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ABSTRACT 

REACTOR R&D: SYNTHESIS AND OPTIMIZATION OF METALLIC NITRIDE 

FULLERENES AND THE INTRODUCTION OF TWO NEW CLASSES OF 

ENDOHEDRAL METALLOFULLERENES, METALLIC NITRIDE 

AZAFULLERENES AND OXO-METALLIC FULLERENES 

by Curtis Earl Coumbe 

December 2009 

Metallic nitride fullerenes (MNFs) were discovered in 1999. This class of 

endohedral fullerenes show promise in a new diverse range of useful applications. Since 

then, focus has shifted to the selective synthesis of these molecules with yields that would 

accommodate adequate sample distribution. Using the electric arc method, the traditional 

yield of these molecules has been very low (i.e. < 5 mg), and only a small percentage of 

the fullerene products (i.e. < 5%). This dissertation introduces the novel CAPTEAR 

(Chemically Adjusting Plasma Temperature, Energy, And Reactivity) method that allows 

the targeted synthesis of MNFs in high purity and yield. This method utilizes a 

nontraditional oxidizing method for fullerene synthesis that has not only provided 

optimization of MNFs, but also resulted in the discovery of two new classes of fullerenes: 

metallic nitride azafullerenes (MNAFs) and oxo-metallic fullerenes (OMFs). Evidence 

suggests that the nitrogen of the MNAF cage provides stability for the trimetallic nitride 

clusters, while the OMFs are the first fullerenes to encapsulate oxygen and incorporate a 

seven atom cluster inside a Cgo cage. 

Other efforts to increase yields resulted from scaling up production of fullerenes 

by using larger quantities of starting materials. These larger quantities required energy 

ii 



(electrical current) beyond the capacity of the traditional electric arc generator. Therefore, 

a new electric arc generator was designed and fabricated to accommodate these demands. 

This scale-up process resulted in yield increases by an average of 400%. However, to 

reduce the waste of scaling up as well as costs, our lab developed a recycling method for 

the expensive metal oxide starting materials. This method has greatly improved cost 

effectiveness and waste reduction. 
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CHAPTER I 

EXECUTIVE SUMMARY 

Significance of Research 

Worldwide, several groups have focused on the synthesis, purification, 

characterization, and reactivity of metallic nitride fullerenes (MNFs). " MNFs are 

fullerenes (spherical carbon cages, usually > 60 sp2 hybridized carbons) that include an 

entrapped (or endohedral) trimetallic nitride cluster, in which all three metals are bonded 

to a nitrogen to form a trigonal planar or pyramidalized, internal complex. MNFs have 

the generic formula M3N@Cn, where "M" is any metal from group IIIB or 4f-block metal 

and "n" refers to the number of carbons in the cage. The smallest "n" value for MNFs, 

thus far, is 68.8 The structure of a MNF is shown in Figure 1. 

Figure 1. Example of a MNF molecule 

MNF research has been hindered greatly by their typical low yields of only a few 

milligrams per day.29'30 This dissertation offers a paradigm shift in the synthesis of 

MNFs, insight into the discovery of new endohedral fullerenes, and contributions to 
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green chemistry and recycling of waste material.15'18' 31~34 Yield optimization and 

selective synthesis are very important aspects of this research. This dissertation focuses 

on four major research thrusts as follows: 

1. Introduction of additives to the plasma environment for yield optimization and 

selectivity - This research includes metal and nonmetal additives to the packing 

material (i.e. in cored graphite rods) for the plasma generator. 

2. Synthesis and optimization of new endohedral fullerenes - This research includes 

changing the identity of the endohedral cluster as well as the composition of the 

carbon cage. 

3. Design, construction, and evaluation of a new reactor capable of using higher 

quantities of reactants - This research overcomes limitations of traditional arc 

reactors for synthesis of larger quantities of desired materials. 

4. Reduction of nanomaterial waste by recycling of spent reactor soot (i.e. post 

fullerene extraction) - Scale-up and use of larger quantities of expensive starting 

materials generates larger amounts of waste and cost. Therefore, recycling of 

waste materials via chemical transformation to recovered metal oxides has 

become a necessary tool for this research to be cost effective. 

The MNF class of nanomaterials is expected to possess diverse applications such 

as MRI contrast agents,35"37 X-ray contrast agents,38 biocidal activity (via singlet oxygen 

generation from fullerene coated polymer films), and fluorescent or radioactive 

tagging.1 Magnetic resonance imaging (MRI) and X-ray contrast agents improve the 

resolution/contrast of diagnostic images. Medical applications depend on which cluster is 

encapsulated within the carbon cage. Gadolinium MNFs have already proven useful as 
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MRI contrast agents.37 Lutetium MNFs may be used an X-ray contrast agent (which is 

- j o 

attributed to the large cross section of the lutetium atoms), whereas mixed Ho-metal 

MNFs such as holmium/lutetium and holmium/gadolinium should provide (pending 

further studies) new radiopharmaceuticals based on the irradiation of Ho 

metallofullerenes under various neutron flux conditions and its use in nuclear medicine. 

The attraction to MNFs is due to their structural and physical properties. For instance, the 

trimetallic cluster is capable of optical emission or absorption, as well as magnetism. For 

example, the Er3N cluster may be used for optical applications41 (fluorescent coatings), 

having emission decay lifetimes of 1.1 - 1.6 sec. and quantum efficiency for emission at 

~10"4, while the GdsN cluster functions better as a magnetic agent. However, since these 

clusters are encapsulated inside the carbon cage, this entrapment provides protection from 

enzymatic degradation and toxic release of the metals (e.g. gadolinium) inside the body. 

In fact, in vivo studies were performed on rat brains using Gd3N@C8<r 

[DiPEG5000(OH)x], which was found to be effective as MRI contrast agents. No toxicity 

of the gadolinium or the functionalized cage was reported. Although this dissertation 

does not focus on MNF applications, an outcome of this research would be improved 

sample availability for researchers who pursue those goals. 

Electric Arc Synthesis: Research and Design 

The electric arc synthesis of fullerenes is the typical method for fullerene 

researchers. Of the four known methods for fullerene production, the electric arc process 

is the only known approach to synthesize MNFs. " This method utilizes an electrical 

current to vaporize graphite rods impregnated with a metal of choice. The electrical 

current (i.e. resistive heating and rod vaporization) creates a plasma between the packed 
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rod and another solid graphite rod. Only a small percentage (i.e. typically < 5%) of the 

materials packed in the cored graphite rod are transformed into fullerene products. 

Poor MNF yields hamper the R&D from a lack of sample distribution. MNF 

production costs are extremely high for milligram quantities and as such, MNFs are not 

commercially available. The expense varies within the MNF family and is dependent on 

the cost of feedstock material (e.g. SC2O3 is ~$3000/kg) and separation method (e.g. 

HPLC fraction collection or SAFA).12 These constraints demonstrate the importance of 

our goals for new reactor R&D. 

Broad Impact 

Our results will show a significant impact to fullerene science including the 

following - (1) significant increases in yield and purity, (2) new classes of molecules, and 

(3) a new green chemistry process for fullerene science. ' ' ° ' Fullerenes have 

traditionally been synthesized using inert or reducing atmospheres (i.e. helium, nitrogen, 

and ammonia).48 Our lab has accomplished fullerene production with targeted selectivity 

(i.e. extracts of highly purified MNF without significant loss of yield) under an oxidizing 

atmosphere!33 Our new method has led to the discovery of new endohedral fullerenes that 

are synthesized as a result of this shift to oxidizing atmospheres.18'47 Also, scale up of 

milligram yield was believed to be futile until the introduction of our new reactor design. 

Our scale up has resulted in a 400% average increase in fullerene yield. However, our 

scale up has resulted in (1) cost increases from increased quantities of starting materials 

and (2) a larger production of waste material. Our lab has remedied these issues by 

developing a novel recycling method that enables the reuse of waste materials for 
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subsequent reactions. ' Overall, our research has yielded success in several areas and 

continues to benefit the scientific community. 
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CHAPTER II 

LITERATURE REVIEW 

Buckminster Fullerene (C6o) 

Discovered in 1985 by Kroto, the late Smalley, and Curl, C6o is the most 

abundant fullerene. It was produced in macroscopic amounts in 1990 via resistive heating 

of graphite.44 This electric-arc fullerene method produced sufficient quantities of C6o to 

be isolated. The subsequent availability of purified C6o generated excitement to research 

this new molecule and characterize its chemical and its physical properties. 

Fullerene C60 exhibits Ih symmetry and contains all sp hybridized carbons. It is a 

quasi-spherical structure that consists of 20 hexagons and 12 pentagons. This molecule 

does not follow Huckel's rule, and is not planar, and therefore is not considered aromatic. 

The structure obeys the isolated pentagon rule (IPR), which contributes to its stability as 

no two pentagons are adjacent to each other, but surrounded by hexagons. Figure 2 shows 

an example of Cgo, in which each hexagon is surrounded by pentagons, thus 

demonstrating the IPR. The rule makes Cgo the smallest stable fullerene obeying the IPR, 

and is related to its prominent abundance. Smaller fullerenes, C20 and C36, have been 

produced but do not follow the IPR. Therefore, these molecules are highly unstable and 

thus have a very low abundance. 



7 

Figure 2. Fullerene C60 

The electrons in the hexagons of C6o do not delocalize over the entire molecule 

and thus do not exhibit superaromaticity. This electronic structure contributes to an 

increase in cage reactivity and ability to attach functional groups to its surface. Fullerene 

Ceo has an open shell electronic structure which is consistent with its reactivity. 

Higher Order Fullerenes (C21,) 

Higher order fullerenes (C2n) are less abundant than the C60 molecule (i.e. usually, 

an HPTC trace of an empty cage fullerene extract is comprised of 50% or more of the C60 

molecule and less than 50% of all other higher order fullerenes such as C70, C76, and CM) 

but are comparable in stability and reactivity. The low abundance of higher order 

fullerenes in soot extract and proclivity toward structural isomers contribute to their 

difficulty in isolation. Some examples of higher order fullerenes include C70, C76, C78, 

and Cgo- The Cn652 fullerene has been isolated but theoretical calculations suggest even 

larger cage sizes. C70 is currently the most stable higher order fullerene. 
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Endohedral Fullerenes- Metallofullerenes and Metallic Nitride Fullerenes 

Shortly after the discovery of C6o, it was proposed that the fullerene cage could 

encapsulate atoms to produce endohedral structures, with entrapped metals and/or 

nonmetals. These new endohedral fullerenes have electronic and optical properties that 

their empty cage counterparts lack. Yields of endohedral metallofullerenes are 

traditionally much lower than those of empty cage fullerenes. Metallofullerenes typically 

represent yields less than 0.1% of the arc reactor soot. Distribution of metallofullerene 

samples has been limited due to their low yields and difficulty in separation. 

Non-Metallic Doped Fullerenes 

Several non-metallic endohedral fullerenes have been isolated. He, Ne, Ar, Kr, 

and Xe have been encapsulated inside the Ceo cage. This requires exposing C6o to 3 bar of 

each respective noble gas. " These endohedral fullerenes occurred in ~1 out of 650,000 

C60 cages. Also isolated were encapsulated N@C6o, N@C7o, and P@C6o, using an ion 

implantation method in which a thin film of C6o, slowly deposited by an effusion cell on a 

cooled target, was bombarded with N+ (or P+) ions from an ion source in a high vacuum 

chamber. This method results in -0.001 - 0.01% nitrogen or phosphorous encapsulation 

by the C6o molecules. The endohedral atoms are neutral, centered inside the cage, and 

have properties that resemble electromagnetic traps. 

Classical Metallofullerenes Mx@Cy 

Metal-doped fullerenes are synthesized via laser evaporation or arc plasma 

CO 

methods. Encapsulated metals include alkaline earth metals, alkali metals, transition 

and inner transition metals, and trivalent metals (uranium, zirconium, and hafnium). 

Carbon cage sizes can range from 60 to 90. Application development of classical 
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metallofullerenes has been hampered due to their low stability in air, multiple cage 

isomers, and difficulty in purification. 

La@C6o was the first metallofullerene to be reported as having metallic 

properties.5 These metallic properties were found to be the result of a charge transfer 

from the La to the Cgo cage. This transfer is believed to be a metal - ligand charge 

transfer.59'60 The ionic formula would actually be written as [La] 3+@[C6o].3 Er@C6o was 

also among the first of rare earth metallofullerenes to be isolated. In contrast, bimetallic 

CO 

fullerenes have shown more stability than the mono-complexes. Sc2@C66 has been 

isolated, and the X-ray crystal structure has been determined. The C66 cage does not 

follow the IPR but is stabilized by the cage's interaction with the two encapsulated Sc 

atoms. In fact, the cage housing range from C66 to C90 includes many unstable, empty 

cage fullerenes that do not follow the IPR, but are stabilized by the endohedral complexes 

(e.g. La2@C72).
63 

Metallic Nitride Fullerenes MsN@Cx 

Sc3N@C8o (h cage symmetry). Sc3N@Cgo was the first MNF to be discovered. It 

was prepared in a Kratschmer-Huffman plasma generator using SC2O3, graphite, and 

FeN at 300 torr in a helium atmosphere. The nitrogen source used was N2. The mass 

spectrum showed a [M]+ peak at 1109 m/z. The identity of this mystery peak was 

believed by others to be Sc@Cs602. Subsequently, the identity was confirmed when 

Stevenson and Dorn isolated the compound via HPLC. X-ray crystallography was used to 

determine the structure. This discovery led to a new research field in fullerene chemistry 

and has since then provided the necessary means to produce an array of MNFs with 
-7*7 -7 Q (LA Hf\ 

unique properties that are useful in many industrial and medical applications. ' ' 
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Figure 3 shows the structure of Sc3N@Cso cage. X-ray crystallographic studies have 

reported h symmetry for the Cso carbon cage. ' ' 

Figure 3. Example of Sc3N@C80 

MNFs have unique metallic properties compared to classical metallofullerenes 

due to the increased stability and charge transfer (6 electrons) from the MNF cluster to 

the cage. In the case of Sc3N@Cso, each Sc atom donates one electron to the nitrogen 

atom and two electrons to the Cso cage. The ionic formula can be written as 

[Sc3N]6+@[Cgo]6". Although MNFs have also been produced using rare earth metals, 

Sc3N@C80 is the highest yielding MNF.15 

There are two types of carbons in the Ih Sc3N@Cgo cage.1 The first carbon type 

consists of 60 carbons that are located at the vertices of two hexagons and one pentagon. 

The other 20 carbons are located at the center of three hexagons. Therefore, the UCNMR 

has two signals (144.57 and 137.24 ppm). The presence of only two carbon peaks also 

indicates that the SC3N cluster is in dynamic equilibrium on the NMR time scale and does 

not chemically bond to any specific site on the cage.1 This result is also supported by Sc 

NMR, which gives a single signal, and thus suggests that all of the Sc atoms are 

equivalent. The UV-Vis spectrum of Sc3N@C8o shows two distinct peaks at 900 and 



11 

1140 nm with high absorbance values below 1000 nm.1 Density functional theory (DFT) 

calculations have been used to determine the most stable isomeric conformation of the 

SC3N cluster inside the Cgo cage.5 The energy difference between the Ih cage (major 

isomer) and D5h cage (minor) is only about 2 kcal/mol. 

Other examples of MNFs are provided below with specific MNFs structures 

varying by cage size and cluster. 

Sc3N@Cs8- The isolation and characterization of Sc3N@C68
8 (Figure 4) resulted in 

the first MNF that violates the IPR. Figure 5 shows eleven different isomers for the C68 

cage, each with two different orientations. The C68 cage is an unstable cage, and there is 

no known evidence of it being isolated without the cluster. The interaction of the metallic 

nitride cluster stabilizes the otherwise unstable C68 cage. 

