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ABSTRACT 

INFERRING GENE REGULATORY NETWORKS FROM TIME SERIES 

MICROARRAY DATA 

by Peng Li 

August 2009 

The innovations and improvements in high-throughput genomic technologies, such as 

DNA microarray, make it possible for biologists to simultaneously measure dependencies 

and regulations among genes on a genome-wide scale and provide us genetic information. 

An important objective of the functional genomics is to understand the controlling 

mechanism of the expression of these genes and encode the knowledge into gene 

regulatory network (GRN). To achieve this, computational and statistical algorithms are 

especially needed. 

Inference of GRN is a very challenging task for computational biologists because the 

degree of freedom of the parameters is redundant. Various computational approaches 

have been proposed for modeling gene regulatory networks, such as Boolean network, 

differential equations and Bayesian network. There is no so called "golden method" 

which can generally give us the best performance for any data set. The research goal is to 

improve inference accuracy and reduce computational complexity. 

One of the problems in reconstructing GRN is how to deal with the high 

dimensionality and short time course gene expression data. In this work, some existing 

inference algorithms are compared and the limitations lie in that they either suffer from 

low inference accuracy or computational complexity. To overcome such difficulties, a 

new approach based on state space model and Expectation-Maximization (EM) 
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algorithms is proposed to model the dynamic system of gene regulation and infer gene 

regulatory networks. In our model, GRN is represented by a state space model that 

incorporates noises and has the ability to capture more various biological aspects, such as 

hidden or missing variables. An EM algorithm is used to estimate the parameters based 

on the given state space functions and the gene interaction matrix is derived by 

decomposing the observation matrix using singular value decomposition, and then it is 

used to infer GRN. The new model is validated using synthetic data sets before applying 

it to real biological data sets. The results reveal that the developed model can infer the 

gene regulatory networks from large scale gene expression data and significantly reduce 

the computational time complexity without losing much inference accuracy compared to 

dynamic Bayesian network. 
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CHAPTER I 

INTRODUCTION 

1.1 Biological Background 

1.1.1 Central Dogma of Molecular Biology 

The Central Dogma of genetics is: DNA is transcribed to RNA which is translated to 

protein. Protein is never back-translated to RNA or DNA, and DNA is never directly 

translated to protein. RNA is a temporary intermediary between DNA and the protein 

making factories, the ribosomes. RNA could be compared to information stored in a 

cache in that the lifetime of RNA is much shorter than that of either DNA or the average 

protein, and also RNA serves to carry information from the genome, located in the 

nucleus of the cell, to the ribosomes, which are located outside of the nucleus either in the 

cytosol or on the endoplasmic reticulum (which is a large set of folded membranes 

proximal to the nucleus that help manufacture proteins for extra-cellular export). Proteins 

are the physical representation of the abstract information contained within the genome. 

Proteins vary greatly in their activity and half-life. Trying to classify proteins is like 

classifying programs; they come in all shapes and sizes. Figure 1.1 shows the central 

dogma of molecular biology. 

The relationships of DNA, RNA, and Proteins are as following: DNA is long-term 

storage and it is stable, packaged, and inert; RNA is short-term storage. It is unstable and 

lacks secondary structure. Some RNA has enzymatic activity; Proteins are the programs 

of the cells. They are the physical manifestations of the abstract information recorded in 

the genome. 
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Figure 1.1 Central dogma of molecular biology 

1.1.2 Genes 

The genetic information carried by an organism is primarily inscribed in 

deoxyribonucleic acid (DNA). DNA is helix-shaped molecule whose constituents are two 

parallel strands of nucleotides. There are four types of nucleotides in DNA denoted by 

letters A (for adenine), T (thymine), C (cytosine) and G (guanine). The two strands of 

DNA are reversing complementary, which means that the second strand is always 

derivable from the first by pairing As with Ts and Cs with Gs and vice versa. Some 

contiguous pieces of DNA strand have been associated with certain functions in the 

living organism; we name them "genes". Genes are basic unit of heredity in a living 

organism and working subunits of DNA [1]. In cells, a gene is a portion of DNA that 

contains both "coding" sequences which determine what the gene does, and "non-coding" 

sequences that determine when the gene is active (expressed). Figure 1.2 shows the 

coding region in a segment of eukaryotic. When a gene is active, the coding and non-

coding sequences are copied in a process called transcription, producing an RNA copy of 

the gene's information. This piece of RNA can then direct the synthesis of proteins via 
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the genetic code. In other cases, the RNA is used directly, for example as part of the 

ribosome. The molecules resulting from gene expression, whether RNA or protein, are 

known as gene products, and are responsible for the development and functioning of all 

living things. 

Figure 1.2 The coding region in a segment of eukaryotic [2] 

DNA is a vast chemical information database that carries the complete set of 

instructions for making all the proteins a cell will ever need. Each gene contains a 

particular set of instructions, usually coding for a particular protein. DNA exists as two 

long, paired strands spiraled into the famous double helix. Each strand is made up of 

millions of chemical building blocks called bases. While there are only four different 

chemical bases in DNA (adenine, thymine, cytosine, and guanine), the order in which the 

bases occur determines the information available, much as specific letters of the alphabet 

combine to form words and sentences. 
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1.1.3 Gene Expression 

The process by which information from a gene's DNA sequence is used in the 

synthesis of functional gene products is usually called gene expression. Here, the 

products are often proteins or functional RNA. Protein consists of a linear sequence of 

amino acids, and the type of each amino acid is defined by three consecutive bases on 

DNA which is known as codon. For example, three bases "AUG" comprise a codon 

which would code for the amino acid methionine. Theoretically, there are 64 types of 

amino acid, while in reality some combinations of three bases point to the same amino 

acid, leaving the number of amino acid types to be 20. Protein is considered the most 

basic building block of life. Its roles include constituting cell structures, regulating 

cellular processes, catalyzing biochemical reactions in metabolic pathways, and many 

other functions. A protein's functions are determined by its particular physical structure 

and chemical properties. These properties in turn are determined by the particular 

sequence of 20 possible biologically-active amino acids as well as the exact manner the 

amino acid chain is folded into a three-dimensional structure. The existence of life is 

made possible by thousands of different proteins acting at the right times and right places 

in a cell. 
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Figure 1.3 Transcription and translation process (source from 
http://publications.nigms.nih.gov/thenewgenetics/chapterl.html) 

In Figure 1.3, it shows that there are two major steps in gene expression. The first step 

is transcription of DNA, where mRNAs (messenger RNA) are made based on the 

information of the gene sequence and the mRNA sequence (dark red strand) is 

complementary to the DNA sequence (blue strand). The RNA nucleotides are 

complementary to those on the DNA: a C on the RNA strand matches a G on the DNA 

strand. The second step is translation, which occurs after the transcription of DNA to 

mRNA. The translation of mRNA into protein depends on adaptor molecules that 

recognize both an amino acid and a triplet of nucleotides, where transfer RNA (tRNA) 

helps convert mRNA into protein and Amino acids link up to make a protein. These 

adaptors consist of a set of small RNA molecules known as tRNA, each about 80 

nucleotides in length. The ribosome is a complex of more than 50 different proteins 

associated with several structural rRNA molecules. rRNA is a machinery for synthesizing 

http://publications.nigms.nih.gov/thenewgenetics/chapterl.html
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proteins by translating mRNA. Each ribosome is a large protein synthesizing machine, on 

which tRNA molecules position themselves for reading the genetic message encoded in 

an mRNA molecule. 

The gene expression processes also depend on other factors, which include 

chromosomal activation or deactivation, control of transcription initiation, processing of 

RNA, RNA transport, mRNA degradation, initiation of translation and post-translational 

modifications. 

1.1.4 Regulation of Gene Expression 

Of the 35,000 genes in the human genome, only a fraction is expressed in a cell at any 

given time. Some gene products are present in very large amounts. Other gene products 

occur in much smaller amounts; for instance, a cell may contain only a few molecules of 

the enzymes that repair rare DNA lesions. Requirements for some gene products change 

over time. The need for enzymes in certain metabolic pathways may wax and wane as 

food sources change or are depleted. Given the high cost of protein synthesis, regulation 

of gene expression is essential to making optimal use of available energy. The cellular 

concentration of a protein is determined by a delicate balance of at least seven processes, 

each having several potential points of regulation. 

A gene regulation system consists of genes, cis-elements, and regulators [3]. Figure 1.4 

illustrates the regulatory process of genes. In most cases the regulators are proteins, but 

sometimes they also can be small molecules, such as RNAs and metabolites. The proteins 

that participate in regulatory system are usually called transcription factors (TFs), and 

sometimes they are also referred to as trans-regulatory elements. Cis-regulatory elements 

(or cis-elments in simple form), the complementary to trans-regulatory elements, are the 
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DNA segments in the same strand of genes that control the expression of correspondent 

genes. The regulatory mechanism involves the binding of certain TFs to cis-elements in 

the cis-region of genes, and consequently controls the level of target gene's expression 

during transcription. A gene might be two-faced: its expression is regulated by some 

regulators, while its own expressed products can be regulators for other genes. The 

complex regulatory connections, together with an interpretation scheme form gene 

regulatory network (GRN). 
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1.2 Computational Analysis of Biological Networks 

Over the past decade, research in molecular and cell biology has increasingly looked 

beyond reductionism and towards and integrated understanding of molecular and cellular 

systems. This is in part due to the virtuous cycle in which new technologies enable faster, 

cheaper, higher-resolution, and more comprehensive measurements. In the last 20 years 

technologies improvement in genomics, transcriptomics and proteomics have generated a 

huge amount data, enabling the possibility of a genome-level analysis. These advances 

are bringing systems biology to the main stream of biological sciences in this century. 

Since the gathered data sets are often too large to be analyzed manually, computational 

methods are highly needed first to preprocess the raw data, and then to extract meaning 

and insight from the data. The tasks required for the understanding of biological networks, 

as summarized as following: 

• Data analysis (Preprocessing raw data) 

• System structure identification (Analysis of network topology), 

• System behavior analysis (Analysis of network dynamics), 

Mathematical modeling and approaches are natural tools for the performance of these 

key tasks. One of the values of mathematical models is that their formal study allows us 

to investigate generic properties and test hypotheses while the modeling process itself 

gives insight about the functional activity of the system and the dynamic interactions of 

its components. 

1.2.1 Reverse Engineering Problem 

Reverse engineering is the process of elucidating the structure of a system by 

reasoning backwards from observations of its behavior. In reverse engineering biological 
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networks, one of the first problems to overcome is semantic. The term "network" has 

come to mean different things throughout biology, and the semantic overload is 

magnified when computational and statistical interpretations are added. Even in networks 

whose nodes are the same objects (for example, genes and their protein products), the 

network edges can mean vastly different things and should be interpreted with care. 

In the context of molecular biology, the reverse-engineering of biochemical networks 

from experimental data has become a central focus in systems biology. Two different 

types of analysis are of interest when developing a reverse engineering method as a 

modeling framework: 

• Analysis of network topology. In this type of analysis, a network of molecular 

interactions is viewed as a directed graph: a pair (V,E) where V is a set of vertices 

(or nodes) and E a set of directed edges, i.e. pairs (i, j) of nodes, where i is the 

source node and j is the target node. In some instances, undirected graphs are used 

instead, for example, when only describing existence of a correlation between two 

nodes rather than a causal direction. This directed graph is also known as "wiring 

diagram". Some of the top-down methods are statistical in nature, allowing 

identification of the network's structure or wiring diagram. Depending on the 

method used, the edges represent either a statistical correlation of two variables 

• Analyses of network dynamics. The phase space of the network is analyzed for a 

description of the dynamic rules that describe how the system evolves in time or 

changing conditions. Dynamical properties of interest include the identification of 

steady states or limit cycles, identification of multi-stable (e.g. switch-like) 

behavior, environmental changes, genetic perturbation, etc. Top-down modeling 
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methods to discover a network's behaviors commonly use dynamical systems 

modeling frameworks. 

1.2.2 Gene Regulatory Network (GRN) 

Gene regulatory networks are pathways of genes whose induced proteins regulate the 

expression of other genes and their products. They orchestrate biochemical processes that 

specify spatial and temporal patterns or govern the formation of tissues and organs. GRN 

reveals the causality of these processes through activation or repression of targets by 

regulatory proteins. With current technologies, activity levels of each biomolecule in a 

network can be measured directly, while causal linkages remain unobservable. A 

challenge for molecular biologists is to identify the causal links that constitute the 

pathways in a GRN. Identification and ultimately control of these signaling pathways are 

important first steps in repairing developmental defects, including those that cause tissue-

specific cancers. 

Mathematical and statistical tools have been employed to reverse engineer, or 

reconstruct, the pathways in a GRN from microarray data. The data, which record 

expression levels of genes, are typically limited to tens of measurements, while the 

number n of biomolecules in a GRN is in the hundreds to thousands. A standard reverse 

engineering approach can be described as follows: 

• Choose a modeling class, such as Boolean networks or linear differential 

equations. 

• Use biological properties to constrain the class, for example, by limiting the 

number of links per biomolecule. 
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• Construct a model defined by a set of n functions that fit the data. The pathway 

structure can then extracted from the model. 

In Chapter 2, we will discuss more details about how the gene regulatory network works 

and how to infer from given biological data, such as microarray gene expression data. 

1.3 Contributions 

In this dissertation, we have made a number of contributions in comparing different 

computational models and modeling gene regulatory networks, which we summarize 

below. 

1.3.1 Comparison of Inference Models in GRN 

Previously, lots of computational approaches have been proposed to model gene 

regulatory networks. Among them probabilistic Boolean network (PBN) [63, 64, 66, 67, 

68] and dynamic Bayesian network (DBN) [34, 37, 95, 96, 97] are two very popular and 

powerful methods to model gene regulatory networks. In our work, probabilistic Boolean 

network and dynamic Bayesian network were compared using a biological time series 

dataset from Drosophila Interaction Database to construct a Drosophila gene network. 

We used a subset of time points and gene samples from the whole dataset to evaluate the 

performance of these two approaches. We also compared the performance of dynamic 

Bayesian network and Bayesian network (R package) using the yeast cell cycle data sets. 

More details will be discussed in Chapter 3. 

1.3.2 Improvement of Dynamic Bayesian Network (DBN) 

Due to the limitations of real biological data, the simulated data from in silico gene 

networks provides a feasible means to systematically evaluate the performances of 

different genetic networks inferring algorithms. In this work, relative change ratios and 
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dynamic Bayesian network are combined together to infer gene regulatory networks from 

synthetic data sets, which are provided by the Laboratory of Intelligent Systems of the 

Swiss Federal Institute of Technology in Lausanne and used by DREAM [123] challenge. 

The data we used in this work consists of different size of datasets that were produced 

from in silico networks, including E.Coli and Yeast. The given data sets are composed of 

three different data sets: Gene knock-out data, gene knock-down data and time series 

trajectories data. First we use relative change ratios to analyze the gene knock-out and 

knock-down data and select potential regulators regarding to target genes, and then 

dynamic Bayesian network is used to infer gene regulatory network from time series gene 

expression data. Then we combine the two results together to get the final gene 

regulatory networks. 

1.3.3 Proposed a New Model to Infer GRN 

One major problem of existing computational algorithms is the fact that the number of 

time points is much smaller than that of genes. The traditional time series analysis such as 

the autoregressive model will fail due to the over-learning problem, because the degree of 

freedom of the parameters is redundant. If we want to reconstruct a large gene regulatory 

network which may include more than 1000 genes, it will be very difficult with due to its 

computational time complexity. To overcome such difficulty, a model based on state 

space model is proposed to establish gene regulatory networks. In this dissertation, we 

derive gene interaction matrix based on state space model and EM algorithms for 

inferring gene regulatory networks and implement these algorithms in MATLAB. Then 

two synthetic data sets are used to test our new model before applying to real biological 

data sets. 
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1.4 Dissertation Organization 

This dissertation is organized as follows: In Chapter 2, we introduce some basic 

concepts and backgrounds of microarray experiments and gene regulatory networks. 

Then some data preprocessing analysis methods based on microarray data are introduced, 

such as image processing analysis, normalization, etc. We also discuss some hierarchical 

and non-hierarchical clustering methods based on microarray data. 

In Chapter 3, we discuss computational approaches and algorithms to infer gene 

regulatory networks. We present a review of existing inferring algorithms such as 

Boolean networks, Bayesian networks, and further discuss dynamic Bayesian network. 

We also address their shortcomings and possible improvements 

In Chapter 4, a new model is proposed based on the state space model to represent 

gene regulatory networks, and then expectation-maximization (EM) algorithms are used 

to estimate the parameters in given observation and measurement functions. In the 

process of learning parameters Kaman filter and Kalman smoother are needed to 

calculate the conventional Kalman smoothing estimators. And then, gene interaction 

matrix is derived from the learned parameters by EM. 

In Chapter 5, some results from our previous work, which are based on probabilistic 

Boolean networks and dynamic Bayesian network, are given and discussed. We use four 

different gene expression data sets, in which one is synthetic data set and the other three 

are real biological data sets. In Chapter 6, we present the applications of our proposed 

new model, and then show how to validate our new model using two synthetic data sets 

before applying to real biological data sets. Some results based on model validation are 

also discussed in this chapter. 
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We complete the dissertation by summarizing and concluding our work, and providing 

a set of issues appropriate for future work in Chapter 7. 
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CHAPTER II 

GENE REGULATORY NETWORKS 

The recent development of high-throughput genomic technologies, such as protein 

array, Chip-Chip, DNA microarray and Chip-Seq, makes it possible for us to measure 

dependencies and regulation among genes on a genome-wide scale simultaneously and 

provides us a huge amount of data and genetic information. Thus focus of biological 

scientists shifted from obtaining gene sequence data to identifying gene functions and 

extracting useful information. The traditional methodology which separately studies basic 

units of information (or genes) is not sufficient since it is widely believed that biological 

systems are complex, where thousands of genes and their products interact in concert to 

enable life. Contrary to the traditional approaches, recently emerged functional genomics 

develops the genome-wide or system-wide experiments in hope of obtaining a global 

view of such a complex biological system. An important objective of the functional 

genomics is to understand the controlling mechanism of the expression of these genes as 

well as the consequent synthesis of proteins, and ultimately encode the knowledge 

learned from the experiments into the format of a graph, namely gene regulatory network 

(GRN). To achieve this, computational and statistical tools are especially needed. 

