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ABSTRACT 

Sea-level rise is an escalating threat to coastal wetlands as increased inundation 

and saltwater intrusion can lead to lowered productivity, decreased biomass, and plant 

death – and ultimately land loss. In chapter one, I detailed the interactive effects of 

inundation and nitrogen on two commonly found saltmarsh species, Spartina alterniflora 

and Spartina patens. I examined productivity and metrics to these stressors using a 

controlled mesocosm experiment in the western channel of the Pascagoula River, 

Mississippi. I found varying strategies of growth between species and differing responses 

between the short- and long-term. Overall Spartina alterniflora performed better with 

increased inundation than Spartina patens. Both species responded positively to nitrogen 

additions in the above- and belowground biomass, with the latter shown only in the long-

term. In chapter two, I evaluated the impact of sea-level rise on coastal wetlands that are 

important for an underrepresented community in Louisiana. I worked with the Pointe-au-

Chien Indian Tribe (PACIT) and Louisiana Sea Grant to understand saltmarsh resiliency 

to increased inundation. I applied a mechanistic landscape model to predict coastal 

wetland change impacted by sea-level rise in comparison to vulnerability assessments 

from traditional ecological knowledge (TEK). By integrating the biophysical model 

predictions with land-based, generational assessments, I highlighted vulnerable areas to 

sea-level rise while including the tribe’s sustainability goals, producing a spatial tool that 

can be used by PACIT and land managers to prioritize saltmarsh restoration. The findings 

in this thesis will improve our understanding of coastal resiliency and ecosystem health 

under future sea-level rise and climate change.
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CHAPTER I - THE IMPACT OF INUNDATION AND NITROGEN ON COMMON 

SALTMARSH SPECIES USING MARSH ORGAN EXPERIMENTS IN MISSISSIPPI 

1.1 Introduction 

Coastal wetlands provide a myriad of resources and services for humans and 

wildlife (Wu et al., 2020; Costanza et al., 1997; Engle, 2011).  In these ecosystems, plants 

are engineers – they shape landscapes through vertical accretion of organic and inorganic 

materials to form wetland platforms, prevent erosion through their root systems, affect 

community structure, and provide habitat for various species (Morris et al., 2002; 

Snedden et al., 2015; Wu et al., 2020).  

With these factors detailing how coastal wetland plants affect their ecosystems, 

any alterations or threats to plant growth may affect the system stability, particularly 

regarding how coastal wetlands tolerate sea level rise (Langley et al., 2013). This 

highlights the importance to understand how changes in inundation affect plant growth, 

and subsequently, how biological processes combat or adapt to these changes and to 

modify their physical environment (Morris et al., 2002; Kirwan et al., 2010). Previous 

studies show that a small amount of increased flooding may promote biomass growth and 

productivity but a continued increase of inundation results in decreased biomass and 

productivity in dominant salt marsh species (Morris et al., 2002; Langley et al., 2013; 

Kirwan and Guntenspergen, 2012 and 2015; McKee and Mendelssohn, 1989). Other 

studies show the above- and belowground biomass of Spartina alterniflora and Spartina 

patens was highest when inundation was at its minimum, also noting that the negative 

productivity response to inundation was more pronounced in the S. patens (Snedden et 

al., 2015). The similar response of vegetation to inundation can also be found in 
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vegetation located in less salty environments. A marsh organ experiment showed that 

optimum inundation levels existed for above- and belowground biomass of Sagittaria 

lancifolia, and that the biomass decreased quickly beyond the optimum inundation levels 

(Grimes, 2021).  

The negative impact on plant productivity from excessive inundation further 

limits sediment trapping by aboveground biomass and reduces organic matter 

accumulation by belowground biomass, and therefore decreases vertical accretion, 

accelerates submergence, and becomes a self-accelerating cycle (Snedden et al., 2015; 

Mendelssohn and McKee, 1988; McKee and Mendelssohn, 1989; Leonard and Croft, 

2006; Nyman et al., 1993, 2006; Kirwan and Guntenspergen, 2012 and 2015). Along with 

the vulnerability coastal wetlands face due to sea level rise, freshwater diversions from 

upper rivers can also result in prolonged inundation and higher water levels, as well as 

impacting salinity dynamics and nutrient cycles of wetland systems (Grimes, 2021; 

Snedden et al., 2007a, Snedden et al., 2007b; Wang et al., 2018).  

In addition to inundation, nitrogen plays an important role in salt marsh 

ecosystems. These ecosystems serve as large nitrogen sinks (Bulseco et al., 2019; 

Herbert, 1999; Delaune et al., 1989), acting as a stimulant for microbial organic 

decomposition and affecting plant growth and morphological attributes (Bulseco et al., 

2019; Langley et al., 2013; Grimes, 2021). Studies suggest that exposure to additional 

nitrogen can be beneficial to marsh systems as the increased nitrogen promotes plant 

productivity, especially S. alterniflora and S. patens, temporarily alleviates flooding 

stressors, and broadens its vertical range (Langley et al., 2013, Mendelssohn, 1979). In 

terms of the physical stability of the ecosystem, research suggests that nitrogen additions 
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may lead to a decline in belowground plant productivity and a weaker root system, 

resulting in potential destabilization of marsh platforms especially in areas that suffer 

from limited sediment availability (Elsey-Quirk et al., 2019; Wu et al., 2017; Darby and 

Turner, 2008).  

Despite its importance, it is yet unclear how salt marsh vegetation responds to the 

interactive factors of inundation and nitrogen availability on the Mississippi Gulf Coast. 

Depending on morphological characteristics measured for resource allocation, different 

species show different phenotypic responses and potential plasticity to inundation and 

nitrogen. This understanding will facilitate better predications of coastal resilience at the 

landscape scale (Grimes, 2021; Wu et al., 2022). 

1.1.2 Objectives and Hypotheses 

I aim to: 

1) Study the temporal patterns of a variety of morphological traits of two common 

salt marsh species (Spartina alterniflora and Spartina patens) impacted by 

inundation and nitrogen. 

2) Evaluate short- (one year) and long-term (two years) impact of inundation and 

nitrogen on above- and belowground biomass of the two species. 

My hypotheses tested include: 

1) Two commonly found coastal wetland plants (Spartina alterniflora and Spartina 

patens) react negatively to increased inundation and positively to elevated 

nitrogen in productivity. 

2) The effect of nitrogen on above- and belowground biomass will become more 

pronounced over time, showing larger effect over the long-term vs the short-term. 
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3) Nitrogen will alleviate some of the negative effect of inundation on both species, 

especially for Spartina patens (a high marsh plant) than Spartina alterniflora (a 

low marsh plant). 

1.2 Methods 

To test these hypotheses, I used an in-situ mesocosm experiment method, called a 

marsh organ, to understand mechanistically how different levels of inundation and 

elevated nutrients (nitrogen) affect vegetation growth of Spartina alterniflora and 

Spartina patens. Marsh organs describe inundation-productivity relationships while also 

allowing an insight of interactions between nutrient competition and other abiotic 

stressors (Grimes, 2021; Kirwan et al., 2012; Langley et al., 2013; Morris, 2007; Snedden 

et al., 2015). Two marsh organs were placed in the western Pascagoula River, a tidally 

influenced brackish marsh for facilitation of varying inundation (Grimes, 2021). Every 

two to three weeks during the growing season in 2021 and 2022, particularly, from the 

end of July when the marsh organ was set up to early November in 2021 and from April 

to early November in 2022, I measured vegetative metrics including leaf count, leaf 

length, and leaf width, as well as giving half of the randomly selected replicates at each 

inundation level a nitrogen additive to simulate additional nutrients. We harvested the 

replicates at the end of the season for year 1 and year 2 to examine short- and long-term 

effects of inundation and nitrogen on the above- and belowground biomass. 

1.2.2 Study Species  

            The Spartina genus is comprised of intertidal C4 grass saltmarsh plants, 

commonly found along the Atlantic, Pacific, and Gulf coasts. This genus of saltmarsh 

grows in the summer, reproduces in the fall, and dies back during the winter months, 
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providing habitat for a variety of species through its biomass and sedimentation. While S. 

alterniflora and S. patens are in the same genus, and often the same region, they occupy 

different niches. S. alterniflora is a low marsh species and is found throughout the marsh 

platform, growing tall along shorelines where it is frequently flooded, typically at every 

tide and only exposed during low tide (Bertness, 1991). S. patens grows in the upper, 

more expansive salt marsh and less frequently flooded habitat, as this species has a 

limited ability to uptake oxygen in anoxic soils (Bertness, 1991). This Spartina zonation 

is determined by abiotic and biotic factors – S. patens prefers drier, less inundated, and 

more oxygenated soil in the high marsh and while S. alterniflora can persist in either low 

or high marsh, it is restricted to the low marsh due to competitive displacement from S. 

patens (Bertness, 1991; McKee and Patrick, 1988). When looking at studies investigating 

inundation-productivity relationships, some suggest that S. alterniflora may exhibit a 

quadratic or parabolic shape, indicating an optimal intermediate amount of inundation 

(Grimes, 2021; Kirwan et al., 2012; Morris, 2002; Wu et al. 2020). Alternately, another 

study showed that both S. alterniflora and patens reacted negatively as inundation 

increased in the Gulf of Mexico (Snedden et al., 2015; Grimes, 2021; Wu et al. 2020). 

1.2.3 Study Site 

The marsh organs were situated in the western channel of the lower Pascagoula 

River (Fig. 1.1). The Pascagoula River is the largest undammed river in the continental 

United States by volume and contains roughly 35% of the coastal wetlands of the 

Mississippi Gulf Coast (Grimes, 2021; Wu et al., 2020; Dynesius & Nilsson, 1994). This 

western channel, which is minimally anthropogenically impacted compared to the eastern 

channel, flows southward into the Mississippi Sound, with the watershed receiving 
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abundant rain annually which brings a large source of freshwater into the Gulf (Grimes, 

2021; Mossa and Coley, 2004; Lamonds and Boswell, 1985). Due to this influx of fresh 

water mixing with the saltwater from the Gulf of Mexico, the marsh organ field site has 

fluctuating brackish water, with salinity ranging from 0 – 15 ppt (mean of 4.09 ppt and 

standard deviation of 5.3 ppt), measured with a refractometer during 2022. The study site 

at (30.393 °N and 88.608 °W) is located north of HWY 90 and not far from a USGS 

water gauge which was used to help design the marsh organs and determine percent 

inundation time during the experiment (Fig 1.1) 

(https://waterdata.usgs.gov/nwis/uv?site_no=02480285&legacy=1). The saltmarsh in this 

area is largely comprised of Spartina, Schoenoplectus, and Sagittaria species (Grimes, 

2021). 

 

Figure 1.1 Map of the field site for the two marsh organs in relation to the Mississippi 

coast.  

The red star is the marsh organ site and the orange circle is the USGS water gauge 

beneath HWY 90. 
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1.2.4 Marsh Organ Design 

 

Figure 1.2 Side view diagram of the marsh organ structures set up in the Pascagoula 

River Delta.  

The incremental pipe heights allow for varied inundation time and depth dependent on 

row level. 

The marsh organ is constructed of PVC pipes organized by six rows that differ in 

height and therefore inundation depth and duration, with eight replicates in each row 

(Fig. 1.1). The inundation durations were designed to be 90%, 70%, 50%, 30%, 10%, and 

0% from bottom to top, determined using nearby USGS tidal data and a HOBO water 

level logger at the site (Fig. 1.2). However, considering storm surges, precipitation, and 

seasonal and tidal water changes, the final inundation may vary from the design. The first 

marsh organ contained 48 pipes of Spartina alterniflora (Fig. 1.3a) and the other had 48 

pipes of Spartina patens (Fig. 1.3b).  

The two marsh organs were constructed in the summer of 2021, placed roughly 

thirty feet apart, facing southward, and situated perpendicular to the marsh-waterline 



 

8 

edge. The PVC pipes had a 15 cm (6 in) diameter and a standardized length of 61 cm (24 

in) (Grimes, 2021). The pipes were screwed together, pushed into the sediment a certain 

amount depending on row, and then attached to the wooden frame implemented for added 

stability. Pipes were then packed with local sediment to ensure plant growth at the top of 

the pipe and to prevent sinking. A nylon mesh was placed at the bottom of the higher 

pipes not pushed into the sediment that still allowed natural lateral water flow but 

prevented sediment or plant loss.  

For the first marsh organ, S. alterniflora was transplanted into each PVC pipe that 

originated from a mixture of east and west channels sites in the Pascagoula River. 

However, for the second marsh organ, S. patens was collected only from the eastern 

channel as no large patches of this species were found in the western channel. During 

transplanting, we aimed to plant five individuals of S. alterniflora and ten individuals of 

S. patens into each PVC pipe. These densities were based off previous literature (Currin 

2019), which suggests 3-4 stems per PVC pipe, plus the extra we added to account for 

potential die-off. The pre-conditions of the vegetative morphology (leaf count, height, 

etc.) were recorded as they likely affected the vegetation growth. More local sediment 

was packed into the pipes after plant transplantation to account for the potential of 

gradual compaction and reduce risk of the plants floating out of the pipes when inundated 

(Grimes, 2021). 
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a  

b  

Figure 1.3 The two marsh organs set up in the Pascagoula River.  

Fig. 1.3a (top) shows the marsh organ with Spartina alterniflora and Fig. 1.3b (bottom) 

shows the marsh organ with Spartina patens. A string grid was placed over the Spartina 

patens marsh organ to keep plants upright and in their individual pots. 
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Table 1.1 Summary of morphological measurements on Spartina alterniflora (Sa.) and 

Spartina patens (Sp.). 
 

 

Species 

 

 

Metric 

 

Figure 

 

 

 

 

 

 

Sa. & Sp. 

 

 

 

 

 

 

Height from base of 

stem to highest part of 

the plant 

 
 

 

 

 

 

 

Sa. & Sp. 

 

 

 

 

 

 

Leaf count 
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Table 1.1 (continued). 

 

 

 

 

 

Sa. & Sp. 

 

 

 

 

 

Length of the second leaf 

from the top 

 
 

 

 

 

 

Sa. & Sp. 

 

 

 

 

 

Width of the petiole of 

the second leaf from the 

top 

 
 

 

 

 

 

Sa. 

 

 

 

 

 

Width of the second leaf 

from the top 
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Table 1.1 (continued). 

 

 

 

 

Sp. 

 

 

 

 

Stem count 

 
 

1.2.5 Monitoring and Biomass Processing 

Starting in July 2021, we randomly selected two individuals from each PVC pipe 

replicate to measure leaf count, individual height from the base of stem to the highest part 

of the plant, length of the second leaf from the top, and width of the petiole of the second 

leaf from the top (Table 1.1). Additionally, for Spartina alterniflora we measured the 

width of the second leaf of two random individuals in each PVC pipe and for Spartina 

patens we measured total stem count in each pipe to observe plant density (Table 1.1). 

