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experiments. In static expression experiments, a snapshot of the expression of genes in 

different samples are measured, while in time series expression experiments, a temporal 

process is measured. Another important difference between these two types of data is that 

while static data from a sample population are assumed to be independent and identically 

distributed, time series data exhibit a strong autocorrelation between successive points 

[7]. 

Gene expression is a temporal process. Different proteins are required (and 

synthesized) for different functions and under different conditions. Even under stable 

conditions, due to the degradation of proteins, mRNA is transcribed continuously and 

new proteins are generated. This process is highly regulated. One of the most important 

ways in which the cell regulates gene expression is by using a feedback loop. Taking a 

snapshot of the expression profile following a new condition can reveal some of the 

genes that are specifically expressed under the new condition. However, in order to 

determine the complete set of genes that are expressed under these conditions, and to 

determine the interaction between these genes, it is necessary to measure a time course of 

expression experiments. This allows us to determine not only the stable state following a 

new condition, but also the pathway and networks that were activated in order to arrive at 

this new state [7]. 

Microarray time series gene expression experiments are widely used to study a 

range of biological processes such as the cell cycle [8], development [9], and chemical 

exposure response. Experimental design is key to the success of any expression 

experiment. An important computational problem for designing time series expression 

experiments is the determination of sampling rates. If the experiment is under-sampled, 
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the results might not correctly represent the activity of the genes in the duration of the 

experiments, and key events will be missed. On the other hand, over-sampling is 

expensive and time consuming. Since many experiments are limited by budget 

constraints, over-sampling will result in shorter experiment duration, which might lead to 

missing important genes that participate in the process at a later stage. 

In following a microarray time series experiment, a key challenge is to extract the 

continuous representation of all genes throughout the course of the experiment. Such a 

representation enables us to overcome problems related to sampling rate differences and 

missing values. For instance, one would like to identify genes that have changed 

significantly after an experimental treatment or that differ between normal and diseased 

cells. In Bar-Joseph et al. (2004), a method for representing expression profiles by 

aligned continuous curves is described. Cubic splines are used to represent gene 

expression curves. Cubic splines are a set of piecewise cubic polynomials and are 

frequently used for fitting time series and other noisy data. Aach and Church (2001) used 

linear interpolation to estimate gene expression levels for unobserved time points. 

D'haeseleer et al. (1999) used spline interpolation on individual genes to interpolate 

missing time points. Zhao et al. (2001) fitted a statistical model to all genes in order to 

find those that are cell cycle regulated. 

Network Models and Methods 

The final analysis level is the networks level in which we focus on the interactions 

between genes and attempt to build descriptive and predictive models for different 

systems in the cell. Genomic technology permits large-scale experiments such as 

microarray experiments, perturbing the activity of many genes and assessing the effect of 
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each perturbation on all other genes in a genome. Inferring how genes within a group of 

genes can influence the activity of each other is called the genetic network. The activity 

can be whether a gene is expressed or not, as mRNA or as protein. There is more to gene 

activity than just expression, for instance, post-translational regulations, phosphorylation, 

etc. A collection of regulatory proteins associated with genes across a genome can be 

described as a transcriptional regulatory network. In a genetic perturbation, gene activity 

is experimentally manipulating either by gene deletion or by inhibition of translation. 

When manipulating a gene and finding that this manipulation affects the activity of other 

genes, the question often arises as to whether this is caused by a direct or indirect 

interaction. A goal of systematic studies of genome regulation is to discover the network 

structures that control cellular functions at the transcriptional level. To understand the 

complex transcriptional regulatory networks, it is useful to identify the simplest units of 

commonly used network architecture. These simple units, or network motifs, provide 

specific regulatory capacities such as positive and negative feedback loops. The 

frequency with which cells use individual motifs reveals the regulatory strategies that 

they selected. These motifs can be assembled into network structures that help explain 

how a complex gene expression program is regulated. We assume that regulatory 

network motifs form building blocks that can be combined into larger network structures. 

Biological networks are often represented as graphs, with "edges" connecting 

"nodes". In many applications of reverse engineering, researchers attempt to reconstruct 

the topology of the networks rather than the nature of the individual relationships (i.e., 

the type of interactions and its kinetic constants). In these cases a graph, possibly a 

directed one indicating the direction of influence, constitutes an adequate representation. 
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Reproducing the dynamic response of a network emphasizes different aspects of a 

model rather than capturing its steady-state behavior. A classic way to reverse-engineer 

cellular networks or to test their power as predictive models is to perturb the cellular 

system and observe its response. A large set of gene expression profiles, for instance, 

corresponding to distinct biochemical or environmental pertubations, can activate distinct 

pathways, forcing the cell to find new equilibrium points and thus providing much greater 

information about its dynamic response [10]. 

