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ABSTRACT
REVERSE ENGINEERING OF GENE REGULATORY NETWORKS FOR
DISCOVERY OF NOVEL INTERACTIONS IN PATHWAYS USING GENE
EXPRESSION DATA
by Tanwir Habib

August 2009

A variety of chemicals in the environment have the potential to adversely affect
the biological systems. We examined the responses of Rat (Rattus norvegicus) to the
RDX exposure and female fathead minnows (FHM, Pimephales promelas) to a model
aromatase inhibitor, fadrozole, using a transcriptional network inference approach. Rats
were exposed to RDX and fish were exposed to 0 or 30mg/L fadrozole for 8 days. We
analyzed gene expression changes using 8000 probes microarrays for rat experiment and
15,000 probe microarrays for fish. We used these changes to infer a transcriptional
network. The central nervous system is remarkably plastic in its ability to recover from
trauma. We examined recovery from chemicals in rats and fish through changes in
transcriptional networks. Transcriptional networks from time series experiments provide
a good basis for organizing and studying the dynamic behavior of biological processes.
The goal of this work was to identify networks affected by chemical exposure and track
changes in these networks as animals recover.

The top 1254 significantly changed genes based upon 1.5-fold change and P<
0.05 across all the time points from the fish data and 937 significantly changed genes

from rat data were chosen for network modeling using either a Mutual Information
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network (MIN) or a Graphical Gaussian Model (GGM) or a Dynamic Bayesian Network
(DBN) approach. The top interacting genes were queried to find sub-networks, possible
biological networks, biochemical pathways, and network topologies impacted after
exposure to fadrozole. The methods were able to reconstruct transcriptional networks
with few hub structures, some of which were found to be involved in major biological
process and molecular function. The resulting network from rat experiment exhibited a
clear hub (central in terms of connections and direction) connectivity structure. Genes
such as Ania-7, Hnrpdl, Alad, Gapdh, etc. (all CNS related), GAT-2, Gabra6, Gabbrl,
Gabbr2 (GABA, neurotransmitter transporters and receptors), SLC2A1 (glucose
transporter), NCX3 (Na-Ca exchanger), Gnal (Olfactory related), skn-la were showed up
in our network as the ‘hub’ genes while some of the known transcription factors Msx3,
Cacngl, Brs3, NGF1 etc. were also matched with our network model. Aromatase in the
fish experiment was a highly connected gene in a sub-network along with other genes
involved in steroidogenesis. Many of the sub-networks were involved in fatty acid
metabolism, gamma-hexachlorocyclohexane degradation, and phospholipase activating
pathways. Aromatase was a highly connected gene in a sub-network along with the genes
LDLR, StAR, KRT18, HERI1, CEBPB, ESR2A, and ACVRLI1. Many of the sub-
networks were involved in fatty acid metabolism, gamma-hexachlorocyclohexane
degradation, and phospholipase activating pathways.

A credible transcriptional network was recovered from both the time series data
and the static data. The network included transcription factors and genes with roles in

brain function, neurotransmission and sex hormone synthesis. Examination of the
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dynamic changes in expression within this network over time provided insight into

recovery from traumas and chemical exposures.
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CHAPTER 1
INTRODUCTION AND BACKGROUND

The increasing popularity of microarray analysis has been partially fueled by the
frustration of biologists with limited technological tools they have had at their disposal
for gaining a comprehensive understanding of complex biological problems. Although
still not finally known, the number of genes in the human genome is estimated to exceed
40,000. These genes and their protein products determine biological phenotypes, both
normal and abnormal. Although the reductionist method has enabled researchers to
delineate a number of signal transduction pathways, it cannot yield a comprehensive
picture of the systems under study. By allowing simultaneous measurement of the
expression of thousands of genes, microarray technologies have marked a defining
moment in biological research. Gene expression microarray technology has been shown
across a wide range of fields including but not limited to biomarker discovery, predicting
disease outcomes and response to treatments, assessing co-regulation via time course
and/or dose-response experiments, and detecting molecular mechanisms and/or pathways
associated with a particular disease state. Several factors must be considered throughout
the experimental process to ensure that the correct information is extracted. From a
statistical point of view, these consist of (i) choosing an appropriate experimental design
to answer the question of interest, (ii) implementing an appropriate normalization
procedure that adjusts for experimental effects so that expression levels can be effectively
compared across biological samples, (iii) assessing differential expression via statistical
methods that are capable of distinguishing meaningful biological changes in protein

expression from random noise, and (iv) using tools for clustering and classification [1].



Toxicogenomic data such as changes in gene expression, protein levels, or
metabolite levels may be used in risk assessment. Toxicogenomics, resulting from the
merge of conventional toxicology with functional genomics, is the scientific field
studying the complex interactions between the cellular genome, toxic agents in the
environment, organ dysfunction and disease state. When an organism is exposed to a
toxic agent, the cells respond by altering the pattern of gene expression. Genes are
transcribed into mRNA, which in turn is translated into proteins that serve in a variety of
cellular functions. Toxicogenomics through microarray technology offers large-scale
detection and quantification of mRNA transcripts, related to alterations in mRNA
stability or gene regulation. This may prove advantageous in toxicological research.

Microarray Design

In general, a microarray experiment starts with the acquisition of biological
materials from which RNA is isolated. However, for many experiments involving clinical
tissues, the process is more complex and special attention must be paid to quality control.
Central purpose of most microarray experiments is to map gene expression in biological
samples. Microarray experiments, whether utilizing one-channel or two-channel
technology, are comparative experiments involving populations of measurements, with
the end goal being to compare abundance of targets in complex populations [2]. In most
microarray facilities, there are two types of microarrays that are generally produced:
cDNA microarrays, in which the PCR products of cDNA clones are printed, and long-
oligonucleotide (oligo) arrays, in which oligos of a certain length are printed. Because all
subsequent experiments and data generation rely on the quality of the microarray slides,

their production is critically important and requires the maintenance of rigorous quality



control. In the glass-based microarrays, the targets are labeled with fluorescent dye Cy3
and Cy5. A further advantage is that two different fluorescent dyes, such as Cy3 and CyS5,
can be used simultaneously, which allows two different samples to be directly compared
on a single microarray. As DNA microarray experiments are becoming larger, involving
larger number of samples and conditions, it is important to design experiments in the
most efficient way in order to obtain precise estimates with minimized unwanted
variations of the biologically important parameters. The most commonly used design is
the so-called reference design, where each condition of interest is compared with samples
taken from some standard reference. This design allows an indirect comparison between
the conditions of interest. This approach uses 50% of the hybridization resources to
produce a control or common reference signal of no intrinsic interest to the biologists. In
contrast, a loop design compares two conditions via a chain of other conditions, thereby
removing the need for a reference sample. In a n-array loop design, if one array fails all
the contrasts are still estimable, where as in the reference design, all the contrasts that
involve the condition in the failed array are not estimable anymore. Vinciotti et al. (2005)
have done a comparative analysis of the two models. The study was conducted to
compare the variability of estimates and the differentially expressed genes between the
two models. It was found that the percentage of significant genes when using loop design
was higher than when the reference design was used. It was also found that the square
root of the average estimated variance of the contrast estimates for the loop design was
lower than that of the reference design [3].

Microarray Data Analysis

Data analysis typically represents the last stage of a microarray experiment. It is at



this step that biologically relevant conclusions are typically made. In a microarray
experiment, there are many sources of variation. For instance, samples to be compared
are not always labeled with the same efficiency. Samples to be compared on an array are
not always mixed in equal proportions prior to hybridizations. There are certain
systematic sources of variation, usually due to specific features of the particular
microarray technology that should be corrected prior to further analysis.

Microarray data preprocessing contains three phases: quality control, within-slide
normalization, and between-slide normalization. Within-slide normalization aims to
correct dye incorporation differences, which affects all the genes similarly, or affects
genes with the same intensity similarly.

The process of removing or minimizing such systematic variability is called
normalization, and it 1s an important aspect of quality control in microarray data analysis.
One way to remove a systematic intensity-dependent bias is to smooth the data with a
locally weighed regression method, such as Jowess. This method is useful for smoothing
scatter plots to reveal the underlying patterns or structure and for identifying nonlinear
relationships between log intensity (M) and log ratio (A). Lowess-based intensity-
dependent normalization consists of simply subtracting the smooth curve from the
original log ratio data.

logoR/G = 1ogzR/G — ¢(A) = logaR/[k(A)G]
where c(A) is the lowess fit to the MA-plot. Lowess scatter plot smoother performs

robust locally linear fits (Figure 1).
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Figure 1: M vs A plot before and after the lowess normalization.

This normalization can be used in two-color array. An alternative approach is to
use some subset of genes for the normalization, so-called housekeeping genes, such as
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), b-actin (ACTB), tubulin al
(TUBAL), and others. Housekeeping genes are expected to be expressed ubiquitously at
stable levels under different biological conditions. Dye swap is another way to correct for
systematic sources of variations within a two-color microarray. The idea behind this
approach is to perform the same two-sample hybridization experiment twice, but with the
dyes (CY3 and CY5) reversed. Dye swap experiments can result in significant increase in
the cost and complexity of experiments, but they can potentially improve the quality of
the results. Quantile normalization can also be used in single-color array to effectively
remove the systematic biases.

Since a single microarray experiment represents an observation, multiple
observations would be needed to compute a reliable estimate of the true transformed ratio
values. Only a small number of replicate slides may be satisfactorily used to determine
reliable estimates of true gene expression, and one study showed that three replicates

suffice for significantly reducing experimental variability [4]. With the growing number



of publicly available microarray data, conducting replicate experiments is becoming a
popular solution to assess experimental errors and reduce noise bias in the measurements
[5]- The advantages of replicate slides also greatly help the analysis of between-slide
variability and help address formal statistical considerations when drawing biological
conclusions.
Replicates

Replication is a basic principle in experimental design. It involves making
independent observations under the same experimental conditions and carries tremendous
implications for quality control. This issue is particularly relevant in the design of
microarray experiments, where we can distinguish two different kinds of replication:
intra-array and inter-array replication. Intra-array replication refers to measuring the same
gene via several different spots on the same rnicroarray. Inter-array replication refers to
repeating the same hybridization experiment on several different microarrays. It is
obvious that both inter- and intra-array replication can produce more consistent and
reliable findings and increase the overall quality of the data analysis at the expense of
increased cost and amount of biological material used. Intra-array replication is an
important aspect of quality control since it can provide a more accurate estimation of the
inherent variability in a microarray experiment and can also increase the probability of
detecting differentially expressed genes, given that variability. According to the study
conducted by Black and Doerge (2002), control-array was used, where sample is co-
hybridized with itself using two different dyes, in order to obtain information about the
sampling variation. The data are used in conjunction with ANOVA models in order to

calculate the number of replicate spots necessary for detecting significant changes in



expression with high probability. The residuals from a fitted ANOVA model can be used
for power calculations [6]. The minimum number of intra-array replicates should depend
on the minimum level of fold change required for detecting the differentially expressed
genes with a high probability and make this determination using a power study
framework for the particular microarray technology. One study suggest that at least two
replicates are necessary for a reasonably high probability of detecting a threefold change
on expression, while another study suggests that three replicates are necessary to ensure a
high probability of detecting a twofold change [6]. Inter-array replication refers to
repeating a microarray experiment more than once. Suppose that we are working with
some cell lines and wish to perform microarray experiments under certain conditions. In
order to produce replicated measurements, we could extract RNA from several different
cell lines, cultured under as nearly identical conditions as possible, and perform
microarray hybridizations using each of those different RNA samples. Or, we could
extract RNA from one cell line, divide it into several parts, and perform hybridizations
with each part. In the former approach, we will have to deal with additional experimental
variability due to differences in cell lines and their respective RNA extraction steps. The
latter approach is more informative about the particular cell line being used, but it cannot
provide any knowledge of the population differences. If the replicates are concordant
either in terms of intensities or log ratios and the genes are reliable, then we can simply
combine the values of the replicates by averaging them to form a single estimate of the
gene expression or log ratios.

Time Series Data

DNA microarray experiments are usually distinguished as static and time series



experiments. In static expression experiments, a snapshot of the expression of genes in
different samples are measured, while in time series expression experiments, a temporal
process is measured. Another important difference between these two types of data is that
while static data from a sample population are assumed to be independent and identically
distributed, time series data exhibit a strong autocorrelation between successive points
[7].

