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ABSTRACT 

CONSERVATION GENETICS AND SYSTEMATICS OF SEVERAL TURTLES 

SPECIES IN THE SOUTHEASTERN UNITED STATES 

by Joshua Robert Ennen 

December 2009 

Chelonians (i.e., turtles) are an imperiled group of reptiles with about 66% of the 

recognized species listed as threatened by the IUCN. Most chelonian species have a 

unique set of life history traits (i.e., longevity, delayed sexual maturity, and low juvenile 

survivorship), which makes their populations exceedingly sensitive to increases in adult 

and juvenile moralities. With numerous anthropogenic effects (e.g., habitat alteration, 

exploitation, and over harvesting) negatively influencing mortality rates, chelonians have 

experienced global precipitous declines and extinctions. 

This dissertation focuses on species within two chelonian genera, Gopherus and 

Graptemys. Although these two genera are vastly different ecologically, they are exposed 

to similar threats and possess similar conservation requirements. Within the genus 

Graptemys this dissertation focuses on the conservation genetics and systematics of three 

species (i.e., G. gibbonsi, G. oculifera, and G. flavimaculata) with distributions restricted 

to the Pearl River of Louisiana and the Pascagoula River of Mississippi. Since the 

taxonomic status of these species is still unresolved, I used molecular (i.e., mitochondrial) 

and morphological (only for the G. oculifera and G flavimaculata comparison) data to 

assess the degree of differentiation and divergence between these species. The last two 

chapters focus on the conservation genetics of Gopherus polyphemus. In particular, I 

examined the level of genetic diversity within several western populations experiencing 
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aberrantly low hatching success using microsatellites, and conducted a range-wide 

phylogeographical study in an attempt to relate patterns of genetic structure with current 

management units for the species. 
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CHAPTERI 

GENETIC AND MORPHOLOGICAL VARIATION BETWEEN POPULATIONS OF 

THE PASCAGOULA MAP TURTLE (GRAPTEMYS GIBBONSI) IN THE PEARL AND 

PASCAGOULA RIVERS 

Abstract 

Cryptic species pose a major concern in conservation biology. Managing multiple 

species collectively as a single group could precipitate the loss of genetic variation and 

unique populations, and could even lead to extinction of an undiscovered species. An 

example of cryptic species phenomenon, Graptemys pulchra (sensu lato) was originally 

described as inhabiting Gulf coastal rivers from the Pearl River drainage in Louisiana to 

the Yellow River in Florida and south Alabama. Based on mostly colorimetric data, G. 

pulchra was split through the description of two new species, G gibbonsi and G. ernsti. 

Each species, except for G gibbonsi, possesses a drainage-specific distribution. 

Molecular data (mitochondrial DNA) later supported the recognition of each species in 

the "pulchra clade" (G. pulchra, G. barbouri, G. ernsti, and G gibbonsi), but failed to 

include samples of G. gibbonsi from the Pascagoula River. Recently, G. gibbonsi was 

found to be less abundant than the two federally threatened species, G oculifera and G 

flavimaculata, that shares its range. My goal was to include G. gibbonsi samples from 

both rivers in a molecular assessment of the taxonomic status of this species. I compared 

the extent of genetic differentiation between G gibbonsi populations with members 

within the "pulchra clade" and with G. oculifera and G. flavimaculata. My mtDNA 

sequence data showed greater genetic differentiation between the two G. gibbonsi 

populations than between the two recognized species, G oculifera and G. flavimaculata, 
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but revealed only a modest degree of differentiation when compared to other members of 

the "pulchra clade." 

Key Words-Graptemys, Conservation, mtDNA, G. gibbonsi 

Introduction 

The phenomenon of cryptic species has been identified as a major concern in 

conservation biology (Lovich and Gibbons, 1997). Managing multiple species 

collectively as a single species could precipitate loss of genetic variation and unique 

populations within a species, and could even lead to extinction of an undiscovered 

species. Even after recognition, usually there is a lack of basic ecological knowledge for 

newly described species since earlier work on a group within a broad-ranging taxa was 

assumed to be applicable to the rest of its range. These scenarios are especially relevant 

to the Southeastern United States where researchers are still describing new species from 

previously believed wide-spread taxa (e.g., Percina - Williams et al., 2007; Pseudacris -

Lemmon et al., 2008). The genus Graptemys is another example where new species have 

been described but with limited ecological study following the description. 

Graptemys pulchra (Alabama map turtle) was split by Lovich and McCoy (1992) 

into three species (G. ernsti, G. gibbonsi, and G. pulchra) based on morphological data, 

which along with G. barbouri make up the "pulchra clade" (Lamb et al., 1994). All 

members of the "pulchra clade" possess restricted distributions, limited to only one of a 

few coastal basins along the eastern Gulf of Mexico in the southeastern United States 

(Figure 1.1). Graptemys barbouri and G. pulchra are each confined to a single drainage 

with G. barbouri in the Apalachicola River in Florida and southern Georgia (Sanderson 

and Lovich, 1998) and G. pulchra inhabiting the Mobile River drainage in Alabama 



Figure 1.1. The five coastal drainages inhabited by six Graptemys species, G ocuilfera, 

G. flavimaculata, G. gibbonsi, G. pulchra, G. ernsti, and G barbouri. 1) Pearl River, 2) 

Pascagoula River, 3) Mobile Bay Basin, 4) Escambian Bay, and 5) Apalachicola River. 
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(Lovich and McCoy, 1992). Populations of Graptemys ernsti are known from several 

rivers (Conecuh, Escambia, Yellow, and Shoal) associated with the Escambia Bay 

drainage in the panhandle of Florida. Graptemys gibbonsi inhabits the Pearl and 

Pascagoula river systems in Louisiana and Mississippi and represents the only species in 

the "pulchra clade" not restricted to a single drainage system (Lovich and McCoy, 1992; 

Lovich and McCoy, 1994). 

Interestingly, the distribution of G gibbonsi overlaps that of two congeneric sister 

species, G oculifera and G flavimaculata, in the Pearl and Pascagoula rivers, 

respectively. Both mitochondrial DNA (Lamb et al., 1994) and morphological (Cagle, 

1954) data have confirmed the sister status of these species. Sea level fluctuations 

associated with glacial cycles are likely the main mechanism behind speciation within the 

Graptemys genus (Lamb et al., 1994; Wood, 1977). The geologic history that led to the 

isolation and divergence of G oculifera and G. flavimaculata would have also influenced 

the evolution of G gibbonsi as well, but to what extent? Lovich and McCoy (1992) 

presented evidence that both G. gibbonsi populations in the Pearl and Pascagoula river 

drainages have limited divergence in morphological characters relevant to other members 

of the "pulchra clade" and suggested that they have been isolated for a relatively short 

period of time. This raises the question of how the geological history of the Pearl and 

Pascagoula rivers could result in speciation of the G. oculifera flavimaculata ancestor, 

yet not produce a similar degree of genetic divergence between the G gibbonsi 

populations in these same rivers. One possibility is that the Pearl and Pascagoula 

populations of G. gibbonsi, although morphologically similar, could represent "cryptic 

species" or "covert species." This phenomenon is taxonomically widespread (e.g., 
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Lovich and Gibbons, 1997; salamanders- Tilley and Mahoney, 1996, Larson, 1984, 

Larson 1989; fishes- Kreiser et al., 2001), especially in species with a broad distribution. 

"Cryptic species" are of interest to more than just systematists since they also 

pose challenges to conservation efforts. Graptemys pulchra (sensu lato) was only 

recently divided into multiple species by Lovich and McCoy (1992), and thus most of the 

relevant ecological literature pertains to G. pulchra (reviewed in Lovich and McCoy, in 

press a; Shealy, 1976) and G ernsti (Shealy, 1976; reviewed in Lovich and McCoy, in 

press b). For G gibbonsi there is a paucity of literature focusing on this species' basic 

ecology and life history making it one of the most poorly studied turtle species in the 

United States (J. E. Lovich, unpublished data.). Similarly, this is not an isolated instance 

within the genus Graptemys. Both G. ernsti and G versa have poorly understood life 

histories (J. E. Lovich, unpublished data; Lindeman, 2005). This gap in our knowledge is 

unfortunate since, although, G gibbonsi is listed as G3G4 and S3 in Mississippi and 

Louisiana, their populations have recently been reported as less abundant than the two 

federally threatened species G. oculifera (G2 and S2) and G flavimaculata (G2 and S2) 

(Selman and Quails, 2007). Because Lamb et al. (1994) failed to include both 

populations of G. gibbonsi, clarifying the taxonomic status of the two G gibbonsi 

populations is also critical to identifying research needs and for effective management 

planning. 

My goal was to use molecular (mtDNA) data to assess the taxonomic and 

conservation status of G gibbonsi populations in the Pearl and Pascagoula Rivers 

through comparison with other Graptemys species in the same drainage and members of 

the "pulchra" clade. First, I used mtDNA sequences to compare the extent of genetic 

differentiation between G. gibbonsi populations with that found between G 
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flavimaculata and G. oculifera, the sister species inhabiting the same drainages. Second, 

mitochondrial sequence data were to be used to compare the extent of genetic 

differentiation between G. gibbonsi populations with that found in recognized species 

within the "pulchra clade". These molecular comparisons provide an important 

extension to the work of Lamb et al. (1994), since they did not include individuals from 

both populations of G. gibbonsi. 

Materials and Methods 

Collections 

I acquired samples of G. gibbonsi, G. flavimaculata, and G. oculifera from W. 

Selman from several localities (Figure 1.2). Graptemys gibbonsi was collected in the 

Chickasawhay River at Leakesville (31° 08.999 'N, 088° 32.853 'W), Leaf River north of 

Hattiesburg (31°22.610 'N, 089°16.641'W), Lower Pascagoula (30° 30.938 'N, 088° 

36.197 'W), and the Pearl River at Columbia (31° 17.177 'N, 089° 52.479 'W). 

Graptemys flavimaculata was collected from both the Leaf and Chickasawhay river sites 

within the Pascagoula drainage, and G. oculifera was collected from the Pearl River at 

Columbia, Mississippi. For other species in the "pulchra clade", I acquired two tail tip 

samples (preserved in ethanol) from each of the three "pulchra clade" species, which 

were provided by B. Thompson. Both samples of G. ernsti were collected in the 

Conecuh River at River Falls, Alabama (31° 20.936.'N, 086° 31.772 'W). Likewise, 

both G. barbouri samples were collected from the Chipola River at a boat ramp near 

Mariena, Florida (30° 00.588'N, 085° 02.377'W). One G pulchra sample was collected 

from the Tombigbee River at Tuscahoma Landing, Alabama (32° 03.672'N, 088° 

06.646'W), while the other was collected from the Tallapoosa River in Elmore County, 

Alabama (32° 29.66.'N, 086° 14.23'W). Total genomic DNA was extracted with the 
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Figure 1.2. Distribution of samples across the southeastern United States including five 

coastal drainages (e.g., Pearl, Pascagoula, Mobile Bay, Escambia Bay, and Apalachicola) 

and the four species in the "pulchra clade." 
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DNeasy Tissue Kit (QIAGEN Inc., Valencia, CA) and gel checked on agarose to assess 

DNA quality. Sequence data for Chrysemys picta obtained from GenBank (AF069423) 

was used as an outgroup in all the phylogenetic analyses. 

mtDNA 

Since Lamb et al., (1994) showed that the control region of mitochondrial genome 

had the most phylogenetic signal and cyt b provided poor phylogenetic resolution within 

Graptemys, I amplified a larger and separate portion of the control region and a different 

portion of the genome (i.e., ND4) using the primers reported by Spinks and Shaffer 

(2005). Amplifications were conducted in a total volume of either 25 ul or 50 ul using 

50 mM KC1,10 mM Tris-HCl (pH 8.3), 0.01% gelatin, 200 uM dNTPs, 2 mM MgCl2, 

0.5 units ofTaq polymerase (Prorhega Co.), 0.3 uM of each primer, 20-150 ng of 

template DNA, and water to the final volume. PCR products were cleaned using the 

ExoSAP-IT system (USB Co., Cleveland, OH, USA), and then used as the template in a 

cycle sequencing reaction with an ABI BigDye Terminator cycle sequencing kit (Foster 

City, CA, USA) using the primers described above. All sequencing reactions were 

sephadex cleaned (Princeton Separations, Adelphia, NJ, USA) prior to gel runs at the 

Iowa State University DNA Sequencing and Synthesis Facility. Sequence data were 

edited and aligned using Sequencher v. 4.1 (GeneCodes Co., Ann Arbor, MI, USA). 

