
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Fall 12-2009

Entropy and Certainty in Lossless Data Compression Entropy and Certainty in Lossless Data Compression

James Jay Jacobs
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Data Storage Systems Commons

Recommended Citation Recommended Citation
Jacobs, James Jay, "Entropy and Certainty in Lossless Data Compression" (2009). Dissertations. 1082.
https://aquila.usm.edu/dissertations/1082

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F1082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=aquila.usm.edu%2Fdissertations%2F1082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/1082?utm_source=aquila.usm.edu%2Fdissertations%2F1082&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

The University of Southern Mississippi

ENTROPY AND CERTAINTY IN LOSSLESS DATA COMPRESSION

by

James Jay Jacobs

A Dissertation
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved:

December 2009

COPYRIGHT BY

JAMES JAY JACOBS

2009

The University of Southern Mississippi

ENTROPY AND CERTAINTY IN LOSSLESS DATA COMPRESSION

by

James Jay Jacobs

Abstract of a Dissertation
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

December 2009

ABSTRACT

ENTROPY AND CERTAINTY IN LOSSLESS DATA COMPRESSION

by James Jay Jacobs

December 2009

Data compression is the art of using encoding techniques to represent data symbols

using less storage space compared to the original data representation. The encoding process

builds a relationship between the entropy of the data and the certainty of the system. The

theoretical limits of this relationship are defined by the theory of entropy in information that

was proposed by Claude Shannon. Lossless data compression is uniquely tied to entropy

theory as the data and the system have a static definition. The static nature of the two

requires a mechanism to reduce the entropy without the ability to alter either of these key

components. This dissertation develops the Map of Certainty and Entropy (MaCE) in order

to illustrate the entropy and certainty contained within an information system and uses this

concept to generate the proposed methods for prefix-free, lossless compression of static

data. The first method, Select Level Method (SLM), increases the efficiency of creating

Shannon-Fano-Elias code in terms of CPU cycles. SLM is developed using a sideways view

of the compression environment provided by MaCE. This view is also used for the second

contribution, Sort Linear Method Nivellate (SLMN) which uses the concepts of SLM with

the addition of midpoints and a fitting function to increase the compression efficiency of

SLM to entropy values L(x) < H(x) + 1. Finally, the third contribution, Jacobs, Ali, Kolibal

Encoding (JAKE), extends SLM and SLMN to bases larger than binary to increase the

compression even further while maintaining the same relative computation efficiency.

n

ACKNOWLEDGMENTS

This work is dedicated to my family, especially my wife, Kelli, and my daughters,

Jade and Amber. Their continual encouragement throughout this process made everything

possible. I would like to take this opportunity to thank all of those who have assisted

me in this effort, especially all the members of the committee for their constant support

and encouragement. In particular, my advisor, Dr. Ali who introduced the topic of data

compression and whose consistently supported the project in good times and bad. Dr.

Kolibal's continual helpfulness and brilliance in data compression and mathematics. Dr.

Pandey's sharing of his insight into theory of entropy in Physics. Dr. Burgess for his

stochastic and Markovian processes as this insight allowed for a thorough breakdown of

the interactions within the data compression environment. Dr. Seyfarth's introduction to

computational algorithms as these concepts laid the framework for this dissertation and the

future work related to it. Dr. Zhang for his insight on parallel processing. The general

guidance of Dr. El-Sawi throughout the process. I also want to thank those in the School of

Computing at USM and the office personnel, their devotion to the students and the school

is a model that all should follow. Semper Fidelis.

in

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENTS iii

LIST OF ILLUSTRATIONS vi

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

NOTATION AND GLOSSARY x

1 INTRODUCTION 1
1.1 Introduction to Data Compression 1
1.2 Properties to Classify Compression Algorithms 2
1.3 Objective 5

2 BACKGROUND INFORMATION AND CURRENT SOLUTIONS 8
2.1 Introduction to Data Compression Algorithms and Techniques 8
2.2 Claude Shannon and Information Theory 8
2.3 Entropy Theory 10
2.4 Entropy in Information 13
2.5 Shannon-Fano Encoding 16
2.6 Huffman Encoding 20
2.7 Shannon-Fano-Elias Encoding 23
2.8 Summary 27

3 CURRENT ANALYSIS OF CORE ALGORITHMS 29
3.1 View of the Data Compression Environment and Resulting Algorithms 29
3.2 Certainty and Two Types of Entropy 29
3.3 Shannon-Fano's Traditional View and Entropy Division by Certainty 31
3.4 Huffman and Entropy Addition 33
3.5 Shannon-Fano-Elias' Entropy View and Entropy Division by Entropy 35
3.6 Summary 36

4 MAPPING OF CERTAINTY AND ENTROPY 39
4.1 Illustrating Certainty and Entropy 39
4.2 Analysis of the Previous Models 40
4.3 Map of Certainty and Entropy (MaCE) of the Symbol and Bit Space 42
4.4 Entropy in Two-Dimensional Space 47

IV

4.5 Mapping Certainty and Entropy 49
4.6 Example of MaCE 50
4.7 MaCE and the Symbol 52
4.8 Summary 54

5 USE OF MaCE FOR DATA COMPRESSION 55
5.1 Using MaCE 55
5.2 Select Level Method 56
5.3 SLMN: Decrease Entropy to H(x) + 1 70
5.4 Beyond H(x) + l 79
5.5 JAKE 80
5.6 Symmetry of Encoding and Decoding 86
5.7 Summary 87

6 EXPERIMENTAL RESULTS OF SPATIAL METHODS 89
6.1 Results of SLM and SLMN 89
6.2 Test Environment 89
6.3 CPU Time Comparison between SFE and SLM 90
6.4 Entropy Comparison between SLMN, SFE, and the Ideal 95
6.5 Summary of Results for SLM and SLMN 99

7 CONCLUSION 105
7.1 Conclusion 105

APPENDIX

A ARITHMETIC ENCODING EXAMPLE HO

B COMPUTER RESULTS SELECT LEVEL METHOD 113

C COMPUTER RESULTS SORT LINEAR METHOD NIVELLATE 115

BIBLIOGRAPHY 118

v

LIST OF ILLUSTRATIONS

Figure

2.1 Shannon's decomposition of a choice from three possibilities 10
2.2 Entropy map of a tree described in base 2 12
2.3 Colors expansion example 15
2.4 Shannon-Fano example 18
2.5 Comparison of Shannon-Fano to Huffman encoding example 20
2.6 Illustration of the Huffman algorithm 22
2.7 Shannon-Fano-Elias'view of the data compression environment 25
2.8 Tree created by Shannon-Fano-Elias encoding 26

3.1 Shannon-Fano's view of the entropy space 32
3.2 Graph of two probabilities using the entropy equation 34

4.1 Traditional depiction of the binary tree 41
4.2 Shannon-Fano-Elias' model of the data compression environment 43
4.3 MaCE 44
4.4 MaCE example 46
4.5 Entropy map 48
4.6 Entropy map complete 49
4.7 Certainty map 50
4.8 MaCE example with the ideal H to represent 5 symbols 51
4.9 MaCE example illustrating the compression obtained by Huffman encoding . . 52
4.10 MaCE example including a symbol 53

5.1 Shannon-Fano-Elias: The intersect point 59
5.2 SLM: The intersect point 60
5.3 Equilibrium illustration 64
5.4 Equilibrium: Individual entropy values are equal and at the maximum 65
5.5 Split tree displacement/expansion 66
5.6 Illustration of SLM algorithm 69
5.7 SLMN: Midpoint mapping 72
5.8 Illustration of SLMN algorithm with average 77
5.9 Illustration of SLMN algorithm without average 78
5.10 JAKE in base 3 84

6.1 Total number of CPU cycles for SLM and SFE 90
6.2 Minimum number of CPU cycles for SLM and SFE 92
6.3 Maximum number of CPU cycles for SLM and SFE 94
6.4 Entropy comparison between SLMN, SFE and the theoretical ideal 96
6.5 Entropy comparison for SLMN modified 98
6.6 Entropy comparison between SLMN and SFE 101

VI

6.7 File size comparison between SLMN and SFE 101
6.8 Total number of CPU cycles for SLM 102
6.9 Total CPU cycles for SFE 102
6.10 Minimum number of CPU cycles for SLM 103
6.11 Minimum number of CPU cycles for SFE 103
6.12 Maximum number of CPU cycles for SLM 104
6.13 Maximum number of CPU cycles for Shannon-Fano-Elias 104

vn

LIST OF TABLES

Table

2.1 Shannon-Fano-Elias tabulated results 26

5.1 JAKE tabulated results in base 3 83

5.2 Huffman tabulated results in base 2 83

A.l Arithmetic encoding tabulated results 112

B.l SLM tabulated results in CPU cycles 113
B.2 Shannon-Fano-Elias tabulated results in CPU cycles 114
C.l SLMN tabulated entropy results 115
C.2 SFE tabulated entropy results 116
C.3 Ideal tabulated entropy results 117

vin

LIST OF ABBREVIATIONS

SFE
SF

PMF
MaCE

SLM
SLMN
MSPM
JAKE

- Shannon-Fano-Elias
• Shannon-Fano
• Probability Mass Function
• Map of Certainty and Entropy
- Select Level Method
• Sort Linear Method Nivellate
- Midpoint Spatial Mapping
- Jacobs, Ali, Kolibal Encoding

IX

NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational us­
age. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material.

General Definitions

A code definition refers to the requirements defining the code. A code word refers to the
unique string of bits within a given range defined by the code definition used to represent a
symbol. A symbol refers to the entities being assigned the code word which is also referred
to as encoding. Encoding refers to the process of assigning a symbol to a code word.
Decoding refers to the process of retrieving a symbol from the encoding table by utilizing
the code word.

General Notations

Entropy is denoted in multiple fields by S and a specialization of S denoted by H is used
for the purpose of information entropy, also known as Shannon entropy. Entropy for an
individual symbol is denoted by Ht for datum / and the probability of occurrence for an
individual symbol / is denoted by P;. Information or surprisal is denoted by I. The length
of a code or the level within the space is denoted by L and the width of the space is denoted
by W. The level L representing equilibrium is denoted by Le. Certainty of an event is rep­
resented by C. The probability of certainty Pc denotes the termination location of complete
code word representing the symbol.

Acronyms

MaCE (Map of Certainty and Entropy), developed in Chapter 4, is a depiction used to il­
lustrate the spatial relationships between entropy H, certainty C and the symbol. SLM
(Select Level Method), developed in Sec. 5.2, is the first compression method proposed
which uses the concepts from MaCE to select the level required by the symbol to recreate
Shannon-Fano-Elias encoding. MSPM (Midpoint Spatial Mapping) uses the spatial con­
cepts illustrated in MaCE to define the midpoints between the levels in the entropy and
certainty space. SLMN (Sort Linear Method Nivellate), developed in Sec. 5.3, is the sec­
ond proposed method which uses the concepts from SLM and MSPM to decrease the final
entropy L(x) to L(x) < H(x) + 1. JAKE (Jacobs, Ali, Kolibal Encoding) extends SLM and
SLMN into other numerical bases to decrease the entropy below H(x) + 1.

x

1
Chapter 1

INTRODUCTION

1.1 Introduction to Data Compression

Data compression is the art of using encoding techniques to represent data symbols us­

ing less storage space compared to the space required for the original data representation.

Various techniques have been developed to address this problem over the years and many

have survived the test of time. The longevity of these techniques has led to many enhance­

ments and specializations to accomplish the task. However, the ever growing need to store,

transmit and retrieve data in a timely manner while preserving communication and storage

resources has rekindled the demand for even more efficient data compression methods.

Data compression is an art form with the purpose of representing a symbol or series

of symbols with fewer symbols as compared to the original data representation. An early

example of the art form is in the development of Morse code [39]. Morse code was invented

in 1838 and is designed to represent letters efficiently by assigning shorter code words to

the most frequent utilized letters. In the Morse code a letter consists of one to five dots or

dashes and the commonly occurring letter 'e' is assigned the dot code word. Although the

concept was not applied to computing until later, the general idea remains.

A code word is the fundamental building block of data compression, building the rela­

tionship between the encoded message and the original data. This relationship is utilized

to produce the encoded message by replacing the original data with the code words. The

decoding process reverses the encoding by replacing the code words with the symbols. The

code word is defined by the code definition used to produce the relationship and the vari­

ous properties relating the code word, such as length and assignment order to the symbols.

For data compression the encoding technique tries to find a code word that is shorter or

smaller then the original representation. There is generally no requirement to mask the

relationship between the code words and the original data, so the term encoding should

not be misinterpreted as pertaining to cryptology. For computing purposes, the symbols

can be anything from a simple character represented in ASCII to a complex series of bits

in an image. The main requirement is that the symbol be uniquely representable for the

encoding and decoding process in order to be able to reassemble exactly the original data

being compressed. The space utilized by data compression can be any machine resource

and is usually engineered in binary and the space available is represented in bits.

2

As alluded to in the previous paragraph, the two main applications for data compression

are the storage and transmission of data. Both of these applications have finite resource lim­

itations and data compression is needed to efficiently utilize the available resource. From

this point of view data compression can be interpreted as an optimization or fitting process

to the resources available. The only variables are the data or how the data is represented,

since the resource storing or transmitting the data is static. This attribute requires a data-

centric mechanism to preform the manipulation and achieve the desired results in terms of

transmission throughput or data retention.

Data compression has a history almost as old as computing itself. It is typically traced

back to the development of information theory in the late 1940's. One of the most notable

figures in the field, due to his original writings on the subject, is Claude Shannon. His

approach of using the entropy equation to model communication is the foundation for much

of the work in this area. This paper discusses the pertinent parts of his work in detail in the

following chapters.

Data compression is a required part of computing and an endeavor of great worth to the

computing community. Data compression is a large field with varying requirements from

the retention of data attributes to the length of the code words. This paper examines the

base algorithms supporting the current approaches used to achieve data compression and

proposes a new model of the problem, as well as a few methods that utilize this model. We

will start with a brief review of the properties used to classify various data compression

techniques to introduce these concepts.

1.2 Properties to Classify Compression Algorithms

We define some of the properties used to classify data compression algorithms in order to

categorize the algorithms and define their relative strengths and weaknesses. The combina­

tion of these properties defines the requirements of the algorithm. Each property must be

selected appropriately to achieve the desired compression. More importantly, the quality of

the reproduced data source must be achievable based on the properties selected. Compres­

sion methods can be broadly grouped in several sub-categories: lossless or lossy; prefixed

or prefix-free; variable or fixed length code; and dynamic or static.

The first category of data compression algorithms is defined by whether or not all the

original data is completely represented in the compressed form in a manner that allows for

reconstruction of the data after decompression. The terms associated with this category

are lossless and lossy compression. More specifically, the terms refer to how the symbols

are represented in their compressed form as the loss is usually implemented at the time the

3

encoding table is created. The encoding tables are used by the compression algorithms to

store the code word to symbol relationship for use in the decoding and encoding of the data.

Lossy compression uses a method that removes part of the information when creating

the encoded symbol. This method typically reduces substantially the size of the final en­

coding in contrast to lossless compression. Lossy compression is typically used on data

sources that do not require all of the information to be utilized in their reproduced form.

For instance, an audio signal is originally an analog signal representing the continuous

fluctuation of air density. High fidelity conversion of this signal to digital itself already

removes some of the information from the original analog signal without a noticeable dif­

ference. In some cases this loss is even welcomed as it makes the signal cleaner and more

distinguishable. Converting the audio files to a lossy compression form, e.g., MP3 (MPEG-

1 Audio Layer 3), removes even more of the information from the data stream while still

retaining a respectable quality audio reproduction. In addition to MP3, most multimedia

data sources like pictures, audio and video use some sort of lossy compression for the same

reason. Some of the formats include JPEG (Joint Photographic Experts Group) for static

images and MPEG (Motion Pictures Expert Group) for video images.

Lossless compression is the opposite of lossy in that it retains all of the information

from the original data source, i.e., there is a direct correlation between representing the

symbol in the original data and the reproduced representation of the symbol in the com­

pressed data. The lossless requirement typically requires a larger compressed represen­

tation than the lossy method. Lossless compression is used in applications where data

sources cannot tolerate loss in the reproduction of the data. For instance, a text message

that losses some of the character data would be of little use to the end reader of the doc­

ument. Of course, the use of error-recovery codes can eliminate the loss, but only at the

expense of greater redundancy, yielding no net gain in compression! So, even though the

size of the end result may be large, it is the dictates of the final requirements that determine

whether or not lossy compression can be utilized. In data compression a combination of

lossy then lossless compression is typically utilized to achieve maximum compression for

data sources that allow lossy compression.

The second category of data compression algorithms is defined by the code words being

generated by the encoding process. Two properties associated with defining the code word

are prefixed or prefix-free. A prefix is utilized to define a difference between one root word

and another with the addition of a leading appendage. A prefix, in the case of binary code

words, is an appendage of zeros and ones tagged onto the front of a root code word in the

form of zeros and ones. For example, if the root of the code word is the last digit in a string

of binary numbers and we have the code of 110 0^ and 110JTJ. The root of the code word is

4

represented by the values in the box and the prefix is represented by 110. A prefixed code

allows for a prefix to exist within the code words.

The main disadvantage to prefixed codes is that they require some type of termination

knowledge in order to differentiate one code word from the next. Two of the common ways

to acquire this knowledge is through a fixed length standard or termination codes in the

form of additional characters. For data compression this may be a drawback, depending on

the method chosen to compress the data as both fixed length and the additional termination

codes lead to extra utilization of the resource.

In contrast, prefix-free is a property that maintains code words that do not contain a

prefix to another code word. The property maintains the ability for the code word to be

unambiguous by maintaining a complete string or complete strings of zeros and ones that

terminate at only one symbol. The uniqueness of the code word based on the termination

of a recognizable string allows a prefix-free code word length to vary. The varying length

is beneficial when it is possible to avoid the extra utilization of the resource required by

prefixed code words. The main disadvantage to prefix-free code is that the prefix-free

properties usage of the system may be disproportional in terms of code word lengths. In

data compression a combination of prefixed and prefix-free code is typically utilized to

achieve maximum compression.

The third category for data compression algorithms is defined by the data source being

encoded. The terms associated with this category are static and dynamic and refer to the

data source stability while the compression algorithm is encoding the data. For static com­

pression algorithms the data distribution does not change from the time of sampling to the

time of compression. The source being static allows the algorithm to make decisions on

how to properly encode in advance based on the distributions. This may require the build­

ing of an encoding table which contains the symbol counts or relative percentages. The

main disadvantage to the static compression model is that the algorithm usually requires

two passes through the data set. The first pass builds the encoding table and the second

pass encodes the data source into the encoding stream.

Dynamic compression allows for changing distributions within the source data stream.

The encoding changes in response to the distribution modifications as new symbols are

encountered or in response changes in relative distribution of neighboring symbols. The

ability to adapt to changes in distribution allows for the algorithm to process the data in

one pass by encoding the symbols as they are read. The key advantage to this approach is

that one pass through the data allows for encoding in real time. A major disadvantage is its

susceptibility to error which can ruin the code. Since the data is sampled in a one pass or

streaming manner the error may be encoded and transmitted before the error is recognized.

5

The error may even reach the decoding phase before the error is recognized inhibiting the

decoding process. Retry and sampling logic is implemented to address these concerns,

increasing the overhead of the compression model. Static compression is also susceptible

to error, but since the data is static the retry logic can be imposed at the time of error

with less cost as compared to dynamic compression. Another disadvantage is the added

overhead involved in the update to the encoding table which is required when a distribution

changes. This requirement adds additional overhead as updates must be periodically sent

to the receiver. Without the added ability to address the errors and decrease the overhead

adaptive encoding is limited.

1.3 Objective

The list of properties in Sec. 1.2 is far from exhaustive as it only explains native differ­

ences in a variety of compression schemes, however, the list is complete enough for the

objective of this study. The research preceding this dissertation evolved through a thor­

ough analysis of the current methods used in the art of data compression in both the static

and dynamic environments. The analysis revealed that the current solutions were based on

three fundamental algorithms, Shannon-Fano, Huffman and Shannon-Fano-Elias. This in­

cluded Arithmetic encoding which is the current standard in data compression and is based

on the concepts of Shannon-Fano-Elias and the use of data modeling. The main complaint

about the current solutions in both the static and the dynamic environments is the overall

complexity of the methods. These complaints are the main reason Huffman is still used for

compression even though Arithmetic encoding has been shown to produce better results.

We tried to address the problem of complexity in the previous analysis and the process

revealed that only marginal gains could be accomplished using the previous algorithms

containing current enhancements. The research into these algorithms yielded insight on

new ways to analyze the data compression environment and to use these concepts to pro­

vide new methods to perform data compression.