Gene expression is a temporal process. Different proteins are required (and
synthesized) for different functions and under different conditions. Even under stable
conditions, due to the degradation of proteins, mRNA is transcribed continuously and
new proteins are generated. This process is highly regulated. One of the most important
ways in which the cell regulates gene expression is by using a feedback loop. Taking a
snapshot of the expression profile following a new condition can reveal some of the
genes that are specifically expressed under the new condition. However, in order to
determine the complete set of genes that are expressed under these conditions, and to
determine the interaction between these genes, it is necessary to measure a time course of
expression experiments. This allows us to determine not only the stable state following a
new condition, but also the pathway and networks that were activated in order to arrive at
this new state [7].

Microarray time series gene expression experiments are widely used to study a
range of biological processes such as the cell cycle [8], development [9], and chemical
€Xposure response. Experimentél design is key to the success of any expression
experiment. An important computational problem for designing time series expression

experiments is the determination of sampling rates. If the experiment is under-sampled,



the results might not correctly represent the activity of the genes in the duration of the
experiments, and key events will be missed. On the other hand, over-sampling is
expensive and time consuming. Since many experiments are limited by budget
constraints, over-sampling will result in shorter experiment duration, which might lead to
missing important genes that participate in the process at a later stage.

In following a microarray time series experiment, a key challenge is to extract the
continuous representation of all genes throughout the course of the experiment. Such a
representation enables us to overcome problems related to sampling rate differences and
missing values. For instance, one would like to identify genes that have changed
significantly after an experimental treatment or that differ between normal and diseased
cells. In Bar-Joseph et al. (2004), a method for representing expression profiles by
aligned continuous curves is described. Cubic splines are used to represent gene
expression curves. Cubic splines are a set of piecewise cubic polynomials and are
frequently used for fitting time series and other noisy data. Aach and Church (2001) used
linear interpolation to estimate gene expression levels for unobserved time points.
D’haeseleer et al. (1999) used spline interpolation on individual genes to interpolate
missing time points. Zhao et al. (2001) fitted a statistical model to all genes in order to
find those that are cell cycle regulated.

Network Models and Methods

The final analysis level is the networks level in which we focus on the interactions
between genes and attempt to build descriptive and predictive models for different
systems in the cell. Genomic technology permits large-scale experiments such as

microarray experiments, perturbing the activity of many genes and assessing the effect of
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each perturbation on all other genes in a genome. Inferring how genes within a group of
genes can influence the activity of each other is called the genetic network. The activity
can be whether a gene is expressed or not, as mRNA or as protein. There is more to gene
activity than just expression, for instance, post-translational regulations, phosphorylation,
etc. A collection of regulatory proteins associated with genes across a genome can be
described as a transcriptional regulatory network. In a genetic perturbation, gene activity
is experimentally manipulating either by gene deletion or by inhibition of translation.
When manipulating a gene and finding that this manipulation affects the activity of other
genes, the question often arises as to whether this is caused by a direct or indirect
interaction. A goal of systematic studies of genome regulation is to discover the network
structures that control cellular functions at the transcriptional level. To understand the
complex transcriptional regulatory networks, it is useful to identify the simplest units of
commonly used network architecture. These simple units, or network motifs, provide
specific regulatory capacities such as positive and negative feedback loops. The
frequency with which cells use individual motifs reveals the regulatory strategies that
they selected. These motifs can be assembled into network structures that help explain
how a complex gene expression program is regulated. We assume that regulatory
network motifs form building blocks that can be combined into larger network structures.

Biological networks are often represented as graphs, with "edges" connecting -
"nodes". In many applications of reverse engineering, researchers attempt to reconstruct
the topology of the networks rather than the nature of the individual relationships (i.e.,
the type of interactions and its kinetic constants). In these cases a graph, possibly a

directed one indicating the direction of influence, constitutes an adequate representation.
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Reproducing the dynamic response of a network emphasizes different aspects of a
model rather than capturing its steady-state behavior. A classic way to reverse-engineer
cellular networks or to test their power as predictive models is to perturb the cellular
system and observe its response. A large set of gene expression profiles, for instance,
corresponding to distinct biochemical or environmental pertubations, can activate distinct
pathways, forcing the cell to find new equilibrium points and thus providing much greater
information about its dynamic response [10].

Most cellular processes involve many different molecules. The metabolism of a
cell consists of many interlinked reactions. Products of one reaction will be educts of the
next, thus forming the metabolic network. Similarly, signaling molecules forms the
signaling network. And the same is true for regulatory networks between genes and their
products. All these networks are closely related (i.e. the regulatory network is influenced
by extra-cellular signals). Our main interest is in gene regulatory network and the role of
transcription factors. High-throughput technologies and molecular biological methods
allow studying aspects of gene regulatory networks on a large number of genes and
proteins in parallel, enabling the study of larger gene networks. Gene networks are
concerned with the control of transcription (i.e. how genes are up and down regulated in
response to signals). Presence of regulatory sequences in the proximity of genes and the
existence of proteins that are able to bind to those elements and to control the activity of
genes by either activation or repression of transcription allows the formation of complex
regulatory networks, including positive and negative feedbacks. Transcription factors that
recognize the regulatory elements in the DNA binding site need to interact with other

proteins in order to activate gene expression [11].
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For regulatory networks, the components of such models are the genes (or their
protein products) that are involved in a specific system, and the TFs that regulate the
system. Such models provide a description of the process under investigation, and the
interactions that take place during the activation of the system. Predictive models should
also be able to address questions about different perturbations of the system. Models are
useful for many applications. For example, in drug discovery, researchers are interested
in identifying proteins that are at the root of a certain disease. Using these models, we can
determine which genes are the causes and target them to prevent the spread of the
disease. Another important application is to identify side effects of a certain treatment.
Targeting a protein can cause a number of side effects that might be toxic to the cell.
Using genetic interaction models, we can determine the most probable side effects in
advance and target only those proteins for which these side effects are minimal.

Sampling rates and temporal aggregations can have a negative impact on our
ability to correctly reconstruct temporal networks (Bay et al., 2003). Thus, solving
problems at lower analysis levels is an important step toward reconstructing temporal
interaction networks. We need to select an appropriate computational modeling
framework for such systems. A generative model for various systems will be the ultimate
goal; however, due to the large number of genes involved, the current amount of data
cannot support such models on a large scale. One possible intermediate solution is to
construct networks from gene modules—sets of genes that are assumed to share a
common function or be invoived in the same pathway. Developing algorithms to identify
such modules and assembling them to temporal networks are an important first step

toward modeling such systems. In addition, knowledge of the flow of information
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through cell in response to stimuli can be used to predict the effects of novel stimuli and
to modulate the cell’s response by altering the activities of specific members of a
network. Understanding biology to this degree will require the complete determination
of the interactions among genes, proteins and metabolites at many levels of regulation.
The transcriptional portion of a cell’s regulatory network is currently the most tractable
given the availability of high-throughput gene expression data and the progress in
sequence pattern analysis in the bioinformatics community [13].
Bayesian Networks
Bayesian networks are a class of graphical models that have been widely employed
in the reverse engineering of cellular networks [14,15]. This approach represents a joint
probability distribution as a directed acyclic graph whose vertices corresponds to random
variables, and whose edges correspond to parent-child dependencies among variables.
Given a set of microarray data, D, the inference task is to find a network that best
matches these data. In general, Bayesian networks introduce a statistically motivated
scoring function to evaluate the posterior probability of a graph given the data, P(G|D),
and search for the graph that produces the highest score. The logarithm of the posterior
probability is often used to simplify calculations, and by Bayes’ rule:
logP(G|D) = logP(D|G) + logP(G) — logP(D).
where P(D) is independent of G, P(G) is the prior distribution of G, P(D|G) is the
probability of the data given the network, G.
The Bayesian-Dirichlet equivalence (BDe) is a scoring criterion to capture the
posterior probability. BDe is a Bayesian approach for penalizing complex models (i.e.,

models with many free parameters). Alternatively, the maximum likelihood parameters
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for the possible parameterization, 6, may be used to estimate P(D|G), while imposing an
explicit penalty term that is a function of the complexity of the model. A common choice
for this penalty is the Bayesian Information Criterion (BIC) [16]. The maximum
likelihood estimate with the BIC penalty converges asymptotically to the BDe.

Once a Bayesian scoring metric has been defined, learning the most likely
structure of a Bayesian Network reduces to searching the entire graph space for the

highest-scoring model. This problem is known to be NP-hard [17] and can be written as:

S (G:D)= Y. ScoreContribution(X;,p;,:D),

where S(G:D) = logP(G|D). If uniform priors are used for P(G) and P(D) then the log
likelihood logP(D|G) may be used as the scoring function [18].
Information Theoretic Methods
While graphical models provide a rich and flexible toolbox for probabilistic

inference, they still rely on specification of a local probability distribution and the
conditional independence. One information theoretic quantity, mutual information (MI),
can capture arbitrary, nonlinear relationships between variables. MI computes the
differential entropy between gene expression profiles (GEP), and for a pair of random
variables, X . and X I is defined as:

I,=S(X)+S(X)-S(X,X,)
where S(t) is the entropy of an arbitrary variable t. Like the Pearson correlation, MI
measures the degree of statistical dependency between two variables. Several groups
have deifeloped network reconstruction algorithms based on MI. The first steps were

taken by Butte and Kohane [19], using an approach that simply inferred edges to exist

between gene pairs with MI above a certain statistical significance threshold, as
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calculated by permutation test. However, this approach will incur a large number of false
positives, as many indirectly interacting genes will have significant MI scores, (e.g. those
separated by one or more intermediaries in a transcriptional cascade). An extended
approach was developed in the ARACNE [20] algorithm by applying the data-processing
inequality (DPI), which states that if genes gl and g3 interact only through a third gene
g2, then

I(gl,g3) <min[/ (gl,g2); I (g2,g3)]-

ARACNE starts with a network graph where each [, ; > I, is represented by an edge (ij).

The algorithm then examines each gene triplet for which all three Mls are greater than /,
and removes the edge with the smallest value. Provided that pair-wise interactions are the
dominant interactions in the network and that MI can be estimated with no errors,
ARACNE will model tree networks with zero error, as well as those that are locally tree
like — that is, the shortest network paths dominate inter-node information transfer [20].
Partial Correlations

Another method proposed for the reconstruction of genetic network was aimed to
identify correlations between variables that are not due to more distant network
interactions (i.e., 4 correlates with B because one interacts with the other, rather than the
two are correlated because C affects both) [21]. As with other correlation-based
approaches, the number of data points presented should be large in order to allow for
good statistical inference. The Pearson product moment correlation coefficient is a widely
used measure of association between continuous random variables. A partial correlation
coefficient quantifies the correlation between two variables when conditioning on one or

several other variables. The order of the partial correlation coefficient is determined by
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the number of variables it is conditioned on. It can be calculated to any arbitrary order.

For a calculation of 0-2 order:

zeroth-order correlation Vo= \/ C(()vgxy )( )
’ var(x) var(y

first-order correlation p = Vo Pl

CJa-pa-p)

3 r ,z_r. .zr .z
second-order correlation Vs a4 gzl yq

CJa-pa-p)

Although partial correlation analysis still does not infer causal relationships, it excludes
many of the possibilities, and thus is a step in the direction of causal inference [21].
Graphical Gaussian Model (GGM), also known as "covariance selection" or "
concentration graph” model, has recently become a popular tool to study gene association
networks. It is a multivariate analysis to infer or test a statistical model for the
relationship among a plural of variables [22], where a partial correlation coefficient,
instead of a correlation coefficient, is used as a measure to select the first type of
interaction. The key idea behind GGMs is to use partial correlations as a measure of
independence of any two genes. This makes it straightforward to distinguish direct from
indirect interactions. There is a simple reason why GGMs should be preferred over
relevance networks for identification of gene networks: the correlation coefficient is
weak criterion for measuring dependence, as marginally (i.e. directly and indirectly),
more or less all genes will be correlated. This implies that zero correlation is in fact a
strong indicator for independence (i.e. the case of no edge in a network), but this is of
course not what one usually wants to find out by building a relevance network. On the

other hand, partial correlation coefficients do provide a strong measure of dependence
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and, correspondingly, offer only a weak criterion of independence [23].