PAUP* 4.0b 10 (Swofford, 2002) was used to calculate pairwise uncorrected p 

distances between all haplotypes within the ingroup taxa. The degree of congruence in 

the phylogenetic signal of the control region and ND4 datasets was examined using the 

incongruence length difference test as implemented by PAUP* (Farris et al., 1994). 

Phylogenetic were inferred using maximum parsimony (MP), maximum likelihood (ML) 

and Bayesian analyses. The maximum parsimony analysis was performed by PAUP* 
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with a branch-and-bound search, and the initial upper bound was calculated by stepwise 

addition. The most appropriate model of sequence evolution for the ML analysis was 

selected by ModelTest v. 3.5 (Posada and Crandall, 1998) as a HKY+G model with a 

Gamma distribution shape parameter of 0.0137. A Bayesian inference of the phylogeny 

was performed using MrBayes v. 3.1 (Ronquist and Huelsenbeck, 2003). Tree space was 

explored starting with a random tree and employing two independent runs of four 

Markov chains of 1,000,000 generations, each sampled every 100 generations. Plots of 

log-likelihood scores versus generation time were examined to ensure that each run had 

reached stationarity, and the first 2,500 trees were then discarded as burn-in. 

Phylogenetic support was assessed through bootstrapping (Felsenstein, 1985) with 1,000 

rounds of resampling for the MP and ML analyses. The majority-rule consensus of the 

7,500 trees saved by the Bayesian analysis was used to obtain the posterior probabilities 

of eachclade. 

Results 

For the 6 species, I obtained sequences for 36 individuals for the control region 

(666 bp) and sequences of 40 individuals forND4 (894 bp) using Spinks and Shaffer 

(2005) primers. The number of sequences and unique haplotypes for each species are 

provided in Table 1.1. For G gibbonsi and G flavimaculata in the Pascagoula, I 

sequenced individuals from the three different sites in that drainage. As expected, the 

control region was more variable than ND4 (Tablel .2). Using the CR sequence data, the 

uncorrected^ distance showed the two G gibbonsi populations in the Pearl and 

Pascagoula rivers appear to have a greater sequence divergence (p = 0.013) than that of 

the two recognized species (p = 0.005), G. oculifera and G. flavimaculata. The CR 
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Table 1.1. 

Number of individuals sequenced from each species for each gene and the number of 

unique haplotypes detected. 

G. gibbonsi 
Pearl 
Pascagoula 

G. oculifera 
G. flavimaculata 
G. pulchra 
G. barbouri 
G. ernsti 

Control Region 
# Sequenced 

<w9 
9 
6 
6 
2 
2 
2 

# Unique Haplotypes 

3 
2 
2 
2 
2 
2 
2 

# Sequenced 

9 
11 
8 
6 
2 
2 
2 

ND4 
# Unique Haplotypes 

1 

1 
2 
1 
2 
2 
1 
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uncorrected p distances between the recognized "pulchra clade" species and G gibbonsi 

from the Pearl River were variable and ranged from 0.040 to 0.013 with the greatest 

divergence seen between G. gibbonsi (Pearl) and two other species, G. barbouri and 

G.ernsti (Table 1.2). The least divergent within the clade were the Pascagoula and Pearl 

River G. gibbonsi populations. Graptemys ernsti was equally divergent from G. pulchra 

as it was from G. barbouri (Table 1.2). The ND4 sequence data showed a uncorrected/> 

distance (p = 0.001) between G. oculifera and G. flavimaculata and no sequence 

divergence between the two G. gibbonsi populations. Comparing the ND4 uncorrected/? 

distances among species within the "pulchra clade," members had very similar sequence 

divergences between them, ranging from 0.000 to 0.007 (Table 1.2). 

In the sequence data, 95 sites were variable in the control region and 80 in ND4, 

of which 50 and 11 were parsimony informative, respectively. The incongruence length 

test found congruent phylogenetic signal (P = 1.0) in the two data sets, so both were 

combined in all phylogenetic analyses. The MP analysis identified 2 equally 

parsimonious trees (L = 191, CI = 0.885, RI = 0.815). The ML (-InL = 3064.92) and 

Bayesian phylogenetic analyses recovered the same basic overall topology, and the strict 

consensus of the two most parsimonious trees was selected to represent the phylogeny 

(Figure 1.3). Each of the species was recovered as a moderately to strongly supported 

monophyletic group, but there was no resolution among the different species (Figure 1.3). 

Internal nodes were all weakly supported, producing a basal polytomy of the four species 

in the "pulchra clade". With G. gibbonsi, individuals from the Pearl River form a 

strongly supported clade. However, I found only weak to moderate support for the 

monophyly of the two haplotypes from the Pascagoula River. 
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62/<50/<50 

<50/<50/60 

100/97/99 

100/99/100 

B6/7B/98 

74/75/93 

81/50/65 

93/91/100 

Chrysemys picta 

G. barbouri 1 

- G. barbouri 2 

. G.pulchra 1 

• G. pulchra 2 

G. gibbonsi Pascagoula 1 

. G. gibbonsi Pascagoula 2 

- G. gibbonsi Psarl 1 

- G. gibbonsi Pearl 2 

- G. gibbonsi Psarl 3 

G. ernsti 1 

- G. ernstf 2 

Figure 1.3. The strict consensus of the two most parsimonious trees (L = 191, CI = 0.885, 

RI = 0.815) recovered from the branch and bound search of the combined CR and ND4 

sequence data. The support values are represented by MP and ML bootstrap and posterior 

probability. 
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Discussion 

The Gulf of Mexico has experienced periodic fluctuations in sea level beginning 

with the Miocene (Riggs, 1984; Swift et al., 1986). Endemism patterns of Gulf Coast 

taxa, fishes in particular, have often been interpreted to be a consequence of the 

vicariance events associated with these sea level fluctuations (Wiley and May den, 1985; 

Swift et a l , 1986). Recently this gulf coast allopatric speciation model has been 

rigorously tested in a phylogenetic framework for black basses {Micropterus; Near et al., 

2003) and logperches {Percina; Near and Bernard, 2004). For Micropterus, the bulk of 

the speciation events took place during the Miocene and intraspecific diversification took 

place during the Pleistocene. However in Percina, 7 of 9 species diverged during the 

Pleistocene. Thus, the Gulf Coast allopatric speciation model is useful for understanding 

the biogeography of the region, but each taxon should be evaluated independently for 

how it fits within the framework of this model. The genus Graptemys, the "pulchra 

clade" in particular, is well known for its drainage-specific endemism (Lovich and 

McCoy, 1992), apparently linked to the historical fluctuations in sea level (Lamb et al., 

1994; Lovich and McCoy, 1992; Wood, 1977). However, based on the comparison of the 

degree of genetic divergence in other chelonian genera, Walker and Avise (1998) 

suggested that the genus Graptemys is over split. They attributed this to the variety and 

variability of the color patterns on the heads and carapaces, which have been the focus of 

many species descriptions within this genus (Lovich and McCoy, 1992; Vogt, 1993; 

Cagle, 1954; Cagle, 1953). 

The splitting of the "pulchra clade" resulted in all species but one, G. gibbonsi, 

having a drainage specific distribution. Lovich and McCoy (1992) noted that this 

exception in G. gibbonsi was consistent with the similarity of the fish fauna between the 
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Pearl and Pascagoula rivers as described by Swift et al. (1986). However, this is not to 

say that there are no morphological differences between G. gibbonsi in the two drainages. 

Both Lovich and McCoy (1992) and Shealy (1976) found drainage-specific colorimetric 

characteristics unique to populations in the Pearl and Pascagoula rivers. 

However Lamb et al.'s (1994) molecular phylogeny of Graptemys, they were only 

able to recognize three distinct clades in the genus: pulchra, pseudogeographica, and 

geographica. However, their mitochondrial control region sequence data did support 

Lovich and McCoy's (1992) recognition of G. pulchra (sensus latd) as three distinct 

species, G. pulchra, G. ernsti, and G. gibbonsi. Even though I sequenced a different 

portion of the control region, my data were comparable to that of Lamb et al. (1994) in 

that I found similar levels of sequence divergence between species. Lamb et al.'s (1994) 

uncorrected/? distances ranged from 0.020 to 0.044; while my data ranged from 0.026 to 

0.040 for the same "pulchra clade" comparisons. However, Lamb et al. (1994) found the 

highest sequence divergence between G. ernsti and G. barbouri and the lowest sequence 

divergence between G. pulchra and G. ernsti (Table 1.3); while I found the highest 

sequence divergence between G. gibbonsi (Pearl) and both G. barbouri and G. ernsti, and 

the lowest sequence divergence between G. barbouri and G. pulchra (Table 1.2). 

This study builds upon that of Lamb et al. (1994) in several important ways - by 

adding sampling of G. gibbonsi from the Pascagoula River and by placing the two 

populations of G. gibbonsi into the context of the rest of the "pulchra clade" and 

comparing them with the endemic species inhabiting the same drainages, G. oculifera and 

G. flavimaculata. Graptemys gibbonsi populations exhibit a much higher degree of 

sequence divergence in the control region compared to G. oculifera and G. flavimaculata 

(Table 1.3). I am not questioning the taxonomic status of G oculifera and G. 
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flavimaculata, since that is beyond the scope of this study, and there is ample evidence of 

morphological differentiation between these two species (R. Jones, Mississippi Museum 

of Natural Science, personal communication; Selman and Quails, 2007; Selman and 

Quails, 2006; Cagle, 1954). 