Most cellular processes involve many different molecules. The metabolism of a 

cell consists of many interlinked reactions. Products of one reaction will be educts of the 

next, thus forming the metabolic network. Similarly, signaling molecules forms the 

signaling network. And the same is true for regulatory networks between genes and their 

products. All these networks are closely related (i.e. the regulatory network is influenced 

by extra-cellular signals). Our main interest is in gene regulatory network and the role of 

transcription factors. High-throughput technologies and molecular biological methods 

allow studying aspects of gene regulatory networks on a large number of genes and 

proteins in parallel, enabling the study of larger gene networks. Gene networks are 

concerned with the control of transcription (i.e. how genes are up and down regulated in 

response to signals). Presence of regulatory sequences in the proximity of genes and the 

existence of proteins that are able to bind to those elements and to control the activity of 

genes by either activation or repression of transcription allows the formation of complex 

regulatory networks, including positive and negative feedbacks. Transcription factors that 

recognize the regulatory elements in the DNA binding site need to interact with other 

proteins in order to activate gene expression [11]. 
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For regulatory networks, the components of such models are the genes (or their 

protein products) that are involved in a specific system, and the TFs that regulate the 

system. Such models provide a description of the process under investigation, and the 

interactions that take place during the activation of the system. Predictive models should 

also be able to address questions about different perturbations of the system. Models are 

useful for many applications. For example, in drug discovery, researchers are interested 

in identifying proteins that are at the root of a certain disease. Using these models, we can 

determine which genes are the causes and target them to prevent the spread of the 

disease. Another important application is to identify side effects of a certain treatment. 

Targeting a protein can cause a number of side effects that might be toxic to the cell. 

Using genetic interaction models, we can determine the most probable side effects in 

advance and target only those proteins for which these side effects are minimal. 

Sampling rates and temporal aggregations can have a negative impact on our 

ability to correctly reconstruct temporal networks (Bay et al., 2003). Thus, solving 

problems at lower analysis levels is an important step toward reconstructing temporal 

interaction networks. We need to select an appropriate computational modeling 

framework for such systems. A generative model for various systems will be the ultimate 

goal; however, due to the large number of genes involved, the current amount of data 

cannot support such models on a large scale. One possible intermediate solution is to 

construct networks from gene modules—sets of genes that are assumed to share a 

common function or be involved in the same pathway. Developing algorithms to identify 

such modules and assembling them to temporal networks are an important first step 

toward modeling such systems. In addition, knowledge of the flow of information 
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through cell in response to stimuli can be used to predict the effects of novel stimuli and 

to modulate the cell's response by altering the activities of specific members of a 

network. Understanding biology to this degree will require the complete determination 

of the interactions among genes, proteins and metabolites at many levels of regulation. 

The transcriptional portion of a cell's regulatory network is currently the most tractable 

given the availability of high-throughput gene expression data and the progress in 

sequence pattern analysis in the bioinformatics community [13]. 

Bayesian Networks 

Bayesian networks are a class of graphical models that have been widely employed 

in the reverse engineering of cellular networks [14,15]. This approach represents a joint 

probability distribution as a directed acyclic graph whose vertices corresponds to random 

variables, and whose edges correspond to parent-child dependencies among variables. 

Given a set of microarray data, D, the inference task is to find a network that best 

matches these data. In general, Bayesian networks introduce a statistically motivated 

scoring function to evaluate the posterior probability of a graph given the data, P(G|D), 

and search for the graph that produces the highest score. The logarithm of the posterior 

probability is often used to simplify calculations, and by Bayes' rule: 

logP(G|D) = logP(D|G) + logP(G) - logP(D). 

where P(D) is independent of G, P(G) is the prior distribution of G, P(D|G) is the 

probability of the data given the network, G. 

The Bayesian-Dirichlet equivalence (BDe) is a scoring criterion to capture the 

posterior probability. BDe is a Bayesian approach for penalizing complex models (i.e., 

models with many free parameters). Alternatively, the maximum likelihood parameters 
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for the possible parameterization, 0, may be used to estimate P(D|G), while imposing an 

explicit penalty term that is a function of the complexity of the model. A common choice 

for this penalty is the Bayesian Information Criterion (BIC) [16]. The maximum 

likelihood estimate with the BIC penalty converges asymptotically to the BDe. 