These measurements were done every 2 – 3 weeks during the growing season from July 

to November 2021 for year one and April to November 2022 for year two. Altogether, we 

conducted the measurements six times in 2021 (09/03, 09/24, 10/08, 10/23, 11/05, and 

11/18) and twelve times in 2022 (04/08, 04/22, 05/09, 05/27, 06/17, 07/08, 07/21, 08/05, 

08/29, 09/14, 10/14, and 11/02). At each visit starting on 09/10/22, we applied 25 grams 

per m2 of NH4+-N with a syringe into the soil of half of the replicates, randomly selected 

to simulate the scenario of added reactive nitrogen in the environment (Langley et al., 

2013). Consequently, at the end of the growing season of year one in November 2021 

(short-term impact), we harvested half of replicates and harvested the other half at the 

1     2    3   
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end of the growing season of Year 2 in November 2022 (long-term impact), as above- 

and belowground biomass samples can elucidate the integrated effect of inundation and 

nitrogen. In each harvest, we randomly selected half of the replicates with nitrogen 

additions and half without in each row. Aboveground biomass was bagged and ready for 

immediate processing and belowground biomass was allocated into bags based on depth: 

0 - 5, 6 - 10, 11 - 15, 16 - 20, 21 - 25, and 26 - 30 cm, which were then stored in 

laboratory refrigerators 4 °C for subsequent processing. 

Aboveground biomass samples were processed within two weeks of harvest, with 

live and dead parts of the biomass separated into pre-weighed, oven safe aluminum trays 

that were then oven-dried at 75°C until a constant weight was reached, around 3 - 5 days 

(Wu et al., 2020). The demarcation between live and dead aboveground biomass was 

based on color. Live biomass had green stems and leaves while dead biomass ranged 

from yellow to brown stems and leaves. Pre-dried and post-dried weights were collected 

as measurements from these samples.  

I then washed sediment and mud away from the belowground biomass using a 1 

mm mesh sieve and removed extraneous objects such as sticks and snails. Once washed, I 

separated live and dead biomass based on the buoyancy by submerging it in water first, 

combined with color and turgidity (Fig. 1.4). Floating biomass with light colors and 

turgidity was classified as live biomass, while dark matter that sunk to the bottom of the 

container, and felt and looked flaccid, was classified as dead biomass. The live and dead 

biomass were separated into the pre-weighed aluminum trays, then weighed again, and 

dried in an oven for several days to remove moisture until a constant weight was reached. 

After removal from the oven, the sample trays were weighed to collect the dry weight.  
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Figure 1.4 Washed belowground biomass samples separated into live and dead 

containers, with dead biomass (top right) vs. live biomass (bottom right). 

 

1.2.6 Statistical Analyses 

Using the collected morphological attributes and biomass data, I applied multi-

level Bayesian models or Bayesian models to evaluate the impact of inundation and 

nutrients on vegetation structure over time and vegetation productivity (Fig. 1.5; 

Equation 1.1). Bayesian statistics is a form of statistical inference involving the Bayes 

theorem. Hierarchical Bayesian models decompose high-complexity problems into a fully 

consistent framework (Wu et al., 2012 and 2018; Clark, 2005). Using Hierarchical 

Bayesian models allows data assimilation while accounting for various uncertainties and 

provides inference based on posterior distributions (Wu et al., 2012 and 2018). We 

developed models for each metric measured during sampling visits, including leaf counts, 

individual height, second leaf width, second leaf length, petiole width, stem width, and 

above- and belowground biomass. I accounted for senescence (days since installation of 

marsh organs in Year 1), and seasonality (temperature since onset of growing season in 

Year 2), pre-condition, and channel when evaluating the impact of inundation and 
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nutrient (Fig. 5). As biomass was measured at the end of growing seasons, their models 

differed from morphological characteristics in that they do not have time as a covariate.  

I created and ran these models in R using the “rjags”, “MCMCvis”, and “coda” 

packages (https://cran.r-project.org/web/packages/available_packages_by_name.html).  I 

compared the models using deviance information criterion (DIC) and predictive posterior 

loss (PPL) – selecting the best model based on the lowest DIC or PPL (Hooten and 

Hobbs, 2015; Wu et al., 2018). DIC was used as the main model selection criterion, but I 

also considered PPL during the parameter selection in addition to DIC when the models 

differed in their hierarchies. See tables A.1-9 in the appendix for more information on the 

model comparisons. Once selected, I computed the posterior distributions using Markov 

Chain Monte Carlo Simulation (MCMC), with summarized medians and quantiles of 

95% and 50% credible intervals (CIs) for the parameters of the covariates based on the 

posterior outputs (Robert and Casella, 2004; Wu et al., 2018). These 95% or 50% CIs 

indicate a 95% or 50% probability that the covariate coefficient lies within the intervals. 

If the CI does not overlap zero, there exists evidence for the covariate to have strong or 

moderate positive or negative effect on the dependent variable (Wu et al, 2018). In the 

posteriors, the 95% CIs represent the range from the 2.5% to 97.5% quantiles, while the 

50% Cis indicate the range from the first to third quartile. 
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Figure 1.5 Directed Acyclic Graph (DAG) of the multi-level Bayesian Model developed to 

evaluate impacts of various factors (i.e., inundation, nutrient, etc.) on morphological 

vegetative productivity (Y). 

The subscripts j denotes individual (randomly selected individuals measured in each PVC 

pot), i is inundation level, t refers to sampling event. The symbols Temp denotes 

temperature (for year two models, year one models have days since transplant), In is 

inundation time, 𝐼𝑛2 is squared inundation time, N denotes nutrient, Pre stands for pre-

condition of the original marsh plants, Chan refers to channel, and 

𝛼0𝑡,  𝛽1, 𝑐0𝑖𝑡, 𝛼1, 𝛼2, 𝑐1, 𝑐2, 𝑐3, 𝜏1, 𝜏2, 𝜏3  are the parameters in the model (as denoting the 

coefficients for the covariates, with 𝜏1, 𝜏2, 𝑎𝑛𝑑 𝜏3 denoting precision across time/season, 

inundation level and individual respectively). 
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Equation 1.1 Bayesian posterior for the multi-level models to predict vegetation 

morphology in Year 2 (2022).  

 

  
Equation 1.2 Bayesian posterior for the biomass models. 
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1.3 Results 

1.3.1 Inundation duration 

            In Year 1 (2021), inundation durations at different rows of the Spartina 

alterniflora marsh organ were similar to what we designed and our original intentions 

(Figure 1.6). However, due to extreme droughts in 2022, the inundation durations 

decreased in Year 2, with the maximum duration reaching only 60% to 70% of time 

(Figure 1.7). Inundation durations of the Spartina patens marsh organ were lower than 

those of the Spartina alterniflora marsh organ as they were situated at a higher platform 

(Fig. 1.8-9). Just like the Spartina alterniflora marsh organ, the inundation durations 

were lower in Year 2 than in Year 1.  

 

  

Figure 1.6 Percentage of inundation time of each row in the S. alterniflora marsh organ 

For Year 1.  

The row numbers of 1 to 6 represent the lowest to the highest row. In each row, there are 

six bars representing the sequential sampling events between September 3rd, 2021, and 

November 18th, 2021. 

0

10

20

30

40

50

60

70

80

90

Row 
6

Row 
5

Row 
4

Row 
3

Row 
2

Row 
1

IN
U

N
D

A
TI

O
N

 P
ER

C
EN

TA
G

E 
%

S. alterniflora Inundation Percentages YR 1 

Year 1



 

19 

 

Figure 1.7 Percentage of inundation time of each row in the S. alterniflora marsh organ 

for Year 2.  

The row numbers of 1 to 6 represent the lowest to the highest row. In each row, there are 

twelve bars representing the sequential sampling events between April 30th, 2022, and 

November 2nd, 2022. 

  

Figure 1.8 Percentage of inundation time of each row in the S. patens marsh organ for 

Year 1.  

The row numbers of 1 to 6 represent the lowest to the highest row. In each row, there are 

six bars representing the sequential sampling events between September 3rd, 2021, and 

November 18th, 2021. 
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b  

Figure 1.9 Percentage of inundation time of each row in the S. patens marsh organ for 

Year 2.  

The row numbers of 1 to 6 represent the lowest to the highest row. In each row, there are 

twelve bars representing the sequential sampling events between April 30th, 2022, and 

November 2nd, 2022. 
 

1.3.2 Response of biomass and morphology to inundation, nutrient, pre-condition, 

and channel 

Summary  

            The effect of nutrient on vegetation traits including biomass and morphological 

characteristics were consistently positive. Although belowground biomass and some 

morphological traits, including plant height for both species and stem count for Spartina 

patens in Year 1, did not respond to nutrients, all the vegetation traits in Year 2 showed 

positive response to addition of nutrients. On the other hand, inundation’s effect varied 

depending on vegetation traits, species, and temporal scales. The effect can be parabolic 

with an optimal or least optimal inundation level or it can be linear. Pre-condition of the 

vegetation generally exhibited either positive or no effect on morphological traits for 
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either year except for the negative impact on leaf width and stem count in Year 2. 

Aboveground biomass of Spartina patens negatively responded to pre-condition (stem 

count) in Year 1, while belowground biomass of Spartina alterniflora positively 

responded to pre-condition (leaf count) in Year 1. Pre-condition did not have any impact 

on above or belowground biomass in Year 2. Spartina alterniflora from the east channel 

generally grew better or similarly when compared to the west channel plants, reflected in 

the biomass and morphological traits. One exception is that the west channel vegetation 

exhibited a higher leaf count than the plants from the east channel in Year 1. The 

interactive effect between inundation and nutrient only showed varying effect on leaf 

count in Year 1.  

1.3.2.1 Above- and below-ground biomass 

1.3.2.1.1 Aboveground biomass 

            In Year 1, aboveground biomass of Spartina alterniflora (Sa. thereafter) and 

Spartina patens (Sp. thereafter) exhibited moderate and strong parabolic relationships 

with inundation time respectively (“moderate” defined as the 50% CIs do not overlap 0, 

while “strong” defined as overlap 0) (Table 1.2). The biomass reached minimum 

productivity at 41.3% (median with a large uncertainty indicated by the 95% CI of 0 – 

100%) and 51.6% (median with the 95% CI of 44.2 – 74.4%) inundation time for Sa. and 

Sp. respectively (Table 1.2 and 1.3). By Year 2, inundation time showed a moderate 

negative effect on aboveground biomass of Sp., while aboveground biomass of Sa. 

reached maximum productivity at 50.0% of inundation (median with a large uncertainty 

indicated by 95% CI of 0-100%) (Table 1.2 and 1.3). Nutrient addition had a strong 

positive impact on aboveground biomass for both species in the short- and long-term 
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(Table 1.2). Pre-condition (stem count) only had a strong negative impact on Sp. in the 

short-term, with no impact observed by year two for both species. For Spartina 

alterniflora, channel had a strong negative impact in Year 1, and moderate negative 

impact in Year 2, indicating that the east channel plants strongly and then moderately 

outperformed the west channel plants as time progressed. 

1.3.2.1.2 Belowground biomass 

            Belowground biomass of Sa. and Sp. responded to inundation very differently in 

the short- and long-term (Table 1.2). However, the relationships were consistent for 

individual species in both years and demonstrated increased impact by Year 2. In both 

years, belowground biomass of Sa. indicated a parabolic relationship with an inundation 

maximum at 42.6% (median) and 44.3% (median) of inundation time respectively (Table 

1.3). Belowground biomass of Sa. responded negatively to inundation. While nutrient 

addition had little to no impact on belowground biomass in Year 1, it showed strong 

positive impact for both species in year two. Pre-condition had only a moderate positive 

impact on Sa. in the short-term, with little to no impact observed by Year 2 for either 

species (Table 1.2). Like aboveground biomass, the vegetation from the east channel 

outperformed the vegetation from the west channel, with the stronger difference in Year 1 

than in Year 2.   
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Table 1.2 Summary of signs of 50% and 95% credible intervals (CIs) based on the 

posteriors of Bayesian models for biomass of Spartina alterniflora and Spartina patens.  

 

Also see 50% and 95% CIs in Figures A.1-4 in the appendix (Sa. denotes Spartina 

alterniflora, Sp. denotes Spartina patens) (If no signs were provided for a particular CI, 

it means the CI intercepted 0). 

 
 

 

Metrics 

 

 

Species 

Inundation 

Time 

Inundation 

Time 

Squared 

 

Nutrient 

Pre-

Condition 

 

Channel 

95% 

CI 

50% 

CI 

95% 

CI 

50% 

CI 

95% 

CI 

50% 

CI 

95% 

CI 

50% 

CI 

95% 

CI 

50% 

CI 

Aboveground 

Biomass  

YR 1 

Sa. 
 

- 
 

+ + + 
  

- - 

Sp. - - + + + + - - 
  

Aboveground 

Biomass  

YR 2 

Sa. + + 
 

- + + 
   

- 

Sp. 
 

- 
  

+ + 
    

Belowground 

Biomass  

YR 1 

Sa. 
 

+ 
 

- 
   

+ - - 

Sp. 
 

- 
        

Belowground 

Biomass  

YR 2 

Sa. + + 
 

- + + 
   

- 

Sp. - - 
  

+ + 
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Table 1.3 Summary of the quantiles of the derived inundation percentages when biomass 

reached the minimum (Min) or maximum (Max) in Year 1 and 2  

(Sa. denotes Spartina alterniflora, Sp. denotes Spartina patens). 
 

Metrics 

Quantiles of the derived percent of inundation 

when biomass reached the minimum or 

maximum 

Max 

or 

Min 

2.5% CI 50% 97.50% 

Aboveground 

Biomass YR 1 

Sa. 0.0 41.3 100.0 Min 

Sp. 44.2 51.6 74.4 Min 

Belowground 

Biomass YR 1 
Sa. 0.0 42.6 100.0 Max 

Aboveground 

Biomass YR 2 
Sa. 0.0 50.0 100.0 Max 

Belowground 

Biomass YR2 
Sa. 0.0 44.3 100.0 Max 

 

1.3.2.2 The impact of inundation on morphological traits 

In Year 1, inundation time had mixed impact on both species. Inundation had a 

moderate negative linear impact on Sp. leaf count and height, and strong negative linear 

impact on and Sp. leaf count, a moderate positive linear impact on Sa. and Sp. stem 

width, Sa. leaf width, and Sp. leaf length, as well as a strong positive impact on Sp. stem 

count (Table 1.4). Sa. plant height had a moderate parabolic relation with inundation and 

it reached the maximum at 56% of inundation time (median). Meanwhile, Sa. leaf length 

had moderate parabolic relations with inundation, and they reached the minimum at 36% 

of inundation time (median) (Tables 1.4 and 1.5).  

By Year 2, inundation time had more consistent impact across individual species. 

For Spartina patens, inundation exhibited a strong negative impact on plant height, leaf 

count, and stem width. Leaf length and stem count, on the other hand, showed parabolic 
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relations with inundation and they reached the minimum at the inundation time of 52% 

and 84% (medians) respectively (Tables 1.4 and 1.5). For Spartina alterniflora, most of 

the morphological traits, including plant height, leaf count, leaf length and leaf width, 

showed strong or moderate parabolic relations with inundation with the maximums 

reached at 89%, 35%, 39%, and 56% (medians) of inundation time respectively (Tables 

1.4 and 1.5). Inundation had a strong positive linear impact on Sa. stem width (Tables 

1.4). 