The amount of control region sequence divergence between the two populations 

of G. gibbonsi was at the low end of the range exhibited among species in the "pulchra 

clade", but it was comparable to the levels of intraspecific differentiation exhibited by G 

pulchra and G. barbouri (Table 1.2). This observation has several interesting 

biogeographic implications. The intraspecific variation within G. gibbonsi can easily be 

explained by the isolation of the two populations inhabiting two distinct drainages, the 

Pearl and Pascagoula Rivers. On the other hand, G pulchra inhabits a single, large 

drainage system (the Mobile Bay Basin), but my samples were collected in two 

distinctive river systems within the drainage, the Tombigbee in the west and the 

Tallapoosa in the east. This pattern of divergence and endemism associated with portions 

of the Mobile Bay Basin is a common theme in freshwater fishes (e.g., several species of 

Etheostoma darters and cyprinids; Boschung and Mayden, 2004). While the divergence 

in G. pulchra and G. gibbonsi has an obvious biogeographic interpretation, the variation 

seen in my two samples of G barbouri from a single site lacks a simple explanation. 

Overall, even with my limited data, there appears to be evidence for additional cryptic 

biodiversity within the "pulchra clade." 

The distribution of G. gibbonsi in both the Pearl and Pascagoula Rivers is at odds 

with the drainage-specific endemism exhibited by the genus in Gulf Coast Rivers. Since 

connections between the two rivers may have occurred in a common estuary as recently 

as the Pleistocene (Lovich and McCoy, 1992), it is conceivable that populations of G. 
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gibbonsi in both rivers have been separated for a relatively short period of time. It is 

reasonable to consider the possible taxonomic significance and management implications 

of the genetic and morphological variation detected by my research (Fallon, 2007). The 

latter issue is of particular importance relative to the conservation status of G. gibbonsi, 

as currently recognized. The species has an IUCN 2007 Red List Status of "Lower Risk / 

Near Threatened" as assessed in 1996. In addition all Graptemys species are listed in 

Appendix III of CITES in recognition of their commercial value. Population surveys 

summarized in Lovich and McCoy (in press c) suggest that G. gibbonsi should be 

considered for listing as threatened under the U.S. Endangered Species Act and 

Endangered by the IUCN due to population declines. Likewise, recent bridge surveys in 

both the Pearl and Pascagoula River drainages found a lower abundance of G. gibbonsi 

relative to the two federally endangered species inhabiting the same drainages, G. 

flavimaculata and G oculifera (Selman and Quails, 2007). 

In light of the putative recency of divergence for G. gibbonsi in the Pearl and 

Pascagoula Rivers, I feel more data (i.e., morphological reassessment) is needed to make 

a taxonomical recommendation for the Pearl River population. It is interesting that the 

reciprocally allopatric narrowheaded Graptemys that occur with G. gibbonsi (G. 

flavimaculata in the Pascagoula River and G oculifera in the Pearl River) show lower 

levels of genetic differentiation than the two populations of G. gibbonsi. As noted by 

Cagle (1954), those two species likely evolved from a common ancestor as indicated by 

their morphological similarity, and they have been recognized as subspecies in some 

taxonomic treatments (Mertens and Wermuth, 1955). I do not consider the use of 

subspecies useful in the case of G. gibbonsi (Frost and Hillis, 1990), but recognize that 
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conservation is most effective if evolutionary units of some form are recognized and 

managed accordingly (Lovich and Gibbons, 1997). 

My analysis suggests that G. gibbonsi should at least be recognized as two ESUs: 

one in the Pearl and the other in the Pascagoula rivers. Regardless of the below-species 

designations and their definitions, my data show that G gibbonsi populations in the Pearl 

and Pascagoula rivers are distinctive genetically. Failure to recognize this diversity in 

conservation planning could result in loss of significant evolutionarily lineages (Lovich 

and Gibbons, 1997) in region well-known for its biological diversity (Lydeard and 

Mayden, 1995). 
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CHAPTER II 

A MORPHOLOGICAL AND MOLECULAR REASSESSMENT GRAPTEMYS 

OCULIFERA AND G. FLAVIMACULATA 

Abstract 

The turtle genus Graptemys consists of 15 recognized species and subspecies, 

distinguished largely on the basis of pigmentation pattern, head size, and shell 

morphology. However, molecular data have only resolved three clades in the genus 

(pulchra, pseudogeographica, and geographicd) with many closely related species, 

including G. flavimaculata and G. oculifera, demonstrating low levels of sequence 

divergence. Both G. oculifera (Baur) and G. flavimaculata Cagle have been recognized 

as species since 1890 and 1954, respectively. The elevation of G. flavimaculata to full 

species status, however, was based on a limited number of characters. Several of these 

characters overlap between G. flavimaculata and G. oculifera, and no attempt was made 

to test for significant morphological differentiation. In this study I re-evaluated the 

morphological and genetic distinctiveness of G. flavimaculata and G. oculifera with 1) a 

multivariate statistical analyses of 44 morphological characters and 2) 1560 bp of 

sequence data from two mitochondrial genes (control region and ND4). The 

morphological and molecular analyses produced incongruent results. Principal 

components analysis (PC A) ordinations of the morphological data separated the two 

species along a pigmentation gradient with G. flavimaculata having more yellow 

pigmentation than G. oculifera. Likewise, clustering analyses separated the specimens 

into two distinct groups with little overlap between the species. However, the molecular 

data supported previous findings of limited genetic differentiation between the two 

species. Regardless of any taxonomic considerations, the two species should continue to 
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be treated as independent evolutionary units to preserve the morphological differences 

displayed between the two drainages. 

Key words- Conservation, Graptemys, Morphometries, mtDNA, taxonomy 

Introduction 

The systematics and evolutionary history of the genus Graptemys has long been 

controversial (Lovich and McCoy, 1992) and remains so today. Within the North 

American family Emydidae, the genus Graptemys is the most speciose (Ernst and Lovich, 

2009). Unlike other turtle genera that are usually morphologically conserved, Graptemys 

species have various shell or soft tissue patterns that often distinguish drainage-specific 

species (Walker and Avise, 1998). Graptemys flavimaculata (endemic to the Pascagoula 

River) and G. ocuilfera (endemic to the Pearl Paver) were described by Cagle (1954) and 

Baur (1890), respectively. Cagle (1954) proposed several diagnostic morphological 

characters to differentiate the two species, including G. flavimaculata having: 1) a broad 

orbital mark usually connected to a neck stripe, 2) broad yellow lines dominating the 

lower jaw, and 3) each costal scute with a large yellow blotch or crescent. However, 

several of the putatively diagnostic characters proposed by Cagle (1954) actually overlap 

between the species (e.g., shape of postorbital blotch, connection of neckline with 

postorbital blotches, and number of lines entering the orbit). Other diagnostic 

characteristics consisted of additional pattern differences (e.g., width of interorbital lines, 

neck lines entering orbital, markings on lower jaw, and markings of extremities), but 

these differences were never quantified and tested statistically. Later, and without 

supporting data, Mertens and Wermuth (1955) included G. flavimaculata as a subspecies 

of G. oculifera, but this taxonomic change was neither supported by analysis nor adopted 

by the scientific community. 



27 

Recent phylogenetic studies have not been particularly successful in resolving 

relationships among species in the genus Graptemys. Lamb et al. (1994) collected data 

on whole mitochondrial genome restriction sites and sequences for fragments of two 

mitochondrial genes (control region - 344 bp; cytochrome b - 380 bp). The combined 

data analysis only found support for three clades which they identified as a "pulchra" 

group, a "pseudogeographica" group and the basal G geographica. Although the control 

region data were able to identify each species, there was typically little genetic 

differentiation among species. For example, only two bases (uncorrected^ distance of 

0.006) differed between G flavimaculata and G. oculifera. A broader study by Stephens 

and Wiens (2003) for the family Emydidae combined existing molecular data with a large 

(300 character) data set. Analysis of the combined data found that relationships among 

Graptemys species were mostly poorly resolved with very weak bootstrap (62%) support 

for a monophyletic G. flavimaculata and G. oculifera. The limited degree of genetic 

divergence among species of Graptemys compared to other species of freshwater turtles 

led Walker and Avise (1998) to propose that the genus may be oversplit. 

The low level of genetic divergence and lack of rigorous statistical tests of 

morphological differences raises questions as to the taxonomic validity of G. 

flavimaculata and G. oculifera. This is not just a question of academic interest since both 

species are federally listed as threatened (U.S. Fish and Wildlife Service 1986 and 1991) 

and listed as endangered by the state of Mississippi (Mississippi Department of Wildlife, 

Fisheries, and Parks, 2000). The goals of this study were to reevaluate the distinctiveness 

of G. flavimaculata and G. oculifera through 1) multivariate statistical analyses of a suite 

of morphological characters from the original species description and others used in 

similar studies within the genus Graptemys (Lovich and McCoy, 1992; Vogt, 1993) and 
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2) the analysis of a larger molecular data that includes different portions of the 

mitochondrial genome. 

Materials and Methods 

Morphological 

Preserved specimens ofGraptemys oculifera (55 specimens; 24 females, 31 

males) and G. flavimaculata (93 specimens; 19 females, 74 males) were examined from 

the Mississippi Museum of Natural Sciences (MMNS) and the Tulane University 

Museum of Natural History (TU) (Appendix 1). I selected 44 characters (Table 2.1) from 

Cagle's (1954) description of G. flavimaculata and from the taxonomic literature on other 

Graptemys species (Lovich and McCoy, 1992; Vogt, 1993). All measurements were 

taken on the right side of each specimen. 

Each sex was analyzed separately to account for sexual dimorphism (Gibbons and 

Lovich, 1990; Lovich and McCoy, 1992). To correct for size differences within each sex, 

each quantitative variable was divided by carapace or plastron length, and all ratio data 

were arcsine square root transformed to meet the assumptions of normality. Principal 

components analyses (PCA) were performed to visualize the data for males and females 

in multidimensional space. To test for significant differences between G. oculifera and G. 

flavimaculata, I used Euclidean distances to create a dissimilarity matrix of the 

quantitative variables and I performed a non-parametric multi-response permutation 

procedure (MRPP) with 50,000 permutations. MRPP is a re-sampling approach testing 

for a difference between groups (McCune and Grace, 2002). To determine which of the 

characters were driving the separation in the multidimensional space, I used the highest 

and lowest loading scores (i.e., absolute value of > 0.20). For the qualitative variables, 

dissimilarity matrices were again created using Euclidean distances. These were then 
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used in unweighted pair group method with arithmetic means (UPGMA) cluster analyses, 

which when coupled with cophenetic correlation, provided a measure of how much 

structure was recovered from the raw data. All statistical analyses were performed using 

R statistical software (R Development Core Team, Version 2.8.0, 2008). 

Molecular 

Blood samples from a total of fourteen individuals were collected under the 

appropriate permits by W. Selman. The G. flavimaculata were either from the 

Chickasawhay River at Leakesville (31° 08.999 'N, 088° 32.853 'W; n = 2), Leaf River 

north of Hattiesburg (31°22.610 'N, 089°16.641'W; n = 2) or the lower Pascagoula River 

(30° 30.938 'N, 088° 36.197 'W; n = 2), while the G oculifera were all from the Pearl 

River at Columbia (31° 17.177 'N, 089° 52.479 'W; n = 8). Total genomic DNA was 

extracted from the blood samples with a DNeasy Tissue Kit (QIAGEN Inc., Valencia, 

CA). Lamb et al. (1994) found that the control region (CR) of the mitochondrial genome 

had more phylogenetic signal than cytochrome b (cyt b) within Graptemys. I elected to 

examine a separate portion of the CR as well as another mitochondrial gene (NADH 

dehydrogenase subunit 4 - ND4). Amplifications of the CR I performed with the primers 

of Spinks and Shaffer (2005). Likewise, for ND4 we used one of the primers reported by 

Spinks and Shaffer (2005), but I created a new primer (ND4a; 5'-

TGACTACCAAAAGCACACGTAGAAGC-3') by modifying the ND4-672 primer to 

match the sequence of Chrysemys picta (GenBank Accesion AF069423) taken from 

GenBank. Polymerase chain reaction (PCR) amplifications were conducted in a total 

volume of either 25 ul or 50 ul using 50 mM KC1, 10 mM Tris-HCl (pH 8.3), 0.01% 

gelatin, 200 uM dNTPs, 2 mM MgCL;, 0.5 units of Taq polymerase (Promega Co.), 0.3 

uM of each primer, 20-150 ng of template DNA, and water to the final volume. PCR 
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Table 2.1. 