To accomplish this objective, Chapter 2 covers some of the basic terms related to data

compression beginning with the theory of entropy and the theoretical ideal. The theory

of entropy is geared around the concept of space, items represented by their probability

within the space and the distance within the space separating the items, or known reference

points. The entropy concept is fundamental to all the work in the field of data compression

and is used throughout this dissertation to analyze the various methods. Also covered are

the three major compression algorithms fitting the above scheme and an analysis of the

strengths and weakness of these algorithms. This review of the base algorithms in data

6

compression points out the data centric view and how this view influences the approach to

compression that the algorithms follow.

In Chapter 3 we re-examine in detail the base algorithms with regard to the unique

approach used to create the algorithms and how this approach applies to the theory of

entropy. We breakdown the previous algorithms operation in terms of entropy theory to

examine their subcomponents to gain new insight into the methods ability to model the

entropy ideals. The new analysis of the base algorithms includes the formulation of the

equations of entropy that represent these algorithms and provides a quantification of the

limits of these algorithms to compress data in terms of Shannon's theory. Chapter 3 also

discusses the view taken in this work on the data compression environment. During this

analysis the concept of certainty and the duality of the theoretical ideal are added to entropy

theory in order to explain the relationships between the algorithms and the system.

The concepts are further developed in Chapter 4 as the model of compression envi­

ronment of the base algorithms, Shannon-Fano, Huffman and Shannon-Fano-Elias, is ex­

amined to reveal the benefits each depiction has at describing entropy and the certainty.

Chapter 4 uses the concepts exposed to introduce a new more holistic model of the com­

pression environment based on the space available in the system and the space occupied by

the data using the analysis in Chapters 2-3. The Map of Certainty and Entropy, MaCE, de­

fines entropy and certainty as a two-dimensional space based on the entropy and certainty

equations. MaCE shows the individual components that comprise entropy and certainty

of the environment. The environment consists of both entropy inherent to the data and

certainty inherent to the system. The development of this model reveals that it is possible

to compare certainty to entropy and entropy to certainty to simplify the problem of data

compression. MaCE is also used to illustrate the use of base manipulation to increase com­

pression. This model opens multiple doors into the subject of data compression, and only

a small portion of these are examined in this dissertation.

Chapter 5 uses MaCE to address some of the complexity of the problem of data com­

pression and produces some new methods to accomplish this task. These new methods

show the versatility of the proposed approach and its affect on both speed and compression

related to existing compression algorithms. The methods, SLM (Select Level Method),

SLMN (Sort Linear Method Nivellate) and JAKE (Jacobs, Ali, Kolibal Encoding), use

these concepts to accomplish the task. SLM is developed utilizing MaCE model and is

designed for speed to achieve a code length L{x) with L{x) < H(x) + 2 with solely an arith­

metic comparison model. The concept of equilibrium and the split-tree are defined in order

to further enhance the computational efficiency of SLM.

7

The second method, SLMN, is developed utilizing MaCE and the concept of midpoints

between levels in the binary space. The midpoints develop an integrated sorting algorithm

of 0(n) to pre-process the symbols for the data compression method as well as a fitting

function built on the midpoint concept to adjust the code of length L(x) to L(x) < H(x) + 1.

Chapter 5 also analyses the meaning of the +1 in H{x) + 1 and this knowledge pro­

duces JAKE. JAKE is an extension of SLM and SLMN into other bases more suitable to

represent the data within the constraints of the linear system. The concept of choosing a

base adjusts the width of the compression environment to a dimension more suitable for

the data distribution. The adjustment of the width provided by JAKE augments the com­

pression optimization as SLMN and SLM both concentrate on minimizing the length of the

code word. The width adjustment by JAKE allows the use of SLM and SLMN to obtain

data compression closer to the theoretical ideal. We look at Arithmetic encoding with the

understanding of the +1 with the purpose illustrating the power of changing the numeri­

cal base of the system to other than base 2. A comparison between Arithmetic encoding

and Huffman encoding also shows how the granularity of the system affect on the overall

compression.

In Chapter 6 we also analyze the results in terms of CPU cycles for SLM in comparison

to Shannon-Fano-Elias and we analyze SLMN in comparison to Shannon-Fano-Elias and

the theoretical ideal in terms of entropy, file size and compression ratio. The results are

broken down into their respective parts in order to clearly see the relationship between the

algorithms and the data. The test sets included best/worst case analysis as well as random

and sequential data distributions. The analysis shows the advantages of the methods over

the current algorithms and reveals prospects for improving upon the results. Chapter 7

contains conclusions generated from this dissertation and some of the future work resulting

from this research.

8

Chapter 2

BACKGROUND INFORMATION AND CURRENT SOLUTIONS

2.1 Introduction to Data Compression Algorithms and Techniques

This chapter provides a review and the framework for the development of major prefix-free,

lossless, compression algorithms based on static data sources. In order to accomplish this

task a brief introduction to some of the major terms that apply to data compression and

information theory is also required. Of great importance to the theory of data compression

and information theory is the work of Claude Shannon in Sec. 2.2. Shannon's decision to

use the theory of entropy to describe information is one of the keystones in the field and

is now used to define and compare compression algorithms. In Sec. 2.3 we discuss the

theory of entropy in general and continue the discussion as it relates to data compression

and information theory in Sec. 2.4. In Sec. 2.4.1 we explain Shannon's concept of the

theoretical ideal and the concept of surprisal. These topics lay the ground work for data

compression and are used throughout this dissertation to explain and compare the various

algorithms and methods.

In Sees. 2.5-2.7 we discuss three of the fundamental algorithms in data compression;

Shannon-Fano, Huffman and Shannon-Fano-Elias as all three encoding methods adhere

to the given requirements. Each algorithm compresses data in a unique fashion and each

presents a different approach to the problem of data compression. The approach influenced

how the algorithms were designed and how the algorithms applied to the theory of entropy.

2.2 Claude Shannon and Information Theory

Claude Shannon is considered the pioneer of information theory. Through his work and

the work of others, three of the premier compression algorithms in use today were devised.

Shannon's theory of information entropy and the theoretical ideal [39] play a significant

role in this development. The concepts of information entropy and the theoretical ideal

are used to define the meaning and to analyze the overall compression efficiency of the

algorithms throughout the dissertation. Both of these concepts will be further explained in

Sees. 2.3-2.4. To develop the concepts Shannon first visualizes the content of a message

sequence being a stochastic process that can be examined as a Markov chain. These two

terms deal with the state transition properties related to the message state distribution.

9

A stochastic process is one where all state transitions are probabilistic. A state in the

case of data compression and information theory represents a single possibility within the

group of possible states of the data and the transition is the movement from one state of the

data to another based on the probability. Shannon uses this view to explain communication

theory. Given a finite set of possible symbols to transmit, the next symbol is represented by

the probabilities of all the possible symbols. This model is appropriate for data compression

as the probabilities of the symbols determine the transitions in the compression model and

typically there are multiple symbols represented by their probabilities of occurrence.

A Markov chain is a stochastic process adhering to the Markov property. The Markov

property means that the next state is only dependent on the present state. The existence of

this property allows a Markov chain to be built showing the transitions from one state to

another. Shannon applies this theory to communication by adding the assumption that a

symbol is produced for each state transition. In data compression the state transitions are

based on the current symbols probabilities and the code word produced is in response to

the state transition.

In addition to the above terms, ergodicity is a term used to describe a stochastic pro­

cess that is not dependent on the initial conditions of the system. This means that it is

impossible to predict the next state of the system based on the present condition and that

the probabilities are sufficient to describe the system. This term can be applied to both data

compression and communication.

The next step in Shannon's view is to find a measure that represents choice and uncer­

tainty. Since the underlying assumption is that data compression and transmission adhere

to the property of being an ergodic Markov chain, Shannon says we are looking for a mea­

sure H(p\, p2, .. •, pn), where p is the probability of datum i and n is the number of items.

The H measure he introduces adheres to the requirements in Property 1:

Property 1.

1. H is continuous in Pi\

2. If all the P; are equal, i.e., P[= 1 /n, then H should be a monotonic increasing function
of n. With equally likely events there is more choice, uncertainty, when there are
more possible events; and,

3. If a choice needs to be broken down into two successive choices, the original H
should be the weighted sum of the individual values of//. This concept is reproduced
in Fig. 2.1.

The left side of Figure 2.1 represents three possibilities with transition probabilities

P\ = 1/2, Pi = 1/3 and P3 = 1/6. On the right of Fig. 2.1, a modification of the original

H with the weighted sum of P2 and P3 is represented. Both of the representations have the

10

/ P{ =1/2

/ P2=l/3

^ \ ^
\ p 3 = 7 / 6

Pi + P3 = 1/2

1/2 ,

2/3/

in

, Px =1/2

, P2="3

v P3 =1/6

Figure 2.1: Shannon's decomposition of a choice from three possibilities. The third prop­
erty of H is illustrated by the combination and division of Pj_ and P3.

same probabilities and are equivalent. The equation to represent this transition is #(1/2 ,

1/3, 1/6) = #(1/2 , 1/2) + l/2H{2/3, 1/3). The 1/2 coefficient represents the second set

of choices only occurring half the time. The multiplication of 1/2 x H of each component,

\/2H(2/3, 1/3) = H(l/3, 1/6), would represent the original choices.

Shannon concludes that only one H satisfies the requirements and the H is shown in

(2.1). Shannon notes that the equation has the same form as the entropy equation used by

other fields. The observation leads to the theory of entropy and its relationship to the fields

of information theory and data compression.

n

H = H(PuPi,..., Pn) = -k £ Pi log2 Pi. (2.1)
(= 1

2.3 Entropy Theory

Shannon's assumption of the application of the entropy equation is used either directly or

indirectly by multiple data compression algorithms. It is also used to describe the efficiency

of data compression models including the proposed methods. This section is not meant to

cover all aspects of entropy as it has a wide range of implications, it is meant to show the

transition from the general form of the entropy equation to the form used in information

theory.

In general, entropy can be viewed as the limits to do useful work imposed on a system.

Shannon extends this concept to represent the amount of uncertainty that remains in a

information system [39] as summarized in Sec. 2.2. We must analyze the general form of

the entropy equation in order to understand the relationship between the concepts.

S = -kj^PilogPi, (2.2)
1=1

where S is entropy, A: is a constant of proportionality and Pv the / the known item's proba­

bility.

11

Before examining the details in (2.2), we need to define entropy in terms of the space,

the items contained within the space and the work to be accomplished. The space in data

compression corresponds to the resource available. The space in information systems is

usually defined in binary and the space available is the bit space. The bit space is usually

visualized using a binary tree to describe the possible paths from the root of the tree to

the leaves. The paths from the root to a leaves represent the code words required to reach

symbols stored in the tree. The combination of all the leaves represents the symbol space

as all the symbols must be contained there to maintain the prefix-free property. In informa­

tion theory and data compression the symbols represent the information contained within

the space. The distance between the symbols and a known reference point represents the

uncertainty or the entropy within the system. In order to quantify a relationship between

these items, it is necessary to put the two terms in proportion. This term k is exhibited in

(2.2).

Entropy is defined by a distance measure between the items contained in the space S.

The proportionality constant k in (2.2) relates the probability represented by P, of datum

i to S. This relationship makes the constant of proportionality dependent on the unit of

measure chosen to represent the system space. For example, for binary data probability Pi

represents the symbol usage of this space. The constant to achieve equality is k = l/log(2),

this converts the symbol fraction in the equation to its representative number of bits. Some

other common proportionality constants are Boltzmann's constant ks for kinetic energy at

the particle level and Euler's number (e) for fluid dynamics.

The — log() function in (2.2) deserves some attention. In the general entropy equation

the logarithm is in base 10 and in order to represent other spaces the log() function is con­

verted by k as previous explained. This discussion is about the general entropy equation,

so the logarithm used is in base 10. Since — log(f,) = log(l/fJ-) we also need to examine

the fraction I/p. This quantity represents the ratio of the space used by item / in com­

parison to the whole, i.e., the reciprocal of Pi. Pi represents the space used by the datum

/ and the number of divisions of the whole possible by P(. For example, if Pi = 0.01 then

I/Pi = 1/0.01 and the number of divisions returned is 100. The number of divisions is the

operand passed to the logarithm function to determine the number of expansions required

to ideally represent Pj. The log() function is now operating on the reciprocal of Pi and the

function returns the number of expansions of the base to equal the reciprocal. For example,

log (100) = 2 which represents the two expansions of base 10. If we look at this visually,

the expansions are on the vertical and the divisions are on the horizontal. In a binary tree

the expansions represent the level L of 2L and the divisions of L are the number of nodes or

expansions of the base to equal the reciprocal.

12

P{ =25%

Division 1 Division 2

(Divisions) Item Space =

Division 3

= S

Division 4

Figure 2.2: Entropy of a tree described in base 2. The probability of item / is represented
by Pi = 25%. The division of the space is represented by the nodes in the tree and the
number of expansions are represented by the horizontal levels. The - \og(P{) represents
the distance from the root to the item i.

This completes the explanation of the subparts of the entropy equation. Putting the parts

back together, the constant of proportionality puts the equation into proportions relative to

the space and the items contained within the space. After the k term is executed the log()

function and the probabilities are now in proportion to the space available for work. The

I/Pi is a ratio used to describe the number of divisions that fit on the horizontal given item

z's probability. The log() function converts the divisions on the horizontal into the number

of expansions on the vertical required to reach the space given the base. The remaining P,

preceding the log() function is multiplied and returns the percentage of the space used by

the item i given the number of expansions returned by the logarithm.

Figure 2.2 displays the concept in base 2. Base 2 is used for simplicity purposes, how­

ever, the concept applies to all bases. The Pi in the figure represents the probability of

symbol i equal to 25%. The nodes represent the divisions of the space. At the level 2 there

are 2L = 4 divisions. This is also represented by 1/P, = 4. The number of expansions to

reach L is represented by log2(l/^) = log2(4) = 2.

The above explanation does not, by any means, explain all the uses of the entropy

equation. After all, the meaning of an equation is how it is applied and not in the equation

itself. The point of the above explanation is to set the framework related to the entropy

equation for use with information systems. The explanation is geared around the concept

of a space, with items represented by their probability within the space and the distance

within the space separating the items or known reference points. The separation between

the items or the known reference points can be viewed as the entropy.

w
2 C/3

-a

-log7 (Divisions]

13

2.4 Entropy in Information

In Sec. 2.3 we looked at how the entropy general equation can be used to calculate the en­

tropy in a given space through the probabilities of the symbols. This section will customize

the equation for information systems and explain the terms catered toward that endeavor.

As stated earlier, Shannon was the first to propose the use of the entropy equation for infor­

mation theory [39]. In general we defined entropy as the limits on the system to do useful

work. In data compression and information theory the work involved is the transfer or stor­

age of information via a code word to an information relationship. This relationship is the

fundamental building block of both processes. The success of a process is represented by

the certainty that the symbol resolves uniquely to the information.

In Sec. 2.2 Shannon defines the measure for information entropy adhering to Property I

in terms of H. Since then the symbol H has become the customary representation to define

information entropy, also referred to as "Shannon Entropy". This is in contrast to S for

general entropy given previously. By substitution, where k = l/log(2) and S is exchanged

for H, the equation for information theory becomes (2.3).

H = -£,Pilog2Pi. (2.3)

Now that we have an equation to represent Shannon's view of entropy, we look at the

terms again more closely in binary. According to Shannon, information entropy represents

the average uncertainty or lack of information contained in the encoded message. So if we

follow the framework provided by the spatial meaning of entropy we are looking for two

things. The first is the space being utilized by the system and in the case of binary it is

the bit space. This space is represented by a series of O's or l's (bits) with some limitation

put on the length or number of the bit values representing the complete space. The second

thing we are looking for is the items of known probability and we refer to them as symbols.

These symbols can represent anything from a character to a piece of an image. By this

simple exchange it is easy to see that the entropy equation relates to the transmission and

storage of data in a computer. The space is represented by the binary values possible and

the symbols represent the data to be encoded or stored.

In order to understand entropy the definition of certainty is also required. We define

certainty as the ability to identify an individual symbol. This is accomplished by the com­

plete code word. The complete code word is required to represent certainty as it is the path

establishing both distance and direction to the symbol and the symbol itself. The final bit

in the code word represents the space where the symbol is located and the string of bits

represents the path to that location. The individual bits in the code word are the overhead

14

or entropy. Using any of the individual bits or subsequence of bits does not resolve to a

symbol directly. This applies to the last bit as well even though the symbol is located at

that bit location the preceding bits are required to reference it exactly. This means that all

the bits in the code word represent uncertainty.

We define uncertainty of resolving a code word to a symbol by the complete entropy

equation and the space it defines. Although the complete sequence of bits represents cer­

tainty, the bits themselves also represent uncertainty. All the bits preceding the final bit can

represent paths to other symbols, however, the bits cannot represent symbols themselves

due to the prefix-free requirement. Uncertain results will occur when referencing a location

specified by any combination of the preceding bits.

For example, if the code word 000 represents the arbitrary symbol A. The final 0 rep­

resents the symbol and the three bits 000 are the overhead required to reach the symbol.

The preceding two bits 00 cannot be used to represent other symbols but they can be used

to represent a path to another symbol. For example, 001 can represent an arbitrary symbol

B. The preceding two bits 00 can be interpreted as representing two symbols, however,

the bits do not represent a symbol uniquely and the outcome remains uncertain. The use

of the complete code word to represent a symbol places the symbol in a leaf in the binary

tree and the complete code word and the symbol A it identifies represents certainty. This

illustrates the meaning of entropy for binary as the uncertainty of identifying a symbol for

any combination of bits other than the complete sequence of symbols and the symbol it

represents. So the sum returned by the H equation is the sum of all the bits representing

the code words of the encoded symbols and the symbols themselves.

For example, we can use the entropy equation H = — L^'log2(.Pj) to calculate the av­

erage uncertainty in relation to a set of possible colors (symbols) and their probabilities.

Suppose we have four arbitrary colors: red, white, blue and green represented by their

known probabilities of occurrence P, = (0.5,0.25,0.125,0.125) within the color space, c.

We need to translate the color state percentages into the divisions being used by the symbol

space using 1/P,-, yielding the series (1/0.5,1/0.25,1/0.125,1/0.125) = (2,4,8,8). Ap­

plying the logarithm of the divisions we obtain y/ = (1,2,3,3) as the number of expansions.

Multiplying through by the probabilities returns the space used by each color i within the

total color space. This final step is displayed in Example 2.5.

Red = 0.5, White = 0.25, Blue = 0.125, Green = 0.125;
n

E(yt) = Y,piyi = (°-5 x 1) + (°-2 5 x 2) + (° - 1 2 5 x 3) + (° - 1 2 5 x 3) = 1.75. (2.4)

15

Level
Expansion y, / \

^ Jl o / \ i

1 Red =50% / \
o / \ l

2 White = 25% / \
o / \ l

3 Blue = 12.5% Green = 72.5%

0 % 100%
Symbol Space

Figure 2.3: Colors expansion example. The path and the terminating percentages represent
certainty and the path to the colors represents the entropy.

The example represents the application of (2.3) which produces an entropy value of

1.75 for the system. The code words assigned are defined by 0 for a left branch and 1 for

right branch. The code words for each are: (red: 0, white: 10, blue: 110, green: 111).

The probabilities of the colors and their respective code words represent the certainty of

the system and the space described by the code word to reach the symbol represents the

uncertainty of the system.

Looking closely at each of the individual terms in Example 2.5, we can see they repre­

sent the space used in each expansion of the tree. Red is using 0.5 x 1 or 50% of the space

possible at expansion 1. White uses 0.25 x 2 or 25% of the space possible at expansion

2. Blue and Green each use 0.125 x 3 or 12.5% of the space possible at expansion 3. The

expansion and percentage of the tree used is illustrated in Fig. 2.3. We will refer to the

partial sums as H, to stand for individual entropy values calculated in the complete entropy

equation where H = — Y!!=i Hi and //,• = —Pilog2(Pi). The equation is denoted in (2.7).

// = - £ / / / , (2.5)
(= 1

Hi = -Pilog2{Pi). (2.6)

2.4.1 Shannon's Theoretical Ideal

Example 2.5 shows that the Hi equation represents the space used by P, where Pi represents

the percentage of the symbol space and — log2(P) represents the length of the code word

to reach the symbol represented in the leaf. The concept of assigning the symbol to the leaf

is represented by the theoretical ideal proposed by Shannon. The theoretical ideal is part

of the H equation and is defined by — log2(/
3(). The return value represents the information

16

denoted by of the number bits.

In [39] Shannon first proposed the concept of using the logarithm function to measure

information contained in a message, basing this idea on the Hartley function which mea­

sures uncertainty of a system. The Hartley function states that the information revealed by

picking a message x at random from a finite set of variables is equal to the log |X|. In Hart­

ley's case the log function is in base 10 and Shannon uses the constant of proportionality k

to convert it to log2 for binary.