Once a Bayesian scoring metric has been defined, learning the most likely 

structure of a Bayesian Network reduces to searching the entire graph space for the 

highest-scoring model. This problem is known to be NP-hard [17] and can be written as: 

S (G:D) = X ScoreContribution(Xj,pi,:D), 

where S(G:D) = logP(G|D). If uniform priors are used for P(G) and P(D) then the log 

likelihood logP(D|G) may be used as the scoring function [18]. 

Information Theoretic Methods 

While graphical models provide a rich and flexible toolbox for probabilistic 

inference, they still rely on specification of a local probability distribution and the 

conditional independence. One information theoretic quantity, mutual information (MI), 

can capture arbitrary, nonlinear relationships between variables. MI computes the 

differential entropy between gene expression profiles (GEP), and for a pair of random 

variables, Xi and X}, is defined as: 

/,>y = S(*,) + S(X,.)-S( £„* , . ) 

where S(t) is the entropy of an arbitrary variable t. Like the Pearson correlation, MI 

measures the degree of statistical dependency between two variables. Several groups 

have developed network reconstruction algorithms based on MI. The first steps were 

taken by Butte and Kohane [19], using an approach that simply inferred edges to exist 

between gene pairs with MI above a certain statistical significance threshold, as 
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calculated by permutation test. However, this approach will incur a large number of false 

positives, as many indirectly interacting genes will have significant MI scores, (e.g. those 

separated by one or more intermediaries in a transcriptional cascade). An extended 

approach was developed in the ARACNE [20] algorithm by applying the data-processing 

inequality (DPI), which states that if genes gl and g3 interact only through a third gene 

g2,then 

7(gl,g3)<min[/(gl,g2);/(g2,g3)]. 

ARACNE starts with a network graph where each /,. . > I() is represented by an edge (ij). 

The algorithm then examines each gene triplet for which all three Mis are greater than Iu 

and removes the edge with the smallest value. Provided that pair-wise interactions are the 

dominant interactions in the network and that MI can be estimated with no errors, 

ARACNE will model tree networks with zero error, as well as those that are locally tree 

like - that is, the shortest network paths dominate inter-node information transfer [20]. 

Partial Correlations 

Another method proposed for the reconstruction of genetic network was aimed to 

identify correlations between variables that are not due to more distant network 

interactions (i.e., A correlates with B because one interacts with the other, rather than the 

two are correlated because C affects both) [21]. As with other correlation-based 

approaches, the number of data points presented should be large in order to allow for 

good statistical inference. The Pearson product moment correlation coefficient is a widely 

used measure of association between continuous random variables. A partial correlation 

coefficient quantifies the correlation between two variables when conditioning on one or 

several other variables. The order of the partial correlation coefficient is determined by 
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the number of variables it is conditioned on. It can be calculated to any arbitrary order. 

For a calculation of 0-2 order: 

. • cov(xv) 
zeroth-order correlation y = , 

xy yvar(x)var(j/) 

first-order correlation r = xy xy yz 

I xy.z ^-r>~ry) 

second-order correlation r =• — xq'z y'r' 
f xy.zq 

Although partial correlation analysis still does not infer causal relationships, it excludes 

many of the possibilities, and thus is a step in the direction of causal inference [21]. 

Graphical Gaussian Model (GGM), also known as "covariance selection" or " 

concentration graph" model, has recently become a popular tool to study gene association 

networks. It is a multivariate analysis to infer or test a statistical model for the 

relationship among a plural of variables [22], where a partial correlation coefficient, 

instead of a correlation coefficient, is used as a measure to select the first type of 

interaction. The key idea behind GGMs is to use partial correlations as a measure of 

independence of any two genes. This makes it straightforward to distinguish direct from 

indirect interactions. There is a simple reason why GGMs should be preferred over 

relevance networks for identification of gene networks: the correlation coefficient is 

weak criterion for measuring dependence, as marginally (i.e. directly and indirectly), 

more or less all genes will be correlated. This implies that zero correlation is in fact a 

strong indicator for independence (i.e. the case of no edge in a network), but this is of 

course not what one usually wants to find out by building a relevance network. On the 

other hand, partial correlation coefficients do provide a strong measure of dependence 
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and, correspondingly, offer only a weak criterion of independence [23]. 