Recently, a number of papers discussed the use of dynamic Bayesian networks
(DBNs) for modeling time series expression data. DBNs are an extension of Bayesian
networks (BNs), which have been successfully applied to model static expression data
(Pe’er et al., 2001). The main advantage of DBNs for gene expression data is that unlike
BNs, which are acyclic, DBNs allow for cycles, which are common in many biological
systems. In addition, DBNs can also improve our ability to learn causal relationships by
relying on the temporal nature of the data. Kim et al. (2003) used DBNs to model a 45
genes subnetwork of the cell cycle system in yeast. By comparing the resulting network
with a previously determined network from the KEGG database, they have concluded
that many of the edges can be correctly identified using DBNSs. Perrin et al. (2003)
presented a DBN model containing hidden variables (i.e. nodes for which we do not have
direct observation) to overcome both biological and measurement noise. Their model
uses an extension of the linear regression model with normally distributed noise. They
applied their method to model the DNA repair network in E. coli, focusing on the eight
main genes in that system. In general, they have found that their method was capable of
extracting the main regulatory circuits for this system. As for prediction, they observed a
very high correlation between the prediction of the generated network for the next time
step and the actual values observed (0.97) and a somewhat lower correlation for similar
prediction of multiple steps (0.65). In order to test the application of DBNs to gene
expression data and to determine their accuracy, Husmeier (2003) performed a
simulation-based analysis. Unlike with real biological data, with a simulation-based study

we know what the correct network is, so it is possible to compare the resulting network
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and the true (underlying) network. This was done by selecting a significance threshold for
each edge, and determining the true positive (how many correct edges were recovered)
and false positive (how many recovered edges do not exist in the true network) rates.
Husmeier et al. concludes that while the global network recovered by DBNs is not useful,
local structures can be recovered to a certain extent.
Integrating Gene Ontology

The Gene Ontology (GO) is a structured vocabulary for describing biological
processes, molecular functions, and cellular components of gene products [9]. GO
classification helps gain biological insights from a set of identified genes of interest to

determine which GO terms annotations are overrepresented among the genes in the set.
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CHAPTER 1I
FATHEAD MINNOW OVARY EXPERIMENT

Background

The rapidly growing list of chemicals that have the potential of being released
into the environment has generated much concern over environmental degradation. In
response, both researchers and regulatory agencies are developing approaches to address
this concern. The vast number of chemicals to be examined requires tiered screening
strategies that incorporate bioassays and computational models to predict whether effects
such as endocrine disruption are likely. Traditional methods such as bioassays still
remain important tools to assess toxic effects. But lately, more efforts are being made to
use sophisticated computational models to try to understand how chemicals can affect the
hypothalamic-pituitary-gonadal (HPG) axes, and how changes in these axes can cause
endocrine disruption by examining many parameters, such as potential binding relations,
and creating dynamic models to predict biological changes (Breen et al. 2007; Watanabe

et al., 2007).

The endocrine system regulates reproductive function through signalling
molecules like estradiol and testosterone. A number of chemicals present in the
environment have the potentiél to disrupt the endocrine system of the exposed organisms,
and in turn, alter physiological functions. Disruption or interference of endocrine system,
like dysregulated hormone release and inappropriate response to signaling, can lead to
many abnormalities. Fadrozole is one of such chemical that has the potential to inhibit
aromatase activities. Aromatase is a key enzyme that catalyzes the estrogen synthesis and

converts androgens to estrogens. This aromatization is an important factor in sexual
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development. Inhibition of this enzyme leads to low estrogen levels.

Changes in the expression of genes that play fundamental roles in the
development can signal for subsequent tissue-and organism-level effects. In this study,
we analyzed ex vivo steroid production, plasma steroid levels, plasma vitellogenin
concentrations in the ovary, and reverse engineered the transcriptional network from gene
expression using 15,000 probe microarrays. Fathead minnow (Pimeohales promelas), a
model species for endocrine disruption research (28), was used for this study.

FAD is a chemical that inhibits aromatase (CYP19A), a key enzyme that
catalyzes the rate limiting conversion of testosterone (T) to 17b-estradiol (E2) (Miller
1998). Critical processes such as reproduction, metabolism, and development are
maintained in the face of a multitude of chemical, physical, and biological stressors. The
endocrine system is one such process, where an intricate network of organs, hormones,
receptors, proteins and genes control reproduction, development, growth and metabolism.
The system is highly conserved within vertebrates (Ankley and Johnson 2004).
Nevertheless, little is known about the details of this system in terms of network structure
and function. A detailed understanding of how biological pathways and networks
function will be essential to developing predictive, mechanistic models that are useful in

determining the impact of chemicals in the environment and wildlife.

At the networks analysis level, we focus on the interactions between genes and
attempt to build descriptive and predictive models for different systems in the cell. For
regulatory networks, the components of such models are the genes (or their protein
products) that are involved in a specific system and the TFs that regulate the system.

Such models provide a description of the process under investigation and the interactions
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that take place during the activation of the system. Predictive models should also be able
to address questions about different perturbations of the system.

Recently, a number of papers discuss the use of dynamic Bayesian networks
(DBNSs) and Graphical gaussian Model (GGM) for modeling time series expression data.
DBNSs are an extension of Bayesian networks (BNs), which have been successfully
applied to model static expression data. The main advantage of DBNs for gene
expression data is that they allow for cycles, which are common in many biological
systems. In addition, DBNs can also improve our ability to learn causal relationships by
relying on the temporal nature of the data.

GGM has recently become a popular tool to study gene association networks. The
key idea behind GGMs is to use partial correlations as a measure of independence of any
two genes. This makes it straightforward to distinguish direct from indirect interactions.
Also, in GGMs, missing edges indicate conditional independence.

Inferring regulator networks and pathways can be done by investigating the over-
representation of the GO terms in the genes, but since fathead minnow has incomplete
annotation information, this approach cannot be relied upon. Since clustering only
indicates whether the genes are co-regulated with no fine resolution of interactions
between them, reverse engineering methods were applied to reconstruct the interaction
network. The advantage is that the dependencies among co-regulated genes are often
much stronger and robust since genes encoding proteins that participate in the same
pathway or are part of the same protein complex are often co-regulated. However, co-
regulation does not necessarily imply that genes are functionally related (31). By

exploiting the co-regulation dependency information, we may discover more regulatory
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patterns. Recent studies show that Graphical Gaussian Model (GGM) and Bayesian
Network (BN) are two useful tools to reconstruct transcriptional networks (32).
Generally, there are a small number of samples (n) than the number of genes (p) in
microarray experiments. However, classic GGM theory cannot accommodate the data
settings for p>>n. Recently, GGM has been developed to infer gene networks with a
limited-order partial correlation function (33, 34).

In this work, we sought to understand the processes involved in response and
adaptation of the model species FHM to chemical inhibition of steroidogenesis using a
reverse engineering approach. With that purpose in mind, we reverse engineered a
transcriptional network from gene expression changes in the ovaries of FHM exposed to
fadrozole (FAD) over a period of eight days. We applied clustering methods to the gene
expression data with the idea that co-expression is indicative of co-regulation, thus it may
identify genes that have similar functions or are involved in related biological processes.
We used this regularized GGM to reconstruct the network for 1254 differentially
expressed genes for all time points and also for the individual time point genes.

Material and Methods

All chemical exposures and microarray experiment was conducted in the

Environmental Protection Agency (EPA) labs and the Environmental Laboratories (EL)

at the US Army Corps of Engineers, Vicksburg, MS, USA.

Fish Exposures

Fish exposures and sampling have been previously described in Villeneuve et al.
(2009). Briefly, FAD was provided by Novartis, Inc. (Summit, NJ, USA). All fish used in

the study were reproductively mature adult fathead minnows (5-6 months old) obtained
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from an on-site culture facility at the US EPA Mid-Continent Ecology Division (Duluth,
MN). All laboratory procedures involving animals were reviewed and approved by the
Animal Care and Use Committee in accordance with Animal Welfare Act and
Interagency Research Animal Committee guidelines. Exposures were conducted in 20 L
glass aquaria containing 10 L of UV treated, membrane filtered, Lake Superior water
containing nominal concentrations of 0 or 30 mg/L FAD. All treatments were delivered
as a continuous flow through at a rate of approximately 45 ml/min without the use of
carrier solvents. Toxicant (and control water) delivery was initiated to 16 replicate tanks
per treatment group approximately 48h prior to test initiation to ensure that stable water
concentrations were achieved before adding fish. Exposures were then initiated by
transferring random groups of 4 female FHM to each tank. After 24, 48, 96, and 192 h of
exposure, fish from two replicate tanks per treatment group were sampled (a total of 8
females per treatment per time point). During each sampling period, the fish were
euthanized in a buffered solution of tricaine methanesulfonate (MS-222; Finquel; Argent,
Redmond, WA, USA). Blood was collected using heparinised microhematocrit tubes and
plasma was separated by centrifugation. Plasma samples were stored at -80°C until
extracted and analyzed. Liver, gonads, brain, and pituitary were removed, snap frozen in
liquid nitrogen, and stored at -80°C until posterior use for RNA extraction.
RNA

Total RNA was isolated from 30-50 mg FHM ovary tissue with the RNA Stat-60
reagent (Tel-test, Friendswood, TX), as previously described (Garcia-Reyero et al. 2006).
Total RNA was treated with DNase and the quality assessed with an Agilent 2100

BioAnalyzer (Agilent, Palo Alto, CA), and the quantity determined on a nanodrop
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spectrophotometer (Nanodrop Technologies, Wilmington, DE). RNA was stored at
80°C until further use.
Microarrays

Fathead minnow microarrays manufactured by Agilent (Palo Alto, CA) were
designed at University of Florida. The arrays contain 15,000 genes in an 8 array per slide
format. Array hybridizations were performed using a single color design. Due to sample
quality, the total number of replicates per treatment was: 5 for control and 7 for treated
day 1; 8 for both control and treated day 2; 8 for control and 7 for treatment day 4; and 7
for both control and treated day 8.

The cDNA synthesis, cRNA labeling and hybridizations were performed following
the manufacturer’s kits and protocols (One Color Microarray-based Gene Expression
Analysis Quick Amp Labeling version 5.7; Agilent, Palo Alto, CA). Briefly, 500 ng of
each sample was labeled with Cy;. Once the labeling was complete, samples were
hybridized to the microarray using conditions recommended by the manufacturer. After
hybridizing for 17 h, microarrays were washed and then scanned with a laser-based
detection system (Axon GenePix, Molecular Devices, Sunnyvale, CA, USA). Data was
extracted using Feature Extraction (Agilent, Palo Alto, CA). Text versions of the Agilent
raw data have been deposited at the Gene Expression Omnibus website (GEO:
http://www.ncbi.nlm.nih.gov/geo/).