2.1 Microarray Experiments and Microarray Data Analysis 

Microarray technology evolved from Southern blotting, where fragmented DNA is 

attached to a substrate and then probed with a known gene or fragment. The use of a 

collection of distinct DNAs in arrays for expression profiling was first described in 1987, 

and the arrayed DNAs were used to identify genes whose expression is modulated by 

interferon [4]. These early gene arrays were made by spotting cDNAs onto filter paper 
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with a pin-spotting device. The use of miniaturized microarrays for gene expression 

profiling was first reported in 1995 [5], and a complete eukaryotic genome on a 

microarray was published in 1997 [6]. The high-throughput technologies, such as DNA 

microarray, are highly needed for measuring the mRNA gene expression values 

simultaneously and these generated gene expression data are very crucial to classify the 

diseases and discover the gene expression patterns [7-9]. 

2.1.1 Microarray Experiment 

A microarray experiment requires a large array of cDNA or oligonucleotide DNA 

sequences (probes) that are fixed on a glass, nylon, or quartz wafer (adopted from the 

semiconductor industry and used by Affymetrix, Inc. [10]). This array is then mixed with 

material containing RNA which is obtained from the biological samples to be studied, for 

example, the mixture of normal tissues and cancer tissues. There are a lot of types of 

microarray technologies and the DNA microarray is the most popular one so far, so we 

choose DNA microarray to describe the microarray experiments design. Figure 2.1 shows 

the basic process of cDNA microarray experiments. For cDNA microarrays, two samples 

are needed, one for real test, another one is called reference sample (normal) which is 

used to be compared with the test sample. These two samples are labeled with different 

fluorochromes [11] for the purpose of obtaining gene expression level, then the test 

sample is labeled with the flurochrome Cy3, and the control sample is labeled with a 

different flurochrome Cy5. Because of the sequence similarity and complementariness 

the probes are likely to hybridize with their correspondent target but not the other RNA 

molecules. The amount of the hybridization products obtained is an indicator of how 

much RNA is being expressed by each one of the being studied. After the hybridization 
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of the probes, the scanner has a laser (or lasers) producing light with a wavelength 

appropriate for the excitation spectra of the dyes being used (for Cy3 this is green light 

around 540 nm; for Cy5 red light around 650 nm). The light passes through a standard 

microscope objective and illuminates a single point on the slide. The emitted light 

gathered by the objective passes through a series of filters (to remove the excitation 

beam), a collimating lens, and a pinhole (to minimize noise; this makes it a confocal 

device) and is quantified in a photomultiplier tube. The slide is rapidly scanned over the 

laser beam and a raster image of the array is acquired. The intensity of the fluorescent 

signal at each spot is taken as a measure of the levels of the mRNA associated with the 

specific sequence at that spot. Figure 2.1 shows the basic process of microarray 

experiment. 
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Figure 2.1 Process of cDNA microarray experiment design (source from 
http://www.fao.org/docrep/003/x6884e/x6884e00.jpg) 
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In cDNA microarrays, two independent images are generated for both samples (one 

only detects Cy3 and one only detects Cy5), the ratios of the measurement of the two 

samples is used in the subsequent data analysis [12], for example, to identify 

differentially expressed genes. The image of all the spots is analyzed using sophisticated 

software linked with information about the sequence of the DNA at each spot. This 

generates a general profile of gene expression level for the selected experimental and 

control conditions. 

2.1.2 Image Processing Analysis 

The relative expression level for each gene (population of RNA in the two samples) 

can be stored as an image. The first step in the analysis of microarray data is to process 

this image. Most manufacturers of microarray scanners provide their own software; 

however, it is important to understand how data is actually being extracted from images, 

as this represents the primary data collection step and forms the basis of any further 

analysis. 

Image processing involves the following steps: 1. Identification of the spots and 

distinguishing them from spurious signals. The microarray is scanned following 

hybridization and a TIFF image file is normally generated. Once image generation is 

completed, the image is analyzed to identify spots. This information is then used to 

identify regions that correspond to spots; 2. Determination of the spot area will be 

surveyed and determination of the local region is used to estimate background 

hybridization. After identifying regions that correspond to sub-arrays, an area within the 

sub-array must be selected to get a measure of the spot signal and an estimate for 

background intensity; 3. Reporting summary statistics and assigning spot intensity after 
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subtracting for background intensity. In this step, once the spot and background areas 

have been defined, a variety of summary statistics for each spot in each channel (red and 

green channels) are reported. 

Another consideration in image processing is the number of pixels to be included for 

measurement in the spot image [13]. For many scanners, the default pixel size is lOum. 

This means that an average spot of diameter of 200um will have -314 pixels. However, 

for a smaller spot diameter, it is better to use a smaller pixel size to ensure enough pixels 

are sampled. Most scanners now allow the pixel size of 5um. Even though using a 

smaller pixel size increases our confidence in the measurement, the only disadvantage is 

that the image file size tends to be much bigger when compared with image file sizes 

created using larger pixel sizes. 

2.1.3 Data Normalization 

Normalization is a term that is used to describe the process of eliminating such 

variations to allow appropriate comparison of data obtained from the two samples. The 

first step in a normalization procedure is to choose a gene-set (which consists of genes for 

which expression levels should not change under the conditions studied, that is the 

expression ratio for all genes in the gene-set is expected to be 1. From that set, a 

normalization factor, which is a number that accounts for the variability seen in the gene 

set, is calculated. It is then applied to the other genes in the microarray experiment. One 

should note that the normalization procedure changes the data, and is carried out only on 

the background corrected values for each spot. 

There are many approaches to normalizing expression levels. Some, such as total 

intensity normalization, are based on simple assumptions. Given that there are millions of 

individual RNA molecules in each sample, we will assume that the average mass of each 
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molecule is approximately the same, and that, consequently, the number of molecules in 

each sample is also the same. If the arrayed genes are selected to represent only those we 

know will change, then we will likely over- or under-sample the genes in one of the 

biological samples being compared. If the array contains a large enough assortment of 

random genes, we do not expect to see such bias. This is because for a finite RNA sample, 

when representation of one RNA species increases, representation of other species must 

decrease. Consequently, approximately the same number of labeled molecules from each 

sample should hybridize to the arrays and, therefore, the total hybridization intensities 

summed over all elements in the arrays should be the same for each sample. Using this 

approach, a normalization factor is calculated by summing the measured intensities in 

both channels 

Narray 

•V = — ^ 
total Nurruv ' 

1=1 

where G, and Ri are the measured intensities for the z'th array element (for example, the 

green and red intensities in a two-color microarray assay) and Narray is the total number 

of elements represented in the microarray. Figure 2.2 shows an R-I plot displays the 

log2 (Ri/Gi) ratio for each element on the array as a function of the log 10 (Ri*Gi) product 

intensities. 

There are a number of alternative approaches to normalizing expression ratios, 

including linear regression analysis [14], log centering, rank invariant methods [15] and 

Chen's ratio statistics [16], among others. However, none of these approaches takes into 

account systematic biases that may appear in the data. Several reports have indicated that 



21 

the log2 (ratio) values can have a systematic dependence on intensity [17, 18], which 

most commonly appears as a deviation from zero for low-intensity spots. Locally 

weighted linear regression (lowess) [19] analysis has been proposed [17, 18] as a 

normalization method that can remove such intensity-dependent effects in the log2 (ratio) 

values. 
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Figure 2.2 R-I plot of log2 ratio as a function of the loglO product intensities 

2.2 Identification of Differentially Expressed Genes 

After the experiment performed, our interest is the identification of genes that are 

differentially expressed between one or more pairs of samples in the data set. After 

normalizing, filtering and averaging the data, the genes with expression ratio which 

significantly different from 1, will be identified as important genes which we might be 

interested in later cluster analysis or gene regulatory network reconstruction. 

Even if data mining analysis is done using some clustering methods [20-22], it is still 

extremely useful to reduce the data set to those genes that are most variable between 

samples. There are many methods to identify the genes exhibiting the most significant 
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variation, such as a fixed fold-change cut-off (usually two folds) method or a more 

complicated approach which use a so-called "Z-score" to calculate the mean and standard 

deviation of the distribution of log2(ratio) values and defining a global fold-change 

difference and confidence. By this way, differentially expressed genes at the 95% 

confidence level will have a value of Z> 1.96 [23]. Figure 2.3 shows an example of a Z-

score selection application. 

- 3 J 

•» Z « 1 
» 1<Z<2 
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log10(f?'G) 

Figure 2.3 Intensity-dependent Z -scores for identifying differential expression 

2.3 Clustering Methods 

One of the goals of microarray data analysis is to cluster genes or samples with similar 

expression profiles together, to make meaningful biological inference about the set of 

genes or samples. Clustering is one of the unsupervised approaches to classify data into 

groups of genes or samples with similar patterns that are characteristic to the group. 

Clustering methods can be hierarchical (grouping objects into clusters and specifying 

relationships among objects in a cluster, resembling a phylogenetic tree) or non-

hierarchical (grouping into clusters without specifying relationships between objects in a 
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cluster). An object may refer to a gene or a sample, and a cluster refers to a set of objects 

that behave in a similar manner. 

2.3.1 Hierarchical Clustering 

Hierarchical clustering may be agglomerative (starting with the assumption that each 

object is a cluster and grouping similar objects into bigger clusters) or divisive (starting 

from grouping all objects into one cluster and subsequently breaking the big cluster into 

smaller clusters with similar properties). The basic idea behind agglomerative and 

divisive hierarchical clustering is shown in Figure 2.4. There are many different types of 

clustering methods and a few commonly used ones are described below [24]. 
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Figure 2.4 Agglomerative clustering and divisive clustering (source from 
http://www.mrc-lmb.cam.ac.uk/genomes/madanm/microarray) 

For a hierarchical agglomerative clustering procedure, each object is considered as a 

cluster. The first step is the calculation of pairwise distance measures for the objects to be 

clustered. Based on the pairwise distances between them, objects that are similar to each 

http://www.mrc-lmb.cam.ac.uk/genomes/madanm/microarray


24 

other are grouped into clusters. After this is done, pairwise distances between the clusters 

are re-calculated, and clusters that are similar are grouped together in an iterative manner 

until all the objects are included into a single cluster. Comparison of clusters with another 

cluster or an object can be carried out using four approaches: Single linkage clustering 

(Minimum distance), complete linkage clustering (Maximum distance), average linkage 

clustering and Centroid linkage clustering. 

For a hierarchical divisive clustering procedure, it is the opposite of the agglomerative 

method, where the entire set of objects is considered as a single cluster and is broken 

down into two or more clusters that have similar expression profiles. After this is done, 

each cluster is considered separately and the divisive process is repeated iteratively until 

all objects have been separated into single objects. The division of objects into clusters on 

each iterative step may be decided upon by principal component analysis which 

determines a vector that separates given objects. This method is less popular than 

agglomerative clustering, but has successfully been used in the analysis of gene 

expression data by [25]. 

2.3.2 Non-hierarchical Clustering 

One of the advantages of hierarchical clustering is that there is no compelling 

evidence that a hierarchical structure best suits grouping of the expression profiles. An 

alternative to this method is a non-hierarchical clustering, which requires 

predetermination of the number of clusters. Non-hierarchical clustering then groups 

existing objects into these predefined clusters rather than organizing them into a 

hierarchical structure. 
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K-means is a popular non-hierarchical clustering method (Figure 2.4A). In K-means 

clustering, the first step is to arbitrarily group objects into a predetermined number of 

clusters. The number of clusters can be chosen randomly or estimated by first performing 

a hierarchical clustering of the data. Following this step, an average expression profile 

(centroid) is calculated for each cluster, this is called initialization. Next, individual 

objects are reattributed from one cluster to the other depending on which centroid is 

closer to the gene (or sample). This procedure of calculating the centroid for each cluster 

and re-grouping objects closer to available centroids is performed in an iterative manner 

for a fixed number of times, or until convergence (state when composition of clusters 

remains unaltered by further iterations). Typically, the number of iterations required to 

obtain stable clusters ranges from 20,000 to 100,000. However, there is no guarantee that 

the clusters will converge. This method has an advantage that it is scalable for large 

datasets [24]. 
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Figure 2.5 The principle behind K-means and self organizing maps (SOMs) [24] 
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Self organizing maps (SOMs) [26, 27] work in a manner similar to K-means 

clustering (Figure 2.5). In K-means clustering, one chooses the number of clusters to fit 

the data, whereas with SOM the first step is to choose the number and orientation of the 

clusters with respect to each other. For example, a two-dimensional grid of nodes (which 

may end up being clusters) could be the starting point. The grid is projected onto the 

expression space, and each object is assigned a node that is nearest to it - this is called 

initialization. In the next step, a random object is chosen and the node (called a reference 

vector) which is in the neighborhood of the object is moved closer to it. The other nodes 

are moved to a small extent depending on how close they are to the object chosen. In 

successive iterations, with randomly chosen objects, the positions of the nodes are refined 

and the radius of neighborhood becomes confined. In this way, the grid of nodes (initially 

a two-dimensional grid) is deformed to fit the data. The advantage of this method, unlike 

K-means, is that SOM does not force the number of clusters to be equal to the number of 

starting nodes in the chosen grid. This is because some nodes may have no objects 

associated with them when the map is complete. 

Other advantages of SOM include providing information on the similarity between the 

nodes, and the ability of SOM to produce reliable results even with noisy data. 

2.4 Inference of Gene Regulatory Network (GRN) 

Besides clustering, gene expression data can also be used to infer regulatory 

relationships, which is also known as problem of reverse engineering. This approach is 

known as reverse engineering of regulatory networks. Research by [28] and [29] clearly 

states that we are able to use expression data to make predictions about the transcriptional 

regulators for a given gene or sets of genes. 
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A gene regulatory network (also called a GRN or genetic regulatory network) is a 

collection of DNA segments in a cell which interact with each other (indirectly through 

their RNA and protein expression products) and with other substances in the cell, thereby 

governing the rates at which genes in the network are transcribed into mRNA. In general, 

each mRNA molecule will be translated to a specific protein or a set of proteins. In some 

cases this protein will be structural, and will accumulate at the cell-wall or within the cell 

to give it particular structural properties. In other cases the protein will be an enzyme; a 

micro-machine that catalyses a certain reaction, such as the breakdown of a food source 

or toxin. Some proteins only activate other genes, and these are the transcription factors 

which play very important roles in regulatory networks. By binding to the promoter 

region at the start of other genes they turn them on, initiating the production of another 

protein, and so on. Some transcription factors are inhibitory. 

In a gene regulatory network, the nodes of this network are proteins, their 

corresponding mRNAs, and protein/protein complexes. The edges between nodes are 

individual molecular reactions, the protein/protein and protein/mRNA interactions, 

through which the products of one gene affect those of another. A series of edges 

indicates a chain of such dependences, with cycles corresponding to feedback loops. The 

structure of gene regulatory network is an abstraction of the system's chemical dynamics, 

describing the ways in which one substance affects all the others to which it is connected. 

In practice, such gene regulatory networks are inferred from the biological literature on a 

given system and represent a distillation of the collective knowledge about a set of related 

biochemical reactions. 
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GRN can be viewed as a cellular input-output device. A simple GRN would consist of 

one or more input signaling pathways, regulatory proteins that integrate the input signals, 

several target genes, and the RNA and proteins produced from those target genes. In 

addition, such networks often include dynamic feedback loops that provide for further 

regulation of network architecture and output. Figure 2.6 shows a typical gene regulatory 

network. 
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Figure 2.6 A typical gene regulatory network (source from 
http://biophysics.asu.edu/workshop/report/html/bio_mat_files/image063.jpg) 

The gene regulatory networks are only beginning to be understood, and the next step 

for biologists is to attempt to deduce the functions for each gene, which will help us to 

understand the behavior of the system in increasing levels of complexity, from gene to 

signaling pathway, cell or tissue level. 

In general, inference of gene regulatory networks is the process of analyzing a subject 

system to identify the components of the system and their relationships, as well as to 

create an abstract representation of the system that facilitates its study. Engineers and 

http://biophysics.asu.edu/workshop/report/html/bio_mat_files/image063.jpg
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scientists have previously developed techniques or computational algorithms in the fields 

of computer science, engineering, and statistics, which are respectively called machine 

learning, system identification, and statistical learning. 

The inference or reconstruction of gene regulatory networks from experimental data 

(i.e., microarray data) has become a critical problem in systems biology or computational 

biology. Two different types of analysis are of interest when developing an inference 

method as a modeling such gene regulatory networks. 

First one is analysis of network topology. In network topology analysis, a network of 

molecular interactions is considered as a directed graph: a pair (V, E) where V is a set of 

nodes (or genes) and E a set of directed or undirected edges (interactions), i.e. pairs (i, j) 

of nodes, where i is the source node and j is the target node. In some instances, undirected 

graphs are used instead of directed graphs, for example, when only describing existence 

of a correlation between two nodes rather than a causal direction. This directed graph is 

also known as "wiring diagram". Some of the top-down methods are statistical in nature, 

allowing identification of the network's structure or wiring diagram. Depending on the 

method used, the edges represent either a statistical correlation of two variables [30-31] 

or a causal relationship [32]. The most commonly-used modeling framework is that of 

dynamic Bayesian networks [33-38]. 

Second one is called analyses of network dynamics. The phase space of the network is 

analyzed for a description of the dynamic rules that describe how the system evolves in 

time or changing conditions. Dynamical properties of interest include the identification of 

steady states or limit cycles, identification of multi-stable behavior, environmental 

changes, genetic perturbation, etc. Top-down modeling methods to discover a network's 
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behavior commonly use a dynamical systems modeling framework, such as Boolean 

networks [39-42] systems of differential equations [29, 43, 44]. 
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CHAPTER III 

COMPUTATIONAL APPROACHES TO INFER GRN 

Mathematical models of GRN have been developed to capture the behavior of the 

system being modeled, and in some cases generate predictions corresponding with 

experimental observations. In some other cases, models have proven to make accurate 

novel predictions, which can be tested experimentally, thus suggesting new approaches to 

explore in an experiment that sometimes wouldn't be considered in the design of the 

protocol of an experimental laboratory. Several promising modeling techniques have 

been used, including Boolean networks, Petri nets, Bayesian networks, graphical 

Gaussian models, Stochastic, and differential equations. Conversely, techniques have 

been proposed for generating models of GRN that best explain a set of time series 

observations. 

Currently, clustering, classification and visualization methods are used for 

reconstruction or inference of gene regulatory networks from gene expression data sets. 