List of potential quantitative and qualitative morphological variables and the description of 

the characters that were measured in this study. 

Variable Category Description of Characters 

Quantitative Variables 

Shell Measurements 

Carapace Carapace Length (CL), Carapace Height (CH), Spine Height (SH) 
Width of the yellow pigmentation on the first vertebral scute (WVPIG), 
Width of yellow and dark pigmentation on the 5th marginal scute 
dorsally (WPIGD and WDPD) and ventrally (WPIGV and WDPV), 
Length of the 5th marginal scute (MLNG) 

Plastron Plastron Width (PW), Plastron Length (PL), Gular Lengths (G), 
Humeral Length (H), Pectoral Length (P), Abdominal Length (AB), 
Femoral Length (F), Anal Length (AN), Width and Length of the 
yellow blotch on the axial scute (WYAP and LYAP), Width and 
Length of the yellow blotch on the inguinal scutes (WYIP and LYIP) 

Soft Tissue 
Length and Width of interorbital line (LIOL and WIOL), Width of the 
upper and lower neck lines enter in the orbital (NLL and NLU), Width of 
dark line between the upper and lower neck lines enter in the orbital 
(WBLO), Width of 2nd (WY2F) and 4th (WY4F) yellow line on the 
forelimb, Width of dark pigmentation between the 2nd and 4th lines 
on the forelimb (WB24), Width of 2nd (WY2H) and 4th (WY4H) hind 
limb lines, Width of dark pigmentation between the 2nd and 4th lines 
on the hind limbs (WDH) 

Qualitative Variables 

Presence/Absence 
Neckline extending past the interorbital line (NLIOL), 3rd digit yellow line 
extending through the elbow (3YFE), Ventral line connect under the 
chin (LLC), and a "U" shaped bar under the jaw (YUC). 

Meristics 
(#YHE and #YLFE), Dorsal yellow neck lines touching the postorbital 
blotch 
(#NLPOB), Number of lines entering the orbit (#NLO) 

Categorical Classification of the costal scute markings: 0 = blotch, 1 = ring, and 
2 = broken ring 
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products were cleaned using the ExoSAP-IT system (USB Co., Cleveland, OH, 

USA),and then used as the template in a cycle sequencing reaction with an ABI BigDye 

Terminator cycle sequencing kit (Foster City, CA, USA) using the primers described 

above. All sequencing reactions were sephadex cleaned (Princeton Separations, 

Adelphia, NJ, USA) prior to gel runs at the Iowa State University DNA Sequencing and 

Synthesis Facility. Sequence data were edited and aligned using Sequencher v. 4.1 

(GeneCodes Co., Ann Arbor, MI, USA). PAUP* 4.0M0 (Swofford, 2002) was used to 

calculate pairwise uncorrected/? distances between all haplotypes. 

Results 

The first two axes of both PCAs (Figures 2.1 and 2.2) accounted for less than 

50% of the variance in either sex (males 30.3% - Table 2.2; females 44% - Table 2.3). 

However, each species formed a distinct assemblage (Figures 2.1 and 2.2), and MRPPs 

for each sex were highly significant (females: A0 = 0.1746, Ae = 0.2039, P < 0.001; 

males: A0 = 0.1636, Ae = 0.1821, P < 0.001). In general, the ordinations indicated a 

pigmentation gradient along Axis I distinguishing the two species with G. flavimaculata 

having more yellow pigmentation and G. oculifera having more dark pigmentation 

(Figures 2.1 and 2.2). Loading scores for this axis revealed 10 variables for males and 12 

variables for females, which were the most important characters differentiating the two 

species (Tables 2.2 and 2.3). Other than the pigmentation variables, G. oculifera had 

longer anal and shorter abdominal plastral scutes. Likewise, Table 2.4 quantitatively 

summarizes the variables shown to be important by the loading scores. In both PCAs, 

Axis II explained approximately 11% of the variance and did not differentiate between 

the two species as well as Axis I (Figures 2.1 and 2.2; Tables 2.2 and 2.3). Similar to the 

PCAs, both females and males of the two species formed distinct groups in the UPGMA 
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Figure 2.1. A principal components analysis (PC A) plot of female individuals 

of G oculifera (open circles) and G. flavimaculata (black circles) showing a 

pigmentation gradient along axis I. 
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Table 2.2. 

The PC A loading scores of male G. oculifera and G. flavimaculata showing 

several pigmentation characters as being important in the ordination. The first 

two axes explain 30.3% of variance, and axis I formed a pigmentation gradient. 

Percentages in the parenthesis represent variance explained by each axis, and 

bold characters indicate pigmentation characters. 

Axis I (21%) Axis II (10%) 
AB 
AN 

LOPB 
WBLO 
WIOL 
WY2F 
WB24 

WPIGD 
WVPIG 
WY2H 

-0.220 
0.212 
0.284 
-0.252 
0.230 
0.235 
-0.210 
0.293 
0.309 
0.241 

-0.176 
0.116 
-0.007 
0.042 
-0.154 
-0.214 
-0.173 
-0.021 
0.020 
-0.070 
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Figure 2.2. A principal components analysis (PCA) plot of male 

individuals of G oculifera (open circles) and G. flavimaculata 

(black circles) showing a pigmentation gradient along axis I. 
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Table 2.3. 

The PCA loading scores of female G. oculifera and G. flavimaculata showing 

several pigmentation characters as being important in the ordination. The first 

two axes explain 44% of variance, and axis I formed a pigmentation gradient. 

Percentages in the parenthesis represent variance explained by each axis, and 

bold characters indicate pigmentation characters. 

AB 
AN 

WOPB 
NLU 
NLL 

WIOL 
WYVLU 
WYLL 
WY2F 
WY4F 

WPIGD 
WVPIG 

Axis 1 (33%) 
0.208 
-0.217 
-0.207 
-0.255 
-0.233 
-0.255 
-0.225 
-0.231 
-0.220 
-0.232 
-0.232 
-0.242 

Axis II (11%) 
-0.050 
0.189 
-0.051 
-0.091 
-0.133 
-0.060 
-0.051 
-0.104 
0.101 
0.125 
0.151 
0.198 
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analysis, but there was not perfect separation between the two (Figures 2.3 and 2.4). The 

cophenetic correlations (females, 0.8189; males, 0.8743) indicated that the clustering did 

not represent the structure in the data well. The clustering in both sexes was driven by 

head patterns and soft tissue pigmentation (Table 2.5). Besides the obvious pigmentation 

pattern on the coastal scutes, G. flavimaculata has more lines entering the orbit and post-

orbital blotch (Table 2.5). Likewise, G. flavimaculata more frequently has a nasal 

trident, necklines that connect under the chin, and a "U" shaped bar under the chin (Table 

2.5). 

I obtained 6 sequences per species for the CR (657 bp) and 8 sequences for G. 

oculifera and 6 sequences for G flavimaculata for the ND4 (894 bp). These sequences 

have been deposited on GenBank (accession numbers GQ253568 - GQ253573). The 

two unique ND4 haplotypes only had an uncorrected/? distance of 0.0011. The most 

common haplotype was found in all G. flavimaculata and seven of the G. oculifera. I 

found four unique CR haplotypes with uncorrected/? distances ranging from 0.0015 -

0.0091. No CR haplotypes were shared between the two species, but interestingly the 

two most similar haplotypes were found in G. flavimaculata (n=l) and G. oculifera 

(n=5), respectively. 

Discussion 

Some of the morphological characters Cagle (1954) used to diagnose G 

flavimaculata and G. oculifera actually overlapped between the species. Although my 

analyses of an expanded set of characters demonstrated significant morphological 

differentiation between the two species, some specimens occasionally had characters that 

overlapped with the other species. Besides the differences in costal scute markings, which 

is the basis for the two species' common names, G flavimaculata has more yellow 



37 

0 0 

g 
-3 Ctf 
_o 
< 
U 
P-< 

-*-> 
>> 

J3 
T3 
0) 
« 

I l-c 

1 3 
co 
fcH 
<L> 
o 

S3 
4 3 
o 
o 
'-S 
13 

gm
e 

' Q H 

+2 
§ 
•c 
o 

s 
,__, cS 

i-i 
<L) 
> 0) 
CO 

<4-H 

O 

(ET 
CW 

fl 
O 

ev
i 

-d 
T 3 

td
ar

 

VH 

-t-> 
t/J 

T 3 

g 
en 
O 

^ ts 
r^l n 

T
ab

le
: 

M
ea

n 
co 

&0 

'3 S-i 

T3 

H 
-o 

a 

3 o (30 

o 
CO 
CT3 

PLH 

<u 
3 
_C 
Q v 

a 

^ 
T J 

Q 
•tS 
SS 

"s o 
<3 

S 
? cs 

^ 

ei 
<o 
£ 
CD 

4-» 
cS 

3 
w VH 

5 H 

T 3 

o 

+3 
CO 
<L> 
s-c 
O 
C J 
CO 

0) 
"3 o 
co 
To 
o5 nj 
o O 

•g 
ffl 

00 
c • 3 

0* 

ne
e 

O 
O) 
.o 

<: Q 
O 

CD 

a. 

H 
2 
w Q 

2 
H 

PQ 
O 
PH 
J 
Q 

J 
O 
3 
z 

w 
m >-

o 

1 
«, 

o 



cE 

o 

2 

38 

-q: 

- 0,5 changes 

Figure 2.3. The UPGMA dendrogram showing female G. oculifera and G. 

flavimaculata are diagnosable using the selected qualitative characters. The 

cophenetic correlation (i.e., 0.8189) suggests that the clustering did not 

represent the structure of the raw data very well. 



-0.5 changes 

Figure 2.4.The UPGMA dendrogram showing male G. oculifera and G. 

flavimaculata are diagnosable using the selected qualitative characters. The 

cophenetic correlation (i.e., 0.8743) suggests that the clustering moderately 

represented the structure of the raw data very well. 
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pigmentation on the carapace and soft tissues than G oculifera. In particular, G. 

flavimaculata has more yellow pigmentation on the first vertebral and 5th marginal scutes 

and has a longer postorbital blotch than G. oculifera, which should be diagnostic in the 

field. Also similar to Cagle's (1954) comparison, my data showed that G. flavimaculata 

usually had yellow, dorsal necklines connecting to the post-orbital blotches and a broader 

yellow interorbital line than G. oculifera. 