Microarray Data Analysis
Samples from all high exposure groups (0 and 30 mg fadrozole/L) were analysed
to filter the most significantly expressed genes. Raw microarray data was first log-

transformed to reduce skewness of the distribution, followed by quantile normalization
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was applied using Genespring GX10 (Agilent, Palo Alto, CA, USA). All biological
replicates of a condition were averaged to reduce the complexity of the data set. To
identify genes that are most variable between the control and the treatment, the one-way
Analysis of Variance (ANOVA) test was performed, followed by pair-wise analysis for
each time point (day 1, 2, 4 & 8) between matched control and treated samples. In order
to get a modest number of genes, a cut-off threshold of 1.5 fold-change and p<0.05 was
used to generate the lists of the most differentially expressed (DE) genes across all four
time points. Lower value of alpha or higher value of fold-change reduced the number of
DE genes to very low (Table 1b). It is reasonable to assume that threshold below this is
unlikely to be of interest for any gene. Genes filtered with ANOVA test were also
validated using the PCA for their variance.
Cluster Analysis

Our approach was motivated by an earlier work by Pettt and Church (2005),
which suggested that the biological networks are modular. These are groups of genes,
proteins and other molecules involved within a common subcellular process. Clustering
based on the co-regulation indicates they share functionality. DAVID database (35) and
MeV (36) clustering tool was used to cluster the DE genes before modeling the gene
regulatory networks.
Network Inference

Total DE genes were grouped into 4 clusters and used for network construction
with GGM and BN. In the GGM approach, the correlation network was first transformed
into a partial correlation network, essentially an undirected graph displaying only direct

associations. The partial correlation is the correlation that remains between two random
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variables if the effect of the other variables or set of controlling variables are removed.
The undirected graph was then converted into a partially directed graph. A partial
correlation coefficient (pcor) was estimated for each pair of genes in the cluster using the
shrinkage approach (37). All edges in the correlation graph with significance are directed
in such a fashion that the direction of the arrow points from the node with the larger
standardized partial variance to the node with the smaller standardized partial variance
(37). The unequal time series aspect of the data was also taken into account by employing
dynamic (partial) correlation estimation. Feature selection is a must for any data mining
approach. That is because while building a data mining model, the dataset frequently
contains more information than is needed to build the model. Removing unneeded data is
important and feature selection helps solve this problem by calculating a score for each
attribute and then selecting only the attributes that have the best scores. There are many
ways to implement feature selection depending on the type of the data and the algorithm
that we choose for analysis. In BN approach, a Bayesian—Dirichlet equivalence (BDe)
(38) scoring criteria was used to learn optimal network from the data. The Dirichlet
distribution is a multinomial distribution that describes the conditional probability of each
variable in the network, and has many properties that are useful for learning. We limited
the search space to at most 3 parents for each vertex to reduce the computational time for
Bayesian and Dynamic Bayesian Network.
Network Properties

Highly connected regions in the network were extracted using the clustering
algorithm “Molecular Complex Detection” (MCODE) (39). Recurring network motifs

were searched, and the degree distribution of the network was calculated to determine fit
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to a power-law distribution. The networks were then imported and visualized using
Cytoscape (40). BinGO (41) as a Cytoscape plug-in and the literature search was used to

interpret our results for any available biological evidence.

Results and Discussion

Genes Affected by Fadrozole Exposure

The number of differentially expressed genes identified in ovaries of FHM
females after exposure to 30 ug/L FAD increased with each time point (Table 1-a). The
number of DE genes was the highest in 192 hr with more than 63% of the genes were up
regulated (Table 1a). Very few genes were differentially expressed in more than two time
intervals. A total of 1254 genes were found to be differentially expressed across all four-
time points. Analysis of Gene Ontology (GO) overrepresentation determined that the
genes had their role in signal transduction, developmental processes, lipid, fatty acid and
steroid metabolism, immunity and defense, protein metabolism and modification, and cell
communication. Their role in molecular function was mostly in the kinase activities,
oxidoreductase activities, nucleic acid binding and as transcription factors. Many of the
cytochrome P450 family members (cypl19ala, cyp26al, cyp3a65), estrogen receptors
(beta a, beta b, estrogen receptor 1), streroid dehydrogenase (hsd3b7), steroidogenic acute
regulatory protein (StAR), vitellogenin 3 (vtg3), ATPases, solute carrier family members
were significantly expressed. Only 670 gene symbols could be found in the GO and
DAVID databases. 322 genes with known GO terms were classified into 4 functional and
co-regulated groups. An overall GO term distribution network for the known genes is

described in the Figure 2a and Table 1c. Correlation between the samples were examined
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using the Principal Component Analysis. The first three component of PCA analysis
contains more than 65% of the variance between the samples, and the treatment (Figure
2b) and the variance between the exposure and recovery samples (Figure 2¢). Gene
expression of some of the known biomarkers of aromatase inhibitors were matched with

the gPCR results (Figure 2d).

Table 1a: Differentially Expressed Gene set obtained using 1-way ANOVA with a

threshold of p-value<0.05 and fold change >1.5.

Time (hr) DE genes | Up-regulated Down-regulated

24 209 100 109
48 399 185 214
96 313 135 178
192 427 270 157

Union 1254




Table 1b: Threshold selection for the optimal p-value and fold-change

P all | P<0.05 | P<0.02 | P<0.01 | P<0.0050 | P<0.0010
FC all 209 | 209 86 44 27 3
FC>1.1 209 | 209 86 44 27 3
FC>1.5 209 | 209 86 44 27 3
FC>2.0 88 |88 36 22 14 2
FC>3.0 23 |23 7 5 2 0
Expected by chance 10 4 2 1 0

29



Table 1c: GO enrichment analysis was performed on all the ANOVA genes. Highly

enriched terms found are: -Protein metabolic process, Phosphorylation,
Phosphate metabolic process

M

Cawzgory
LR

i

s

)
I o1

Ly *_CC_ &l
S0 3P st
SOTIAN_CC_Mi.
SOTIN_CC_A
SOTIAV_2R_sil
SOUIsN_CC AL
SOTINN_3P_a.l
SOTIAN_3P_siL
belay CC_ &
SO CC_én
50T _&in
) 3p
B P AL
N
3 CC_ i

Pl

i
o

2 D DT W
Lot
T
[

P

™
[
e

¥
[4
.

. [

LTI

To Te
e

I 5

-~
(Al el

e

]

'

Term

GCAD S irtraze I zr crgEne e part

GC:2d 4822~ ganele pa~t

GC:0084424%  Imtraze Wer pars

GL:ICI622 irtraze u'er

GC:0 A4 2A~nuseer patt

003,803 e lular compomert argacizacr ara

bigzeres’s

GCI0338T redular rozess

GCuICEI8CRNA spiic

GC:DCHI0E~RNA processitg
C0330529~r ko, ¢ eoprateir comzlox
m-ra prozess ng

)04 20 ~exntrazel L zr rrazrx patt

1003538 ~proteit —etaTolic process

237 3253~ gane le furre~

[n ]

30032374 e b zne tralczed l.mer

GO AZET e Llas zrocte'n rotadoliz sreTess
382003681 vp icvezoms

GC:3)53.C~p~ozphare 22

138:2° 260~ e Tula —zoromalssi o etabe ic proess
138:00° 3225 ~taze' lu gr e gane le

W22~ ogane e

RO EPRES Sl WA - of PN e

:2ICETAC p3zobate otat D ic process
«2JCATA3 p-ozphoras retane iz Zretes:

& D

[

0 l:_) DO0O000000 g? &2 n

[n]

RIJCLITIFANT 2MA nitang
GCICITAI oyop Esm
G2:200A%2 e | rershegsnesis

233532389 ze lulam sar. CTut OTETCaTTes &
3JCHI5T proteiT ‘cleirg

$2I5LL63 el s Forcustoresse—b v
CODIBZZE T su vur T Lstzr sssombly
D3AZ5Tze [ula- ~etazo ic proCoss

g3l imtrae i ermerkzrs Bou-@ ogate’le
:~Z*:l-"22'-"‘r'e— ~zne bcud o"gate e

51082~ u~to:der creten bingirg
-Dc&‘,h'-‘p'::::i* —peitet o zrezes:

PAICRIAT R A prezessng

[ KA

oy Gy

(5]

£y Dy

[Fad
>

nn_non.on_c?t)t;;pnqpqg_an

(=]
[x]
“~af
o
f‘.‘
w
B
‘-A
-

"

7200530 o gane le oopaizaticn anc Ecazress

L3283 pere sutvity

DAY ARS A o s pEt

w3035 2 b sy vrer mag Huztom

GCuI53230 ~rracrcrrg ecu 2t zgTp oL

30 DICETIS - techaroric ™

SWIC2R3: 8w

@C20 3232 i~taze i zrear re~b-zne bocu-d
grgErc i

G327 3223 ner —e—braTe-Sg.rrerzatele

& &

Malue

BODGH
RO T

Q031381158
JOCITANEG
2003085330
2003365222
L 2C323425
2EZD3245
33130
1302
"“CB 33380
2008137386
20883350405

2.033C302

20.C543208
a0s133180
2001361458

'..--1‘-'58 46
NAAG83E5

PO ST N

o
g O

n U

(YRS S RN R FTI  TI °

BN 4 0N sy Al ) s 1 Lt )
D MO LY ") % WU

>

et S

220552
2

X

6
3
.

C
3549
K

30



3

"S3UO JUBAJ[SI JSOW 3} 1k AYDIRIIIY Y} UMOP ISIYLIR] JBY) SOPOU PAIOJ0d A[dsudjul
1sowr 3y J, 1013 ] ad£) 3onpa1 0} paurrojiad sem 193] [BO1ISIIE)S SY) USY) puk sa1105a)ed [ejuared [[e papnjour APoIdxa
os[e s1 1089180 (OO UTEdd € 0] pajejouue dudd Auy 'saudd g 9571 10J JI0MIdU ULId) )N JO JUdWYdLIUY - eZ N1

wowddlaran uebio
wowddpasap Waishs 37
uoneiBiw |30 _f\:. einBes eansod - s1saueBdddw uebio

wonesBius i \ws vonenBes

Juawdo[RAGD PIMINIE (Ednofue

Juswdopaap [Bwsuehio Jemjesinw

Aupiow 189 jo godainBeu eansod ‘sisavefoydsoul w,s_ TS [EdoRUER

Bupua YO m:‘_wnm.s_a._zm

ssa0d 2718YASOIq MDY a..uus 0 uonenBas aalyetd

/ s ....ne._w _;3_ _
uaje - mE:E:@ uodsas ] ndudsurs)

- am_ |exojoiq L 1
ssao0d fauiukson I - d seyni :@wamw._ oapebou /\
oueinBau aapy d jexBojon
ssea0d Jgje0 10 _§_m_=u2

Awenb _B_mo“_oﬁvo uogeinBas woo::/m_ ojanep

E__:E__w _w:_m_xw Smm:uam!
JnjaoRInW

mmsﬁa u._ow_ms N
- \\ N
/ .:m_ﬁaanJm_ |20

~

. .{ ssaooud pliogetew Asewyd

mmvooim__cnsu ®nes . \ - -
m__gma. Anande soidadas

ey ,)// /,
uolanpsuey) jeubis ._c_xSnwow_cuwt:m__wu __8\ —

Auanoe so1deoe) Jedioiu uapusdsp-puebit

- gl
se10w0d ) esesawhod YNy :W__ uonduosuen jo uoneinBas ) .5/ /v_
- : alpueBio fopu eiqwow T
532000 oyieafioll pive swebio Ly :3%: o Aipnor 4010208 Qouso prosns
Jeiowoid |) sseIaUAI0d YNN wal) Upnduosue) jo uoneinBas aansod N S, —
= Femped Buteutis wordd Yoideos: payul ewfzve - S

A\
sy

NS N
. \Av/,
ssa00ud o_.anw@\,vun hxoqie sejdoikh

N



owmn amsodxa ay} are

g pue ‘p°z*1 “osop YSIH 10] H pue ‘9sop Mo 10J T ‘jonuo)) 10j spuejs D ‘sa[duwres ayy ur asueLea oy} Juimoys yOd - qg 21n31

43

HE

2= SIXe A'l = SIXEX

pou

(2l

el

[4L)

nm

.

pHm’

n.

s

5L

mne



133

-aseyd 1940931 2y 10} spues jsod-awreu sjdweg "sajdwes A19A0021 pue amsodxa ay) ur adueLeA Y1 Jurmoys y)d - 97 2181,

rosg) @ |

Lio M RN )

Raaitdl VEPITIPN

Ho-v) @

wog-91 @




34

' R
- N
- N
. e .
Ta .
. " § - .
* - e
i ol -
. - -
(%] — -
L . - " - : PR
o i oy s - e i v p_-
WNKSE VLAY
- -
e . i - "
. a0 o I
- [ - ™
+ £ 9 i
. 5 ;- 23
- ot 4 +1
. il b i}
€ e < it
" ve - EN
. 21 * v
- 02 . 3
* 4 sasin N L1
. rE4IH . :-41»
- ey - . e
- wasvar . o
: i ' e
o it - q oty
M dairt e i
- Feal¥ . o
. o 1mat3 . vl
ot Hwied - 18t
- Yiard - [TrEE)
‘ st . Fiatd
: t
= - £ -
M +s o e [}
Zad -
Haix= .
L T .
" - . ‘ 8 - - »
Lot . .-
- ' e .
= ol o 3
. b - . - 8
. - B
- - . S = s
< o o
- = > i3 .r 3 3 -
p e s e ip 0 AL kS e 2 T
VNBE VEidAD UV Fmbe i n beiz sl Ory)
YNUW UVIS
L]
- v s TH
== + *h E
- g 7" "
% e ¥
. I M i 13
R 1 2
. 4 I3 I3
R 1 15 2
. 5 3
f‘ . 32 5]
Pt __; =y tal
,f* 1D Ly
e T Vi Tt
x T ES Apavn ‘. b Todret
- ¥ Frvees . vt
+ Tadia oW sedsm
» Tmizl . :_:::
T34t v
1 et Faact - T
-+ L Th 18T
3 Taaad faae)
+ B T2u7} 1
* “ S#ry N AP
+ B Tl - T . 303
- - = - ~

- Ui
* A
- AL A

—

hormone

imulating

CYP19A), follicle st

b

Figure 2d - Relative abundance of mRNA transcripts coding for aromatase (A isoform

receptor (FSHR), cytochrome P450 cholesterol side chain cleavage (CYP11A), and steroidogenic acute regulatory protein (StAR)
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Dynamic Network Modeling

The genes identified as DE across all the time points (Table 1a) were used with
two different reverse engineering approaches, Graphical Gaussian Model (GGM) and
Dynamic Bayesian Network (DBN), to infer the transcriptional networks. Genes were
clustered (k=4) based on fuzzy clustering approach, and GGM and DBN were used with
each clusters separately for network modeling. The fuzzy clustering procedure allows the
genes to participate in more than one cluster. The use of this method in grouping related
genes better reflects the nature of biology that a given gene may be associated with more
than one functional group of genes.