These methods generally group genes based on the similarity of expression patterns. 

Based on large-scale microarray data retrieved from biological experiments, many 

computational approaches have been proposed to reconstruct gene regulatory networks, 

such as information theory [46, 47, 49, 52, 55], Boolean networks [59, 60, 62, 64, 65, 68], 

differential equations [72, 73, 84, 85, 88], Bayesian networks [32, 34, 37, 38, 69, 95, 96] 

and neural networks [7]. Many computational methods have been proposed for modeling 

or simulating gene regulatory network. 

3.1 Information Theory 

Information theoretic approaches are increasingly being used for reconstructing 

regulatory networks from gene expression microarray data. It is one of the simplest 
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network architectures [45], which can be represented by an undirected graph with edges 

that are weighted by correlation coefficients. Thereby, two genes are predicted to interact 

if the correlation coefficient of their expression levels is above some set threshold. The 

higher the threshold is set, the sparser is the inferred gene regulatory networks. 

Besides correlation coefficients, also Euclidean distances and information theoretic 

scores, such as the mutual information, were applied to detect gene regulatory 

dependencies [46]. The network inference algorithms RELNET (RELevance NETworks, 

[47]), ARACNE (Algorithm for the Reverse engineering of Accurate Cellular Networks, 

[48, 49]) and CLR (Context Likelihood of Relatedness, [50]) apply network schemes in 

which edges are weighted by statistic scores derived from the mutual information. In [51], 

proposed an asymmetric version of the mutual information measure to obtain directed 

networks. Likewise, graphical Gaussian models (GGMs) using partial correlations to 

detect conditionally dependent genes also allow us to distinguish direct from indirect 

associations [52]. 

Simplicity and low computational costs are the major advantages of information 

theory models. Because of their low data requirements, they are suitable to infer even 

large-scale networks. Thus, they can be used to study global properties of large-scale 

regulatory systems. In comparison to other formalisms, a drawback of such models is that 

they do not take into account that multiple genes can participate in the regulation. A 

further disadvantage is that they are static. 

3.1.1 Information Theoretic Entropy 

Entropy is a measure of uncertainty of a random variable. Information theory provides 

us with a quantitative information measure H, which is called the Shannon entropy. For 
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discrete random variables X, which could be either a vector or a scalar, the Shannon 

entropy H(X) is defined in terms of the probability of observing a particular symbol or 

event within a given sequence (Shannon & Weaver [53]) as following: 

H(X) = -YJP(x)-\ogp(x) (3.1) 

where p(x) is the probability mass function, and Q^ stands for the alphabet of X . The 

entropy of a discrete variable is always nonnegative. For a continuous-valued random 

variable X , the differential entropy h(X) is defined as 

h(X)=\ f(x)-log f(x)dx (3.2) 
JxeSx 

where f(x) denotes the probability density function, and Sx represents the support of X . 

The differential entropy is also denoted as h(f) and can take negative values. Therefore, 

some discrete network inference algorithms, for example, REVEAL [39], cannot be 

deployed for continuous-valued gene expression data, unless the data are quantized, and 

the associated information loss is tolerated. 

Just as with probabilities, we can compute joint and conditional entropies. Joint 

entropy is the randomness contained in two variables, while conditional entropy is a 

measure of the randomness of one variable given knowledge of another. Joint entropy is 

defined as: 

H{XJ) = - X p(x,y)-\ogp(x,y) (3.3) 
xedx,yeQv 

while the conditional entropy is defined as: 

H(Y\X) = - X p(x,y)-log p(y\x) (3.4) 
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There are several facts that follow from these definitions. For example, two random 

variables, X and Y , are considered independent if and only if H(Y \ X) = H{Y) or 

H(X,Y) = H(X) + H(Y). The other fact is, the discrete entropy//, do not hold for 

continuous or differential entropy h .The most important is that while H{X) > 0, h can 

actually be negative. Luckily, for us, even though differential entropy cannot provide us 

with an absolute measure of randomness, it is still that case that if h(X) > h{Y) then X 

has more randomness than Y . 

3.1.2 Mutual Information 

Although conditional entropy can tell us when two variables are completely 

independent, it is not an adequate measure of dependence [54]. A small value for 

H(Y | X) may imply that X tells us a great deal about Y or that H(Y) is small to begin 

with. Thus, we measure dependence using mutual information: 

I(X;Y) = H(Y)-H(Y\X) 

ff(X) H(Y) 

Figure 3.1 Relationship between entropy and mutual information [54] 
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The relationship between entropy and mutual information is described in Figure 3.1. 

Both discrete and continuous versions of I(X;Y) are nonnegative and assume the value 

zero if and only if X and Y are independent. Continuous-valued random variables 

should be employed to describe the original DNA microarray data, whereas discrete-

valued random variables are used to model quantized gene expression data. If gene X 

interacts with gene Y, in the steady state, it is hypothesized that the expression values of 

X and Y show a strong dependence. This is partially evidenced by the study of chemical 

kinetics. When the chemical reaction achieves the equilibrium, the concentrations of all 

participating complexes can be modeled by an equation, and they depend on each other. 

Therefore, if I(X;Y) assumes a very small value, it can be reasonably inferred that X 

and Y are disconnected in the genetic regulatory network. However, the opposite 

statement does not hold. Given a large I(X; Y), X and Y can be either directly connected 

or connected through an intermediate gene. 

3.1.3 Inference of Information Theory Model 

The inference algorithm of information theory model is proposed by [55]. In the first 

step, the continuous-valued expressions of each gene x are rank transformed. For 

instance, let XvX2,---,Xm stand for m gene expression observations of X . If 

X,(/e[l,m])is the &th smallest from the m values, then X^is assigned the value k/m. 

Only the ranks of data are preserved; therefore, outliers with incredible great values are 

removed, and the negative preprocessing effects are reduced. Then, all pairwise mutual 

information terms 7(x;;xy)are calculated and stored into the mutual information matrix 

M. Let Mt . stand for the entry of matrix M. If M, . is less than a threshold TM, x( is 
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assumed disconnected from x . Otherwise, we have to proceed to evaluate all the 

conditional mutual information terms, given any other gene xk. If xk is a gene belonging 

to a totally different biological process, the conditional mutual information 7(x,;x ; Ix^) 

approximates the mutual information / (x , ;x y ) , and both assume large values. If xk is a 

hub gene between x,andx7 , I{xl;xJ \ xk) assumes a small value. Hence, given any other 

gene, if the least conditional mutual information is greater than a threshold 7^, it can be 

inferred that x, connects x. . The inference algorithm is formulated as following by W. 

Zhao [55], and it returns the connectivity matrix C, in which a null entry means 

disconnection. 

1: Input gene expression data set; 
2: Initialize n, M € 5T x n , L € &xn, C € {0. l } f t * n , lM, h; 
3: Pre-process the input data set, perform rank 

t ransforma tion 
4: for i — 1 to n — I do 
5: for j = * + 1 to n do 
6: M.ij ^ I{xi;-£j); 
7: if M,-.j < tM then 
8: C y = 0, C ^ = 0; 
9: else 

11: for fc = 1 to n and k ^ i, j do 
12: Ijk **I(xi:Xjfaky, 
13: if Lfe < £<? then 
14: Cj.y =•• U, Cj.t ~ 0; 
15: Break; 
16: end if 
17: end for 
18: end if 
19: end for 
20: end for 
21: return C. 

Figure 3.2 Connectivity inference algorithms [55] 
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3.2 Boolean Network and Probabilistic Boolean Network (PBN) 

The Boolean Network model, originally introduced by Kauffman [56-58], is also very 

useful to infer gene regulatory networks because it can monitor the dynamic behavior in 

complicated systems based on large amounts of gene expression data [59-61]. One of the 

main objectives of Boolean network is to study the logical interactions of genes without 

knowing the specific details [61, 62]. In a Boolean network (BN), the target gene is 

predicted by other genes through a Boolean function. A probabilistic Boolean network 

(PBN), first introduced by Shmulevich et al. in [63], is the stochastic extension of 

Boolean network. It consists of a family of Boolean networks, each of which corresponds 

to a contextual condition determined by variables outside the model. As models of 

genetic regulatory networks, the PBN method has been further developed in many papers. 

In [64], a model for random gene perturbations was developed to derive an explicit 

formula for the transition probabilities in the new PBN model. In [65], intervention is 

treated via external control variables in context-sensitive PBN by extending the results 

for instantaneously random PBN in several directions. Some learning approaches for 

PBN have also been explored by [66, 67, and 68]. Considering the same joint probability 

distribution over common variables, several fundamental relationships of two model 

classes, PBN and dynamic Bayesian network (DBN), have been discussed in [69]. 

In a Boolean network, the expression level of a target gene is functionally related to 

the expression states of other genes using logical rules, and the target gene is updated by 

other genes through a Boolean function. There are only two gene expression levels (states) 

in a Boolean network (BN): on and off, which are represented as "activated" and 

"inhibited". A probabilistic Boolean network consists of a family of Boolean networks 
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and incorporates rule-based dependencies between variables. In a PBN model, BNs are 

allowed to switch from one to another with certain probabilities during state transitions. 

Since Boolean network is just a special case of probabilistic Boolean networks, PBN is 

usually used by computational biologist to reconstruct gene regulatory networks. 

3.2.1 Boolean Network 

We use the same definition as in [62, 70] for Boolean network. A Boolean network 

G(V,F) is defined by a set of nodes (variables) representing genes V = {x,,x2,...,xn} 

(where x, e{0,l} is a binary variable) and a set of Boolean functionsF = {f],f2,—,f„}, 

which represents the transitional relationships between different time points. A Boolean 

function f{xj(l),x (/),...,xy (/)) with k{i) specified input nodes is assigned to nodex,. 

The gene status (state) at time point t +1 is determined by the values of some other genes 

at previous time point t using one Boolean function ft taken from a set of Boolean 

functions F . So we can define the transitions as 

x,(t + \) = f(xMl)(t),xMi)(t),...,xMi)(i)(t)) (3.5) 

where each x, represents the expression value of gene /, if xl= 0, gene / is inhibited; if 

x, = 1, it is activated. The variable jk(i) represents the mapping between gene networks at 

different time points. Boolean function F represents the rules of regulatory interactions 

between genes. In Figure 3.3, an example of a Boolean network is shown. The connected 

graph is represented by (a), and the transition function is defined by (b). 
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Figure 3.3 An example of a Boolean network: (a) the wiring diagram; (b) the updating 
rules; (c) a state transition table; (d) the state space of the network 

3.2.2 Probabilistic Boolean Network 

Probabilistic Boolean network is the extension of Boolean network to combine more 

than one possible transition Boolean functions, so that each one can be randomly selected 

to update the target gene based on the selection probability, which is proportional to the 

coefficient of determination (COD) of each Boolean function. Here we briefly give the 

same notation of PBN as in [63]. The same set of nodes V = {x,,x2,...,xn} as in Boolean 

network is used in a PBN G{V,F), but the list of function sets F = {fi,f2,...,fj is 

replaced by F = {F],F2,...Fn}, where each function set Fj = {fJ
i')}j=l2 no composed of 

/(/) possible Boolean functions corresponds to each node xi. A realization of the PBN at 

a given time point is determined by a vector of Boolean functions. Each realization of the 

PBN maps one of the vector functions/t = (f^,/^,-/^) ,l<k<N,l< k(i) < /(/), 

where f^ e F; and N is the number of possible realizations. Given the values of all genes 

in network at time point t and a realization fk, the state of the genes after one updating 
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step is expressed as 

(X](t + l),x2(t + \),...xn(t + \)) = fk(xft),x2(t),...xn(t)) (3.6) 

Let f=(f',f( ],...f(n)) denote a random vector taking values inF]xF2---xFn. The 

probability that a specific transition function f' ,(1 < j < 1(f)) is used to update gene / is 

equal to 

cy )=Pr{/- ( , ,=/; , )}= X Pr{f = /4> (3.7) 
K-Jno -'j 

Given genes K = {x,,x2,...,xn}, each x, is assigned to a set of Boolean functions 

Ft - {fj }J=] 2 /(/) to update target gene. The PBN will reduce to a standard Boolean 

network if /(/) = 1 for all genes. A basic building block of a PBN describing the updating 

mechanism is shown in Figure 3.4. 

•*,(0 
xft) 

x3(t) 

* , ( ' ) 

o 

t> 

o 

/;co 

/f 
\ X / ° 

A / \ ° 
0 

Jj(0 

c(0 

o x-> 

0 

°(0 

-v,(/+l) 

Figure 3.4 A basic building block of a PBN 

5.2.5 Inference of Probabilistic Boolean Network 

Coefficient of Determination (COD) is used to select a list of predictors for a given 

gene [63, 67]. So far, most learning methods for reconstructing gene regulatory network 
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use Coefficient of Determination (COD) to select predictors for each target gene at any 

time point t. COD is used previously for the steady state data sets. Monte Carlo 

approaches can be used with probabilistic Boolean networks to approximate dynamics 

[60] and some theoretical results are given in [71]. Here we use upper case letters to 

represent random variables: Let Xt be the target gene, X\'] ,X(2),...,X)'(
)
j) be sets of genes 

and f\'\ f^•>••••> fi'l)) be available Boolean functions. Thus, the optimal predictors of Xt 

can be defined by fl'\X^\f^\Xf\...J^){X(;^ and the probabilistic error measure 

can be represented as s(Xl,f^'\X^))) . For each k, the COD for Xt relative to the 

conditioning set X^ is defined by 

«,-«(Ar„;W)) ( 38 ) 

where sj is the error of the best estimate of Xl [67]. 

Now, if a class of gene sets X^, X^,..., X^ which have high CODs has been 

selected, we can use the optimal Boolean functions ./J0',/2
('\-••>•//(/) a s m e rule set for 

gene Xt, with the probability of fj'} being chosen. Then the approximations are given by 

C(')=_^L_ (3.9) 

According to the above expressions [63, 67], those Boolean functions corresponding 

to the highest CODs will be selected in the probabilistic network. The selected Boolean 

functions are used to predict the gene expression status at the next time point, and they 

also will be used to reconstruct gene regulatory networks. 
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3.3 Differential and Difference Equations 

Differential equations are one of the most important mathematical models in 

computational biology. Because they can model complex dynamic behavior like 

oscillations, cyclical patterns, multi-stationarity and switch-like behavior which can be, 

for example, detected in bacteria infected with lambda phage, it was easy to extend them 

to be used for modeling gene regulatory networks. There are a lot of profound theories to 

study systems of differential equations, such that the analysis of these systems is 

manifold. For computational biologists, the first step is to find differential equations 

which can represent the system under study precisely. It is essential to know about the 

processes in the system and to have large amounts of data available to infer the unknown 

parameters in gene regulatory networks. Necessary foundations for a good description 

with differential equations would be the knowledge about which gene regulates another 

and in which way, as well as knowledge about the degradation and maximal production 

rates of the associated proteins. As in gene regulatory networks most of this information 

is often missing, there need to be models which can capture the network behaviors and 

robust methods to estimate the parameters from existing data. Differential equations 

describe gene expression changes as a function of the expression of other genes and 

environmental factors. Thus, they are adequate to model the dynamic behaviors of gene 

regulatory networks in a more quantitative manner. Their flexibility allows us to 

represent more complex relations among components. A modeling of the gene expression 

dynamics may apply ordinary differential equations (ODEs): dx I dt = f{x,p,s,t), where 

x{t) - {x](t),x2 (/),..., *„(/)} is the gene expression vector of the genes 1, 2 , . . . , n at time 



43 

/, / is the function that describes the rate of change of the state variables x, in 

dependence on the model parameter set/?, and the externally given perturbation signals s. 

Here, network inference means the identification of function/and parameters/? from 

measured signals x, s and t. 

In general, if the gene regulatory networks are without constraints, there are multiple 

solutions, i.e. the ODE system is not uniquely identifiable (It is also called the problem of 

identifiablity) from gene expression data achieved from experiments. Thus, the 

identification of model structure and model parameters requires specifications of the 

function / and constraints representing prior knowledge, simplifications or 

approximations. For instance, the function / can be linear or non-linear. Evidently, 

regulatory processes are characterized by complex non-linear dynamics. However, many 

gene regulatory network inference approaches based on differential equations only 

consider linear models or are limited to very specific types of non-linear functions [72, 

73]. 

In recent years, some more complex variants of differential equation models have 

been proposed to represent complicated gene regulatory networks, such as stochastic 

differential equations that are incorporated with the stochasticity of gene expression, 

which may be very useful especially in transcriptional regulatory networks [74, 75]. 

3.3.1 Linear Differential Equations 

Modeling biological data with linear differential equations was first considered 

theoretically by Chen [76]. In this model, both the mRNA and the protein concentrations 

were described by a system of linear differential equations. Such a system can be 

described as following: 
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dx " 
—L = y\w, 'xi +b, • s, where i = ],2,...,n (3.10) 
dt 7^ 

In this linear differential equation model, it can represent the gene expression 

dynamics x,(Y) of ngenes by nx(n + \) parameters, which include the nxncomponents 

MA of the interaction matrix W and n parameters b- quantifying, for example, the 

impact of the perturbation s on gene expression. In general, the simplification obtained by 

linearization is still not enough to identify large-scale GRN from gene expression data 

unequivocally. 

Several algorithms have been proposed to deal with this problem, such as methods for 

inferring sparse interaction matrices by reducing the number of non-zero weights wj . 

In order to solve linear differential equations by well-established methods of linear 

algebra, differential equations can be approximated by difference equations (discrete-time 

models). After approximation, linear differential Eq. (3.10) becomes the linear difference 

Eq. (3.11): 

*' [ ' + ^ ] ~ X , M = ! > , , , •*,['] + *>,••*, where i = \,2,...,n (3.11) 
At j=] 

By this way, we can obtain a linear algebraic equation system that can be solved by 

methods of linear algebra, such as singular value decomposition (SVD) [77, 78] and 

regularized least squares regression are the most prominent ones that solve the linear 

equation system with the constraint of sparseness of the interaction matrix. For instance, 

the LASSO (Least Absolute Shrinkage and Selection Operator) provides a robust 

estimation of a network with limited connectivity and low model prediction error [79]. 

Further inference algorithms based on linear difference equation models are NIR 
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(Network Identification by multiple Regressions [80]), MNI (Microarray Network 

Identification [81]) and TSNI (Time-Series Network Identification [82]). Under the 

steady-state assumption, NIR and MNI use series of steady-state RNA expression 

measurements, whereas TSNI uses time-series measurements to identify gene regulatory 

interactions [83]. 