;;-^/;:^ It- v >, 

Figure 4. Structure of Sc3N@C68
8 



Figure 5. Eleven isomers ofthe C68 cage 

Sc3N@C68 is produced in much smaller extract yields (-10%) in relation to the 

CgoMNF.8 The numbers in Figure 5 refer to the spiral algorithm74 that calculates 6,332 

possible C68 fullerenes with pentagons and hexagons. The eleven structures above are the 

only feasible structures that are consistent with the single symmetric peak in the 45Sc 

NMR and the 12 singlet peaks in the C NMR. From these structures, number 6140 is 

the most stable cage isomer due to the three sets of fused pentagons. These fused 

pentagons are aligned with the positions of each Sc ion and are stabilized by electronic 

interactions.8 The metal interaction with the fused pentagons hinders the rotation ofthe 

metal-nitride cluster as described earlier. 

ScsN@C78- Olmstead et al. reported the isolation and characterization of 

Sc3N@C78.4 With an abundance of-10% ofthe Sc3N@Cgo, Sc3N@C78 has a retention 

time similar to Sc3N@Cg0. The mass spectrum shows an [M]+ peak of 1085 amu. The 

crystal structure of Sc3N@C78 follows the isolated pentagon rule (IPR), but its spherical 

geometry, in relation to the Ih Cso cage, is somewhat disrupted. Since the IPR is followed 

in this case, the C78 cage is generally more stable than the C68 cage and thus allows some 

rotation ofthe metal-nitride cluster inside the C78 cage. 
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Z,W3-/V@Cg0.The isolation and characterization of Lu3N@Cgo was performed by 

Stevenson et al.7 The Lu MNF structure proved to be similar to the Sc3N@C8o MNF. The 

geometries of the metallic nitride clusters are subjected to the same constraints and 

therefore experience similar degrees of cluster rotation. Both clusters have planar 

geometries, and the bond distances of the metal-nitrogen bond are similar (e.g. Lu-N 

bond length is -2.05 A for experimental and -2.04 A for theoretical; Sc-N bond length is 

-2.03 A for experimental and -2.03 A for theoretical). It was determined that the cage 

size is not distorted despite an increase in the Lu3N cluster size. 

Sc3N@Cso (Dsh)- In 2003, Duchamp et al. discovered, isolated and characterized a 

Dsh isomer ofSc3N@C80.75This isomer is similar to the Ih isomer. If the top half and 

bottom half of the Cso cage is divided into hemispheres, the D5h isomer is obtained by 

rotation of the top hemisphere of the Ih isomer by 36°. The lower energy of the Ih 

isomer (versus Dsh isomer) is consistent with the relative abundance of the two species. 

Using HPLC, the elution time is almost identical for each isomer and elutes as an 

asymmetric tail of the Ih chromatographic peak. This Dsh isomer has also been found for 

other MNFs.76 

Gd3N@Cso- The synthesis of Gd3N@C8o represents an important discovery77 due 

to the medical applications of Gd as an MRI contrast agent. Unfortunately, this MNF is 

the lowest yielding MNF.79 In contrast to the planar geometry of the Sc and Lu nitride 

clusters, the bulky Gd3N moiety has a pyramidal geometry inside the Cgo cage.77 This 

geometry is believed to be a contributing factor in its poor yield. The focus on 

Gd3N@C8o is to optimize the yield and formulate water soluble derivatives that will 

mailto:V@Cg0.The
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enable MRI contrast agent development. The Gd MNF also possesses a minor Dsh 

30 

isomer. 

Hetero-Metallic Nitride Fullerenes Ms.„Xn@Cso, n = 1-2 

Introduction. This generic formula represents MNFs having two different metals 

in the cluster. There have been several reports discussing hetero-metallic MNFs, their 

structural data and chemical characterization. Synthesis of these compounds differs only 

by addition of two different metals of choice to the packing material, rather than one. 
on 

The first hetero-metallic MNF was reported by Stevenson et al. in which a 

mixture of SC2O3 and Er203 in the packing material yielded the following product 

distribution: Sc3N@C80, Er3N@C80, Sc2ErN@C8o, and ScEr2N@C80. 

ScYErN@C8o- Chen et al}x first isolated and characterized the tri-hetero-metallic 

MNF, ScYErN@C8o. This molecule was characterized by HPLC, laser desorption time-

of-flight (LD-TOF) mass spectroscopy, cyclic voltammetry, Fourier transform infrared 

(FTIR) spectroscopy, and visible-near infrared (Vis-NIR) absorption spectroscopy. Six 

electrons are transferred to the cage. Similar to the Sc3N analog, this ScYEr cluster 

rotates freely. The molecule has a closed-shell electronic structure, and is thus very 

stable. 

Gd/Sc MNF. Yang et al. recently reported the synthesis of GdSc2N@C8o and 

Gd2ScN@C80. These MNFs had yields 30 times that of typical Gd3N@C8o and 2 times 

higher than typical Sc3N@C80. Both are stable MNFs with large optical band gaps. 

Figure 6 shows the periodic table with encapsulated MNF metals highlighted. 

Despite the ability to make a rich array of MNFs, applications are still hindered by low 
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yields and poor sample availability. Yield optimization is one of the most important 

factors of this research. 
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Figure 6. Periodic Table of MNFs and mixed metal MNFs 

Synthetic Methods for Fullerenes 

Introduction 

Currently, there are several methods for synthesizing empty-cage fullerenes. 

Methods include laser ablation,45 electric arc, solar process, and hydrocarbon 

pyrolysis.42 Yields are determined as a ratio of fullerene extract to soot mass. The average 

percentage fullerene yields for each method is as follows: 40% (laser ablation), 10-15% 

(electric arc), 15% (solar process), and 10-40% (solar process). 

Laser Ablation 

Although this method is the highest yielding method for empty-cage fullerenes, 

this approach has the lowest productivity (in grams/hour). This is also the most expensive 

method due to high power requirements and low scale-up feasibility. Laser ablation 
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employs the use of a high power laser on a targeted graphite source to vaporize the 

carbon, which produces fullerenes, nanotubes, and amorphous carbon. To our 

knowledge, this method has not been explored for producing MNFs. 

Electric Arc 

The electric arc synthesis method involves a DC arc welder to create an arc 

between two graphite electrodes. Fullerene formation occurs in the resultant arc plasma 

as electrical discharge occurs. This is currently the most popular method for fullerene 

production and is our lab's current method of synthesis for MNFs. It is also the only 

known method to produce MNFs. This technique has been explored extensively for 

empty-cage and endohedral fullerenes. Although it is the lowest yielding method in 

percentage fullerenes/gram soot, the larger amount of extract produced compensates for 

this disadvantage. The arc process is also the most inexpensive method for overall 

fullerene production. Our current electric arc reactor has productivity rates for Sc MNFs 

as high as 60 mg/hr.79 

Solar Process 

The solar process utilizes a solar furnace to sublime graphite samples and produce 

fullerenes in a "dark" zone, in which product formation is unhindered by photochemical 

destruction. This process was introduced in 1993 as a solution to the proposed 

photochemical destruction of fullerenes in the electric arc process. However, after 

several studies, the solar process has been shown to be more expensive and less 

productive than the electric arc process. 
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Hydrocarbon Pyrolysis 

Hydrocarbons have been used to produce fullerenes with typical hydrocarbons 

being 2-5 carbons in length.42 This method has the second highest yield, but the 

productivity is typically lower than the electric arc process. However, Scott et al. have 

reported a selective synthesis of C6o using chlorine-substituted aromatic hydrocarbons. 

Formation of C6o occurred after the hydrocarbons were subjected to flash vacuum 

pyrolysis at 1100 °C. MNFs have not been reported using this method. 

Plasma Analysis in Electric Arc Fullerene Production 

Introduction 

Plasma analysis is an ongoing research aspect of the electric arc synthesis of 

fullerenes. Characterization of the plasma would provide more insight into the 

undetermined mechanism of MNF fullerene formation. The research that has been done 

on fullerene formation in the electric arc plasma has focused on empty-cage fullerenes. ' 

Therefore, there is much need for plasma analysis, particularly temperature studies, 

during the production of endohedral metallofullerenes (e.g., MNFs). 

Plasma Physics 

The term plasma refers to the fourth state of matter and is composed of one or 

more ionized gases. The gases contain multiple charged particles with many cationic 

gas molecules and free electrons. This highly charged region of gas is very conductive 

and as a result, responds to an electromagnetic field. The net charge of a plasma is 

usually close to neutral since the positively charged particles are usually the parent atoms 

of the free electrons. 
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Plasmas are characterized by several important parameters90 such as plasma 

temperature, degree of ionization, electron density, and the magnetic field of the plasma. 

For a plasma to exist, each particle must affect many other particles in a sphere of 

influence, also called a Debye Sphere. Another criterion of plasma formation is that the 

radius of the Debye Sphere, or Debye length, is fairly small relative to the size of the 

entire plasma. Finally, the plasma oscillations of the electrons, also called electron 

plasma frequency, must be high relative to the electron-neutral collision frequency (the 

frequency of electrons with neutral particles). This means that the electron collision 

frequency must be much higher with charged particles than with neutral particles. 

Degree of ionization. The degree of ionization is a fundamental property of 

plasma. This is the ratio of the number density of ionized particles to the total number 

of particles. This is given in the form: a = nj/(nj + na) where nj is the number density of 

ions, and na is the number density of neutral atoms. Therefore, a is a dimensionless value 

and has a range of 0-1.0. However, plasma characteristics are usually not seen under 1% 

ionization (when a <0.01). 

Plasma temperature. Plasma temperature is another fundamental parameter of a 

plasma. ° Not only is temperature facile to measure with a tungsten-ceramic high 

temperature probe, but temperature also impacts degree of ionization, electromagnetism, 

and electron density. 

Plasma temperature is measured in electron volts (eV) or Kelvin (K), but the two 

are interchangeable using dimensional analysis. The temperature refers to the kinetic 

energy per particle. However, when all the particles of a plasma are considered (e.g. 

electrons, ions, and neutral particles), the electrons reach thermal equilibrium much faster 
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than the ions due to their difference in mass. As a result, the electron temperature is 

usually hotter than the ion temperature. This is described using the Boltzmann 

Distribution, which relates the probability of a particle's velocity to temperature and 

mass. As the particle gets larger in mass, and the temperature increases, the distribution 

gets wider. ' Therefore, the plasma temperature is an average of the temperature for all 

particles of the plasma. To accurately measure the plasma temperature, all the particles 

thermal energy would have to be considered. Using the standard "q = mcAT equation, the 

"q" value for the electrons, neutral particles, and ions would have to be summed to 

calculate the thermal energy. Thus, the total thermal energey, or qlot = qeiec + qion + qneut, 

where qeiec is the thermal energy of the electrons, qjon is the thermal energy of the ions, 

and qneut is the thermal energy of the neutral particles of the plasma. In our system, we 

cannot determine these values due to mechanical limitations of temperature probes, and 

thus the thermodynamics must be based on averages and relative temperatures. 

Based on these temperature averages, a plasma is classified as thermal or non­

thermal. Thermal plasmas have their ions and electrons in thermal equilibrium with each 

other, whereas non-thermal plasmas have a large difference in their ion and electron 

temperatures. Temperature also directly affects the degree of ionization. Certain 

theoretical treatments show a direct relationship between ionization energy and electron 

temperature. Plasmas are therefore referred to as hot or cold. A hot plasma is nearly fully 

ionized (90-99%) and a cold plasma has only a small percentage of ionization, such as 

1%. However, the threshold between a cold and hot plasma is not clearly defined. An 

example of a hot plasma would be the sun. Our electric arc plasma is considered a cold 

, 90 

plasma. 
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Plasma potential. The plasma potential is the change in voltage between 

particles in the plasma. Since the particles are in close vicinity, this change is relatively 

smaller compared to the actual potential of the plasma. This is due to the Debye sheath, 

which is a result of having a larger positive charge density than negative charge density, 

despite the fact that the plasma experiences quasi-neutrality. 

The Electric Arc Plasma 

As previously described, the electric arc synthesis of fullerenes is the lowest 

yielding method, but has the highest productivity and one of the lowest costs.44 This 

method, introduced by Kratschmer and Huffman (K-H) has been the most popular 

method of fullerene production. Figure 7 shows a diagram of a typical (K-H) arc reactor. 

Plasma Inertgas atmosphere 

4\ 

Graphite Cathode 

A 

Graphite Anode 

Figure 7. KH-Type reactor diagram 

In the K-H reactor, the anode is consumed by vaporization of the graphite using a 

DC current. This vaporization depends on the amount of electrical discharge produced by 

the plasma. The resultant soot consists of a mixture of unreacted graphite, amorphous 

carbon, fullerenes, and sometimes nanotubes. Fullerene extraction from soot is typically 

done with CS2, xylenes, or toluene. The experiments are usually done at low pressures 



21 

(200-400 torr), but high yields have been reported ' at pressures above atmospheric 

pressure (800-1000 torr). 

Reactor parameters. Since the fullerene reactor is controlled with an arc welder, 

there are opportunities to investigate the effects of different welder settings. Particularly, 

the voltage, current, pressure, and gas flow rate can be adjusted. These parameters will 

have an effect on the state of the plasma and thus increase or decrease the yield and/or 

productivity. There are few reports of parameter optimization of this process. ' 

The current produced by the arc welder is the electrical source of the plasma. 

Thus, the measured voltage of the system is dependent on the gap between the electrodes. 

A larger gap corresponds to a larger voltage. Therefore, a smaller gap would decrease the 

space between the plasma particles and increase the amount of ionization to some critical 

value. This potential is also dependent on the conductivity of the electrodes. Any additive 

to the typical carbon electrode (i.e. packed graphite rod) may increase or decrease the 

conductivity. 

The pressure within the reactor chamber is another important parameter. The 

Debye sheath depends on the densities of ions and free electrons. Hence, the plasma 

volume is directly related to the state of the plasma and changes in pressure should have 

an effect on fullerene yield. 

Plasma temperature of the arc plasma. The temperature of the plasma is a 

fundamental property. This parameter has been studied as a function of fullerene yield, 

and several temperature profiles for yield optimization have been obtained. However, 

there are few reports of temperature studies on synthesizing endohedral fullerenes 
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and no published reports of MNF temperature profiles. Therefore, optimization for 

endohedral fullerenes (e.g., MNFs) requires the effects of temperature to be examined. 

The three physical parameters described above (current, voltage, and pressure) 

have an effect on plasma temperature as described by Abanades et al., who 

demonstrated that plasma temperature was sensitive to current and voltage. These 

researchers also found that yield was affected by temperature. Variation in buffer gas 

pressure has been correlated with fullerene yield. " Reactor gases include He, He/N2, 

and Ar. Gas dynamics (i.e. position of gas flow inside the chamber) have also been 

examined in the formation of empty-cage fullerenes. The fullerene yield in this case was 

dependent on the gas flow rate and the existence of a turbulent jet between the discharge 

gap of the plasma. 

Plasma temperature studies have been performed for C60 and C70. ' " These 

investigations suggest that not only does temperature have an effect on yield, but 

particular fullerenes as well as nanotubes require specific temperatures for 

optimization.108 Changing the temperatures primarily comes from adjusting physical 

parameters.106 The fullerene yield was correlated with the temperature gradient. The 

parameters varied included current, pressure, voltage, and carbon concentration. 

Electron density and thermodynamics. Electron density, which is strongly related 

to temperature, is also believed to be a significant parameter in the formation of 

fullerenes. Churilov et al. ' 1'109 performed theoretical calculations to determine the 

optimal temperature and electron density to optimize the C60 formation rate. 