Table 1.4 Summary of signs of 50% and 95% credible intervals (CIs) of linear and 

quadratic inundation impact based on the posteriors of multi-level Bayesian models for 

metrics of Spartina alterniflora and Spartina patens.  

Also see 50% and 95% CIs in Figures A.5-14 in the appendix (Sa. denotes Spartina 

alterniflora, Sp. denotes Spartina patens) (If no signs were provided for a particular CI, 

it means the CI intercepted 0). 

 

  Year 1 (5 months) Year 2 (1.5 years) 

Metrics Species 

Inundation 

Time 

Inundation Time 

Squared 

Inundation 

Time 

Inundation 

Time Squared 

95% 

CI 

50 % 

CI 

95% 

CI 
50% CI 

95% 

CI 

50 % 

CI 

95% 

CI 

50% 

CI 

Plant 

Height 

Sa. + +  - + + - - 

Sp.   -    - -     

Leaf 

Count 

Sa.  - -       +   - 

Sp.   -     - -     

Leaf 

Length 

Sa.   -   +   +   - 

Sp.       + - - + + 

Stem 

Width 

Sa.   +     + +     

Sp.   +     - -     

Leaf 

Width 
Sa.   +     + +   - 

Stem 

Count 
Sp. + +     - -   + 
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Table 1.5 Summary of the quantiles of the derived inundation percentages when the 

metrics reached the minimum (Min) or maximum (Max) in Year 1 and 2 

(Sa. denotes Spartina alterniflora, Sp. denotes Spartina patens). 

 

Metrics 

Quantiles of the derived percent of 

inundation when a metric reached 

the minimum or maximum Max or Min 

2.5% CI 50% 97.50% 

Year 1 

Plant 

Height 
Sa. 0.0 55.9 100.0 Max    

Leaf 

Length 

Sa. 0.0 36.6 100.0 Min 

Sp. 0.0 0.0 100.0 Min 

Year 2 

Plant 

Height 
Sa. 0.0 88.9 100.0 Max    

Leaf 

Count 
Sa. 0.0 34.6 100.0 Max    

Leaf 

Length 
Sa. 0.0 39.9 100.0 Max 

  Sp. 0.0 51.8 100.0 Min 

Leaf 

Width 
Sa. 0.0 56.7 100.0 Max 

Stem 

Count 
Sp. 0.0 84.1 100.0 Min 

 

1.3.2.3 The impact of channel on morphological traits 

            In Year 1, nutrient addition had a strong positive impact on Sp. leaf count, Sa. leaf 

length, and Sa. leaf width, and Sa. stem width, and a moderate positive impact on Sp. leaf 

length and Sp. stem width (Table 1.6). Nitrogen had varying effect on Sa. leaf count at 

different inundation levels in the short-term, lending insight to the interactive effect 

between nitrogen and inundation. Nutrient increased leaf count in the more inundated 

vegetation, helping alleviate the stress of inundation to some degree. Starting after the 
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first sampling period when the nutrient addition began, the strong postive effect of 

nutrient addition on leaf count started to show up in the fourth sampling event in Rows 1, 

2 and 4, while it did not show up until the fifth sampling event in Row 3 and 5, and 

indicated little to no negatitve/positive effect on Row 6, the least inundated row (Table 

1.6 and Figure 1.10). By Year 2, nutrient addition had a strong positive impact on every 

metric for both species (Table. 1.6).  

Table 1.6 Summary of signs of 50% and 95% credible intervals (Cis) of nitrogen impact 

based on the posteriors of multi-level Bayesian models for metrics of Spartina 

alterniflora and Spartina patens.  

Also see 50% and 95% Cis in Figures A.5-14 in the appendix (Sa. denotes Spartina 

alterniflora, Sp. denotes Spartina patens) (If no signs were provided for a particular CI, 

it means the CI intercepted 0). 

 

  
Year 1 

 (5 months) 

Year 2  

(1.5 years) 

Metrics Species 
Nutrient Nutrient 

95% CI 50% CI 95% CI 50% CI 

Plant 

Height 

Sa.     + + 

Sp.     + + 

Leaf 

Count 

Sa. * * + + 

Sp. + + + + 

Leaf 

Length 

Sa. + + + + 

Sp.   + + + 

Stem 

Width 

Sa.  + + + + 

Sp.   + + + 

Leaf 

Width 
Sa. + + + + 

Stem 

Count 
Sp.     + + 
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Figure 1.10 Posteriors of nutrient impact on Year 1 S. alterniflora leaf count over five 

nitrogen additions, grouped by rows (Row 1 is the most inundated, Row 6 is the least 

inundated).  

Credible intervals of nutrient impact (nitrogen addition) on leaf count were shown here 

with the thin lines denoting 95% credible intervals, and the thick lines representing 50% 

credible intervals. The dots indicate medians of the posteriors. The black color indicates 

strong impact (95% Cis not overlapping 0), the grey color indicates moderate impact 

(50% Cis not overlapping 0), and open white circles mean little to no impact (both 95% 

and 50% Cis overlapping 0). Output was generated in R using the MCMCvis package 

(Youngflesh 2018). 

1.3.2.4 The impact of pre-condition on morphological traits 

            Pre-condition largely had a positive impact on most of the morphological traits in 

Year 1, with strong positive impact on Sa. and Sp. plant height, Sa. stem width, and Sp. 

stem count, as well as a moderate positive impact on Sa. leaf width and Sp. stem width 

(Table 1.7). Year 2 exhibited more mixed impact, with strong positive impact on Sa. and 

Sp. plant height (consistent with Year 1), Sp. leaf count, Sa. leaf length, a moderate 

positive impact on Sp. leaf length, a now strong negative impact on Sp. stem count, and a 
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moderate negative impact on Sa. leaf count and leaf width (Table 1.7). The mixed effects 

can mean the tradeoffs of different morphological traits in response to the vegetative 

initial condition. 

Table 1.7 Summary of signs of 50% and 95% credible intervals (CIs) of pre-condition 

impact based on the posteriors of multi-level Bayesian models for metrics of Spartina 

alterniflora and Spartina patens.  

Also see 50% and 95% CIs in Figures A.5-14 in the appendix (Sa. denotes Spartina 

alterniflora, Sp. denotes Spartina patens) (If no signs were provided for a particular CI, 

it means the CI intercepted 0). 

 

  
Year 1  

(5 months) 

Year 2  

(1.5 years) 

Metrics Species 
Pre-Condition Pre-Condition 

95% CI 50% CI 95% CI 50% CI 

Plant 

Height 

Sa. + + + + 

Sp. + + + + 

Leaf 

Count 

Sa.       - 

Sp.     + + 

Leaf 

Length 

Sa.     + + 

Sp.       + 

Stem 

Width 

Sa. + +     

Sp.   +     

Leaf 

Width 
Sa.  +   - 

Stem 

Count 
Sp. + + - - 

 

1.3.2.5 The impact of senescence or seasonality on morphological traits 

            In Year 1, I focused on the impact of time since the vegetation was planted in the 

marsh organ. I expected some impact attributable to adaption and senescence. It appears 

that senescence limited Sa. and Sp. plant heights and some negative impact in Sa. stem 

width, while it allowed individuals of both species to continue producing new leaves as 

time progressed (Table 1.8). By Year 2, when the vegetation should be acclimated to the 
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new environment as recovery generally takes only a few weeks (Brown et al., 2006), we 

focused on the impact of seasonality because the 2022 measurements spanned the spring, 

summer, and fall seasons. Temperature showed a largely positive impact. The one 

exception is the little to no impact of temperature on plant height, and negative impact on 

Sa. leaf length. Again, the mixed impact of temperature can suggest tradeoffs of varying 

morphological traits.   

 

Table 1.8 Summary of signs of 50% and 95% credible intervals (CIs) of 

senescence/seasonality impact based on the posteriors of multi-level Bayesian models for 

metrics of Spartina alterniflora and Spartina patens.  

Also see 50% and 95% CIs in Figures A.5-14 in the appendix (Sa. denotes Spartina 

alterniflora, Sp. denotes Spartina patens) (If no signs were provided for a particular CI, 

it means the CI intercepted 0). 

 

  
Year 1 (5 

months) 

Year 2 (1.5 

years) 

Metrics Species 
Days Month Temp 

95% CI 50% CI 95% CI 50% CI 

Plant 

Height 

Sa. -  -     

Sp. - -     

Leaf 

Count 

Sa.  + + + 

Sp.  +   + 

Leaf 

Length 

Sa.     - - 

Sp.       + 

Stem 

Width 

Sa.   -     

Sp.       + 

Leaf 

Width 
Sa.      + 

Stem 

Count 
Sp.       + 
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1.3.2.6 The impact of channel on morphological traits 

            Three traits of Sa. plants from the eastern channel outperformed individuals 

transplanted from the western channel in both years (Table 1.9). Better productivity was 

consistent in leaf length for the entire duration of the study. The one exception is that 

vegetation from the west channel exhibited moderately higher leaf counts in Year 1. 

However, the advantage of the west channel in leaf count disappeared in Year 2 with 

larger leaf counts from east channel transplants witnessed in Year 2 (Table 1.9). 

Table 1.9 Summary of signs of 50% and 95% credible intervals (CIs) of channel impact 

based on the posteriors of multi-level Bayesian models for metrics of Spartina 

alterniflora.  

Also see 50% and 95% CIs in Figures A.5-14 in the appendix (Sa. denotes Spartina 

alterniflora) (If no signs were provided for a particular CI, it means the CI intercepted 

0). 

 

  
Year 1 (5 

months) 

Year 2 (1.5 

years) 

Metrics Species 
Channel Channel 

95% CI 50% CI 95% CI 50% CI 

Plant 

Height 
Sa.     - - 

Leaf 

Count 
Sa.   + - - 

Leaf 

Length 
Sa. - - - - 

Stem 

Width 
Sa. - -     

Leaf 

Width 
Sa.   -     

 

1.4 Discussion 

We studied the impact of diverse environmental factors and initial condition of 

individuals on biomass along with a wide variety of key morphological traits of two 



 

32 

common salt marsh vegetation at two different temporal scales. While three-dimensional 

biomass showed the accumulated result for vegetation growth, studying one-dimensional 

morphological traits can provide a more in-depth explanation for what was observed in 

the biomass, and lend more information to the tradeoffs of vegetation growth in order to 

understand potential strategies plant individuals or species undertook to maximize 

productivity in a stressful environment. While our measures of time are relative to this 

study, the different results at different temporal scales emphasize the importance of long-

term study to gain better understanding and construct more accurate predictions on 

vegetation’s response to environmental stressors.  

The impact of inundation on biomass largely matched their corresponding 

morphological traits in Year 2, especially for Spartina alterniflora. Optimum inundation 

levels exist for all the Spartina alterniflora Year 2 traits except stem width, however, 

different traits reached the maximum at different inundation levels. Focusing on the 

medians of the predictions, plant height continued to increase until 89% of inundation 

time, while leaf count and leaf length increased only until 35% and 40% of inundation 

time respectively. Leaf width lay in middle, reaching the maximum when inundation was 

57% of time. Stem width, as an exception, increased linearly with inundation. These 

combined responses result in above- and belowground biomass reaching the maximum at 

50% and 44% of inundation time. This suggests that Spartina alterniflora increased plant 

height and stem width at the expense of leaf count, leaf length, and then leaf width. This 

strategy allowed individuals to remain stable and keep leaves above water for 

photosynthesis under increased inundation.  
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Spartina patens, on the other hand, negatively responded to inundation in 

biomass, plant height, leaf count, and stem width. When inundation surpassed 52% of 

time, leaf length began to increase but was not able to offset the reduction of other traits, 

and therefore biomass continued to decrease. The better adaption of Spartina alterniflora 

to inundation than Spartina patens is consistent, as Spartina patens occupies marsh 

habitat at higher elevation and less inundation than compared to Spartina alterniflora 

(Snedden 2015; Stalter and Baston; 1969). Our findings also align with previous marsh 

organ experiments (Snedden 2015; Kirwan and Guntenspergen, 2015; Kirwan et al., 

2012; Morris, 2007).  

Nutrient addition had a strong positive impact on aboveground biomass for both 

species in the short- and long-term. However, nutrient addition had little to no impact on 

Sa. and Sp. belowground biomass in Year 1. It was only in Year 2 that we observed the 

strong positive impact, suggesting that belowground biomass had a lagged response to 

the nitrogen addition, indicating that the effect of nitrogen on above- and belowground 

biomass became more pronounced over time. This lagged response of belowground 

biomass to the nitrogen addition in Year 1 may be due to the resource allocation of the 

plants, that the extra nitrogen uptake may be used in the aboveground biomass first. 

Another potential reason for this lagged response may be that the stress the plants 

experienced from transplantation into the marsh organ could have prevented impact in the 

belowground biomass, and by Year 2 this stress was reduced and we observed strong 

impact. Previous papers support these findings that N fertilization increases Spartina 

productivity (Langley et al., 2013; Mendelssohn, 1979). We did not find the interaction 

between nutrient and inundation important in the majority of the traits except for Sa. leaf 
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count in Year 1. This interaction shows that nutrient increased leaf count, especially in 

the higher inundation levels, helping alleviate the stress of inundation.  

There exist contrasting results describing elevated nutrient impacts on 

belowground biomass and the further effects on root strength (Wu et al. in press). Hollis 

and Turner (2019) and Turner (2011) showed significant decline in root strength after 

small increases in nutrient availability. Other studies, however, did not show decreased 

belowground production when introduced to high nutrient addition (Anisfeld and Hill, 

2012; Day et al., 2013; Fox et al., 2012). Particularly, greenhouse studies demonstrated 

that biomass production of Spartina patens increased with nitrogen addition, with a more 

pronounced increase in lower salinity than in higher salinity (DeLaune et al., 2005). 

Elsey-Quirk et al. (2019) pointed out that larger sediment availability is necessary to 

offset the negative impact from the larger variability of environmental factors or 

excessive nutrients driven by freshwater diversions. However, it is not clear how much is 

assimilated versus lost through the denitrification process. Whether our findings on the 

increased above- and belowground biomass from nutrient additions based on the marsh 

organ experiments can be transferred to field observations requires further investigation.   

The pre-condition of plants when they were first planted exhibited some impact 

on biomass in short-term, but not in long-term, indicating that the environmental factors 

played a more important role in productivity than the initial condition of the plants. The 

negative effect of pre-condition on aboveground biomass of Sp. might be due to the 

artifact of the selected pre-condition metric (stem count). When we studied the individual 

morphological traits, we found positive to no impact of pre-condition in Year 1, but 

mixed results in Year 2. The mixed impact might offset each other somehow, partially 
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explaining why there is no impact in biomass results, in addition to the diminishing 

impact of initial condition compared to environmental conditions.    