Distinct morphologies may not always reflect strong genetic differentiation 

between species. Morphological differentiation may be the product of strong selection 

pressure, lineage sorting of polymorphism in the ancestral population, or genotype by 

environment interactions (Avise, 2000; Futuyma, 1998). Interestingly, head patterns, 

which are diagnostic traits used in Graptemys taxonomy (Lovich and McCoy, 1992; 

Vogt, 1993 and references therein), are known to be under environmental control and 

exhibit clinal variation in some Graptemys species (Ewert, 1979; Vogt, 1993). Although 

I found a head pattern difference between G. flavimaculata and G. oculifera, this 

character has never been considered critical in distinguishing the two species. More 

importantly, there are no studies suggesting that the expression of other soft and hard 

tissue patterns that I examined are influenced by the environment. 

Despite the significant morphological differentiation between G. flavimaculata 

and G oculifera, like Lamb et al. (1994), I found limited genetic differentiation. The two 

ND4 haplotypes were different at only one base position and were shared between 

species while the CR haplotypes were species-specific but exhibited little divergence. 

The lack of strong molecular support for G. flavimaculata and G. oculifera is probably 

not a function of a poor choice in molecular markers. The three mitochondrial genes 

(i.e., control region, cyt b, and ND4) used in this study and by Lamb et al. (1994) are 
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among the most commonly employed in molecular systematic studies of turtles, and they 

are also among the most variable at lower taxonomic levels (FitzSimmons and Hart, 

2007). Perhaps the inability of mtDNA to fully resolve the taxonomic relationships 

within Graptemys might be due to slow evolutionary rates in chelonian mitochondrial 

DNA (mtDNA; Avise et al., 1992), but this idea is still debated in the literature 

(FitzSimmons and Hart, 2007). Regardless of the rate of molecular evolution in 

chelonians, some species (e.g., Sternotherus minor, S. odoratus, and Kinosternon 

subrubrum) demonstrate greater intraspecific divergence than is seen between many 

species of Graptemys (Walker and Avise, 1998), even in species like S. odoratus that 

exhibit morphological homogeneity across its range (Reynolds and Seidel, 1983). The 

question remains as to whether or not the genus Graptemys may be oversplit (Walker and 

Avise, 1998), or if these are valid species that are the product of recent radiations 

associated with periodic sea level fluctuations along the Gulf of Mexico (Lovich and 

McCoy, 1992; Wood, 1977). 

These questions about taxonomy and evolutionary history are not strictly of 

academic interest. Graptemys oculifera and G. flavimaculata are both federally listed as 

threatened (U.S. Fish and Wildlife Service, 1986,1991) and listed as endangered by the 

state of Mississippi (Mississippi Department of Wildlife, Fisheries, and Parks, 2000) so 

their taxonomic status has important conservation implications. This study found the two 

species to be morphologically distinct in a variety of pigmentation characters, which may 

or may not be environmentally influenced, and hard characters such as plastral scute 

length. The lack of accompanying strong genetic differentiation is not necessarily 

surprising if these species are only recently diverged. In these situations, a more 

productive way to delimit species may be to take a population genetic approach by 
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defining a species as a genetically and demographically connected metapopulation rather 

than a genealogical one that only recognizes monophyletic groups (Shaffer and Thomson, 

2007). Since G oculifera and G flavimaculata are restricted to different drainage 

systems, they most likely represent distinct metapopulations. Although, this degree of 

genetic isolation could be further tested through the collection of additional molecular 

data such as multiple microsatellite loci or single nucleotide polymorphisms. The 

discrepancy between the morphological and molecular aspects of this study suggests that 

the taxonomic status of G oculifera and G. flavimaculata is still open to debate. 

However, I urge that before any formal taxonomic decisions are made that additional data 

be collected to better establish the degree of genetic connectivity between the two. 
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CHAPTER III 

LOW GENETIC DIVERSITY IN SEVERAL GOPHER TORTOISE (GOPHERUS 

POLYPHEMUS) POPULATIONS IN THE DESOTO NATIONAL FOREST, 

MISSISSIPPI 

Abstract 

Gopherus polyphemus has experienced severe population declines, especially in 

the western portion of its range. As a consequence, G. polyphemus may have 

experienced population bottlenecks that resulted in a decrease in genetic diversity and an 

accumulation of deleterious alleles. The importance of genetic diversity has been well 

documented for several fitness parameters (e.g., survival, disease resistance, growth and 

developmental rates, and developmental instability). Western populations of G. 

polyphemus in South Mississippi have demonstrated lower hatching success (e.g., 16.7 to 

48%) than that found in eastern populations (e.g., 67 to 97%). Even under laboratory 

conditions, approximately 40% of the eggs still failed to hatch, suggesting that intrinsic 

(egg quality) factors may be affecting development. Using nine microsatellite loci, I 

genotyped individuals from four populations in South Mississippi and one eastern 

population and compared several genetic diversity indices (e.g., allelic richness, expected 

heterozygosity, and percent polymorphic loci) with published data from populations in 

the eastern portion of the range. I found significantly lower genetic diversity in the four 

Mississippi populations than in the eastern populations. However, these findings only 

demonstrate that these populations have low genetic diversity, and establishing any 

causal relationship between low genetic diversity and/or other intrinsic factor(s) (e.g., 

female condition) with reduced reproductive success should be further investigated. 



48 

Key Words.- Conservation genetics; Genetic diversity; Gopherus polyphemus 

Introduction 

The Gopher tortoise's {Gopheruspolyphemus) distribution is intrinsically linked 

to the historical range of longleaf pine (Pinuspalustris) (U.S. Fish and Wildlife Service, 

1990). This ecosystem that once dominated the southeastern Coastal Plain has 

experienced approximately a 90% reduction during the last century (Croker, 1987; Kautz, 

1993; Noss, 1989), which subsequently has reduced Gopher tortoise populations by 80% 

(Auffenberg and Franz, 1982). The loss of longleaf pine habitat has been attributed to 

poor forest management practices, urbanization, and agriculture. The loss of this habitat 

has produced fragmented G. polyphemus populations across its range (U.S. Fish and 

Wildlife Service, 1990). In particular, the western portion of the range, west of the 

Tombigbee and Mobile Rivers in Alabama and including south Mississippi and 

southeastern Louisiana, has experienced significant population reductions and 

fragmentation leading to a federal listing of "threatened" (U.S. Fish and Wildlife Service, 

1990). 

In the western portion of the range, the DeSoto National Forest (DNF) in south 

Mississippi contains the largest number of G. polyphemus and has experienced recent 

declines, perhaps due to low recruitment (Epperson and Heise, 2003; Noel, 2006). 

Several multi-year studies have reported an extremely low hatching success rate (16.7 -

48%: Epperson and Heise, 2003; Hammond, 2009; Noel, 2006; Quails et al., unpublished 

data) compared to the 67-97%) hatching success rate in the eastern portion of the range 

(Butler and Hull, 1996; Desmuth, 2001; Landers et al., 1980; Smith, 1996). In a 

comparison of natural and artificial incubations, Noel (2006) split clutches, incubating 

two eggs per clutch in the laboratory under controlled (thermal and hydric) conditions 
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chosen to maximize success, while leaving the remainder of each clutch in the natural 

(but predator protected) nest. The hatching success (58.8%) in these artificial incubations 

was substantially lower than typical for natural nests in eastern populations. This led Noel 

(2006) to suggest that approximately 40% of the eggs had some intrinsic factor(s) 

impeding successful hatching. The naturally incubated eggs had a hatching success of 

only 16.7%. Noel (2006) suggested that of the 83.3% of the eggs that failed to hatch, 

removing the 40% egg failure attributed to intrinsic factors would leave approximately 

43% of the hatching failure attributable to some sort of extrinsic factor(s). Noel (2006) 

found soil clay content and temperature of the nest to only be weakly correlated with 

hatching success, and subsequent studies have not yet been able to causally link any 

specific extrinsic factors with low hatching success (Hammond, 2009; Quails et al., 

unpublished data). Hatching success rates were not the only reproductive difference 

between tortoises in the western and eastern portions of their range. In the failed eggs, 

DNF populations also had a higher percentage of late-stage embryo mortality (28-53%: 

Epperson and Heise, 2003; Hammond 2009; Noel, 2006) when compared to an eastern 

population (i.e., 1%; Butler and Hull, 1996). While they have not identified any particular 

intrinsic factor(s) as a cause, these studies clearly demonstrate the presence of some such 

intrinsic problem in a disturbingly large proportion of tortoise eggs in the DNF. 

Genetic diversity (i.e., heterozygosity and allelic diversity) is one intrinsic factor that 

has been linked to various correlates of fitness (e.g., survival, disease resistance, growth 

and developmental rates, and developmental instability) in wild populations (Allendorf 

and Leary, 1986; Crnokrak and Roff, 1999; Mitton, 1997; Ralls et al., 1988; Reed and 

Frankham, 2003). In oviparous species, low genetic diversity may be responsible for low 

reproductive success (reviewed in Keller and Waller, 2002). More specifically, low 
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genetic diversity seems to adversely impact hatching success in several of the more 

derived reptiles (i.e., avian species) such as Parus major (Great tit) (Kempenaers et al., 

1996), Picoides borealis (Red-cockaded woodpecker) (Daniels and Walters, 2000) and 

Gallinula chloropus (Common moorhen) (McRae, 1996). Therefore, the goal of this 

study was to assess levels of genetic variation in several of the DNF populations 

experiencing low hatching success rates, and to compare the levels of genetic diversity 

between the western and eastern portions of the range. However, establishing a 

correlation between low genetic diversity and low hatching success does not necessarily 

imply a causal relationship and clearly demonstrating this is outside of the scope of this 

study. 

Materials and Methods 

From May-August 2006,1 captured adult G. polyphemus using 13 Tomahawk 

Model 18 Live Traps (81.28 x 25.4 x 30.48 cm) and 25 custom-designed (71.12 x 35.56 x 

27.94 cm) live traps from the four study sites on the DNF described by Noel (2006): T44 

West (N 31° 04' 52", W 89° 07' 45"), T44 East (N 31° 04' 47", W 89° 06' 05"), 

McLaurin (N 31° 08' 47", W 89° 06' 05"), and Crossroads (N 30° 57' 24", W 89° 06' 

32") (Figure 3.1). I collected a 0.5-1 mL sample of blood from each tortoise from the 

femoral vein using a heparinized 23-gauge needle and 1 mL syringe. Each blood sample 

was stored in a 1.5 mL vial with approximately 0.5 mL of tissue preservation buffer 

(Seutin et al., 1991). Samples from one of the eastern populations (Fort Benning, GA) 

were provided by Mary Mendonca and Paula Kahn of Auburn University. 

I extracted total genomic DNA from the blood samples using the Qiagen DNeasy 

extraction kit (QIAGEN Inc., Valencia, CA), and genotyped each individual for the nine 

microsatellite loci reported by Schwartz et al. (2003) for G. polyphemus. Polymerase 
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Figure 3.1. Map showing the location of our western sampling sites within 

the DeSoto National Forest shaded in gray. The inset map shows the 

location of the counties in south Mississippi relative to the entire state. 
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chain reaction (PCR) amplifications were conducted in a total volume of 12.5 uL using 

50 mM KC1, 10 mM Tris-HCl (pH 8.3), 0.01% gelatin, 1.5-2.0 mM MgCl2, 200 uM 

dNTPs, 0.1875 units of Taq polymerase (Promega), 0.3 uM of the Ml 3 tailed forward 

primer (Boutin-Ganache et al., 2001), 0.3 uM of the reverse primer, 0.1 uM of the M13 

labeled primer (LI-COR), 20-100 ng of template DNA and water to the final volume. 