Other studies use thermodynamic estimates ' ' to conclude that charge 

highly affects the geometry of the carbon intermediates to form flat or spherical clusters. 
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Thus, formation of fullerenes would be primarily dependent on electron density. The 

relationship between charge and geometry is fairly easy to conceptualize when 

considering the changes in hybridization of an organic molecule when a charge is 

induced (Figure 8). 

H H H 

H S 

Figure 8. A planar sp~ ion (left) and a tetrahedral sp molecule 

Bilodeau et al. used modeling to study the synthesis of C6o and C70. This 

investigation assumed that the carbon vapor source is from the anode, which is supported 

by experimental evidence. Thermodynamic properties were calculated as a function of 

temperature and carbon mass. Experimental results supported the theoretical data. The 

experiments were performed under argon and helium buffer gas. Electrode gaps ranged 

from 1 mm to 4 mm. 

Additives to the plasma. Takikawa et al. examined the effects of air leaks into the 

plasma chamber.1' This report concluded that air decreases the productivity of fullerenes 

due to the formation of carbon derivatives with air components (i.e., CN and CO2). 

However, this investigation only considered empty-cage fullerenes. Our research group 

has found that small amounts of introduced air may actually increase the percentage of 

MNFs in the extract.33 

1 1 ^ 

The introduction of naphthalene to the plasma was investigated by Geldard et 

al. Their HPLC trace results demonstrate that naphthalene increases the relative ratio of 

C70 to C6o- Under normal (i.e. without additives) conditions, C60 is the most abundant 
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fullerene in the HPLC trace (i.e. more than twice the amount of C70, which is generally 

30-32% of the fullerene extract). The data suggests that the naphthalene is better 

incorporated into the C70 molecule than C6o- The explanation of this change in 

distribution is that the C70 molecule can incorporate these fused 6-membered rings 

directly, while the C60 can only use this naphthalene after there is a rearrangement of the 

rings to give a 6-membered ring fused to a 5-membered ring. 

The effects of alcohols, alkanes, and aromatics to the plasma have also been 

examined. In this research, graphite electrodes were submerged in a liquid of choice. 

Fullerene yields were increased by factors of 8 to 100 times the typical yields. The carbon 

sources proved to originate from not only graphite, but also the organic compounds. 

CCI4 has also been introduced to the arc plasma as a vapor additive.115' m At low 

flow rates (around 3% of the helium flow rate), the yield of fullerenes has a significant 3 

fold increase in yield. However, at 10% - 13% of the helium flow rate, several 

chlorinated carbon clusters (CCCs) were produced. The data in this work suggested that 

the mechanistic pathway to these CCCs is similar to that of C60 fullerene. This finding 

may provide insight into the unknown mechanism of fullerene formation. 

Ir and Pt metals have been suggested117 to affect the yield of fullerenes, as well as 

the selectivity. Addition of Ir to the arc plasma shifted the fullerene production to 

selectively produce Cf,o at higher ratios than the control. Platinum metal increased the 

amount of C60 oxides and decreased the amount of higher fullerenes. These results 

indicate that solid additives can play a role in the mechanistic pathway of fullerene 

formation. 
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CHAPTER III 

RESEARCH PLAN 

Research Thrust I - Effect of Chemical Additives to the Plasma 

The effect of chemical additives was investigated to determine the most efficient 

method for synthesizing our targeted fullerenes (MNFs, Oxo-Metallic Fullerenes 

(OMFs), and Metallic Nitride Azafullerenes (MNAFs)). This research includes 

modifying the chemical nature of the solid packing material and introducing volatile, 

reactive vapors into the plasma generator. 

Since Sc3N@Cso is the highest yielding MNF, this species was evaluated as a 

starting point for optimizing other MNFs. For these experiments, an array of different 

solid packing materials in the cored graphite rods (i.e. changing the ratios of SC2O3, Cu, 

Cu(N03)2, and graphite) was examined followed by the incorporation of other metals and 

nonmetals to the packing material. We also delivered measured quantities of vapors (e.g. 

air) into the low pressure plasma chamber and expected to find a correlation with yield. 

Optimization of MNF yields has shown to be possible through the use of additives 

to the packing material and plasma. To test this hypothesis, we designed an array of 

experiments and characterized our results using HPLC to determine peak areas and 

percentage of MNF produced in the extract. The amounts of MNFs produced were 

correlated to the additives being investigated. 

Metals and nonmetals can work as conductors, semiconductors, or insulators in an 

electrical system. Therefore, we hypothesized that by adding different types of materials 

(e.g., metals, salts, nonmetals) to the packed carbon electrode, the electrical flow would 
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also change as a result of higher or lower resistance/conductivity if the current and 

voltage remain constant. This change depends on the type and quantity of additive and, in 

turn, modifies the state of the plasma. To evaluate the hypothesis, a set of experiments 

was designed in which reactor parameters were held constant and the packing ratios of 

chemicals were changed from one extreme to another (i.e. 0% to 100% additive). The 

weight percentages of additives were plotted as a function of yield. Once a satisfactory 

recipe was established, other materials were gradually added to the mixture until an 

optimum yield was achieved. This research area also involved the use of volatile solids 

(e.g. nitrate salts) to alter the type of atmosphere in the reactor chamber. This area is 

discussed further in Chapter V. 

Research Thrust II - New Endohedral Fullerenes 

This research focuses on the selective synthesis, isolation, and identification of 

two new classes of endohedral fullerenes. This includes the encapsulation of new clusters 

inside the cage (e.g. OMFs) as well as the inclusion of heteroatom in the cage structure 

(e.g. MNAFs). 

OMFs include any endohedral fullerenes with the generic formula MxOy@C2n, 

where "M" is the metal targeted for the cluster that is impregnated inside the graphite rod, 

"x" and "y" refer to the number of metal atoms and oxygen atoms encapsulated as the 

endohedral cluster, "n" refers to the number of carbon atoms in which 2n is most likely 

no less than 80, due to spacial constraints. This research has led to the successful 

identification of the crystal structures for Sczt03@ Ih-Cgo and Sc402@ Ih-Cso-
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MNAFs are any endohedral fullerene with the generic formula M3N@CxNy, 

where "M" is any MNF metal, "x" is the number of carbon atoms and "y" is the number 

of nitrogen as long as x + y equals an equal number >60 (e.g. 80, 82, 88). 

These molecules could provide new applications for fullerenes based on the 

judicious selection of the cluster atoms. Heteroatoms as cage substituents should provide 

different reactivities of the cage for subsequent adduct formation. For instance, if there 

exists a lone pair of electrons on the nitrogen of an azafullerene (some researchers believe 

it is delocalized on the cage, but the preferred pyramidal structure of a nitrogen with three 

bonds would provide more stability to the spherical cage structure, as opposed to the 

preferred planar structure of an sp carbon), an sp nitrogen in an MNAF may provide a 

Lewis Base reaction to a targeted Lewis acid, which would result in an adduct formation 

at a specific cage location. Evidence suggests that the nitrogen of the cage provides 

stability for the cluster as well. This is discussed further in Chapter VI. 

We hypothesized that each class of fullerenes requires specific energy profiles for 

optimal synthesis. It has been shown that temperature profiles have been established for 

empty cage fullerenes and nanotubes. Different types of fullerenes require different 

temperatures for optimized formation. Therefore, MNFs should require different energy 

profiles for their optimal synthesis. Data suggests that synthesis of our new endohedral 

fullerenes has been achieved as we introduce highly reactive atmospheres into the reactor 

to shift the plasma environment to energy more favorable to MNFs. Our results were 

characterized by HPLC for product distribution of MNFs and MALDI-TOF for new 

endohedral fullerenes. This topic is discussed further in Chapter VI. 
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Research Thrust III - Design, Fabrication, and Evaluation of a 

New Electric Arc Reactor 

The focus of this research is based on scale-up of equipment to use larger 

quantities of starting material in order to produce increased fullerene extract yields. There 

were two main focal points to achieve this scale-up. (1) The scale-up of graphite rod 

diameter to increase the amount of starting materials and (2) the design and evaluation of 

a newly designed reactor to overcome limitations of scaling-up on a traditional reactor. 

This new design is necessary to scale-up to larger rod diameter sizes due to the 

mechanical limitations following the scale-up of power required to vaporize the larger 

diameter rods. Our results were evaluated by HPLC to monitor the new reactor's ability 

to produce a variety of MNFs, OMFs, and MNAFS. This research has demonstrated our 

success in the design, fabrication, and evaluation of a new 2" generation reactor. 

Research Thrust IV - Green Chemistry and Recycling of 

Waste Nano Soot 

This research focus stems from our ability to scale-up larger quantities of starting 

materials. This scale-up resulted in much larger increases in yields, but larger quantities 

also resulted in increased cost of starting materials and larger amounts of waste. X-ray 

Photoelectron Spectroscopy (XPS), discussed in Chapter VIII (Figure 62), shows that 

waste soot from a 100% scandium oxide experiment contains only scandium, oxygen, 

and carbon. Therefore, the removal of carbon should be sufficient to retrieve the metal 

content for use in subsequent reactions. 

We hypothesized that removal of carbon from waste soot could be achieved using 

thermal oxidation. In this process, we used an oxidative atmosphere at elevated 
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temperatures to remove carbon by chemical conversion to carbon dioxide. This is 

liberated from the mixture and vented through a fume hood. The remaining material is 

predominantly SC2O3. 

Thermogravimetric Analysis (TGA) was used to determine the time and 

temperatures required to completely remove the carbon in an oxidative atmosphere for 

small (micro-scale) samples (e.g. < 50 mg). A muffle furnace was used to carry out bulk 

(macro-scale) sample (e.g. > 20 g) experiments followed by XPS to compare our 

oxidized product to the original waste soot and the commercial "virgin" metal oxide. 

Finally, graphite rods were packed with both virgin and recycled metal oxides and used 

to obtain fullerene extracts. Extracts were characterized using HPLC to compare fullerene 

extracts from 1st generation metal oxide versus our 2" generation recycled metal oxide 

material. 
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CHAPTER IV 

EXPERIMENTAL 

Equipment List 

High Performance Liquid Chromatography (HPLC) Information 

Our lab utilized HPLC for analysis of fullerene extracts to determine 

quantitatively and qualitatively the type and amount of each fullerene present in the 

extract. Our HPLC system uses an M-45 Waters reciprocating pump, a Model 500 

variable wavelength detector (Lab Alliance), a pyrenyl-ethyl (PYE, 10mm wide and 

250mm, Phenomenex). Integrations were performed with Logger Pro software from 

Vernier. The wavelength for detection of fullerenes was set at 360 nm. 

Matrix Assisted Laser Desorption Ionization - Time of Flight (MALDI-TOF) Information 

Matrix assisted laser desorption ionization - time of flight mass spectrometry 

technology is useful for determining the m/z value for each type of fullerene in our 

samples. The MALDI-TOF detector is more sensitive than that of the HPLC so some of 

the fullerene peaks at the UV detection limits can be found in the mass spectrum. Routine 

mass spectral analysis was performed using a Bruker Daltonics Microflex instrument. 

The sample plates are made of ground steel (Bruker). Carbon disulfide (see Table 5 for 

solvent details) was typically used to transfer fullerene samples to the stainless steel 

plates. The matrix, when used, was anthracene-l,8,9-triol (dithranol). 

Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA), using a TA Q500 instrument was used to 

investigate any changes in the mass of soot as a function of temperature and time under a 
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controlled atmosphere. Platinum pans were used for sample placement under air at 

temperature ranges from 22-1000°C. A heat-and-hold method was employed for our 

purposes. 

X-Ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) is a useful tool for analyzing elemental 

composition, empirical formula, electronic state, and chemical state within a material. For 

our purposes, we used this technique (in collaboration with the Navy Research Labs 

(NRL)) to determine elemental composition of soot samples as well as thermally oxidized 

samples of soot during the development of our metal oxide recovery method (CHAPTER 

VIII). Acquisition of data was obtained using a Perkin-Elmer 5400 X-Ray photoelectron 

spectrometer. 

Chemicals 

The synthesis of endohedral fullerenes requires various chemicals. The following 

tables (Table 1 - Table 5) include the chemical name, formula, vendor, part number, 

purity and/or size of the chemicals used in our lab. This includes: metal oxides, metals, 

nonmetals and salts, reactor gases, and solvents, respectively. 

Tablet. Metal Oxides 

Chemical 
Name 

Cerium Oxide 

Dysprosium 
Oxide 

Erbium Oxide 

Gadolinium 
Oxide 

Holmium 
Oxide 

Formula 

Ce0 2 

Dy203 

Er 20 3 

Gd203 

Ho203 

Vendor 

HEFA 

HEFA 

HEFA 

HEFA 

HEFA 

Part 
# 

CEO 
-4N 

DYO 
-4N 

ERO 
-4N 

GDO 
-4N 

HOO 
-4N 

Purity/Size 

99.99% 
325 mesh 
99.99% 

325 mesh 
99.99% 

325 mesh 
99.99% 

325 mesh 
99.99% 

325 mesh 
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Lanthanum 
Oxide 

Lutetium Oxide 

Neodymium 
Oxide 

Praseodymium 
Oxide 

Scandium Oxide 

Terbium Oxide 

Yttrium Oxide 

La203 

Lu 20 3 

Ny 2 0 3 

PreOn 

Sc203 

Tb407 

Y 2 0 3 

Sigma 
Aldrich 

HEFA 

HEFA 

HEFA 

HEFA 

HEFA 

HEFA 

L4000 

LUO-
4N 

NYO-
4N 

PRO-
4N 

sco-
4N 

TBO-
4N 

YO-4N 

99.99% 
325 

mesh 
99.99% 

325 
mesh 

99.99% 
325 

mesh 
99.99% 

325 
mesh 

99.99% 
325 

mesh 
99.99% 

325 
mesh 

99.99% 
325 

mesh 

Table 2. Metals 

Chemical 
Name 

Cerium 

Copper 

Dysprosium 

Erbium 

Gadolinium 

Holmium 

Scandium 

Yttrium 

Formula 

Ce 

Cu 

Dy 

Er 

Gd 

Ho 

Sc 

Y 

Vendor 

HEFA 

Cerac 

HEFA 

HEFA 

HEFA 

HEFA 

HEFA 

HEFA 

Part# 

CEMP-
3N 

C1133 

DYMP-
3N 

ERMP-
3N 

GDMP-
3N 

HOMP-
3N 

SCMP-
3N 

YMP-3N 

Purity/Size 

99.9% 
325 mesh 

99.5% 
325 mesh 

99.9% 
325 mesh 

99.9% 
325 mesh 

99.9% 
325 mesh 

99.9% 
325 mesh 

99.9% 
325 mesh 

99.9% 
325 mesh 
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Chemical 
Name 

Graphite 
Powder 

Graphite 
Rods 

Copper (II) 
Nitrate 

Ammonium 
Nitrate 

Formula 

C(S) 

C(S) 

Cu (N0 3 ) 2 

NH4NO3 

Vendor 

Carbone 
of 

America 

Carbone 
of 

America 

Fluka 

Sigma-
Aldrich 

Part# 

014145-
004 

AGKSP 
& 

UF4S 

UF4S 

61197 

A9642 

Purity/Size 

99.99% 
325 mesh 

99.9% 
(6" x 0.5") 