The same component — log2(^) is also known as surprisal as it stands for the opposite

of the probability or the "surprise" of the opposite of the probability occurring. This may

seem contradictory, but as with most things, the opposite side is dependent on the point of

view.

In actuality, the term — log2(/^) has both meanings as it represents the location in space

where the information is ideally located in reference to the root node and — log2(.P;) also

represents the distance between the information and the root denoting the uncertainty or

surprisal. The duality is explained by — log2 (P,) representing both the number of bits in the

complete code word representing the certainty of the symbol and also the substring of the

code words representing the uncertainty. The equation for both is denoted in (2.8) using

the symbol I to indicate the duality of the two statements.

l = -log2(Pi). (2.7)

In Sees. 2.2-2.4 we discussed the major components to the theory of entropy and its

augmentation to information theory and data compression. This information will be used

throughout the dissertation to explain various algorithms and concepts in the field of data

compression. The goal of data compression is to remove the overhead as much as possible.

The overhead is limited by the theory of entropy as it represents the required path from

the reference point to the symbol being represented. The following Sees. 2.5-2.7 introduce

the algorithms Shannon-Fano, Huffman and Shannon-Fano-Elias. These are considered

entropy encoding methods and they fit the requirement of prefix-free, lossy compression

algorithms of static data described in Chapter 1.

2.5 Shannon-Fano Encoding

The purpose of this section is to describe the details of Shannon-Fano encoding. An ex­

ample of the operation of the algorithm is given as is a discussion of the efficiency of the

algorithm in terms of entropy. The advantages and disadvantages are reviewed in order to

make comparisons to the other algorithms. Lastly, the view of the bit/symbol space that

17

Shannon-Fano perceived in the development of the algorithm and the algorithm's relation

to the entropy equation is discussed.

The Shannon-Fano algorithm was first published by Claude Shannon [39] in 1948 and

later attributed to Robert Fano when it was published in his technical report [15]. The basis

of the technique can be seen in the third property of H as defined in Properties 1. This

property states that if a choice needs to be broken down into two successive choices, the

original H should be the weighted sum of the individual values of //,-. This concept is also

displayed in Fig. 2.1. This property allows an algorithm to combine and then subdivide

a series of choices (possible symbols) based on their individual Hi values. Recall the H

equation (2.3) is a sum of all the symbols individual entropy values H,. The determining

factor of Hi is the probability Pi of the individual symbol i. Knowing this it is possible to

base the choice on the symbol's probability without actually calculating the //,• value itself,

making the algorithm a little less computationally expensive and easier to analyze.

To continue the discussion using the third property as a guide and the substitution of

Pi for the individual //, values an algorithm is defined for data compression. What the

property defines is the actions required for the algorithm to accomplish during the act of

data compression. The algorithm needs to start with a combination of the choices based

on their probabilities and then subdivide the combination based on the weighted sums of

the choices at each division. The last part of the puzzle is to define the divisions used in

the method. Since binary is being used the division is based on powers of 2. The process

of dividing by two also leads to the decision of dividing the combined choices weighted

sum by approximately half of the total sum. This process has the result of mapping the

data elements to the binary tree and producing data compression based on the properties

Shannon described. The process produces a very simple algorithm based on a divide and

conquer methodology.

2.5.1 Shannon-Fano Encoding Algorithm and Example

The algorithm is a recursive subdivision of all the symbols based on a division by 2 at each

choice. The algorithm begins with all symbols sorted based on their probabilities at the root

of a binary tree. This node represents the combined weighted sum of all the probabilities as

we have not made any divisions at this point. After the sorted list is placed at the root, the

algorithm finds the point where the combined sum can be divided in approximately half.

The two halves represent the combined weighted sum of individual //, as discussed in the

third property of H. The assignment of a 0 to the left side and a 1 to the right side of the

tree will represent each division and start the formation of the code words representing the

18

ABCDE

AB CDE

A:25% B:25% C:25% DE

D:I2.5% E:12.5%

Figure 2.4: Shannon-Fano example. ABCDE represent a set of symbols that are recursively
split based on their percentage using Shannon-Fano's algorithm.

symbols final location in the binary tree. The two steps of dividing the combined weights

and assigning the 0 and 1 are then recursively executed on each of the divisions. This

process continues until all symbols are located in a leaf node of the tree. The string of Os

and Is from the root to the leaf represents the code word assigned to the symbol. Note:

The assignment of 0 and 1 to a particular side is arbitrary, the only requirement being

consistency on the choice in order to have the series represent a valid path to the symbol in

the tree. The runtime of the algorithm is 0(n) with n number of symbols. The pseudo code

is listed below:

1. Sort the symbols according to their probabilities.

2. Find the weighted sum of the two halves at approximately 50%.

3. Assign 0 to one division and 1 to the other.

4. Repeat steps 2 and 3 until all symbols are represented in a leaf.

For example, given five arbitrary symbols: A, B, C, D and E represented by their known

probabilities of occurrence (A:0.25, 5:0.25, C:0.25, Z):0.125, £:0.125). Next, the algorithm

calls for the symbols to be in sorted order. This is already done for convenience. Next the

algorithm finds the point to divide the two halves represented by a weighted sum of ap­

proximately 50%. This divides the list into left half (A:0.25, 5:0.25) and right half (C:0.25,

D:0.125, E:0A25). Next the algorithm assigns the 0 and the 1 to their respective halves.

The recursion splits the two halves again and again until the all the symbols are represented

in a leaf on the tree. This concept is displayed in Fig. 2.4

19

2.5.2 Shannon-Fano Encoding Analysis

In the given example the symbols are mapped to their correct location in the bit space. This

results in optimality with regards to the theoretical ideal (2.8) for each of the symbols. All

the symbols are ideally mapped and the total entropy represented by L(X) is equal to H(X)

where X represents the set of probabilities. Unfortunately, the Shannon-Fano algorithm

does not always produce optimal results. The lack of optimality can be attributed to two

reasons. The first is the binary requirement. Each of the divisions represents a power of 2

while no requirement of a power of 2 is made on the data set. The actual symbol percentage

can be a value greater than or less than the space. Since the theoretical ideal of each of the

symbol percentages cannot be mapped directly to the tree there is difference between the

symbols actual length l(x) as it is placed in the tree and the calculated I using the theoretical

ideal. The lack of granularity by using binary to represent the symbol's percentage requires

a certain amount of tolerance as the symbol must be mapped to a space represented by a

power of 2. In general, Shannon-Fano produces an encoding with L{X) < H(X) + 1 where

the +1 represents the tolerance for this difference. The significance of the tolerance will be

explained in Sec. 5.4. It is sufficient to know the limitations for the time being.

The second reason for the lack of optimality has to do with the algorithm itself. The

key assumption is to divide the combined symbol percentage in half recursively. This

assumption only addresses the width of the tree represented in the entropy equation H. As

stated earlier the H equation represents the bit space and the symbols space. The result of

the H equation is the sum of all the code word lengths represented by — log2(P,) multiplied

by the widths used by the symbol P(. The code word length in the case of Shannon-Fano

is not considered and only arbitrary assigned based on the division of the symbol space.

The lack of consideration of the length leads to results that are suboptimal to the ideal that

can be achieved. For example, given five arbitrary symbols: A, 5, C, D and E represented

by their known probabilities of occurrence (A:35%, 5:17%, C:17%, D:16%, £:15%). The

recursive division splits the symbol space based on the 50% rule and results in the left

image in Fig. 2.5. If we use the H equation to calculate the actual entropy L(X) we obtain

L(X) =(A:35% x 2) + (5:17% x 2) + (C:17% x 2) + (D:16% x 3) + (£:15% x 3) = 2.31. If

we arrange the tree to resemble the right image in Fig. 2.5 we obtain a new actual entropy

L(X) =(A:35% x 1) + (5:17% x 3) + (C:17% x 3) + (D:16% x 3) + (£:15% x 3) = 2.30.

The second result is the actual optimal value obtainable given the binary representation for

that arrangement of symbols. The original result is a tenth off of the optimal. In Sec. 2.6

we describe the Huffman algorithm which actually achieves the optimal result. This result

could be worse if not for some of the subtitles associated with the algorithm. We will look

20

ABCDE ABCDE

AB CDE
A:35% BCDE

A: 35% B:I7% C:17% DE BC DE

D:16% E:15% B:17% C:17% D:16% E:15%

Figure 2.5: Comparison of Shannon-Fano to Huffman encoding example. On the left is the
tree representing the compression produced by Shannon-Fano. On the right is the optimal
encoding produced by the Huffman algorithm.

at the Shannon-Fano algorithm in more detail in Sec. 3.3.

Although Shannon-Fano does not produce an optimal encoding on all occasions it does

stay within H(x) + l, which is an achievement. The real advantage of the Shannon-Fano

encoding algorithm is the speed and simplicity of the algorithm. The runtime of the algo­

rithm is 0(n) with n number of symbols. Due to the recursive nature of the algorithm it

is easy to implement in parallel. The disadvantages are the requirement of a sorted list of

symbols and the final encoding does not always represent an optimal encoding. If speed is

required, the optimality can be overlooked in favor for the processing time. The sort is a

constant hindrance.

The two reasons behind the lack of optimality in terms of ideal entropy as described by

Shannon and in terms of the actual optimality achievable by an algorithm given the binary

requirement were explained. In Sec. 2.6 we look at the Huffman algorithm which does

achieve optimal encoding with regards to the binary requirement.

2.6 Huffman Encoding

The purpose of this section is to describe the details of Huffman encoding. An example of

the operation of the algorithm is given as is a discussion of the efficiency of the algorithm

in terms of entropy. The advantages and disadvantages are reviewed in order to make

comparisons to the other algorithms.

Huffman code was created in 1952 by David Huffman in a term paper assigned by

Claude Shannon and was later published [22]. The Huffman algorithm uses a bottom up

approach based on the greedy principle to build a binary tree. This approach produces

21

an algorithm that supersedes Shannon-Fano by producing optimal compression with only a

slight variance in complexity. Although for certain applications there are better alternatives,

Huffman encoding is still a premier compression algorithm after 55 years.

2.6.1 Huffman Encoding Algorithm and Example

The Huffman algorithm begins with symbols sorted based on their relative counts. The

algorithm chooses the two minimum count symbols from the list and combines them under

a single node represented by the combined count. This combined count is subsequently

placed back in the proper place to maintain the sorted list. The next step repeats by com­

bining the next two minimum counts which can either represent individual symbols or

combined groups of symbols in a sub-tree. There is no regard to which is chosen, just

that the minimum values are combined at each step. The constant choice of the minimums

adheres to the greedy principle by always making the best choice at the time of decision.

The combination of the symbols or the sub-trees eventually reaches the point where all

symbols are represented under a common tree and completes the encoding sequence. The

route from the root to the leaves represents the code word for each symbol. The sort as

specified at the beginning of this explanation is not a requirement, it is utilized to diminish

the overall complexity of the algorithm in both explanation and implementation. The addi­

tion of a sorted list and priority queues enhances the runtime of the algorithm to 0(n) with

n number of symbols. The pseudo code is listed below:

1. Find the two symbols with the lowest count from the list of symbols. The list can be

sorted or unsorted.

2. Combine the sums and reference both symbols under a common node.

3. Place the common node back in the list.

4. Repeat steps 1 thru 3 until all symbols are represented in tree. No symbols are or­

phaned.

5. The paths from the root to the leaf nodes represents the code words.

We can see the change in optimality by examining the same example that caused

Shannon-Fano to reach less than optimal results. Given five arbitrary symbols: A, B, C,

D and E represented by their known symbol counts (A:35, 5:17, C:17, D:16, E:\5). Note:

the numbers are the same because both the counts and the probabilities equal 100. The

numbers are in sorted order for convenience, but as stated this is not required. Next, the

22

DE:31 BC:34 DE:31

A:35 B:17 C:17 D:16 E:15

Step 1

BCDE:65

BC:34 DE-.31

E:15

A:35 B:17 C:17 DA 6 E:15

Step 2

ABCDE:100

A: 3 5

B:17 C:17 D:16 A:35 B:17 C:17 D:16

Step 3 S t e p 4

Figure 2.6: Illustration of the Huffman algorithm.

E:15

algorithm selects the two minimum values (DA6, E:15) and combines them into a single

node with the representative counts (DE:3l). Now the series looks like (A:35, DE.31, 5:17,

C: 17). The algorithm repeats by finding the next two minimums (C: 17, D: 17) and combines

them to (CZ):34). The series is now (A:35, BC.34, DE:3l). The algorithm repeats again by

finding the next two minimums (5C:34, DE:3i) and combines them to (BCDE:65). The

next series (A:35, BCDE.65) consists of only two items which are combined under the root

node. The final combination completes the tree with the root representing (ABCDE: 100).

The algorithm now has all the symbols placed in the correct location and the code is rep­

resented in binary by following the path from the root to the leaves of the constructed

tree. The end result is an actual entropy L(X) =(A:35% x 1)+(5:17% x 3)+(C:17% x

3)+(D: 16% x 3)+(£: 15% x 3)= 2.30. This concept is displayed in Fig. 2.6.

2.6.2 Huffman Encoding Analysis

As stated previously, Huffman encoding produces optimal code in terms of the entropy

possible given the binary requirements as all the values stay within H(x) + I. The binary

requirement is responsible for the +1 requirement for the same reason as in Shannon-Fano.

We can see the effect of the binary system on the algorithm by analyzing the difference be­

tween the entropy for the theoretical ideal and the actual encoding. The theoretical ideal

entropy is calculated in (2.9). For this small example we can see the difference between the

theoretical H(X) = 2.233 and the actual obtainable value L(X) = 2.30. The key advantage

to using this algorithm is the optimality of compression. It does so in 0(n) with the addi­

tional space requirements and the complexity of priority queues. The disadvantage is the

23

algorithm requires a sort to achieve 0(n). In Sec. 2.7 we look at the Shannon-Fano-Elias

algorithm which does not achieve optimal code, but it does not require the data to be sorted

either. This is a significant advantage as it reduces the overall compression time to 0(n).

H(X) = (A:35%x 1.515) + (B: 17% x 2.556) + (C : 17% x 2.556)

+ (D : 16% x 2.644) + (E : 15% x 2.737),

= 0.53025 + 0.43452 + 0.43452 + 0.42304 + 0.41055,

= 2.233. (2.8)

2.7 Shannon-Fano-Elias Encoding

The purpose of this section is to describe the details of Shannon-Fano-Elias encoding. The

discussion applies encoding to entropy and the theoretical ideal as discussed in Sec. 2.4. An

example of the operation of the algorithm and a discussion of the efficiency of the algorithm

in terms of entropy is given. The advantages and disadvantages are reviewed in order to

make comparisons to the other algorithms.

The Shannon-Fano-Elias encoding method was proposed by Shannon, developed by

Elias and later published by Abramson [2] to produce a prefix-free code. Shannon-Fano-

Elias was developed on the basis of Shannon-Fano, the proof of Kraft's inequality [26]

and Shannon's work on information theory. Shannon's work on information theory and

Shannon-Fano code were explained Sees. 2.4-2.5. Section 2.7.1 explains the Kraft inequal­

ity.

2.7.1 Kraft Inequality

The Kraft inequality places conditions on the unique decodability of the code words. Recall

that the prefix-free requirement describes a code where no code word is a prefix to another

and if the code is prefix-free the code is uniquely codable. Kraft adds to this by explaining

the sum of all the leaves in a tree cannot exceed 1, as described in (2.10).

£ 2 - L ' < l , (2.9)

where L, is the level of leaf i and n is the number of leaves.

Although the inequality does not guarantee a code is decodable, the code is required to

meet the specifications in order to be decodable. From the results of the inequality a few

items can be ascertained:

1. If the inequality holds with strict inequality, the code has some redundancy;

24

2. If the inequality holds with strict equality, the code is a complete code and decodable;

3. If the inequality does not hold, the code is not uniquely decodable; and,

4. If the inequality simply holds, more information is required.

The inequality states that if the sum of the leaves equals one, all the paths to the leaves

are used and the code is complete. If we look at an ASCII encoding table the code is

complete and the sum is equal to one. A prefix-free code can also have all the leaves equal

to one, if the code is complete and each leaf has an integer valued exponent.

The Kraft inequality also states that if the sum of the leaves is greater than one the code

is not uniquely decodable and at least one code word has to be a prefix to another. The

Kraft inequality is useful to rule out a set of code words that do not meet the prefix-free

requirement or tell if the set is complete.

In terms of space the Kraft inequality is a measure of the usage of the symbol space. If

the sum of the usages is equal to one the code is complete because each symbol uniquely

maps to leaves in a complete binary tree and the symbol space utilized is 100%. If the sum

is greater than one, the code violates the prefix-free requirement by containing a symbol

or symbols below a previously completed binary tree and, in this case, the symbol space

usage exceeds 100%. If the inequality is less than one nothing can be ascertained because

a code word could exist that does not meet the prefix-free requirement. The failure to meet

the inequality does not state that the code violates the requirement. It means the symbol

space usage is less than 100%, so the space requirement is not violated, however a prefixed

code could exist.

2.7.2 Shannon-Fano-EIias Algorithm and Example

Knowing the preliminaries for Shannon-Fano-EIias, we can discuss the algorithm itself.

The premise behind the Shannon-Fano-EIias algorithm is that the optimal code length is

represented by a leaf (/) located at — \og2(Pi) where Pj is the probability of a symbol in

index i. The length equation is the theoretical ideal indicated by Shannon [39]. Unlike the

previous two algorithms, which do not directly apply the entropy equations to the problem,

Shannon-Fano-EIias uses the theoretical ideal I to create a compression algorithm. The

visual of the Shannon-Fano-EIias algorithm has a leaf which casts a shadow represented by

the percentage of the symbol. This premise is illustrated in Fig. 2.7.

The functions developed for the algorithm are formally stated in (2.11)—(2.14). The

algorithm uses a function F(P[) (2.12) to sum all the probabilities previously encountered.

The result gives the base where previous division denoted by P-t ended. The results of F (Pi)

25

- l o g / p / r ^

Figure 2.7: Shannon-Fano-Elias' view of the data compression environment. The base of
the binary tree is divided by P, for all i. The value — log2(P,) represents the length in bits
to reach P,.

are subsequently used in a second function F{Pi) (2.13). F(Pi) uses the previous sum as

well as half of the current probability to produce a result which is converted to binary. This

addition ensures the code word to be generated contains enough information to coincide

with the length function /(/). The binary representation of the sum returned from F(P{) is

used for the final code word representing the symbol. A third function l(i) (2.14) uses the

ce i l ing of — log2(/
3,) + 1 to calculate the length of the code word for the symbol. This

length determines the number of leading bits which are used from the binary result F^Pfo-

LetP=l ,2 ,3, . . .n , and # > 0 for all i, (2.10)

F(P) = Y,Pi, (2.H)

F(P) = (Pi)/2+Y,Ft, (2.12)

l(P) = \-log2Pi + l]. (2.13)

The following example uses the same input from the Shannon-Fano and Huffman en­

coding examples. Five arbitrary symbols: A, B, C, D and E represented by their known

probabilities of occurrence (A:35, 6:17, C:17, Z): 16, £":15). The results of each of the

sub-equations shown is in the following table Table 2.1

Each of the calculations in Table 2.1 is executed as described in (2.11)-(2.14). F(P) and

F(P) are calculated in order with the result being converted into binary F{P)2- The length

l(P) is calculated using the log2() and the ce i l ing function. The final code is represented

in code{P).

26

Table 2.1: Shannon-Fano-Elias tabulated results for given data set A:35, 5:17, C:17, DA6,

E:15.

i

Pi

F(P)

F(P)

F(P)2

l(P)

code(P)

1

0.35

0.35

0.175

0.00101...

3

001

2

0.17

0.52

0.435

0.01101...

4

0110

3

0.17

0.69

0.605

0.100110...

4

1001

4

0.16

0.85

0.77

0.110001...

4

1100

5

0.15

1

0.925

0.111011...

4

1110

Figure 2.8: Tree created by Shannon-Fano-Elias encoding for comparison with the same
values as Shannon-Fano and Huffman encoding.