PCR cycling conditions consisted of an initial denaturing step of 94 C for 2 min followed 

by 35 cycles of 30 sec at 94 C, 1 min at 56-60 C and 1 min at 72 C. A final elongation 

step of 10 min at 72 C ended the cycle. I visualized the microsatellite alleles using a LI-

COR 4300 DNA Analysis system and scored them using Gene Image IR v. 3.55 (LI-

COR). 

I used GENEPOP v. 3.4 (Raymond and Rousset, 1995) to calculate the number of 

alleles, percentage of polymorphic loci, observed and expected heterozygosity values, 

and conduct exact tests for Hardy-Weinberg equilibrium (HWE) and linkage 

disequilibrium (LD). Significance values for tests with multiple comparisons were 

adjusted with a sequential Bonferroni correction (Rice, 1989). The presence of null 

alleles was assessed using MICRO-CHECKER v. 2.2.3 (van Oosterhout et al., 2004). I 

analyzed each sampled population for bottlenecks using BOTTLENECK ver 1.2.02 

(Cornuet and Luikart, 1996) and the M ratio of Garza and Williamson (2001). Bottleneck 

was run for 1000 permutations under a two-phase model of microsatellite evolution with 

a 30% stepwise mutation model and a 70% infinite allele model. 

Ideally, when comparing genetic diversity indicies (e.g., allelic richness) among 

populations, one should use a rarefaction method to account for variation in sample sizes 

(Leberg, 2002). Therefore, I combined Schwartz and Karl's (2005) genotypic data with 
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our own and conducted three sets of analyses whereby we accounted for differences in 

sample sizes among populations. First, I conducted a rarefaction analysis using HP-

RARE 1.0 (Kalinowski, 2005), and then I used a Wilcoxon Rank Sums Test to determine 

if there was a significant difference between western and eastern samples' adjusted allelic 

richness. Second, I used FSTAT v. 2.9.3.2 (Goudet, 2001) to test for significant 

differences among eastern and western populations in allelic richness, observed 

heterozygosity and expected heterozygosity using a randomization test with 15,000 

permutations. Lastly, I compared number of alleles, expected heterozygosity, and 

percentage of polymorphic loci between my DNF samples and eastern sampled 

populations in a multiple response permutation procedure (MRPP). To determine if the 

sample size influenced the amount of genetic diversity, which could bias the statistical 

analyses, I used linear regression to fit a line to each of the samples' genetic diversity 

indices over the size of the sample. Only expected heterozygosity (HE) demonstrated a 

significant relationship with sample size if = 0.20, P = 0.029), which was negative. If 

smaller samples underrepresented the genetic variation present in a population then one 

would expect a positive, not a negative relationship. Therefore, I used the three genetic 

diversity indices (not corrected for n) in the MRPP, which was run with 50,000 

permutations using Euclidean distances to create a dissimilarity matrix. This is a re­

sampling statistical technique testing for a significant difference between groups 

(McCune and Grace, 2002). All statistical analyses were performed using R statistical 

software (R Development Core Team, Version 2.8.0, 2008) and JMP 7.0.1 (SAS 

Institute, 2007). 
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Results 

I genotyped a total of 129 adult individuals from my five sites (4 in DNF and Ft. 

Benning). Sample sizes at these sites were as follows: T44E, n = 24; T44W, n = 42; 

McLaurin, n = 7; Crossroads, n = 16, Ft. Benning, n = 40. All five sites showed no 

evidence of null alleles, deviation from HWE, or LD. Also, none of my sites 

demonstrated evidence of bottlenecks through heterozygosity excess or deficiency under 

the T.P.M. mutation-drift equilibrium, and all Mratios were larger than their respective 

critical values (Mc). The 89 individuals genotyped from my four samples of western 

populations possessed less genetic variation than eastern samples surveyed by Schwartz 

and Karl (2005). For example, the mean number of alleles per locus for the eastern 

populations was 3.1 (SE ± 0.16), while the mean number of alleles for Mississippi 

populations was 1.9 (SE ± 0.106) (Figure 3.2). Likewise, the ranges of expected 

heterozygosity (HE) values and percentage of polymorphic loci (% poly loci) for the 

eastern population samples (HE = 0.5 ± 0.02; % poly loci = 0.9 ± 0.03) were larger than 

Mississippi populations (HE = 0.2 ± 0.01; % poly loci = 0.6 ± 0.05; Figure 3.2). Each of 

my analyses that accounted for differences in sample size also indicated that there was 

significantly less genetic variation in the western populations. The Wilcoxon Rank Sums 

Test comparing the adjusted allelic richness showed that the western (1.7 ± 0.06) and 

eastern (2.6 ± 0.082) samples were significantly different (Z = -2.69, P = 0.007). The 

permutation test performed by FSTAT detected significant differences between western 

and eastern populations in allelic richness (P = 0.0004), observed heterozygosity (P = 

0.004) and expected heterozygosity (P = 0.0001). Likewise, the MRPP comparing the 

number of alleles, expected heterozygosity, and percent polymorphic loci between the 
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NA 
Genetic Diversity Indices 

Figure 3.2. Comparison of Gopherus polyphemus samples' mean number of alleles 

(NA), mean expected heterozygosity (HE), and mean percentage of polymorphic loci 

(% poly loci) between eastern (gray) and western (white) portion of the range. 
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western and eastern samples also showed a significant difference (A0 = 0.08415, Ae = 

0.1456, P = 0.0002). 

Discussion 

Compared to eastern populations, which are not federally protected and where 

reproductive success is higher, G. polyphemus has low genetic variation and a reduction 

heterozygosity in western populations that we sampled on the DNF. The presence of 

lower genetic diversity in the western portion the range could suggest prior population 

bottlenecks, or that historically the western populations persisted with low genetic 

diversity (e.g., central-marginal theory; reviewed by Eckert et al., 2008). Although 

bottlenecks (i.e., genetic drift) were not detected by Mratio and BOTTLENECK ver 

1.2.02 for any of our populations, G. polyphemus populations have declined 80% since 

the late 1800s (Auffenberg and Franz, 1982). More recently in the DNF, numbers of 

active and inactive burrows have decreased roughly 35.7% over the past 12 years 

(Hammond, unpublished data). However, genetic tests can sometimes miss the signature 

of a bottleneck even when long-term demographic data have suggested consistent 

population declines (Busch et al., 2007; Kuo and Janzen, 2004). With continuously 

declining populations, genetic drift can precipitate loss of genetic variation by decreasing 

allelic richness (i.e., fixation or loss). Unlike genetic drift, inbreeding can only 

precipitate the decrease of heterozygosity within a population (England et al., 2003; 

Frankham et al., 2002; Hartl and Clark, 1997; Lande, 1988; Reed and Frankham, 2003). 

When compared with the eastern populations, the DNF populations have lower 

heterozygosity. This difference in heterozygosity could suggest inbreeding depression 

within the western populations. However, it may be invalid to assume a correlation 
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between reduced heterozygosity levels detected by a limited number of microsatellite loci 

(e.g., 10) and the inbreeding coefficient (Balloux et al., 2004). 

The negative effects of low genetic diversity and inbreeding depression within 

wild populations have been well documented, including detrimental affects on several 

fitness parameters such as survival, disease resistance, growth and developmental rates, 

and developmental instability (Allendorf and Leary, 1986; Crnokrak and Roff, 1999; 

Ralls et al., 1988; Reed and Frankham, 2003). Low genetic diversity and inbreeding 

seems to affect life-history traits, such as hatching success and juvenile survival, more 

severely than morphological traits (e.g., body weight and scale counts) (DeRose and 

Roff, 1999). Notably, 14% of hatchlings in the DNF populations appear to be 

demonstrating elevated rates of morphological abnormalities, such as fluctuating 

asymmetry and scute malformations (Hammond, unpublished data). Similar to the 

reproductive problems found in several DNF populations of G. polyphemus, inbreeding 

depression and low genetic variability impact reproductive success in avian species 

(reviewed in Keller and Waller, 2002). For example, inbreeding depression lowered egg 

hatchability in Parus major (Kempenaers et al., 1996), reduced hatching rates and 

fledgling survival in Picoides borealis (Daniels and Walters, 2000), and lowered the 

hatching success and survival rate of offspring in Gallinula chloropus (McRae, 1996). 

The high percentage of eggs that potentially failed due to intrinsic factors (40%; 

Noel, 2006) could in part be explained by low genetic variation found in our study. 

However, it is not out of the realm of possibility that other intrinsic factors (e.g., female 

condition and quality) could also contribute to the low hatching success. For example, 

elevated corticosterone levels in stressed avian species' females during the reproductive 

cycle have been shown to increase corticosterone levels in the eggs (Saino et al., 2005), 
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which have negative effects on embryos and hatchlings (Hayward and Wingfield, 2004). 

Likewise, poor body condition in females of the Snow petrel (Pagodroma nivea) and 

Baltic herring (Clupea harengus membras) has been shown to have negative effects on 

hatching success (Barbraud and Chastel, 1999; Laine and Rajasilta, 1999). However, the 

intrinsic factor(s) does not entirely explain the low hatching success problem. For 

example, 43% of the eggs could have been successful in the field experiment, but failed 

due to some extrinsic (nest environment) factor(s) (Noel, 2006). Temperature and soil 

clay content of nests were only weakly correlated to hatching success (Noel, 2006), and 

further experiments investigating extrinsic factor(s) have found no specific causes 

impeding hatch success (Quails, unpublished data; Hammond, 2009). Artificial 

incubation experiments over multiple years on these same populations have produced 

consistent hatching success rates (-60%) while the natural nest hatching success rates 

have fluctuated (30-48%) between years, but never attained equal success to laboratory 

incubation (Quails, unpublished data). This pattern suggests than while overall 

recruitment within the DNF is a combination of both extrinsic and intrinsic factors, the 

latter consistently contributes approximately 40% egg failure. 

While my data show correlated east-west differences in genetic variation and 

hatching success, this study only shows that several populations of G. polyphemus in the 

western portion of the range have lower genetic diversity than the eastern portion and 

does not show a causal relationship between genetic diversity and hatching success. 