99.9% 
( 6 " x l " ) 
98-103% 

99.0% 

Table 4. Reactor Gases 

Chemical 
Name 

Helium 

Nitrogen 

Air 

Formula 

He 

N2 

N 2 , 0 2 , 
C 0 2 

Vendor 

Nordan 
Smith 

Nordan 
Smith 

Nordan 
Smith 

Part# 

UN 1046 

UN 1066 

UN1032 

Purity/Size 

Ultra High 
Purity 

Ultra High 
Purity 

Ultra High 
Purity 

Table 5. Solvents 

Chemical 
Name 

0- Xylene 

Toluene 

Carbon 
Disulfide 

Acetone 

Diethyl 
Ether 

Chloroform 

Formula 

C6H4(CH3)2 

C 6 H 5 CH 3 

CS2 

(CH 3) 2CO 

(CH 3 CH 2 ) 2 0 

CHC13 

Vendor 

Sigma-
Aldrich 

Sigma-
Aldrich 

Sigma-
Aldrich 

Sigma-
Aldrich 

BDH 

BDH 

Part# 

X I 0 4 0 

34866 

676918 

179124 

BDH1121 

BDH 1109 

Purity 

97% 

99 .9% 

99.9% 

99 .5% 

99.0% 

99 .8% 
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Procedures 

Electric-Arc Synthesis of Endohedral Fullerenes 

The electric-arc synthesis of fullerenes employs a custom designed Kratschmer 

Huffman (KH - type) arc reactor (Figure 9). First, a solid graphite cathode of varying 

length is inserted into the electrode sleeve of the reactor (i.e. cathode). A second graphite 

rod, six inches in length, is core drilled to approximately four inches using a lathe so that 

only a carbon shell remains. The inside of the shell is packed with the metal or metal 

oxide of choice, depending on which endohedral metal is targeted. Alternatively, this 

packed rod may also include additives that affect the yield and distribution and is placed 

in another electrode sleeve and serves as the anode. The reactor chamber is closed and 

sealed by vacuum, and the air is purged from the chamber. The chamber is filled with 

helium to create an inert atmosphere. This purge and fill technique is repeated two 

additional times for further removal of residual air. Water coolant is supplied to water 

jackets surrounding the chamber and electrodes. If air is used as an additive, the flow 

meter is set to obtain the desired pressure change as a function of time. An arc welder 

(Idealarc 600A) is used to apply a current to form a plasma between the two graphite 

electrodes (Figure 10). The portion of the graphite rod (e.g. the cathode) containing the 

packing material and surrounding graphite shell has been vaporized and condensed as 

soot in the chamber. Once the current is discontinued (switching the arc welder off), the 

chamber is purged and filled with helium and given approximately twenty minutes to 

cool. The chamber is opened and the soot content is harvested for the extraction process. 
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Figure 9. KH-type arc reactor used at USM 
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Current 
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\ 
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Figure 10. Diagram of the electric arc chamber during plasma formation 

Extraction of Fuller enes from Reactor Soot 

The soot collected from the reactor chamber (described in the previous section) 

contains a variety of components. This includes fullerenes, unreacted metals and metal 

oxides, and usually two or three other allotropes of carbon (e.g. amorphous, graphite, and 

nanotubes). Extraction of the fullerenes is performed by placing the soot in a glass beaker 

with approximately 100 to 300 mL of solvent (e.g. CS2 or xylene) to form a slurry, which 

is poured into a Buchner funnel attached to a vacuum flask (Figure 11) using #3 
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Whatman filter paper to remove the majority of the soot under vacuum (step 1). The 

filtrate is then poured through a PTFE membrane filter (< 1 urn pore size, Millipore) for 

removal of fine soot particles (step 2), as shown in Figure 12. Solvent from the filtrate is 

removed using a rotovap to produce solid samples of fullerene extract, which is washed 

with diethyl ether. 

Soot from chamber 

funnel — 

Buchner flask 

/ l 

i 

II 
i 

Fullerene ' 
Extract with 

iTrace soot 

w -0 - "i 

* * o » 

— filter paper 

Step l 

. ' ; s » 
to vacuum 

i v pump 

i\ Trace 

V — Soot 
* I Particles 

Figure 11. Vacuum filtration of reactor soot to remove fullerene extract 
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Dissolved 
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Extract 

Figure 12. Membrane filtration to remove trace soot particles 

HPLC Analysis of Fullerene Samples 

Each experiment is initially analyzed by high performance liquid chromatography 

(HPLC). This is a separation technique that uses a packed column (stationary phase) to 

separate, identify (from retention times), and quantify various compounds relative to each 

component in a mixture by integration of the chromatogram peaks. The stationary phase 

contains a chromatographic material that retains different compounds at different rates as 

they move through the packed column. The mobile phase moves the compounds through 

the column to the detector, often UV-Vis, in which the output results in peaks of different 

retention times and peak area, depending on the concentration and settings of the HPTC. 

The peak area of an HPLC is proportional to its relative abundance in the mixture. This 

technique is crucial in our research to determine product distribution. Figure 13 shows an 

example of a fullerene extract that contains several types of fullerenes with different 

retention times as well as peak areas. As shown, the dominant species are C6o and C7o-



These are considered contaminant fullerenes for our purposes. The large abundance of 

C6o and C70 makes selective synthesis of MNFs a worthwhile goal. 

520 

420 

320 

220 

120 

20 

Ceo 

i 2 4 

c70 

I J 
6 
I 

8 10 12 14 

Sc3N@C80 

/ 
/ 

16 18 2 ) 

Figure 13. Chromatogram of scandium fullerene extract 

MALDI-TOF Analysis of Fullerene Samples 

MALDI-TOF MS or matrix assisted laser desorption-time of flight mass 

spectrometry is another instrument used in the analysis of fullerenes. This technique 

utilizes a soft laser (usually a nitrogen laser) to vaporize and ionize typically large 

molecules (peptides, polymers, fullerenes, and other macromolecules). The detector of 

the mass spectrometer is sensitive to ions and monitors ions of the particular analyte that 

are ablated by the laser. The matrix is used to protect the analyte(s) from being destroyed 

during ablation. 

Most of our studies often do not require a matrix to assist the vaporization of 

fullerenes. However, dithranol is used when matrix is required. This instrument is useful 

to detect fullerenes which cannot be readily distinguished by HPLC, due to overlapping 

peaks, similar retention times, or the insufficient quantities for HPLC detection. Detected 
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metallofullerenes include MNFs, metallic nitride azafullerenes (MNAFs), and oxo-

metallic fullerenes (OMFs) (discussed in CHAPTER VI). MALDI-TOF MS is primarily 

used for qualitative rather than quantitative data, although the relative abundances of 

fullerenes are reflected using this method. HPLC is more reliable for quantitative data but 

MALDI-TOF MS overcomes the detection limits of HPLC. Figure 14 shows the 

separation of OMFs with HPLC (a), followed by several fraction collections of the 

Sc402@C8o OMF (b) and Sc403@C8o (c)). Figure 15 displays the MALDI-TOF mass 

spectra of OMFs at various air flow introductions into the reactor. The air flow 

introductions shown in the figure do not reflect MALDI - TOF conditions, which is 

under vacuum. They refer only to the reactor conditions that result in the fullerene extract 

analyzed by MALDI - TOF. 
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ure 14. (a) HPLC of OMFs, MNFs, and empty caged fullerenes; (b) HPLC after several fraction 

collections of Sc402@C8o; and (c) HPLC of Sc4O3@C80 after several fraction collections 
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Figure 15. MALDI-TOF of fullerene extract with various reactor conditions including (a) Sc4O2@C80 

at 0.2 torr air, (b) Sc4O2@C80at 3 torr air, and (c) Sc4O2@C80and Sc403@C8oat 18 torr air 
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CHAPTER V 

EFFECT OF CHEMICAL ADDITIVES ON FULLERENES 

Effect of Copper (Cu) on Scandium Experiments 

Introduction 

Since the discovery of MNFs, much effort has been placed into increasing their 

yield and purity12'14'15'33'97''1S Recent advances include the introduction of NH348 gas to 

the arc reactor chamber to suppress the empty cage yield and thereby increase MNF 

purity. However, efforts to achieve higher MNF purity resulted in a significant decrease 

of their milligram yield. 

In this study, a goal is to increase the overall mg yield of fullerene extract and 

MNFs. Although this will increase the amount of empty cage contaminant fullerenes, 

recent advances in our lab include a novel non-chromatographic separation of MNFs 

from the extract. This SAFA technique allows for empty cage contamination to be of 

little consequence. 

Our hypothesis is that solid additives to the packing material should affect the 

yield and product distribution of fullerene and MNF yield. Little success has been 

achieved in previous studies, such as the addition of CoO. A cost effective material, such 

as copper metal, is very attractive to this research since it decreases the amount of SC2O3 

used, which is very expensive. An overview of this process is shown in Figure 16. 
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Figure 16. Schematic overview of synthesizing Sc3N@C80 metallic nitride fullerenes produced in an 

electric-arc reactor ~ 

Experimental 

In each experiment, the graphite rods (from Carbone of America, Table 3) were 1 

inch in diameter and 6 inches long. Each rod was core drilled 4 inches deep using a 0.75 

inch diameter drill bit. The cored rods were packed with copper and Sc203 (-28 g) only. 

The control used a rod packed with 100% SC2O3. The reactor parameters include 220 

amps, 40 volts, 300 torr inside the chamber, dynamic ambient air flow that resulted in a 

pressure change of 6 torr/min and 12 torr/min for a nitrogen source and oxygen, and 

630mL/min of helium gas (ultra high purity tank from Nordan Smith's Welding Supplies) 

used as a buffer gas. Each experiment was repeated and plotted in triplicate in lieu of 

using error bars. After the electric arc process, each soot sample was extracted with 

xylenes and analyzed via HPLC for product distribution. The extract was dried and 

washed with diethyl ether prior to obtaining mg masses. 

Results and Discussion 

Copper is widely used as an electrical conductor. By adding copper into the 

packing material, we increased the conductivity of the anode, and this was demonstrated 

to have a beneficial effect on the fullerene extract yield. 
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6 torr/min air. The graphs below show the effects of copper on fullerene type, 

including C6o and Cyo, (Figure 17) as well as the Sc3N@C8o MNF at an ambient air flow 

responsible for a pressure change of 6 torr/min (Figure 18). 

Figure 17. Effect of Cu additive on fullerene type (% of C60and C70)' 

20 

16 -

12 -

1 mol Cu = 1 mol Sc 

Figure 18. Effect of Cu additive on fullerene type (% Sc3N@C80)
15 
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These graphs include two observations. (1) The C70 remains virtually constant 

throughout the addition of copper. (2) The C6oand Sc3N@Cgo show an inverse 

relationship. This inverse proportionality indicated that the C60 and Sc-MNF are related 

in some way that is not relevant to the formation of C70. Therefore, the optimization of 

the MNFs in this study corresponds to minimizing the C60 portion of the extract. This is a 

novel discovery since C60 generally dominates the fullerene extract. We have obtained a 

rich MNF extract with simultaneous suppression of C6o- This opens many questions into 

the unknown mechanism of fullerene formation. Perhaps the two types of molecules are 

related in their synthesis, but conditions in the plasma atmosphere favor one species over 

the other. However, without proper probing of the plasma, these questions remain 

unanswered for now and are not a focus of our reactor research and development. The 

mass of extract was also investigated for this study, and these results are shown in Figure 

19. 
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Figure 19. Effect of Cu additive on the milligrams produced of (a) extract, empty-cage fullerenes, and 

(b) Sc3N@C8o
15 

The data in the above graph (Figure 19(a)) shows one maxima at 67% Cu loading 

(-650 mg of extract). However, Figure 19(b) shows a local maximum of MNFs at 10% 

cupper loading (~35 mg), but the other components remain dominant in this region (e.g. 

C6o ~ 100 mg and C7o -50 mg). The second maximum of MNFs occurs at 67% (-55 mg), 
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which is still the lowest yielding fullerene of the extract. We can conclude that the Cu 

increases the overall fullerene yield by 3-4 times the value of the control rod (i.e. 100% 

SC2O3). The MNF maximum at 10% suggests we can increase the ratio of MNFs, but the 

empty cage components remain the dominant species. The MNF yield can be increased 

by factors of 2-3 with addition of 67% copper and 33% SC2O3 at 6 torr/min air. 

12 torr/min air. The same copper profiles for the 6 torr/min air addition were 

repeated for the addition of 12 torr/min of air to determine what effects resulted from the 

increased oxidizing atmosphere. All reactor parameters were comparable to the 6 torr/min 

air data. The results are shown below. The graphs below in Figure 20 and Figure 21 

display the effects of copper on the % MNFs (Sc3N@C78 and Sc3N@C8o, respectively) at 

12 torr/min air as an additive. A maximum occurs again at approximately 10% for both 

graphs. 
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CO 

Figure 20. Effect of copper on Sc3N@C78 (12 torr/min air) 

Figure 21. Effect of copper on Sc3N@CS0 (12 torr/min air)"9 
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However, the extract yield shows a new maximum of 50% for the 12 torr data (Figure 22) 

rather than the 67% maximum for the 6 torr data. 

o 

400 -, 

300 

200 i 

2 

100 

20 40 60 

% Cu (wt) 

80 100 

Figure 22. Effect of copper on extract yield (12 torr/min air) 

This shift in maximum indicated that the difference in air affects the interaction of 

Cu and Sc. We believe that increasing oxidizing conditions not only lowers the threshold 

for the maximum yield produced (i.e. from -600 mg to -350 mg extract), but also shifts 

this maximum to a lower percentage from the increase in demands for the copper to 

perhaps protect the fullerenes from oxidative damage. The purity of the MNFs remains 

selective at 10% despite the shift of the extract maximum. However, when the masses of 

MNFs were examined, the 10% maximum proved to be the lowest yielding (Figure 23 

and Figure 24). Thus, quality is traded for quantity under these conditions. 
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Figure 23. Effect of copper on Sc3N@C78 (mg)11 

40 -, 

Figure 24. Effect of copper on Sc3N@C80(mg)"9 
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Overall, copper metal is a cost effective metal that greatly improves the yield of 

fullerenes. We also believe there to be a "protective feature" of the copper to fullerene 

formation that results in a maximum shift to a lower percentage as we increase the 

amount of air into the plasma. At higher concentrations of oxygen, the copper interacts 

with the oxygen to form CuO, with the remaining copper to interact with the scandium 

oxide. Therefore, the shift of the maximum extract yield from 67% to 50% as a result of 

increasing air may be due to the reduced amount of copper available to aid in fullerene 

yield increases. Thus, after 50% Cu at 12 torr air, the copper is no longer able to increase 

the fullerene yield. 

The Effect of Copper Addition on Productivity 

Productivity, as defined by the quantity of fullerenes produced over a time period, 

has a significant role in the experiments in the previous section. Productivity is 

proportional to efficiency. If productivity is low for an optimal set of experimental 

parameters, the production may not be more efficient than a set of parameters that has 

low productivity. Therefore, we examined the burn times as a function of increasing 

copper to determine whether this optimization was efficient. The results are shown in 

Figure 25. 
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Figure 25. Effect of burn time on weight % copper loading " 

The graph shows that increasing copper causes an increase in burn time. 

However, when considering the 6 torr data, the 67% region of copper is -100 minutes, 

whereas the 0% copper is ~50 minutes. This is double the time, but the extract increase is 

4 times higher than the control experiment. The 12 torr data, with a 50% maximum, 

results in ~75 minutes of burn time and the same ~50 minutes of burn time for the 

control. The mg increase is 3 times higher than the control yield. Therefore, we can 

conclude that this process is productive and efficient. 

Our final observation of the copper studies involved determining how burn time 

affected each type of fullerene (mass and percentage of extract). The results are shown in 

Figure 26 on the next page. 