2.7.3 Shannon-Fano-Elias Encoding Analysis

Compared to Shannon-Fano and Huffman encoding there are a number of calculations re­

quired to map symbol percentage Pi. Also, note in Fig. 2.8 that the tree is far from complete

and in comparison to either the Huffman Fig. 2.6 or Shannon-Fano Fig. 2.4 encoding it is

not as efficient. There is wasted space due to the ce i l i ng and the +1 that are required

for the algorithm to avoid conflict and F(P) defines the width. If we compare the entropy

values to Shannon-Fano (L(X) =2.31) and Huffman encoding (L(X) = 2.30) we can also

see that the results are not equivalent. L(X) =(A:35% x 3) + (5:17% x 4) + (C:17% x 4) +

(D:16% x 4) + (£:15% x 4) = 3.65

The purpose of both the ce i l ing and the +1 value in the length equation is to avoid

27

conflicts in the resulting binary codes and adhere to the Kraft inequality. For example, the

series 25, 25, 25, 24, 1 results in the code 00, 01, 10, 11 and 111001 if simply the - log2(P,)

is used to place the values. The 11 and the 111001 violate the prefix-free requirement and

the Kraft inequality. With the fitting functions the values would resemble 001, 011, 100,

101 and 1111111. The net effect of the operation is to double the base which insures there

is enough space to fit the values without any conflicts and the code adheres to the Kraft

inequality. The benefit gained by the added space is that symbols can remain unsorted as

there is more than enough space to represent them. The combined operations in (2.11)-

(2.14) are commonly referred to as the fitting function. This added fitting function has the

effect of increasing the overall entropy to L(X) < H(x) +2. The addition of the fitting

function also mandates that Shannon-Fano-Elias can never return an optimal compression.

As compared to Shannon-Fano and Huffman encoding, the advantage of Shannon-

Fano-Elias coding method is the simplicity of the method as it has few moving parts. The

method does not require the data to be sorted as the percentage values can be operated

on in any order which results in computational time savings. The main disadvantage of

Shannon-Fano-Elias is that the overall compression has a code length of H(x) + 2. This is

1 bit longer on average than Shannon-Fano and Huffman encoding. Also, the log2() func­

tion is moderately expensive computationally with regard to the simple comparison models

of Shannon-Fano and Huffman encoding methods.

In summary, Shannon-Fano-Elias is an algorithm based on the theoretical ideal pro­

posed by Shannon. The algorithm divides the space by the symbol percentage P{ in order

to map the symbols to the ce i l ing of log2(/
5

() + 1. The ce i l ing and the +1 are used to

avoid conflict when mapping the symbols based on the Kraft inequality. The approach that

influences the algorithm was a divides entropy by the symbol percentage Pj. The end result

is an algorithm that achieve L(x) < H(x) + 2.

2.8 Summary

We examined Shannon's development of entropy and the theoretical ideal. We examined

the concepts relationship to information theory and data compression in order to explain

the limits imposed on the system to do useful work. In both information theory and data

compression the work involved is the unique representation of a code word to a symbol. In

data compression an addition requirement is to minimize the length of the code word repre­

senting the symbol with the shortest length. The theory of entropy defines the efficiency of

the algorithm to remove the excess overhead in terms of bits of the code word. The theoret­

ical ideal defines the ideal limit of the length of the code word to symbol relationship. Both

28

of these concepts are key measurements and ideals required for any development of data

compression algorithms. In this chapter we also examined three prefix-free and lossless

compression algorithms for static data: Shannon-Fano, Huffman and Shannon-Fano-Elias.

The following summarizes these key points. Shannon-Fano's algorithm splits the com­

plete data set based on the properties of H from the top. The algorithm stays within

H(x) + 1, however, the algorithm does not always produce optimal code. The Huffman

algorithm's combines the symbols in a bottom-up greedy fashion in order to produces op­

timal encoding with regards to binary. The approach is also the most expensive in terms

of work applied in comparison to Shannon-Fano and Shannon-Fano-Elias. Shannon-Fano-

Elias focuses on splitting the data from the bottom and refits to handle the conflicts. The

key concept used by Shannon-Fano-Elias is the use of the theoretical ideal I. The use of the

theoretical ideal applies directly to entropy theory. The algorithm does not require a sort

and is the most computational expensive algorithm of the three examined. The absence of

a sort causes the algorithm to be bound by H(x) + 2.

29
Chapter 3

CURRENT ANALYSIS OF CORE ALGORITHMS

3.1 View of the Data Compression Environment and Resulting Algorithms

In Sees. 2.5-2.7 we discuss three of the fundamental algorithms in data compression. Each

algorithm compresses data in a unique fashion and each presents a different view of the

data compression environment. The analysis of the algorithms in Chapter 2 revealed three

entities that are of importance: the first was the concept of the duality of the theoretical

ideal in Sec. 2.4.1; the second concept was entropy and certainty in Sees. 2.2-2.4; and the

third concept was the definition of the environment as a two dimensional space in Sec. 2.3.

In this chapter, we expand upon these topics to determine how the algorithms apply to the

theory of entropy, the entropy equation and the theoretical ideal as discussed in Sees. 2.2-

2.4.1.

In Sec. 3.2 we further define and clarify the meaning of certainty and entropy as these

are the two main components in data compression. This section explains the two types of

entropy and their nature within the environment. In Sec. 3.3 we analyze Shannon-Fano's

traditional model of the data compression environment and illustrate how this model lead to

the algorithm that divides entropy by the certainty of the system. In Sec. 3.4 we examine the

Huffman algorithm's lack of a complete depiction of the environment until the completion

of the method. This results in a solution based on entropy addition. In Sec. 3.5 we examine

Shannon-Fano-Elias and the model of the data compression environment represented by

the entropy equation H. The equation and the environment is divided by P[resulting in a

solution based on entropy division.

3.2 Certainty and Two Types of Entropy

The purpose of this section is to define more precisely describes certainty and uncertainty

for information theory and data compression. Certainty is defined by a code word to symbol

relationship and is the fundamental relationship required by both disciplines. Certainty only

exists when a code word resolves to a unique symbol. The code word has to be unique in

both the sequence of elements and the length of the sequence. In addition, the end of the

sequence must terminate at a single symbol. Any other combination results in an uncertain

results. The prefix-free requirement mandates that a sequence resolving to a symbol must

30

not contain a subsequence of elements that represents another symbol. The subsequence

can represent a path to another symbol, but it cannot represent another symbol. Since

certainty is defined in the environment as a group of complete code words that represent

symbols, we can perceive certainty as only existing at a specific points. The points are the

division between the entropy and certainty. This division can be seen as the last node in

the sequence of bits representing the symbol. This point also represents uncertainty as it is

also a subsequence of a code word. This fact is represented in the duality of I explained

in Sec. 2.4.1. Since certainty can only be represented by specific points, certainty cannot

be represented continuously. Given the above constraints, the combination of a unique

symbol and a unique code word is the a finite relationship within the data compression

environment. Since certainty can only be defined by specific points in the environment

all other points in the environment must represent uncertainty or entropy. Entropy is the

second main component in the environment.

In contrast to certainty, uncertainty is continuous in both the symbols space (width)

and the bit space (length). The bit space is continuous even though the actually bit values

cannot represent the continuous nature. This relationship is exemplified in the difference

between the theoretical ideal I which is continuous and the actual binary lengths obtainable

by the system which are finite. We know from the properties of H that the symbol space

is continuous. Since the data compression environment is the combination of the bit and

symbol space, uncertainty represents all of the space in both dimensions.

Entropy in information exists in two types. The sub-sequence of a code word that rep­

resents a symbol is one type of entropy. This entropy is measured in the entropy equation.

The second type of entropy is when a sequence does not terminate at a code word. This

form of entropy is not currently measured. Although we can obtain this measurement by

comparing to the theoretical ideal the measurement is not entirely accurate as the theoret­

ical ideal cannot be represented in a real system. Multiple code words can resolve to a

single symbol without affecting the overall entropy as long as the sequence is unique and

only resolves to one symbol. The ability to have multiple code words resolve to a symbol

uses the second form of entropy to produce redundant code words to represent a single

symbol. It maybe necessary to develop a method to measure the second type of entropy as

it would actually represent the under utilization of the actual system.

Given the definitions of entropy and certainty, the act of assigning information (entropy)

to certainty (the system) defines the transmission and storage. The added constraint for

data compression with the combination of the definitions of certainty and entropy make the

solution of data compression problem a minimal mapping of the uncertainty of the data to

the certainty represented by the system.

31

3.3 Shannon-Fano's Traditional View and Entropy Division by Certainty

Shannon-Fano's algorithm is based on the traditional model of a binary tree. The model

is based on repetitive expansion of the representative symbol space based on powers of

2. The expansion starts at a singular node referred to as the root node. The root node

has the option to spawn up to two nodes referred to as children and the root becomes the

parent. Each child has the option to spawn up to two children of its own or can terminate

the expansion of the tree as a leaf node. The progression builds a tree's ancestral hierarchy

from the root to the leaf nodes. The number of expansions from the root can be represented

by the log2() function which returns the inverse of the expansion.

Shannon-Fano's algorithm maps directly to this model by starting with a single root

node representing all of the symbols. The algorithm doubles the symbol space available

and allocates the symbols to each half of the newly expanded spaces based on the symbols

combined percentage. The algorithm terminates when the space available in the leaf nodes

is equal to the number of symbols (one leaf and one symbol). The condition where one

leaf node relates to one symbol represents certainty and is denoted by the sequence and

length of a code word following the path to certainty. The Shannon-Fano's model not only

expands the space, but it also divides the entropy associated with the grouping of all the

symbols. Recall, there are two types of uncertainty. One type is where the symbol does

not exist and the other case is where a single symbol is not discernible within a group of

symbols. To explore this relation further we must examine the algorithm's relation to the

entropy equation itself.

The Shannon-Fano algorithm starts with all the symbols grouped at the root node and

this condition represents 100% entropy with all of the symbols represented simultaneously

in one node. The process continues by recursively dividing the uncertainty by the cer­

tainty represented by the node's probability of occurrence. In this case the probability

representing certainty is not the probability of a symbol P, as all the symbol probabilities

are combined and represent uncertainty. The certainty for the Shannon-Fano algorithm is

represented in the binary tree's structure. In the binary tree the bit sequence and length rep­

resents the path to the leaf, sequence terminating node, that will represent the symbol and

the certainty of a result. The relationship has certainty represented by the nodes contained

within the tree. Each node has a probability Pc of occurrence based on the length and width

of the tree or sub-tree. Pc is represented by the percentage located in the nodes in Fig. 3.1.

The length and width represent the bit sequences possible given the tree area defined by the

bit/symbol space. For the algorithm Pc represents certainty when the code word terminates

at the leaf node containing Pc.

32

j Symbol Space = S]

0% '«)%

Figure 3.1: Shannon-Fano's view of the entropy space. The recursive division of the sym­
bols places Pi at Pn and ideally Pj = P„. The percentage in the node is the probability Pc,
which represents the certainty of the node n occurring within the bit/symbol space.

The knowledge of Pc is the basis for the algorithm as it splits the sum of the probabilities

even though the concept of Pc is not directly utilized. The algorithm endeavors to match

Pi to an equal Pc by dividing the £.P, by 2. The sum of the symbol probabilities E"=o^'

represents uncertainty. The recursive division of the partial sums of Pi representing uncer­

tainty divided by the certainty represented by Pc continues and builds the bit sequence and

length of the code word to represent Pi. In terms of the entropy equation, the Shannon-Fano

process recursively divides the uncertainty until certainty is represented by a symbol in a

leaf node.

To represent this change mathematically, we will use C to represent certainty where

C = — L^cl°g2(^c)- This equation represents the certainty inherent in the definition of the

binary tree. In Fig. 3.1 each node contains a percentage Pc. The root node represents 100%

certainty by definition. The two children of the root node represent half of the certainty

of the parent as each child represents half of the possible bit sequence from the previous

expansion of the tree. For example, if the left child represents 0 then the right child repre­

sents 1 and combined they represent 100% of the possibilities 0 and 1. Note: Since we are

working with the definition of certainty, each child node represents half of the parents prob­

ability, however, when working with uncertainty Pi the resulting children may not represent

exactly half of the parent probability.

Now that we have an equation to map certainty and we know Shannon-Fano is based

on entropy division, we can divide the uncertainty by the certainty equation and reveal the

process in those terms. At each step of the algorithm the partial £/} is located at Pc, there-

33

fore the number of bits for both the symbol and the certainty is defined by — log2(Pc)- The

substitution of — log2(P,) with — log2(Pc) creates the defining equation of the relationships

between certainty and uncertainty as (—£P,Tog2(Pc)))/(-.Pclog2(Pc)). The — log2(Pc)

function cancels which leaves £/V-Pc- This division of the entropy, £P,, by the certainty,

Pc based in the division by 2 continues until one symbol is represented in one leaf node.

If Pi is equal to Pc the mapping is optimal. Unfortunately, there is no requirement to have

Pc = Pi which leads to the number of bits used — log2(Pc) at the final location not equal to

— log2(F/). This inability to map to the correct length leads to less than optimal results in

terms of H[x). By mapping the symbols to the tree using this concept Shannon-Fano is di­

viding the combined symbol percentages recursively in two without regard to the bit space

as defined by the — log2() function. The disregard given to the — log2() function relates to

a lack of optimality in some conditions.

In summary, the relationship between the traditional view and Shannon-Fano is how

they both relate to an expanding environment. They both start at the root node and expand

to same termination point where there is a one-to-one mapping between a leaf in the tree

and a symbol. This corresponds to certainty and entropy as the divisions of certainty are

represented by the nodes and the uncertainty of the symbol combinations is recursively

divided until the symbol is represented in the leaf nodes. Since the Shannon-Fano algorithm

divides the uncertainty by 2 at each node and the certainty is divided by 2 at each node

the result is a near optimal solution of a symbol's certainty P, mapped to the leaf node

representing certainty. The overall effect is that uncertainty decreases as the tree expands

and terminates in certainty with a single symbol in a leaf and the path representing the

complete code word.

3.4 Huffman and Entropy Addition

Huffman did not derive his algorithm directly from information theory, but his algorithm

does adhere to the equations for entropy and the theoretical ideal. In Sec. 3.1 we analyzed

the view of Shannon-Fano and determined it was a expansionist view which recursively

divided the entropy over the certainty of the tree. Huffman encoding does not have a

complete view of the tree until the algorithm is complete. Huffman's encoding model

is local to only individual symbols or sub-trees represented by the value of the symbols

contained in the sub-tree. In order to analyze Huffman encoding in terms of entropy we

must reduce the H equation to consist of only two terms.

Since the algorithm is always grouping the symbols in groups of two, it is essentially

reducing n values to 2 when calculating the P,- for a given symbol. This reduces the problem

34

0.9 - / \

0.8 - / \ -

0.7 - / \

0.6 - / \ -

^ 0.5 - / \ -

>* / \
o, / \
o / \
£ 0.4 - / \ -
W / \

0.3 - / \ -

0.2 - / \ -

0.1 -/ \-
0 I 1 1 1 1

0 0.2 0.4 0.6 0.8 1

Probability P
Figure 3.2: Graph of two probabilities using the entropy equation — (Plog2(P) + (1 —
P)log2(l — P)) demonstrating the relative growth of entropy H measured in bits. The
system consists of two possibilities P and (1 — P), as certainty increases for P the entropy
decrease to 0. As P decreases in certainty 1 — P increases in certainty.

to a P and 1 — P problem as used by Shannon to describe the interesting properties [39] of

H. The graph of the concept is replicated in Fig. 3.2.

Figure 3.2 displays the H in bits, where H = -(Plog2(P) + (1 - P)log2(l -P)). As

Shannon explains the most uncertain situation occurs when the P,s are all equal and this

condition exists when each symbol has the maximum distance from the root node or cer­

tainty. In the graph this condition is represented at the top of the curve where H is equal

to one. At this point both P and 1 — P have a certainty of 50% and an uncertainty of

50%. The combined uncertainty is 1.00 or 100%. To minimize uncertainty one of the two

probabilities must approach 100% and H approaches zero.

The graph of two probabilities applies to Huffman encoding since it is only dealing

with two symbol counts. The algorithm ensures that the Pi values in the theoretical ideal

are minimum by selecting the two minimum counts. The P(log2(l/P() returns the maxi­

mum values of all possible values of the H equation. Since each of the values is a local

maximum it ensures that the entropy equation for the two is the maximum as displayed in

35

the graph. This is important because the algorithm is building the tree bottom up and opti­

mal compression requires that the symbols with the most entropy be located at the bottom

of the tree. The algorithm does not apply any of this because the log2() function is used to

calculate the number of expansions required to fit the values in the entropy equation, i.e.,

the length. Since we are only dealing with two values, the length is one, so the calculation

is not needed.

The only thing left to simplify in H for two values is the probabilities which represents

symbol count Sc divided by the total symbol count TSc, i.e., Sc/TSc where TSc is the

sum of the two symbol counts. Since the algorithm is only dealing with two values the

probabilities can be reduced to only the symbol counts for the algorithm. If we look at this

step mathematically, the total symbol count in the probabilities would simply cancel in a

comparison between two values to reveal the counts themselves. For example, 2/3 <> 1/3

in a comparison is equivalent to 2 < > 1 as far as the outcome is concerned.

This simplifies the equation to a comparison between two values as described by the

Huffman algorithm. Since the algorithm is selecting the minimum valued symbols, it is

selecting the symbols representing the greatest entropy. The selection of the two minimum

values also means that the values are as close to equal as possible, and the selection ensures

that the width is also the minimum for each combination. By selecting them in pairs the

algorithm is balancing the relationship between P and P — 1 as depicted in Fig. 3.2. There­

fore, the selection of the minimums at each step ensures both the length and the width of

the resulting subtree is minimal. The combination of the choices results in the complete

algorithm.

Previously, we understood Huffman encoding as selecting the two minimum symbol

counts, but the above explains the selection in terms of entropy. By canceling out the

terms in the entropy equation in the above discussion we can see that Huffman encoding

adheres to entropy ideals. The algorithm is actually selecting the maximum entropy values

at each decision and building a tree that models the entropy equation precisely. The greedy

selection of the maximum entropy values ensures that the final codes are optimal.

3.5 Shannon-Fano-Elias' Entropy View and Entropy Division by Entropy

In Sec. 3.3 we analyzed the view of Shannon-Fano and determined it was an expansion­

ist view which recursively divided the entropy over the certainty of the tree nodes. In

Sec. 3.4 we analyzed Huffman's algorithm and determined it builds a tree bottom up with

all the sub-trees containing maximum entropy. The third approach, Shannon-Fano-Elias,

develops a concept based on an already existing tree which contains both entropy and the

36

symbols within the space. The space is defined by — L/^Tog2(/|) directly from the theory

of entropy to represent both entities. Recall from Sec. 2.7 that the Shannon-Fano-Elias ap­

proach divides the space by P,. In Sec. 2.4 we broke down the complete entropy equation

into Hi = —P,log2(F,) which represents the individual entropy summation values within H.

Dividing this space by P[equals Hi/Pi = (~Pi\og2(Pi))/Pi) = _ l°g2(^')- The division re­

duces the equation to a vector containing a sequence of bits. In Sec. 2.4.1 we observed that

— log2(P,-) has the duality of representing both information and the uncertainty. The infor­

mation is represented by the full length of — log2(/3,), the sequence of bits and the symbol

itself. The entropy is represented by the distance represented by — log2(P,-) from the root

to the symbol. By dividing the equation by Pi the algorithm is extracting the information

and the entropy from the space. The additional requirements of taking the c e i l i n g and

the + 1 are simply to avoid conflicts in uniquely mapping a symbol to a leaf. The conflicts

are related to the algorithms' disregard to the symbol space interactions. Recall, that the

symbol space is on the horizontal and the divisions used by Shannon-Fano-Elias are based

on the vertical component represented by the — log2(P/) bits. Equation (3.3) summarizes

the mathematical process:

Hi = -Pilog2(Pi), (3.1)

Hi/Pi = -Pi\og2(Pi)/Fl, (3.2)

Hi/Pi = -log2(Pi). (3.3)

In summary, Shannon-Fano-Elias is a approach to data compression that separates the

symbols, represented by Pi, from the environment, represented by — 52-fi log2(/^)- ^n m e

process the algorithm is left with — log2(P,) as a vector defining the distance in bits repre­

senting entropy and the location of the leaf node representing certainty. The fitting function

avoids conflicts between symbols being mapped. Of the three base algorithms this is the

only one to apply directly to entropy theory by using the theoretical ideal. The use of en­

tropy theory provides the algorithm the structure to build the relationships between entropy

and certainty.

3.6 Summary

In this chapter we re-examined the three prefix-free and lossless compression algorithms for

static data: Shannon-Fano, Huffman and Shannon-Fano-Elias. We started the discussion

by examining certainty and the two types of entropy. Certainty is defined as a finite point

denoted by a code word representing the symbol and the symbol itself. The first type

of entropy is represented by the code word length and the subsequence of bits defining

37

the code word in order represent the symbol. The subsequence of bits cannot represent

another symbol, but the subsequence can represent a path to other symbols. The first type

of entropy is measured by the entropy equation H defined by Shannon. The overlap of

certainty and the first type of entropy results in the duality of I in Sec. 2.4.1. The second

type of entropy occurs when a code word defined by the system does not resolve to a

symbol. The second type of entropy is not currently measured although an approximation

is possible the exact measure is not clearly defined. The definitions make it clear that the

focus of data compression is the mapping of the entropy of the data to the certainty of the

system with minimum overhead. All data compression algorithms try to accomplish this

act. We continued the discussion using the guidance of the definitions and the theory of

entropy discussed in Chapter 2 to analyze the base algorithms in more detail.