3.3.2 Non-linear Ordinary Differential Equations 

Ordinary differential equations (ODEs) have been widely used to analyze gene 

regulatory networks, and it is probably the most popular formalism to model dynamical 

systems in computational biology. The ODE formalism models the concentrations of 

RNAs, proteins, and other elements of the system by time-dependent variables with 

values contained in the set of non-negative real numbers. Regulatory interactions take the 

form of functional and differential relations between the concentration variables. 

More specifically, gene regulation is modeled by reaction-rate equations expressing 

the rate of production of a gene product (a protein or an mRNA) as a function of the 

concentrations of other components of the system. Reaction-rate equations have the 

mathematical form: 

dx 
- L = f,(x), x,>0, \<i<n (3.12) 
dt 

where x is the vector of concentrations of proteins, mRNAs, or small metabolites, and ft 

usually is a nonlinear function. The rate of synthesis of / is consider to be dependent upon 

the concentrations x, possibly including x,. The equations can be extended to take into 

account concentrations of s > 0 input elements, e.g. externally-supplied nutrients: 

^- = fi{x,s), x,>0,\<i<n (3.13) 
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They may also take into account discrete time delays arising from the time required to 

complete transcription, translation, and diffusion to the place of action of a protein: 

dx 
-L = fi(xl(t-dn),...,x„(t-dJ), x,>0, \<i<n (3.14) 
dt 

where dn,...,dm >0 represent time delays [73, 84, 85, 86] for other ways to represent 

time delays in gene regulatory networks. 

The identification of non-linear models is not only limited by mathematical difficulties 

and computational efforts for numerical ODE solution and parameter identification, but 

also mainly by the fact that the sample size M is usually too small for the reliable 

identification of non-linear interactions. Thus, the search space for non-linear model 

structure identification has to be stringently restricted. For that reason, inference of non­

linear systems employ predefined functions that reflect available knowledge. In [87], 

Sakamoto and Iba used genetic programming to identify small-scale networks (up to 

three genes) by fitting polynomial functions / o f ordinary differential equations. In [88], 

Spieth applied different search strategies, such as evolutionary algorithms, for the 

inference of small-size networks (less than 10 genes). They studied different types of 

non-linear models: generalized linear network models [89], S-systems [90] and models 

composed of a linear interaction matrix and an additional non-linear term (called 'H-

systems'). Non-linear models such as S-systems consist of many parameters demanding a 

large number of experiments to fit them to the data [91]. Therefore, the problem of data 

insufficiency still limits the practical relevance of non-linear models. 

3.3.3 Partial Differential Equations 

The gene regulatory networks are implicitly assumed to be spatially homogeneous. 

There are some cases in which these assumptions are not correct. It might be necessary, 
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for instance, to distinguish between different compartments of a cell, say the nucleus and 

the cytoplasm, and to consider diffusion of regulatory proteins or metabolites from one 

compartment to another. Moreover, gradients of protein concentrations across cell tissues 

are a critical feature in embryonal development. The introduction of time delays for 

diffusion effects allows some aspects of spatial inhomogeneities to be dealt with, while 

preserving the basic form of the reaction-rate equations [73]. However, in the case that 

multiple compartments of a cell, or multiple cells, need to be explicitly modeled, a more 

drastic extension of Eq. (3.12) becomes necessary. 

Suppose that a multi-cellular regulatory system is considered, where the p cells are 

arranged in a row. A new vector x(/)(7) is introduced, in which the time-varying 

concentration of gene products is denoted in cell /, / is a discrete variable ranging from 1 

to p. Within each cell, regulation of gene expression occurs in the manner described by 

equation Eq. (3.12). Between pairs of adjacent cells / and/ + 1,1 < / < p-\, diffusion of 

gene products is assumed to take place proportional to the concentration differences 

x;
(/+l) -x', x' -x, ( M ) and a diffusion constant 8j. Taken together, this leads to a system 

of coupled ODEs, so-called reaction-diffusion equations: 

^ = fi(xM) + S.(x<M)-2xl
i')+x«-l)), x, ( , )>0, \<i<n,\<l<p (3.15) 

If the number of cells is large enough, the discrete variable / in Eq. (3.15) can be 

replaced by a continuous variable ranging from 0 to X , where A represents the size of the 

regulatory system. The concentration variables x are now defined as functions of both / 

and t , and the reaction-diffusion equations Eq. (3.15) become partial differential 

equations (PDEs): 
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-L = fi(x) + Si—±, x^>0,0<l<A,\<i<n (3.16) 

ct ol 

Reaction-diffusion equations and partial differential equations have been used in 

computational biology to study pattern formation in development, such as [92, 93]. The 

induction of models from measurements of x at a sequence of time-points is made 

attractive by the growing availability of gene expression data. However, precise 

measurements of absolute expression levels are currently difficult to achieve. In addition, 

as a consequence of the dimensionality problem, the models need to be simple and are 

usually strong abstractions of biological processes [94]. For larger and more complicated 

models, the computational costs of finding an optimal match between the parameter 

values and the data may be extremely high. 

3.4 Bayesian Network and Dynamic Bayesian Network (DBN) 

Among the many computational approaches that infer gene regulatory networks from 

time series data, Bayesian network draws significant attention because of its probabilistic 

nature. Dynamic Bayesian network is the temporal extension of Bayesian network. It is a 

general model class that is capable of representing complex temporal stochastic 

processes. It captures several other often used modeling frameworks as its special cases, 

such as hidden Markov models (and its variants) and Kalman filter models. 

Bayesian network approach has been used in modeling genetic regulatory networks 

because of its probabilistic nature. However, it has drawbacks such as failing to capture 

temporal information and modeling cyclic networks. Dynamic Bayesian network 

approaches are more popular than static Bayesian network because it is easy to interpret 

and learn. DBN is better suited for characterizing time series gene expression data than 

its static version. Much recent work has been done to reconstruct gene regulatory 
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networks from expression data using Bayesian networks and DBN. Perrin BE et al. [95] 

showed stochastic machine learning algorithm to model gene interactions capable of 

handling missing variables. Min Zou et al [37] presented a DBN-based approach, in 

which the number of potential regulators is limited to reduce search space. Yu, J. et al. 

[34] developed a simulation approach to make advance in dynamic Bayesian network 

inference algorithm, especially in the context of limited quantities of biological data. In 

[96], Z.Z Xing and Dan Wu proposed a higher order Markov dynamic Bayesian network 

(DBN) to model multiple time units in a delayed gene regulatory network. Recently, 

likelihood maximization algorithms such as the Expectation-Maximization (EM) 

algorithm have been used to infer hidden parameters and deal with missing data [97]. 

3.4.1 Bayesian Network 

Given a set of variables U = {x],x2,...xj in gene network, a Bayesian network, for U 

is a pair B = (G,Q) which encodes a joint probability distribution over all states oft/ . It 

is composed of a directed acyclic graph (DAG) G whose nodes correspond to the 

variables in U and 0 which defines a set of local conditional probability distributions 

(CPD) to qualify the network. Let Pa(x,) denote the parents of the variables x, in the 

acyclic graph G and pa(x() denote the values of the corresponding variables. Given G 

and©, a Bayesian network defines a unique joint probability distribution over U given by 

Pr{x„x2,...xJ = nPr{x , |pa(x,)} (3.17) 
/=] 

For more details of Bayesian network, see in [32, 68]. Figure 3.5 shows a simple 

example of Bayesian network. 
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P(A,B,C,D,E) 
= P(A)*P(B)*P(C | A) 

*P(D|A,B)*P(E|D) 

Figure 3.5 A simple example of Bayesian network, (a) Graph representation of a 
Bayesian network, (b) Probability representation corresponding to network in (a). 

To describe the joint distribution over n variables (genes), we need to store the 

probability of every possible event as defined by the values of all the variables. There are 

exponentially many such events, therefore the space complexity is 0(2"). In Bayesian 

network representation, if the maximum number of parents is denoted as p, it is easy to 

see that the space complexity of Bayesian network is0(2p -n). Since/? is usually a much 

smaller than n, the space requirement of Bayesian networks is much lower than the 

method which exhaustively enumerates all the possible events. 

Bayesian networks reflect the stochastic nature of gene regulation and make use of the 

Bayes' rule. Here, the assumption is that gene expression values can be described by 

random variables, which follow probability distributions. As they represent regulatory 

relations by probability, BNs are thought to model randomness and noise as inherent 

features of gene regulatory processes [32]. Most importantly, BNs provide a very flexible 

framework for combining different types of data and prior knowledge in the process of 

gene regulatory network inference to derive a suitable network structure [98]. Besides, 

BNs have a number of features that make them attractive candidates for modeling gene 



51 

regulatory networks, such as their ability to avoid over-fitting a model to training data 

and to handle incomplete noisy data as well as hidden variables (e.g. Transcription Factor 

activities). 

Methods for learning BNs are covered in detail in [99]. In short, there are three 

essential parts for learning a BN: Model selection, parameter learning and model scoring. 

In model selection, usually heuristics are used to efficiently learn a BN instead of using 

brute-force search, which will grow exponentially as the number of genes increase in 

directed acyclic graph. In parameter learning step, given a graph and experimental data, 

our goal is to find the best conditional probabilities (CP) for each node. In model scoring 

step, we need to score each candidate model. The higher the score, the better the network 

model (the DAG and the learned CP distribution) fits to the data. The model with the 

highest score will represent the GRN inference result. 

3.4.2 Dynamic Bayesian Network 

Even though Bayesian networks have been widely used in modeling genetic 

regulatory networks, it has drawbacks such as failing to capture time series information 

and modeling cyclic networks. Dynamic Bayesian network (DBN) [100] is considered as 

the temporal extension of Bayesian network. It can represent complex temporal and 

cyclic relations among genes by incorporating time course (or time slice) information. 

Here the term "dynamic" means we are modeling a dynamic system, not that the gene 

regulatory network changes over time. Figure 3.6 shows the DBN can represent cyclic 

relations among genes by incorporating time series information. 
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Figure 3.6 Static Bayesian network (left) and DBN (right) 

A DBN is defined by a pair (50,5,) represents the joint probability distribution over 

all possible time series of variablesX = {X],X2,...XJ , where X , . ( l< /<« ) represents 

the binary-valued random variables in the network, besides, we use lower case x, 

(1 < / < n ) denotes the values of variable X,. It is composed of an initial state of Bayesian 

network B0 =(GO,0O) and a transition two-slice temporal Bayesian network (2TBN) 

Bx =(G,,0,) , where B0 specifies the joint distribution of the variables in X(0) and B} 

represents the transition probabilities Pr{X(/ + l) | X(t)} for all time slices/. In time slice 

0, the parents of X,(0) are assumed to be those specified in the prior network B0, which 

meansPa(X,(0))cX(0)for all \<i<n; in slice t + \, the parents of X^t + X) are nodes 

in slices t , Pa(^(f + 1)) e X(0 for all 1 < / < n and / > 0 , as stated in [69], the 

connections only exist between consecutive slices. Figure 3.7 shows an example of a 

DBN. The joint distribution over a finite list of random variables 

X(0) u X( 1) u • • • u X(T) can be expressed as [68, 69] 
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Pr{x(0),x(l),...,x(T)} 
T-l 

= Pr{x(0)}JJPr{x(f + l)|x(O} (3.18) 
t=0 

= f l Pr{x,- (0) | pa(X, (0))} x f j f j Pv{Xj (t + \)\ pa(*, (t +1))} 
/=! r=0 j=\ 

Figure 3.7 A basic building block of DBN 

Dynamic Bayesian network allows us to monitor and update the system as time goes 

by, and even predict further behaviors of the system. In such models word dynamic is 

connected with a motive force. Changing the nature of the static Bayesian network can be 

thought of as adapting it to dynamic model. Considering time representation, temporal 

approaches could be classified into two categories, which represent time as points or as 

time intervals. Usually time intervals can be thought of as a set of consecutive time points. 

Therefore, time-points representation seems to be more appropriate and more expressive. 

3.5 Learning Bayesian Network 

Since it is often either difficult or impossible in practice to manually specify the 

complete structure and parameters for Bayesian network, learning Bayesian networks 
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from gene expression data becomes and very important problem. There are two key 

issues to learn a Bayesian network from given gene expression data: estimating the 

parameters of the model, and inferring the structure of the gene regulatory network. 

3.5.1 Parameter Learning 

For a given structure G , traditional parameter learning methods estimate the 

parameters by maximizing the joint likelihood of gene expression data, which is known 

as generative parameter learning [101]. Recently, with Bayesian networks becoming 

widely used as classifiers, some algorithms have been proposed to learn the parameters 

by maximizing conditional likelihood of the class variable given the observed evidence 

variables. These methods are known as discriminative parameter learning [102, 103, and 

104]. 

3.5.1.1 Generative Parameter Learning 

Given a set of training data D, which is composed of a set of independent and 

identically distributed instances [x\...,xN] , where all components are observed, 

generative parameter learning methods estimate the parameters of a Bayesian network 

either by directly maximizing the joint likelihood of training data, or by computing the 

posterior over parameters 6 given a prior distribution P(0). 

The first method is called maximum likelihood (ML) estimation. Using the 

conditional independence assumptions encoded in the structure, the joint log likelihood of 

training data can be factored in the following way 

\ogP(D\0) = fjfj\ogP(x'J\x
i
!!U)fi) (3.19) 
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The second generative method is called maximum a posteriori estimation (MAP). One 

of the benefits of Bayesian networks is the convenience of incorporating prior domain 

knowledge and prior knowledge can often be used to effectively avoid over fitting 

problem, especially when we have limited training data sets. Given a prior density P{6), 

we can learn the parameters to maximize the posterior as following 

l,8 |̂S) = l l e « W ( 320) 

P(D) 

This is equivalent to maximizing P{0)P{D \ 0) since P{D) is invariant with respect to 0. 

The Expectation Maximization (EM) algorithm is a classical algorithm which is very 

popular to learn Bayesian network from incomplete data sets. More details of EM 

algorithm will be covered later in Chapter 4. 

3.5.1.2 Discriminative Parameter Learning 

The standard generative parameter learning methods is not the best way to train 

models for classification. The disadvantage of generative learning is that it optimizes a 

criterion, such as maximum likelihood or MAP, which is not consistent with performance. 

In recent years, researchers proposed a new discriminative approach for supervised 

parameter learning, which takes conditional likelihood as the optimization criterion. For 

more details of discriminative parameter learning, see in [102 - 106]. 

Although generative parameter learning given complete data is quite easy, it is very 

difficult to find the global maximum when using the discriminative conditional likelihood 

criterion for general Bayesian networks. It has been proved that it is NP-hard problem to 

find the parameters for a fixed Bayesian network structure that maximize the conditional 

likelihood of a given sample of incomplete data [102]. Whether this remains true for 

complete data is an open problem. 
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3.5.2 Structural Learning 

If the topology of the target Bayesian network is fixed, the task is to estimate the CPTs 

or CPDs for every node in the network. On the other hand, if the topology is unknown, 

structure learning is required to learn the graph topology of the target BN before the 

parameters could be determined. Also the observation data used for BN learning may be 

either complete or incomplete, based on these varieties [107] categorized four cases of 

learning structure of BNs. Table 3.1 shows the four cases for learning Bayesian network 

structure. 

Table 3.1 Methods for learning Bayesian network structure and parameter determination 

Structure / Observability 

Known, full 

Known, partial 

Unknown, full 

Unknown, partial 

Method 

Sample statistics 

EM or gradient ascent 

Search through model space 

Structural EM 

Full observability means that the values of all variables are known; partial 

observability means that we do not know the values of some of the variables. This might 

be because they cannot be measured (in which case they are usually called hidden 

variables), or because they just happen to be unmeasured in the training data (in which 

case they are called missing variables). Note that a variable can be observed 

intermittently. 

Unknown structure means we do not know the complete topology of the gene 

regulatory network. Typically we will know some parts of it, or at least know some 
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properties the graph is likely to have, e.g., the maximum number of parents (fan-in) that a 

node can take on, and we may know that nodes of a certain "type" only connect to other 

nodes of the same type. These constraints or information are called prior knowledge. 

When the structure of the model is known, the learning task becomes one of parameter 

estimation. Here, we only cover the aspects that are most relevant to learning genetic 

networks from time series data. For further details, see the review papers [108-110]. 

3.5.2.1 Known Structure, Full Observability 

In this case, the goal of learning is to find the values of the parameters of each CPD 

which maximizes the likelihood of the training data, which contains S independent 

sequences, each of which has the observed values of all n nodes (genes) per time slice 

for each of T slices. Now, we assume the parameter values for all nodes are constant 

across time, so that for a time series of length T, we get one data point for each CPD in 

the initial slice, and T -1 data points for each of the other CPDs. If there is only one 

sequence, we cannot reliably estimate the parameters of the nodes in the first slice, so we 

usually assume these are fixed apriori. Then we have N = S(T-1) samples for each of 

the remaining CPDs. In cases where N is small compared to the number of parameters 

that require fitting, we can use a numerical prior to regularize the problem. In this case, 

we call the estimates Maximum a posterori (MAP) estimates, as opposed to Maximum 

Likelihood (ML) estimates. 

By the chain rule of probability, we find that the joint probability of all the nodes in 

the graph is as following: 

P(X],...,XJ = YlP(X,\X],...,X,^ 

J-r ( 3 - 2 1 ) 
= YlP(X,\Pa(X,)) 
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where m - n(T -1) is the number of nodes in the network (excluding the first slice), 

Pa(X,)are the parents of node /, and nodes are numbered in topological order. The 

normalized log likelihood of the training data set L = —logPr(Z)|G) , where 

TV 

Z) = {!),,..., Z)s} a sum of terms [100], one for each node is: 

1 m S 

L = -tJY,logP(X,\Pa(Xi),Dl) (3.22) 
N ;=1 l=\ 

The next step is to determine how to estimate the parameters of each type of CPD 

given its local data Dt (Xt \ Pa(Xj)) by several different supervised learning methods. For 
more discussions, see in [100, 107]. 