Recently, a number of papers discussed the use of dynamic Bayesian networks 

(DBNs) for modeling time series expression data. DBNs are an extension of Bayesian 

networks (BNs), which have been successfully applied to model static expression data 

(Pe'er et al., 2001). The main advantage of DBNs for gene expression data is that unlike 

BNs, which are acyclic, DBNs allow for cycles, which are common in many biological 

systems. In addition, DBNs can also improve our ability to learn causal relationships by 

relying on the temporal nature of the data. Kim et al. (2003) used DBNs to model a 45 

genes subnetwork of the cell cycle system in yeast. By comparing the resulting network 

with a previously determined network from the KEGG database, they have concluded 

that many of the edges can be correctly identified using DBNs. Perrin et al. (2003) 

presented a DBN model containing hidden variables (i.e. nodes for which we do not have 

direct observation) to overcome both biological and measurement noise. Their model 

uses an extension of the linear regression model with normally distributed noise. They 

applied their method to model the DNA repair network in E. coli, focusing on the eight 

main genes in that system. In general, they have found that their method was capable of 

extracting the main regulatory circuits for this system. As for prediction, they observed a 

very high correlation between the prediction of the generated network for the next time 

step and the actual values observed (0.97) and a somewhat lower correlation for similar 

prediction of multiple steps (0.65). In order to test the application of DBNs to gene 

expression data and to determine their accuracy, Husmeier (2003) performed a 

simulation-based analysis. Unlike with real biological data, with a simulation-based study 

we know what the correct network is, so it is possible to compare the resulting network 
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and the true (underlying) network. This was done by selecting a significance threshold for 

each edge, and determining the true positive (how many correct edges were recovered) 

and false positive (how many recovered edges do not exist in the true network) rates. 

Husmeier et al. concludes that while the global network recovered by DBNs is not useful, 

local structures can be recovered to a certain extent. 

Integrating Gene Ontology 

The Gene Ontology (GO) is a structured vocabulary for describing biological 

processes, molecular functions, and cellular components of gene products [9]. GO 

classification helps gain biological insights from a set of identified genes of interest to 

determine which GO terms annotations are overrepresented among the genes in the set. 



19 

CHAPTER II 

FATHEAD MINNOW OVARY EXPERIMENT 

Background 

The rapidly growing list of chemicals that have the potential of being released 

into the environment has generated much concern over environmental degradation. In 

response, both researchers and regulatory agencies are developing approaches to address 

this concern. The vast number of chemicals to be examined requires tiered screening 

strategies that incorporate bioassays and computational models to predict whether effects 

such as endocrine disruption are likely. Traditional methods such as bioassays still 

remain important tools to assess toxic effects. But lately, more efforts are being made to 

use sophisticated computational models to try to understand how chemicals can affect the 

hypothalamic-pituitary-gonadal (HPG) axes, and how changes in these axes can cause 

endocrine disruption by examining many parameters, such as potential binding relations, 

and creating dynamic models to predict biological changes (Breen et al. 2007; Watanabe 

et al., 2007). 

The endocrine system regulates reproductive function through signalling 

molecules like estradiol and testosterone. A number of chemicals present in the 

environment have the potential to disrupt the endocrine system of the exposed organisms, 

and in turn, alter physiological functions. Disruption or interference of endocrine system, 

like dysregulated hormone release and inappropriate response to signaling, can lead to 

many abnormalities. Fadrozole is one of such chemical that has the potential to inhibit 

aromatase activities. Aromatase is a key enzyme that catalyzes the estrogen synthesis and 

converts androgens to estrogens. This aromatization is an important factor in sexual 
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development. Inhibition of this enzyme leads to low estrogen levels. 

Changes in the expression of genes that play fundamental roles in the 

development can signal for subsequent tissue-and organism-level effects. In this study, 

we analyzed ex vivo steroid production, plasma steroid levels, plasma vitellogenin 

concentrations in the ovary, and reverse engineered the transcriptional network from gene 

expression using 15,000 probe microarrays. Fathead minnow (Pimeohales promelas), a 

model species for endocrine disruption research (28), was used for this study. 

FAD is a chemical that inhibits aromatase (CYP19A), a key enzyme that 

catalyzes the rate limiting conversion of testosterone (T) to 17b-estradiol (E2) (Miller 

1998). Critical processes such as reproduction, metabolism, and development are 

maintained in the face of a multitude of chemical, physical, and biological stressors. The 

endocrine system is one such process, where an intricate network of organs, hormones, 

receptors, proteins and genes control reproduction, development, growth and metabolism. 

The system is highly conserved within vertebrates (Ankley and Johnson 2004). 

Nevertheless, little is known about the details of this system in terms of network structure 

and function. A detailed understanding of how biological pathways and networks 

function will be essential to developing predictive, mechanistic models that are useful in 

determining the impact of chemicals in the environment and wildlife. 