By examining the algorithms we observed that each of the three had a unique model of

the compression environment and their models influenced how each algorithm was devel­

oped. The three algorithms interactions with entropy was also examined and we illustrated

how each algorithm applied to the entropy equation H and the theoretical ideal I as defined

by Shannon. The following summarizes these key points.

Shannon-Fano's use of certainty, defined by the binary tree and the binary tree's nodes,

to divide the entropy represented by the combination of symbols. This algorithm resolves

to optimal results when P; = Pc. The use of certainty gives the ability to speed up the

data compression time by having a predefined structure to compare the uncertainty of the

combined symbols to the certainty of the structure. The use of a predefined structure is of

great importance for the topic in Chapter 4.

The Huffman algorithm's focus is the most complete with regard to entropy as it starts

at the bottom and builds a minimum length code that is optimal with regards to binary.

Huffman encoding shows that the ideal approach for accomplishing optimal compression

should be conscious of both the length and the width of the tree with regard to the entropy

equation when forming the solution. To accomplish this Huffman encoding requires the

building of all the sub-components in terms of entropy and then builds the entire struc­

ture of certainty to define the code word to symbol relationship. Since Huffman encoding

has no concept of predefined certainty or a predefined structure, this approach is the most

expensive of the three in terms of work applied.

Shannon-Fano-Elias focuses on splitting the data from the bottom and refits to handle

the conflicts. The algorithm does not require a sort and is the most computational expensive

algorithm of the three examined. The key concept used by Shannon-Fano-Elias is the use

of the theoretical ideal I. The use of the theoretical ideal applies directly to entropy theory

and provides the algorithm the structure to build the relationships between entropy and

38

certainty. As with Shannon-Fano the use of a structure to define certainty gives Shannon-

Fano-Elias the advantage in terms of asymptotic times as it requires only 0(n) operations.

From the previous algorithms it is clear that the development of a data compression al­

gorithm is tied directly to the view of the environment consisting of two sub-environments:

certainty and uncertainty. Certainty is defined by the structure used to facilitate the code

word to symbol relationship. Uncertainty is inherent to the symbols or the combination

of symbols and the purpose of information theory is to define the relationship between

certainty and uncertainty. Data compression adds the additional requirement of minimiz­

ing entropy or the uncertainty and the theoretical ideal defines the limit between the two

interactions.

Chapter 5 explores the views held by the previously discussed algorithms in more de­

tail. The analysis gives greater insight into the specifics defining the view and how the

view's focus either limits or exemplifies the characteristics of the environment. Both of

the sub-environments are depicted in a similarly defined space in order to see the relation­

ship between entropy and certainty. Chapter 5 uses a novel illustration to address some of

the complexity of the problem of data compression and produces some new methods to

accomplish this task.

39

Chapter 4

MAPPING OF CERTAINTY AND ENTROPY

4.1 Illustrating Certainty and Entropy

In Chapter 2 we introduced the concept of entropy as defined by Shannon and how it relates

to the field of data compression. We also examined three different algorithms for prefix-

free and lossless encoding of static data. In Chapter 3 we further categorized certainty and

the two types of entropy within the data compression environment. We analyzed each of

the algorithms data compression model and how the model created differences within the

three algorithms. We also analyzed how the algorithms applied to the entropy equation

proposed by Shannon and the certainty of the system to produce the encoding.

We continue this discussion in Sec. 4.2 focusing on the development of a model that

describes both entropy and certainty in the data compression environment. Sec. 4.2 exam­

ines the illustrations of Huffman, Shannon-Fano and Shannon-Fano-Elias in greater detail

in order to extract the benefits and drawbacks the depictions have describing both certainty

and entropy. The analysis leads to Sec. 4.3 which defines the requirements and describes

the details of a new model illustrating the certainty and entropy of the binary system. Sec­

tion 4.4 uses the new model to map the area representing entropy within the space. We

describe entropy by the dimensions defined by the H equation and determine the orienta­

tion of entropy in the bit/symbol space. Sec. 4.5 combined both certainty and entropy in

the depiction of MaCE. The purpose of the combination is to allow the mapping of entropy

to certainty and certainty to entropy for the purpose of data compression. An example of

the use of MaCE is supplied in Sec. 4.6.

In Sec. 4.7 we add the symbol to MaCE and describe how it relates to the entropy and

certainty of the system. We show how to calculate the space used by the symbols in both the

bit and symbols spaces. In the discussion the topic of expansion of the base is explored and

the concept is utilized to describe compression based on base manipulation. The mapping

of certainty and entropy illustrates that it is possible to compare entropy to certainty and

certainty to entropy for the purpose of data compression. In addition, the use of MaCE

and the mapping of the symbol illustrates the use of base manipulation to increase this

compression.

40

4.2 Analysis of the Previous Models

Vision is one of the fundamental ways that we perceive the world and the choices we make

when navigating an environment. When looking at a problem from the top, we are looking

for a path to the bottom. When looking at the problem from the bottom, we are looking for

a path to the top. When looking at the problem from the side, we have a choice to go up or

down from the location. In the real world the choice is usually dictated to us. In contrast,

in the virtual environment we have a choice on where to start and how to navigate through

the environment to get the desired result. In the following Sees. 4.2.1-4.2.3, we analyze

the bottom-up (Huffman), top-down (Shannon-Fano), and sideways (Shannon-Fano-Elias)

approaches to compression.

4.2.1 Analysis of the Previous Model: Huffman

Huffman's model focuses on only one sub-tree consisting of two nodes at each step of the

algorithm. The resulting algorithm builds the tree adhering directly to the entropy equation

with each sub-tree being optimal. This algorithm simplified the H equation by reducing

— log2(^) to 1 and the probabilities P, to the symbol counts. The reductions allowed the

development of an encoding algorithm to build a optimal tree with minimum entropy from

the bottom up. The major benefit of this approach is the production of optimal results, but

the algorithm is the most expensive of the three compression algorithms in terms of work

applied.

The problem is the total entropy environment is not clear until the algorithm is com­

plete. Although we could map the entropy on the resulting space created by the algorithm,

we cannot map the entropy for the general case based on this model. The lack of a complete

depiction of the entropy equation makes it difficult to visualize the interactions the bits and

symbols have with entropy except in the micro environment containing two symbols and a

single bit representing two options, 0 and 1, as illustrated in Fig. 3.2.

4.2.2 Analysis of the Previous Model: Shannon-Fano

The Shannon-Fano approach uses the decomposition of a choice defined in properties of//

as it models the uncertainty created by the combination of symbols to the certainty of the

binary tree. Shannon-Fano's model consists of all the symbols combined at the root and

the expansion of the tree creates the necessary leaf nodes to represent the symbols. The

resulting algorithm divides the symbols in half using an expansionist view to determine the

required divisions of the symbols. The algorithm terminates when a single symbol exists

in a leaf node. The traditional depiction is represented in Fig. 4.1.

41

P = 25% I

Symbol Space = 5

0% "00%

Figure 4.1: Traditional depiction of the binary tree. The nodes represent the possible sym­
bol locations, which is important for the algorithm, but the model does not represent en­
tropy very well. The depiction shows the horizontal divisions clearly but the continuous
nature of the symbol space is not represented.

Shannon-Fano's model and the traditional tree are applied in tandem to recursively

divide the uncertainty of the combined symbols over the certainty represented by the struc­

ture. When describing the Shannon-Fano algorithm this relationship is advantageous as it

allows for an easy visualization without the complexity of the description as required in

the previous discussions. The additional use of the certainty of a tree percentage Pc in the

description is also a key benefit as it gives a framework to map entropy.

The problem with this perspective is that it does not show the complimentary nature of

the bit and symbol spaces clearly. In the traditional model the bit space is on a diagonal

and the symbol space is horizontal as illustrated in Fig. 4.1. With the addition of a scale the

divisions of the vertical space (bit space) can be clearly defined as rows of nodes, but the

divisions on the horizontal (symbol space) at each level are difficult to determine with the

nodes diagonal from the parent.

The circular nodes of the traditional model are a good way to represent individual sym­

bols for the Shannon-Fano algorithm as a one-to-one mapping is required by the algorithm.

The problem with the circular nodes is that they divide the symbol space leaving room be­

tween them. This is a problem because the symbol space is a continuous entity from 0 to

1.0 and the continuous nature cannot be clearly visualized with the circular nodes. Another

drawback to the one-to-one mapping is the inability to illustrate the effects of the space

used by the symbol other then the node in which it is placed. The symbol uses both the

42

node and the preceding nodes representing the code word. The code word sequence may

have redundant paths, but with the traditional approach the paths from node to node are

displayed only as a single line. The problem with the single line representation is that re­

dundant paths to various symbols are not represented in the visualization. This is important

as the paths represent the entropy created by mapping a symbol to a leaf node.

4.2.3 Analysis of the Previous Model: Shannon-Fano-Elias.

Shannon-Fano-Elias' model is based on the entropy equation where the space is defined by

the symbol probabilities P, (width) and — log(P,) (length). The resulting algorithm divides

the equation by P, to produce code words based on — log2(P|). The division by P, separates

the data compression environment into vectors representing the bits space for each symbol.

The division of the bit space is in contrast to Shannon-Fano which divides the symbol

space. The perpendicular nature of the division results in Shannon-Fano-Elias having the

opposite problems in comparison to the traditional model in defining the space. Shannon-

Fano-Elias' depiction is represented in Fig. 4.2.

The Shannon-Fano-Elias' model is advantageous at describing the continuous nature of

the symbols space. The visual allows one to see the leaf to Pi relationship described by the

algorithm. In addition, the divisions on the horizontal are clear as they separate the symbol

space based on the percentages of the symbols. The perpendicular nature of — log2(.P;)

function to the symbol space is also present but only exists for one symbol.

The problem with the model is the perpendicular nature of the bit and symbols spaces

for the entire data compression environment is not clearly shown. Although it is possible

to draw multiple — log2(P,-) functions within the visualization that was not the point of the

design. The creation of the individual vectors also removes the path redundancies required

to show entropy interactions. This makes it impossible to see the interactions between the

symbols and the code words within the environment. In addition, the division of the vertical

space is not clearly represented which makes it difficult to define the depth of a node in the

Shannon-Fano-Elias model.

4.3 Map of Certainty and Entropy (MaCE) of the Symbol and Bit Space

Each of the models in Sees. 4.2.1-4.2.3 has benefits describing .the algorithms they repre­

sent, and each has drawbacks when trying to describe the other algorithms or the entropy

space as a whole. The purpose of this section is to design a more comprehensive model that

illustrates the entropy of the data and the certainty of the system using a combination of the

previous models. In Sec. 3.2 we defined certainty and two types of entropy. Since certainty

43

-log/A-)

s '

p
1

f
)

/ \

p
i

P

(
)

v„

?n

Figure 4.2: Shannon-Fano-Elias' model of the data compression environment. The model
works well to illustrate the continuous nature of the symbol space and the use of — log(fl)
to represent a symbol. The model does not show the perpendicular nature of the space or
the placement of the actual symbols.

and uncertainty are actually defined in two different spaces, entropy for data and certainty

for the system, there are two goals to accomplish in the development of the model for the

purpose of data compression. One is to represent certainty denned by the system in a visual

representation. The second is to define an equivalent visualization to define entropy. Once

both visualizations are equivalent we can relate entropy to certainty or certainty to entropy

when desired.

We begin by combining the models of Shannon-Fano and Shannon-Fano-Elias to max­

imize the benefits they have at describing the space. A combined depiction would clearly

define the divisions for both the symbol space (horizontal) and the bit space (vertical).

In addition, we need a mechanism to show the space available and the space used in the

bit/symbol space. The mechanism describes both the entropy of the data and the certainty

of the encoding environment. Recall the duality of the symbol representation occupies both

the symbol space and the bit space. The duality of the symbol representation in both needs

to be represented in order to analyze the interactions between the two dimensions. The

code word to symbol relationship needs to be readable. The code word represents both the

path to the symbol and the entropy, so this relationship needs to be visible. The dimensions

for both the length and the width of the area must be visible and the dimensions must be

perpendicular to conform with the H equation. If all the requirements are met in the visual­

ization of the data compression environment, the end result will be a model of the symbol

and bit space that allows for a full description of the entropy and certainty interactions.

This model of the data and the system is named MaCE, the Map of Certainty and Entropy.

44

100%

CO

II

6 0

o
1
II

50%

0

25%

0 A:25%

12.5%
0

12.5%
1

25%

1

12.5%
0

12.5%
1

50%

1

25%

0

12.5%
0

12.5%
1

25%

0

12.5%
0

12.5%
1

W =p = 25%

Symbol Space = W

0% 100%

03

C/3

1 §
CD

L=-\og2(Pc)

Figure 4.3: MaCE with percentages. The percentages, Pc, represent the space available or
used in the node location. The divisions of the vertical space represent the individual bits.
The divisions on the horizontal represent the space available to represent the symbols.

4.3.1 Design of the Map of Certainty and Entropy

The essence of the design of MaCE is based on a two-dimensional representation of the

relationships between certainty and entropy. The use of a two-dimensional depiction is not

very different from the two-dimensional representation of a binary tree except all the di­

mensions are perpendicular based on the mathematical description of entropy space. MaCE

as displayed in Fig. 4.3.

The vertical dimension represents the length L of the bit space and is divided to repre­

sent the individual bits. The combination of bits in a vertical division from top to bottom

are used to represent a symbol given a specific level L(, where i identifies a specific symbol.

The length Lc = — log2(^
>
c)> where Pc is a division of the width of the symbol space. The

relationship between length and width of the space also has L representing the number of

expansions from the base. This is the same as the traditional model, except the expansions

are denoted by the lines dividing the space at each level as the total width remains constant.

45

In Fig. 4.3, the bit value is displayed in the lower left corner of the divided space. This as­

signment may not be necessary depending on the algorithm implemented, as the order can

be assigned based on the percentage of the space used, similar to the Shannon-Fano-Elias

approach.

The horizontal dimension represents the symbol space, and the width always equals

100%. The horizontal dimension contains 2L squares at each level representing the expan­

sion described by the number of level L in the vertical dimension. The squares represent

the nodes from the traditional model and the leaf nodes which can be used by the symbols.

The product of the two dimensions represents the possible binary words that can repre­

sent a symbol. Recall that — log2() represents the bit space and the sum of all the individual

probabilities Pc represents the symbol space. Since the symbol space is always represented

by 100% at each level the change between each level is in the number of divisions that

represent the possible nodes. This represents the expansion of the base and the division of

the width simultaneously by expanding the number of divisions of the width.

In Fig. 4.3, the symbol is located in the lower right hand corner of the symbol square if

the square is occupied, and the symbol's percentage is located next to the symbol, repre­

senting the percentage of the symbol space the symbol would ideally represent. A symbol

is thus represented in both the vertical and the horizontal spaces by a square. Both of these

dimensions are required to represent certainty of a location in the ideal tree.

As noted, inside each square is a percentage Pc which represents the space available or

used by the symbol. Recall from Sec. 3.3, that Pc represents the certainty defined by the

code word representing the symbol at that location. This is appropriate because the map we

are defining is of certainty and we will be mapping uncertainty (entropy) onto this space.

The percentage is equal to 2~L for each of the squares at level L.

For example, 25% represents a square that can ideally host a symbol of 25%. If we

analyze this in binary the square represents 25% of the 2L possible combinations of the code

word, where L = 2. The possible code words are the four two bit numbers (00,01,10,11).

The representation can be broken down into individual component to represent individ­

ual symbols. L,- represents the length of the code word to represent symbol denoted by /.

L[— — log2(fj) in bits. W/ can represent the width of the symbol denoted by /, however W,

is equal to Pi so this is not usually necessary. The bit values denoted in the lower left corner

of each square are combined from top to bottom within the space used by i to create the

code word.

For example, symbol A is equal to W-t = P, = 25% and is placed in the space on L = 2

in the first square representing Pc = 25%. L,- = — log2(25%) = 2 bits. The hatched area

represents the space used within the bit/symbolpace to represent A. The bit values in the

100%

46

13

II

60
O
1

II

/ 2 5 % /

0 / / ,

/ 25% /

/ 0 / A:25%

12.5%
0

12.5%
1

25%

0

25%

1

12.5%
0

12.5%
1

50%

1

25%

0

12.5%
0

12.5%
1

25%

1

12.5%
0

12.5%
1

W = p = 25%
/ i

Symbol Space = W

0% 100%

5

L=-\og2(Pc)

Figure 4.4: MaCE example with percentages. The hatched area represents the space used
to code 'A' in both the bit space and the symbol space. A : 25% uses the square Pc = 25%
represented by code word 00.

hatched region represents the code word, in this case 00 will identify A. The percentage

in the preceeding squares is reduced to show the space used in that square and a second

percentage is added to represent the space remaining, in this case the square represent by

partial code word 0 has 25% used and unused, as illustrated in Fig. 4.4

The design of MaCE takes advantage of the combination of the Shannon-Fano and the

Shannon-Fano-Elias models along with the additional requirements to represent certainty

and entropy in data compression. The design of MaCE has the advantage of describing the

length and width of the data compression environment and all the information required to

see the entropy and certainty interactions within the map. A quick look at MaCE shows

all the information available in regards to space and the information stored in the space,

making it easier to analyze the entropy and certainty interactions within the space. MaCE

describes the horizontal and vertical divisions cleanly. The hatched area provides the mech­

anism for showing the space available and the space used in the bit/symbol space. Further

47

advantages of this construction will be made evident when we begin to map entropy onto

the two-dimensional space. Before the entropy mapping is possible, we must figure out the

appropriate orientation by which to map the entropy equation H to MaCE.

4.4 Entropy in Two-Dimensional Space

Previously, we have been discussing the results of the H equation as bits of entropy. Look­

ing back at Example2.5 we observed that entropy is defined by each H, = —Pi\og2{Pi),

representing the space used at the level in the tree defined by — log2(^) and the symbol Pt.

This observation represented the percentage of the symbol space used by the color c. In

Sec. 2.4 we noted all the bits in the code word represents entropy as referencing anything

but the complete code word resolved in uncertainty. This would seem to indicate that en­

tropy is also defined in the bit space. This apparent contradiction exists because entropy

exists in both spaces.

Entropy exists in the symbol space as none of the symbols represents 100% when multi­

ple symbols exist. The complete symbol space consists of a combination of the all symbols

probability Pi with a range from 0 to 100%. Entropy H is continuous in Pi and this combi­

nation of all P[S defines the symbols space as a continuous entity from 0 to 100%.

Entropy exists in the bit space because only the complete code word resolving to a

symbol represents certainty. All other variations of the code words available within the

bit/symbol space resolve to an uncertain result of either no symbol or too many symbols

as described in Sec. 3.2. Entropy is continuous in the bit space as ideally the code words

would be represented by the continuous function — log(P/), however the actual system rep­

resenting certainty is finite and discontinuous.

We examine Fig. 4.3 to determine how to represent entropy in terms of both spaces, in

which the function — log2CPc) defines the length of the bit sequence and Pc represents the

percentage of the symbol space. Since entropy has the same two perpendicular dimensions,

it makes sense to illustrate entropy in MaCE as described in Sec. 4.3, and the construction

shows that the entropy equation H can be represented as a two-dimensional space. This

may seem odd, as information is not typically considered two-dimensional, but the repre­

sentation of the data in the binary tree is two-dimensional as well. The dimensions relate

to the height and width of the binary tree and the two dimensions fully describe the infor­

mation content of the space. When mapping the symbols onto the space, the symbols are

all located in leaves of the tree due to the prefix-free requirement. The sum of the leaves

represents the width of the space and the sum of the symbol percentage always equal 100%

to adhere to the lossless requirement. The route from the root of the tree to the leaf is rep-

48

w
in

o

1

Division 1 Division 2 Division 3 Division 4

0% Symbol Space = S [QQ%

Figure 4.5: Entropy map: The area representing a single symbols entropy, //,-, is shown in
the hatched region.

resented by a string of bits representing the code word identifing the symbol location in the

tree. The number of bits in the code word represents the number of expansions required to

assign the symbol to the leaf and the height of the space. Multiplying the symbol percent­

age P[by the number of bits required results in the area used by the code word to represent

the symbol, and this area represents the space that cannot be used for another symbol. The

area used by a single symbol entropy is Hi as described in (2.7).

In the traditional model of the binary tree this relationship to entropy and the two-

dimensional space was not easy to discern as the multiple paths representing the space

were represented by a single line. In contrast, MaCE clearly defines the entropy area, as

shown by the hashed area in Fig. 4.5. From the depiction of Hi = ^Tog2(l//3/) we can see

the orientation of log2(l/P/) is on the vertical (bit space) and Pi is on horizontal (symbol

space) and the product represents the area. The dimensions correspond directly to the

area defined by the hatched area in Fig. 4.4 to represent symbol A. The concept can be

expanded to represent the complete entropy equation. The entropy equation describes the

total area used by encoding all the symbols P, to Pn, and is depicted in Fig. 4.6. The final

representation also agrees with the bits per symbol definition of entropy.