3.5.2.2 Known Structure, Partial Observability 

When the variables are partially observed, the likelihood is 

Z, = XlogP(A)=£ log£P(tf = / , 'F = A) (3.23) 
/ / h 

where the innermost sum is over all the assignments to the hidden nodes H, and V = D, 

means the visible nodes take on the values specified by case Dt. Unlike the fully observed 

case, the log-likelihood in this case cannot be decomposed into a sum of local terms. The 

output of parameter estimation would be a distribution over the parameters. 

Since the likelihood surface becomes multimodal in this case, and we must use 

iterative methods, such as Expectation Maximization [111] algorithm or gradient ascent 

[112], to find a local maximum of the ML/MAP function. These algorithms need to use 

an inference algorithm to compute the expected sufficient statistics (or related quantity) 

for each node. 

3.5.2.3 Unknown Structure, Full Observability 
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If the knowledge of a number and type of some states in the network is known, but the 

knowledge of their relations and mutual independences are kept unknown, our goal is to 

find the best way to learn the structure of DBN from observable data and expert 

knowledge. In this part, we first introduce the scoring function which we used to select 

models, and then we discuss algorithms which attempt to optimize this scoring function 

over the space of models. 

First we introduce the objective function which is used for model selection. Note that 

our goal is to find the model with maximum likelihood, this is stated as finding the model 

in which the sum of the mutual information (MI) [113] between each node and its parents 

maximal. But the problem is, the maximum likelihood model will be a complete graph, 

since this has the largest number of parameters and hence can fit the given gene 

expression data the best. A well-principled way to avoid this kind of over-fitting is to put 

a prior on models, specifying that we prefer sparse models. Then, by Bayes' rule, we gain 

the MAP model that maximizes 

Pr(^G)Pr(G) 
Pr(£>) 

If we take the logarithms of Eq. (3.24), we will simplify the problem of minimizing 

log Pr(G | D) = log Pr(£> | G) Pr(G) + Pr(G) + c (3.25) 

where c = Pr(Z)) is a constant independent of G . This approach is known as Minimum 

Description Length (MDL) approach. An exact Bayesian approach to model selection is 

usually unfeasible, since the marginal likelihood Pr(D) = ^T Pr(Z), G) needs to be 
G 

computed, which is a sum over an exponential number of models. 
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However, we can use asymptotic approximation to the posterior, and there are two 

popular Bayesian scoring metrics called BIC (Bayeisan Information Criterion) score [114] 

and BDe (Bayesian Dirichlet equivalence) score [115]. Both of these scoring metrics 

combine the likelihood of the data according to the network with some penalty relating to 

the complexity of the network. When learning the structure of BNs, this complexity 

penalty is very important for modeling the DBN, since the maximum likelihood network 

is usually completely connected network. 

Here we take Bayesian Information Criterion as example, it is define as following 

log Pr(G | D) * log Pr(£> | G, 0G) - l-^- #G (3.26) 

where TV is the number of samples, # G is the dimension of the model, and QG is the 

maximum likelihood estimate of the parameters. Since the number of parameters in the 

model is the sum of parameters in each node, BIC score decomposes just like the log 

likelihood in Eq. (3.23). 

Given that the score is decomposable, we can learn the parent set for each node 

independently. Obviously there are total ^ ,_„ rn\ 
Kkj 

= 2" such parents sets. The problem is 

to find the highest scoring point in all of the sets. For example, the approach taken by 

REVEAL [39] is to start from one parent sets and evaluate the score at all points in each 

successive level until a point is found with a score of 1.0. The scoring function they used 

in [39] is I(X,Pa(X))l max{H(X),H(Pa(X))} , where I(X,Y) is the mutual 

information between X and Y, and H(X) is the entropy of X (see definitions in Chapter 
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3.1), 1.0 is the highest possible score and corresponds to Pa{X) being a perfect predictor 

of X , for instance, H(X \ Pa(X)) = 0. 

If we do not know if we could achieve the maximum possible score of model, we do 

not know when to stop searching and hence we must evaluate all points in all the possible 

subsets. If the number of nis, large, it is usually computationally infeasible, so a common 

approach is to only search up until level K (a bound on the maximum number of parents 

of each node), which takes 0{nK)\xmz. Unfortunately, in real gene regulatory networks, 

it is known that some genes can have very high fan-in or fan-out (i.e., the hub genes in 

genetic networks), so restricting the bound to a fixed smaller value (for example, we can 

set K = 3 ) would make it impossible to discover all of the important "hub" genes. 

The obvious way to avoid the exponential cost (and the need for a bound, K ) is to use 

heuristics to avoid examining all possible subsets. Since the problem of learning optimal 

structure is NP-hard [116], we must use some sort of heuristics. One of the approaches 

called Extended Dependency Analysis (EDA) [118], which starts by evaluating all 

subsets of size up to two, keep all the ones with significant mutual information with the 

target node, and take the union of the resulting set as the set of parents. For more 

discussions, see in [100, 107, and 117]. 

3.5.2.4 Unknown Structure, Partial Observability 

When the structure of model is unknown and there are hidden variables or missing 

data, the difficulty is that the score does not decompose. In this case, we need to sum out 

all the latent variables Z as well as integrate out all the parameters 6: 

P(X\G) = YJ\P(X,Z\G,9)P{6\G) (3.27) 
7- e 
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This score does not decompose into a product of local terms. But, as observed in [68, 

119, 120], the expected score does decompose, so we can use an iterative method, which 

alternated between evaluating the expected score of a model, and then change the model 

structure, until a local maximum is reached. This is called the Structural Expectation 

Maximization (SEM) algorithm. SEM was successfully used to learn the structure of 

discrete DBN with missing data in [68]. 

SEM algorithm has the same E-step as EM, completing the data by computing 

expected counts based on the current structure and parameters. The M-step has two parts. 

First it is used in the same way as described above for recalculating maximum likelihood. 

In the second part, the M-step of SEM can use the expected counts according to the 

current structure to evaluate any other candidate structure. This is usually done by 

performing a complete search over all possible structures similar to one we have. The key 

step in SEM algorithm is to use and existing DBN to complete the data. All possible 

trajectories that are consistent with the partial information we have are considered. Then 

we average the counts in each one of these trajectories based on the probability that our 

current model assigns to that trajectory. 

3.5.3 DBN Implementation 

Kevin Murphy [100, 107] implemented a dynamic Bayesian network toolbox using 

the mathematical programming language (MATLAB). The toolbox is called the Bayes 

Net Toolbox (BNT), which is an open-source package for directed graphical models. It 

can support many types of nodes (probability distributions), exact and approximate 

inference, parameter and structure learning, and static as well as dynamic models. BNT 

can be freely downloaded from [121]. 
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In order to analyze gene expression data, it was first transformed from continuous to 

discrete form. The number of discrete steps to be used is arbitrary, but for computational 

reasons it should be kept as low as possible. Using three steps, one for unchanged, one 

for up-regulated, and one for down-regulated expression levels, is the natural choice. 

The actual structure learning was performed by calling the one of BNT functions 

learn_struct_dbn_reveal, which uses the previously discussed REVEAL algorithm [39]. 

The resulting inter-slice adjacency matrix, which defines the transition network, was then 

visualized using built-in BNT function called drawlayout. Usually the number of nodes 

is restricted to less than 30, and more nodes will be too much time consuming according 

to tests. There are many other DBN implementations based one time series gene 

expression data, such as [34, 37, 95, and 96]. 

3.6 Time-delayed Dynamic Bayesian Network 

There are two major problems with current DBN methods that greatly reduce their 

effectiveness. The first problem is the lack of a systematic way to determine a 

biologically relevant transcriptional time lag, which results in relatively low accuracy of 

predicting gene regulatory networks. The second problem is the excessive computational 

cost of these analyses, which limits the applicability of current DBN analyses to a large-

scale microarray data. Therefore, Min Zou [37] introduces a DBN-based analysis that can 

predict gene regulatory networks from time course expression data with significantly 

increased accuracy and reduced computational time. In our DBN analysis, we also use 

the implementation based on Min Zou. Figure 3.8 shows the process of approach in [37]. 
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In Murphy's BNT, all the genes in the dataset are considered as potential regulators of 

a given target gene, which makes it impossible to model large scale gene network 

because of exponentially increasing computational time. According to [122], most 

transcriptional regulators exhibit either an earlier or simultaneous change in the 

expression level when compared to their targets. This is able to limit the potential 

regulators of each target gene and thus significantly reduce the computational time. The 

other improvement by Zou is to perform an estimation of the transcriptional time lag 

between potential regulators and their target genes. The time difference between the 

initial expression change of a potential regulator and its target gene represents a 
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biologically relevant time period. Figure 3.9 shows the initial expression change of a 

potential regulator. This is expected to allow a more accurate estimation of the 

transcriptional time lag between potential regulators and their targets, because it takes 

into account variable expression relationships of different regulator-target pairs. These 

improvements are related to transcriptional time-delayed lags between regulators and 

target genes, so it can be considered as a time-delayed DBN. 
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CHAPTER IV 

A NEW MODEL BASED ON STATE SPACE MODEL AND EM ALGORITHMS 

It is a very challenging task to infer a network which has high dimensionality and 

short time-course gene expression data. The so-called "golden method" does not exist. 

All the existing computational methods have their advantages and limitations. Boolean 

network and probabilistic Boolean network are simple dynamic models, and they are also 

very easy to implement, but they can only deal with discrete data. It will lose lots of 

useful information when discretizing the continuous data. For dynamic Bayesian network, 

it can handle both discrete and continuous data, but the limitation of DBN is time 

complexity. DBN is a NP-hard method, so it is almost impossible for DBN to infer a 

network with thousands of genes. Some approaches based on DBN have been proposed 

to limit the potential regulators (parents) of genes, such as [37], so that they can run more 

genes than original DBN approach (Kevin Murphy's Bayes Net Toolbox for MATLAB 

[68, 100, and 107]). However, the maximum number of genes DBN can handle on a 

typical desktop PC is still less than 400, which is not sufficient for real biological 

experimental data. Ordinary differential equation and partial differential equation are 

very precise way to model gene regulatory networks, but differential models depend on 

numerical parameters and need large amount of data, which are very often difficult to get 

from experiments, and its time complexity is very high. 

One of the challenges in GRN inference is that the number of time points is much 

smaller than that of genes. The traditional time series analysis such as the autoregressive 

model will fail due to the over-learning problem, because the degree of freedom of the 

parameters is redundant. To overcome such difficulty, a state space model is proposed to 
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describe the dynamic system of gene regulation and then the EM algorithms and Kalman 

filter are used for inferring gene regulatory networks. 

4.1 State Space Model 

We use state space model to represent the gene regulatory network. 

x,=Fx,_x+w, (4.1) 

where xt is a k (number of hidden variables) dimensional vector, called state vector. F is a 

kxk matrix called system matrix. A kdimensional vector w, is a noise term, called 

system noise. Assuming w, is distributed according to the Gaussian distribution 

wt ~ Nk (0, Q). Given a state vector, observation data are generated by the observation 

model, 

y,=Hx,+v, (4.2) 

Here, yt = (yin,...,yln)' e R' is the observation vector where yln is the expression value 

of /-th gene measured by the n-Xh time point microarray. The H is a / x k matrix (/ means 

the number of genes), often called measurement or observation matrix, which describes 

the relationship between data and state vectors. Here v, e R1 is an observation noise, and 

is distributed asv, ~ N^O, R). 

The initial state vector x0 is assumed to be a Gaussian random vector with mean 

vector JJ0 and covariance matrixS0, which isx0 ~ Nk(/t0,T,0). In this problem, we need 

to estimate unknown parameters and state vector in the model. The dimension of state 

vector k is also unknown and thus needs to be determined for the optimal one. Figure 4.1 

shows the representation of a state space model. 
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Figure 4.1 Representation of state space model 

By estimating the parameter vector 6 = (H,F,R,Q,jU0) and the state vector x,, we can 

obtain some useful information of the biological system, such as the gene regulatory 

networks, which gives us the insight of biological networks. 

4.2 Maximum Likelihood Estimation with EM Algorithms 

Here we derive an EM algorithm [123, 124, and 125] to estimate the parameters of 

linear dynamic system. There is another previous work which uses Variational 

Algorithms for Approximate Bayesian Inference [126]. 

Let {YT,Xr} be the complete data, where Yr = {y],...,yT} is the observation data and 

XT = {xv...,xT} is the set of state variables (unobserved data). Then the joint likelihood 

for the complete data is given by 

P(Yr,XT;0) = P(xo)flP(x,\xl_])P(y,\xl) (4.3) 

The probability densitiesP(x0) , P(x, | *,_,) and P(y, | x,) are given by the Gaussian 

distributions Nk (//0, S0), Nk (Fx,_,, Q) and N, (Hxt, R), respectively. 
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Now, say Yt has a multivariate normal distribution, which means Yt ~ JV(//,, £,), and 

the dimension of Yt is n, then, the density function of a multivariate normal distribution is 

ffi)=
n W2, y ,1/2 eXP (27T) | I | 

r-l-{Y,-fityY.-\Yt-^ 
\ l J 

(4.4) 

It is very hard to maximize the likelihood of a multivariate normal distribution and the 

linear transformations of multivariate normal random variables are also normally 

distributed, so we are going to deal with the log of likelihood. 

P{Yv...JT) = Y\<t>{Yt) (4.5) 

( r 

\ i=\ J 
iogptf,...,r7.) = iog n ^ ) 

T 

=1 
(=1 L 

1 
•n 

I«iog2*-±iog|zj-±(i;-A),z,",a:-/',) 

r i o g 2 ; r - i £ [ l o g | S , | - ( } ; - / / , ) '^ (Y , - / / , ) ] 

(4.6) 

Back to our case, the log-likelihood of the/>(x0), P(x, | x,_,) and P{yl | x,) is given by 

following equations, separately [127, 128]: 

For P(x0), since x0 ~ Nk (//0, E0) then 

logP(x0) = --k\og27t-~log | S01 

~~Z\xo~ Mo) ^o (-"-o — Mo) 

(4.7) 

For P(x, | x,_,), we have w, = x, - Fx,_, and vi> ~ Nk (0, 0 , 

f T 
log n^i^-i) 

V '=i 

1 T 
= — k T l o g l x log | Q\ 

2 2 
-IJT^-Fx^^'^-Fx,.,) 

^ /=i 

(4.8) 
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Similarly, forP{yt \xt) we have v, = y, -Hxl andv, ~ N,(0, R), 

log fpUlx,) 
(=1 

1 T 
= — I T \ o g 2 x log I R I 

2 2 

~Z0' I-^ I)
,^ ,0',-^) 

^ ;=1 

(4.9) 

After we put them together, the joint log-likelihood [128] of the complete data becomes 

\ogP(Yr,XT;0) = \og P(x0)Y[P(Xl \x^)P(y, \x,) 

T 

= logP(x0) + £ l o g P ( x , I *,_,) + £ logP(.y, \x,) 

= - - l o g | Z 0 | - - ( x 0 - / / 0 ) ' E 0 " ' ( x 0 - / u 0 ) 

- ^ l o g | e | ~ i > , - F x , _ , ) ' 0 ' ( x , - F x , _ , ) 

-IrloglRl-^iy.-HxJ'R-'in-Hx,) 

(4.10) 

k + T(k + l) 
\og2n 

4.3 Expectation and Maximization Step 

An iteration of EM algorithm is composed of two steps, one is expectation step (E-

step) and the other one is maximization step (M-step). 

4.3.1 E-step 

InlogP(} /
7.,X7.;^) , we use following identities for substitution: 

Xl ^Xl~\ Xt\T ^Xl-MT {XI\T Xl) "*" {XI-\\T Xl-\) 

y, - Hx< =y<- Hx,\r + H(X,\T - x,) 

(4.11) 

(4.12) 

The following operations of trace of matrix are needed [127]: 

file:///og2x
file:///og2n
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Trace(A + B) = Trace(B + A) 

Trace(AB) = Trace(BA) if both A and B are square 

Trace(d' Bd) = d' Bd if d is vector 

(4.13) 

Substitute Eq. (4.11), (4.12) into Eq. (4.10) and apply above rules, we can rewrite 

\ogP{YT,XT;6) = 
1 1 f 

- —log|20 |- —7> S0-1((x0-x0|7.) + (x0|7.-//0))((x0-x0|./.) + (x0|7.-//(,))' 

\^g\Q\-l-Tr 

T , , 1 
— log J?—Tr 
2 ' ' 2 

cr'I 
i=\ 

R"Y, 
t=\ 

(xl]r - Fx,_w - (x,|y. - x,) + F(x,_w - x,_,)) 

x \XI\T — ^XI-)\T — \xi\r ~ xi) + r \xi-\\i ~ xi-i)) 

(>>,-//x, i7+//(x, |7.-x,)) 

(4.14) 

k + T(k + l) 
log27r 

To estimate the maximum likelihood of parameter #, the conditional expectation of 

the joint log-likelihood of the complete data q{6 \ 6,) can be calculated by 

q(0\0l) = E[\ogP(YT,Xr\0)\YT,0l] 

= - - l o g | Z01 --Trace [Z0-
](P0[r +(x0|7. -^0)(x0|7. -//0)')} 

-log\Q\--Trace{Q-\A-BF'-FB'+FCF')} 
(4.15) 

\og\R\--Trace{R-](D + E)}-k + T{k + l)\og27r 

where 6> is the parameter we estimated in z'-th iteration, and, for simplicity, 

A -2^{P,\r + x,\rx'i\r) (4.16) 
(=i 

5 = Z(^-.|y+%^W) (4.17) 
(=i 

^ — 2-1^- i-W +xi-WX t-W' 
(4.18) 

i=i 



D ^{(y, -Hx,lT)(y, - Hx^Y) (4.19) 

E = Yd{HPiyrH
r) (4.20) 

(=1 

The conventional Kalman smoothing estimators x,|y , P/]T and Pt ,_]|7. can be 

by using Kalman Filter and Kalman smoother algorithms [126, 128]. 

xAT=E{x,\Yr} (4.21) 

Pl{T=E{(x,-xlir)(xl-xnTy\Yr} (4.22) 

Pu.w=E{{Xl -x,r, )(*,_, - V,r/)'l ^ } (4-23) 

4.3.2 M-step 

In this step, (9, will be updated to 6M by taking the partial derivatives of 

6M =argmax<?(<9|6>). 