Cu(12 torr air/min) 

Cu (6 torr air/min) 
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Figure 26. Mass of fullerenes as a function of burn time for the 6 torr data (top left) and the 12 torr 

data (top right) and % fullerene type as a function of burn time for 6 torr (bottom left) and 12 torr 

(bottom right)119 

The graphs show that increasing the burn time under fairly low oxidative 

conditions (6 torr) is of no consequence to the mass produced (top left). There is, 

however, an inflection in the C6o and C7o curves, whereas the Sc3N@Cgo is approximately 

linear. This indicates that the longer burn times result in preference toward empty cage 

formation. The percentages (bottom left) of fullerenes indicate that the C7o and C2,, 

remain constant while the Cgo and Sc3N@Cso show an inverse relationship. This 

relationship is greatly exemplified under higher oxidative conditions (12 torr). Yet the 

other percentages of fullerenes remain constant even under high oxidation. The mass of 
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fullerenes at 12 torr/min air shows a yield maximum at ~ 90 minutes (as is the case for 

Ceo) before the fullerenes start to decay in the highly oxidative atmosphere. This 

maximum likely exists at the lower air introduction rate but the time required for decay 

may be much higher for this to occur. These results indicate two conclusions. (1) The C60 

and Sc3N@Cgo display competitive formation that is not exhibited by other types of 

fullerenes. The % C6o is inversely proportional to the % MNFs as burn time proceeds. (2) 

The oxidative atmosphere is favorable to yield until a certain burn time, in which the 

decay of all fullerenes overcomes their formation. The graphs involving percentages were 

generated using integration values from HPLC. The peaks that were integrated were 

consistent with known retention times for certain fullerenes. No elemental analysis was 

performed on these extracts since no unknown peaks were found in the HPLC. 

The Effect of Graphite Addition in Cu/Sc Mixtures 

We also evaluated a third ingredient into the copper/scandium rods, to determine 

whether graphite addition to cored rods proved valuable in this research. This involved a 

short study with varying ratios of the three ingredients. Our hypothesis was that the 

addition of graphite would also increase the fullerene extract yield with minimal effect to 

the product distribution. 

Table 6 shows the effect of varying the ratios of SC2O3, C, and Cu. Graphite has 

traditionally been packed with metal oxide powder to ensure the availability of carbon for 

fullerene cage formation. However, addition of extra carbon to the rod increases the 

resistance relative to a copper/metal oxide mixture. 

Table 6 also suggests that an increase in resistance from excessively added 

graphite (50% graphite) has a deleterious effect on the MNF yield (1%), despite the 
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increase in fullerene yield (367 mg). Only 4 mg of MNF is produced at this excessive 

50% carbon loading. In contrast, 31 and 40 mg of MNFs are produced with the lower 

25% and 33% graphite loadings. The percentage of MNFs in the extract are also much 

improved for the lower loadings of graphite. Relative to the highest carbon loading (1% 

MNF produced), the lower 25% and 33% graphite loadings permit a large jump to 15 and 

18% MNFs produced, respectively. 

Table 6. Effect of graphite on fullerene yields using Cu/Sc mixtures 

% Sc203 
(By Mass) 

25% 
50% 

33.3% 
25% 

% Carbon 
(By Mass) 

25% 
25% 

33.3% 
50% 

%Cu 
(By Mass) 

50% 
25% 

33.3% 
25% 

% MNF (of 
Fullerene 
Extract) 

6 
15 
18 
1 

Total Mass 
of Extract 

(mg) 
537 
203 
220 
367 

Total 
Mass of 

MNF (mg) 
31 
31 
40 
4 

Curing experiments were performed in a furnace containing 1" diameter packed 

rods that were cured for 18 hours under helium gas at 1100 °C. Each experiment was 

performed at 220 A, 40 V, 350 torr, and an ambient air flow resulting in a pressure 

change of 12 torr/min. 

Packed rods are typically placed in a furnace under an inert gas blanket to cure the 

packing materials. However, there are no publications to our knowledge on the effect of 

cure time versus MNF yield and extract. Our data suggests that uncured rods yield the 

lowest percent MNF yield in the extract. However, the mass of extract is significantly 

higher and thus the overall mass of MNFs produced is the highest in the uncured rods 

(Table 7). There is no known target weight or ceiling of a maximum amount of fullerenes 

which should be produced. A possible disadvantage to this uncured rod approach is the 

boost of empty-cage fullerenes also made. In the isolation strategy for purifying MNFs, 
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these contaminant fullerenes (e.g. C60, C70) must be removed. There is a trade-off 

between synthesizing more MNFs versus more empty-cage fullerenes. The data for 18 

hour and 72 hour furnace cure times in Table 7 indicate a slightly improved percent MNF 

yield, but with a slightly lower total mass of MNF produced. 

Table 7. Effect of furnace cure time on MNF yield 

Furnace 
Cure 
Time 
(hr) 

Uncured 
18 hr 
72hr 

% 
Sc203 

(By 
Mass) 
33.3% 
33.3% 
33.3% 

% 
Carbon 

(By 
Mass) 
33.3% 
33.3% 
33.3% 

%Cu 
(By 

Mass) 

33.3% 
33.3% 
33.3% 

% MNF 
(of 

Fullerene 
Extract) 

15 
18 
17 

Total 
Mass of 
Extract 

(mg) 
325 
220 
242 

Total Mass 
of MNF 

(mg) 

50 
40 
47 

These results support our hypothesis that additives do have an effect of the plasma 

(depending on quality and quantity of the additive), which in turn have an effect on the 

type and quantity of fullerene produced. These results also suggest that there are TWO 

sets of electric-arc reactor parameters - one set for maximizing empty-cage fullerenes 

(e.g. C60) and a second set of conditions for optimizing MNF yields. We have also 

concluded that curing the rods decrease the yield of MNFs, but slightly increases relative 

percentages for MNFs. However, this increase is negligible and results in low 

productivity (mg MNF per unit of time). 

The CAPTEAR Method - Effect of Copper Nitrate [Cu(N03)2] 

on Scandium Experiments 

Introduction 

In our efforts to increase the yield of fullerenes, we found that copper was an 

excellent additive to improve overall fullerene yield15 but at the expense of MNF 

selectivity. However, when experiments were performed under different oxidizing 
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conditions (6 and 12 torr/min air), there were notable differences in selectivity depending 

on burn time. The shorter burn times favored MNF formation and longer burns favored 

C6o formation. Another import aspect of the copper profile results was that air was used 

as the oxidative atmosphere. We hypothesized that MNF selectivity would still be 

possible under harsher oxidizing conditions and therefore, chose copper (II) nitrate as our 

additive. This compound has several advantages over other oxidizing agents. (1) We 

knew that copper would assist in increasing the yield. (2) Copper (II) nitrate is a solid at 

room temperature and could therefore decompose to introduce NOx gas vapor through the 

packing material rather than from a gas cylinder, which is more expensive and harder to 

control and quantify. (3) The NOx gas produced by combustion (refer to Figure 27 below) 

would not only provide the oxidizing atmosphere, but also a possible source of nitrogen 

for our MNFs. (4) Thermal decomposition occurs in two high temperature stages 

(identified at 350°C an 850°C). (5) Water and NOx are lost simultaneously and over all 

decomposition ranges. (6) The amount of copper (II) oxide produced is higher than 

anticipated and it is suggested that the copper oxide surface produced during the 

decomposition of copper nitrate reduces the NO2 to NO. (7) There was no known use of 

this compound (or other oxidizing agents) as an additive in previous literature. 

Cu(NO=)2-3H20 > CuOH-NQ3 + HN03 + 2H20 

2HN03 -» \%6~*- 2NOT"\ ^ Oxidizing 

N02 + (CuO) - » l " ~ - " ~ ' E n v i r o n m e n t 

Figure 27. Combustion scheme for the thermal decomposition of copper (II) nitrate trihydrate3 
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Experimental 

In each experiment, the graphite rods (from Carbone of America) were 1 inch in 

diameter and 6 inches long. Each rod was drilled 4 inches deep using a 0.75 inch 

diameter drill bit. The cored rods were packed with various ratios Cu(N03)»3H20 and 

SC2O3. The control experiments used 100% SC2O3. Reactor parameters include 220 amps, 

40 volts, 300 torr inside the chamber, 6 torr/min air for a nitrogen source and oxygen, 

and 630 ml/min (-21 torr/min) of helium gas (ultra high purity tank from Nordan Smith) 

used as a buffer gas. After the electric arc process, each soot sample was extracted with 

xylenes and analyzed via HPLC for product distribution. The extract was dried to a solid 

and washed with diethyl ether to obtain mg masses. MALDI-TOF was employed for 

verification of fullerenes produced. 

Results and Discussion 

Copper (II) nitrate proved not only to provide the desired oxidative atmosphere, 

but also created a highly energetic and reactive atmosphere that favored our targeted 

MNFs. Our lab coined this method as the CAPTEAR shift or Chemically Adjusting 

Plasma Temperature, Energy, And Reactivity. A scheme of how this process works is 

shown in Figure 28. Based on this diagram, the increased energy, temperature, and 

reactive environments should result in a high purity sample of MNFs with contaminant 

suppression of empty cage fullerenes that would otherwise dominate the extract. 
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Figure 28. Concept of using the CAPTEAR method to adjust and optimize the temperature, energy, 

and reactivity of the plasma environment to "tune" the type of fullerene produced 

The Cu(N03)2»3H20 study was performed in the same manner as the copper 

studies. The control rod was packed with 100% Sc2C>3 powder (325 mesh). All reactor 

parameters and gas additions were held constant while 5-10% increments of the 

Cu(N03)2»3H20 were added. Soot from each rod was extracted, followed by HPLC 

analysis to determine product distribution. The following graph (Figure 29) provides 

results from these studies. 
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Figure 29. Effect of Cu(N03)2o 3H20 on C60 and Sc3N@C8 

Just as the copper studies demonstrated, the copper (II) nitrate hydrate addition 

resulted in an inverse relationship between the C6o and Sc3N@Cgo. This indicates a 

competitive formation of the two molecules. Clearly, there must be complex kinetics that 

play a role in this "double maxima" graph. 

Results from copper studies revealed that C70 and other C211 species had little 

effect from the addition of copper. This also remains true for the copper (II) nitrate data 

except for one differentiation. The downward inflection experienced by C60 at 80% 

copper (II) nitrate loading is shared with the other fullerenes as well (Figure 30). Hence, 

we have finally created an atmosphere that was totally selective for MNFs and 

suppressive for all other fullerenes as shown in Figure 31. 
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Figure 30. Effect of Cu(N03)2» 3H20 on C70 and the higher C2n 
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Figure 31. HPLC of soot extract at 80 % weight Cu(N03)2 containing pure Sc3N@C80 (top) and the 

resulting mass spectrum (bottom)33 

Not only is there a region of MNF purity in the copper nitrate profiles, this region 

has one of the most favorable burn times as well. Recall that increasing copper resulted in 

increased burn times (Figure 26). Due to the increase in temperature, energy, and 

reactivity of the CAPTEAR method, the burn times actually shortened as the amount of 
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Cu(N03)2 increased. The comparison of burn times (or productivity) for the CAPTEAR 

method when compared to the copper addition burn times is shown in Figure 32. 

Figure 32. Weight % additive as a function of burn time for the CAPTEAR method (circles), the 6 

torr-air copper data (diamonds) and the 12 torr copper data (squares) 

As shown in the graph, the CAPTEAR method favors shorter burn times, which 

also favor high MNF purity. This clearly indicates that the CAPTEAR method is a novel 

method that favors both productivity and MNF purity by shifting the energetic 

environment to favor MNF production. Our CAPTEAR method not only produces a high 

% MNF (>99 %), but without a significant loss of mg yield and a short burn time, as 

shown in Figure 33. 
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Figure 33. mg of fullerene type versus burn time 

This graph demonstrates that there is little cost of yield for purity. In the 35-40 

minute region, our MNF yield ~ 16 mg is comparable with its yield at 100 minutes. 

Therefore our CAPTEAR approach has the best of purity, productivity, and yield. This is 

also the first known method to produce these targeted molecules under an oxidizing 

atmosphere. Most scientists in this field (including Dorn, Dunsch, Yang, Echegoyen, Cai, 

Duchamp, and Olmstead) until now, believed oxidation was deleterious to fullerene 

production and thus have never attempted such a feat from the norm. We also 

demonstrate that the % fullerenes at these low burn times greatly favor MNF purity, 

when compared to the other extract components (Figure 34). 
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Figure 34. % fullerene type versus burn time 

In conclusion, the CAPTEAR method has proven to be a novel method to 

selectively synthesize MNFs in high purity without much penalty to the yield. It is also, 

by far, the most productive method to synthesize these molecules and is the first method 

to synthesize fullerenes in an oxidizing atmosphere. 33 
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CHAPTER VI 

NEW ENDOHEDRAL FULLERENES 

This chapter focuses on two new classes of fullerenes. These molecules were 

discovered while attempting to scale-up the yield of MNFs. CHAPTER V introduced a 

new concept of producing fullerenes with targeted selectivity under an oxidizing 

environment (CAPTEAR). The CAPTEAR method was not only capable of selectively 

producing MNFs, but also was necessary to create these two new classes (metallic nitride 

azafullerenes (MNAFs)18 and oxo-metallic fullerenes (OMFs).47'120 

Metallic Nitride Azafullerenes (MNAFs) 

• 171-175 

Azafullerenes have been isolated and characterized " since 1995. Empty cage 

fullerenes (i.e. (Cs9N)2 ) have been used in thin film transistors. Recently, a new class 

of azafullerenes were discovered (MNAFs).127 MNAFs are endohedral fullerenes that 

have one or more nitrogens incorporated within the carbon cage. MNAFs have the 

generic formula M3N@CxNy, where "M" is any metal of the MNF family, "x" and "y" 

represent the number of carbons and nitrogens that make up the cage composition, 

respectively. Thus far, x + y has only been shown to be >80, as in the case of 

Sc3N@C79N. In addition to the favorable 80 atom cage size, data suggests that the 
1 78 17Q 

structure also favors having only one nitrogen in cage composition. ' Though aza-

fullerene chemistry is still a relatively new field, there remains great potential for 

structural diversity as well as applications. Changing a carbon to a heteroatom on a 

fullerene cage has the potential to (1) change the reactivity of the molecule and (2) serve 

as a particular linking site for functionalization.13 Figure 35 is an example of an MNAF, 

with the typical nitrogen substitution of one carbon atom. 
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Figure 35. Example of a metallic nitride azafullerene 

Selective Synthesis ofMNAFs Using CAPTEAR 

Our lab first found this new class while characterizing a mixed metal MNF extract 

of lanthanum and scandium. Our research was focused on these mixed metal MNFs to 

study separation methods for these mixed metal compounds. This extract should have 

included three C80 cage MNF species: LaSc2N@C80, La2ScN@C80, and Sc3N@C8o- The 

La3N@C8o would usually be a fourth MNF species, but this MNF has not been detected 

before on an 80 atom cage. Our first suspicion of the existence of the MNAF was evident, 

and serendipitous, while analyzing the Sc3N@C8o using MALDI-TOF. The mass 

differences of the MNF versus the MNAF is only 2 amu or in the case of the mass 

spectrum, 2 m/z units. The Sc-MNF has a m/z value of 1109 and the Sc-MNAF has a m/z 

value of 1111. Therefore, the MNAF was difficult to differentiate from the isotopic 

pattern of the MNF. Therefore, HPLC was used to remove the MNF to determine if the 

isotopic ratios of 1109 to 1111 changed in the mass spectrum. Figure 36 shows the mass 
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spectra of the extract containing the Sc-MNF and MNAF before and after HPLC fraction 

collection of the MNF. 