P \oz2(l/P)\

/ / /

/p /

49

td

EC
O

m

1

- log 2 ^ t J

0% Symbol Space = 5 100%

Figure 4.6: Entropy map complete: The area representing each //, entropy for four symbols
is shown in the striped regions.

4.5 Mapping Certainty and Entropy

The majority of the discussion so far has been in regards to entropy or certainty not the

combination of the two. As explained previously, certainty is represented by the certainty

of the binary structure (the system). Certainty is defined by the rules that define the binary

tree. We know for certain that binary 0 represents the first space to the left and the 1

represents the first space to the right from the root. The relationship of 0 and 1 to the define

certainty exists because we defined them in our definition of the binary system to represent

the two possible states. We say this certainty is by definition.

In the concept of probability, the 0 represents 50% of the binary representation for

a single bit code word. Its counter part, the 1, represents the other half of the binary

representation and the other half of the one bit code word. This concept was represented

in Fig. 3.1. We also use certainty to define MaCE in Sec. 4.3.1. The node percentages

contained in both depictions represented the percentage of certainty Pc. The length from

the root to Pc was definded by — log2(Pc)- Combining these concepts, the area that certainty

represents is defined — £/clog2(/c), and is displayed in Fig. 4.7.

The second depiction of the space is in terms of entropy. We defined this view earlier in

Sec. 4.4, as displayed in Fig. 4.5. Looking closely at the two figures the only difference is

P loe. 7(]/P)\P \ogj{l/P)

1 - * / ' i 2 l 2

/ / /

p
Division r

}
p

Division r
2

P log 2(J/P)'<P log 2 (J/P)
3 3 ' n n

/ / /

Division ' 3 Division "

50

P log 2 (1/P)
c c

/ / /

/P /
/ V /

Division 1 Division 2 Division 3 Division 4

0% Symbol Space = S

Figure 4.7: Certainty map: Pc represents the percentage of certainty represent by the square
region occupied by Pc. The value of Pclog2(l/Pc) represents the space used to represent
the certainty in Pc.

the Pc representing certainty denned by the binary tree and the P, representing the symbol.

More importantly, this demonstrates that both entropy and certainty can be represented in

the same depiction. What this relationship shows is that the goal for minimizing entropy

can be accomplished by assigning the uncertainty represented by P, to the most certain

location represented by Pc where P, TH PC. Another possibility is mapping P, representing

the symbol to the certain location represented by — log2(Pc).

4.6 Example of MaCE

The purpose of MaCE is to illustrate the interaction between entropy and certainty. The

following examples illustrate its effectiveness. We examine the same example used to

illustrate the three base algorithms in Chapter 2. Given five arbitrary symbols: A, B, C, D

and E represented by their known symbol counts (A:35, B:\l, C:17, D:16, E:15). Note:

the numbers are the same because both the counts and the probabilities equal 100. We

use MaCE in Fig. 4.8 to illustrate the theoretical ideal overlaid on the binary system. The

ideal entropy H(X) is the sum of the rectangular areas calculated previously in (2.9). By

using MaCE we can observe how the ideal and the system used to represent the symbols

relate to each other. We can also see by the depiction in Fig. 4.8 that none of the symbols P;

would map ideally to the Pc represented by the binary system. The quest of the compression

51

100%

t

0 c
c
c
r
r

c
r
u

u

0 0
ON
CM

* ~

<

l

12.5% 12.5%

A:35%

12.5%

C
L
C

<T
f
C
r
s
i
i (

'

i

17%"

r j <n
O ON

* <2
«1 SO

s «

22

B:17% 1

,

3

^ Ov
•<-, <T}
•«1 SO

* r4
^ X

0

C:17%

/
l f t C K . ^ 1

r-

3> SO
» in

30 ^ ,

0

»' D:16%

— 15%-*

SO
SO

£N ON
SO i n
SO «-)
— so
•ef O N
ON s O
""1 (Ti

£ x

lii

- E:I5%

Symbol Space = 5

0% 100%

- log 2 ^ c)

Figure 4.8: MaCE example with the ideal H to represent 5 symbols. The color rectangu­
lar areas illustrates the space required to ideally map the 5 symbols A — E. The vertical
bit space and the horizontal symbol width are displayed. The area within each rectangle
represents the space the symbol would ideally use in W x L.

algorithm is to efficiently arrange the symbols as close to the certainty as possible.

The Huffman algorithm accomplishes the task with the best solution in binary. Huffman

produces an actual entropy L(X) =(A:35% x 1)+(5:17% x 3)+(C:17% x 3)+(£>:16% x

3)+(£:15% x 3)= 2.30. We illustrate the Huffman solution with MaCE in Fig. 4.9. MaCE

illustrates the overshoot of the 4 smaller symbols B — E and the under shoot of symbol A

when the symbols are aligned to the binary system. The illustration also alludes to why

Shannon-Fano can achieve similar entropy results to Huffman encoding. The overall en­

tropy is the same as long as the overshoots and undershoots balance between the different

code words. The individual values Hi may vary greatly, however, the end result in com­

pression is the same if there is a balance.

52

100%

Symbol Space = S

0% 100%

sc
C/3

• a

- l o g ^ J

Figure 4.9: MaCE example illustrating the compression obtained by Huffman encoding.
The color rectangular area illustrates what is required to ideally map the 5 symbols A — E.
The hatched marks illustrate the compression acquired by Huffman and the best possible
arrangement given the binary requirement.

4.7 MaCE and the Symbol

Previously, we have been concentrating on the certainty and the entropy related in repre­

senting the symbols and have neglected the symbols themselves. In MaCE we denote the

representation of the symbol in the lower right corner of the surrounding rectangle delim­

iting the certainty and/or entropy. The symbol itself is located in the number of bits from

bottom up to the bound represented by the limit defined by Shannon's theory examined

in Chapter 2. The key to seeing this relationship is accomplished by adding space at the

bottom of MaCE, below the limits defined by //, for each symbol. The bottom of the graph

is referred to as the base. Recall, the base b is the number of divisions of the symbol space.

If well put this in numerical terms we are changing the base by adding the additional bit

values to the length. By adding space to the bottom of the illustration we are expanding the

base for MaCE illustration and changing the base numerically.

35%

A:35%

0%

10%

12.5%

35%-

100%

A:35%

* t 17%-T

I B:17%

17%"

C:17%

16%-

D:16%

15%"

A:35%
35%

0%
Symbol Space = S

I E:15%

100%

53

a

- l og 2 ^ c >

Figure 4.10: MaCE example including a symbol. The illustration shows the color rectan­
gular areas required to ideally map the 5 symbols A — E. The hatched marks is what is
possible given the binary requirement. This is the arrangement and acquired by Huffman
encoding.

The symbol occupies the vertical space (bit space) from the base to the limit defined

by — log(P,) and the width P, in the horizontal space (symbol space) as discussed in Chap­

ters 2-4. The vertical portion is defined by starting at the base and the percentage is in­

creasing from 0% to Pi. In Fig. 4.10 we chose b = 16 in order to acheive a more uniform

appearance. The summation 0% to P, of the vertical space used by the symbol includes all

of the bit values displaced. The addition includes the adjacent spaces at the base that sub­

divides the higher square as the adjacent bit is one of the displaced bits. This summation of

the adjacent spaces insures that all of the space is accounted for in the map for that symbol.

Since we are only concerned with the vertical length from the base, the summation only

has to represent one path. For example, if we used either of the spaces denoted by 6.25%

in Fig. 4.10 we need to add the adjoining 6.25%. We can then continue up the path to the

boundary between entropy and certainty, adding the space used at each block. In this case,

using Fig. 4.10 as a guide, we add (6.25% + 6.25%) + 12.5% + 10% = 35%.

54

The visualization of the expansion has another importance as the space represented by

the expansion from one base to the other represents the space possible for compression by

reversing the process. This is important as it shows the space that can actually be com­

pressed by changing from a higher base to lower one. The relationship between the base

and the length also indicates that in the process of mapping an ideal symbol, i.e. a symbol

with Pi = Pc, a base can be chosen to represent the symbol entirely in its range and domain.

For example, compare Fig. 4.10 in base 16 to Fig. 4.9 in base 8. The space removed is some

of the overhead not required to represent the symbols, however, this simple translation will

only be optimal when the P,- = Pc for the Pc of the base. Other methods must be applied to

address non-equally distributed symbol combinations.

4.8 Summary

The purpose of this chapter was to introduce MaCE. The concept illustrates the entropy

of the data and the certainty of a system definition to equivalent representations in both

space and orientation. The construction allows for the expansion of the space available

and the divisions to represent a symbol to be clearly defined. The orientation of entropy

as bit spaces per symbols space is determined by using the entropy equation and MaCE,

and allows for representing certainty and entropy. This allows for the continuous nature

of entropy and the discrete nature of certainty to be mapped simultaneously. The use of

MaCE illustrates that it is possible to compare entropy to certainty and certainty to entropy

for the purpose of data compression. The addition of the symbol to MaCE illustrates the

use of base manipulation to increase this compression. Both of these developments will be

utilized in Chapter 5 to create new methods for data compression.

55

Chapter 5

USE OF MaCE FOR DATA COMPRESSION

5.1 Using MaCE

Chapters 2-4 examined three different approaches to the mapping of entropy. These three

major approaches have influenced countless variations of compression schemes over the

years. Previously, we have shown how Shannon-Fano was a top down solution which

divided the entropy by the certainty of the system to map the symbols. Shannon-Fano-

Elias divided the entropy space from the bottom by Pi leaving the vector of bits to represent

the code word. Shannon-Fano-Elias produces the final code by using this technique along

with the decimal representation of the binary values to represent certainty. The purpose

of this chapter is to describe an approach that utilizes the definition of certainty as well as

entropy to accomplish the data compression. This chapter introduces several new methods,

SLM (Select Level Method), SLMN (Sort Linear Method Nivellate) and JAKE (Jacobs,

AH, Kolibal Encoding), using these concepts and the visualization approach to quantifying

these relationships provided by MaCE. SLM creates Shannon-Fano-Elias code in less time,

and more importantly from a different direction, then the traditional method. The use of a

different path allows for SLMN to create a new code with entropy less than H{x) + 1. This

concept is extended to create JAKE which combines these concepts to increase the data

compression beyond H(x) + 1 with less arithmetic computation than the current methods.

Looking at the data compression problem from the side is similar to the difference

between Riemann and Lebesgue integration. In Riemann integration, the domain is subdi­

vided in small elements Ax and we evaluate the function f(x) on each element. Summing

/(x)Ax over all such elements and taking the limit as Ax gets small, returns the integral.

This approach to integration is easy to explain and visualize and is the common way to

explain integration in calculus class. The view relates to Shannon-Fano-Elias dividing the

symbols space as the domain and the results are the number of bits in the range space. In

Riemann integration the sum of the vertical divisions results in the final area defining the

solution. In Shannon-Fano-Elias the sum of the bits in the vertical space for each of the

code words defines the final solution.

In Lebesgue integration, which provides a more comprehensive view, Lebesgue divides

the range (vertical) space instead of the domain (horizontal) and defines the integral using

this approach. The result was a theory that allowed more functions to be integrated. We

56

can see that division of the bit space (vertical) or the range using the spatial concept is also

possible in MaCE. The division of the environment by the range or bit space will leave only

the symbol space and has a similar effect in reducing the complexity of the problem.

In Sec. 5.2 the first method, SLM, is introduced which uses MaCE to divide the space

and the entropy equation in an complementary direction in comparison to Shannon-Fano-

Elias. The division is accomplished by using bit length of certainty for the divisor which

has the effect of reducing the space and the entropy equation to only consist of P,. The

reduction of the entropy equation allows for direct comparison between the symbol per­

centage representing entropy and the optimal percentage representing certainty. The end

result is to reach the same location and compression with an easier implementation by elim­

inating the need for the logarithm an ce i l ing function. In Sec. 5.2 we also introduce the

concept of equilibrium in order to increase the efficiency of SLM and the division of the

space.

Section 5.3 introduces a second method, SLMN, which uses the framework to divide

the symbol space and sort the symbols based on percentage. The sorting technique is a

bucket sort based on the midpoint percentage defining the expansion of the base. The data

being sorted and the use of the midpoints allows for SLMN to place the data closer to the

optimal location based on the comparisons. The combination reduces the entropy to less

than H(x) + 1 for SLMN in comparison to Shannon-Fano-Elias which has the efficiency of

less than H(x) + 2.

Section 5.4 explains the significance of H{x) + 1 and how the knowledge gained from

MaCE can be used to reduce the total entropy. The knowledge in this section allows for the

concepts of SLM and SLMN to be extended in JAKE to allow the compression in any base

which increases the compression and the computational efficiency of data compression.

Section 5.6 explains how the encoding and decoding table can be used in a symmetric

manner to both encode and decode messages.

5.2 Select Level Method

Shannon-Fano divides the combined entropy of the symbols Y,Pi o v e r the certainty of the

space represented by Pc. In Shannon-Fano, Y,Pi and Pc determine the length of the code

word used to represent a symbol by recursively dividing the partial £P ; by Pc until a one-

to-one mapping is produced. The width is based on the length as it is only increased when

additional divisions are required by the algorithm.

In contrast, Shannon-Fano-Elias divided the entropy space by P-t leaving the vector

of bits — \og2(Pi) to represent the length of the code word based on the theoretical ideal I

57

(2.8). In Shannon-Fano-Elias the reciprocal of Pi determines the length of the code word by

applying the log2() function to the reciprocal of each symbols probability Pi. The c e i l i n g

function and the +1 values increase the length to avoid conflict with other symbols being

mapped. F(P) supplies the width offset to supply the offset from 0 to map the symbol.

Both of these methods have a common thread of Pi when mapping the symbols, only

the mapping methods differ. The difference in the methods is clear when examining the

simplification of the entropy equations representing them. The entropy equation simplifi­

cation for Shannon-Fano is represented in (5.1) and Shannon-Fano-Elias is represented in

(5.2), i.e.,

Hi/Pa = (Pil0g2(l/Pc))/(Pcl0g2(l/Pc)) =Pi/Pc, (5.1)

H;/Pi = (Pilog2(l/Pi))/(Pi) = log2(l//>). (5-2)

The simplification of the equations in (5.1)—(5.2) makes it evident what remains to de­

fine the length when the respective algorithms divide the space. Shannon-Fano's length is

defined by Pi/Pc and Shannon-Fano-Elias' length is defined by log2(l /P/) . SLM uses a

combination of these two approaches to produce a method which is less computationally

expensive then Shannon-Fano-Elias while producing the same encoding table. By com­

bining these aspects of the previous algorithms, SLM uses P, to make comparisons to Pc

and appropriately map the symbols to the space. In Sec. 5.2.1 we must reduce the entropy

equation to consist of only Pj in order to have comparable entropy and certainty spaces.

5.2.1 Reduction of the Entropy Equation and Entropy Space

As mentioned in the Sec. 5.1, SLM reduces the space in an complementary direction in

comparison to Shannon-Fano-Elias. Recall that the entropy space is two-dimensional, rep­

resented by the length in bits and width represented by the Y.Pi— 100%. Shannon-Fano-

Elias divided the width of the space by Pi which removed the width component of the space

and the remainder was the length in bits. SLM divides the space by a vector representing

the length of bits which reduces the space to Pt. In order to execute the reduction of the

entropy equation, SLM uses MaCE percentage Pc and divides the equation by — \og2(Pc),

where Pc = Pj, where Pc is the certainty percentage representing the percentage of the space

in the binary tree represented by — log2(Pc) bits. When Pc = Pi the logarithm function

returns the same number of bits. This cancels the length component leaving the width

represented by Pi. The reduction is represented

Hi/(-log2(Pc)) = -Pilog2(Pi)/(-log2(Pc))=Pi. (5.3)

58

Notice at the completion of (5.3), we are left with only the Pt. The £P, = 1 represents

the complete horizontal symbol space of the entropy map. This is in contrast to Shannon-

Fano-Elias in (5.2) which divides by P, and the remainder is — log2(P,-). The use of Pc

is similar to the approach used by Shannon-Fano except in SLM we use only — log2{Pc),

not the complete space. The reason this simplification is possible is because SLM is only

operating with one //, not the combination of several //,'s.

To complete the process, SLM only needs to compare the Pi to Pc. We have already

defined Pc for certainty using MaCE and can determine the location of Pc by length and

width. The definition allows for the reduction of the certainty space to a single component.

The simplification of both the entropy space and the certainty space represented by MaCE

allows for a simple comparison between P, and Pc to determine the appropriate mapping.

The length in terms of bits is determined by the comparison and width is an offset in the

symbol space previously described for Shannon-Fano-Elias in Sees. 2.7-2.7.3. First, we

need to show that both cancellations map to the same location. We accomplish this task by

looking at the spatial representation of the Shannon-Fano-Elias operations in MaCE.

5.2.2 Visualization of the Reduction of the Entropy Equation and Entropy Space

Figure 5.1 uses MaCE with the bit values representing Shannon-Fano-Elias model after

the cancellation of P,. From the image we can see the ideal entropy area is described by

the solid hatched region. This represents HL = —P,Tog2(P,-) with P; = 25%. The height

— log2(P,) of the ideal entropy area is 2 bits long and the width is symbol percentage P,.

The 1 values within the region represents the bit each block represents.

The dashed hatched area represents the space used by the fitting functions of ce i l ing

and +1 and the symbol itself. The logarithm and ce i l ing function ensures the equation

returns the max of the bit range and the +1 places the location at l(x). The combination

of the two functions increase the length to 3 bits. The F(P) offsets the space from the left

by Pi/2 = 12.5%. placing the symbol in the location represented by code word 001. Pi/2

ensures that only one node is used in the sub-tree denoted by the +ls . In this case the code

word of 000 is never represented and results in increased entropy and shows an example of

the second type of entropy described in Sec. 3.2. The second type of entropy is where the

code word does not represent a symbol.

SLM is using (5.3) and MaCE to reach the same location. In Fig. 5.2 MaCE illustrates

the percentage values representing the space used after the cancellation of — log2(Pc). In

this figure we have that code word 00 represents 25% of the bit / symbol space. This space

would be the ideal location to place the symbol. MaCE also shows that any percentage

100%

59

:/!
IS
m
II

^
+

a/"
r-l

60
C
|
olt
C

V

II

2

r ̂

I

v}

0

/

/

0

/ / /
/ / /

/ /
/ / /

\ / /

/ / /

/ / /
/ / /

1 / /

/ / / /

•
\ +1 N<

1

1

2

1 1

w
-a

F(P) = 12.5%
F(P)

I] = 25%

Point X represented by 12.5% of symbol space and 3 bit spaces.

Symbol Space = S

-log2 (Pc)

0%
F(P)

= (-P\og (P))/(P.) = -log (P) =2
I 2 i 2 i

= Extra space used by F(P) and ceiling { + 1 } Function

100%

Figure 5.1: Shannon-Fano-Elias: The intersect point. Point X represents the location where
the offset used by SFE defines the space to represent symbol P,-.

within the block would also match the requirement of the [—log2(J
c/)l • The range of the

block is from [25%, 12.5%) or in bits [2,3).

The range indicates by using a comparison model that we only need to compare Pi to

the higher percentage of the block Pc. For example, Pi = 25% < Pc = 25% will place the

value in the location requiring 2 bits 00. This comparison will replace both the logarithm

and the ce i l ing functions within the algorithm. All that remains is the +1 to increase the

string to bit length to 3 bits the same a Shannon-Fano-Elias. The F(P) offsets the space

from the left by Pi/2 = 12.5% placing the symbol in the location represented by code word

001. This maps the symbol to the same location and represents the same bit sequence as

Shannon-Fano-Elias. We can also see this visually by comparing Fig. 5.2 to Fig. 5.1.

The change from Shannon-Fano-Elias to SLM only modifies how calculating l(p) is

accomplished. The change works correctly because both the — \og2{Pi) a nd Pi intersect at

the same integer values when Pi = Pc. Since we cannot represent any of the sub-locations

100%

60

Si

2
f ^

II

+

II
V
o , -
V

•—.
2.
op

25% <P <=:
i

12.5% <P <=

0%

257

^ /

/ / / /
/ / / /

/ %' / /

/ / / /
/ / / /
0 / / /

/ / /

'' / 2 5 % / /

v///,
S\I2.5%'

0 \
\12.5%\
1 \ \

25%

25% 25%

50%

25%

00

F(P) = 12.5%
F(P)

P; = 25%

Point X represented by 12.5% of symbol space and 3 bit spaces.