For S. alterniflora biomass, the eastern channel plants strongly outperformed the 

western channel plants in the short-term. However, this effect lessened to moderate 

outperformance in the long-term, suggesting that environmental conditions played a more 

important role than the source of vegetation as the time went through the adaption 

mechanism. The better productivity in the vegetation from the eastern channel was also 

reflected in the majority of the morphological traits. The eastern channel is much more 

anthropogenically influenced from urban development, industrial factories on the 

shorelines, and dredged channels when compared to western channel. The vegetation 

transplanted from the disturbed sites may have been able to outperform the local 

individuals given that their environmental constraints were removed. In the field 

observation, the western channel of the Pascagoula River contained significantly higher 

belowground biomass than the eastern channel, while vertical distribution of 

belowground biomass did not strongly vary between channels (Grimes, 2021). While 

more work could further evaluate the differences between the East and West channel 

plants, I do not believe that incorporating plants from the two channels strongly impacted 

my modeling results, especially as the outperformance decreases over time and origin of 

an individual matters less. Collecting plants from both channels may actually help to 

better link a biomass function from this study to saltmarsh wetlands under a range of 

anthropogenic stressors. 

Looking at the impact from seasonality, measured either in days since transplant 

in Year 1 or monthly temperature in Year 2, the mixed responses witnessed in Year one 
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may be due to the plants adapting and/or senescence resulting in mostly positive impact 

with temperature. For S. alterniflora, the results suggest existence of a tradeoff, where 

leaf count and leaf width favorably responded to higher temperature at the cost of leaf 

length.  

It should be noted that the overall inundation percentages for Year 1 reflects the 

original marsh organ design fairly well. However, Year 2 percentages failed to meet the 

designed inundation percentages. This could be attributed to many reasons, such as 

storms, precipitation, and seasonal and tidal water changes, as mentioned earlier in this 

paper. Precipitation for 2022 (Year 2) was almost 20% lower than the precipitation for 

2021 (Year 1), and in some months, exhibited up to 70% less precipitation (precipitation 

data gathered from https://www.wunderground.com/history/daily/us/ms/gautier/KPQL). 

This was particularly noticeable over the winter seasons – which may have resulted in 

even lower inundation levels due to low, seasonal tides. 

1.5 Conclusion 

            There are a few general trends noticeable from the results of this study. Increased 

inundation negatively impacted Sp., however there existed an optimal inundation level 

for Sa. This suggests that the low marsh plant S. alterniflora will, to some degree, adapt 

better to increasing inundation while high marsh plant S. patens will struggle to adapt. 

Nutrient addition stimulated both below- and aboveground biomass for both species, 

where this effect was more pronounced in the long-term. The incorporation of temporal 

scales explicitly highlighted the importance of how a longer-term study to lends insight 

on the adaptation of transplanted individuals to their new environment conditions, which 

played a more important role than the initial vegetations’ status as time progressed. Some 
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impacts increased over time, such as nitrogen addition, while others decreased, such as 

source of vegetation. In this study we observed some tradeoffs between different 

morphological traits in response to environmental stressors, indicating various growth 

strategies to maximize productivity.  

This study benefits our understanding of the factors relevant to sea level rise, 

freshwater diversions, and climate change in addition to their impact on common, coastal 

wetland vegetation in the short and longer-term. These findings will therefore potentially 

facilitate further evaluation of conservation and restoration practices on coastal wetlands.   
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CHAPTER II - ASSESSING RESILIENCE OF A COASTAL WETLAND TO SEA-

LEVEL RISE CLOSE TO A LOUISIANA NATIVE TRIBE – INTEGRATING 

BIOPHYSICAL PREDICTION AND TRADITIONAL ECOLOGICAL KNOWLEDGE 

2.1 Introduction 

Climate and environmental change have been impacting various cultures and 

peoples disproportionally. Indigenous peoples in coastal systems are particularly sensitive 

to climate change, directly influencing their resource-based livelihoods and homes 

(Wildcat, 2013; Bethel et al., 2022). Because of the vulnerability tribe members face, 

they have adapted over the generations to account for environmental conditions such as 

accelerated sea-level rise, extreme weather events, and erosion (Bethel et al., 2022). This 

generational knowledge passed down among indigenous peoples is described as 

traditional ecological knowledge (TEK), acquired through observing the natural 

environment over hundreds of years through direct human contact (Berkes, 1993), and 

delivered through oral history to better understand the connection between humans and 

nature (Bethel et al., 2022; Usher, 2000; Nadasdy, 1999). TEK distinguishes itself from 

typical scientific ecology by centering on a large social context, which, while different 

than western science, is just as good in many ways (Gadgil et al., 1993; Berkes, 1993). 

This type of data is place based and generational; because of that, TEK is linked 

to culture, livelihood, and resiliency, making it inherently diverse in its content and how 

it can inform (Thompson et al., 2020). TEK will likely provide more insights if 

incorporated into quantitative, biophysical models, or science knowledge (SK) models, 

that focus on integration and prediction (Bethel et al., 2022; Moller et al., 2004). A 

variety of models have been developed to predict the impact of sea-level rise on coastal 
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wetlands and to assess saltmarshes’ ability to keep pace with rising waters (Wu et al., 

2017a, 2020, Morris et al. 2003, Kirwan and Murray, 2007, etc.). These models only 

incorporate ecological or biophysical data and fail to include broader perspectives 

(Hatfield et al., 2018), which are often limited by the spatial resolution inputs of LiDAR 

elevation data. Alternatively, when integrating these ecological approaches with 

traditional ecological knowledge, this combination produces complementary and 

overlapping views of the causes and potential consequences for change (Hatfield et al., 

2018) because TEK is not a replacement for SK but a counterpart to it (Berkes, 1993; 

Suzuki and Knudtson, 1992). This combination of TEK and SK models may help to 

obtain insights that couldn’t be captured by GIS data. In terms of people, the combined 

TEK and SK also strengthens community ties, highlights generational knowledge, 

reduces barriers to local science, and paves the way for future partnerships while making 

local science more accessible (Moller et al., 2004).  

The combined predictions will enhance the Pointe-au-Chien Indian Tribe 

members’ understanding of their changing coastal system, support more-informed 

adaptation plans that increase the local resilience to climate change and sea-level rise and 

give a sense of data ownership while furthering science empowerment (McAllister et al., 

2019; Moller et al., 2004). The combination of biophysical models and TEK will better 

inform the management and environmental monitoring in ways that complement the 

differences between the two knowledge systems - enriching and adding to the collective 

ecological knowledge while producing creative strategies and giving the local citizens 

power to understanding the ecological situation on their own terms (Bethel et al., 2022; 

Thompson et al., 2020).  
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2.1.2 Objectives and Hypotheses 

This study aims to: 

1) Predict the impact of sea-level rise on landscapes of Spartina alterniflora-

dominated coastal wetlands in the Terrebonne Bay close to a local indigenous 

tribe by Year 2100 using a biophysical, mechanistic model (SK). 

2) Create a tool that evaluates the coastal vulnerability of the landscape to sea-level 

rise by combining biophysical modeling and traditional ecological knowledge 

(TEK). 

My hypotheses tested include: 

1) The Terrebonne Bay area surrounding the Pointe-au-Chien Indian Tribe (PACIT), 

a State recognized Native American tribe, will show accelerated wetland loss 

under sea-level rise. 

2) The incorporation of the TEK assessments with the SK predicted wetland loss 

will produce a vulnerability that is more extensive compared to the SK or TEK 

alone. 

2.2 Methods 

In order to test these hypotheses, I calibrated a mechanistic, biophysical model 

that spatially predicted coastal wetland change impacted by sea-level rise (Wu et al, 

2020). With the model predictions by 2050 and 2100 at different SLR rates, I further 

derived SLR thresholds beyond which coastal wetlands will be lost dramatically. This SK 

model simulates elevation change-driven habitat change, informed by its simulated 

sediment accretion and erosion. The key inputs include elevation, initial coastal wetland 

distribution, the relation between vegetation productivity and elevation (and soil 
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porewater salinity), and total suspended sediments. Based on the predicted wetland loss, I 

classified the landscape into three levels of vulnerability, and then combined it with the 

vulnerability map that represents the PACIT’s TEK in the Terrebonne Bay of southern 

Louisiana. In combining a SK sea-level model output with the local TEK assessment 

map, we engaged with multiple knowledge systems (Lake et al., 2018) to create new 

opportunities of examining coastal land loss through diverse perspectives. The creative 

strategy recognizes the benefit of local knowledge in applied research and participatory 

mapping approaches and ultimately helps to break down the barrier between social and 

scientific knowledge (Bethel et al., 2022; Laituri, 2011). 

2.2.2 Study Area 

Coastal Louisiana is a dynamic landscape that is home to many indigenous tribes, 

such as the PACIT (Fig. A.15-16). This state recognized tribe inhabits Louisiana’s 

Terrebonne and Lafourche Parishes along Bayou Pointe-au-Chien, roughly 75 miles 

southwest of New Orleans (Bethel et al., 2022; Rivard, 2015) (Fig. A.16). The PACIT 

descends from the regional Chitimacha, Biloxi, and Acolapissa tribes and has roughly 

800 members who center around a key subsistence and commercial livelihood base of 

fishing, shrimping, oyster farming, hunting, and crabbing. Tribe members speak Indian 

French and continue to live and work with the land despite issues arising from climate 

change, such as land loss resulting in village migration further north and increased 

salinity driving away species traditionally used for fishing and trapping (Bethel et al., 

2022; Ferguson-Bohnee, 2015; Rivard, 2015).  

The PACIT and other tribes in this area face the combined effects of subsidence, 

continuous erosion, and sea-level rise, resulting in one of the areas with the highest rates 
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of relative sea-level rise (RSLR) in the world (NOAA, 2012; Bethel et al., 2022; 

Karimpour et al., 2013) (Fig. A15). The PACIT’s ecosystem-dependent livelihood base is 

a reason for their adaptability and understanding of the land. This way of life, however, 

contributes to the community vulnerabilities they face living in an area frequently 

impacted by tropical storms, hurricanes, and issues brought about from climate change 

such as salinity inundation and land loss. It is important to study the wetlands around the 

PACIT. Coastal wetlands play an important role in enhancing livelihoods in the area. 

They have been shown to be effective to mitigate storm surge flood risks (Fairchild et al. 

2021, Costanza et al. 2008). In addition, “more than 75% of the commercial and 90% of 

the recreational harvest of fish and shellfish in the U.S. depend on coastal wetlands for 

food or habitat during some part of their life cycle” 

(https://coastalresilience.tamu.edu/home/wetland-protection/value-of-coastal-fisheries-

and-wetlands/). Understanding this area of incredibly high RSLR will not only help 

predict ecosystem change but also aid the tribe’s knowledge of their landscape; through 

risk identification and preventative management they can better maintain their way of 

life, protect sites of cultural importance, and inform potential structures for adaptation 

(Maldonado, 2014; Bethel, et al., 2022). 

The Terrebonne Bay, located in Terrebonne Basin between the Mississippi River 

bird foot delta and the Atchafalaya delta, was part of a deltaic plain of the Mississippi 

River several thousand years ago and served as a main distributary within the last 1000 

years (Coleman, 1981; Karimpour et al., 2013; Penland et al., 1987; Wang et al., 1993). 

The bay surrounded by wetlands including a large proportion of saltmarsh habitat, which 

is a highly productive system of primary production and carbon storage (Chmura et al., 
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2003; Hill and Roberts, 2017; Karimpour et al., 2013). The saltmarshes of Terrebonne 

Bay are dominated by Spartina alterniflora, with smaller patches of Avicennia 

germinans, Spartina patens, Distichlis spicata, and Juncus roemarianus also observable 

(Hill and Roberts, 2017).  

The Terrebonne Bay rarely sees clear water and receives little to no fluvial inflow 

or external sediment deposition – as such the sediment and turbidity changes seen here 

are attributed to the processes that occur within the wetlands and the bay, such as bay bed 

erosion, wave activities, cold fronts, and storm influences (Karimpour et al., 2013). The 

coastal marshes of this region experience low amplitude tides (~0.3 m; Hill and Roberts, 

2017) that are diurnal with microtidal fluctuations, as well as irregular floodings, with 

inundation more influenced by wind and larger-scale meteorological activities than by 

tides (Childers and Day, 1998; Turner, 2001; Schutte et al., 2020; Wang et al., 1993). 

Using the Coastwide Reference Monitoring System (CRMS), the average 2022 salinity 

measured around this study’s field sites were reported as 21.04 (ppt), with an average 

water temperature of 22.96 (ºC). https://www.lacoast.gov/crms_viewer2/Default.aspx). 

2.2.3 Field Work 

To collect the biophysical data needed for the mechanistic SLR model, including 

vegetation productivity indicated by peak-season live biomass, soil pore-water salinity, 

and total suspended system (TSS), we conducted field work in the coastal wetlands of the 

Terrebonne Bay close to the PACIT’s territory, taking place at the end of the growing 

season in December 2022 and again in September 2023. The sample sites were 

determined by accessibility and proximity to the Coastwide Reference Monitoring 

System locations (Fig. 2.2). We collected above- and belowground biomass at five sites. 

https://www.lacoast.gov/crms_viewer2/Default.aspx
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At each site, we set up two parallel 3-m transects perpendicular to the coastline. At each 

transect, we selected three subsites that were about 1 m apart and took duplicate samples 

at each subsite (Fig. 2.2). Spatial coordinates were measured at each subsite along the 

transects. To collect aboveground biomass, we placed 25 x 25cm quadrats at each subsite 

along the transects, cutting the entirety of alive and dead surface biomass within each 

quadrat, placed in bags, and stored in coolers to stave off decomposition. After removing 

the aboveground biomass, we collected belowground biomass at the same location using 

30 cm long 4-inch (10.16 cm) diameter soil cores, which were then separated into 0 – 5, 6 

– 10, 11 – 15, 16 – 20, 21 – 25, and 26 – 30 cm depths using a handsaw and then stored 

in a cooler (Fig. 2.1). Bags were placed in a cooler until returned to the lab and then 

stored in 4 °C refrigerators for later processing. We took three water samples using one 

liter bottle grabs as we approached each site with coordinates recorded in order to derive 

the total suspended solids (TSS) (Fig. 2.2).  

 

Figure 2.1 Field work showing below-ground biomass extraction with the PVC soil corer 

and handsaw to cut below-ground biomass samples into 5 cm sections (left) and soil 

cores ready for sectioning (right). 
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2.2.4 Laboratory Processing 

The processing of above- and belowground biomass is the same as in chapter 1. 

To calculate porewater salinity, I placed 10 grams of wet soil from each depth of each 

subsite in oven-safe trays and dried it in an oven at 75°C until a constant weight is 

reached, roughly 3-4 days. After the soil dried, I calculated the difference between the 

wet and dry weight as the soil moisture content. I added 20 milliliters of distilled water to 

each sample of dry soil and mixed them thoroughly to allow salts adsorbed onto the soil 

to be dissolved in water. I then let the solids to settle for at least an hour, after which I 

then used a refractometer to measure soil salinity in units of parts per thousand (ppt). 