At the networks analysis level, we focus on the interactions between genes and 

attempt to build descriptive and predictive models for different systems in the cell. For 

regulatory networks, the components of such models are the genes (or their protein 

products) that are involved in a specific system and the TFs that regulate the system. 

Such models provide a description of the process under investigation and the interactions 
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that take place during the activation of the system. Predictive models should also be able 

to address questions about different perturbations of the system. 

Recently, a number of papers discuss the use of dynamic Bayesian networks 

(DBNs) and Graphical gaussian Model (GGM) for modeling time series expression data. 

DBNs are an extension of Bayesian networks (BNs), which have been successfully 

applied to model static expression data. The main advantage of DBNs for gene 

expression data is that they allow for cycles, which are common in many biological 

systems. In addition, DBNs can also improve our ability to learn causal relationships by 

relying on the temporal nature of the data. 

GGM has recently become a popular tool to study gene association networks. The 

key idea behind GGMs is to use partial correlations as a measure of independence of any 

two genes. This makes it straightforward to distinguish direct from indirect interactions. 

Also, in GGMs, missing edges indicate conditional independence. 

Inferring regulator networks and pathways can be done by investigating the over-

representation of the GO terms in the genes, but since fathead minnow has incomplete 

annotation information, this approach cannot be relied upon. Since clustering only 

indicates whether the genes are co-regulated with no fine resolution of interactions 

between them, reverse engineering methods were applied to reconstruct the interaction 

network. The advantage is that the dependencies among co-regulated genes are often 

much stronger and robust since genes encoding proteins that participate in the same 

pathway or are part of the same protein complex are often co-regulated. However, co-

regulation does not necessarily imply that genes are functionally related (31). By 

exploiting the co-regulation dependency information, we may discover more regulatory 
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patterns. Recent studies show that Graphical Gaussian Model (GGM) and Bayesian 

Network (BN) are two useful tools to reconstruct transcriptional networks (32). 

Generally, there are a small number of samples (n) than the number of genes (p) in 

micfoarray experiments. However, classic GGM theory cannot accommodate the data 

settings for p » n . Recently, GGM has been developed to infer gene networks with a 

limited-order partial correlation function (33, 34). 

In this work, we sought to understand the processes involved in response and 

adaptation of the model species FHM to chemical inhibition of steroidogenesis using a 

reverse engineering approach. With that purpose in mind, we reverse engineered a 

transcriptional network from gene expression changes in the ovaries of FHM exposed to 

fadrozole (FAD) over a period of eight days. We applied clustering methods to the gene 

expression data with the idea that co-expression is indicative of co-regulation, thus it may 

identify genes that have similar functions or are involved in related biological processes. 

We used this regularized GGM to reconstruct the network for 1254 differentially 

expressed genes for all time points and also for the individual time point genes. 

Material and Methods 

All chemical exposures and microarray experiment was conducted in the 

Environmental Protection Agency (EPA) labs and the Environmental Laboratories (EL) 

at the US Army Corps of Engineers, Vicksburg, MS, USA. 

Fish Exposures 

Fish exposures and sampling have been previously described in Villeneuve et al. 

(2009). Briefly, FAD was provided by Novartis, Inc. (Summit, NJ, USA). All fish used in 

the study were reproductively mature adult fathead minnows (5-6 months old) obtained 
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from an on-site culture facility at the US EPA Mid-Continent Ecology Division (Duluth, 

MN). All laboratory procedures involving animals were reviewed and approved by the 

Animal Care and Use Committee in accordance with Animal Welfare Act and 

Interagency Research Animal Committee guidelines. Exposures were conducted in 20 L 

glass aquaria containing 10 L of UV treated, membrane filtered, Lake Superior water 

containing nominal concentrations of 0 or 30 mg/L FAD. All treatments were delivered 

as a continuous flow through at a rate of approximately 45 ml/min without the use of 

carrier solvents. Toxicant (and control water) delivery was initiated to 16 replicate tanks 

per treatment group approximately 48h prior to test initiation to ensure that stable water 

concentrations were achieved before adding fish. Exposures were then initiated by 

transferring random groups of 4 female FHM to each tank. After 24, 48, 96, and 192 h of 

exposure, fish from two replicate tanks per treatment group were sampled (a total of 8 

females per treatment per time point). During each sampling period, the fish were 

euthanized in a buffered solution of tricaine methanesulfonate (MS-222; Finquel; Argent, 

Redmond, WA, USA). Blood was collected using heparinised microhematocrit tubes and 

plasma was separated by centrifugation. Plasma samples were stored at -80°C until 

extracted and analyzed. Liver, gonads, brain, and pituitary were removed, snap frozen in 

liquid nitrogen, and stored at -80°C until posterior use for RNA extraction. 