However, there is a large difference between western and eastern hatching success rates 

that has not been explained by extrinsic factor(s). While the consequences of this lower 

genetic diversity and other potential intrinsic factor(s) should be investigated in the 

future, they were outside the scope of this study. These findings have important 
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implications for G polyphemus management in the DNF, because two of my sites (T44 

East and West on Camp Shelby) have been aggressively managed through prescribed 

burns and thinning of canopy specifically for G. polyphemus habitat for more than a 

decade, but still have low hatching success. Thus, habitat protection and management 

alone do not appear to be sufficient to help these populations to recover. This situation 

leaves state and federal agencies facing a very difficult challenge in conserving and 

recovering viable populations of G. polyphemus in Mississippi. 
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CHAPTER IV 

A REASSESSMENT OF THE PHYLOGEOGRAPHY OF GOPHERUS POLYPHEMUS 

Abstract 

Identifying geographic barriers that partition genetic structure within a species is 

crucial in formulating an effective conservation plan. Since Gopherus polyphemus have 

historically been declining range wide, the identification of evolutionary significant units 

and management units are critical for the protection and recovery of the species. Previous 

molecular work, although somewhat limited in scope, does make it clear that there are 

distinct population assemblages across the geographic range of G. polyphemus. The goal 

of this study was to more fully sample across the western portion of the range (i.e., west 

of the Tombigbee and Mobile rivers) by including populations from Mississippi and 

western Alabama, to reassess the phylogeography of G. polyphemus. In particular, I 

wanted to more explicitly evaluate the extent of genetic isolation impacted by several 

proposed geographic barriers. Using a 712 bp portion of a mitochrondrial gene (NADH 

dehydrogenase), I found support for a modest phylogenetic break between the western 

and eastern portions of the range, which supported USFWS's listing of the west as a 

distinct population segment (DPS). However, the presence of western haplotypes in 

panhandle Florida and Georgia indicates that the phylogenetic break between west and 

east has not been impermeable to historical gene flow. 

Key words.-mtDNA, ND4, Phylogeography, Conservation Genetics 

Introduction 

The importance of identifying geographic barriers that cause phylogenetic breaks 

within a species is paramount in formulating a sufficient management strategy. The 

failure to separately managing genetically unique populations or regions could precipitate 
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loss in genetic diversity and local adaptations that are essential for evolution (Hilborn et 

al., 2003; Luck et al., 2003). For example, managers lacked information on the 

phylogeography and taxonomy of the tuatara (Sphenodon spp.) and they treated the group 

as a monotypic species. This led to the extinction of unique populations and potentially 

an entire sub-species (Daugherty et al., 1990). In recognition of the value of genetically 

unique populations; in 1978 an amendment to the Endangered Species Act (ESA; 1973) 

allowed the United States Fish and Wildlife Service (USFWS) to protect unique 

populations of a species by designating them as distinct populations segment (DPS) 

(USFWS, 1987). The designation of a DPS could be on the basis of a "physical, 

physiological, morphological, ecological, behavioral, or genetic difference" (USFWS and 

NOAA, 1996). 

Gopheruspolyphemus populations have been reduced by the 80% since 1800's 

(Auffenberg and Franz, 1982), and the declines are continuing throughout the range 

(McCoy and Mushinsky, 1992; Mushinsky et al., 2006; Waddle et al., 2006; Hammond, 

2009) and more disconcerting even on protected lands (McCoy et al., 2006). Under the 

amendment to the ESA, western populations (i.e., west of the Tombigbee and Mobile 

Rivers) of Gopherus polyphemus were considered a DPS and subsequently federally 

listed as threatened (USFWS, 1987). However, the distribution of G. polyphemus is 

expansive, covering 6 southeastern states (i.e., Louisiana, Mississippi, Alabama, Georgia, 

Florida, and South Carolina) with the federally protected populations only being a 

relatively small portion of this distribution. Many species with large distributions possess 

intraspecific genetic structuring (Avise, 2000) and G. polyphemus is no exception. There 

have been several phylogeographic studies of G. polyphemus including mitochondrial 

DNA (mtDNA; Osentoski and Lamb, 1995) and microsatellites (Schwartz and Karl, 
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2005) showing genetically distinct population assemblages across the geographic range 

(Osentoski and Lamb, 1995) and within Florida and Georgia (Schwartz and Karl, 2005). 

However, the largest scale study to date (Osentoski and Lamb, 1995) had limited 

sampling in the threatened western portion of the range (i.e., only one site in Louisiana). 

Thus, a complete range wide phylogeographic study has not been conducted, which could 

provide molecular support for the western DPS as defined by the USFWS and identifying 

DPS elsewhere in the range. 

The goal of this study is to more fully sample across the western portion of the 

range by including populations from Mississippi and western Alabama, and conduct a 

complete phylogeographic study of G. polyphemus. In particular, I wanted to investigate 

the genetic distinctiveness of the western DPS compared to other portions of the range. 

These data will allow me to more explicitly evaluate the extent of genetic 

isolation/divergence between populations, thereby aiding federal and state agencies in 

making decisions on their legal protection and conservation status. 

Methods 

Collections and Sequencing 

Samples (i.e. blood or shell pieces) were either obtained under the appropriate 

permits by trapping efforts by the authors or donations made by various researchers (see 

Acknowledgments for a complete list). This collaborative effort yielded 207 individuals 

from 26 sites throughout the range (Table 4.1, Figure 4.1). For the adult G. polyphemus 

captured by the authors, Tomahawk Model 18 Live Traps (81.28 x 25.4 x 30.48 cm) and 

custom-designed (71.12 x 35.56 x 27.94 cm) traps were used, and a 0.5 - 1 mL blood 

sample was collected from each tortoises' femoral or brachial vein using heparinized 23-

gauge needles and 1 mL syringes. Each blood sample was stored in a 1.5 mL vial with 
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Table 4.1. 

Coordinates, number of sequences (n), gene diversity (h), and nucleotide diversity 

(TT) of the 26 sites sampled across Gopherus polyphemus' distribution. Sites are 

partitioned into regions based on USFWS's delineation of the western portion of 

the range. 

Region/Site State Coordinates (WGS84) n h /7 

N 31° 03'52", W-89° 07'45" 
N 30° 57' 24", W -89° 06' 32" 
N31°27'37", W-88°46'02" 
N 31° 08'59", W-89° 12'01" 
N 31° 09'39", W-89° 43' 15" 
N 30° 32' 54", W -88° 38' 32" 
N 30° 36'13", W-88° 25' 17" 
N 30° 50' 32", W -89° 09' 37" 
N 30° 40' 08", W -89° 05' 24" 
N 30° 54' 29", W -88° 08' 49" 

N 32° 21'27", W-84° 57'22" 
N 30° 40' 08", W -89° 05' 24" 
N30°39'51", W-84°47'52" 
N 30° 21'57", W-81° 50'38" 
N 30° 34'26", W-81° 33'14" 
N 28° 32' 01", W -81° 44' 00" 
N 29° 35' 52", W -82° 25' 09" 
N 28° 33'53", W-82° 23'11" 
N 28° 43'11", W-81° 34'22" 
N 29° 44'02", W-81° 37'42" 
N 28° 52'23", W-81° 09'47" 
N 27° 36'10", W-80° 20'08" 
N 30° 46'01", W-86° 33'33" 
N 28° 03'51", W-82° 24'50" 
N 27° 28'15", W-81° 30'54" 
N 27° 09' 14", W -80° 40' 05" 

Western 
1. Camp Shelby 
2. Cross Roads 
3. Gopher Farm 
4. McLaurin 
5. Marion 
6. Ward Bayou 
7. Escatawpa 
8. Wiggins Airport 
9. Little Florida 
10. Mobile 

Eastern 
11. Ft. Benning 
12. Walton 
13. Gadsden 
14. Duval 
15. Nassau 
16. Lake 
17. Alachua 
18. Hernando 
19. Orange 
20. Putnam 
21. Volusia 
22. Indian River 
23. Okaloosa 
24. Hillsborough 
25. Highlands 
26. Martin 

MS 
MS 
MS 
MS 
MS 
MS 
MS 
MS 
MS 
AL 

GA 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 
FL 

9 
10 
12 
7 
9 
11 
5 
5 
1 

10 

9 
8 
9 
12 
9 
10 
10 
12 
8 
9 
9 
2 
2 
2 
10 
6 

0.000 
0.000 
0.000 
0.000 
0.000 
0.250 
0.000 
0.000 
1.000 
0.200 

0.556 
0.643 
0.389 
0.511 
0.000 
0.644 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
1.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.003 

0.004 
0.006 
0.005 
0.003 
0.000 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.013 
0.000 
0.000 
0.000 
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Figure 4.1. A map showing the 26 sites in four states sampled for this study. The line on 

the map represents USFWS's delineation of the western portion of the range. The 

numbers associated with each site corresponds to the site number in Table 4.1. 
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approximately 0.5 mL of SED tissue preservation buffer (Seutin et al., 1991). Total 

genomic DNA was extracted from the blood samples using the Qiagen DNeasy extraction 

kit (QIAGEN Inc., Valencia, CA). 

I used the polymerase chain reaction (PCR) to amplify a portion of the 

mitochondrial, NADH dehydrogenase 4 (ND4) gene. After initial amplification were 

conducted using the ND4 primers designed by Spinks and Shaffer (2005). Based on 

sequences from these, I designed internal primers (5'-AAACTTGGAGGATA- 3' and 5'-

CCCTTAAAAGTGAG-3'). In a total volume of 25 or 50 uL, PCR reaction conditions 

were conducted using 50 mM KC1, 10 mM Tris-HCl (pH 8.3), 0.01% gelatin, 1.5-3.0 

mM MgCl2, 200 uM dNTPs, 0.1875 units of Taq polymerase (Promega), 0.3 uM of the 

forward and reverse primer, 20-100 ng of template DNA, and water to the final volume. 

The cycling conditions consisted of an initial 1 min denaturing step at 95 °C followed by 

30 cycles of 1 min at 95°C, 1 min at 55°C and 3 min at 72°C. A final elongation step of 

7 min at 72°C completed the cycle. Amplifications were Exo-Sap cleaned (USB Corp. 

Cleveland, Ohio), and then used as template in a cycle sequencing reaction using the ABI 

BigDye Terminator v 1.1 cycle sequencing kit (Foster City, CA). All sequencing 

reactions were sephadex cleaned (Princeton Separations, Adelphia, NJ, USA) prior to gel 

runs at the Iowa State University DNA Sequencing and Synthesis Facility. Sequence data 

were edited and aligned using Sequencher v4.1 (GeneCodes Co., Madison, WI). 

Data Analyses 

To visually assess how haplotypes frequencies are partitioned across the 

landscape, I created a haplotype network using TCS (Templeton et al., 2000). PAUP* 

4.0b!0 (Swofford, 2002) was used to calculate pairwise uncorrectedp distances between 
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all haplotypes. Implemented in Arlequin 3.11 (Schneider et al., 2000), a mismatch 

distribution (MMD; Harpending et al., 1998) was used to test for a historical population 

expansion. Also using Arelequin 3.11 (Schneider et al., 2000), I calculated genetic 

diversity statistics (i.e., /j-haplotype diversity, and 7i-nucleotide diversity). 

To assess phylogeographical patterns in my data, I used Analysis of Molecular 

Variance (AMOVA; Excoffier et al., 1992) implemented in Arlequin 3.11 (Schneider et 

al., 2000). For the AMOVA, I partitioned populations on the basis of four models 

according to known and potential geographic barriers. Three of the models partitioned the 

distribution of G. polyphemus into two groups based on either the 1) USFWS's 

delineation of the Tombigbee/Mobile Rivers (USFWS, 1987), 2) literature showing 

genetic breaks corresponding to the Apalachicola drainage (Swift et al., 1985; 

Bermingham and Avise, 1986; Avise et al., 1979; Pauly et al., 2007), or 3) literature 

showing unique genetic structuring within peninsular Florida (Osentoski and Lamb, 

1995; Clark et al., 1999; Branch et al., 2003; Schwartz and Karl, 2005). The final model 

was run with three groups using both Tombigbee/Mobile and peninsular Florida 

delineations. To remove the potential bias of the a priori group delineations used in the 

AMOVA, I used Spatial Analysis of Molecular Variance (S AMOVA; Dupanloup et al., 

2002), which maximizes differentiation (<|>CT) among regions based on the geographical 

coordinates of samples. I ranged the value of K (i.e., the number of groups) from 2 - 3 

with 100 simulated annealing processes to compare how SAMOVA partitioned the 

populations relative to the partitions tested in the AMOVA. 