Using this data, I calculated porewater salinity with a mass balance equation: 

𝑃𝑜𝑟𝑒𝑤𝑎𝑡𝑒𝑟𝑠𝑎𝑙𝑖𝑛𝑖𝑡(𝑝𝑝𝑡) = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦(𝑝𝑝𝑡) ∗ 

(
20

𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡−𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
)  

To calculate TSS from the water samples, I placed pre-weighed glass fiber filters 

in a furnace at 400°C for four hours to remove organic content. Once ashed, I weighed 

the filters again with an analytical balance and used a vacuum pump to filter water 

samples with duplicates from each bottle to the prepared filter papers, recording the 

volume used. The wet filter papers were then dried in an oven at 75°C overnight to 

completely dry out and remove the remaining water. Once dry, the filters with the solids 

were weighed to collect filter paper and total solids weights. I then put the dried filter 

papers back in the furnace for four hours and weighed them again to get just the inorganic 

sediment weights. With this data, I calculated TSS using the equation 
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𝐼𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔)−𝐹𝑖𝑙𝑡𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔)

𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝐿)
. The in-situ 2022 biophysical data are listed in 

Tables A.10-11.   

 

Figure 2.2 Map of southern Louisiana’s Terrebonne Bay with five sample sites (red 

circles) in proximity to the CRMS sites (yellow triangles) (left), and sample site location 

#5 with the locations for TSS water samples (red circles with black dot) and the biomass 

samples (red triangles) (right). 

2.2.5 Model 

I applied a landscape model (Wu et al., 2017a, 2020) to predict coastal wetland 

change based on biophysical data collected from field site visits in December 2022. This 

model accounts for vegetation responses and hydrodynamics in order to construct 

predictions of salt marsh distributions under future scenarios of SLR (Wu et al., 2017a, 

2020). It is a two-dimensional and mechanistic model that uses elevation as the key 

driver for vegetation productivity and landscape change while also simulating accretion 

and erosion (Wu et al., 2017a, 2020) (Equation 2.1) (Fig. A.17). The model for this study 

uses biophysical inputs to predict elevational change and the conversion of saltmarshes to 

estuarine open water once the elevation is below the mean low water level on 2 × 2 m 

blocks (Wu et al., 2020).  

1 

5 

4 

3 4 
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𝐸𝑙𝑒𝑣𝑡 = 𝐸𝑙𝑒𝑣𝑡−1 − 𝑅𝑆𝐿𝑅𝑡 + 𝐴𝑡  −  𝐸𝑟𝑜𝑡 

Equation 2.1 where Elev denotes elevation, RSLR denotes relative sea-level rise rate, A 

denotes accretion rate, and Ero denotes erosion rate. The subscript t denotes time 

(adapted from Wu et al., 2017a). 

 

The model inputs include 2011 LiDAR-derived elevation data from the U.S. 

Army Corps of Engineers, with a spatial resolution of 2 meters and in the vertical datum 

of NAVD88. The current relative sea-level rise (RSLR) rate is 9.1 mm/year (Herbert et 

al., 2021). Sediment bulk density was acquired through the Coastwide Reference 

Monitoring System (CRMS), averaged from the field locations as 0.289 g/cm3 for the 

Terrebonne Bay, Louisiana. Saltmarsh spatial distribution maps from 1989 and 2023 

were available from the National Wetland Inventory datasets. Both organic and inorganic 

total suspended solids (TSS), and above- and belowground biomass were collected in-

situ, with mineral sediments and belowground biomass contributing to inorganic and 

organic accretion (Wu et al., 2017a, 2020). For more details on the model, see Wu et al, 

2017a. 

The output of this spatial model produces maps of predicted coastal wetland 

distribution. Based on the levels of wetland loss, I classified the maps into different levels 

of vulnerability. I then combined vulnerability maps derived from the biophysical 

modeling with previously collected TEK spatial data using an overlay to understand more 

comprehensively the vulnerability of coastal wetlands to sea-level rise and priority areas 

that need urgent protection from the PACIT’s perspective. The TEK assessment output is 

based on sustainability goals (listed by low to high priority goal) and vulnerability risk 

factors (listed by least to most at risk) identified by PACIT members through various 
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field-based interviews and focus group meetings (Bethel et al., 2022) (Fig. 2.3) (Tables 

2.1 and A.12). An area with a high sustainability rating (3) means it contributes greatly to 

the PACIT’s sustainability goals while a high vulnerability rating (3) denotes an area 

highly vulnerable to sea-level rise and subsidence (Bethel et al., 2022). In order to 

integrate the SK and TEK predictions, I focused on vulnerability from TEK and 

combined it with the vulnerability derived from the biophysical model. Then I overlayed 

sustainability with the combined vulnerability. By combining the TEK and SK maps, the 

predicted saltmarsh loss will be more informed and lend additional confidence to 

decision-making for the tribe’s members and land-managers in the Terrebonne Bay. 

 

Figure 2.3 Classification of PACIT’s priority areas based on a combination of 

sustainability and vulnerability assessments from the tribe’s citizens, related to 

differences in perceived risk to coastal hazards (from Bethel et al, 2022).  

Highly fragmented land in dark red (upper right corner of the map) receives more 

sustainability and vulnerability importance than the lower-level priority areas in light 

green (for example, in the lower left and middle sections of the map) (Table A.12). 
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 Combined 
SV Code 

Sustainability Vulnerability 

 Class Level Class Level 

  10 1 Low 0 Null 

  11 1 Low 1 Low 

  12 1 Low 2 Medium 

  13 1 Low 3 High 

  20 2 Medium 0 Null 

  21 2 Medium 1 Low 

  22 2 Medium 2 Medium 

  23 2 Medium 3 High 

  30 3 High 0 Null 

  31 3 High 1 Low 

  32 3 High 2 Medium 

  33 3 High 3 High 

 

Table 2.1 Color codes for the sustainability and vulnerability combinations in Fig. 2.3 

(from Bethel et al., 2022). 

2.2.6 Model Calibration and Assessment 

I derived linear mixed effects models to simulate above- and belowground 

biomass as a function of elevation and soil porewater salinity with sample site as a 

random factor using the “lmerTest” package in R (https://cran.r-

project.org/web/packages/lmerTest/index.html). We compared the models with different 

combinations of the covariates based on Akaike Information Criterion (AIC), and the 

model with the lowest AIC was selected as the best predictive model (Wu et al., 2020, 

2017b). I found the best model was the one with only elevation as the covariate. We 

derived deposition rate by combining contribution from water column borne inorganic 

matter settled or intercepted by aboveground biomass and organic contribution from 

belowground biomass. To derive the spatial distribution of inorganic total suspended 

solids, I developed a mixed effects model relating the inorganic TSS with spatial 
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Northing in UTM projection with the site as the random factor. Like the other mixed 

effects models, this model was selected because it had the lowest AIC value.  

As we designed our sampling sites to be close to CRMS sites, we could take 

advantage of existing data at the CRMS sites. We developed a regression to link the 

measured accretion rates at the CMRS sites with average biomass at our sampling sites. 

The coefficients derived were directly used in the landscape model to simulate accretion 

rates as a function of biomass. The five CRMS stations near the study sites report up to 

an average accretion of 2.54 cm/year with my model’s simulated accretion rates ranging 

from 0 cm/year to 1.87 cm/year (https://www.lacoast.gov/crms_viewer2/Default.aspx). I 

further calibrated the model by comparing simulated 2023 erosion rates and water 

velocity to the measured data in literature. One study found that velocity rates for the 

Terrebonne Bay ranged from -0.5m/s to 0.5m/s (Wang et al., 1993), with my simulated 

velocity ranging from 0 m/s to 0.094 m/s.  

Additionally, I evaluated the accuracy of the simulated saltmarsh distributions in 

2023 to the NWI data in 2023 (considered as ground truth). I used a modified kappa that 

accounts for persistent land cover (van Vliet et al. 2011) and four metrics to evaluate the 

simulation accuracy on two land cover types (wetland vs. estuarine water): (1) hits 

(reference land change corrected simulated as change), (2) correct rejections (reference 

land persistence correctly simulated as persistence), (3) misses (reference change 

incorrectly simulated as persistence), and (4) false alarms (reference persistence 

incorrectly simulated as change (Pontius et al. 2011, Wu et al., 2015, 2020). 

 

 

https://www.lacoast.gov/crms_viewer2/Default.aspx
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2.2.7 Model Scenarios and TEK Combination 

With the calibrated SLR model, I ran the model under a variety of SLR rate 

scenarios, from SLR rates of 9 mm/year to 20 mm/year trying to identify the threshold of 

SLR. Even with the current SLR rate of 9.1 mm/yr, the wetland loss was already 

dramatic, so I decided to use the SLR rate that predicts wetland areas in 2100 as the half 

of the predicted wetland areas in 2100 when using the current SLR rate as the SLR 

threshold. It was determined to be 10 mm/yr. Then I ran the model under this SLR 

threshold and identified the wetland areas that would be lost by 2050 as the most 

vulnerable areas, the wetland areas that would be lost by 2100 as the medium vulnerable 

areas, while the wetlands that would be persistent by 2100 as the least vulnerable area.  

To isolate predicted saltmarsh loss, I used the Extract by Mask, ReClassify, and 

Mosaic Raster tools in ArcPro on the two saltmarsh prediction maps (2050 and 2100 

under SLR rate of 10 mm/yr) and the 2023 NWI map. I reclassified the TEK map from 

two digits to one digit (i.e the previous class 11 is now 1) where the reclassified maps’ 

vulnerability assessments ranges from low (1) to high (3).  

I multiplied SLR predictions by 10 and added it to the TEK reclassified 

vulnerability map using the Raster Calculator tool to derive a combined vulnerability 

map, with classes ranging from low (11) to high vulnerability (33). If the digits at tens 

and ones positions differed, the vulnerability classification from TEK and biophysical 

models did not match. This was expected as they are based on different evaluation 

methods. Once combined, I further reclassified the vulnerability map to scale from low 

(1) to high (3) vulnerability classes. Any numbers with the digit of 3 was classified as 3, 

any numbers with the digit of 2 was classified as 2, and 11 was classified as 1. An area 
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should be given high or medium vulnerability if either source of data identified it as high 

or medium vulnerability.    

2.3 Results 

2.3.1 Calibration 

By comparing my predicted wetland map in 2023 and NWI 2023 data, the 

modified Kappa (van Vliet et al. 2011) that accounts for land persistence is 0.63, 

indicating a good agreement between the simulated map and reference map. This kappa is 

the product of Ktransition and Ktranslocation. Ktransition represents matches of 

quantities of transitions between reference and simulated maps and ktranslocation 

assesses matches of locations (van Vliet et al., 2011). Considering the kappa values, it 

seems easier to get the quantity correct (Ktransition = 0.93) than to get location correct 

(Ktranslocation = 0.68). This assessment gives confidence that the model can adequately 

predict coastal wetland change. 
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2.3.2 Predictions under varying SLR scenarios and 10 mm/yr 

Table 2.2 Proportions of predicted wetland loss by year under various sea-level rise 

scenarios. 

Scenarios 
(Sea-Level 

Rise mm/yr) 

Predicted Wetland Loss 

2050 2075 2100 

Area(ha) Proportion Area(ha) Proportion Area(ha) Proportion 

9 151.6648 0.059 214.4276 0.084 288.124 0.112 

9.5 321.902 0.126 563.9256 0.22 669.6096 0.261 

10 699.3304 0.273 1129.3972 0.44 1193.219 0.465 

10.5 1096.3028 0.427 1502.406 0.586 1534.426 0.598 

11 1548.9188 0.604 1888.2332 0.736 2553.743 0.74 

11.5 1882.8184 0.734 2118.1944 0.826 2122.86 0.828 

12 2131.808 0.831 2271.658 0.886 2273.099 0.886 

12.5 2304.0744 0.898 2387.4828 0.931 2389.133 0.9315 

13 2430.272 0.948 2476.9428 0.966 2478.298 0.966 

13.5 2524.312 0.984 2549.2436 0.994 2550.482 0.994 

14 2550.8056 0.995 2563.842 0.999 2564.642 0.999 

14.5 2556.4664 0.997 2564.0952 0.999 2564.685 0.999 

15 2559.456 0.998 2564.2704 0.999 2564.71 0.999 

15.5 2560.9188 0.999 2564.3884 0.999 2564.722 0.999 

16 2561.7996 0.999 2564.478 0.999 2564.73 0.999 

16.5 2562.366 0.999 2564.5492 0.999 2564.734 0.999 

17 2562.8028 0.999 2564.5976 0.999 2564.737 0.999 

18 2563.4212 0.999 2564.67 0.999 2564.74 0.999 

18.5 2563.6768 0.999 2564.6932 0.999 2564.741 0.999 

19 2563.866 0.999 2564.7084 0.999 2564.742 0.999 

19.5 2564.0216 0.999 2564.7176 0.999 2564.742 0.999 

20 2564.742 0.999 2564.7236 0.999 2564.742 0.999 
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Figure 2.4 Predicted wetland area (ha) under various sea-level rise scenarios (mm/yr), at 

years 2050, 2075, and 2100. 
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Figures 2.5-8 NWI wetland map (top left) and wetland predictions by the year 2050 (top 

right), 2075 (bottom left) and 2100 (bottom right), produced from the SLR mechanistic 

model using 10mm/year SLR. 

 

 

Wetland Predictions 

Year Area (ha) Proportion of Loss 

2023 2564.743 0 

2050 1865.412 0.273 

2075 1435.346 0.44 

2100 1371.524 0.465 

 

Table 2.3 Current and predicted wetland loss area (ha) and proportion of loss by the 

year 2100, based on 10 mm/yr SLR (Figs. 2.5-8). 
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The proportion of predicted wetland loss under various sea-level rise scenarios for 

2050, 2075, and 2100 indicate that wetland loss will accelerate after only a slight increase 

to the current RSLR of 9 mm/year (Table 2.2). Much of this predicted acceleration begins 

around 10.5 - 11 mm/year, after which the predicted wetland loss levels out at a 

proportion of 0.99. This is confirmed when observing the inflection points from the sea-

level rise threshold graphs, where after 10 mm/year, the decrease in wetland area (ha) is 

much steeper (Fig. 2.4). From the biophysical model predictions (Figs. 2.6 – 2.8), much 

of the predicted wetland loss is located in the northern section of the PACIT study area, 

as well as around some of the fragmented habitat in the central area. The SLR model’s 

predictions suggest that almost half of the wetland habitat in this study area will be lost 

by 2100 under the SLR threshold of 10 mm/year (Table 2.3). 
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2.3.3 Vulnerability from SK/SLR model 

 

Figure 2.9 Coastal wetland vulnerability classified as high (red, loss by 2050), medium 

(orange, loss by 2100), and low (yellow, little to no predicted loss). 

The predicted saltmarsh loss map from the SLR model classifies vulnerability 

based on persistence by 2100 (yellow), loss by 2100 (orange), and loss by 2050 (red). 