RNA 

Total RNA was isolated from 30-50 mg FHM ovary tissue with the RNA Stat-60 

reagent (Tel-test, Friendswood, TX), as previously described (Garcia-Reyero et al. 2006). 

Total RNA was treated with DNase and the quality assessed with an Agilent 2100 

BioAnalyzer (Agilent, Palo Alto, CA), and the quantity determined on a nanodrop 
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spectrophotometer (Nanodrop Technologies, Wilmington, DE). RNA was stored at 

80°C until further use. 

Microarrays 

Fathead minnow microarrays manufactured by Agilent (Palo Alto, CA) were 

designed at University of Florida. The arrays contain 15,000 genes in an 8 array per slide 

format. Array hybridizations were performed using a single color design. Due to sample 

quality, the total number of replicates per treatment was: 5 for control and 7 for treated 

day 1; 8 for both control and treated day 2; 8 for control and 7 for treatment day 4; and 7 

for both control and treated day 8. 

The cDNA synthesis, cRNA labeling and hybridizations were performed following 

the manufacturer's kits and protocols (One Color Microarray-based Gene Expression 

Analysis Quick Amp Labeling version 5.7; Agilent, Palo Alto, CA). Briefly, 500 ng of 

each sample was labeled with Cy3. Once the labeling was complete, samples were 

hybridized to the microarray using conditions recommended by the manufacturer. After 

hybridizing for 17 h, microarrays were washed and then scanned with a laser-based 

detection system (Axon GenePix, Molecular Devices, Sunnyvale, CA, USA). Data was 

extracted using Feature Extraction (Agilent, Palo Alto, CA). Text versions of the Agilent 

raw data have been deposited at the Gene Expression Omnibus website (GEO: 

http://www.ncbi.nlm.nih.gov/geo/). 

Microarray Data Analysis 

Samples from all high exposure groups (0 and 30 mg fadrozole/L) were analysed 

to filter the most significantly expressed genes. Raw microarray data was first log-

transformed to reduce skewness of the distribution, followed by quantile normalization 

http://www.ncbi.nlm.nih.gov/geo/
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was applied using Genespring GX10 (Agilent, Palo Alto, CA, USA). All biological 

replicates of a condition were averaged to reduce the complexity of the data set. To 

identify genes that are most variable between the control and the treatment, the one-way 

Analysis of Variance (ANOVA) test was performed, followed by pair-wise analysis for 

each time point (day 1, 2, 4 & 8) between matched control and treated samples. In order 

to get a modest number of genes, a cut-off threshold of 1.5 fold-change and p<0.05 was 

used to generate the lists of the most differentially expressed (DE) genes across all four 

time points. Lower value of alpha or higher value of fold-change reduced the number of 

DE genes to very low (Table lb). It is reasonable to assume that threshold below this is 

unlikely to be of interest for any gene. Genes filtered with ANOVA test were also 

validated using the PCA for their variance. 

Cluster Analysis 

Our approach was motivated by an earlier work by Petti and Church (2005), 

which suggested that the biological networks are modular. These are groups of genes, 

proteins and other molecules involved within a common subcellular process. Clustering 

based on the co-regulation indicates they share functionality. DAVID database (35) and 

MeV (36) clustering tool was used to cluster the DE genes before modeling the gene 

regulatory networks. 

Network Inference 

Total DE genes were grouped into 4 clusters and used for network construction 

with GGM and BN. In the GGM approach, the correlation network was first transformed 

into a partial correlation network, essentially an undirected graph displaying only direct 

associations. The partial correlation is the correlation that remains between two random 
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variables if the effect of the other variables or set of controlling variables are removed. 

The undirected graph was then converted into a partially directed graph. A partial 

correlation coefficient (pcor) was estimated for each pair of genes in the cluster using the 

shrinkage approach (37). All edges in the correlation graph with significance are directed 

in such a fashion that the direction of the arrow points from the node with the larger 

standardized partial variance to the node with the smaller standardized partial variance 

(37). The unequal time series aspect of the data was also taken into account by employing 

dynamic (partial) correlation estimation. Feature selection is a must for any data mining 

approach. That is because while building a data mining model, the dataset frequently 

contains more information than is needed to build the model. Removing unneeded data is 

important and feature selection helps solve this problem by calculating a score for each 

attribute and then selecting only the attributes that have the best scores. There are many 

ways to implement feature selection depending on the type of the data and the algorithm 

that we choose for analysis. In BN approach, a Bayesian-Dirichlet equivalence (BDe) 

(38) scoring criteria was used to learn optimal network from the data. The Dirichlet 

distribution is a multinomial distribution that describes the conditional probability of each 

variable in the network, and has many properties that are useful for learning. We limited 

the search space to at most 3 parents for each vertex to reduce the computational time for 

Bayesian and Dynamic Bayesian Network. 