Results 

I obtained sequences for a 712 bp portion of ND4 for 207 individuals from 26 

sites throughout Mississippi, Alabama, Georgia, and Florida (Table 4.1 and Figure 4.1). 
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Ten unique haplotypes (Figure 4.2) were found representing two groups with a modest 

phylogenetic split (i.e., average uncorrected^ distance between groups = 0.014; Table 

4.2) with three haplotypes recovered from the western group and seven haplotypes 

recovered from the eastern. The peninsular Florida region contained the most unique 

haplotypes (i.e., 5) with one site (Indian River, Co., FL) having a three nucleotide 

substitution difference from the most common haplotype found in the eastern 

assemblages. The phylogenetic break did not entirely correspond to one particular 

geographic barrier because shared haplotypes from the eastern and western regions, as 

defined by USFWS, were found in the panhandle of Florida and Georgia sites (Figure 

4.3). Interestingly, the federally protected region (i.e., Mississippi and west Alabama) and 

peninsular Florida did not share haplotypes (Figure 4.3), and only possessed western and 

eastern haplotypes, respectively. 

There were typically few haplotypes per site with most of the sites with a 

relatively high genetic diversity being located in Florida and Georgia (Table 4.1). Except 

for sites with both eastern and western haplotypes, I typically found low nucleotide 

diversity (Table 4.1). My samples did not fit a sudden expansion model collectively (P = 

0.029), or partitioned into eastern (P = 0.0003) and western (P = 0.039) regions. 

The AMOVA model testing USFWS's delineation (i.e., Tombigbee/Mobile) explained a 

significant portion of the molecular variance ($CT 74.56%; P < 0.001), and this 

delineation explained more of the variance than the Apalachicola/Flint delineation ((j)CT 

72.50%; P < 0.001; Table 4.3). The AMOVA model using peninsular Florida as the 

delineation explained more of the molecular variance ($CT 80.46%; P < 0.001; Table 4.3) 

than either the Tombigbee/Mobile or Apalachicola/Flint models. However, the model 

combining the Tombigbee/Mobile and peninsular Florida delineations explained the most 



74 

Eastern Western 

Figure 4.2. Haplotype network showing a modest phylogenetic break between the 

eastern and western samples. Although the particular shape of each haplotype is not 

relevant, the different sizes of the shapes represent how many individuals have that 

particular haplotype. 
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Figure 4.3. A map with the frequency (pie charts) of eastern (dark) and western (light) 

haplotypes at selected sites showing the western and peninsular Florida regions having 

only western and eastern haplotypes, respectively. The region consisting of the Florida 

panhandle and Georgia constitutes an area where western and peninsular Florida 

haplotypes were shared. 
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Table 4.3. 

The results of the four AMOVA models and the two SAMOVA runs showing the 

percentage of the molecular variance being explained by among the groups (<[>CT), among 

populations within groups ($sc), and within populations (<J>ST)- The letter beside the 

model indicates the particular portioning of samples used in that model. 

Models/K 

AMOVA 

1. Tombigbee/Mobile 

2. Apalachicola/FUnt 

3. Peninsular Florida 

Combined (1 & 3) 

SAMOVA 

2 

3 

a* 

b* 

ct 

Among 
Groups 

74.56 

72.50 

80.46 

82.15 

83.82 

84.43 

Among 
Populations within 

Groups 

14.39 

15.60 

8.24 

5.00 

5.23 

4.55 

Within 
Populations 

11.05 

11.90 

11.30 

12.86 

10.86 

11.02 

*a = west: site numbers 1-10; east = 11-26 
tb = west: site numbers 1-12, 23; east = 13-22, 24-26 
t c = west: site numbers 1-13, 23; east = 14—22, 24-26 
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of the molecular variance ((j)CT 82.15%; P < 0.000; Table 4.3). Finally, the SAMOVA 

revealed a modest difference between a K value of 2 and 3 (Table 4.3), and this 

difference was caused by SAMOVA placing Indian River Co., FL into an individual 

assemblage using a K of 3 (Figure 4.4). For both values of K, SAMOVA partitioned the 

samples into east and west groupings. However, there was not a definitive geographic 

barrier for these groups due to overlap between the two groups that occurred in panhandle 

Florida and Georgia (Figure 4.4). 

Discussion 

Even with limited sampling in the western portion of the range, Osentoski and 

Lamb (1995) uncovered three assemblages (i.e., western, eastern, central Florida). 

Similarly, I found some support for three assemblages but with different phylogenetic 

breaks and delineations of the assemblages. Although Osentoski and Lamb (1995) found 

a phlyogenetic break between the eastern and western populations, this break was not 

congruent with the proposed delineation of the western DPS by USFWS. Their western 

assemblage included parts of western Georgia and the entire Florida panhandle, both of 

which extend outside of the current ESA listed area, with the Apalachicola drainage as a 

geographic barrier separating the two. 

In contrast, my data supported the USFWS's delineation of the DPS and the 

Tombigbee and Mobile Rivers as the geographic barrier in both the AMOVA and 

SAMOVA (K= 2-3). However similar to Osentoski and Lamb (1995), western 

haplotypes extended east of the USFWS's DPS into the panhandle of Florida and Georgia 

where these samples were a collection of western and eastern haplotypes. Since G. 

polyphemus is commonly translocated (Seigel and Dodd, 2000), Osentoski and Lamb 

(1995) have suggested that aberrant haplotypes in a region or site are artifacts of. 
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Figure 4.4. SAMOVA (K = 3) partitioned G. polyphemus sites into eastern and western 

regions with overlap in the Florida panhandle; while the third region consisted of only 

one site (Indian River Co., FL) in peninsular Florida. 
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translocations. However given the number of shared haplotypes between the assemblages 

found in this study, this phenomenon was highly unlikely an artifact of translocations 

Alternatively, this pattern of shared haplotypes could suggest that these barriers were not 

impermeable to historical gene flow. However, the haplotype network partitioned the 

samples in an east/west fashion with a modest phylogenetic break (i.e., eight nucleotide 

substitutions; 1.4% sequence divergence) suggesting that western and eastern regions 

were isolated for an extended period of time, probably during the Pleistocene, followed 

by mixture of haplotypes. 

The AMOVA model combining both the Tombigbee/Mobile and peninsular 

Florida delineations explained more of the molecular variance than the other models. The 

peninsular Florida delineation consisted only of sites with eastern haplotypes. 

Interestingly, this region also explained more of the molecular variance within the groups 

(i.e., $sc; Table 4.2). Although the SAMOVA (K = 3) did not recover the peninsular 

Florida delineation, a site consisting of only one unique haplotype in central Florida 

(Indian River Co., FL) was recovered in the analysis. This structure is not unexpected 

since other G. polyphemus studies (Osentoski and Lamb, 1995; Schwartz and Karl, 2005) 

and other species within this region (Clark et al., 1999; Branch et al., 2003) exhibit, in 

some case, extensive genetic structure and genetic diversity. The fluctuation of sea levels 

brought on by the glacial cycle has been postulated as the mechanism for creating this 

structure (Osentoski and Lamb, 1995; Schwartz and Karl, 2005). Peninsular Florida 

consists of two systems of xeric uplands, which do not create a continuous habitat but a 

mosaic of isolated habitats. This unique geography, accompanied by high sea levels, 

could have caused multiple vicariance events (i.e., isolation) on these ridges, and the 

subsequent draw down could facilitate dispersal events into the surrounding region. This 
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recurring phenomenon throughout the Pliocene and Pleistocene could have resulted in 

unique and complex genetic structuring. Although other studies (Osentoski and Lamb, 

1995; Schwartz and Karl, 2005; Clark et al., 1999; Branch et al., 2003) have shown a 

higher degree of structure within this region, I found a lesser degree of genetic 

structuring. For example, this region had only one distinct site (i.e., Indian River) with 

several other sites having unique haplotypes but also shared haplotypes with other sites. 

Since populations of G. polyphemus continue to decline throughout its range 

(McCoy and Mushinsky, 1992; Mushinsky et al., 2006; Waddle et al., 2006; Hammond, 

2009) and more disconcerting on protected lands (McCoy et al., 2006), effective 

measures must be taken to conserve the genetic integrity within the species. USFWS has 

taken the initial step by federally listing the genetically distinct populations west of the 

Tombigbee and Mobile Rivers. However the combination of this study and other 

molecular studies (Osentoski and Lamb, 1995; Schwartz and Karl, 2005) showing the 

uniqueness and high amounts of genetic diversity in peninsular Florida, indicated that any 

conservation strategy for G. polyphemus should aim to conserve the genetic integrity of 

this region. The failure to preserve this region's genetic diversity could result in the loss 

of a large portion of diversity within the species as a whole. 
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APPENDIX 

SPECIMENS EXAMINED 

Graptemys oculifera (N = 55). — MISSISSIPPI: Marion Co.: Pearl River, 

MMNS 3280-3281, 3731-3733, 3752-3756, 4023, 7686; Neshoba Co., Pearl River, 

MMNS 3874; Lawrence Co., Pearl River, MMNS 3995, TU 14867, 21438-21450, 

21645-21647, 21726-21733, 21733-21736, 21827; Rankin Co., Pearl River, MMNS 

4000-4003, 8393, 15816; Hinds Co., Pearl River, MMNS 4005; Madison Co., Pearl 

River, MMNS 5639, 5640; Leake Co., Pearl River, MMNS 7681-7684, TU 21816; 

Washington Pa., Pearl River, TU 21885; St. Tammany Pa., Pearl River, TU 29769. 

Graptemysflavimaculata (N = 93). — MISSISSIPPI: Perry Co., Tallahala Creek, 

MMNS 1022,1023; 1072, 1081, 1082,1121; Covington Co., Leaf River, MMNS 1026; 

Greene Co., Chickasawhay River, MMNS 1030, 5696-5699; George Co., Pascagoula 

River, MMNS 1039, 1040, 1043, 1045, 1052-1054, 1073-1075, 1077, 1087-1093,1122, 

4014, 4015, TU 14752, 14756-14760, 14762-14766, 14774, 14776, 14779-14785,14799, 

14804, 14806-14809, 14812,14818, 14821, 14822, 14829,14832, 14845,14850,14857, 

14858, 14862, 14865, 14866,148665,14868-14871, 14873, 14873, 149221, 16546.1, 

16546.3; Forrest Co., Leaf River, MMNS 1057; Jackson Co., Pascagoula River, MMNS 

1066, 1105, 1114, 1117,5641; Jones Co., Eastabuchie River, MMNS 3728, MMNS 

4012; Clarke Co., Chickasawhay River, MMNS 10754; no specific locality, MMNS 

1096; no museum voucher number or specific locality, TU. 
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