Estimate F: dq{~°^9') = 0 (4.24) 
dF 

Estimate H: ^ I f f ) = 0 (4.25) 
dH 

Estimate R: dq{-9^9') = 0 (4.26) 
8R 

Estimate Q : ^ ^ = 0 (4.27) 

Thus #,+, = {//(/ +1), F(z +1), R(i +1), Q{i +1), //0(/ +1)} will be obtained by 

(j_ \ 
A~] (4.28) 

F{i + \) = BC~i (4.29) 

H(i+\)= J X ^ v i M 
\1=\ J 
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R(i + l) = T-1(D + E) (4.30) 

Q(i + l) = T-\A-BC~]B') (4.31) 

4.4 Kalman Filter and Kalman Smoother 

The conventional Kalman smoothing estimators x(j/, Pl]Tand P, ,_w can be calculated 

by using Kalman Filter [129, 130] and Kalman smoother algorithms [131]. 

xlW=E{x,\Yr} (4.32) 

PlW=E{{x,-xlV,)(Xl-xl[ry\YT} (4.33) 

P,,,-w =E{(x, -x,|7. )(*,_, -x^ry\YT} (4.34) 

4.4.1 The Filter 

The process of Kalman filter can be summarized as following steps: 

1. Estimate x0|0 

2. Solve for JC,M and /^_, 

3. Estimate the best forecast of Ytlll 

4. Use jc,|,_,, i^_, and the information from the forecast error from step (3) to get 

x,„and/>, 

4.4.1.1 Initialization 

Assume that x, ~ N(JJ, S), we have x0|0 = /u and P0|0 = Z. 

AAA.2 Best guess (prediction) of jc;|,_, and î ,_, 

Let O, represents previously known information, then, 

V,=^ki^-.]=^[^-ii^-.]+^hi ( i )M] 
= Fx + 0 = Fx 

(4.35) 
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"I\I-\ ~ ^ \_\Xt\t-\ X(XX / |r- l Xi) \ 

= E\(F(x -x^J-w^Fix,^ -*,_,)-w,) ' l 
L J (4.36) 

= £ [ F ( X , _ , M -X,_,)(X,_,M -x^YF^-ElFix,^ -x,_,)wt'] 

-E[F(X,_^ -x^Yw^ + Etyw,'] 

Because xt and w, are independent, so 

0 = £[F(x,_1M -x,_,)w,'] = E[F(x,_}M -x,_,) V , ] (4.37) 

Then we have 

= FPI_MI_]F'+Q 
(4.38) 

4.4.1.3 Updating from x,„_,, J>,_, tox,,,,/*, 

With the assumption of a prior estimate x,^,, we now seek to use the measurement Yr 

to improve the prior estimate. We choose a linear blending of the noisy measurement and 

the prior estimate in accordance with the equation 

x, ( ,=x,M +K, (7,-/£,,,_,) (4.39) 

where x,s, is updated estimate and Kt is the blending factor (or Kalman gain) to be 

determined. The problem now is to find the particular blending factor Kt which yields an 

updated estimate that is optimal. The expression for the error covariance matrix 

associated with the updated estimate is 

JJk =£[(* , -x l k ) (x , -x l k ) ' ] (4.40) 

Next, we substitute Eq. (4.2) into Eq. (4.39) and then substitute the resulting expression 

for x,,, into Eq. (4.40). The result is 
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^H=£[(*/-*/|/X*,-*/|/)7'] 

= E [(x, - x,|M - K, (Hx, + v, - /#,„_, ))(x, - x,M - K, (Hx, + v, - /#,„_,))' ] 

= £ ((x, -x„,_,)-tf,(Hx, + v, -/#,„_,))((x, -*,„_,)-tf,(//x, + v, -/#,„_,))' 

= E ((x, - x , M ) - * , # ( * , - x , M ) - £ , v , )((x, -x, , , . , )- K,H(x, -x/M)-K,v,) 

= E[(X, - X , M X * / - X , M ) 7 ' ] - £ [ ( X , -xlM)(x, -xlMjrHrKl
1 ] 

-E[(x, -X,],_])V,TK,T]-E[K,H(X, -xfk_.X*, -x ,M ) 7 ' ] 

+£[*, / / (* , -x,M)(x, -x / | ,_,)y7/7^/'] + JE[^//(x, -xlM)v,TK,r] 

-E[KMx,-x^T] + E[KMxl-ilMYHTKl
r] + E[Klv,vl

TKl
r] 

After combination, the result will be 

P„=P^ -P^H'K: -K,HP„_X +K,HPlV_iH
TK,1 + K,RK,T 

= PAl_} (I - H'K,')- *,///>,_, (I - HrK,T) + K,RK,T 

= (I-KlH)Plll_](I-H
lK,') + K,RK,r 

= (I-K,H)PlM(I-KlH)r + KlRKl
r 

(4.41) 

(4.42) 

Returning to the optimization problem, we hope to find the particular blending factor 

K, that minimizes the individual terms along the major diagonal of P:]l, because these 

terms represent the estimation error variances for the elements of the state vector being 

estimated. There are a lot of ways to optimize it. We will use a straightforward 

differential calculus approach to do so. Here, two matrix differential formulas are needed 

[128]: 

d\Trace(AE)\ ... 
— = B (AB must be square) 

dA 

d\Trace{ACA')] 

dA 
= 2AC (C must be symmetric) 

(4.43) 

(4.44) 

Now rewrite Eq. (4.42) in the following form, 
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P„ = P^-P^H'K,7 -K^P^+KXHP^H'+RW,' (4.45) 

We wish to minimize the trace of Pl{l because it is the sum of the mean-square errors 

in the estimates of all the elements of the state vector. Now we differentiate the trace of 

Pl[t with respect to Kt, note that the trace of P^^H1 Kr' is equal to the trace of its 

transpose A^T/J^,,,. The result is 

d(Trace P.) .,, ... 
*'=-2(HPlVJ +2Kl(HPlll_]H' + R) (4.46) 

Now we solve for the optimal gain by setting the derivative equal to zero and the gain is 

K,=Pl]f_,HT{HPl]f_,HT+Ry (4.47) 

This particular K/ which minimizes the mean-square estimation error, is named the 

Kalman gain. Once we know the Kalman gain, the covariance matrix with the optimal 

estimate now can be computed. Substituting Eq. (4.47) into Eq. (4.45), we have 

P^P^-P^H'iHP^H r + Ry]HPl]l_i (4.48) 

or 

P„ = P^d - K,H) (4.49) 

This concludes the filtering process. Now we continue to derive the Kalman smoother. 

4.4.2 The Smoother 

The smoothing problem is where we hope to form the optimal estimate at some point 

back in the past, relative to the current measurement. We smoothed by forming an 

inference about the value of x, based on the full set of data, denoted by 

x / M=£; [x , !<!>,_,] (4.50) 
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Pl]r = E[(x, -xl]T)(Xl -xl]Ty] (4.51) 

Recall the equations Eq. (4.35), Eq. (4.38), Eq. (4.39), Eq. (4.40) and Eq. (4.47) and 

simplify them before we continue: 

P^^FP^F'+Q (4.38) 

x, |/=V.+^(^-^V.) <4-39) 

/? ,=£[(*,-x< kX*,-*, , ) ' ] (4.40) 

K,=PIMHT(HPIMH:r+Ry] (4.47) 

4.4.2.1 Updating from x,(/ to x,|7 

Using the linear projection techniques, we can get a new estimate of x, 

^Vxt I xi+\ J — x/i/ + \xi+] xi+n); 

£[(x,+1-x,+l |,)(x,+,-x,+1|,)'] 
(4.48) 

where 

^ [ ( ^ - ^ i f K ^ i - ^ i i , ) ' ] 

= E [(x, - x,„ )(Fx, + wl+1 - Fx„,)'] 

= £[(x,-x„ 

= E\_(X, -x,, 

= £[ (x , -x , 

= £ [ (x , -x , 

= P F' 

^ F ' + w'^-x'^F')] 

(4.49) 

•*H-*7 I •"•( + 1 J — -"•/!/ + \Xl+] Xl+\\l )"i\r *l+\\i (4.50) 

Let J, = P^F'Pj^ , then we can write 
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E[x, | x,+1 ] = x„, + J, (x,+l - x,+l|,) (4.51) 

Thus, 

E[x, | <D7.] = E[xt]l+ J,(x,+l - x,+1|,) | O r ] 

= xlll+Jl(E[xl+]\G>T]-xl+w) 
(4.52) 

Now we have 

Xi\T = Xi\i + *A (X /+l |7 ' ~~ XI+\\I ) ( 4 . J J J 

4.4.2.2 Updating from i>, to J>7. 

We can rewrite Eq. (4.53) as following 

Xl ~ XI\T ~ Xi~ XI\I ~ JtXi+\\T + ^ IXI+\\I V*--*^) 

Xi ~Xt\T ^ ^ IXI + \\T = Xt ~ XI\I ~^^IXI+\\I C+.JJ) 

Now multiply both sides by their respective transposes, foil, and take expectations. 

LHS = (x, -x, | r + J,x,+1|7.)(x, -x,|7. + J,xl+W)' (4.56) 

RHS = (x, - xl|# + J,x,+I|, )(x, - x,„ + J,x,+1|,)' (4.57) 

The expectation of left side of Eq. (4.55) is 

E[LHS] = E[(x, -X,W + J,xl+]]r)(x, -x,|7. +J,x,+Wy~\ 

= E[(x, -X ( | 7 . ) (X, - X , | 7 . ) ' ] + £ [ ( X , -xl]r)x'l+]lTJ;~\ 

+hyj txl+^T{xt — x,|7) J + ii|^j,x,+||7.xr+1|7 J, J 

= /^r + JtE [x,+]|7.x,+I|7. J J, 

(4.58) 

E[RHS] = E[(x, -X,„ + J,x,+I|,)(x, -x,„ + J,x,+1|,)'_ 

= £ [(x, - x,„ )(x, - x,„)'] + £ [(x, - x(|, )x,'+l|, J,'] 

Because £[Z//S] = £[£7/5], so we have 

(4.59) 
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PIW = P«, +J, {^[^X;+V]-E[X,+W^T]}J; (4.60) 

In order to simplify the Eq. (4.60), we rewrite above bracketed term as 

•^ [_x /+i| /x;+ij / \~^ |_X(+i|7,x<+i|7' J 

= \ Lxf+ix/+i\~ \_xt+wxt+w\)~\ VXI+\XI+\\~ |_x/+i|(x/+ii>J] 

Notice that 

E [x,+nrx'+1|r ] = E [X,+W
X'M ] = E [x,+,x,'+„7 ] ( 4 - 6 2 ) 

Now, substituting Eq. (4.62) into Eq. (4.61) and combine them, 

E Lxf+il* x(+i|/ \~ E |_X(+i|7x(+iir J 

= E[(xl+l -x,+,r/.)(x,+1 -xl+w)'~\-E[(xl+i -x,+1|,)(x,+l -x,+1|,)'] (4.63) 

= P -P 
1 i+\\r 1 t+\\i 

Substituting Eq. (4.63) into Eq. (4.60), we have 

P,]r=P,ll+J,(Pl+w~Pl+]ll)j; (4.64) 

At the end of filtering process, we have calculated and stored xl{l, x,+l|,, Pt[l and Pl+ni. We 

use J, = P^F'P~+]]I to generate a sequence{J,} . Then, we use 

x,l? = *,„ + J, (x,+i\r ~ x,+n,) f o r ' = T -1 (4.65) 

to calculate 

X7-l|7 = Xr-l|7'-l """ JAX717' _ X717'-l) (4.DO) 

Iteratively using this equation, we can continue on and generate sequence |x,|7} 
=1 
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4.4.3 Identification of Dimension of State Variable 

In order to use EM algorithms to estimate the parameters, we need to know the 

dimension of state variables x. BIC (Bayesian Information Criterion) [114] is introduced 

to determine an optimal dimension of the state vector k 

BICik) = j3\ogT-2logL(YT \ 6k) (4.67) 

where log L(YT | 0k) is the maximum log-likelihood with the parameter vector 0k which is 

estimated in EM algorithm. The number of parameters to be estimated is denoted by (3 

and T is the number of time points in our gene dataset. The dimension of the state vectors 

which has the minimum BIC is determined as the optimal one. In our work, we mainly 

focused on inferring the gene regulatory networks, which means that we only care about 

relationships between observation variables. So, for simplicity, we set the dimensionality 

of state variable as a fixed value (4 or 5). 

4.4.4 Problem of Identifiablity 

There is a substantial problem for system identification by using linear dynamic 

system (state space model). It will lack the identifiablity if there is not any constraint for 

the parameter space [125]. Lacking the identifiablity means that there exists infinite 

number of parameters yielding the same likelihood. 

Let <D be an arbitrary non-singular (k x k) matrix. The state function Eq. (4.1) and 

observation function Eq. (4.2) can be replaced by following equations 

Ox, = OFO-'Ox,., + Ow, (4.68) 

y , =H®-]<S>x, + v, (4.69) 
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If we let x' = ®x,, F' = OFO"1, H' = //O"1 and w' = <Dw( (or we can write as 

Q = Og®'), the above equations are equivalent under arbitrary transformations, that is, 

x\ = F'x]_x + W, (4.70) 

y,=H'x; + v, (4.71) 

To avoid the problem of identifiablity, we need add some constraints to parameter 

space of our model, Q need to be an identity matrix Q = Ik and H'R lH = A need to be a 

diagonal matrix. 

4.5 Derivation of Gene Interaction Matrix 

In order to get the connectivity matrix of genes based on gene expression data, we 

need to get the relationship between y, andyf_t, recall Eq. (4.1) and (4.2), 

x, =Fx,_l+wl (4.1) 

y,=Hx,+v, (4.2) 

According to singular value decomposition, we can decompose the observation matrix 

H into products of matrices H = LfZV', where U and V are orthogonal, and 

2 = diag(S],...,Sr) , r = min(/,A:), with£, > S2 >... > Sr > 0. From this decomposition, we 

have 

x,=H+y,-H+v, (4.72) 

where H+ = VL+Ul . The H+y, is a mapping between R' and Rk. Thus, we have 

y, = HFH+y,_t - HFH\_, + Hw, + v, (4.73) 

Let K = HFH+ and £ = Hw, + v, - HFH+v,^ , then we have 

y^Ky^+4, . (4.74) 
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If the condition number is small, we can multiply transpose matrix of Hto both sides 

of Eq. (4.2), which will become 

HTy, = H'Hx, + HTvt (4.75) 

Now the H1 H is a / x / matrix and it has normal inverse matrix, then we can rewrite 

Eq. (4.75) as following 

x, = (HrH)] H'y, - (H'Hy1 HTv, (4.76) 

Substitute Eq. (4.76) into Eq. (4.1), we have 

y, = HF(HrHy] HTy,_x - H(H7 / / )" ' H' v,_, + Hw, + v, (4.77) 

Let K = HF(H'H)-] HT and £ = Hw, + v, - H(HTH)-] #rv,_i • t h e n w e a l s o h a v e Ecl-

(4.74)^=J^,_ l+# / 

If the condition number is too large, we need to decompose H using SVD (singular 

value decomposition) or other methods to solve the pseudo-inverse matrix H . The matrix 

K represents the gene-gene interactions. We can reconstruct gene networks by 

estimating the matrix K. The parameters of state space model (linear dynamical system) 

can be estimated by the Kalman filter and the EM algorithms (For details, please check 

Chapter 4.2 and Chapter 4.3). 
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CHAPTER V 

GRN INFERENCE FROM PBN AND DBN 

Both synthetic and real biological data sets are used to infer gene regulatory networks 

from time series gene expression data based on DBN approach. For synthetic data, we 

use the DREAM project [132] in silico data, which is provided by the Laboratory of 

Intelligent Systems of the Swiss Federal Institute of Technology in Lausanne. For real 

biological data, there are three different data sets. First one is Drosophila muscle 

development gene regulatory networks from Drosophila Interaction Database [133]. 

Second one is Yeast Saccharomyces cerevisiae from Spellman [134]. The last one is fish 

ovary data, which is provided by the Environmental Laboratory of U.S. Army Engineer 

Research and Development Center. 

5.1 DREAM Synthetic Data 

Due to the limitations of real biological data, the simulated data from in silico gene 

networks is becoming the only possibility to systematically evaluate the performances 

from different genetic networks inferring algorithms. Here, in silico means "computer 

generated". In simulated data, all aspects of the networks are under full control and 

different types of data and levels of noise are allowed in such in silico networks, which 

are composed of a network topology that determines the structure and a model for each of 

the interactions among the genes. 

DREAM is a Dialogue for Reverse Engineering Assessments and Methods. The main 

objective is to catalyze the interaction between experiment and theory in the area of 

cellular network inference. In the given synthetic datasets, there are three in silico data 

sets corresponding to gene networks with 10, 50, and 100 genes. Each data set consists of 
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five gold standard networks, which are sub-networks with a topology of connections 

subtracted from the E.Coli and Yeast gene regulatory networks. The rationale is that in 

this way it will be possible to assess how consistently a method predicts the topology in 

five independent networks of the same type and size. 