Symbol Space = S

"log. (Pc)

0%
F(P)

= (- / M o g (P))/(P.) = -\og(P) =2
i 2 i 2 t

= Extra space used by F(P) and ceiling { + 1) Function

100%

Figure 5.2: SLM: The intersect point. Point X represents the location where the offset used
by SLM defines the space to represent symbol P(.

within the block, the |~— log2{Pi) + 1] only represents integer values as well. This allows for

the comparison to map the symbols to the integer values based on the range of percentage

denoted within the block without the use of the logarithm. The integer values represent

the length of the code word l(p). The rest of the implementation of Shannon-Fano-Elias

remains the same.

Now that both MaCE and the entropy map consist of spatial percentages, we can sim­

ply compare the symbol components representing uncertainty to the MaCE components

representing certainty and place the values in the same location as Shannon-Fano-Elias.

5.2.3 Comparison Model for SFE Code

By changing the focus to certainty instead of entropy and dividing the space by — log2() for

SLM the logarithm function and the ce i l i ng function are replaced by comparisons. The

space in MaCE is represented by the code word where Pc + 1 < Pt < Pc. Pc + 1 represents

the level below Pc. This change allows for a less computational implementation of a com-

61

pression algorithm while mapping the symbol to the same location. Since both SLM and

Shannon-Fano-Elias map the symbols to the same location the entropy will be the same as

well as any details regarding the usage of the encoding tables.

For the implementation of SLM we need to replace the statement that calculates the

length of the code word with an a function that returns the same length value using the com­

parison model. By examining the pseudo code for Shannon-Fano-Elias (in Algorithm 1),

we can see that the length I [Pi) is determined by l(P) = |~— log2 Pi + 1] from (2.14).

Algorithm 1 Shannon-Fano-Elias pseudo code.

The code uses ["(— log2(Pi) + 1)1 to determine length of code word.

for all Symbols i to n do

F(Pi) (2.13) - Combine half current probability Pi + previous sum J_^

F(P{) (2.12) - Increment previous sum by Pj

I (Pi) (2.14) - Determine length of code word using \(—log2{Pi) + 1)1

F(P)2 - Convert F(Pj) to binary

Return code word with bit length l(P) of the leading binary values of F(P)2

end for

The pseudo code for SLM (in Algorithm 2) represents this change with the IF/ELSE

function. The pseudo code for the IF/ELSE function is displayed (in Algorithm 3). The

individual components of the IF/ELSE block model the range each spatial block represents

in MaCE as displayed in Fig. 5.2. Each block has the range from 2~L to 2~L+1 where L is

the level in the space. In the IF/ELSE block this is represented by the IF statements. Each

IF statement represents a level L in the space. The length is returned which represents the

largest bit represented in the block plus one.

For example, the second IF represents the spatial block with the range [25%, 50%) or

in bits [2,1). The 2 is the largest value in the block. Recall, from Shannon-Fano-Elias the

ce i l ing is taken of this range resulting in 2 for this block as well. At this point, Shannon-

Fano-Elias would add the +1, however, for the IF/ELSE we simple add it into the return

value. In this case, the IF/ELSE block returns 3.

5.2.4 IF/ELSE Function Implementation

Section 5.2.3 creates a method that uses the reduction of the entropy equation in Sec. 5.2.1

and an IF/ELSE block to accomplish the same encoding as Shannon-Fano-Elias. The

IF/ELSE block introduced is based on a top down linear comparison where each division

62

Algorithm 2 Select Level Method pseudo code.

SLM code replaces [— log2(P,) + 1] used in Shannon-Fano-Elias with IF/ELSE function.

for all Symbols i to n do

F(Pi) (2.13) - Combine half current probability P-t + previous sum Y,Pi

F(Pi) (2.12) - Increment previous sum by Pj

IF/ELSE function Fig. 3 - Determine length of code word using IF/ELSE block

F(P)2 - Convert F(Pi) to binary

Return code word with bit length l(P) of the leading binary values of F(P)2

end for

Algorithm 3 IF/ELSE Block for SLM.

Code to replicates the length value returned by |~— \og2(Pi) + 1)].

if Symbol Percentage > 50% then

Return length = 2

else

if Symbol Percentage > 25% then

Return length = 3

else

if Symbol Percentage > (2"L)% then

Return length = L + 1

end if

end if

end if

represents a level L. The problem with the top down approach is the symbol space increases

in multiples of the base, 2L, at each addition to L and the top down approach is starting at

the small end and working down thru an increasing number of symbols. The top down

approach has the effect of looking for the a space to store the symbol by first looking at the

levels with the least amount of possible spaces. To compound the problem the top down

approach does the same thing for all n symbols. A better approach would divide the space

more equally and start at a location with the most comparisons first. We must introduce the

concepts of equilibrium and the split tree to acquire a more suitable starting point.

63

5.2.5 Equilibrium and Split Tree Properties

The second property of H, denned by Shannon, states that when all the choices are equal

entropy is at the maximum. The individual symbols are at maximum entropy when they are

the farthest from the root node. By combining these two observations we define equilibrium

and the equilibrium level Le as the level where all the symbol percentages are equal and

farthest from the top of the space. The depth of Le is first level where all n symbols can be

represented. Mathematically it is the level Le where 2Le > n.

Equilibrium has a unique property in that it is the only level in the space that can rep­

resent all n symbols without adding additional entropy to the space. Recall from Sec. 3.2

that there are two types of entropy. Entropy as the distance from the root to the symbol

and entropy were a code word does not resolve to a symbol. If a symbol is represented by

a code word the first type of entropy is inevitable with more than one choice. The second

type of entropy is avoidable if all paths lead to a symbol. In terms of the Kraft inequality

the Y!i=\ 2~~Lei = 1. If n = 2L and all the symbols have an equal percentage, all n symbols

will ideally be located on level Le. Since the previous level Le — 1 can only represent n/2

values the range for mapping the symbol to level Le is [(n/2+ l),n] symbols. If there were

only (n/2) symbols the ideal location would have Le representing the next higher level.

The concept of equilibrium is illustrated in Fig. 5.3.

The reason that the equilibrium property is important is because this level represents

the most comparisons that may be required for any level in the space. The level above

equilibrium Le — 1 can only represent n/2 — 1 symbols. The —1 represents the symbol

required to allow the mapping of the other n/2 + 1 symbols still required to be mapped. The

level below equilibrium Le + 1 can represent In, however, half of the code words would not

represent symbols. This mapping or any other mapping below equilibrium would result

in increased entropy that is avoidable. So the maximum comparisons is at 2Lc = n as

2Le~[= n/2 — 1 and 2Le+1 = n — 2. For this reason the equilibrium level makes a good

initial dividing point for the IF/ELSE block.

The equilibrium level used as the initial split has other implications as the level above

represents a negative growth rate. Each level above equilibrium represents half of the

possible spaces of the level proceeding it. In other words, we are reversing the expansion by

traveling toward the root by repeatedly dividing the number of spaces by 2. The decrease

in space below Le is not nearly as steep as it progresses from n/2 — 1 at Le + 1 to only

representing 2 symbols as Ln. The observation shows that the space to represent the number

of symbols represented in the levels above Le diminishes more rapidly than the number of

symbols that may be placed on the level below Le.

100%

Le-

^ e

L e H

- 1

- 1

25%

0

25%

0 A:25%

12.5% 12.5%

25%

0

25%

1 B:25%

12.5% 12.5%

25%

1

25%

0 C:25%

12.5% 12.5%

25%

1

25%

1 D:25%

12.5% 12.5%

I Symbol Space = S I
0% 100%

Figure 5.3: Equilibrium illustration. The value Le is the first level that can represent all n
elements.

The last implication is based on equilibrium and the displacement and expansion of the

space. When the equilibrium level is full with n symbols, any symbol moved up a level

displaces 2 which need to move to the next lower level. The displacement of 2 is due to a

node currently representing a symbol being split and that symbol and one other node on Le

becoming the two children on the next level Le + 1. The movement of the two displaced

nodes to the next level represents expansion of the equilibrium space. This also applies if

the equilibrium level is not full, but instead of displacing a symbol to the next level, the

empty space available on Le is used to compensate for the movement. The combination

of the implications means more symbols will be placed below equilibrium then are placed

above equilibrium. Equilibrium divided the vertical dimension of the tree. These obser­

vations mean that the implementation of the IF/ELSE block should give precedence to the

equilibrium level and below. We illustrate this concept in Fig. 5.5.

In addition to equilibrium another property divides the tree space. We will refer to

this as the split tree property and it divides the tree on the horizontal. We know that the

tree is split at the top and we represent half with a 0 and half with a 1. Then the space

is recursively divided by 2. What is of importance to compression is the relation between

100%

65

25% <P <= 50%

12.5% <P: <=25%

'//. = Entropy for A and C

= Entropy for B and D

Symbol Space = S

0% 100%

a

-lOgJP,;)

Figure 5.4: Equilibrium: Individual entropy values are equal and at the maximum. The
hatched area represents the entropy space for symbols A and C. The dashed hatched area
represents the entropy space for symbols C and D.

the two halves of the tree space and equilibrium. When looking at the space at equilibrium

level there is a set number of spaces to represent the n symbols. If the number of spaces 2L

is equal to n the level is full and any movement of a symbol upward in the space requires an

expansion of the space on the next level equal to accommodate the two symbols displaced.

Where the split tree becomes a factor to this movement is in regard to the number of values

that can move up and down in the space. Since the tree is split, half of the symbols are

on the 0 side and the other half are on the 1 at equilibrium with n symbols filling all the

spaces. The minimum number of symbols that can be represented on either side is 1. When

looking at this at equilibrium, one value displaces 2Le~m — 1 symbols when moving m

levels higher in the space. The displacement represents a shift of all the adjacent symbols

to the right and with a full tree 2 symbols must move down expanding the space. The

maximum displacement is n/2 — 1 as 1 symbol must remain on the left side of the tree. The

expansion represents the symbols moving to the levels below Le. The displacement allows

of the prefix-free requirement to be maintained and the expansion is required to adhere to

the lossless requirement. An example of the displacement and expansion is displayed in

100%

66

25% <P <= 50%

12.5% <P <=25%

6.25% <P <= 12.5%

= Displacement caused by 'A :

= Expansion for two symbols

Symbol Space = 5
0% 100%

-log, (P,)

Figure 5.5: Split tree displacement/expansion. The hatched area represents the displace­
ment caused by moving A up from equilibrium to a 50% space. The displacement caused
and expansion represented by the dashed hatched area in order to represent symbols C and
D.

Fig. 5.5.

Figure 5.4 has all the symbols (A, B, C, D) represented on level 2 and all the symbols

represented 25% of the space and we show the expansion and displacement in Fig. 5.5. In

Fig. 5.5 the symbol A represents 50% of the space. Immediately below the new square 0

represents the shadow or the displacement created by the movement of A. Notice the two

squares that are displaced but only one symbol has been mapped. In order to maintain

the prefix-free property additional space must be created. The space is created by vacat­

ing the space previously used by symbol D and moving the two symbols C and D to the

level Le + 1. The expansion is visible in the dashed hatched region. For the implementa­

tion of the IF/ELSE block this means that more sybmols will be placed below equilibrium

and precedence should be given to equilibrium and below in the function. We use these

concepts in SLM and SLMN to increase the efficiency of the methods.

67

5.2.6 Modified IF/ELSE Block

For the IF/ELSE block the combination of the split tree and equilibrium indicates that

precedence should be given to the equilibrium level and below when implementing the

function and to accommodate these factors the IF/ELSE has been modified (in Algo­

rithm 4).

The first modification to SLM is to create an outer IF/ELSE block to determine if the

symbol percentage is less than or equal to equilibrium percentage. The addition of the block

allows Le and below to have precedence in the IF/ELSE function. The second modification

is to reverse the order of the comparison of all the symbol percentage above Le. The

modification allows for the ELSE portion of the outer block to operate on the larger levels

first. The change also increases the efficiency of the IF/ELSE function.

Algorithm 4 Revised IF/ELSE Block for SLM

The IF/ELSE block is used to split the space at equilibrium Le and give precedence to

equilibrium Le and below.

if Symbol Percentage > 2~Le% then
if Symbol Percentage < 2~(Le~^% then

Return length = L + 1
else

if Symbol Percentage < 50% then
Return length = 3

else
Return length = 2

end if
end if

else

if Symbol Percentage > 2~^Le+^% then
Return length = L+\

else

if Symbol Percentage > 2~(L<-+2)% then
Return length = L + 1

else
Return length = L + 2

end if

end if

end if

68

5.2.7 SLM Example

We can see the relationship between SLM and Shannon-Fano-Elias by examining the same

example used in Chapter 2. Given five arbitrary symbols: A, B, C, D and E represented

by their known symbol probabilities (A:35, 5:17, C:17, £>:16, E:15). The numbers are

in sorted order for convenience, but as stated this is not required. SLM selects the first

value, A:35 and using the comparison model maps the symbol directly to the length of 3

bits and the offset describe by Shannon-Fano-Elias in (2.14) is used to set the width. The

combination of width and depth produces the same code word 001 to represent the symbol.

SLM continues by selecting each of the remaining values, 5:17, C:17, Z>: 16, E:15 and uses

the comparison model to map the symbols directly to the length of 4 bits and the offset

describe by Shannon-Fano-Elias. The codes for the four symbols acquired by SLM are

0110, 100, 1100 and 1110. The final result is the same code detailed in Sec. 2.7.2 with the

same entropy L(X) = (A : 35% x 3) + (B : 17% x 4) + (C : 17% x4) + (D: 16% x 4) +

(E : 15% x 4) = 3.65 as Shannon-Fano-Elias. The advantage is in the speed produced by

using less comparisions to reach the same location. This concept is illustrated in Fig. 5.6,

which clearly shows the inefficient use of the system resource, this lack of compression is

corrected in SLMN.

5.2.8 Comparison Model Pros and Cons

In both SLM and Shannon-Fano-Elias we are creating a unit vector by dividing entropy by

a known value. In Shannon-Fano-Elias the known value is P, which results in a unit vector

for the length. The ce i l ing function and the +1 complete the length in bits.

SLM uses the known value of Pc, where P, > Pc and the range of ^ is Pc = 2~l < Pj <

2~/+l T^g division of Pc results in a unit vector for length. A comparison between Pj

and Pc determines the length in bits for the range and the +1 implicitly added to the return

value.

In both SLM and Shannon-Fano-Elias the simplification of the entropy equation allows

for a comparison of a vector to an ideal dimension in the entropy and certainty space. It

may be transparent, but the logarithm function used by Shannon-Fano-Elias is a series of

comparisons to determine the appropriate number of expansions to represent the value P,

as explained in Sec. 2.3. The comparisons are in addition to recursive multiplications to

determine the mantissa. The advantage of SLM over Shannon-Fano-Elias is the number

of comparisons is not mandated, as it is in the logarithm function, by an outside attribute.

Furthermore, the number of comparisons can be fitted to the data to enhance the speed of

the compression.

100'

69

25% < P<= 5

12.5% <P <=:
i

6.25% <P <= 12
i

D%

.5%

.5%

3.125% < P<=6.25%

i 12.5%\ !Ci '

, \ \

\ l 2 . 5 %

1 A:3r

! <r^ i

i ^
1 /i

0
13:17

A v\ v\

i i n ' j v> i i i n i
i <N ' i Ol i , Ol i

y\ YA YA

:A*'
I vo
i \6

V
' 0

i
C : I 7

/i? ! A^. \

v d i i v c i

/ > / ;

4
0

0
D:K

'A
i

0
li:15

Symbol Space = S
0% 100%

CO

1 o

-l°g2^>

Figure 5.6: Illustration of SLM algorithm. The hashed area in MaCE represents the use the
certainty of the system to represent the entropy of the data elements. The comparisons on
the left represent the logic to determine the location.

The variability of the comparisons could also be viewed as a disadvantage as the im­

plementation of an IF/ELSE block is biased toward an average expected distribution to

minimize the number of comparisons required. The disadvantage would be more promi­

nent if not for the current usage of prefix-free variable length compression algorithms. The

two-step compression model mentioned in Sec. 1.2 first uses an algorithm that generates a

fixed length code word. The second step uses the prefix-free algorithm based on the en­

coding table produced by step one. The use of the preceding algorithm to generate a fixed

length code word has two effects that are beneficial.

First, the fixed length algorithms focus is to have an equal distribution of the symbol

percentage values to maximize the compression. The closer to equilibrium the combina­

tions of the characters become to the fixed length code words the better the compression in

terms of entropy. The mapping to equilibrium is done by combining strings of characters

together under a common code word. The effect is beneficial for SLM because the preced­

ing algorithm generates a series of symbols with percentages closer to equilibrium which

70

is where SLM has the least amount of comparisons.

The second effect is that we know in advance how to implement the IF/ELSE statements

based on the fixed length that the preceding algorithm generated. SLM implementation is

centered around equilibrium having the greatest number of comparisons possible. Since

the bit values are fixed the equilibrium value is also fixed. This removes the variability of

the position of equilibrium based on the number of symbols in the data set. Knowing the

equilibrium value allows for the implementation of SLM to be designed around equilibrium

to minimize the number of comparisons without having to modify the code or the added

computation require to handle cases that do not exist.

For example, if the goal is to compress the data to an 8 bit fixed length scheme, the

algorithm used in step one would create 256 code words of fixed length with a value range

from 00000000 to 11111111. Each one of the code words would have a combination of

symbols that map close to equilibrium defined by the 8 bit representation. Although a few

values may vary from the norm, the majority will fall in the sweet spot of SLM.

The code created by SLM has the same problem as Shannon-Fano-Elias in terms of

compression ratio. By only concentrating on one dimension of the two-dimensional space

the result returns less then optimal results. Sec. 5.3 uses the framework to decrease the

entropy L(x) <H(x) + l.

5.3 SLMN: Decrease Entropy to H(x) + l

Although ideally we can represent entropy exactly, this is not the case in the real world.

In the real world the limitations are placed on the mapping to the system representing the

symbols in the space. The lack of granularity of the system requires having to adjust to

the differences between the actual ability of the system and the theoretical ideal location to

achieve results close to optimal compression.

The purpose of SLMN is to demonstrate the usefulness of MaCE to decrease entropy.

SLMN uses the concept of midpoints introduced in Sec. 5.3.1 to make decisions on where to

place a given symbol. The method begins by dividing the symbols over the bit space based

on the symbol percentage. Each division is kept in sorted order to increase the efficiency

of the compression. Once the data is sorted, the second step adjusts the symbol location

based on the difference between the symbol percentage and the optimal percentage. This

step also includes the formation of the code word. The code word is generated similar to

Shannon-Fano-Elias in that we use the decimal value to denote the location.

In [37] the focus was to design a system that combined compression and encryption.

The authors propose a mechanism to construct the code by keeping track of the space avail-

71

able in the tree and mapping to the first available location with enough space. The tracking

mechanism replaced the need ce i l ing and the +1 resulting in a better compression but

still achieving H(x) + 2. SLMN uses a tracking mechanism as well, but the goal is to reach

H(x) + L

In SLMN, we use the combination of the probability P, of symbol / and the difference

between the previous symbol percentage P,_ i and the actual percentage Pc representing the

node where the symbol is mapped to determine the location. We use the comparison model

of SLM and the concept of midpoints to select the location. The net effect is averaging out

the differences between the P, and Pc to achieve a compression of H(x) + 1.

5.3.1 Midpoint Spatial Mapping (MSPM)

The purpose of a midpoint is to define a position between two locations of interest. In this

case, the points of interest are the levels above and below P,- as defined by |~— log2(P,')]

and |_— log2(P/)J. The midpoint has some useful properties when interested in measuring

distance. The midpoint provides a third point of reference to do comparisons and provides

a mechanism to quickly determine which endpoint is closer to a given location in the range.

For example, given an arbitrary symbol: (A : 0.45) known probability of occurrence

45%. Pi = 45% and the [—log2(P()J = 1 and [~-log2(P;)] = 2. The midpoint in terms of

bits is 1.5. The — log2(0.45) ft; 1.15 and by using a comparision to the midpoint we know

that the point is closer to the floor than the ceiling.

Applying this concept to MaCE requires the determination of the midpoints for the map

based on percentages rather then using the logarithm function and comparing bits. The

naive approach would simply add the two adjacent percentages and divide by 2. For ex­

ample, the first level L\ = 50%, the second level L2 = 25% and combined ((L[+ L2)/2) =

37.5%. The problem with this approach is that the division assumes that the growth be­

tween levels is linear and the resulting midpoint is incorrect. The vertical growth rate is

actually logarithmic which makes the midpoint 2~ 1 5 « 0.3536. The approximation is due

to rounding to 4 decimal places for the purpose of illustration.

We use a less computation approach based on the growth rate to avoid the computation

of the exponentiation. The approach is based on the fact that even though the growth

rate is logarithmic, the rate is constant at — log2(). This means that once we calculate

the first midpoint we can calculate all the subsequent midpoints by simply dividing by 2.