In order to test the significance of the correlations, the ‘local fdr’ network search
was employéd as proposed by Schifer and Strimmer (2005) for GGM model. A total of
200 significant edges were selected from each cluster to infer the relationship between
the nodes. Network obtained from DBN with maximum of 3 parents size network and the
network obtained from GGM were very similar, but GGM networks were mostly
undirected compared to the dynamic Bayesian network (Figure 5a-d). Genes with more
than 10 interactions in each cluster and high correlation values in the network models
were found to be transcription factors (e.g. NR3C1, LHXS5, COE2, TFAP2C), steroid
hormone receptors (NR3C1, ESR2A), and aromatase (CYP19A1A), involved in
metabolic processes and trans-membrane movement of ions. The model also showed
some other important hubs or interacting genes such as cyp19ala, estrogen receptor beta
a, ATPase Na+/K+ beta 1, ATPase Na+/K+ alpha 1, low-density protein LDLR, signal
transducer and activator of transcription 4 STAT4, a number solute carrier family

members, OPRL, EDG1, macromolecule metabolic processes (CASP2, ACVRLI,
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FGFR3, MMP2), transcription factor encoding genes (i.e. CEBPB & CEBPA, HERI,
MMP9, LIMK2, and homeobox HOXC8A) (Figure 3 a-d). Interactions involving
cypl9ala and esr2a were highly similar in both GGM and DBN based models. Number
of gene interactions such as estrogen receptor with vitamin D receptor, estrogen receptor
with ATPase Na+/K_ beta 1a, cytochome P450 19A with estrogen receptor, and
glucocorticoid receptor (nr3cl) with ATPase Na+/K+ alpha 1 were confirming other
reports (Colin et al. 2003; Martyniuk et al. 2007; Filby et al. 2006; Kolla et al. 2002).
Three genes, cyp19ala, zgc:103585, and zgc:55389, were associated with tryptophan
metabolism, and cypl19ala and cyp26al were involved in gamma-
Hexachlorocyclohexane degradation. Based on the biological knowledge, some missing
edges were subsequently added to the network for sex hormone metabolism. Figure 5 a-b
shows the interaction between the steroid hormone receptors (nr3cl, nr2fla) and
cytochrome P450, family 26, subfamily A (cyp26al), and cypl9ala interacting with

estrogen receptor (esr2a). These interactions were consistent with GGM, DBN methods.
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Figure 2b: DBN for cluster 2: Nodes filled green and grey are the LDLR and the ATPases respectively.
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Steroidogenesis Network

We have constructed a model for the 92 genes on the microarray that has been
previously identified as their involvement in gonadal steroidogenesis (34) (Figure 4).
With average 2.8 numbers of neighbours per gene, StAR, CYP19A, LDLR showed up as
highly connected node. Interactions of StAR with aromatase, estrogen receptor was
within one node distance, while interactions with follistatin, vitellogenin were in a very
close interaction with StAR. Gene expression heatmap and the hierarchial clustering of
92 genes matched well with the results reported earlier by Villenenue et al. (2007).
Literature evidence was found for many other interactions such as activin regulation of
17beta-hydroxysteroid, LDLR interaction with cytochrome P450 (Bak B et al. 2009). We
observed that CYP19A1A and StAR were highly expressed during 96hr of exposure. \
Many variant of follistatins were present in our selective genes of interest, but follistatin

5 (FSTLS) expression was the highest at 24hr exposure, which also matched with the

previously reported results.
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Bayesian and GGM for Individual Time Exposure

The goal of this approach was to capture the relationships between the individual
time point network and compare the network constructed from the cluster approach. By
looking at the relationships at the cluster level, we reduce the number of relationships to
be estimated in the network, making the networks more tractable when considering large
sets of genes from the individual time points. Both GGM and BN were used to construct
the models for all the time points.
Inference of a transcriptional network at 24h exposure

Bayesian network and GGM was used to construct the transcriptional network for
the 209 significant genes at 24hr. The top 500 significant edges from GGM and the
utmost 3 parents size network search from BN were filtered for further investigation.
Genes appeared as highly interacting nodes in both the network models were involved in
protein kinase activities (e.g. LOC559341, dZ122B7.1), female gonad development
(cdhé), regulator of estrogen receptor (smarcel), low density lipoprotein receptor (1dlr),
transcription factor (tfap2c), statmin-like 2b gene (stmn2b), and homeo box genes
(HOXC8A, DLX3Db) (Figure 5). Model based on GGM had few additional highly
interacting genes such as cytochrome C1, sex determining region box (sox4a),
proteasome subunit, and ATPase 1a (psmcla). The interaction of LDLR with the
junctional adhesion molecule jam2 was confirming other report (Yang et al. 2008). GO
enrichment analysis for the genes interacting with the hubs such as statmin-like 2b gene
(zgc:110132), homeo box, and low density lipo protein receptor were associated mostly

with the metabolic process, ion binding, and intracellular membrane-bound organelle.
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Inference of a transcriptional network at 48h exposure

GGM and BN were used to construct the network for 398 DE genes, of which
GGM resulted in 158 genes not interacting with other genes and were filtered out, while
BN resulted in only 3 genes not participating in the interaction network. Some potential
biomarkers of fadrozole effect such as cytochrome P450 family members (CYP19A1A,
CYP26al, and CYP3A65), estrogen receptor (ESR2b), and hydroxy-delta-5-steroid
dehydrogenase (hsd3b7) were few differentially expressed in 48h. Some of these genes
from this time exposure were also present in the cluster 1, but there was very less
similarity between the two network, with very few interactions matched. The top 10
interacting genes with greater than 10 interactions were found to be involved in protein
kinase activities (zgc 110383, fgfr3, LOC564064, dZ122B7.1), male germ cell-
associéted kinase (MAK), transcription factor interacting proteins (LOC563463, NFYC),
chemokine receptor (CXCR4b), CNGAS, GCLM, Cyp3a65, rhag, and CREBI1 (Figure
6a). One of the hub genes, Rh-associated glycoprotein (rhag), was interacting with at
least 29 neighbours within 1 distance. GO enrichment analysis of this sub-network
showed that few of them are associated with macromolecule complex, and majority of
them had no annotations available. GO term analysis also showed genes such as Rhag
and VAMP4 associated with membrane attack complex, a protein complex produced by
sequentially activated components of the complement cascade inserted into a target cell
membrane and form'ing a pore leading to cell lysis via ion and water flow. Another highly
interacting gene LOC560805, which is similar to epidermal growth factor like domain
(EGF9), was found interacting with estrogen receptor beta 2, epidermal growth factor

receptor (egfr), and LIM-homeodomain transcription factor (lhx3) (Figure 8b). Reports



47

confirming the interaction of EGF-receptor activating estrogen receptor, and the role of
lim homeobox in gonad formation (Jonathan et al. 2009; Oshima et al. 2007). GO
enrichment analysis for another sub-network showed genes involved in oxido-reductase
activity, male germ-cell associated kinase, and cytochrome P450 family members (Figure
6b). GO over-representation comparison between 24hr and 48 hr shows an increase in the
number of gene involvement in terms such as lipid metabolism, cell surface receptor
linked signal transduction, steroid metabolism, spermatogenesis, physiological process,
regulation of transcription, and metabolism. Pathway analysis with Fisher Exact P-Value
of 0.1 and multiple test correction using Benjamini and Hochberg found four genes,
CYPI9AI1A, CYP26A1, CYP3A65, and HSD3B7 involved with two significant
pathways, gamma-Hexachlorocyclohexane degradation (KEGG 00361) and Linoleic acid

metabolism (KEGG 00591).
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Inference of a transcriptional network at 96h exposure

KEGG pathway analysis with Fisher Exact P-Value of 0.1 and multiple test
correction found that two significant pathways were involved during this time point:
Tryptophan metabolism (KEGG 00380): CYP19ala, zgc:103585, zgc:55389; and
Oxidative phosphorylation (KEGG 00190): CYTB, INDS, ND1. Cytochome b and
NADH dehydrogenase subunit 5 were found interacting in the network model with few
other, mostly unknown genes. Also, genes such as StAR, CYP46al, ESR2a, CREB313,
STAT4 were forming a sub-network structure, similar to the steroidogenic pathway
modeled by Ananko et al. (2002). Compared to the model from Anako et al., our model
had few additional nodes that were extending out of this sub-network structure such as G-
protein signalling regulator, vitellogenin, member from solute carrier family. Interaction
of signal transducer and activator of transcription (STAT) with StAR, estrogen receptor
alpha 2 with phosphodiesterase 1¢ (LOC799748) was reported earlier (Kanzaki et al.
1999; Etingof et al. 1984). A number of nodes such as nuclear receptor subfamily
(NR2F1), keratine 18, ADP ribosylation factor (arf5), and transgelin 2 (tagln2) were
interacting in a sub-networks. Some of the known sub-network structures were very
consistent in the networks obtained by both GGM and Bayesian Network. StAR was 4-
fold down-regulated, Cyp19ala was 13-fold down-regulated, and Vitellogenin expression

was 7-fold up-regulated during this exposure time (Figure 7).
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Inference of a transcriptional network at 192h exposure

Genes with functions such as steroid metabolism and steroid hormone receptor,
aromatase, estrogen related receptor (alpha), camp reposnive elements, and clusterin were
found differentially expressed during this time exposure. The gene CLU (clusterin) which
expresses in many tissues like testis, ovary and liver and is believed to be involved in
many functions (e.g. lipid transportation, inhibitor of apoptosis, chaperon activity)
displayed a central interacting role with genes related to steroidogenesis and hormonal
signaling, including cyp19ala, follistatin-like 1b (fstlb), transcription factor (tfap2b),
zgc:162977, estrogen-related receptor (esrrap2), and frizzled related protein (frzb)
(Figure 8). Expression of follistatin regulates follicular growth and may result in reduced
FSH, impaired ovarian follicle development, and augmented ovarian androgen
production (51). Frizzled related proteins are the modulators of Wnt-Frizzled signals.
Overexpression of Wnt regulates the expression of many genes including aromatase and
may perform important functions in the adult ovary (52, 53). Three significant pathways,
gamma-Hexachlorocyclohexane degradation, Inositol phosphate metabolism, and
Phosphatidylinositol signaling system, were found active during this exposure.