Network Properties 

Highly connected regions in the network were extracted using the clustering 

algorithm "Molecular Complex Detection" (MCODE) (39). Recurring network motifs 

were searched, and the degree distribution of the network was calculated to determine fit 
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to a power-law distribution. The networks were then imported and visualized using 

Cytoscape (40). BinGO (41) as a Cytoscape plug-in and the literature search was used to 

interpret our results for any available biological evidence. 

Results and Discussion 

Genes Affected by Fadrozole Exposure 

The number of differentially expressed genes identified in ovaries of FHM 

females after exposure to 30 ug/L FAD increased with each time point (Table 1-a). The 

number of DE genes was the highest in 192 hr with more than 63% of the genes were up 

regulated (Table la). Very few genes were differentially expressed in more than two time 

intervals. A total of 1254 genes were found to be differentially expressed across all four-

time points. Analysis of Gene Ontology (GO) overrepresentation determined that the 

genes had their role in signal transduction, developmental processes, lipid, fatty acid and 

steroid metabolism, immunity and defense, protein metabolism and modification, and cell 

communication. Their role in molecular function was mostly in the kinase activities, 

oxidoreductase activities, nucleic acid binding and as transcription factors. Many of the 

cytochrome P450 family members (cypl9ala, cyp26al, cyp3a65), estrogen receptors 

(beta a, beta b, estrogen receptor 1), streroid dehydrogenase (hsd3b7), steroidogenic acute 

regulatory protein (StAR), vitellogenin 3 (vtg3), ATPases, solute carrier family members 

were significantly expressed. Only 670 gene symbols could be found in the GO and 

DAVID databases. 322 genes with known GO terms were classified into 4 functional and 

co-regulated groups. An overall GO term distribution network for the known genes is 

described in the Figure 2a and Table lc. Correlation between the samples were examined 
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using the Principal Component Analysis. The first three component of PC A analysis 

contains more than 65% of the variance between the samples, and the treatment (Figure 

2b) and the variance between the exposure and recovery samples (Figure 2c). Gene 

expression of some of the known biomarkers of aromatase inhibitors were matched with 

the qPCR results (Figure 2d). 

Table 1 a: Differentially Expressed Gene set obtained using 1 -way ANOVA with a 

threshold of p-value<0.05 and fold change >1.5. 

Time (hr) 

24 

48 

96 

192 

Union 

DE genes 

209 

399 

313 

427 

1254 

Up-regulated 

100 

185 

135 

270 

Down-regulated 

109 

214 

178 

157 
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Table lb: Threshold selection for the optimal p-value and fold-change 

FCall 

F O l . l 

F O l . 5 

F O 2 . 0 

F O 3 . 0 

Expected by chance 

Pall 

209 

209 

209 

88 

23 

PO.05 

209 

209 

209 

88 

23 

10 

P<0.02 

86 

86 

86 

36 

7 

4 

PO.01 

44 

44 

44 

22 

5 

2 

PO.0050 

27 

27 

27 

14 

2 

1 

PO.0010 

3 

3 

3 

2 

0 

0 
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Table lc: GO enrichment analysis was performed on all the ANOVA genes. Highly 
enriched terms found are: -Protein metabolic process, Phosphorylation, 
Phosphate metabolic process 

Caa 

GOT 

GO" 
GOT 

GOT 

GOT 

GOT 

GOT 

GOT 

GC 
GOT 

£ • > _ ' 

GOr 

GO" 
GOT 

Gcr 
GO-

GO" 
GO-

GO" 

GO-

GO" 
GO' 

GOr 

GO' 

I V : 
GO-

GO" 

SO" 

:go:* 

iW. 

' • W 
z\!v'. 

:»'. 
'"".•/. 
' S W . 

• £ W . 

•"."iM. 

'-"."v'. 
' 3 " * * . 

" • • ' • _ < 

' - " . & , - . 
! W . 
• W . 

• W . 

; i k ' . 

•w. 
'3-.V. 

•Vv'. 

•w. 
'EVv\ 
"•Vv*. 

• = • . & * . 

•=Vv*. 

.CC. 

.cc. 
_CC_ 

-CC. 