Sc3N@C8 0 

(1109) Sc3N@C79N 
(1111) 

Beginning 
Fullerene Extract 

Decrease of 
Sc3N@C80 

(1109) 

Sc3N@C79N 
(1111) 

After HPLC 
Separation 

z^AAsW^^^^ 
1100 1105 1110 1115 1120 1125 1130 

m/z 

Figure 36. Mass spectrum of (a) Sc-MNF and Sc-MNAF before HPLC fraction collection and (b) 

after HPLC fraction collection18 

If the 1111 m/z peak was just an isotope of 1109, then all the peaks in Figure 

36(b) would decrease simultaneously. However, since the 1109 m/x peak decreased and 

the 1111 m/z peak did not decrease as well, this data suggested that the 1111 m/z peak 

was Sc3N@C79N. 
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The preferential method for production of MNAFs involves the use of reactive 

gases (i.e. CAPTEAR method). We used copper (II) nitrate since this chemical is 

inexpensive and its use has been well established in our studies. This process is currently 

patent pending. Our investigations have shown that increasing the amount of reactive 

gases into the plasma chamber changes the product distribution to favor MNAFs over 

MNFs. Figure 37 shows the mass spectral data for the MNFs and MNAFs of a 

lanthanum/scandium based fullerene extract. 
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Figure 37. Mass spectra showing the effect of increasing Cu(N03)2 on La/Sc based MNFs and 

MNAFs18 

As shown in Figure 37, increasing copper (II) nitrate packing material for the arc 

synthesis of La2Sc@Cgo and La2Sc@C79N favors the MNAF at these highly oxidative 

conditions. Conversely, when only the traditional N2 gas introduction method was used, 

the MNAF did not appear in any of the extracts Figure 38. 
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Figure 38. Mass spectral data (using N2 as an additive) showing no evidence of MNAFs18 

Preferential Encapsulation and Stability of MNAFs 

Trimetallic nitride clusters (from group IIIB (Sc,Y,La) and 4f-block metals 

(Lu,Er,Gd)) show preference for MNF cage sizes (Cgo, Csg, C96) depending on their ionic 

radius.1' I31~13 After discovering the MNAFs, several MNF metals were tested for their 

ability to synthesize the MNAFs. Mixed metal (heterometallic) MNFs and homometallic 

MNF clusters (e.g. La3N) that would ordinarily prefer large cage sizes (e.g. Cgg and C%) 

were analyzed via MALDI-TOF to determine if the nitrogen provided stabilization for the 

cluster in an atypical cage size. The mass spectral data is shown in Figure 39. 
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Figure 39. Mass spectra of mixed metal MNFs and MNAFs that show preference to MNAFs (b,c, and 

e) and MNAFs of smaller cage sizes that would otherwise prefer larger cages for their MNF analogs 

(d and f)lM 

The mass spectra show a tendency for the large clusters in the MNFs to have 

smaller m/z values than the MNAF analogs. Although mass spectroscopy doesn't rely on 

peak area to be a true comparison of relative ratios, the peak heights are indicators of 

which species is dominant. The propensity for the MNF cluster to prefer larger cage 

sizes, based on their ionic radii, is shown in Figure 40. 
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Figure 40. Overview of preferred cages for M3N clusters with C80 (blue), C8s (green), and C96 

(yellow). The preferred 80 atom cage for La3N@C79N is circled18 

As shown, the Cso cage is preferred for metals ranging from lutetium to 

gadolinium, followed by the C$,% cage for neodymium to cerium, and the lanthanum MNF 

prefers the C96 cage. However, the C79N cage provides stability that supercedes the 

La3N@C%. This is further demonstrated in Figure 41, in which the MNAF of La3N is 

detected without any trace of the corresponding MNF. In addition, the La3N@C79N has a 

larger peak height than La3N@C96 and La3N@Cio4. The base peak in these mass spectra 

is C60 and the relative intensities are not shown since the MNFs and MNAFs needed 

resolution enhancement. The isotopic patterns typically show a "staircase" pattern in 

which the [M]+ peak is the most intense peak and every following peak is smaller. 

Therefore, the magnitude of the MNAFs can be seen in the mass spectra by comparison 

ofthe[M]2+peak. 
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Figure 41. MALDI mass spectral data of soot extract obtained under CAPTEAR conditions18 

Our data concerning MNAFs suggests that these molecules are selectively 

synthesized under oxidizing conditions (i.e. CAPTEAR method). The nitrogen 

heteroatom provides reactivity in fullerene functionalization that was not possible with 

the MNFs. The MNAFs also provide stabilization of the cluster and has enabled many 

large clusters to favor smaller cage sizes than their MNF analogs. Currently, the yields of 

these new molecules have not been obtained due to a lack of separation method. 

However, collaboration efforts are showing promise to further characterize these 

compounds through molecular modeling. This class of fullerenes should provide the 

scientific community with fullerene characterization and functionalization that has not yet 

been possible. 
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Oxo-Metallic Fullerenes (OMFs) 

Oxo-metallic fullerenes (OMFs) are another new class of fullerenes discovered by 

our lab. These molecules have the generic formula MxOy@Cn, where "M" represents a 

class of metals in the IIIB or 4-f block, "x" and "y" refer to the number of metal and 

oxygen atoms encapsulated in the fullerene cage, and "n" refers to the number of carbon 

atoms in the fullerene cage. Thus far, only two known OMFs have been isolated, 

Sc402@C8o'2° and Sc403@Cgo- These molecules are the first to encpsulate more than 5 

atoms in a Cso cage and are one of the two known classes (OMFs and MNAFs) to be 

synthesized preferebly in an oxidizing atmosphere. In this section, the isolation, 

identification, and characterization of this new class of endohedral fullerenes is 

discussed. 

Synthesis, Isolation, and Characterization ofSc402@Cso and Sc40i@Cgo 

The CAPTEAR method has revealed that targeted fullerenes can be selectively 

synthesized, and has also resulted in the discovery of this class of fullerenes. The OMFs 

first appeared as a mere "blip" on the HPLC chromatograms, while using CAPTEAR to 

isolate MNFs. Since these peaks were currently unidentified, our lab utilized the SAFA 

technique1 to simplify the mixture of fullerenes by removing a large portion of empty 

cage fullerenes. Diamino silica gel was used for the SAFA process for approximtely two 

hours followed by several HPLC fraction collections (as shown in Figure 42). 
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Figure 42. HPLC of (a) the extract containing OMFs, (b) fraction collection of Sc4O2@C80 and (c) 

fraction collection of Sc4O3@C80
34'no 

After sufficient quantities (e.g. 50-100 |ag) were obtained from fraction 

collection, samples were sent for crystallization to the University of California - Davis to 

obtain crystal structures. MALDI-TOF analysis was used to determine the m/z values and 

isotope patterns. The resultant m/z values were 1172 and 1188. After deliberation on the 

possibilities, candidate formulas were Sc402C8o and Sc403C8o. The "@" symbol was left 

out of the previous statement since (at that time) we did not know whether the cluster was 

endohedral or exohedral. Therefore, isotope patterns (Figure 43) were compared to the 
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theoretical patterns and were found to be consistent with the proposed formulas. The peak 

after 1100 is 1109, which is contamination from the Sc3N@Cgo-

(a) Experimental (C) Experimental 

(b) Theoretical 

1500 m / z 

Figure 43. MALDI of (a) Sc402C8o with isotope pattern and (b) comparison theoretical isotope 

pattern; and (c) MALDI of SC4O3Q0 with isotope pattern and (d) comparison isotope pattern34 'n 

High resolution mass spectral experiments were also performed on several 

fullerenes to compare m/z values with theoretical values. The values are shown in Table 

8. The experimental versus theoretical values suggest reasonable error. 
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Table 8. High resolution mass spectral data for C60, C70, Sc3N@C80, and both OMFs 

Fullerene 

C60 

C70 

SC 3NC so 

Sc 4O2C80 

SC 4O3C go 

Experimental 

719.99940 
721.00276 
722.00605 

839.99943 
841.00262 
842.00619 

1108.87029 
1109.87357 
1110.87766 

1171.81296 
1172.81650 
1173.81966 

1187.80762 
1188.81099 
1189.81438 

Theoretical 

719.99945 
721.00281 
722.00616 

839.99945 
841.00281 
842.00616 

1108.87026 
1109.87360 
1110.87696 

1171.81292 
1172.81628 
1173.81963 

1187.80784 
1188.81119 
1189.81454 

Error 

78ppb 

28ppb 

29 ppb 

36 ppb 

100 ppb 

To isolate the variables that contribute to the formation of these molecules, an 

array of experiments were done using reactor R&D techniques. Table 9 shows the effect 

of several additives on the mg yields and percentages of C60, C70, and Sc402@Cso. The 

data suggests that CAPTEAR is necessary to synthesize the OMFs. 
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Table 9. Identification of key variables and comparison of soot extracts' 

Wt% Additive to 
Sc203 

Air 
(torr/min) 

mgC60 
mg 

C70 

mg 
Sc402@ 

Cso 

% C60 %c 7 0 

% 
Sc3N@ 

Cso 

% Sc402 

@c8 0 

Control Rod (Sc203 + Air) 

No Additive 0.6 588 225 0 65 25 1.8 0 

Effect of Increasing Cu 

33% Cu 

50% Cu 

67% Cu 

2 

2 

2 

523 

254 

214 

201 

85 

73 

0 

0 

0 

65 

70 

69 

25 

23 

23 

2.0 

0.98 

1.8 

0 

0 

0 

Effect of Increasing Air 

67% Cu 

67% Cu 

67% Cu 

2 

6 

12 

214 

137 

57 

73 

47 

27 

0 

0.016 

0.11 

69 

68 

59 

23 

23 

28 

1.8 

2.0 

5.2 

0 

0.0081 

0.11 

Effect oflncreasing CAPTEAR 

No Additive 

33% Cu 

33%Cu(N03)2 

50% Cu(N03)2 

80%Cu(NO3)2 

0.6 

0.6 

0.6 

0.6 

0.6 

588 

421 

222 

194 

1.5 

225 

146 

91 

83 

5.3 

0 

0 

0.9 

2.4 

9.1 

65 

69 

63 

59 

1.3 

25 

24 

26 

25 

4.4 

1.8 

1.0 

3.6 

5.7 

76 

0 

0 

0.25 

0.75 

7.6 

Optimization of CAPTEAR+ Air 

80%Cu(NO3)2 

80%Cu(NO3)2 

80%Cu(NO3)2 

80%Cu(NO3)2 

0.1 

0.2 

0.6 

6 

20 

15 

1.5 

1.0 

55 

31 

5.3 

1.7 

15 

19 

9.1 

0.56 

11 

9.5 

1.3 

4.2 

31 

19 

4.4 

7.5 

54 

67 

76 

82 

8.8 

12 

7.6 

2.5 

The table above does not include the Sc403@Cso due to its requirements for 

synthesis. The data table utilizes air up to 6 torr/min, but according to Figure 44, 

Sc4O3@C80 requires at least 18 torr/min of air just to obtain a peak in the mass spectrum. 
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Figure 44. Effect of air using CAPTEAR method on the formation of OMFs 
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The researchers at Cal-Davis successfully obtained X-ray crystallographic data 

using Ni-porphyrin co-crystallizers to determine the structure of our OMFs, confirming 

that the clusters were, in fact, endohedral to the fullerene cage. Figure 45 and Figure 46 

show the crystal structures of Sc4C>2@C8o and the endohedral cluster of the Sc402@C8o 

molecule, respectively. LDI has not been performed on the crystals, only the HPLC 

fraction collected samples. 
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Figure 45. Crystal structure of Sc4O2@C80
12 

Figure 46. Endohedral cluster of the Sc4O2@C80 molecule 

The next two figures (Figure 47 and Figure 48) show the Sc403@C 

corresponding endohedral cluster, respectively. 
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Figure 47. Crystal Structure of Sc403@C8o 

Figure 48. Endohedral cluster of the Sc403@C8o molecule 

The synthesis of OMFs has only been possible by the use of the CAPTEAR 

method. Since most researchers have believed that reducing atmospheres were required 

for fullerene synthesis, these molecules have only just began to take notice in the 

scientific community. Therefore, researchers will soon be able to determine their 

structural and physical properties, which will be valuable to science and technology. 
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CHAPTER VII 

DESIGN, FABRICATION, AND EVALUATION OF A NEW ELECTRIC-ARC 

REACTOR 

Limitations of Traditional Electric-Arc Reactors 

The electric arc method, as previously stated, is one of the most popular and 

efficient methods for generating fullerenes. Our lab utilizes this method for all fullerene 

studies.44 The schematic for our reactor is shown below in Figure 49. 

Solid Graphite Plasma 
Cathode 

Water Out 
Vacuum pump m 

Packed Graphite 
Anode 

To welder 

Stepping motor 
(for mobile cathode) Cathode flange 1 7 Water jacket 

Anode flange 

Figure 49. KH-Type reactor used at USM15 

This reactor was assembled and available for use in June 2006. Since then, this 

reactor has undergone several modifications to accommodate sample demands. This 

includes two new stepping motors (more power and efficiency), water jackets added to 

the cathode and anode flange (to reduce overheating of the flanges), larger diameter 

electrode cables to reduce overheating and increase the maximum electrical current 

capabilities, as well as designing new maintenance protocols to maintain the optimum 
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working condition of the reactor. However, several drawbacks remained, and these flaws 

required designing a new reactor. 

Thus far, the modifications described in the above paragraph have allowed the 

scale up from 0.5 inch (-1.3 cm) to 1.0 inch diameter (-2.5 cm) graphite rods. However, 

on average, the scale up from 0.5 inch to 1 inch diameter requires a minimum of double 

the current (i.e. 120 amps for 0.5 inch and 240 amps for 1 inch diameter). The current is 

adjusted to maintain reasonable experimental times (i.e. l-2hr) and to ensure vaporization 

of the graphite and packing materials. This large increase in power results in a generation 

of extra heat from the plasma and electrodes. Since the surface area is unchanged the 

water coolant is at a constant flow rate, the extra power increases the internal plasma 

temperature as well as the reactor components. Table 10 shows the external flange 

temperatures for given currents at 45 minutes after beginning an experiment. Each 

temperature was taken manually using a common mercury thermometer attached to the 

flange. 

Table 10. External flange temperatures of the traditional reactor for different electrical currents 

Current 

External 
Flange 

Temperature 
at 45 min 

120 A 

115°C 

160 A 

130°C 

220 A 

189°C 

260A 

205°C 

The data in Table 10 (previous to the addition of water jackets to the flanges) 

shows a continual increase in the external flange temperature as the current increases. 

Thus, scaling up to 220 or more amps for long periods of time (i.e. >1 month) causes 

warping of the flanges from heat damage and the electrode components. Realizing the 
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upper limitations of the reactor involved damaging and replacing expensive mechanical 

parts. Hence, the previously mentioned modifications were implemented to maintain this 

scalability. Despite best efforts to increase the functionality of the reactor, the 

modifications only increased the time intervals between replacing heat damaged 

components. The water jacketed flanges have allowed for the temperatures from Table 10 

to maintain close to that of room temperature, but the electrode upgrades have only made 

it possible to allow for a continuous burn time at approximately 280 amps as the upper 

limit. However, when highly dense packing materials (copper, 8.96 g/cm ; cobalt, 8.90 

g/cm ; and other free metals) and thicker graphite shells (i.e. > 0.3 cm) are used to obtain 

high extract yields and reasonable experimental times, these experiments required much 

more electrical current than 280 amps. Figure 50 shows some examples of current 

requirements for different packing material recipes and as well as different graphite 

thickness to maintain desired experimental times. An estimation based on the data below 

shows that the current required to maintain experimental times depends on quality and 

quantity of packing materials and the thickness of the shell. To maintain the desired 

experimental times, the equation that fits most circumstances is shown in equation 7.1, 

where / is current, Espm is the vaporization energy required to vaporize the shell and 

packing material and "x" is an undetermined proportionality constant in units of( 

amps/kJ). More data is needed to determine the value of "x." 

(/ = x(Espm)) equation 7.1 
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0.3 cm graphitethickness 

0.8 cm graphitethickness 

Figure 50. Approximate currents used to obtain experimental times between 50-60 minutes"9 

The purpose of changing the graphite thickness is to find the optimum thickness 

for product distribution and extract yield prior to attempting an additive study. In general, 

the thickness of the graphite shell is directly proportional to the fullerene extract yield," 

but this depends on the packing material quality. Some volatile packing materials yield 

better results with smaller shell sizes, although full studies with adequate statistical data 

have not been evaluated in our lab at this time due to limited reactor capabilities to obtain 

more than three shell thickness sizes. This evidence suggests a need for a newly designed 

reactor that is capable of using higher currents and better coolant capabilities. 