\ strain Gl G2 G3 G4 G5 G6 G7 G8 G9 G10 

iwt 0.529871 0.517426 0.818152 0.077024 0.514933 0.84938 0.446296 0.466263 0.862243 0.892563 

|G1(+/-} 0.269535 0.462516 0.87452 0 0.538218 0.919624 0.494488 0.467534 0.917328 0.872384 

:G2j+/-} 0.48037 0.197521 0.881663 0 0.421724 0.864374 0.436379 0.478189 0.882061 0.883246 

|G3(+/-} 0.558407 0.453816 0.418655 0.029003 0.592439 0.920981 0.485018 0.433777 0.928191 0.87003 

JG4(+/-} 0.460412 0.469809 0.788792 0 0.539214 0.792342 0.405181 0.449303 0.917S88 0.893721 

G5(+/-j 0.542123 0.433699 0.8523 0.037269 0.313838 0.S54951 0.428159 0.459481 0.892322 0.854349 

lG6f+/-} 0.503332 0.45974 0.925796 0.107999 0.472891 0.399046 0.46591 0.481628 0.757479 0.854172 

|G7(+/-) 0.489092 0.498641 0.901486 0 0.568886 0.869988 0.320065 0.463536 0.90247 0.821258 

!G8(+/-J 0.474718 0.491761 O.904017 0.08554 0.482761 0.860355 0.490878 0.20447 0.908446 0.858928 

|G9(+/-) 0.510933 0.525838 0.886594 0.015735 0.544708 0.915439 0.45121 0.442537 0.4477 0.902918 

;G10(+/-} 0.520382 0.405724 0.867028 0.027686 0.576888 0.941134 0.44844 0.475925 0.914623 0.427202 

Figure 5.1 Heterozygous knock-down data from yeast network 

For every network, three experiments are generated from both E.Coli and Yeast gene 

regulatory networks: Heterozygous knock-down data, Null-mutants data and time series 

trajectories data. Heterozygous knock-down data contains the steady state levels for the 

wild-type and the heterozygous knock-down (a gene is reduced by half) strains for each 

gene; Null-mutants contains the steady state levels for the wild-type and the null-mutant 

(a gene is set to zero) strains; Time series trajectories data contains time courses of the 

network recovering from several external perturbations. The three kinds of data from one 

of the Yeast sub-networks (10 genes) are shown in Figures 5.1, 5.2 and 5.3. 
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strain 

wt 

Gl(-/-) 

G2(-/-) 

G3(-/-) 

G4(-/-) 

G5|-/-) 

G6(-/-) 

G7(-/-) 

G8(-/-) 

G9(-/-) 

G10(-/-) 

Gl 

0.529871 

0.010053 

0.510487 

0.794319 

0.533501 

0.54996 

0.460369 

0.427145 

0.513985 

0.533942 

0.522307 

G2 

0.517426 

0.815176 

0.082243 

0.533865 

0.476569 

0.487726 

0.501849 

0.492922 

0,54441 

0.537358 

0.487185 

G3 

0.818152 

0.845015 

0.942792 

0 

0.85278 

0.945599 

0.917398 

0.884602 

0.859676 

0.896238 

0.974815 

G4 

0.077024 

0.376999 

0.092006 

0 

0 

0 

0.239301 

0.002402 

0 

0.049496 

0.013396 

G5 

0.514933 

0.248059 

0.501758 

0.714275 

0.577055 

0 

0.522597 

0.520915 

0.554409 

0.579922 

0.526814 

G6 

0.84938 

0.859406 

0.897611 

0.919026 

0.900193 

0.858854 

0 

0.876362 

0.879938 

0.945879 

0.868488 

G7 

0.446296 

0.474825 

0.426991 

0.462578 

0.509145 

0.849638 

0,545508 

0 

0.443015 

0.417966 

0.81827 

GS 

0.466263 

0.495988 

0.461354 

0.507089 

0.441179 

0.458988 

0.434083 

0.850223 

0.031132 

0.460959 

0.420615 

G9 

0.862243 

0.641061 

0.915775 

0.907252 

0.86297 

0.906015 

0.751722 

0.832538 

0.903685 

0 

0.851067 

G10 

0.892563 

0.875929 

0.878408 

0.807122 

0.901971 

0.9125 

0.946483 

0.917185 

0.888021 

0.919536 

0.04081 

Figure 5.2 Null-mutant knock-out data from yeast network 
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Gl 

0.S2724S 

0.654252 

0.544903 

0.587448 

0.57S262 

0.538142 

0.566914 

0.591807 

0.497869 

0.490107 

0.5O1994 

0,509833 

0.5S3105 

0.412013 

0.534837 

0.503571 

0.482243 

0.472727 

0.467733 

0.453636 

0.567812 

G2 

0.725743 

0.647066 

0.599011 

O.58O601 

0.544896 

0.550524 

0.530258 

0.541304 

0.520274 

0.455365 

0.567246 

0,522452 

0.404554 

0.434665 

0.518527 

0.452819 

0.49144 

0.486258 

0,514798 

0.501861 

0.505348 

G3 

0.389413 

O.50S89 

0.555778 

0.556083 

0.687272 

0.611639 

0.72554 

0.843607 

0.861386 

0.812616 

0.795296 

0.796389 

0.825172 

0.808568 

0.860758 

0.901765 

0.960037 

0.888965 

0.841251 

0.773469 

0.882146 

G4 

0.006674 

0.019373 

0.062856 

0.003298 

0.009736 

0.015817 

0.087896 

0.008827 

0 

0 

0 

0 

0.037173 

0 

0.041141 

0.082637 

0.024032 

0 

0.081116 

0.019636 

0 

G5 

0.156499 

0.408929 

0.322246 

0.31155 

0.469409 

0.492165 

0.492601 

0.497733 

0.541297 

0.612829 

0,583852 

0.477467 

0.501665 

0.433559 

0,569422 

0.512369 

0.503758 

0.491788 

0.479153 

0.476226 

0.504835 

G6 

0.235751 

0.462383 

0,576507 

0.708266 

0.724303 

0.851393 

0.881654 

0.S8429 

0.869937 

0.851405 

0.865882 

0.880751 

0.855132 

0.961338 

0.85369 

0.829728 

0.98344 

0.839797 

0.917861 

0.865831 

0.903033 

G7 

0.673909 

0,58482 

0.566352 

0.595944 

0.572994 

0.580864 

0.513531 

0.581799 

0.50844 

0.480543 

0.530948 

0.514849 

0.511895 

0.494141 

0.456817 

0.552962 

0.453367 

0.43665 

0.445116 

0.552368 

0.488191 

G8 

0.330327 

0.361024 

0.379408 

0.387101 

0.387153 

0.300948 

0.433371 

0.471869 

0.469636 

0.449487 

0.397863 

0.358707 

0.492986 

0.408143 

0.414821 

0.35326 

0.475796 

0.394543 

0.528315 

0.470282 

0.444352 

G9 

0.740032 

0.796993 

0.688547 

0.77206 

0.856956 

0.783365 

0.846601 

0.833021 

0.899533 

0.S6862S 

0.85477 

0.91225S 

0.898491 

0.863247 

0.762971 

0.872778 

0.941885 

0.832124 

0.817893 

0.78797 

1 

G10 

0.703382 

0.71666 

0.769349 

0.8245 

0.823019 

0.803734 

0.811533 

0.773539 

0.8S1152 

0.79714S 

0.817933 

0.851607 

0.882451 

0.851573 

0.31529 

0.900087 

0.868355 

0.930392 

0.8S3831 

0.893402 

0.894393 

Figure 5.3 Time series trajectories data from one of the perturbations in yeast network 
with 10 genes and 21 time points 

The approaches given in Chapter IV are used to infer GRNs from the synthetic data 

sets provided by Marbach, D [135]. For each gene from the given dataset, we take the 

gene expression value of wild-type as reference and calculate the relative change ratios of 
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expression values compared to reference. If the change ratio is more than 30%, we select 

this gene as potential key gene and assume it wills play critical roles in our network. If 

the change ratio is less than 5%, it will be considered as noise and ignored from our 

potential regulatory genes list. Then DBN is used to infer GRN based on above 

information. 

In Figure 5.4, the inferred gene regulatory network is shown in size of 10 (E.Coli). We 

can clearly see that there are 7 correct matching edges represented in green lines, 

compared to true network. The predicted gene regulatory network in size of 50 (Yeast) is 

shown in Figure 5.5 and the matching network is shown in Figure 5.6. There are 52 

correct edges inferred out of total 77 edges in true network. 

(a) (b) 

Figure 5.4 Gene regulatory networks (Size 10) from E.Coli. 
(a) Predicted network (b) True network 
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Figure 5.5 Inferred gene regulatory networks from Yeast (size 50) 
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Figure 5.6 Matching network of prediction with true network (size 50) 

Here, we use the following criterions provided by DREAM [132] to evaluate our 

results. AUROC: Area under the receiver operating characteristic (ROC) curve. AUPR: 

Area under the precision-recall curve. Precision is a measure of fidelity whereas recall is 

a measure of completeness. Overall P-value: The geometric mean of the n individual p-

values, computed as (p\ * p2 *... pri) A (1 / n) . Overall AUROC P-value: The geometric 

mean of the five AUROC p-values (Ecolil, Ecoli2, Yeastl, Yeast2, Yeast3). Overall 
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AUPR P-value: The geometric mean of the five AUPR p-values (Ecolil, Ecoli2, Yeastl, 

Yeast2, Yeast3). Larger scores indicate greater statistical significance of the prediction. 

Table 5.1 AUC, AUROC, PAUC and PAUOC values for E.Colil and Yeastl 

Size 

AUPR 

AUROC 

PAUPR 

PAUROC 

Overall AUPR 

Overall AUROC 

E.Coli 10 

5.43e-001 

7.94e-001 

1.34e-004 

5.47e-004 

Yeast 10 

7.71e-001 

9.44e-001 

2.09e-006 

1.29e-006 

1.085e-04 

2.103e-04 

E.Coli 50 

6.71e-001 

8.62e-001 

8.57e-055 

3.19e-020 

Yeast 50 

4.86e-001 

8.35e-001 

3.91e-039 

4.64e-018 

2.539e-46 

8.192e-18 

E.Coli 100 

1.45e-002 

5.21e-001 

2.27e-001 

2.02e-001 

Yeast 100 

1.55e-002 

4.61e-001 

8.91e-001 

9.60e-001 

4.833e-03 

2.128e-02 

In Table 5.1, our results from different size of E.Coli and Yeast data sets are evaluated 

by AUPR, AUPR p-values, AUROC and AUROC P-value (PAURP). 

5.2 Drosophila Muscle Development Network Data 

In this part, we use a real biological time series data set (Drosophila genes network 

from Drosophila Interaction Database [133]) to compare the PBN and DBN for modeling 

gene regulatory networks [136, 137]. The raw data is preprocessed in the same way as 

given in [138]. There are 4028 gene samples with 74 time points available in Drosophila 

melanogaster genes network through the four stages of the life cycle: embryonic, larval, 

pupal and adulthood [136]. An example network of drosophila muscle development is 

given in [138], in which muscle-specific protein 300 (Msp-300) is treated as hub gene in 

their inferred network. We use a different subset of the genes which participate in the 

development of muscle [139]. Particularly, Mlp84B and other genes which contribute to 

larval somatic muscle development are used to infer gene regulatory networks. 

The D. melanogaster gene Muscle LIM protein at 84B (abbreviated as Mlp84B) has 
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also been known in FlyBase as Lim3. It encodes a product with putative protein binding 

involved in myogenesis which is a component of the cytoplasm. It is expressed in the 

embryo (larval somatic muscle, larval visceral muscle, muscle attachment site, 

pharyngeal muscle and two other listed tissues). Table 5.2 shows the scores of Mlp84B 

interacting with other related genes [133]. 

Table 5.2 The interactions and scores of Mlp84B with other genes 

High Confidence 

CGI 0722 

CG13501 

CGI 7440 

CG7046 

CG7447 

com is (Ssii) 

Scores 

0.5642 

0.9005 

0.5811 

0.6626 

0.5411 

0.7917 

Other interactions 

Cdk7 

Impel 

Pfk 

TfllB 

Stck 

tup 

Scores 

0.3569 

0.1108 

0.3155 

0.2436 

0.2523 

0.1094 

Here, we first select 12 genes to infer gene regulatory networks using PBN and DBN. 

The reconstructed networks are shown in Figure 5.7(a) and Figure 5.7(b), respectively. 

There exist 18 interactions totally among this small larval somatic muscle network [133]. 

10 and 12 interactions in the networks have been successful identified. Most interactions 

between Mlp84B and genes with high confidence have been referred. 
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(a). (b). 

Figure 5.7 Drosophila larval somatic muscle development network, (a) The genetic 
network inferred by PBN. (b) The genetic network inferred by DBN 

More comparison results of PBN(n, e) and DBN(n, e) are given in Table 3.4, where n 

is the number of nodes (genes) in network and e the number of edges (interactions) 

among the nodes. PBN(30,60) means that there are 30 nodes and 60 edges in that PBN 

simulation. We use the benchmark measures recall and precision to evaluate the 

performances of inference algorithms for PBN and DBN. Here, recall is defined as 

/if <M\ an<^ precision as /^ . zr v w n e r e Ce is the number of correct edges, 

Me is the total number of missed edges (miss errors), and Fe is the number of false 

alarm errors. Miss error is defined as the connection between genes that exists in real 

networks, but the inference algorithms miss or make wrong orientations. False alarm 

error is the connection that the inference algorithms create but does not exist in real 

networks. The calculation of recall, precision and selection of subset genes in network 

are based on the existing gene interactions and network diagram in Drosophila genes 

network [133]. 
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If more genes are selected for inferring GRN, the network contains more edges and it 

is challenging to identify in the limited number of interactions among genes. Thus, both 

miss errors and false alarm errors may increase, which results in lower inferring 

accuracy, if a larger subset of genes is selected for constructing GRN. For each 

combination of genes/edges in genes network, we run the same case for five times and 

get the average values of correct edges, miss errors and false alarm errors, respectively. 

The accuracy of recall and precision are also given. The results are shown in Table 5.3. 

Table 5.3 Comparison of PBN and DBN methods using different sample networks 
Miss errors Me False alarm errors Fe Correct edges Ce Accuracy (%) (R, P) Time(s) T 

min max avg min max avg min max avg recall precision avg 

PBN(12,18) 2 9 6.4 0 4 2.4 6 9 7.8 54.9 76.5 13.2 

PBN(20,35) 12 22 16.8 3 6 4.8 11 15 13.6 44.7 73.9 19.7 

PBN(30,60) 33 4 1 36 .0 7 10 8.0 17 20 18.4 33.8 69.6 27.9 

PBN(40,80) 48 63 55 .4 4 6 5.6 18 22 19.6 26 .1 77.8 39.2 

DBN(12,18) 3 8 5.8 1 3 2.2 9 11 10.4 64.2 82.5 20 .1 

DBIM(20,35) 13 17 15.2 4 7 5.4 14 18 16.8 52 .5 75.7 36.0 

DBN(30,60) 30 39 33.6 11 15 12.6 24 30 20.2 37.5 61.6 50.6 

DBN(40,80) 46 57 51.2 5 9 7.4 28 34 22 .8 30.8 75.5 87.6 

The results show that PBN method can reduce the computational complexity, false 

alarm errors significantly, while DBN method can give better accuracy of deriving 

genetic network interactions, but DBN is more time-consuming than PBN. 

5.3 Yeast Cell Cycle Data 

The gene microarray data we used is from Spellman et al. [134]. The Spellman 

experiment was chosen because it provides a comprehensive series of gene expression 

datasets for yeast cell cycle. Four time series expression datasets were generated using 

four different cell synchronization methods: Cdcl5, Cdc28, alpha-factor and elutriation 
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with 24, 17, 18 and 14 time points respectively (Table 5.4). The alpha-factor dataset 

contained more time points than Cdc28 and Elutriation datasets with fewer missing 

values than Cdcl5. Therefore, we choose to use time series expression data from alpha-

factor method to infer the yeast cell cycle gene regulatory network. In our previous work 

[139], probabilistic Boolean network and dynamic Bayesian network have been 

compared using the Drosophila melanogaster finding dynamic Bayesian network 

analysis outperformed probabilistic Boolean network analysis. Here, we focused on 

Bayesian network and dynamic Bayesian network analysis. Both Zou's time-lags DBN 

implementation [37] and Chen's Bayesian network R package [140] were carried out to 

infer gene regulatory networks, and then the results inferred by the two different methods 

were compared. 

Table 5.4 Gene expression data from four methods in yeast cell cycle 

Method 

Cdcl5 

Cdc28 

Alpha 

Elutriation 

Sample Frequency 

Every 20 min for 1 hr, every 
10 rnin for 3 hr, every 20 mm 

for the final hr 

Every 10 mm 

Every 7 mm 

Every 30 min 

Cell Cycle 
length 

112m 

85m 

64m 

-

Time 
points 

24 

17 

18 

14 

Start 

10m 

0m 

0m 

0m 

End 

290m 

160m 

119m 

390m 

From previously published work, some transcription factors have been identified 

which play very important roles in regulating a small set of yeast genes with cell-cycle 

dependent expression. These genes include Mbpl, Swi4, Swi6, Mcml, Fkhl, Fkh2, Nddl, 

etc [141]. Among them, Nddl and Mcml are essential for yeast cell survival. There were 

a total of 2467 genes in the alpha-factor experiment. For simplicity, we choose 36 genes 

related to these transcriptional factors in inferring the gene regulatory network, a few of 
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which are described in Table 5.5. 

Table 5.5 Descriptions of transcription factors and genes 
related to the yeast cell cycle process 

ORF 
YIL231C 
YNL068C 

YAL040C 
YGR108W 
YGR109C 
YMR043W 
YLR182W 

YBRI60W 

YOR372C 

YDL056W 
YDR054C 
YDRI46C 

YERlllC 

Gene Name 
FKHl 

FKH2 
CLN3 

CLB1 
CLB6 

MCMl 
SW16 

CDC28 
Nddl 

MBPl 

CDC34 
SWI5 
SW14 

Description 
negatively regulates transcriptional elongation 

substrate of the Cdc28p/Clb5p kinase 
Cyclin,Gl /S-specific 
Cyclm,G2/M-specific 

Cyclin, B-type 
Transcription factor of the M A D S box family 
Transcription factor, subunit of SBF and M B F 

factors 
Cyclm-dependent protein kinase 

activates the expression of a set of late-S-phase-
specific genes 

Transcription factor, subunit of the M B F factor 
E2 ubiquitin-Conjugating enzyme 

Transcription factor 
Transcription factor, subunit of SBF factor 

Using the DBN method, SWI4 is obviously a hub gene during the process of yeast cell 

cycle consistent with known interactions. For example, SWI4 has been shown to regulate 

MBPl, and NDD1 is believed to regulate SWI4 according to [141, 142]. Some 

interactions found in the inferred network have not been previously described in the 

literature or existing pathway databases. For example, the potential pairing of MCMl 

with MFA1 has not been shown before this work. We compared both inferring methods 

with known gene relationships found in BioGrid interaction database [143], KEGG 

database [144] and other literature [141, 142]. The DBN and BN inferred gene regulatory 

networks are shown in Figures 5.8 and Figure 5.9. 
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Figure 5.8 Yeast cell cycle gene regulatory network inferred by DBN 

The specificity and sensitivity of each analysis are shown in Table 5.6. It can be seen 

from the table that the specificity of both methods increases when known transcriptional 

factors are incorporated, as does the sensitivity. The time delayed dynamic Bayesian 

network method has higher specificity and sensitivity compared to Bayesian network 

method. 