_cc_ 

-2P . 

-3P-

JP. 
J P. 
.cc. 

AL : 

A--
A U 

A.L 

A--

ALL 

A.L 

AiL 

A.L 
.A:L 

5W/033S 
.CC. 

.3P. 

.cc. 

.cc. 

. 3 P . 

.cc. 
-?P . 

JK 
_cc. 
-CC. 

-CC. 

JP-
JP-

i".*1**© 
'"".V. 

3 "-.*/. 

• ; W . 
GO' I iV . 

30* "HVv*. 

G o r i W . 

GO' 

GO-

GO' 
GO" 

GO' 

GO* 

sw 
GO' 

GO-

GO' 

• W . 

• • % ' . 

•E-.fv'. 
!5.fv*. 

' • ' . V . 

= V»*. 
Hjr 

z=.r»*. 

• • w . 
-3 *.•*'. 

GO"".rv*. 
GO' • • w . 

S O ' i W 

<\iA*r 

GO* 

50" 

•£W. 

• i w 

_cc_ 
- ? p . 

-5P . 

-5P . 
JP. 

-?P . 

-?P . 

.cc. 

.cc. 

. ' • ' -

-3P. 

J P. 

-3P. 
- V r 

_cc. 
_?P. 
-CC. 
_CC. 

.cc. 
-CC. 

Aiv 

A.L 
A . . 

A -
A.L 

A.-
A.L 

A.L 

A,-

A . . 
A , . 

A.L 

A.L 

A „ 

A.L 

A.L 

A.L 
A.L 

AJ. 

AJ. 

Av-

A -
_ A . . 

A.J. 

AJ. 

AJ. 

_ A „ 

A -
A-L 

A. . . 

A -

A . . 

. A - -

Term 
6C:03-'-1'' '6-irtrax lu i r c-gEnE IE pan 
GC:CO-'-1-122~0'6anE le p a t 
<3C:03''-1,2-*.~rt-a:e lu zrpar. 
GC:O30:622~irt-a:e lu sr 
eCi-Sy-IWa-n-clKrpart 
GC:0Di63-'3":e Lla- cs-BC-e-t or^a-ijarcT-, ard 
baseness 
G C :O305987~ :e I- la- pretesi 
GC:'03CS3SC~RNAsp;icr3 
G£:03CS33e~RMA p-occssirg 
GC:O330S23»r bsr.c ecprstdr CCIT-ICX 
rrrna px^css ng 
GC:03."-1'2C~c«ra:clu:2rra:ri!;>an 
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G C:03.S3 J""p-3S3l"3r» ET a-
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GC::-3.'322^3-g3nElc 
GC:0331S8i-n.; csr L r e -
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p-..3C130::5AV l^A Di-d ng 
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GC::>3.522c"-i-3- su --r : .s*.-:r siicmolv 
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GC:03-,323i-i-t-a:c lu crmcrb-ir-: b3u-o 3-B3-C le 
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GCiCOCS-ie-'.-p-stci- - B c r ^ f s - ;rc:£ii 
GC:j3C5iD7-r-;,.A.p-c:css nj 
SV3C7:7:SA\T 
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GC:-»,-1^-'*.-;y'.3p esm : ?j-t 
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SV3C235:"-.VW'-
SC::0.'3252--i-t-3;clujrr3r r-E~b-Hne bcj-d 
cgzn: It 
GC:-:'3-'322a"ncr - c - n r a - c s c r : c r a r d . c 

fValUE 
3 33 E 3-* 

3 33E3' 
8.6CE-J/ 

':<.'30i-13e265 
0.0C1-173028 

O.O0i2BilS8 
O.DC277.',C'26 
0.0C318333 -
0.003263122 

G SCKa-12S 
MC€:032'?5 
0.007:3713-
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0.0.C&13138 
0.0*133151* 
0.0.1:61-158 
0.0-176afi-!G 
O.0..',-1S35:.3 
0.0.e7M02- • 
0.0.e7';-'.02-
0.02221376. 
0.022S33575 
0.02-'.25'.533 
0.02-'.23-'.»5S 
0.02372C:i5 
0.023377797 
0.023377757 
0.02^573385 
0.027533218 
0.027533218 

0 033?3s2-' 
O.C>y<:5-'-7BS 

0.0332611-"2 
0.03e:625V 
0.O37O3C337 
0.0335-13:63 
0.0333*.3777 
0.0'1133103^ 

0 O-VISilin 
0.0>'t£33337 

0 0A£32112 

•3.0-" 3 M1-177 
0.0'"31'tl47? 
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