Another less important flaw (for scientific purposes) in the traditional design is 

the ergonomic features. However, user friendly features on many technological 
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improvements have allowed for better productivity and less experimental error. Thus, 

ergonomic improvements described in the following section allow for the user to 

maintain the reactor parameters more precisely and with a less probability of error during 

the experiment as well as the sample collection process. 

The traditional reactor design includes two unfavorable features that are generally 

noticeable only to the reactor technician after several experiments. The first design flaw 

is the stepping motor that is used to move the solid graphite rod through the reactor 

chamber as the packed graphite rod is consumed to maintain the gap voltage. The plasma 

of the reactor is considered to be somewhat chaotic in the sense that reactor parameters 

are difficult to control. The voltage readings vary by approximately 5-7 volts due to the 

movement of the plasma (rotationally between rods) and the non-uniform vaporization 

rate of the graphite rods. The average voltage is close to the desired voltage but this 

involves constant in-and-out movement of the motorized arm. Figure 51 shows an 

example of this overall movement throughout the experiment. 
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Figure 51. Reactor schemes (a) at the beginning of an experiment and (b) after several minutes of 

experimental burn time119 

In Figure 51, the packed portion of the rod has been consumed into soot on the 

walls of the chamber, and has somewhat of a jagged shape. Although the task at hand 

ultimately gets accomplished, the motorized arm component could be responsible for 

some error when considering the mechanical limitations of the variation in gap voltage 

during the experiments. Another flawed component relates to both the stepping motor 

and the overheating issues discussed earlier. The electrode arm connected to the stepping 

motor was previously cooled with small water jackets inside the steel arm. Despite the 

coolant, the arm produced large amounts of heat (>200°C) at the higher currents. This 

heat caused the metal of the mechanical arm to expand when in use and contract after 
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being cooled. Not only did this cause warping over 2 to 3 months of use, but also put 

more strain on the motor as the heat expanded the tubular steel. The strain caused the 

motor to wear out faster and slowing of the solid rod linear movement and its ability to 

maintain a constant gap voltage (i.e. the linear movement of the solid cathode would be 

halted for 30 seconds to 1 minute time periods while the plasma consumed the anode, 

which caused a larger gap between the rods and thus a larger voltage). These time lapses 

caused undesired voltage variations (± 5 to 7 volts) and uneven surface vaporization and 

resulted in the jagged edges of the cathode (Figure 51 (b)). Thus, electrode coolant and 

mechanical motor improvements was one other focus in our new reactor design. 

As mentioned above, there are two ergonomic flaws in the traditional reactor 

design. The stepping motor has speed issues as well as the electrode heating problem. 

The second ergonomic feature is the sample collection. After the experiment is complete 

and sufficient time has elapsed to cool the steel components, the soot must be collected 

by removing the right side flange (refer again to Figure 49) and sweeping the soot from 

the inside of the reactor into a sample collection vessel with a large funnel. A diagram of 

this collection method is shown in Figure 52. 
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Figure 52. Diagram of soot collection method119 

The "lost soot" refers to the soot sample amount that is lost from the inefficiency 

of this method. This collected amount is only estimated since it is not reasonably possible 

to obtain the actual mass that dissipates. However, the soot particles generally have a 

very low density and easily float through the air and attach to the HEPA filters in the lab. 

This amount is perhaps negligible but may represent several grams after sweeping the 

chamber 5-10 times. This is evident by the amount of waste disposal when replacing the 

lab filters. The last drawback with this chamber design is the light source from the lab's 

ceiling does not provide adequate visualization of the chamber to identify when all 

particulates have been removed. Therefore, an external light source has to be used every 

time the chamber is removed of soot. 

With all factors considered, there were some flaws that allowed for a scale up of 

the rod diameter size from 0.5 inch to 1 inch, but with limitations in the electrical 
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components from overheating as well as the ergonomic limitations that could contribute 

to systematic error. Therefore, these limitations inspired a newly designed reactor that 

would overcome these issues and produce larger quantities a better statistical sample 

representation. 

Advantages of a Newly Designed Electric-Arc Reactor 

The implementation of a new design has been a necessary tool to enable our lab to 

obtain better representative analytical samples as well as allowing the scale up process to 

be of little consequence to the reactor machinery. For example, larger samples sizes allow 

for better statistically favorable samples, durability allows for less down time for 

maintenance, and the ergonomic improvements allow for less error due to sample loss 

and better accuracy (such as the mechanical arm speed that maintains more precise gap 

voltage averages). 

The first improvement with this new design involved a scale - up of the mobile, 

motor driven arm. The traditional electrode arm was 1.3cm (0.5 inches) in diameter, 

which limited coolant flow through the electrode. The electrodes, being directly exposed 

to the electrical current flow external to the reactor chamber and internally exposed to the 

plasma arc, have shown the most propensities to absorb heat. Thus, in order to scale up 

the electrical current, the first idea for the electrodes was to increase the diameter of the 

steel tubes to allow for larger amounts of coolant flow. In collaboration with a machinist 

(Jim Bridges, USM), the decision was made to increase its diameter from 1.25 cm (0.5 

in)to 5.0 cm (2 inches). With this diameter, the coolant flow covers a much larger surface 

area and the increase in coolant volume enables the heat to be dissipated more efficiently. 

Another addition to the electrode was a coolant upgrade. The coolant used previously was 
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water. However, this new reactor design utilizes ethylene glycol as a coolant that is 

recycled through an industrial chiller. This enables our experiments to use chilled fluid 

(<0°C), rather than room temperature tap water (~22°C) as a coolant through the 

electrodes. An example of this set up is shown in Figure 53. 

Chilled Electrode 
Arm (Mobile) 

Chiller 
;(using EthyleneGlycol) 

Chilled Electrode 
Arm (Fixed) 

Circulating 
CoolantLines 

Figure 53. Scheme of electrode chiller addition to the new reactor 

The chiller in the above figure not only increases the capacity for heat (i.e. the 

ability to utilize more electrical current and the heat generated as an electrical byproduct), 

but also allows our lab to recycle the fluid, which reduces water waste and ultimately the 

production costs. The traditional design used water that was sent to drain rather than 

being reused. Therefore, this new design enables better cooling capabilities while 

offering more production efficiency. 

The next component that required modification is the reactor chamber and 

flanges. The traditional design lacked the coolant capacity needed for scale up past 280 

amps. This was due to the chamber volume (21.9 L) being unable to dissipate heat over a 
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large surface area as well as the lack of water jackets on the side flanges that were easily 

warped by excess heat. The new reactor design is shown in Figure 54 and Figure 55. 
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Figure 54. Slice diagram of the new reactor chamber with electrodes 
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Figure 55. Scheme of new reactor design with dimension measurements (frontal view) 

The new reactor has several advantages over the traditional design. First, the 

chamber volume is much bigger (53 L) as compared to the traditional reactor (22L). 

Since the volume of the new design is ~2 times the volume of the old design, we also 

doubled the water jacket thickness (from 1.25 cm to 3 cm). However, the electrodes of 

the old design were responsible for the most heating problems so we increased the 

diameter by a factor of 6 (from 1.25 cm to 7.5 cm). Thus, the equations for these scale-up 

features are shown below in equations 7.2, 7.3, and 7.4. Vtc is the volume of the 

traditional reactor chamber, Vnc is the volume of the new chamber; Ttwj is the thickness of 

the traditional water jackets, Tnwj is the new water jacket thickness, dte is the diameter of 

the traditional electrode tubes, and dne is the diameter of the new electrode tubes. 

(2Vtc = Vnc) equation 7.2 
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(2TtWj = Tnwj) equation 7.3 

(4dte = dne) equation 7.4 

This allows for a better heat distribution and also give the plasma between 6" and 

8" (15 -20 cm) of clearance around the electrodes. Another advantage is having the entire 

chamber surrounded by water jackets. There is only one flange, which lessens the 

possibility of unwanted air leaks. This flange also will have a water jacket and is 

therefore less likely to warp. Also important is that the electrodes are now attached 

through the chamber and thus through a water jacket, which will be able to handle the 

heat produced by high current. 

The ergonomic features discussed in the previous section have also been 

addressed in this new chamber design. The funnel shaped sample recover port allows the 

user to sweep in a downward motion rather than sideways. The sample recovery port has 

an air sealed cap to maintain atmospheric gas control during the burn, but is easily 

removed and replaced by the sample collection vessel during the recovery process. 

Therefore, less sample is lost because the downward sweeping motion is assisted by 

gravity and the funnel shaped chamber directly collects sample rather than the indirect 

method of the traditional reactor (which uses an external funnel). The other ergonomic 

improvement is the linear actuator motor. This new motor is more powerful and adjusted 

with a faster linear in-and-out rate (i.e. the mobile arm's linear movement is faster and 

able to maintain the desired gap between the graphite electrodes). Therefore, the gap 

voltage maintains the desired settings with little or no variance. The old motor varied 

between 5-7 volts of the desired potential but the new motor only varies approximately 1-

2 volts. 
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The gas delivery system for the new reactor is more efficient as well. The 

traditional reactor has a gas port around the anode that ensures that the gas enters the 

chamber and not directly into the plasma. This new system involves a tube with a pinhole 

that can direct gas or vapor additives directly into the plasma. Since the tube is connected 

though the inside of the mobile cathode tube, its relative position to the plasma remains 

constant. This tube is also threaded, and thus interchangeable. This allows different gas 

fittings for positioning, splitting, and maintenance. 

The last new feature includes three access ports through the top of the flange 

(Figure 56) for probe analysis and additive introduction. These ports are able to 

accommodate a temperature probe for plasma temperature and electron density 

measurements, a fiber optic probe for emission spectroscopy, and addition of plasma 

additives. Thus far, the temperature probe has been the only component used. This is a 

standard thermocouple temperature probe that is connected to a digital temperature gauge 

purchased from Fisher. 
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Available access ports 

Lid Handle 

Figure 56. Top view of the new reactor lid with plasma accessory points136 

The dimensions of this new reactor design are more compact than the traditional 

reactor and could, therefore, fit within a traditional fume hood. Soot loss is diminished by 

the funnel collection feature that allows the soot to be swept to the bottom of the chamber 

and out of a tube with a threaded, vacuum-sealed cap. Commercialization of our new 

reactor is not a focus. 

Evaluation and of a New Electric-Arc Reactor 

This reactor fabrication was complete in the summer of 2007. Since then, several 

types of MNFs have been synthesized, as well as OMFs and MNAFs. Parameters have 

been established (e.g. current, voltage, pressure) and additives have been tested for 

product distribution and yield (i.e. Copper and copper (II) nitrate). Our reactors are now 

noted as the a-reactor (for the traditional reactor) and (3-reactor (for the newly designed 

reactor). Figure 57 is an HPLC of a 100% SC2O3 experiment on the (3-reactor. This 

chromatogram is similar to what is expected from the a-reactor under the same 
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conditions. Thus, the (3-reactor is capable of producing similar arrays of fullerene 

products. 
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Figure 57. HPLC of a scandium based fullerene extract: 100% Sc203, no additives, 1 torr/min air; 

HPLC: 50uJ, 0.5 mL/min, PYE, 360 nm79 

Using Cu(NC>3)2 as an additive, the p-reactor suggests that the CAPTEAR method 

is independent of different reactors. The following chromatogram in Figure 58 shows 

Er3N@Cgo in high purity using the CAPTEAR method. This experiment required 260 

amps of current, which is unfavorable to the electrical capacity of the a-reactor. 

However, this experiment indicated no external heating problems that would otherwise be 

a common feature of the a-reactor. 
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Figure 58. HPLC of an erbium based fullerene extract: 90% Er203 ,10% Cu(N03)2, 6 torr/min air; 

HPLC: 50ul, 1.0 mL/min, PYE, 360 nm" 

The chromatogram above suggests than the (3-reactor is cable of synthesizing rare 

earth MNFs using the CAPRTEAR method to obtain high purity extracts without the 

heating problems associated with the a-reactor. The large peak at ~3 minutes is toluene, 

the mobile phase. 

Mixed metal MNFs were synthesized on the P-reactor as well. In general, the 

LaSc extract generally favors the Sc-MNF over the LaSc-MNF. The chromatogram in 

Figure 59 suggests that La2Sc@C8ois the dominant MNF. 
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Figure 59. HPLC of a lanthanum/scandium based fullerene extract: 65% La203, 25% Sc203, 10% 

Cu(N03)21 torr/min air; HPLC: 50fil, 0.5 mL/min, PYE, 360 nm" 

This experiment utilized the CAPTEAR method, which is likely to be responsible 

for the shift to the mixed metal MNF. However, this chromatogram is yet another 

example of the versatility of the P-reactor. 

We conclude that the new reactor design is capable of synthesizing a wide range 

of fullerene products with and without the CAPTEAR method. Thus, the new features did 

not result in a loss of efficient or effective production. 

The heating problems that occurred with the a-reactor have not occurred with the 

P-reactor. Therefore, our design has been successful in eliminating scale up limitations. 

Thus far, the P-reactor has used currents as high as 420 amps without mechanical 

malfunction! Flange temperature measurements are shown below in Table 11. 
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Table 11. External flange temperatures of the Beta-reactor for different electrical currents119 

Current 

External 
Flange 

Temperature 
at 45 min 

120 A 

28°C 

160A 

29°C 

220 A 

32°C 

3 00 A 

58°C 

3 60 A 

70°C 

400A 

112°C 

As shown in the table, external heat is no longer a factor over a large array of 

currents. This suggests that the P-reactor is much more durable than the a-reactor and 

should therefore require less maintenance and/or modification. Many experiments have 

been performed using thicker carbon shells (i.e. up to 0.95 cm) with high percentages of 

copper metal (>67%), while still maintaining the optimal experimental times (50-60 min). 

Recall that Figure 50 suggests that these parameters are unattainable using the a-reactor. 

This requires current ranges above 300 amps, but the data in Table 11 shows that the p-

reactor is capable of using this electrical current range without consequence to the 

mechanical integrity. 

Scaling-up of yield was also a primary goal of the p-reactor design. As 

demonstrated, the new features allow for a higher electrical current capacity. The typical 

carbon shell thickness used is 0.95 cm. This allows extract yields to be much higher than 

what the a-reactor would allow. To date, yields as high as -700 mg of extract for one 

experiment have been achieved using the 0.95 cm carbon shell with 100% SC2O3 (380 

amps).137 The a-reactor, which was only capable of using up to 0.8 cm shell thickness, 

could only produce -250 mg using the same recipe (240 amps). The 0.3 cm shell 

thickness was capable of-180 mg at a safer and lower current of 220 amps. 

In conclusion, our new reactor (P-reactor) is sufficient for use with much higher 

currents and a larger array of parameters (i.e. shell thickness and/or additives that require 
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high currents). It has been used to produce several types of MNFs. The OMFs and 

MNAFs from Chapter VI utilized the new reactor to produce most of the extracts 

containing these molecules. The ergonomic design reduces the oppotunities for user error 

and experimental variables (i.e. deviations in potentials and less chance of unwanted air 

leaks). This reactor is more cost effective due to its ability to maintain mechanical 

function with fewer maintenance requirements. Therefore, this reactor was needed to 

accomplish the original scale-up goals our lab has sought. 
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CHAPTER VIII 

GREEN CHEMISTRY AND RECYCLING OF WASTE NANO SOOT 

Introduction 

In recent years, green chemistry has become an important topic within the 

scientific community. As natural resources are being consumed at accelerated rates (i.e. 

petroleum, other fossil fuels, etc.), the need for green processes has increased 

tremendously. It is becoming more evident that these resources will eventually be 

depleted and therefore, much scientific research has shifted to both research and 

development of new green methods for reducing waste, or changing methods to generate 

less waste.13 Our efforts to contribute to green chemistry have yielded very promising 

results and continue to aid our research as well as others. 