The network model from all four clusters were searched for biological
information using data mining tools. The literature evidence confirmed many interactions
in cluster 1 and 2. The network for each day was very densely organized. Querying these
network against the known databases, we found coherent small subnetworks, some of
which were consistent with known biological information. Genes dominating interactions
in the subnetworks were related to steroid metabolism, estrogen receptor, transcription

factor activities, and anatomical structure development. In the network model obtained
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from cluster approach, aromatase CYP19A1A showed strong correlation with elongation
of long chain fatty acids (ELOVL6), estrogen receptor (ESR2A), vitamin D receptor
(vdr), and follistatin-like 5 protein (FSTLS). Expression of FSTLS may result in reduced
FSH, impaired ovarian follicle development and augmented ovarian androgen production
(10). GO overrepresentation with Bonferroni Family-Wise Error Rate correction
(p<0.05) showed involvement of estrogen receptors along with vitamin D receptor
(VDR), transcription factor nr2f1, two other genes in the steroid hormone receptor
activity and interaction of cadherin with ATPase. The data suggests that VDR plays an
important role in endocrine function (54). A previous study showed that cadherin is an
instructive inducer of Na”/K”ATPases distribution.

Grouping algorithm with significance test performed on the genes for their GO
term showed some distinct pattern of GO enrichments. During the initial exposure time of
24hr, genes with molecular function such as transcription factor activity and transcription
regulator activity were significantly active. A number of genes were active in the
developmental process and grouped in intracellular or membrane bound organelle.
During 48hr of exposure a majority of genes were active in protein kinase activity,
phosphorylation and protein metabolic process and were integral to membrane.
Cytochome P450 members were also active during this period of exposure. During 96hr
of exposure, a significant number of genes were involved in localization, cofactor
biosynthesis, metal ion transport, and ion binding and were grouped as non-membrane
bound organelles and cytoskeleton. Genes in 192hr were active in developmental process,

cellular morphogenesis.
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Each time point had a unique set of differentially expressed genes. Many steroid
hormone receptors and their family members of nuclear transcription factors that are
critical to the reproduction and differentiation had increased activities during the initial
hours of the exposure. Exposure longer than 24h caused a significant increase in many
cytochrome P450 family members, estrogen receptors, hydroxy-delta-5-steroid
dehydrogenase, 3 beta- and steroid delta-isomerase 7, and glutathione S-transferase pi
and their involvement in many pathways such as metabolism of xenobiotics by
cytochrome P450, tryptophan metabolism, Linoleic acid metabolism, and ovary infertility
(55). Most of them were highly expressed during 96hr of time exposure. During the time
exposure of 192hr the expression for estrogen receptors, cytochrome P450 members
except aromatase, and StAR was very few or absent. Increased expression of aromatase,
vitellogenin, CYP11A, and StAR are associated with the fadrozole exposure and can be
used as a potential molecular marker.

Also, many of the network interactions recovered in our model, especially the
interaction between the known biomarkers of fadrozole exposure, were reported earlier in
the literature. Some additional perturbation in the co-expressed group of genes fine tuned
~ and improved some of the sub-network structures. Since fathead minnow is not well
annotated, removing the unknown genes from the network also improved the readability
of the network. Majority of the interactions obtained by shrinkage approach of GGM
were undirected while the interactions obtained from Bayesian Network were directed.
Results from both GGM and Bayesian Network strongly agreed with established

biological information.
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Results from our study strongly suggest that fadrozole interferes with the estrogen
activity in fathead minnow and that an exposure longer than 24hr may be required for
aromatase inhibitor to respond and interact with the endocrine system.

Both GGM and BN methods had quite similar resuits, except that GGM was
much faster, had more edges and showed node-distribution similar to power-law
distribution; however there was insufficient evidence as to which method performed
better. Both network models had several novel interactions with genes not previously
found associated with any module or biochemical pathways. Incorporating prior
knowledge and annotation information can be useful in reconstructing some known
relationships and proposing some novel interactions.

Overall Network Using Mutual Information Theory

Mutual information is used to measure the nonlinear relationship between the
expressions of two genes. Since these metrics are computed from a finite number of
samples, a threshold is often imposed so that two nodes are connected if the computed
metric between the two nodes is above the threshold. An efficient estimators is required
that can accurately compute mutual information from the data. Mutual information
network inference proceeds in two steps. The first step is the computation of the mutual
information matrix (MIM). The second step is the computation of an edge score for each
pair of nodes by an inference algorithm that takes the MIM matrix as input. Each mutual
information calculus demands the estimation of three entropy terms. A fast entropy
estimation is therefore essential for an effective network inference based on MLI. In this

study we have used the Miller-Madow estimator as described by Meyer et al. (2008).
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A total of 8600 annotated genes were taken for mutual information (MI)
calculation. MI was calculated for each pair of genes, and the weighted adjacency matrix
with values was generated, where the higher the weight is; the higher is the evidence that
a gene-gene interaction exists. Significant gene — gene weight matrix was imported into
Cytoscape using the force-directed layout algorithm, which resulted in a modular M1
network. Differentially expressed genes from individual time points were then mapped
into this overall network to investigate further using the GO enrichment analysis. Within
the cluster, some hub genes are: Sodium ion transport, nucleosome assembly, chloride
transport, defense response. GO tern enrichment for the bigger cluster relates to steroid
hormone receptor, inflammatory response, and immune receptor. Only greens present in
the cluster suggests that 192hr exposure may not have recovered yet compared to other

exposure samples (Figure 8 a-d).
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CHAPTER III
RAT BRAIN EXPERIMENT
Background

Over most of the last century, manufacturing, processing, and storage of the
explosives, 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine
(RDX), have been responsible for extensive contamination of soil, as well as ground and
surface water, throughout the U.S. and Europe. Unlike many other organic compounds
possessing nitro- moieties, such as pesticides and various feedstock chemicals, these
explosives are highly resistant to biological degradation, and are thus able to persist in the
environment for long periods of time.

Hexahydro-1,3,5-trinitrotriazine (RDX) is the energetic compound used in
military high explosives [56]. Resi\dues of this compound are deposited onto the surface
during live-fire training and are a common environmental pollutant from military
exercises. Although poorly soluble in water, RDX and its metabolites were identified in
water sources, including underground water resources [57]. They have raised health
concerns and have already been reported to affect central nervous system in mammals by
reversible seizure activity [58]. U.S. Environmental Protection Agency has classified
RDX as a class C potential human carcinogen.

In this study, we examined recovery from 1,3,5-trinitroperhydro-1,3,5-triazine
(RDX) induced seizures in Rattus norvegicus through changes in transcriptional
networks. The goal of this work was to identify networks affected by chemical exposure
and track changes in these networks as animals recover. We examined brain microarray

data from R. norvegicus treated with 0, 1.2, 12, 24, and 47 mgRDX/kg body weight at
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different time points after exposure (24hr, 48hr, 7d, 14d, 28d and 90d). We focused

mainly on the temporal gene expression data obtained from the 8k, two-color cDNA

microarray using the extended loop design experiment (Figure 9). The experiment

includes four technical replicates and three biological replicates.

Sample tissue | Brain
Treatment Solvent | 1.2 12 24 48
control
1.2.1 1121 471
XX= 1221122 47.2
replicate
1231123 47.3

Each arrow is a slide/hybridization

Base of arrow=Cy3
Arrowhead=Alexa647

All slides are labeled with sample replicate Cy3 vs A647

Figure 9: Interwoven loop design cDNA microarray

The analysis of genetic regulatory networks has received a major impetus from

huge amount of data such as cDNA microarray. To fully understand the regulatory

structures, different analysis tools will have to be used. To infer gene regulatory network,

one general strategy is to learn functional associations among the genes, called ‘guilt-by-

association’ strategy [59]. The advantage of taking this approach is that many of the
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available functional genomics data naturally describe relationships between genes, rather
than directly correlate with functions.

The choice of the algorithm depends upon the model architecture as well as the
quantity of the measured data [60]. Model selection is the most crucial step. A best model
selection technique would be the one with a balance of goodness of fit and the
complexity. To identify the structure of the network, an overall model fit measure is
needed to assess how well a genetic network fits the data and to compare the merits of
alternative network structure. The model fit measure allows us to rank genetic networks
according to their ability to fit the observed data. Score-based approach in principal is
more powerful. However, even a simple model can produce an incredible number of
possible graphs [61]. It is nearly impossible to explore all the graph models to determine
the network consistency; therefore, it is essential to include biological constraints to
narrow down the complexity of network inference. Over the past years, many modeling
methods have been proposed, and Bayesian network in particular has become very
popular. Some methods exploit the prior knowledge on the network structure, while some
focus on the conditional dependencies between the genes. Several approaches for gene
regulatory modeling (GRN) have been proposed in the literatures and can be used. A
majority of those modeling approaches describe graph mathematically as: Bayesian
Networks (BN), Boolean Networks, Differential Equations, or Graphical Gaussian
Models (GGMs). We have used BN in this study. There is a limitation with BN that it
cannot capture feedback loops, which are essential in genetic networks. Dynamic

Bayesian networks (DBN) can be used for time-series data, since DBN can capture the
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dynamic behavior of the network, and more importantly, they can describe the feedback
mechanisms in the networks.
Materials and Methods

All chemical exposures and microarray experiment were conducted in the
Environmental Laboratories (EL) at the US Army Corps of Engineers, Vicksburg, MS,
USA.

Experimental Design

Female Sprague-Dawley rats (175-225 grams) used were from the in-house
breeding colony (College of Pharmacy, University of Louisiana at Monroe [ULM]) and
treated in accordance with the Guide for Use and Care of Animals (National Research
Council 1996). Food was removed the night before dosing, which occurred the next
morning between 8 and 11 AM. Rats were weighed then and were randomly assigned to
treatment. Doses, which were administered by oral gavage, consisted of control (5% v/v
DMSO in corn oil), RDX ranging from 1.2 to 47 mg/kg in 5% DMSO in corn oil
emulsion. Animals were monitored for seizure activity after dosing and were euthanized
using CO; if moribund as stated by OECD criteria (OECD 2000). Brains were flash
frozen with liquid nitrogen, crushed with mortar and pestle over liquid nitrogen, placed in
RNA Ice overnight, and then frozen at -80 degrees C. RNA was then extracted.

Total RNA from three biological replicates at each dose was compared using the
two-color interwoven loop design microarray experiment [62]. cDNA from 1mg total
RNA was synthesized, hybridized to arrays, and detected by secondary hybridization to
Alex647 and Cy3 dendrimer oligonucleotides using an Array900 detection kit per

manufacturer’s instruction. cDNA was hybridized to 8k Sigma/Compugen rat 70-mer
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oligonucleotide libraries arrayed on glass slides (http://www.cag.icph.or/). After
hybridization, slides were scanned using a 5-micron ChipReader microarray reader
(BioRad Hercules, CA) [62].
Microarray Data Preprocessing and Analysis

Raw intensity data was obtained from image analysis program GenePix and was
imported into R package “Bioconductor”. Print tip group loess was applied within the

array and Quantile normalization was used between the arrays (Figure 10).

M Box Piot for slide 31 with no normatization M Box Pist for siide 31 with within and arrays

oo -[f} 1aw00

3

................................
123456789 11 13 15 17 19 2t 23 25 27 2B 3}

B e e e e S LA M s toe e o s e e T
1 a 5 7 9 11 13 15 17 9 2 23 25 27 20 N
Print Tip Group Erint Tip Group

Figure 10: Box plot after the normalization

The normalized log (intensity) and log (ratio) values were exported, and missing
values were estimated using least square principle [63] and introduced to Bayesian
Analysis of Gene Expression (BAGEL) [64] model for identifying the differentially
expressed genes (DEG).

Transcriptional Network Modeling
We compared two algorithms to check the consistency in the network models and

also to find some interesting interactions from the networks from the two methods.
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Overall DEG and the DEG from each time were modeled with GGM and Mutual
Information Relevance Network.

A more promising machine learning method is given by GGMs. These models are
based on the assumption that the data are distributed according to a multivariate Gaussian
distribution N(m, Z). But to avoid the shortcomings of relevance networks based on
Pearson correlation coefficients, partial correlations are considered in Gaussian graphical
models. That is, the strength of a direct association between two nodes X; and X is
measured by the partial correlation coefficient p;j, which describes the correlation
between these two nodes that is conditional on all the other nodes in the system. From the
theory of normal distributions, it is known that the partial correlation coefficient p;; can

be computed from the inverse Q = = of the covariance matrix = via

— g, j

where ;; are the elements of the fnatrix Q.

The disadvantage of this procedure is that the empirical covariance matrix can
only be inverted if the number of observations exceeds the number of nodes in the
network, that is, if the matrix is nonsingular.