The highest wetland vulnerability is centered in the northern part the study area as well as 

some of the edges of fragmented areas in the center (Fig 2.9). These will be the areas that 

require special attention by the resource managers. Orange or medium vulnerability 

areas, also largely in the northern section, require less attention as they reflect 
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vulnerability by the end of the century. The yellow areas take up most of the southern 

portion of the map and require the least attention from the PACIT or land managers (Fig. 

2.9). 

 

2.3.4 Combining TEK and SK vulnerability predictions 

 
 

Figure 2.10 Reclassified TEK vulnerability assessment, based on high (3) to low (1) 

vulnerability. 
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Figure 2.11 Saltmarsh vulnerability map based on TEK and SK data, constructed by 

combining the TEK vulnerability map (Fig 2.10) and the SLR saltmarsh loss prediction 

map (Fig 2.9). 

 

Table 2.4 Classes, corresponding area, and proportion of area from Fig. 2.11. 

TEK SLR Vulnerability Assessment 

Class Area(ha) Proportion 

11 1159.3488 0.473 

12 34.6404 0.014 

13 0.7588 0.0003 

21 438.9372 0.179 

22 25.0664 0.01 

23 0.6344 0.0003 

31 721.7456 0.294 

32 67.1412 0.027 

33 5.5284 0.002 
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Figure 2.12 Reclassified TEK SLR map from Fig. 2.11. High vulnerability areas are red 

(3), medium vulnerability is orange (2), and low vulnerability is yellow (1). 

 

Table 2.5 Classes, corresponding area, and proportion of area from Fig. 2.12. 

 

Reclassified TEK SLR 

Vulnerability Assessment 

Class Area(ha) Proportion 

1 1159.349 0.472 

2 498.644 0.203 

3 795.8084 0.324 
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Table 2.6 Proportion of vulnerable areas (ha) by class for the TEK assessment, SLR 

predictions, and combined TEK + SLR assessment. 

 

Proportion of Vulnerable Areas 

Class TEK SLR TEK + SLR 

1 0.942 0.478 0.472 

2 0.055 0.183 0.203 

3 0.003 0.339 0.324 

 

The separated TEK vulnerability assessments indicates that most of the PACIT 

study area is classified as low or nonvulnerable with a proportion of 0.94 (Fig. 2.10) 

(Table 2.6).  The combination of TEK and SK produced a single map that identified 

vulnerable areas (Figs. 2.11). In this map, the class scale ranged from the lowest (11) to 

the highest (33) (Fig. 2.11). The first digit refers to information from the biophysical 

predictions and the second is from the TEK map (i.e., class 23, where 2 is from the 

biophysical model predicted map and 3 is from the TEK assessment).   

The vulnerable areas that show agreement between the TEK and SLR maps are 

those that correspond with the classes 11, 22, and 33 (Fig. 2.11). We found the largest 

agreement is from class 11 with a proportion of 0.47, indicating that the two vulnerability 

assessments agree most on low or non-vulnerable saltmarsh habitat (Fig 2.11) (Table 2.4). 

The other classes show moderate to severe disagreement based on class arrangement (i.e., 

21 is moderate disagreement while 13 is severe disagreement). Class 31 indicates there is 

large disagreement (0.29 proportion) between the TEK and biophysical vulnerability 

predictions (Fig. 2.11) (Table 2.4). This is because high vulnerability in the TEK 

assessment is very small (proportion 0.003), while the most vulnerable saltmarsh habitat, 
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most of which is predicted in the northern third of the SLR map, is much larger 

(proportion 0.339) (Table 2.6). 

The combined TEK SK vulnerability map further reclassified to represent 

vulnerability from low (1) to high (3) shows the majority of coastal wetlands can persist 

under SLR (Fig. 2.12). High (red) and medium (orange) vulnerability areas are more 

highly concentrated in the northern third of the study area and around certain wetland 

edges in the southern section of the study area, while low (yellow) wetland vulnerability 

areas lie in the southern section of the study area (Fig. 2.12). This combined map shows 

much more high vulnerability (proportion 0.324) than the TEK vulnerability assessment 

(0.003), similar to high vulnerability shown in the SLR model predictions (proportion 

0.339) (Fig. 2.12) (Table 2.5-6).  

2.3.5 Sustainability and vulnerability 

 

Figure 2.13 Reclassified TEK sustainability assessment, based on high (3) to low (1) 

sustainability priority. 
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Figure 2.14 Final sustainability and vulnerability map created using the TEK SLR 

vulnerability map from Fig. 2.12 combined with the TEK sustainability assessment from 

2.13.  

The first digit refers to vulnerability and the second digit denotes sustainability goals, 

based on low (1) priority to high (3) priority. 
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Table 2.7 Classes, corresponding area, and proportion of area from Fig. 2.14. 

 

Final Sustainability and 

Vulnerability Map 

Class Area(ha) Proportion 

11 616.916 0.251 

12 327.1416 0.133 

13 215.2912 0.088 

21 194.9332 0.079 

22 143.108 0.058 

23 160.6028 0.065 

31 491.6596 0.203 

32 187.6296 0.076 

33 116.5192 0.047 

 

The TEK sustainability assessment shows that most of the PACIT’s high priority 

sustainability goals lie along the major bayou (Bayou Pointe au Chien) that runs from the 

northwest to southeast of the map (Fig 2.13). The medium priority sustainability goals are 

located largely in the centers of the study area (Fig. 2.13). The output from integrating the 

TEK SK vulnerability map with the TEK sustainability assessment indicates how 

vulnerability from risk factors (the first digit) aligns or mismatches with the tribe’s 

sustainability goals (the second digit, where 1 is a low sustainability goal and 3 is a high 

sustainability goal) (Fig 2.14). An area with low vulnerability and low sustainability goal 

area is listed as class 11 (proportion 0.25) while a high vulnerability and high 

sustainability goal area is denoted by class 33 (proportion 0.047) (Table 2.7). (Fig. 2.14).  

2.4 Discussion 

The effort to combine the PACIT’s TEK assessments and the biophysical, 

mechanistic predictions of the SLR impact produced a vulnerability map built from 

various forms of knowledge and local concerns. Evaluating the TEK and SLR 
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vulnerability map reveals areas where the two assessments agree and disagree. There is 

large disagreement with class 31 of the TEK SLR vulnerability map. The SLR model 

likely denoted this section of the map as more vulnerable because of low accretion rates. 

The CRMS accretion rate for the most vulnerable section (2.54 cm/year, CRMS station 

3296) is lower than the average accretion rate for the rest of the map (3.18 cm/year). This 

area of lower accretion may be because it’s less frequently inundated due to lack of 

riverine inputs, as being far away from the tidal inlets means lower sediment in the water 

columns which leads to lower sedimentation. Like accretion, aboveground biomass for 

the highly vulnerable section of the SLR map is also lower (294.38 g/m2) than the 

average aboveground biomass for the rest of the map (381.92 g/m2). Saltmarsh habitat are 

key systems for organic and inorganic accretion, as this accumulation combats sea-level 

rise; thus, if the accretion rate is lower than the degree of sea-level rise, vulnerability of 

saltmarsh loss from subsidence increases (Stevenson et al, 1986).  

Additionally, the sample sites are distributed more towards the southern half of 

the study area, due to our attempt to align our sampling sites to the CRMS station 

locations to take advantage of CRMS’ long-term data. Increasing sample sites in the 

northern half of the study area may improve landscape predictions. Moreso, the SLR 

model was calibrated using the 2022 biomass data, which may underestimate vegetation 

productivity as the samples were collected in middle of December due to logistic and 

weather reasons. As mentioned in Chapter 1, this region experienced a drier-than normal 

year in 2022, and as such the biomass we collected may have caused our SLR model’s 

predictions to overestimate wetland loss. Including 2023 data collected in September 

once processed may strengthen the model’s landscape predictions. The TEK vulnerability 
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assessment considered risk factors such as proximity to spoil banks, canals, and highly 

fragmented areas, which were not considered in the SLR model. Moreso, while the 

original TEK vulnerability assessment takes into account historical land loss, predicted 

land change, and uses a projected SLR increase of 0.7m by 2060 (Sweet et al., 2017), it 

fails to account for land loss at a site-specific sea-level rise threshold (10 mm/year, 0.37m 

by 2060) through the end of the century in the SLR model. The TEK assessment also 

lacks spatial variability captured from site-specific inputs, like the biophysical inputs in 

by the SLR model.  

Working within the PACIT community during my field visits was eye-opening, 

detailing a completely new piece to the climate change puzzle that western science 

traditionally ignores (Gadgil et al., 1993; Berkes, 1993). This incorporation of traditional 

and social data is essential. As impacts from climate change worsen, the knowledge 

systems from TEK provide generational familiarity of previous ecological changes, 

which can lend insight for successful adaptation plans (Maldonado et al., 2014). One of 

the initial goals of this collaboration initiated by M/ Bethel was not only to aid the 

PACIT’s planning for hazard mitigation, but to serve as a means of communicating their 

needs to external partners and government agencies for consideration in protective and 

restorative projects (Bethel et al., 2022).  

In creating this decision support tool, the tribe’s members have a means for 

assessing climate change impacts of territory they’ve lived and worked in for generations. 

It helps them prepare for further adaptation to a changing landscape while protecting their 

sites of cultural significance (Maldonado, 2014; Bethel, et al., 2022). I believe this TEK 

SK tool presents hope for the resilience of these coastal wetlands and the PACIT’s way 
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of life. The combined vulnerability map shows moderate to low vulnerability in many 

areas, roughly 66%, suggesting that these saltmarsh systems can be resilient to some sea 

level rise, in this study specifically, up to 10mm/yr SLR. In the sustainability and 

vulnerability map, we can locate where actions should be taken based on combinations of 

vulnerability and sustainability goals (ex. class 33 in Fig. 2.14), demonstrating targetable 

areas addressable through informed, restorative projects. Class 13 indicates the wetland 

habitat is at low vulnerability but is a high sustainability goal area – this may suggest that 

there is a high chance of success for protective and restorative actions. On the other hand, 

areas with high sustainability goals and high vulnerability risk (class 33), may be suitable 

for more intensive restorative actions such as living shorelines, a restoration we are 

working with the PACIT on to implement in the near future. By incorporating 

generational and cultural data into the landscape predictions, we dealt with broader 

perspectives that are often missing from the limited biophysical, mechanistic models 

(Hatfield et al., 2018). 

I suggest further work with the SLR model. The abrupt boundary between the 

predicted 2075 and 2100 maps may result from the quality of the LiDAR data or the 

mean low water level used in the model that triggers the conversion from marshes to 

water. The boundary begins to appears after the model ran for 100 years, which is 

reasonable since the model predictions involve more uncertainties as time progress, as in 

any other dynamic models. Incorporation of September 2023 biomass data is necessary as 

it better represents vegetation productivity, a key driver for accretion in the model. The 

current biomass used was collected at the end of the growing season and it is likely an 

underestimate though the leaves had not turned yellow at the time of collection. A 
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sensitivity analysis on the biomass function in the model will shed light on how this can 

affect model predictions and vulnerability derived. In addition, during the most recent 

field visit in September 2023, one of the sample sites showed a potential transition from 

Spartina alterniflora dominated coastal wetland habitat to a mix of S. alterniflora, 

Salicornia bigelovii Torr. (Dwarf glasswort), and Avicennia germinans (Black 

Mangrove). The current model does not account for species change, which is not an issue 

with the 2022 biophysical data, collected from Spartina alterniflora monocultures. 

However, with the presence of other species collected in the 2023 site data, I recommend 

altering the model to factor in this diversity. Further visits to this site will potentially 

show continued presence of these new species or others, which can provide more insight 

for the model’s landscape predictions.  

Likewise, the presence of the glasswort and mangrove species may be indicative 

of ecological succession – as climate change continues, these new species may continue 

to expand poleward into territory previously dominated by Spartina alterniflora. This 

expansion of black mangroves into the Terrebonne Bay could affect landscapes of this 

region dramatically and further challenges spatial predictions. Mangroves can be more 

tolerant to increased inundation than S. alterniflora as they can build elevation more 

rapidly. However, these plants can collapse abruptly due to quick decomposition of 

necromass after mortality (Morris et al. 2023). In addition, mangroves are more 

susceptible to freeze events (McKee et al., 2004; Alleman and Hester; 2011). The 

biophysical model can be further developed by collecting data near dredged channels to 

factor in the impact of channels on vegetation and sediment dynamics. The literature 

suggests more research is needed to understand what ecological consequences may arise 
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from this shift in Louisiana’s coastal wetland habitats (Perry and Mendelssohn, 2009; 

Guo et al., 2013).  

2.5 Conclusion 

Spatial analysis of the PACIT study area from the combined TEK SK model 

predictions allowed a comprehensive understanding of the vulnerability of coastal 

wetlands from historical, current, and future perspectives. The mechanistic assessment 

gave information to vulnerable areas using biophysical data and can make predictions in 

the future while the TEK assessments were based on sustainability goals and 

vulnerability risk factors identified by the PACIT members. The combined TEK SK 

vulnerability map showed areas of similarity and dissimilarly, as the two assessments 

were constructed by varying means. The TEK vulnerability assessment was comprised 

mostly of medium to low/no priority areas, while the SK vulnerability map demonstrated 

a large section of high to medium priority, likely influenced by its biophysical inputs and 

sample sites.  

Working with the PACIT and their TEK provided critical information that 

bolstered the SK predictions and will continue to lend insight as climate change 

exacerbates changes in this landscape. The vulnerability and sustainability assessment 

developed from this chapter can act as a tool for the PACIT and local land managers for 

understanding how this region of the Terrebonne Bay may change and identifying what 

areas should be protected based on prioritization and sustainability goals. Additionally, I 

encourage continued field site visits to observe potential ecological succession and areas 

close to dredged channels to account for this anthropogenic influence, which can provide 
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more awareness to landscape predictions, and to strengthen the bond forged with the 

PACIT community.  
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CHAPTER III - LINKING THE IMPACTS OF SEA-LEVEL RISE TO SPARTINA’S 

MECHANISMS OF ADAPTION AND TO THE COASTAL RESILIENCY OF 

SPARTINA ALTERNIFLORA-DOMINATED WETLANDS 

The combined effects of climate change and sea-level rise are intensifying 

pressures on coastal wetlands and their nearby communities, as increased inundation and 

ensuing saltwater intrusion can lead to lowered saltmarsh productivity, decreased plant 

biomass, and finally plant death - ultimately resulting in land subsidence. Chapter 1 of 

this thesis examines the interactive effects of inundation and nitrogen on two commonly 

found saltmarsh species, Spartina alterniflora and Spartina patens. To do so I observed 

the responses of their one- and three-dimensional characteristics (productivity and 

morphological traits respectively) to these two environmental stressors using a marsh 

organ experiment, a controlled in-situ mesocosm that was situated in the western channel 

of the Pascagoula River, Mississippi. Our results describe varying productivity responses 

between species that also differed as the experiment continued, with impact varying from 

the short- and long-term. The low marsh plant Spartina alterniflora generally had 

quadratic relations with increased inundation while the high marsh plant Spartina patens 

had mostly negative impact. Both Spartina species responded positively to increased 

nitrogen via ammonium nitrate additions in the above- and belowground biomass, 

however responses to the nitrogen addition in the belowground biomass only appeared in 

the long-term, suggesting a lagged response.  

