and/or the attending veterinarian prior to submission of this application. 

1. Will nonsurvival surgical procedures be conducted for this application? 
•Yes 0No 

2. Will survival surgical procedures be conducted for this application? If animals will recover from 
anesthesia for any time following surgery, it must be considered as a survival procedure. 
0Yes DNo 

3. Which of the following parameters will be used to determine the pre-operative health status? 
•Activity level | [Heart rate 
•General physical condition plRespiratory rate 
•Body temperature 0Body weight 
•Blood chemistries Dither (specify) 

4. Please specify when, prior to surgery, food and fluids will be withheld. 
Food will be withheld the evening prior to surgery. Water will be available ad lib. 

5. Will pre-operative, medications (i.e. antibiotics, anticholinergics, tranquilizers, etc.) be used? 
•Yes (list them below) 0No 

Medication Dose (mg/kg body wt) Route Frequency 

ICJ^ 
of the appropriate animal facility supervisor and/or attending veterinarian 
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6. List the anesthetic agent(s) that will be used. 

Agent 

ketamine/xylazine anesthesia 

Dose (mg/kg body wt) 

25:5 mg/kg body weight 

Route 

IM 

Frequency 

one or two (40% supplemental) 

Signature of the appropriate animal facility supervisor and/or attending veterinarian 

7. Will paralytic agents be used? [UYes (list them below) 0No 
(Paralyzing drugs must be used only while the animals are fully anesthetized/sedated. If paralytics will 
be used, blood pressure and heart rate must be monitored. Describe the methods that will be used to 
monitor for possible elevations in blood pressure and heart rate to ensure that adequate levels of 
anesthesia/sedation are maintained while the animals are paralyzed). 

Agent Dose (mg/kg body wt) Route Frequency 

Signature of the appropriate animal facility supervisor and/or attending veterinarian 

8. For each surgical procedure that is to be conducted, address the following: 
a. List the site(s) that will be used for the incision(s). 
The incision will be about 2.5 cm in length along the midline of the scalp from a point between the ears and proceeding anteriorly. 



b. Describe how the surgical site(s) will be prepared. 
The animals head from behind the tips of the ears to the eyes and across the skull will be shaved with an electric razor prior to the 
incision. Chlorhexiderm Surgical Scrub will be used to clean the incision site. The incision will be performed using a sterile #10 scalpel. 
Following the initial incision, the periosteum is scraped to either side of the skull and the membrane is then clipped with bulldog clamps. 

c. Fpr all survival procedures, describe the type(s) of closure materials that will be used (i.e. clips, 
types of suture materials, etc.). 

3.0 Surgical silk suture material is used. 

d. For survival procedures conducted on non-rodent mammals, list the basic suture patterns to be 
used (i.e. continuous, simple interrupted, mattress, etc.) for underlying tissues and skin. 

A simple interrupted suture pattern will be used. Usually one or two sutures anterior to the cement pedestal and one or two sutures 
posterior to the pedestal are sufficient. 

e. Provide a brief description of the nonsurvival and/or survival surgical procedures. 
After cleaning and drying of the skull with cotton swabs and saline, a small hole is drilled in the calvarium where the guide cannula is to 
be lowered. Three additional half-holes are drilled in a triangular region around the cannula hole. Anchor screws are inserted to a depth 
of 1 mm to provide support for the cannula pedestal. The surface of the skull is cleaned with saline and cotten swabs. A think paste of 
dental acrylic (methacrylate and powder) is prepared in a watchglass. A think metal spatula is used to apply the dental acrylic to the skull 
and anchor screws. Successive layers of acrylic are applied until the anchor screw heads are completely covered. Following the implant 
of the guide cannula, the entire area is cleaned with Betadine or Chlorhexiderm. Silk suture (3.0) is used to sew the fascia and skin 
together around the area of the pedestal holding the cannula or probe. Following surgery, animals are placed on a warming pad. 

f. If nonsurvival procedures (animals will not be allowed to regain consciousness) will be 
conducted, explain how long the animals will be maintained under anesthesia prior to euthanasia. 



9. Will any animal be subjected to multiple, major survival surgical procedures? [jYes 0No 
If yes, answer questions a-c below. 
a. Are the surgeries related components of the project? Explain how they are related and why they 

are a scientific necessity. 

b. How many surgeries in addition to the primary surgery will be conducted per animal? 

c. How long will animals be allowed to recover between surgeries? 

10. During anesthesia what methods or parameters will be used to monitor the animal? 
To prevent hypothermia, an insulated pad will be placed beneath the animal and a heating pad will be used post-surgery. Normal rectal 
temperature should be 37.5 degrees C. Labored breathing in an anesthetized animal be produced by excess mucous that needs to be 
cleared from the mouth. Placing the animal on a 35 degree incline (nose down) will allow fluids to drain from the respiratory tract. A 2 
ounce rubber squeeze ball and rube may be used to clar mucous from the mouth. Gasping and wheezing indicates the need for aspiration. 
Aspiration is accomplished by inserting a rubber tube connected to a 5 cc syringe about 3 cm into the throat. Repeated aspiration, 
however, should be avoided since it only produces more mucous. A rat that feels no pain breaths deeply and regularly throughout the 
surgery. Shallow or irregular breathing may indicate either that the animal is too lightly anesthetized or conversely, it may indicate an 
anesthetic overdose. Pedal and corneal reflexes will be tested throughout surgery to assess level of anesthesia. Twitching and leg 
movement also identify an animal that is too lightly anesthetized. A supplemental (40% of initial injection volume) dose may be 
administered. If an animal is overanesthetized, the surgery should be stopped and breathing may be assisted rubber tube. 

11. Animals that will be allowed to regain consciousness following surgery must be closely monitored until 
they regain the ability to control their head movement and maintain sternal recumbency. From the list 
below, check the parameters that you will use to monitor the animals' recovery from anesthesia. 

Ejfeody Temperature Qfeart Rate 0Respiratory Rate 
DPalpebral Reflex DSwallow Reflex ElResponse to External Stimuli 
EJvIuscle Control QMucous Membrane Re-fill Times D31ood Pressure 
•Other (specify) 
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12. The postoperative period is considered at an end when the skin sutures are removed or the wound is 
healed. 
a. How frequently will animals be monitored during this period? 

Body weight, water consumption and appearance will be monitored daily. Fluids (1-cc of saline) may be given SC. 

b. Describe any anticipated, clinically significant, adverse effects that may result from the surgical 
manipulation and the care that will be provided should they occur. 
Signs of postsurgical distress include a hunched back, failure to groom, reduced body weight and food intake, and extreme 
vocalization in response to handling. If any of these signs are observed, Dr. Ricks will be consulted. The analgesic listed 
below has been recommended due to its relatively long duration of action (8-12 hours). 

c. From the list below, check the parameters that will be used to determine the presence of 
postoperative pain/distress. 
0Body Weight 0Appearance tZJResponse to External Stimuli 
0Respiratory Rate [ZlHeart Rate 0Unprovoked behavior 
• B o d y Temperature 0Body Posture ClOther Clinical Signs (explain) 

13. Will postoperative antibiotics and/or analgesics be given? 
0Yes (list them below) Oslo 

Medication 

Buprenorphine 

Dose (mg/kg body wt) 

0.02-0.05 mg/kg 

Route 

SC 

Frequency 

As prescribed by veterinarian 

Signature of the appropriate animal facility supervisor and/or attending veterinarian 
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