To learn a Gaussian graphical model from such data, Schafer and Strimmer [37]
have proposed the application of a shrinkage covariance estimator. The shrinkage
estimator 3. is guaranteed to be nonsingular so that it can be inverted to obtain a new
estimator Q = (Z')"l for the matrix Q. In order to test the significance of the correlations,
the “local fdr” network search was employ as proposed by Schafer et al. The local fdr is

an empirical Bayes estimator of the false discovery rate. This method computes the
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posterior probability for an edge to be present or absent, and takes account of the

multiplicity in the simultaneous testing of edges.

The method of relevance networks, proposed in Butte et al. [19], is exclusively
based on pairwise association scores and therefore represents a very simple machine
learning approach to reverse engineering regulatory networks. An association score is
computed for all pairs of variables Xi and Xj (i,j 2 € {1, .. ., n}) from the data. For

continuous data, the Pearson correlation coefficient can be used:

cory {x. v} = BN N
% ‘”L A B 5 . ~, e ot 4,
VGPEL N -2 GRLL. 0t -2

where x=(Xj, ...,Xn) and y=(y1, ...,Vm) are the m-dimentional observations of two different
variables with empirical means x and y. Interpreting the variables as the nodes of a
network, the pairwise association scores are compared with a predefined threshold value,
and the nodes whose pairwise association scores exceed this threshold are linked by an
undirected edge.

In a relevance network, the interactions are not inferred within the context of the
whole system, that is, there is no distinction between direct and indirect interactions. Not
rarely does a high correlation coefficient between two nodes indicate only a pseudo-
association, for example, if both nodes depend on a common regulator. Hence, a high
correlation coefficient between two nodes does not necessarily indicate a direct
association, and with regard to the graphical representation of the network, only the direct

interactions are of interest.
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In statistical terminology, a relevance network based on the Pearson correlation is
referred to as a covariance graph. The threshold value can be estimated by a
randomization test so as to keep the number of false positive edges below an a priori
specified tolerance level. Alternatively, instead of the Pearson correlation, the mutual
information can be used to compute the pair-wise association scores in relevance
networks. Mutual information scores can be computed for discrete variables only, so that
continuous data have to be discretized; this incurs a certain information loss. But an
advantage is that this score can deal with nonlinear associations [19].

Network was fine-tuned based on the node scoring and density cutoffs using the
cytoscape plug-in MCODE [39]. Sub-networks were generated from the high cluster
seed. Sub-networks created by this method are easier to investigate the interactions and
compare them with the biological information. Networks were searched for any set(s) of
recurring regulatory pattern called network motifs, and degree distribution and other
network properties were calculated.

Biological Network and GO classification

The growing database of biological data includes information discovered by
methods such as direct and experimental while others are indirect, predictive, and
computational. Instances of such interactions are the observed or predicted relationships
between genes and proteins, and they can be represented as networks of functional
association [67]. Published databases such as BIND [68], KEGG [69], Predictome [70],
and STRING [71] provide the conceptual platforms on which software for leveraging the
full content of the interactome could operate. STRING uses conserved genomic

neighborhood arrangements of genes to infer functional linkage. It is more error tolerant
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when assembling conserved neighborhoods, ignoring short, partially overlapping genes
on the antisense strand that are likely to be spurious predictions.

Exploring Gene Ontology annotations is a common and widespread practice to
get first insights into the potential biological meaning of the experiment in structured and
controlled classifications. The Gene Ontology Consortium defines GO as an international
standard to annotate genes [72]. Exploring all the three domains, biological process,
molecular function, and cellular component in a term-to-term approach has a drawback
that it does not respect dependencies between the GO terms that are caused by
overlapping annotations. A parent—child approach is a statistical analysis of GO term
overrepresentation that examines each term in the context of its parent terms could be
used [73].

Results and Discussion

The regulatory networks based on mathematical models and biological networks
based on existing biological information were obtained as described in the Method. The
network models were represented as directed and undirected graphs with edges between
them representing the mode of activation, repression, or unknown.

The differentially expressed genes were identified (see Table 2) and were further
investigated for their Gene Ontology over-representation, biochemical pathways, and
transcriptional network models. Dose response shows that more genes were expressed
when treated with 24mg of RDX at all time points. With a threshold of p-value<0.05 and
fold change>=1.5, a total of 937 genes were found significantly expressed across all six-
time points. The number of DE genes was very high at day 7 and lowest in day 14, but

clustering on conditions revealed a strong batch effect on day 7 (Figure 11). The data was
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adjusted to remove batch effects using the COMBAT software developed by Johnson et

al. [74].

Table 2: Summary table of the differentially expressed (DE) genes obtained using the

Bayesian analysis and comparison between each time point.

Day (DE 2 7 14 28 90
genes)
1(167) 47 28 2 23 23
2 (260) 41 1 28 36
7 (494) 1 18 66
14 (10) ’ 1 1
28 (97) 19
90 (320)
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Figure 11: Condition tree across all samples shows a batch effect on Day 7.

Majority of the DE genes were related to GABA receptors, glutamate receptors,
dopamine receptors, cholinergic receptors, Na/K ATPase exchanger, cytochrome P450
family members, solute carrier family members. Genes from individual time points were
also analyzed separately to find the functional differences between the early exposures
versus late exposure genes. Genes with functions such as Glutamate aspartate
transporters, GABA receptors, Na/K transporting ATPases, Ca ATPase, cholinergic

receptors, calmodulin dependent protein kinases, interleukin, and heat-shock proteins
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were differentially expressed during the early exposure. Genes involved in the first two
exposures were very similar in terms of the gene-functions such as calcium binding,
voltage gated channel members, cholinergic receptors, dopamine receptors, calmodulin
dependent kinases. No neurotransmitter gamma-aminobutyric acid (GABA) was
expressed in the second day expésure. Day 7 had many genes related to glycoprotein
hormone, gap junction membrane channel proteins, dopamine receptors, thyroid
stimulating hormone, and follicle stimulating hormone, and luteinizing hormone,
somatostanin receptors, chemokine receptors, olfactory receptors family members,
protocadherin family members, and few cytochrome P450 members were expressed.
Dopamine receptors, chemokine receptors, calmodulin dependent protein kinases, and
many cytochrome P450 members were expressed on day 14, 28 and 90.

Many ion channels, Na/K and Ca ATPases, neurotransmitter inhibitors such as
Gabrg3, Gabrrl, Gabrr3, Gabrad4, Gabra6, glutamate receptors, and dopamine receptors
were differentially expressed during the first two time points (day 1 and day 2). More of
chemokine receptors, calmodulin receptors, and cytochrome P450 members such as
Cyp3A, Cyp2B, Cyp24B, Cypl1A, and Cypl1B were differentially expressed in the late
time points (day 7, 28, and day 90). Exposures of RDX to the rat brain and our result
from early time point suggest that RDX might trigger freeze messengers, also called
inhibitory neurotransmitters, such as the GABA receptors. Inhibitory neurotransmitters
allow chloride to enter the ion channel, which freezes the next neuron and makes it harder
to excite. Excitatory neurotransmitters allow sodium to enter the ion channel, which
excites the neuron and makes it pass the message. CYPs appear to have specific

functions in brain (e.g. regulation of levels of endogenous GABA receptors). The role of
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CYPs in the brain, a highly heterogenous and complex organ, is a relatively unexplored
field of scientific enquiry. It holds promise for furthering our understanding of inter-
individual variability in response to centrally acting drugs as well as risk for neurological
diseases.
GO Classification and Pathway Analysis

All the differentially expressed genes were analyzed for the GO associations. In
order to find the GO terms that are statistically significant within the group, a control set
of genes needs to be used to obtain a total count of occurrences of each GO term. We
used Rattus norvegicus database as the background using DAVID tool. For each GO
term, a p-value was calculated representing the probability that the observed numbers of
counts could have resulted from randomly distributing this GO term between the tested
group and the background or reference group. The Benjamini and Hochberg correction
method was used to control the false discovery rate. Functional annotation clustering
revealed that the large number of genes involved in the GO terms such as development
processes, cell to cell signaling and communication, signal transduction, transmission of
nerve impulse, synaptic transmission, neurological system processes, and calcium ion

homeostasis (Figure 12).
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kinase activities. A total of 129 genes classified as receptors such as cytokine, G-protein
coupled, Immunoglobin, Ligand-gated ion channel, nuclear hormone, and protein kinase
receptors.

Nearly 56% of the total DE genes on day 1 were up-regulated. A threshold of
minimum 2 genes and “Benjamini” multiple testing correction (p<0.05) resulted in 23
genes from day 1 involved in 4 different pathways (Figure 13a-b): Neuroactive ligand-
receptor interaction, Neurodegenerative diseases, GnRH signaling pathway, and
Huntington’s disease. Two neurotransmitters gamma-aminobutyric acid A receptor,
subunit alpha 6 (Gabra6), gamma-aminobutyric acid B receptor 1 (Gabbrl), and
neurohormone receptor (GnRHR) were up-regulated and found interacting with other 8
genes in GPCRs. The gonadotropins induce ovulation and stimulate estradiol and
progesterone production, which in turn, bind to specific amygdaloid hormone receptors
and influence neural activity including epileptiform discharges. Amyloid beta precursor
protein (APP) was interacting with glutamate receptor (GluR), glutamate-cysteine ligase
(Gcelm), Snap25, and Camk?2a. Calcium signaling is crucial for several aspects of
plasticity at glutamatergic synapses. Increased MAPK3 and GABA receptor activities in
neuron can be correlated with neuronal seizures. GO network also revealed the

b1

involvement of genes in terms such as “transmission of nerve impulse”, “neurological

k1Y

system process”, “synaptic transmission”, etc. (Figure 14).
Approximately the same % of genes were up-regulated on day 2 but no
neurotransmitters were differentially expressed, which confirms our observation that we

did not see rats getting seizures after day 1. More genes were found involved in two

significant pathways we found significant on day 1: Neuroactive-ligand receptor
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interaction and neurodegenerative diseases. Overrepresented GO terms for gene sets from
day 28 and 90 were found very similar. They were mostly enriched as signal
transduction, neuronal activities, neurogenesis, and sensory perception. Molecular
functions for day 90 were involved in protease inhibitor, signaling molecules, and ion

channels.



Table 3a: GO Biological Process enrichment for the DE genes shows which Gene
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Table 3b: GO Molecular Function enrichment for the DE genes shows which Gene

Ontology (GO) terms are significantly overrepresented (+) in a set of genes.
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Figure 13-a: Total of 11 genes enriched (red stars) in the G-coupled receptors (p<0.05)
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Figure 13-b: Gene enrichment in neurodegenerative disorder (red stars)
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Network Reconstruction

We used two alternative approaches for the evaluation of the reconstructed
network model, based on mutual information and gene association network.

Mutual information relevance network. A relevance network is a group of genes
whose expression profiles are highly predictive of one another. Each pair of genes related
by a correlation coefficient larger than a minimum threshold and smaller than a
maximum threshold is connected by a line. Groups of genes connected to one another are
referred to as networks. The correlation coefficient between genes is calculated by
comparing the expression pattern of each gene to that of every other gene. The ability of
each gene to predict the expression of each other gene is measured as a correlation
coefficient. Genes are represented as nodes in a network and edges are drawn between
them if their correlation coefficient falls between the minimum and maximum thresholds
specified in the initialization dialog. The system developed makes no prior assumptions
about the underlying models linking gene expression but develops functionally relevant
groupings of genes across the conditions.