By chapter 2, I expanded my focus from the mechanisms of adaptation to evaluate 

the impact of sea-level rise on a saltmarsh wetland home to an underrepresented 
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community in coastal Louisiana’s Terrebonne Bay. I partnered with the state recognized 

Pointe-au-Chien Indian Tribe (PACIT) and Louisiana Sea Grant to more 

comprehensively predict local saltmarsh resiliency to future sea-level rise. To do so I 

calibrated a mechanistic landscape model that spatially predicts saltmarsh platform 

change when impacted by increasing inundation. With this mechanistic, science-

knowledge (SK) model, I compared the model’s saltmarsh vulnerability predictions to the 

vulnerability assessments derived from the PACIT’s traditional ecological knowledge 

(TEK), a highly cultural, social-based knowledge system passed down by indigenous 

peoples. The integration of this biophysical model’s predictions with the land-based, 

generational assessments highlighted the susceptibility of a local saltmarsh system to sea-

level rise. By including the tribe’s sustainability goals with the new vulnerability 

predictions, I created a more extensive decision support tool for the PACIT and local land 

managers in order to prioritize coastal wetland restoration in the Terrebonne Bay. 

The two chapters of this thesis are linked in many ways, from the foundation of 

my knowledge with Spartina biology to future implications regarding the resiliency of 

real-world coastal ecosystems. The in-situ mesocosm experiment in chapter 1 served as a 

clear foundation for my experience with saltmarsh ecology in the Gulf of Mexico. This 

experiment prepared my understanding of how these commonly found saltmarsh plants’ 

(Spartina alterniflora and Spartina patens) will react to future environmental scenarios 

and their mechanisms for adaptation. This ecological background in saltmarsh biology 

and behavior served as a necessary springboard for my comprehension of the conditions 

and threats coastal wetlands face in the Gulf of Mexico. Ultimately, the experience 
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acquired from chapter 1 was an indispensable source I continuously referred back to 

when approaching the field work and vulnerability assessments of Spartina alterniflora-

dominated wetlands in chapter 2. As the first chapter was an exploration of the 

mechanisms behind saltmarsh adaptation to major environmental drivers like increased 

inundation, the second chapter scales up from a species perspective to an overall 

landscape assessment. The broader impacts of chapter 2 evaluate the coastal resiliency of 

local saltmarshes under increasing sea-level rise predictions and suggests implications for 

the future of a local indigenous tribe. 

While chapter 1 shaped my understanding for the saltmarshes in chapter 2, it also 

served as preparation for what field work in Louisiana’s marshes would look like. The 

field collection skills that I previously acquired from harvesting my marsh organ biomass 

helped streamline the biomass collection process in Louisiana, as above- and 

belowground biomass harvest was largely similar. Like with field work, the laboratory 

processing was fairly identical for the biomass inputs in both chapters. The familiarity 

gained from working with Spartina alterniflora throughout my thesis built upon itself, 

which better informed my expectations and made my interpretations of the second 

chapter’s SK model grounded in personal understanding, gained from first-hand 

experience and prior information. Additionally, by incorporating a variety of 

anthropogenically impacted vegetation in the first chapter’s mesocosm experiment, we 

can more comprehensively relate a potential biomass function to a range of disturbed 

saltmarsh wetlands in the Terrebonne Bay and possibly the Gulf of Mexico. 
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Regarding modeling and a potential biomass function, the data from chapter 1 can 

inform the biomass function in chapter 2. Currently, we applied biomass data collected 

from the field in order to make empirical predictions and to better match real-world 

landscapes. However, the mechanistic predictions of chapter 2 can benefit from the 

biomass function derived from chapter 1, especially considering that geographic source 

of vegetation has less impact on vegetation productivity as time progresses. Due to the 

late season collection of Spartina biomass used in chapter 2, we are considering a 

sensitivity analysis of biomass functions to account for the samples of peak-biomass 

season in 2023 as well as a biomass function derived from the controlled experiment in 

chapter 1. 

Through witnessing the impact of sea-level rise on the Spartina species via a 

mechanistic experiment, I better understood the gravity of climate change for landscape 

predictions. This knowledge also inspired hope for resiliency, that the local saltmarshes 

have the ability to mitigate some stress induced from future sea-level rise. Overall, the 

findings from this thesis build upon our understanding of Spartina’s mechanisms for 

adaptation, saltmarsh resiliency, and ecosystem health under future stressor events, thus 

improving our predictions of future sea-level rise and climate change. 
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APPENDIX A – Supplemental Data for the Thesis 

Table A.1 S. alterniflora Year 1 metrics model comparisons using DIC and PPL. 

 

 

Sa. YR1

Height

inundation inundation2 nutrient channel days DIC PPL

model 1 - all covariates x x x x x 2529 69758.94

model 2 - no precondition x x x x 2569 78653.28

model 3 - no inundation 2 x x x x 2531 70247.28

model 4 - no channel x x x x 2527 69623.93

model 5 - no pre-condition or inundation2 x x x 2569 78831.81

model 6 - no inundation2 or channel x x x 2530 70234.34

model 7 - no precondition or channel x x x 2573 79776.06

model 8 - no channel, precondition, or inundation2 x x 2573 79986.47

Stem Width

inundation inundation2 nutrient channel days DIC PPL

model 1 - all covariates x x x x x -1083 1.394522

model 2 - no precondition x x x x -1012 1.730293

model 3 - no inundation 2 x x x x -1084 1.392667

model 4 - no channel x x x x -1079 1.41618

model 5 - no pre-condition or inundation2 x x x -1012 1.731094

model 6 - no inundation2 or channel x x x -1080 1.414547

model 7 - no precondition or channel x x x -995.3 1.825915

model 8 - no channel, precondition, or inundation2 x x -995.7 1.825756

Leaf Width

inundation inundation2 nutrient channel days DIC PPL

model 1 - all covariates x x x x x -725.5 4.094624

model 2 - no precondition x x x x -720.2 4.172509

model 3 - no inundation 2 x x x x -726.2 4.095406

model 4 - no channel x x x x -725.8 4.104466

model 5 - no pre-condition or inundation2 x x x -721.1 4.169028

model 6 - no inundation2 or channel x x x -726.7 4.099945

model 7 - no precondition or channel x x x -722.1 4.179904

model 8 - no channel, precondition, or inundation2 x x -722.9 4.153656

Leaf Length

inundation inundation2 nutrient channel days DIC PPL

model 1 - all covariates x x x x x 631.2 1251.458

model 2 - no precondition x x x x 629.5 1246.254

model 3 - no inundation 2 x x x x 631.4 1256.889

model 4 - no channel x x x x 645.8 1395.545

model 5 - no pre-condition or inundation2 x x x 630.7 1259.427

model 6 - no inundation2 or channel x x x 645.6 1399.961

model 7 - no precondition or channel x x x 644.6 1395.651

model 8 - no channel, precondition, or inundation2 x x 645.2 1406.687

Leaf Count

inundation inundation2 nutrient channel pre-condition DIC PPL

model 1 - all covariates x x x x x 1050 842.8402

model 2 - no precondition x x x x 1048 838.9651

model 3 - no inundation 2 x x x x 1049 840.6168

model 4 - no channel x x x x 1049 841.9762

model 5 - no pre-condition or inundation2 x x x 1047 838.2969

model 6 - no inundation2 or channel x x x 1048 841.2955

model 7 - no precondition or channel x x x 1047 839.6768

model 8 - no channel, precondition, or inundation2 x x 1046 838.7791
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Table A.2 S. alterniflora Year 2 metrics model comparisons using DIC and PPL. 

 

 

 

 

Sa. YR2

Height

inundation inundation2 nutrient channel pre-condition temperature DIC PPL

model 1 - all covariates x x x x x x 4510 155888.8

model 2 - no precondition x x x x x 4549 167723.7

model 3 - no inundation 2 x x x x x 4511 155933.1

model 4 - no channel x x x x x 4525 161176.5

model 5 - no pre-condition or inundation2 x x x x 4548 167597.4

model 6 - no inundation2 or channel x x x x 4524 160811.1

model 7 - no precondition or channel x x x x 4548 167789.2

model 8 - no channel, precondition, or inundation2 x x x 4546 167578

Leaf Length

inundation inundation2 nutrient channel pre-condition temperature DIC PPL

model 1 - all covariates x x x x x x 3946 61520.76

model 2 - no precondition x x x x x 3983 65412.64

model 3 - no inundation 2 x x x x x 3947 61779.53

model 4 - no channel x x x x x 3952 62435.64

model 5 - no pre-condition or inundation2 x x x x 3983 65399.21

model 6 - no inundation2 or channel x x x x 3954 62629.36

model 7 - no precondition or channel x x x x 3993 66459.65

model 8 - no channel, precondition, or inundation2 x x x 3993 66525.49

Leaf Width

inundation inundation2 nutrient channel pre-condition temperature DIC PPL

model 1 - all covariates x x x x x x 1785 1368.21

model 2 - no precondition x x x x x 1786 1373.388

model 3 - no inundation 2 x x x x x 1785 1367.83

model 4 - no channel x x x x x 1784 1366.233

model 5 - no pre-condition or inundation2 x x x x 1786 1373.191

model 6 - no inundation2 or channel x x x x 1784 1366.714

model 7 - no precondition or channel x x x x 1785 1373.673

model 8 - no channel, precondition, or inundation2 x x x 1785 1373.843

Stem Width

inundation inundation2 nutrient channel pre-condition temperature DIC PPL

model 1 - all covariates x x x x x x 1271 557.1118

model 2 - no precondition x x x x x 1270 556.4027

model 3 - no inundation 2 x x x x x 1271 557.0398

model 4 - no channel x x x x x 1270 556.4828

model 5 - no pre-condition or inundation2 x x x x 1269 556.6381

model 6 - no inundation2 or channel x x x x 1270 556.591

model 7 - no precondition or channel x x x x 1269 556.591

model 8 - no channel, precondition, or inundation2 x x x 1268 555.9236

Leaf Count

inundation inundation2 nutrient channel pre-condition temperature DIC PPL

model 1 - all covariates x x x x x x 1728 1268.516

model 2 - no precondition x x x x x 1727 1270.195

model 3 - no inundation 2 x x x x x 1727 1269.469

model 4 - no channel x x x x x 1742 1298.45

model 5 - no pre-condition or inundation2 x x x x 1727 1269.374

model 6 - no inundation2 or channel x x x x 1740 1297.248

model 7 - no precondition or channel x x x x 1742 1302.53

model 8 - no channel, precondition, or inundation2 x x x 1742 1302.927
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Table A.3 S. patens Year 1 metrics model comparisons using DIC and PPL. 

 

 

 

 

 

 

 

 

 

 

Sp. YR1

Height

inundation inundation2 nutrient pre-condition days DIC PPL

model 1 - all covariates x x x x x 2298 33424.88

model 2 - no precondition x x x x 2349 39159.7

model 3 - no inundation 2 x x x 2298 33434.35

model 4 - no pre-condition or inundation2 x x x 2349 39152.5

Stem Width

inundation inundation2 nutrient pre-condition days DIC PPL

model 1 - all covariates x x x x x -746.7 3.803158

model 2 - no precondition x x x x -743.9 3.856962

model 3 - no inundation 2 x x x -747.3 3.802887

model 4 - no pre-condition or inundation2 x x x -744.4 3.851417

Leaf Length

inundation inundation2 nutrient pre-condition days DIC PPL

model 1 - all covariates x x x x x 543.3 677.5054

model 2 - no precondition x x x x 541.5 674.2134

model 3 - no inundation 2 x x x 544.2 682.8845

model 4 - no pre-condition or inundation2 x x x 542.8 679.6922

Leaf Count inundation inundation2 nutrient pre-condition days DIC PPL

model 1 - all covariates x x x x x 913.7 570.15

model 2 - no precondition x x x x 912.9 568.59

model 3 - no inundation 2 x x x 912.5 568.2027

model 4 - no pre-condition or inundation2 x x x 911.4 567.4571

Stem Count inundation inundation2 nutrient pre-condition days DIC PPL

model 1 - all covariates x x x x x 2343 42516.73

model 2 - no precondition x x x x 2392 44668.68

model 3 - no inundation 2 x x x 2343 42494.87

model 4 - no pre-condition or inundation2 x x x 2392 44683.6
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Table A.4 S. patens Year 2 metrics model comparisons using DIC and PPL. 

 

 

 

 

 

 

 

 

 

 

Sp. YR2

Height

inundation inundation2 nutrient pre-condition temperature DIC PPL

model 1 - all covariates x x x x x 4891 306918.4

model 2 - no precondition x x x x 4893 312238.6

model 3 - no inundation 2 x x x 4890 303242.1

model 5 - no pre-condition or inundation2 x x x 4900 309044.4

Leaf Length

inundation inundation2 nutrient pre-condition temperature DIC PPL

model 1 - all covariates x x x x x 3916 55696.37

model 2 - no precondition x x x x 3915 55743.77

model 3 - no inundation 2 x x x 3917 55710.32

model 4 - no pre-condition or inundation2 x x x 3917 55715.95

Stem Width

inundation inundation2 nutrient pre-condition temperature DIC PPL

model 1 - all covariates x x x x x 2533 5307.681

model 2 - no precondition x x x x 2532 5305.379

model 3 - no inundation 2 x x x 2531 5295.863

model 5 - no pre-condition or inundation2 x x x 2531 5305.442

Leaf Count inundation inundation2 nutrient pre-condition temperature DIC PPL

model 1 - all covariates x x x x x 1861 1576.443

model 2 - no precondition x x x x 1880 1643.401

model 3 - no inundation 2 x x x 1860 1576.34

model 4 - no pre-condition or inundation2 x x x 1879 1642.487

Stem Count inundation inundation2 nutrient pre-condition temperature DIC PPL

model 1 - all covariates x x x x x 5597 704552.6

model 2 - no precondition x x x x 5625 627138.6

model 3 - no inundation 2 x x x 5597 706107.5

model 4 - no pre-condition or inundation2 x x x 5625 629353.8
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Table A.5 S. alterniflora Year 1 biomass model comparisons using DIC and PPL. 

 

Table A.6 S. alterniflora Year 2 biomass model comparisons using DIC and PPL. 