Table 5.6 Comparison of specificity and sensitivity of two inferring methods 

Correct edges 
Inferred, edges 

Specificity 
Sensitivity 

time delayed DBN 
Gene 

expression 
data only 

6 
29 

21% 
16% 

Gene expression 
data with TF 
binding site 

14 
33 

42% 
27% 

Bayesian R package 
Gene 

expression 
data only 

4 
24 

17% 
10% 

Gene expression 
data with TF 
binding site 

9 
31 

29% 
22% 
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Figure 5.9 Yeast cell cycle gene regulatory network inferred by PBN 

5.4 Fish Ovary Data 

Sex hormone metabolism in fish ovaries provides a highly complex system within 

which fundamental properties of control and organization of networks can be investigated. 

The hypothalamus-pituitary-gonad axis in which sex hormone metabolism occurs is 

highly conserved from humans to fish. The fungicide ketoconazole (KTC) inhibits 

metabolism converting cholesterol into sex hormones in isolated ovary tissues but does 

not affect hormone levels in fish where the hypothalamus and pituitary exert global 

control over local ovary metabolic inhibition. 
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Figure 5.10 Gene regulatory network inferred from fish ovary data 

A fish ovary gene regulatory network has been inferred from genes which are affected 

over time by ketoconazole in isolated ovary slices using a Dynamic Bayesian Network 

algorithm. Here, the ketoconazole data that we used is in KTC_TNT_0-150m condition, 

which includes 319 genes and 11 time points (first time point is control). The inferred 

GRN includes 329 edges and the running time is 84 hours and 41 minutes (DELL 

Precision workstation T3400 with 4 CPUs and 4GB memory). Figure 5.10 shows the 

reconstructed fish ovary GRN, which is visualized by Cytoscape. 

The network is scale free with genes for transcription factors, small molecule 

metabolism, ion channels and receptors as hubs. The recovered GRN suggests potential 

feedback loops and transcription factor interactions with the critical genes StAR 

(transports cholesterol into mitochondria), P450scc (lrst metabolic step), and cypl9a 
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(final conversion to estradiol) which may play roles in dynamic regulation of steroid 

metabolism. One important hub in the GRN is Low Density Lipoprotein Receptor which 

transports cholesterol/proteins into cells (Figure 5.11). Several modules or subcircuits in 

other gene regulatory networks have been identified that encode specific logic commands 

controlling gene expression, cell behavior and development suggesting similar motifs. 

Figure 5.11 Subnetwork involving several key steroidogenesis genes. 

In Figure 5.11, the color in gold represents transcription factor, yellow means receptor 

or channel, triangle means steroidogenesis gene and grey is gadd45b. Solid lines were 

inferred from expression data. Dashed lines are known interactions added post hoc. The 

direction of arrows indicates direction of influence. The above information is provided by 

Environmental Laboratory at the US Army Engineer Research and Development Center 

(ERDC). 
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CHAPTER VI 

GRN INFERENCE FROM OUR NEW MODEL 

Now we have already built the model, before applying any new model to inferring 

gene regulatory networks from real biological microarray data, we need to evaluate the 

performance of the model using synthetic data, or so called "in silico'" data. Two types of 

synthetic data are used to test our model: one is generated by GeneSim, the other one is 

simulated by GeneNetWeaver. We will discuss them respectively. 

6.1 Model Validation 

Advances in high-throughput technologies, such as DNA microarray, have spurred the 

development of a lot of computational methods for modeling gene regulatory networks. 

However, the strengths, weaknesses and relative performance of different methods 

remain poorly understood [145]. Since most of gene regulatory networks are kept 

unknown or incomplete, it causes an inherent difficulty in evaluating the performance of 

gene network inference methods, because it is nearly impossible to systematically 

validate the predictions of unknown interactions in vivo, Figure 6.1A shows the model 

validation procedure for real biological data sets. Consequently, synthetic data from in 

silico (computer generated) gene networks often becomes the only possibility for 

systematic performance assessment. Figure 6.IB shows that performance evaluations 

become possible for in silico benchmark, because in simulation the structures of gene 

regulatory networks are known and fully controlled. This allows characterization of GRN 

inference methods for different types of data and levels of noise. In addition to 

performance assessment, in silico studies are of great relevance for optimal experimental 

design for subsequent real biological applications [146]. 
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Figure 6.1 Biological application and in silico benchmark 

The generated synthetic data needs to have biological meaningful. In recent years, 

many approaches are proposed for generating such in silico gene network structures, such 

as [31, 135, and 147]. 

6.2 Synthetic Data and Results 

6.2.1 GeneSim 

GeneSim was developed at Duke University as part of a project which tried to 

understand songbird singing behaviors. It is used in most of the GRN research in 

computational biology community. GeneSim models genetic regulatory pathways of 

arbitrary network structure and produces values for gene expression levels at discrete 

time-steps. Values are produced by a combination of two processes. First, values at each 

time step are updated by a simple stochastic process: 

Yl+i-Y,=f(Yl) = A(Yl-T) + e (6.1) 
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where Ĵ  is a vector representing the expression levels of all genes at time t . Second, 

expression levels are restricted by a floor and ceiling function to range from 0 to 100 

(arbitrary units). Expression levels are initialized to random values uniformly sampled 

from this range. The matrix A represents the regulatory interactions in the simulated 

networks. More details about GeneSim are described in [34, 148] 

We use GeneSim to simulate 10 different randomly generated genetic regulatory 

networks. Each of the networks has 20 genes; 8-12 of these genes have regulatory 

interactions with at least one other gene. A total of 100 interactions are present across all 

10 networks, 60 of which are one-parent links, 34 are two-parent links, and six are three-

parent links. 

Then we compare the performance of our new model (based on state space model and 

Expectation-Maximization algorithms) with dynamic Bayesian network, the details are 

shown in Table 6.1. From the comparing results, we can see that both recall and precision 

values of our model and DBN increase as number of time points increases. The recall 

values of both models are very similar but precision values of our model are little lower 

than DBN, which means more correct edges are inferred as well as more wrong edges by 

our new model. The computational time of our new model is much better than DBN. The 

computational time of our model is around 19 times faster than DBN for the case of 25 

time points, and the speedups are 16 for 50 time points and 15 for 100 time points, 

respectively. Figure 6.2 shows one example of inferred gene regulatory network, which 

has 20 genes and 19 interactions. 
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Table 6.1 Comparison of DBN and our model using GeneSim synthetic data 

Number 
of 

time 
points 

25 

50 

100 

Dynamic Bayesian Network 
(DBN) 

Recall 

14% 
(14/100) 

29% 
(29/100) 

47% 
(47/100) 

Precision 

11% 
(14/127) 

23% 
(29/126) 

52% 
(47/90) 

Time 
(seconds) 

748.2 

862.9 

1391.0 

EM and Kalman Filter 
(EMKF) 

Recall 

15% 
(15/100) 

26% 
(26/100) 

45% 
(45/100) 

Precision 

9% 
(15/166) 

16% 
(26/162) 

27% 
(45/167) 

Time 
(seconds) 

39.7 

53.0 

90.6 

Speedup 

18.85 

16.28 

15.35 

<"--*> ^ - J 

Figure 6.2 Inferred gene network (20 genes, 19 interactions) 

After we get the connectivity matrices from our model, selection of cut-off will affect 

the recall and precision for the inferred gene regulatory networks. If we select higher 

value of cut-off, there will be less inferred edges, and vice versa. In the above results, we 

set the cut-off as a "fixed value", which is 0.65. We want to see how the performance of 

our model is different when different cut-off values are selected. Here we use different 
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cut-off values (range from 0.5 to 0.85) to compare the inferring accuracy and select the 

best performance based on each dataset (for time points 25, 50 and 100). 

Table 6.2 Performance comparison for different cut-off values 

Time 

points 

25 

50 

100 

Time 

points 

25 

50 

100 

Cut-off (R means Recall, P means Precision) 

0,5 

R 

19% 

{19/100} 

3156 

(31/100} 

51% 

(51/100} 

P 

8.60% 

(19/221) 

15.70% 

(31/197) 

25.00% 

(51/204) 

0.55 

R 

17% 

(17/100) 

29% 

(29/100} 

46% 

(46/100) 

P 

8.90% 

(17/192} 

16.70% 

(29/174} 

25.60% 

(46/180) 

0.6 

R 

17% 

(17/100} 

26% 

(26/100) 

45% 

(45/100) 

P 

9.70% 

(17/175} 

15.40% 

(26/169) 

26.20% 

(45/172) 

0.65 

R 

15% 

(15/100) 

26% 

(26/100) 

45% 

(45/100) 

P 

9.00% 

(15/166) 

16.50% 

(26/162) 

26.90% 

(45/167) 

Cut-off (R means Recall, P means Precision} 

0.7 

R 

1.1% 

f11/100} 

23% 

(23/100} 

43% 

(43/100} 

P 

7.90% 

(11/140) 

15.00% 

(23/153} 

32.60% 

(43/132) 

0.75 

R 

10% 

(10/100) 

18% 
(18/100) 

41% 

(41/100) 

P 

7.80% 

(10/128) 

12.90% 
(18/139) 

36.70% 

(41/112) 

0.8 

R 

6% 

(6/100) 

17% 
(17/100) 

29% 

(29/100) 

P 

6.10% 

(6/99) 

15.90% 
(17/107) 

31.20% 

(29/93) 

0.85 

R 

4% 

(4/100) 

11% 
(11/100) 

45% 

(15/100) 

P 

6.60% 

(4/61) 

16.10% 
(11/68) 

28.80% 

(15/52) 

From the results in Table 6.2, we can clearly see that: 1) for data with 25 time points, 

the cut-off value 0.6 gave us the best inference accuracy with respect to both recall and 

precision; 2) for data with 50 time points, 0.55 is the best choice; 3) for 100 time points, 

the recall with cut-off value=0.65 has higher value and 0.75 has better precision values. It 

actually cannot tell which cut-off is better for the third case. Because the recall will 

always decrease as the cut-off values increase, we only compare the precision values 

when cut-off values increase. The plots of precision and cut-off selection are shown in 

Figure 6.3, Figure 6.4 and Figure 6.5. 
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6.2.2 GeneNetWeaver 

GeneNetWeaver (GNW) is a tool for the automatic generation of in silico gene 

networks and reverse engineering benchmarks. GNW was used to generate the DREAM 

[132] in silico challenges, which are currently the most widely used gene network reverse 

engineering benchmark in the community. There are two different types of data 

supported by GNW: E.coli transcriptional regulatory network consists of 1502 nodes and 

3587 edges, corresponding to the TF-gene interactions of RegulonDB. Yeast 

transcriptional regulatory network includes 4441 nodes andl2873 edges. Note that this is 

a signed network and dynamical models will be initialized accordingly. 

We choose different sizes of gene networks to test the scalability of our model. 

Networks with 100, 385, and 906 genes are selected from E.coli transcriptional 

regulatory network and inferred by our model, respectively. For size of 100 genes, there 
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are 179 inferred interactions, and the running time is 102 seconds; for 385 genes, 448 

interactions are reconstructed and running time is 579 seconds; for 906 genes, the 

inferred network includes 1493 interactions and it took 2193 seconds to get the results. 

Figure 6.6, Figure 6.7 and Figure 6.8 shows the three inferred gene regulatory networks, 

respectively. 
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Figure 6.7 Inferred E.coli gene regulatory network (385 genes and 448 interactions) 
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Figure 6.8 Inferred E.coli gene regulatory network (906 genes and 1493 interations) 
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6.3 Biological Data and Results 

After model validation from synthetic data, we need to use real biological data to test 

our model. Yeast cell cycle data sets are widely used in computational biological 

community. It is well constructed in pathway databases, such as BioGrid [143] and 

KEGG [144] and many other publications. In this section, we reconstruct a gene 

regulatory network from yeast cell cycle pathway using the model that we proposed in 

Chapter 4. 

The yeast cell cycle is an ordered series of events leading to replicating of cells. In 

eukaryotic cells, the cell cycle consists of two basic processes: DNA synthesis (S phase) 

and mitosis phase (M phase). During S phase double stranded DNA molecules are 

replicated to produce pairs of "sister chromatids", held together by proteins called 

cohesions. M phase consists of four sub-phases. Prophase is the first phase when 

chromosomes condense into compact structures. Metaphase is the next phase when 

chromosomes are aligned on the mid plane of the mitotic spindle. In anaphase, cohesions 

are degraded and finally in telophase, daughter nuclei forms and the cell begin to divide. 

S and M phases are separated in time by two gap phases (Gl and G2), constituting the 

generic cell cycle: G1-S-G2-M. Figure 6.9 shows the four phases of cell cycle in yeast 

(Saccharomyces cerevisiae). 



I l l 

I CELL CYCLE -yeast | 

_j MAPK. signaling |_ 
"1 pathvay j "* 

DNA damage checkpoint Unattached Mnetochores Cohesin Condensin 

Pheromone 
(mating signal) 

Nutrients -Zf Second messenger 1 _ A M p 
H signaling pathway J • 

Stan W Cm3 

ORC (Origin Recognition 
Complex) 

Orel 

Orc3 

OrcS 

Grc2 

Orel 

OK6 

MCM (M mi-Chromosome 
Maintenance) complex 

Hcm2 

Mearf 

Mcm6 

Mem3 

Mcm5 

Mcra7 

DNAO-
ARS 

Figure 6.9 Cell cycle regulations in Saccharomyces cerevisiae (image source from 
http://www.genome.jp/kegg/pathway/sce/sce0411 l.html) 

Here, 68 genes related to yeast cell cycle pathway are selected from [144], then gene 

expression data sets corresponding to these genes are extracted from Spellman's data sets 

[134]. The gene regulatory networks are inferred from both BLOM and DBN, which are 

shown in Figure 6.10 (a) and Figure 6.10 (b), respectively. There are 97 interactions 

inferred by DBN and 26 of them are correctly identified in Saccharomyces Genome 

Database (SGD) [149]; For BLOM, 24 interactions are identified out of 108 total inferred 

interactions. 9 interactions are identified by both DBN and BLOM. Interestingly, our 

model correctly identified SWI4 and Clnl/2 as the hub gene, which are missed by DBN 

but very critical in the process of yeast cell cycle according to [141]. The other hub gene 

Cdc28 is successfully identified by DBN but missed by our model. 

http://www.genome.jp/kegg/pathway/sce/sce041
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Figure 6.10 Inference of yeast GRN by BLOM and DBN. (a) BLOM, (b) DBN. 
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CHAPTER VII 

CONCLUSIONS 

7.1 Summary and Conclusions 

Inference of gene regulatory network from time series gene expression data is a very 

challenging task for computational biologists. Lots of mathematical algorithms and 

computational approaches have been proposed for modeling gene regulatory networks, 

such as Boolean network, differential equations and Bayesian network. There is no so 

called "golden method" which can generally give us the best performances for any kind 

of data sets. Some models and approaches can better describe the biological networks 

such as partial differential equation, but the computational time is not acceptable. While 

other approaches can infer gene regulatory networks from a large scale data set, i.e., 

information theory model, but it only can infer undirected networks and inference 

accuracy is very low. In the field of gene regulatory networks, the research goal is to 

improve the inference accuracy and reduce computational overhead. 

In our work, probabilistic Boolean network (PBN) and dynamic Bayesian network 

(DBN) were compared using a biological time series dataset from Drosophila Interaction 

Database to construct a Drosophila gene network. A subset of time points and gene 

samples from the whole dataset is used to evaluate the performance of these two 

approaches. The performance of DBN and Bayesian network (R package) is also 

compared using the yeast cell cycle data sets. Our work shows that in most comparison 

cases, DBN outperforms PBN and Bayesian networks in term of accuracy. 

We also improved inference accuracy of dynamic Bayesian network by preprocessing 

data using an innovative method called relative change ratios. In this work, relative 

change ratios and dynamic Bayesian network are combined together to infer gene 
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regulatory networks from synthetic data sets, which are used by DREAM challenge and 

widely popular in computational community. Relative change ratios method is used to 

preprocess the gene knock-out and knock-down data and potential regulators are selected 

regarding to target genes. Based on these preprocessed prior knowledge (potential gene 

regulators), dynamic Bayesian network is used to infer gene regulatory networks from 

time series gene expression data. In DREAM project, the gene regulatory networks 

inferred by our combining methods are very impressive and improve inference accuracy 

in a significant manner. 

The traditional autoregressive methods will fail to infer gene regulatory networks 

which have high dimensionality and short time course gene expression data because the 

degree of freedom of the parameters is redundant. To overcome such difficulties, in this 

work, a new approach based on state space model and expectation-maximization 

algorithms is proposed to reconstruct gene regulatory networks. In our model, gene 

regulatory networks are represented by a state space model, which incorporates noises 

into observation and system functions and has the ability to capture more various 

biological aspects, such as hidden or missing variables. An EM algorithm is used to 

estimate the parameters based on the given state space functions, and then the 

conventional Kalman smoothing estimators are calculated by Kalman filter and Kalman 

smoother models. We derive the gene interaction matrix by decomposing the observation 

matrix using singular value decomposition and then use it to reconstruct GRNs. 

We implement the above algorithms in MATLAB, and then two synthetic data sets are 

used to validate our new model before applying to real biological data sets. The results 

show that our model has the ability to infer the gene regulatory networks from large scale 
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gene expression data sets and can significantly reduce the computational time complexity 

without losing much inference accuracy compared to dynamic Bayesian network. 

7.2 Future Directions 

There are three possible areas that we can work on in the future with respect to this topic. 

• Extending state space model by integrating multi-order time information into 

system functions and observation functions. In current model, the variables are 

related by first-order Markov process, which is not sufficient to provide more 

information for inferring GRN because it only captures the transition relationships 

between the adjacent two time points. By integrating multi-order Markov process 

into state space model, we can get to know how the multiple previous statuses 

affect the current variables and by this way we can more accurately infer the gene 

interactions. 

• Integrating biological replicates or missing variables as a fact of noise into state 

space model. The biological and technical replicates in experiments design are 

considered as perturbations in the field of computational biological modeling. We 

can also take into account missing variables as perturbations in gene regulatory 

networks. These perturbations can be considered as observation noises and 

naturally integrated into current model, which can help us to capture more 

biological aspects. 

• Modeling hidden variables in state space model and finding out the effects that 

have not been included in experiments. For example, we can learn how the genes 

interact with each other as groups and how specific genes bind together to 

regulate other genes. Hidden variables could also model levels of regulatory 
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proteins as well as possible effects of mRNA and protein degradations. In current 

work, we are mainly focused on predicting the gene interactions based on given 

gene expression data, however, learning hidden variables can be a strong plus to 

our inferred networks which provides us more biological insights. 
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