We used the dataset containing 938 differentially expressed genes at 6 time points
for pairwise calculations of the mutual information between them. Measurements of all
genes were compared against each other, resulting in 271,183 total pairwise calculations
of mutual information, ranging from 0.1 to 0.97. The number and size of the relevance
networks increases with the decrease in the mutual threshold (Table 4). We set the
threshold to 0.90, which produced 14 subnetworks with 565 interactions using a total of
192 genes (Figure 15a). Subnetworks were ranked based on the number of linked genes

in the clusters. The associations between the genes in the networks were validated using
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the biological literatures. Subnetwork #1 was found to link with 159 other genes. GO
Molecular Function enrichment analysis with significance cutoff <0.05 showed a large
subset of genes involved in functions such as neuro-transmitting receptors, glutamate
receptor, potassium voltage-gated receptors, and olfactory receptors. Top hub genes and
their interacting genes were found to be involved in signal transducer activity and
receptor activity. Laminin (Lama5), lectin-galactoside binding protein (Lgals4), Serine-
proteinase inhibitor (serpina3m & serpinal0), hemochromatosis (Hfe), forkhead ’boxes
(Foxd4 & Foxe3), glutamate receptor onotropic, kainate 2 (Grik2), and GABA (A)
receptors (Gabrg3, Gabra4, Gabrr3) appeared as some of the hub genes in the network.
The major excitatory and inhibitory neurotransmitters in the brain, glutamate and GABA,
activate both ionotropic (ligand-gated ion channels) and metabotropic (G protein-
coupled) receptor, and are generally associated with neuronal communication in the
mature brain. Biological literature also suggests that elevated expression of laminin may
play a role in the development of epileptic seizures in patients with intractable epilepsy.
KEGG pathway enrichment analysis also suggests their involvement in pathways such as
neuro-active ligand receptor interaction and hematopoietic cell lineage and in cytokine-
cytokine receptor interaction. The linked genes in the network #2 were involved in
structural molecular activity. Network 5 connected Ache, Akap9, and Mylk2, which are
known to be involved in catalytic activities. Network 6 linked Clcn$, chloride channel 5,
Nox1, nadph oxidase 1 and Bsn, a presynaptic cytomatrix protein. This exact interaction
has been reported in the literature as chloride channel prevents Nox-induced
accumulation of negative charges in the endosomal lumen. Few networks contained

various types of links, including a few associations not presently explained in the
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biological literature. The genes such as GABBR1, gastrulation brain homeobox 2(TF),
calcium/calmodulin dependent protein kinase (CAMK2A), cholinergic receptors, and
glutamate cysteine ligase modifier subunits formed a sub-network.

MI calculation using shrinkage entropy estimator. Shrink estimator combines two
different estimators, one with low variance and the other with low bias by using a
weighting factor 1 € [0,1]. Shrinkage is a general technique to improve an estimator for a
small sample size. As the value of 1 tends to one, the estimated entropy is moved toward
the maximal entropy, whereas when | is zero the estimated entropy tends to the value of

the empirical one (Hausser J, 2006).



Table 4: Mutual Information threshold search for relevance network.

Mutual Information | Links Subnetworks
0.97 0 0
0.95 8 8
0.95 9 8
0.93 116 14
0.93 64 19
0.91 343 14
0.90 454 13
0.90 565 14
0.85 3105 9
0.75 15297 18
0.1 251222 1

84
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Figure 15a: Total of 192 genes interacting in 14 relevance networks
created with mutual threshold of 0.90. Node labels represent gene

symbols.
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Figure 15b: Subnetwork #1 has 159 genes linked together.

A total of 6400 well-annotated genes from the array were considered for the
mutual information network estimation. Top 25% of the gene pairs based on the weight
was considered for network modeling. MI matrix was then normalized using
x-min(x))/(max(x-min(x))), so that the network’s weighted adjacency matrix was
between zero and 1, where x is the matrix of the MI data to be normalized. The resulting
network was very modular, with the two large modules, made of 1900 genes and 410

genes and many small modules (Figure 16a). Network was color-coded based on the time
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and found that day 7 and 90 were mostly together in the small modules (Figure 16b). GO
molecular function and biological process enrichment analysis suggest their involvement
in metal ion binding activity and metabolic process. We also found that one of the two
large module was mostly involved in protein binding and negative regulation of
biological process (Figure 16c). We also found that these modules were functionally
similar.

Many receptors such as acetylcholine receptors, glutamate receptors, GABA
receptors, adrenergic receptors, protein tyrosine phosphatase receptors were distributed
all over the network, some of them were also acting as hub nodes in the network. Early
exposure sample had many glutamate receptors and GABA receptors interacting in the
network. B-crystallin (CRYAB) and Voltage gated channel (KCNH?7), and few other
receptors were playing a central or hub gene role (Figure 16d). Literature evidence
suggests the role of these receptors in seizures, neurodegenerative diseases, and brain
toxicity.

Graphical Gaussian Model (GGM). The differentially expressed genes across all
the time points were selected for the network construction using the graphical Gaussian
model. Partial correlation (pcor) was estimated for every gene pair from the 938 DE
genes using the package developed by Schafer et al. (2006). For assessing the
significance of edges, a two-sided p-values for the test of non-zero correlation, posterior
probabilities (1-local fdr), as well as tail based g-values, were computed. A cutoff of 0.1
local fdr was used to determine and extract the significant partial correlation (edges),
which resulted in a network with 747 nodes and 15310 edges. Total of 191 unconnected

nodes were dropped from the network. Another network was constructed using the 500
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most significant edges, which involved 237 genes in the network. Highly interacting
genes in the network were insulin like growth factor binding proteins, calcium binding
proteins, dopamine receptors, clock homologes, caldindin, and mitigen activated protein
kinases. Genes such as prostaglandin (PTGER1), gastrulation homeobox (GBX2),
heatshock protein (HSPA1L, HSPB1), neurotransmistter inhibitor (GABRA®6), glutamate
cystein and ammonia ligase (GCLM and GLUL), clock homologe (CLOCK), and

prolactin (PRL) were found as hub genes in the network for the early exposure samples.



89

. v . .
. » .
b »
. . . . .
. .
. . » . . - A4 LIR
b 3 ®e o LI .o
-
. o * . . -
M . . . oo LI
» . . c e o .. - .
- * » - ’
. . .. .
¢ * . . > . [
. . s . K] .
. . .
. * - - \d .
» . . .
LI 3 .- . < - .
o &y . . . .
. . e o
. Ad .
> . . hd . »
. L . . .
. . »
- . .
. e .
. .
. M - . \d . . ..
. . ¢ M .
. . . .
R .« ® . o®
0 - . »
. .
" . (] ., . . .
. "
» . .
» L
. M .
L. .
. . .
. .
. - o .
» M . d -
.
. R . . .
. « - . «
.
. % ., »
. o
.
.
) .
.
*e
.
» .« *
»
.
. . . N
. . s
¢ . . . . .
. . ot . . .
. .
. . . . . .
. . .
(3 .
. .
.
“o
. . -
A . . .’ .. . .
« e . * .
- . -
. °
L'
.
. .
.
. . . . . .
. . .
. . . .
. . . . . -
. . ) »
. .s - . )
. . .
.
. . . .
. . . .
» -
* .
.
. . .
. R
»
. . .
v e .
.
.‘t . . -
.
. e .
. P LI . ® .
. . . *
« .
» .
.
. . .
. .
. .
‘e
. P ) "
. . - » . . *
* . . . .
LN . .
. .
.

Figure 16a: Modular network constructed using the mutual information theory.
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&

Figure 16b: Genes from each time points are color-coded. Day 7 and 90 are forming
many small sub-networks (circled), suggesting the gene activity or expression are similar

and distinctly different that day 1 and 2.
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*Protein binding
*Negative reguiation of biological process

Figure 16¢: Genes in the highlighted module have functions such as ribosomal proteins,

voltage gated channel, kinase proteins, and G protein coupled receptors.
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Many receptors, including glutamate receptors and neurotransmitter inhibitor
receptor, were playing a central role in the early time point network model. We found
some literature evidence for the interactions involving the two neurotransmitters (Gabra6,
Gabbrl) and vesicle-associated membrane proteins (vamp2, Vamp2). Another highly
interacting node was a receptor LOC286982, which may play a role in neuroendocrine
responses and behavior. Gene in day 2 network had calcium binding proteins, voltage
gated channel proteins, serotonin receptor, acetylcholinesterase, and transcription factors
playing a central role, but no glutamate or neurotransmitters were active (Figure 17a-b).
Genes surrounding the transcription factors and receptors were mainly involved in
molecular activities such as transcription regulator activity, protein binding, and response
to stress. Literature evidence was found for the Interactions such as SMAD7 and STATS,
Dopamine and Apoptosis regulators, GnRH receptor gene, and thyroid stimulating

hormones.
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CHAPTER IV
CONCLUSION

Analysis of differential expression may provide new information about the
biological pathways involved in a process. This is often done by looking for over-
representation of functional classes in gene clusters derived from expression data [21].
Even simple pair-wise comparisons can indicate novel interactions [22]. Using the
technique of linking all genes by calculating comprehensive pair-wise mutual information
and then isolating clusters of genes, or Relevance Networks, by removing links under a
threshold, we were able to find biologically relevant clusters. Although Relevance
Networks can be made at any threshold mutual information (TMI), we successfully
clustered 192 genes into 14 Relevance Networks at the TMI of 0.90. Decreasing the TMI
will introduce more genes and hypothetical associations. Even though some of these
associations are noise because some high mutual information may be calculated by
chance, the associations at lower TMI may represent novel hypotheses. Increasing the
TMI will restrict the Relevance Networks to include only the strongest hypothetical
associations.

We have used Mutual Information (MI), Bayesian Network (BN), and GGM
models for gene networks (GNs) and tested each model with both artificial and real
biological networks. We analyzed the toxicogenomic and demonstrated the usefulness of
GN’s as a computational approach for the analysis of transcriptional regulation. In
summary, a GN can be used, among other things, to i) define transcriptional factors
(activators and inhibitors) for a target gene and ii) find co-regulated genes. The intention

of the efforts for developing both theories and software for network analysis is that these
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networks could provide useful clues about biological systems, thus helping with the
design and refinement of wet experiments.

The MI model is suitable for a large network, whereas BN and GGM models are
suitable for small networks. A learning scheme that scales up to a large number of
variables should be investigated, and is a future goal. Nowadays, the finding of an
efficient reconstruction method with no constraints in the number of nodes using BN is a
cutting-edge problem (Bar-Joseph, 2004).

Comparative toxicogenomics has the potential to identify conserved responses
between humans and animal research models that are associated with toxicity, which can
be used to develop predictive toxicity tools. In addition, these approaches are likely to
provide empirical evidence supporting the transfer of functional annotation from known
human and mouse genes to unknown genes or ESTs in the rat or ecologically relevant
species like fish, based on sequence similarity and comparable expression patterns.
However, platform differences, inaccurate annotation across species and microarrays, the
lack of tools to facilitate comparative analysis, one-to-many relationships between genes
and probes (e.g., one gene in rat has two or more orthologs in humans), incomplete or
poorly annotated genomes, discrepancies between databases which define orthologous
relationships (National Center for Biotechnology Information (NCBI) vs. European
Bioinformatics Institute (EBI)), and the limited availability of functional annotation
complicate effective cross-species comparisons and confound comparative analyses.
Current gene ontologies are also imprecise, incomplete, and inconsistent across species,
which compromises the accurate interpretation of toxicogenomic data relative to a

phenotypic endpoint. Therefore, consistent approaches to annotation curation are required
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to ensure the accurate interpretation of the data. In addition, despite more complete and
accurate annotation for the human and mouse genomes, the rat continues to be the
traditional rodent model of choice for toxicology studies.

The interpretation of toxicogenomics data will continue to be a difficult task, and
more effective tools to facilitate their integration and interpretation are required.
Typically, toxicity is a persistent and easily identified endpoint; however, toxicogenomic
responses are dynamic and subject to reversible temporal changes that can be displaced in
time relative to toxicity. The added challenge is to accurately determine whether acute or
short term toxicogenomic responses are predictive of subchronic or chronic toxicity
outcomes. In addition, dose-response studies are required to differentiate adaptive versus
toxic responses and to establish toxicogenomic thresholds that need to be exceeded prior
to the initiation of the cascade of molecular responses leading to an adverse effect.

Our studies show that individual responses are not independent but form a
network of interacting networks. The challenge that remains is to comprehensively
integrate the disparate chemical, biological, toxicological, and toxicogenomic data in
order to elucidate the mechanisms and networks involved in toxicity and to develop
quantitative models capable of accurately predicting thresholds. Complex network theory
has been used to investigate technological and social networks, and similar principles
have also been shown to govern complex biological networks. Therefore, the most
significant challenge will be the application of comparable network approaches that
integrate disparate toxicity data in order to reduce uncertainties and to support

mechanistically based quantitative risk assessment.
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