 

 

 

 

 

 

 

Sa. YR1

Aboveground biomass

inundation inundation2 nutrient channel pre-condition DIC PPL

model 1 - all covariates x x x x x 332.7 2170954

model 2 - no channel x x x x 335.5 2547012

model 3 - no pre-condition x x x x 330.3 2052023

model 4 - no inundation2 x x x x 332.2 2226037

model 5 - no inundation2 or pre-condition x x x 329.7 2093053

model 6 - no inundation2 or channel x x x 334.2 2522352

model 8 - no channel or pre-condition x x x 332.2 2427149

model 7 - no inundation2, channel, or pre-condition x x 332.8 2397909

Belowground biomass

inundation inundation2 nutrient channel pre-condition DIC PPL

model 1 - all covariates x x x x x 418 77107338

model 2 - no channel x x x x 432.6 148830950

model 3 - no pre-condition x x x x 417.9 79976585

model 4 - no inundation2 x x x x 417.6 78266484

model 5 - no inundation2 or pre-condition x x x 417 78894136

model 6 - no inundation2 or channel x x x 432.2 150522210

model 7 - no inundation2, channel, or pre-condition x x 432.2 156613782

model 8 - no channel or pre-condition x x x 433.1 157816385

Sa. YR2

Aboveground biomass

inundation inundation2 nutrient channel pre-condition DIC PPL

model 1 - all covariates x x x x x 364.9 8279323

model 2 - no channel x x x x 365.4 8831476

model 3 - no pre-condition x x x x 362.9 7984784

model 4 - no inundation2 x x x x 365.9 9077140

model 5 - no inundation2 or pre-condition x x x 365.2 9157315

model 6 - no inundation2 or channel x x x 365.7 9331221

model 7 - no inundation2, channel, or pre-condition x x 365.3 9646830

model 8 - no channel or pre-condition x x x 363.8 8613986

Belowground biomass

inundation inundation2 nutrient channel pre-condition DIC PPL

model 1 - all covariates x x x x x 424.4 100709591

model 2 - no channel x x x x 425.7 111873907

model 3 - no pre-condition x x x x 422.1 94775422

model 4 - no inundation2 x x x x 428.3 121871572

model 5 - no inundation2 or pre-condition x x x 426.3 117342121

model 6 - no inundation2 or channel x x x 428.5 127515956

model 7 - no inundation2, channel, or pre-condition x x 426.9 125827766

model 8 - no channel or pre-condition x x x 423.8 106979578
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Table A.7 S. patens Year 2 biomass model comparisons using DIC and PPL. 

 

Table A.8 S. patens Year 2 biomass model comparisons using DIC and PPL. 

 

Table A.9 Scaler vs. nutrient array metrics model comparisons using DIC. 

 

 

Sp. YR1

Aboveground biomass

inundation inundation2 nutrient pre-condition DIC PPL

model 1 - all covariates x x x x 356.1 5993842

model 2 - no pre-condition x x x 366.9 9911575

model 3 - no inundation2 x x x 365.3 9252657

model 4 - no inundation2 or pre-condition x x 370.8 12039268

Belowground biomass

inundation inundation2 nutrient pre-condition DIC PPL

model 1 - all covariates x x x x 443.2 231846779

model 2 - no precondition x x x 441.5 225351145

model 3 - no inundation2 x x x 443.4 237533396

model 4 - no inundation2 or pre-condition x x 441.6 233635561

Sp. YR1

Aboveground biomass

inundation inundation2 nutrient pre-condition DIC PPL

model 1 - all covariates x x x x 356.1 5993842

model 2 - no pre-condition x x x 366.9 9911575

model 3 - no inundation2 x x x 365.3 9252657

model 4 - no inundation2 or pre-condition x x 370.8 12039268

Belowground biomass

inundation inundation2 nutrient pre-condition DIC PPL

model 1 - all covariates x x x x 443.2 231846779

model 2 - no precondition x x x 441.5 225351145

model 3 - no inundation2 x x x 443.4 237533396

model 4 - no inundation2 or pre-condition x x 441.6 233635561

Model Scaler DIC Nutrient Array DIC

YR 1 Sa. leaf count 1047 1037

YR 1 Sp. leaf count 911.4 913.5

YR 1 Sa. height 2527 3023

YR 1 Sp. height 2298 2878

YR 1 Sa. leaf length 629.5 631.8

YR 1 Sp. leaf length 541.4 584.1

YR 1 Sa. stem width -1084 -629.2

YR 1 Sp. stem width -747.3 101.3

YR 1 Sa. leaf width -726.2 -463

YR 1 Sp. stem count 2343 2482

YR 2 Sa. leaf count 1785 1888

YR 2 Sp. leaf count 1860 1938

YR 2 Sa. height 4510 4882

YR 2 Sp. height 4890 5034

YR 2 Sa. leaf length 3946 3972

YR 2 Sp. leaf length 3916 4018

YR 2 Sa. stem width 1268 1418

YR 2 Sp. stem width 2531 2572

YR 2 Sa. leaf width 1784 1979

YR 2 Sp. stem count 5597 5881



 

 

81 

 

Figure A.1 Posteriors for Spartina alterniflora aboveground biomass Year 1 (left) and 

Year 2 (right).  

Credible intervals of the parameters of inundation, inundation squared for quadratic 

impact, nutrient (nitrogen addition), pre-condition, and channel in the model to evaluate 

the impact of environmental factors. The thin line denotes a 95% credible interval, and 

the thick line indicates a 50% credible interval. The black color indicates strong impact, 

the grey color indicates moderate impact, and open white circles mean little to no impact, 

as the credible interval overlaps 0. Outputs were generated in R using the MCMCvis 

package (Youngflesh 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2 Posteriors for Spartina patens aboveground biomass Year 1 (left) and Year 2 

(right).  
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Figure A.3 Posteriors for Spartina alterniflora belowground biomass Year 1 (left) and 

Year 2 (right).  

Credible intervals of the parameters of inundation, inundation squared for quadratic 

impact, nutrient (nitrogen addition), pre-condition, and channel in the model to evaluate 

the impact of environmental factors. The thin line denotes a 95% credible interval, and 

the thick line indicates a 50% credible interval. The black color indicates strong impact, 

the grey color indicates moderate impact, and open white circles mean little to no impact, 

as the credible interval overlaps 0. Outputs were generated in R using the MCMCvis 

package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 Posteriors for Spartina patens belowground biomass Year 1 (left) and Year 2 

(right).  
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Figure A.5 Posteriors for Spartina alterniflora leaf count Year 1 (left) and Year 2 (right).  

Credible intervals of the parameters of inundation, inundation squared for quadratic 

impact, nutrient (nitrogen addition), pre-condition, days/temperature, and channel in the 

model to evaluate the impact of environmental factors. The thin line denotes a 95% 

credible interval, and the thick line indicates a 50% credible interval. The black color 

indicates strong impact, the grey color indicates moderate impact, and open white circles 

mean little to no impact, as the credible interval overlaps 0. Outputs were generated in R 

using the MCMCvis package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.6 Posteriors for Spartina patens leaf count Year 1 (left) and Year 2 (right).  
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Figure A.7 Posteriors for Spartina alterniflora height Year 1 (left) and Year 2 (right).  

Credible intervals of the parameters of inundation, inundation squared for quadratic 

impact, nutrient (nitrogen addition), pre-condition, days/temperature, and channel in the 

model to evaluate the impact of environmental factors. The thin line denotes a 95% 

credible interval, and the thick line indicates a 50% credible interval. The black color 

indicates strong impact, the grey color indicates moderate impact, and open white circles 

mean little to no impact, as the credible interval overlaps 0. Outputs were generated in R 

using the MCMCvis package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.8 Posteriors for Spartina patens height Year 1 (left) and Year 2 (right).  
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Figure A.9 Posteriors for Spartina alterniflora leaf length Year 1 (left) and Year 2 

(right).  

Credible intervals of the parameters of inundation, inundation squared for quadratic 

impact, nutrient (nitrogen addition), pre-condition, days/temperature, and channel in the 

model to evaluate the impact of environmental factors. The thin line denotes a 95% 

credible interval, and the thick line indicates a 50% credible interval. The black color 

indicates strong impact, the grey color indicates moderate impact, and open white circles 

mean little to no impact, as the credible interval overlaps 0. Outputs were generated in R 

using the MCMCvis package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.10 Posteriors for Spartina patens leaf length Year 1 (left) and Year 2 (right).  
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Figure A.11 Posteriors for Spartina alterniflora stem width Year 1 (left) and Year 2 

(right).  

Credible intervals of the parameters of inundation, inundation squared for quadratic 

impact, nutrient (nitrogen addition), pre-condition, days/temperature, and channel in the 

model to evaluate the impact of environmental factors. The thin line denotes a 95% 

credible interval, and the thick line indicates a 50% credible interval. The black color 

indicates strong impact, the grey color indicates moderate impact, and open white circles 

mean little to no impact, as the credible interval overlaps 0. Outputs were generated in R 

using the MCMCvis package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.12 Posteriors for Spartina patens stem width Year 1 (left) and Year 2 (right).  
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Figure A.13 Posteriors for Spartina alterniflora leaf width Year 1 (left) and Year 2 

(right).  

Credible intervals of the parameters of inundation, inundation squared for quadratic 

impact, nutrient (nitrogen addition), pre-condition, days/temperature, and channel in the 

model to evaluate the impact of environmental factors. The thin line denotes a 95% 

credible interval, and the thick line indicates a 50% credible interval. The black color 

indicates strong impact, the grey color indicates moderate impact, and open white circles 

mean little to no impact, as the credible interval overlaps 0. Outputs were generated in R 

using the MCMCvis package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.14 Posteriors for Spartina patens stem count Year 1 (left) and Year 2 (right).  

 

 

 

 

 

 

 

 

 

 

 



 

 

88 

 

 

Figure A.15 This map represents southern Louisiana’s land loss and land gain from 1932 

to 2000, marked by red and light green, and predicted land loss and land gain from 2000 

to 2050, as marked by yellow and darker green (Source: USGS, 

https://www.researchgate.net/figure/Historical-and-projected-land-loss-from-coastal-

Louisiana-Map-reproduced-from-Barras-et_fig1_226220800) 

 

 

 

https://www.researchgate.net/figure/Historical-and-projected-land-loss-from-coastal-Louisiana-Map-reproduced-from-Barras-et_fig1_226220800
https://www.researchgate.net/figure/Historical-and-projected-land-loss-from-coastal-Louisiana-Map-reproduced-from-Barras-et_fig1_226220800
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Figure A.16 This map shows the indigenous tribes in Southern Louisiana currently losing 

land due to sea-level rise (Source: Yeoman https://www.sapiens.org/culture/louisiana-

native-americans-climate-change/). 

 

 

Figure A.17 The conceptual diagram illustrating the processes and drivers in the model 

to predict salt marsh platform change in this study (Wu et al. 2017a, 2022). 

 

https://www.sapiens.org/culture/louisiana-native-americans-climate-change/
https://www.sapiens.org/culture/louisiana-native-americans-climate-change/
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Table A.10 Site data at the Terrebonne Bay, Louisiana collected in December of 2022 

unless otherwise specified (The site numbers correspond to Fig. 2.3). 
Site Transect Sample Live 

Above- 

ground 

Biomass 

(g/m2) 

Live 

Below- 

ground 

Biomass 

(g/m2) 

Soil 

porewater 

Salinity 

(PPT) 

UTM 

Easting 

UTM 

Northing 

Elevation 

(2011, m) 

1 1 1 143.76 1632.48 30.53 744636.78 3253826.17 0.32 

1 1 2 135.2 2099.95 31.81 744634.39 3253829.22 0.38 

1 1 3 500.24 3363.01 31.064 744633.45 3253832.09 0.38 

1 2 4 200.64 5 28.50 744632.87 3253823.09 0.30 

1 2 5 282.4 3340.19 31.14 744631.72 3253826.61 0.39 

1 2 6 504.08 2007.45 32.69 744628.95 3253829.1 0.43 

2 1 1 136.48 4748.18 33.27 754132.48 3246279.68 0.43 

2 1 2 252.96 4749.41 31.20 754128.69 3246279.26 0.43 

2 1 3 69.6 4602.01 35.73 754126.02 3246277.21 0.47 

2 2 4 224 4899.89 28.56 754133.91 3246276.39 0.38 

2 2 5 300.32 5292.75 32.52 754131.02 3246275.32 0.49 

2 2 6 589.68 6840.73 35.32 754129.24 3246272.29 0.42 

3 1 1 542 4238.15 33.03 756902.84 3245320.27 0.20 

3 1 2 268.16 1980.93 34.11 756899.56 3245319.31 0.18 

3 1 3 605.12 4900.51 34.54 756896.74 3245319.25 0.28 

3 2 4 630.48 6475.01 32.49 756903.96 3245318.08 0.25 

3 2 5 257.36 2286.82 34.54 756900.96 3245317.57 0.23 

3 2 6 493.76 4557.61 28.94 756897.78 3245316.5 0.27 

4 1 1 208 1642.96 31.68 753851.11 3240492.54 0.46 

4 1 2 270.8 2643.91 32.65 753851.44 3240495.32 0.48 
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Table A10 (continued). 

4 1 3 152.48 2441.00 33.059 753853.53 3240497.36 0.35 

4 2 4 163.04 3234.73 33.75 753848.34 3240494.47 0.47 

4 2 5 239.28 1381.47 31.60 753849.17 3240496.38 0.43 

4 2 6 287.68 1831.06 33.17 753851.06 3240499.08 0.38 

5 1 1 531.36 1063.85 38.22 750133.64 3247545.65 0.35 

5 1 2 475.52 556.90 36.79 750136.61 3247547.6 0.37 

5 1 3 656.4 389.77 31.18 750138.3 3247550.41 0.29 

5 2 4 573.52 2305.32 36.87 750135.92 3247543.59 0.33 

5 2 5 581.92 1027.47 34.99 750138.6 3247545.65 0.30 

5 2 6 656.16 1533.18 30.31 750140.57 3247548.68 0.31 

 

Table A.11 Water quality data at each study site at the Terrebonne Bay, Louisiana 

collected in December of 2022 (The site numbers correspond to Fig 2.3 and the bottle 

numbers represent the locations when approaching the site with 1 closest to the site and 

3 furthest away from the site). 
Site Bottle UTM Easting UTM Northing Salinity 

(PPT) 

Inorganic TSS (mg/L) Organic TSS 

(mg/L) 

1 1 744704.49 3253749.22 21 13.09 11.22 

1 2 744681.31 3253774.67 23 18.72 12.20 

1 3 744651.37 3253816.61 23 22.19 9.22 

2 1 754152.09 3246289.11 21 16.63 9.52 

2 2 754140.03 3246285.4 20 14.16 10.23 

2 3 754135.49 3246279.86 23 28.13 14.07 

3 1 756878.17 3245392.47 23 14.39 8.17 

3 2 756899.31 3245368.88 23 14.14 6.86 

3 3 756911.19 3245333.66 22 31.30 12.79 

4 1 753791.59 3240379.19 25 21.05 7.80 

4 2 753820.21 3240443.27 26 19.37 7.78 

4 3 753853.63 3240488.38 26 50.00 20.36 

5 1 750168.53 3247444.27 25 21.43 13.33 

5 2 750158.96 3247477.33 23 16.32 10.44 

5 3 750141.62 3247514.44 25 21.05 12.96 
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Table A.12 Refers to the list of sustainability goals and vulnerability risk factors for 

coastal Louisiana (Bethel et al., 2022; Lambeth, 2016). 
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