Our research requires large quantities (e.g. 20-100 g) of metal oxide powder for 

each experiment. Most of these metal oxides are very expensive (e.g. scandium oxide 

~$3000/kg) . Even when relatively large quantities of MNFs are produced, the fullerene 

product only accounts for 5-10% of the stoichiometrically predicted product based on 

starting reagents. The waste soot produced accounts for a majority of waste and metal 

products not related to fullerenes. Thus, there has been a great need for the recovery of 

metal oxides. 

In the development of our recycling method, some assumptions have been made. 

The first assumption is that the soot waste produced is composed of the same elements as 

the starting material and no contamination has occurred. For instance, if Sc203 is packed 

in a graphite rod, then the soot should only be comprised of scandium, oxygen, and 

carbon. The second assumption is that there is a cheap and efficient way to selectively 
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separate the metal oxides from the carbonaceous portion of the soot. Results indicate that 

both assumptions are valid. 

In this study, we report a new approach to recycling soot waste. ' Thermal 

oxidation was used to remove carbon, in the form of carbon dioxide, leaving only SC2O3. 

X-ray photoelectron spectroscopy (XPS) is a technique used to determine the elemental 

content of a substance in addition to the relative ratios of the elements. Thus, XPS was 

employed by Wynne et al to analyze soot as well as the thermally oxidized products. 

Our results indicate that thermal oxidation is sufficient for recycling waste nano soot into 

a second generation metal oxide. 

Experimental 

Sc-based Soot 

Each rod (1 in diameter, 6 in length) was core drilled (4 in depth and % in 

diameter) and packed with either virgin SC2O3 powder (Stanford Materials, CA) or 2" 

generation Sc-based materials from our recycling of waste soot. The packed rods were 

cured for 8 hr under He flow at 1050°C in a tube furnace. The reactor parameters were as 

follows: 300 torr reactor chamber pressure, dynamic flow, 630 mL/min He (buffer gas), 

220A, 38V, and 6 torr/min air (e.g. nitrogen source). Reactor soot was extracted with ~1L 

o-xylene (which was recycled and reused via reduced pressure, using a rotovap) to obtain 

dry fullerene extract, which was washed with diethyl ether and/or acetone. Fullerene 

extract was analyzed via HPLC (Specifications in CHAPTER IV) to determine product 

distribution, and peaks were integrated for quantitative data. 

The effect of thermal oxidation was monitored by thermogravimetric analysis 

(TGA), using a TA Q500 instrument to investigate any changes in mass as a function of 
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temperature and time under a controlled atmosphere. Waste soot was homogenized using 

a mortar and pestle, and 5-10 mg samples were placed on platinum pans under air at 

temperature ranges from 22-1000°C. A heat-and-hold method was employed, with a 

temperature rate increase of 28°C/min to temperatures of 600, 750, and 1000°C, and held 

for 60 minutes. Waste soot, thermally oxidized samples, and virgin SC2O3 samples were 

characterized with XPS for elemental content and relative ratios. Recovery of bulk 

quantities of recycled Sc-material was performed using a standard laboratory muffle 

furnace. The effluent was vented to the hood with no evidence of significant particulates 

in the effluent trap or on the interior of the furnace. 

Er-based Soot 

All conditions for the scandium experiments were repeated for erbium 

experiments with the following reactor parameter exceptions: 5/8 inch rod core diameter, 

330A, 40V, and an ambient air flow resulting in a pressure change of 0.5 torr/min 

(nitrogen source). 
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Results and Discussion 

Thermal Oxidation Process for Recycling Sc203 

Figure 60 shows an overview of the recycling process for scandium based soot. 

This process has proven to be very efficient in recycling nano waste soot as well as 

mitigating the cost of production. 
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Figure 60. Overview of Waste Soot Recycling Process 

Thus far, our method has been useful in bulk samples with up to 100 g of waste 

soot placed in the furnace. Most scandium experiments only produce 30-40 g of soot and 

only produce -70-150 mg of scandium fullerene extract. Therefore, this process should 

be able to undergo an unlimited number of cycles (i.e. 3r , 4n , 51 generation). 

Our recycling method was first monitored by TGA (Figure 61 on the next page) to 

determine the proper temperature and time profiles. 
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Figure 61. TGA of soot samples (a) as a function of temperature and (b) as a function of time' 31,32 

Figure 61(a) shows the weight change as a function of temperature. The graph 

shows that there is still significant weight loss when the temperatures were held at 600 

and 750°C. However, at 1000 °C, there is no significant weight loss. This indicates that 

neither 600 nor 750 °C is sufficient for complete removal of contaminant materials. Since 

there is no weight loss at 1000°C, this indicates that this is an appropriate temperature for 

the recycling process to undergo completion. Figure 61(b) shows the times at which each 
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temperature has vaporized the maximum amount of material. This point on the graph is 

signified by an inflection followed by a relatively flat line (no weight change). The 

maximum weight loss occurs at 1000 °C (-48% weight loss) and is reached between 30 

and 40 minutes. As stated earlier, the sample size for TGA was typically 5 to 10 mg. 

Therefore, the bulk experiments (using a muffle furnace), in which sample size was 50 

grams, utilized oxidization and heat for much longer periods of time (13 h) to ensure 

complete removal of contaminant materials. This resulted in 37% mass loss (31.5 g) at 

600°C and leveled off at a 44% mass loss (28 g) at 750 and 1000°C. Figure 62 shows the 

elemental composition (via XPS) of soot before and after thermal oxidation as well as the 

percent composition of standard SC2O3 stock from a commercial source. 
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Figure 62. X-Ray Photoelectron Spectroscopy (XPS) of soot samples after 13h of thermal oxidation at 

various temperatures31'32 
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This graph indicates that carbon dominates the raw soot material, leaving only a 

small portion to consist of scandium and oxygen. As thermal oxidation is applied, the 

composition loses carbon and the remaining ratios of scandium to oxygen resemble that 

of the commercial source of SC2O3. This is consistent with our hypothesis that carbon in 

waste soot is oxidized to form carbon dioxide and can readily exit the reaction mixture. 

This is achieved at 750°C in our study. The carbon is completely consumed and the 

remaining ratio of scandium to oxygen is almost identical to the commercial material. 

This may seem to be inconsistent with the TGA data, which indicates a significant 

percent weight loss at 750°C. However, the consistency of the powder after thermal 

oxidation at 750°C is mostly white with only traces of metallic particulates (Figure 63). 

Untreated Soot 600 °C 750 °C 1000°C 

Figure 63. Photographs of various stages of thermal oxidation for Sc-based soot ' 

This metallic residue is believed to be scandium [Sc] . Although, XPS data shows 

the scandium and oxygen to be at a similar ratio as the commercial SC2O3, it is only an 

average of the sample and may not reflect the inclusion of these traces of metallic 

particulates. Therefore, the TGA responds to the density changes that the denser 

scandium metal undergoes to produce the less dense scandium oxide. Thus, the TGA, 

XPS, and powder consistency all agree that 1000°C thermal oxidation temperature is the 

optimum temperature to recycle the soot into reusable SC2O3. However, 750°C is a 

sufficient compromise between practical and efficiency (i.e. 750°C displays purity close 
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to that of virgin SC2O3 (Figure 62), with the exception of traces of scandium metal 

particles). Therefore, we choose 750 °C to perform or recycling technique for subsequent 

use to increase the lifetime of our oven and decrease cool down times to obtain our 

recycled material. 

After recycling several batches of waste soot, the new 2" generation SC2O3 was 

packed into cored graphite rods (identical to the 1st generation rods) and placed in the arc 

reactor under identical conditions to determine if the recycling material could reproduce 

the fullerene product distribution obtained from the use of virgin SC2O3 material. The 

extracts from both experiments were analyzed via HPLC to determine product 

distribution. Their chromatograms are shown in Figure 64 and have a comparable product 

distribution. This also suggests that the recycled material is very similar in chemical 

composition to the virgin material. 
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Using standard integration software, a bar graph was generated (Figure 65) for 

closer comparison of the fullerene peaks. As shown in the graph, the differences in 

fullerene percentages are small (<5%) and could be the result of determinate error in 

integration, extraction, or HPLC detector elution. Nevertheless, the product distribution 

was similar for all five types of fullerenes shown in the graph. 

A graph was also generated from peak integration and mass quantities of the 

extracts (Figure 66). 
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Figure 66. Bar graph of fullerene type versus mg fullerene for virgin Sc203 (right) and recycled Sc203 

(left)119 

This data shows the difference in mass for each type of fullerene produced from 

the 1st and 2" generation metal oxide material. The agreement between the masses is 

within 5% and thus within reasonable error. The 1st generation masses are slightly higher 

than the 2nd generation (for C6o, C7o, higher C2n, and Sc3N@C8o)- This could simply be 

the result of a systemic error. 

Thermal Oxidation Process for Recycling Er20i 

The process for recycling SC2O3 was repeated using Er203 to determine whether 

this method would be successful with a rare earth metal."9 In the Sc203 study, 30-50 g 

samples of the soot were heated to 750°C for 13 hr to obtain the desired results. However, 

Er2C>3 has a higher density than SC2O3 (8.64 and 3.86g/mL respectively). Thus, the 

sample for this study was larger (100 g) than the Sc-soot samples in order to roughly a 

similar same surface area. At this time, the XPS data has not been generated for this 

study. However, the HPLC chromatograms from the virgin 1st generation and recycled 
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2nd generation (Figure 67 below) show a strong resemblance, much like the Sc-based 

recycled material (Figure 64). The chromatograms suggest that the recycled Er-based 

material is similar to the virgin material. If there were contaminants present in the 

recycled material, the product distribution should change as established in Chapter 5: 

Effect of Additives to the Plasma. Therefore, XPS results of the recycled Er-based soot 

should contain only erbium and oxygen in a ratio close to that of the virgin Er203. To 

further analyze the HPLC data, a bar graph was generated (Figure 68) using HPLC peak 

integration of different fullerene types, and the results are discussed below. 
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As shown in the graph, the types of fullerenes have similar percentages. As 

determined via their respective HPLC peak areas. The agreement in percentages of 

fullerene type suggests little error, and this graph is consistent with related experimental 

data (e.g. SC2O3 data). 

Following HPLC analysis, the Er fullerene extract of both samples was dried 

using reduced pressure and heat to obtain mg masses of the fullerenes. After washing the 

solid material with diethyl ether and/or acetone, the mass of Er3N@Cgo for the 1st 

generation extract yield was 2.7 mg and the 2nd generation extract yielded was 2.8 mg.u 

Therefore, our recovery process is useful for our rare earth erbium MNF as well as the 

scandium MNFsyntheses. 
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Our final conclusion is that this method is both efficient and reliable for recycling 

Er-soot for use in subsequent experiments. Also, this method should also be successful 

for recycling other metal oxides (i.e. LU2O3, Gd2C>3, etc.). 
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CHAPTER IX 

CONCLUSIONS 

Effect of Plasma Additives 

We have obtained fullerene data showing the effect of additives to the electric arc 

plasma. Copper metal has proven to be an excellent additive to increase the yield of 

fullerene extract as well as the overall yield of MNFs. The CAPTEAR method of 

introducing a highly reactive and oxidizing atmosphere to the plasma represents a new 

paradigm for metallofullerene synthesis and has enabled our lab to produce very selective 

extracts that are particularly favorable to an array of metallofullerenes (e.g. MNFs, 

MNAFs, and OMFs). Our CAPTEAR method shows selectivity of MNFs extracts up to 

99% MNF purity without significant loss of yield. Our improved MNF selectivity has 

mitigated, and in some cases, obviated the need for HPLC as a separation tool. Previous 

literature had shown that reactive gases could greatly improve the quality of the extract 

(i.e. 95-99% MNF), but resulted in a significant loss in yield. CAPTEAR provides the 

best of both quality and quantity. Through the CAPTEAR approach, our reactor R&D has 

led to the discovery of OMFs (e.g. Sc402@C8o, Sc403@C8o) and MNAFs (e.g. 

Sc3N@C79N, La3N@C79N). 

New Endohedral Fullerenes 

During the course of our MNF research, two other classes of fullerenes have been 

discovered, Metallic Nitride Azafullerenes (MNAFs) and Oxo-Metallic Fullerenes 

(OMFs). Although the yield of these new compounds is generally lower than MNFs, 

current research to selectively synthesize these new classes of endohedral fullerenes show 

promise. With our results and sample distribution to the scientific community, other 
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researchers have become enabled to investigate these molecules as well. These scientists 

will be able to study physical and chemical properties and determine applications for 

these molecules. Another significant achievement is our synthesis of metallofullerenes 

with encapsulated oxygen. Our ability to entrap oxygen represents the first demonstration 

of encapsulating a Group VIA element. Scientists had believed that five encapsulated 

atoms (due to spatial constraints) would represent the maximum number of atoms inside 

the Cgo cage. However, the Sczi03@C8o crystal structure has proven that at least seven 

atoms can fit inside the Cso cage. 

Design, Fabrication, and Evaluation of a New Electric-Arc Reactor 

Experience with our traditional Kratschmer-Huffman (KH-Type) reactor has 

shown flaws in traditional designs, as described in CHAPTER VII. These drawbacks 

represent our motivation for a novel design and subsequent fabrication of our new KH-

Type reactor with advantages over the old design. New features include ergonomic and 

scale-up advantages to improve user ability and to increase productivity in fullerene 

synthesis. Success of the new reactor is demonstrated via our ability to produce several 

MNFs, MNAFs, and OMFs. Thus, our new design has proven to be advantageous to our 

research. 

Green Chemistry and Recycling of Nano Soot Waste 

Despite advancements in fullerene yield and MNF selectivity, the overall 

fullerene yield represents only a fraction of the stoichiometrically predicted amounts 

based on amounts of starting materials. With most of the metal content remaining in 

waste soot, the need for recycling soot waste represents a significant achievement. Our 

lab has successfully achieved the recovery of expensive metal oxide starting material 
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(e.g. SC2O3) for reuse in subsequent experiments. As described in CHAPTER VIII, the 

thermal recovery method for SC2O3 and E^Ch represents an inexpensive, facile, and 

effective method for recycling the spent soot waste. Our recovered metal oxides produce 

similar fullerene extract compositions relative to extract obtained from virgin metal 

oxides. 

Summary 

Our lab first explored the hypothesis that plasma additives would increase the 

yield and selectivity of MNFs. Other fullerene researchers used an inert (e.g. He and N2) 

or reducing (e.g. He and NH3) atmosphere for fullerene production, but we were fortunate 

to serendipitously pave a new road with our reactor R&D. In this dissertation, we have 

developed effective fullerene syntheses in oxidizing atmospheres. This oxidizing 

atmosphere, obtained via our CAPTEAR approach, resulted in our discovery of two new 

classes of endohedral fullerenes (oxometallic fullerenes and metallic nitride 

azafullerenes). Evidence suggests that these new fullerenes actually require such an 

oxidizing atmosphere for their synthesis. During these studies, we not only demonstrated 

that scaling up a reactor was possible, but also necessary to improve the production of 

these highly selective fullerene extracts as well as our new endohedral fullerenes. 

Implementation of the new reactor design accomplished this goal of increased 

productivity, but also increased the cost of materials and quantity of waste material. Our 

recycling method for waste soot resolved issues of cost effectiveness and waste 

reduction. This dissertation exemplifies the significance of reactor R&D and 

demonstrates the tremendous impact of our research to the field of fullerene science. ' ' 

31-34 
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