For example, from midpoint concept we have the first midpoint as 2~ 1 5 w 0.3536 and

the second 0.1768 which is half of the first. The original value can be stored

as a constant and all subsequent midpoints are calculated by division rather then using

100%

72

35.36% <=/

17.68% <=/

>
i

i

' / 25 % / / 25 %

o //A

0 / /k-.iy/i

12.5% 12.5%

25%

50%

25% 25%

Ps = 25%

0%
Symbol Space = S

(-Plog^ (P))/(P.) = -log(P) = 2
100%

C/3
•o

-log2fP r)

Figure 5.7: SLMN: Midpoint mapping. The hatched are represents the entropy for A: 25%.
The comparision to the midpoints is displayed on the left side of the space. Based on the
comparisions A is placed in the two bit position 00.

the exponentiation. Although the rounding error in the approximation maybe an issue for

other applications, any rounding done by a computer for the exponentiation or the repeated

division will equate in equivalent results.

Of even greater importance is that we actually have midpoints between the levels in

MaCE by which we can map P, to the closest location. This concept allows us to modify

SLM to map the symbols based on the proximity to the level by using the midpoints.

5.3.2 Using Midpoints to Enhance Select Level Method to H(x) + l

SLM used the percentages of certainty Pc to determine the location suitable for a compara­

ble algorithm to Shannon-Fano-Elias. SLMN will expand upon this concept by using the

midpoints as in Sec. 5.3.1 to map the symbols closer to the location of Pc. By mapping the

symbols closer to the Pc the entropy will decrease to H{x) + 1.

Figure 5.7 shows that the comparison model has changed in reference to Fig. 5.2. The

comparison on the left are based on the midpoints in Fig. 5.7 while it is based on the oper-

73

ations defined by log2() in Fig. 5.2. The comparison to the midpoint allows for a better fit

of the symbol P; to the space available represent by Pc. In the figure A : 25% is mapped to

a two bit position in contrast to SLM and Shannon-Fano-Elias which mapped the symbol

to a three bit position. The application of SLMN has the effect of decreasing the entropy

required to map the symbol. It removed the excess entropy related to 000 not being utilized

and decreases the length if the code word from 001 to 00.

The side effect of this process is the removal of the fitting function of the ce i l ing and

+1. This removal has a benefit and a drawback. The benefit is the decrease in entropy

in representing the symbol. The drawback is that without the fitting function we need to

address the conflict that can arise. We could use a technique similar to the one used in [37].

By keeping track of the space used the symbols could be mapped without conflict. Another

option is to refit the data by taking another pass through the encoding table and resolving

any conflicts. The refitting process can also be used to assign the code word to the symbols.

If the space in any level is exceeded the lowest percentage symbol can be moved down a

level to resolve the conflict.

Since we are changing the code in SLMN, we need to insure that the code is decodable

and encodable. First, we need to determine if the resulting code violates the Kraft inequality

summarized in Sec. 2.7.1. The fitting portion of the method traverses level by level down

through the space and uses two counters to accomplish this task. The counters represent

the nodes used by the previous symbols and the space available given the depth 2L. If

more than one symbol remains to be placed, the level is incremented to increase the space

available. This insures that the Kraft inequality is not violated as the width of the space

from 0 to 1.0 is the quantity Kraft is measuring and the counter insures that this constraint

is not violated.

Unfortunately, this alone does not insure the values meet the prefix-free requirement.

We must also insure that the mechanics of the method does not place values below previ­

ously mapped symbols. SLMN uses the values of the certainty Pc of the spatial nodes to

accomplish this task. The spatial nodes represent the width of symbol space used by map­

ping the symbol to a location. The method uses the certainty percentage that the symbol

displaced as the offset for the next symbol. The offset insures that the subsequent symbols

cannot be placed in a level below the space previously occupied. This concept is similar

to Shannon-Fano-Elias except instead of using the symbol percentage as the offset we are

actually using the spatial value Pc of the symbol space as the offset. Since we cannot place

a value below a used space and all subsequent values are to the right of the location, the

Kraft inequality and the encoding table contain only values that are codeable.

Another benefit to SLMN is that the data can be partially sorted based on the symbol

74

percentage. If the granularity is not high enough to completely sort the data we can find the

lowest value in a level to move to subsequent levels. This will decrease the time it takes for

the bucket sort portion of the algorithm.

Algorithm 5 SLMN Pseudo Code

SLMN uses the concept of midpoints to sort the symbols and then assigns the location based

on the proximity of Pi to the closest Pc. The variable Dpc is the sum of the differences from

Pi tO Pc- •

for all Symbols i to n do

Bucket sort the symbols based on the midpoints

end for

for all Non-Empty Levels do

for all Symbols on level / to «/ level contents do

if A c <0then

Calculate average difference = Dlc

else

Calculate average difference = Dic/n — (i — 1)

end if

while Midpoint > average difference do

Move down a level

end while

if Level Not FULL then

Place Symbol at level dictated by P, and average difference

else

Place Symbol at level below that dictated by Pi and average difference

end if

Assign Code Word based on Pc

Calculate Dlc

end for

end for

75

5.3.3 SLMN Example

We can see the compression improvement for SLMN over SLM by examining the same

example in Sec. 5.2.7. Given five arbitrary symbols: A, B, C, D and E represented by

their known symbol counts (A:35, 5:17, C:17, DA6, E:15). SLMN first sorts the data

based on the level percentages provided by MaCE. The initial sort is a linear sort based

on the concepts derived in Chapter 4 and provides the knowledge required to make the

algorithmic decisions. The method takes a second pass over the elements to calculate the

difference between the P, and the Pc at the mapped level for symbol i. The method selects

the first symbol, A:35 and using the comparison model maps the symbol directly to the

length of 2 bits. The offset of zero is used as the value represents that no symbol has

been previously mapped, the symbol space is empty. The zero offset is different from

Shannon-Fano-Elias and SLM as they used F(P) = (P,)/2 + ^1<(P,- to set the width which

created the inefficiency in the compression. The combination of width of 0 and length, 2

bits, produces the code word 00 to represent the symbol. The difference, D[C is calculated

as the difference between Pc of the location and the probability Pi of the symbol /. The

total previous difference is used only when the previous overhead is negative. In all other

cases an average difference is used to adjust subsequent symbols in the space. In this case

DJC = 35% — 25% = 10% and the difference is passed to the next iteration. The average

difference addesses the problems with the 32 bit system to map all the values and has the

effect of leveling out the previous differences. The use of the average comes at a cost of

optimality of the compression, but insures we stay within the system constraints.

SLMN continues by selecting the next symbol (B : 17) and combines the value of Pi

with the average difference 10%/4 = 2.5%, so 17% + 2.5% = 19.5%. The combined total

using the comparison model maps the symbol directly to the length of 2 bits. The offset

of Pc = 25% represents the width used and the combined width and length is equivalent to

01 in binary. In this case D;c = 27% — 25% = 2% and the difference is passed to the next

iteration.

The third symbol (C:17) is selected and the value of Pv is combined with the average

difference 2%/3 = 0.667%, so 17%+ 0.667% = 17.667%. The combined total using the

comparison model maps the symbol directly to the length of 3 bits. The offset of Pc = 50%

represents the width used and the combined width and length is equivalent to 100 in binary.

In this case D[C = 19% — 12.5% = 4.5% and the difference is passed to the next iteration.

At this point it is noted that the value deviates from Shannon-Fano code with a code length

of 2 as this is caused by the average difference being used rather then the full value.

The fourth symbol (D:16) is selected and the value of P, is combined with the average

76

difference 6.5%/2 = 3.25, so 16% + 3.25% = 19.25%. The combined total using the com­

parison model maps the symbol directly to the length of 3 bits. It is noted at this point

that 19.25% would map to the higher level, but we are fitting top down and will not place

the symbol in the higher location to avoid conflicts with prefix free and the 32 bit system

requirement. However, this could be used as an indicator to correct previous symbol loca­

tions using back propagation or pointer techniques to increase the compression efficiency.

The offset of Pc = 62.5% represents the width used and the combined width and length is

equivalent to 101 in binary. In this case D[C = 19.25% — 12.5% = 6.75% and the difference

is passed to the next iteration.

The fifth symbol (£:15) is selected and the value of Pt is combined with the average

difference 6.75%/l = 6.75%, so 15%+ 6.75% = 21.75%. The combined total using the

comparison model maps the symbol directly to the length of 3 bits. It is noted at this point

that 21.75% would map to the higher level as well. The offset of Pc = 75.0% represents the

width used and the combined width and length is equivalent to 110 in binary. In this case

D[C = 21.75% — 12.5% = 9.25%. The remaining difference means we did not get a ideal

mapping of all, i.e., 1.0, of the symbol space to all, i.e., 1.0, of the bit space.

The final result is the code with the entropy L(X) = (A : 35% x 2) + (B : 17% x 2) + (C :

17% x 3) + (D : 16% x3) + (£ : 15% x 3) = 2.48 with the ideal of 2.23284. The advantage

is the ability to produce code within H{x) + 1 with very little computational effort via the

comparision model. This concept is displayed in Fig. 5.8. The visual clearly shows added

efficiency in terms of compression over Shannon-Fano-Elias. The slice remanining unfilled

in this case is due to the averaging function. Figure 5.9 shows SLMN without the averaging

function and produces the same code as Shannon-Fano in Sec. 2.5.1.

5.3.4 Pros and Cons of SLMN

The two main differences between SLMN and SLM is the inclusion of the linear sort and

the new fitting function. Recall that the by-product of the extra space mandated by the

fitting function for Shannon-Fano-Elias was the algorithm did not require a sort. The reason

the sort is important to the other algorithms is the ability to work on the assumption that

the next symbol percentage is greater or less than the current symbol dependent on order

chosen. The algorithm without this assumption needs enough space to accommodate any

character and the use of the ce i l ing and the +1 or the equivalent in SLM. The algorithms

within H(x) + 1 achieve the greater compression by using the sort and the knowledge it

generates.

SLMN integrates the sort into the algorithm using the midpoints of the spatial percent-

100%

77

35.36% <=/-> + Delta

17.68% <=P +Delt,

;.84%<=P + Delta

Symbol Space = S

0% 100%

03

i e

-log 7 (/>t. J

Figure 5.8: Illustration of SLMN algorithm with average. The hashed area in MaCE rep­
resents the use of the certainty of the system to represent the entropy of the data elements.
The comparisons on the left represent the logic to determine the location based on the Pi
and Pc values.

age. This alone will pre-processes and compress some of the data points. The integration

helps speed up the total time by using the sort portion to partially build the encoding table.

For example, the best case is when the data is sorted all on one level. Where the algorithm

only does n iterations of the bucket sort, log2(n) iteration to move to equilibrium and n

iterations to place the level. The last n iterations could be short circuited, if required, by

checking the size available at level to the number of symbols contained. The main benefit

to this model is that the sort is not a comparison sort, so that this portion of the algorithm

can be accomplished in 0(n) time versus 0(nlog2(n)).

The second difference in SLMN is the new fitting function. The function resolves the

conflict by making an extra pass through the data. This fitting function could also be tied

to a series of flag values to minimize the fitting operation to only conflicts. SLMN's fitting

function is also different in its purpose as it is not simply to resolve conflicts. The fitting

algorithms purpose is also to create the code words as SLMN defines it's code words based

78

100%

35.36% <=/J + Delta

17.68% <=P + Delta

1.84% <=P + Delta

Symbol Space = S

0% 100%

OB

C/)
• a

-log//"J

Figure 5.9: Illustration of SLMN algorithm without average. The hashed area in MaCE
represents the use of the certainty of the system to represent the entropy of the data el­
ements. The comparisons on the left represent the logic to determine the location based
on the Pj and Pc values. Direct comparison between SLMN with and without the average
shows the effect of the 32 bit requirement even on small n values.

on the certainty space utilized by the symbols. This is in contrast to Shannon-Fano-Elias

which utilizes the symbol probability or the uncertainty to define the code words.

The first benefit to SLMN is the achievement H(x) + 1 by fitting the data closer to the

certainty represented by the bit space. SLMN accomplishes the task with a comparison

model based on the midpoints between levels in the space. The second benefit is SLMN

does not require the data to be sorted as the sort is integrated into the algorithm. Since the

data is in sorted order when the code words are assigned we get the benefit of a incremental

code similar to Shannon-Fano. This has the advantage of easy implementation of a lookup

table to accomplish the encoding and decoding of the actual data.

Averaging of the differences has both a positive and negative effect. The positive effect

is that the average evens out the length of the code word similar to Shannon-Fano code. The

code lengths being relatively flat also enables an efficient lookup. The negative effect is that

the code does not reach its full potential. In certain cases the symbols maybe assigned a

79

longer code word based on the average which leaves a difference in values. The drawback

to the approach is the extra step to either keep track of space or refit. Depending on the

approach chosen the severity of the drawback varies. The refit comes at the cost of overall

speed and the tracking mechanism saves some of the speed at the cost of space.

5.4 Beyond H(x) + 1

We consider entropy in the physical world as a series of particles in a solution. If the

particles are equally distributed throughout the solution, the suspension can be viewed as

in equilibrium where the uncertainty represented by the solution is an equal measure from

the certainty of the particle. There are two ways to increase the certainty and decrease the

uncertainty of this system without altering the number of particles. One is to move the

particle around in the system reducing the distance between the particles and this, in effect,

reduces the uncertainty between the particles and certainty remains constant. The second

way to decrease the entropy by reduction of the solution used to separate the particles,

while the number of particles remain constant in both relative distance from each other and

in number. The reduction of the solution reduces the uncertainty of the system as a whole

and changes the scale by which the certainty is measured. These same concepts apply to

data compression as a symbol represents the particle and the code word space represents

the solution. In the previous chapters we have been concentrating on the first way to reduce

entropy in a system as we have been dealing with a constant binary system to represent the

data. In this section we examine the concept of changing the system to reduce the entropy.

First, we look at the current meaning of H(x) + 1.

Entropy is used to classify compression algorithms, but without understanding its mean­

ing, it is of little use. Entropy as described earlier taken to be the limit of compression. But

what about the +1 portion of the equation H(x) + ll Ideally, all the symbols would map to

the same depth of the space denoted by the theoretical ideal I. For this to occur the space

would have to be divided sufficiently to represent each symbol at the precision required.

In binary, this is not the case, as the granularity increases in powers of 2 and the lack of

granularity is the primary reason the +1 exists. The +1 represents the portion of one bit

that cannot be mapped to the certainty imposed by the binary structure. We can analyze the

two extremes to visualize the effects of binary of the data distribution. One extreme has all

symbols at equilibrium and the other extreme is when one value represents almost certainty

or Pi «%100.

The first extreme is when the symbol percentages are all equal and the condition con­

tains maximum entropy. Take the case of two symbols. When both symbols are equal they

80

represent 50% of the space or half a bit each with a total entropy between the two equal

to 1 bit. This condition can be demonstrated by using the H equation and plugging in the

values for 1/2. L(x) = -(l /21og2(l /2)) + -(l /21og2(l /2)) = 1. Both sides of the equa­

tion have an equal amount of uncertainty and combined that equals 1 or 100% uncertainty.

Both the theoretical ideal I and L{x) equal 1, so the H(x) — L(x). This makes sense and no

additional space is used by either symbol. The entropy of the symbols is mapping exactly

to the certainty of the system with no loss in efficiency. The certainty of the system must be

able to map the equilibrium condition, otherwise the lossless requirement cannot be meet.

For the second extreme, we will incrementally increase one of the two values to 100%.

As we modify the first symbol higher in percentage the second symbol naturally has the

decrease equivalently. For example, using Pi = 3/4 results in H(x) = —(3/41og2(3/4)) +

— (l/41og2(l/4)) = 0.5. The overall uncertainty decreased by « 19%. This trend con­

tinues as the first symbol increases toward 100% the logarithm approaches 0 and the sec­

ond symbols Pj+\ also approaches 0, hence the entropy of the entire system approaches 0.

However, in the actual binary system it is required that we use one bit to represent the two

symbols. The actual entropy is calculated by 100% x lbit and 0% x lbit = 1 x 1 + 0 x 1 =

lbit of entropy, this means H(x) « 0 and L(x) « 1.

What this demonstrates is when the two symbols are equal, actual entropy and theoret­

ical entropy are equal as well, because the system is able to handle the mapping of entropy

onto the certainty of the system. However, as demonstrated, as the two symbols diverge

the entropy becomes less, but the actual model is unable to compensate. Granted there is

no need to run a compression algorithm on 2 symbols when the space is in binary, but the

example illustrates the importance of the +1 as a limiting factor. This property is expanded

to include more than only two symbols by simply adding the relationships of all the values

as done in the overall H equation.

This relationship also shows that regardless of the mapping method, the end result will

always have the +1 limitations. The reason for understanding this limit is to give insight

on how the limit can be addressed.

5.5 JAKE

Since the limit of +1 relates to the ability to map Pi to Pc and Pc is a property of the

system, we must change the system representing the symbols to decrease this limitation.

Pi is only limited by the ability to represent the probability in the system, i.e., the floating

point representation. Pc is represented by the division in the system that represent the

finite nature of certainty in the cases exampling binary. The relationship between Pi and

81

Pc illustrates that by choosing the correct base the actual entropy can be made closer to

theoretical entropy. For example, changing the base to decimal will theoretical change the

limit to 0.1 for a prefix-free code. By changing the base and applying the same framework,

it maybe possible to get even better compression. This is the same concept as removing

the solution in the physical environment. As we remove the solution the entropy decreases

and the certainty of the particles increase. This is a trivial solution if all the particles are of

equal weight. In data compression the interest is in symbols of varying Pi so the task is to

find the most Pc ~ Pi.

Changing the base gives the initial compression, but will only return ideal results if

all the symbol percentages map directly to the space. Since we are not interested in the

trivial solution, the methods proposed in this dissertation are applicable. The beauty of the

comparison model, used for SLM and SLMN, is that in order to map a symbol in another

base all that is required is an original set of elements to define the base. In binary, we

have two possible elements an 0 and 1. In decimal, we have ten elements 0 thru 9. In

hexadecimal, we have sixteen elements 0 thru F. The wider the base the less entropy is

inherent to the system. Once we have the original base, the expansion is the sequence of

elements is expanded in powers of the base. We introduce JAKE (Jacobs, Ali, Kolibal

Encoding) to extend both SLM and SLMN into other bases.

In the real world not all symbol percentages are equal so the concept of simply changing

a base does not work completely. Also, choosing a default base may not be the best solution

as the granularity of the base may be too much or too little for the given requirements.

Since the largest value represents the closest relationship to certainty it indicates that this

value could be used to choose the base. Choosing the base where the largest Pc = Pi or the

majority of Pc's = P^s, can be utilized to map the ideal. The reason is the largest difference

in entropy in the system is the distance from the root node to the first level of the space.

After this level all the other entropy distances decrease logarithmically. By choosing the

base to represent the largest P, we are insuring that the system will have the granularity

required to map the entropy of the symbols to the entropy of the system. Choosing the

correct implementation can model entropy as close as possible, the only limitation is the

actual system requirements. The change of base via JAKE for SLM and SLMN increases

the efficiency of the compression. The change in base also has the potential of increasing

the efficiency of the algorithm as the IF/ELSE block represents the depth of the space and

that depth is decreased by the base change. The Pseudo code for JAKE is displayed (in

Algorithm 6) and the IF/ELSE implementation is displayed (in Algorithm 7).

In addition to using the largest Pi sa Pc or the most Pi « Pc we are able to choose other

system parameters based on the requirement for compression and flexibility. Since the sys-

82

Algorithm 6 Pseudo code for JAKE

Code to returns the length value returned required in any base.

Change the base where the most P-t « Pc

Use SLM or SLMN logic to create encoding with modified IF/ELSE

Algorithm 7 IF/ELSE block for JAKE.

Code to returns the length value returned required in any base b.

The code shows the implementation without the concept of equilibrium for simplicity.

if Symbol Percentage > b~x% then

Return length = 2

else

if Symbol Percentage > b~2% then

Return length = 3

else

if Symbol Percentage > b~L% then

Return length = L + 1

end if

end if

end if

tern proposed is not limited to other requirements, we could use a intermediate base such

as 60 to use a number with multiple prime factors. The reason the number of prime factors

is important is due to the same reason the size of the base is important. Prime numbers are

only divisible by themselves and 1, so any number that does not have a factor represented

within the system will inherently not be exactly representable. This results in increasing

the ending entropy difference between L(x) and H(x). The length of the expansion can

be acquired using the same comparison model defining SLM and the additional fitting of

SLMN can also be used. We have already seen this in action for binary. Shannon-Fano-

Elias, SLM and SLMN use the decimal value to represent certainty in order to map the

uncertainty defined by the length — log2(Pi) while the Huffman and Shannon-Fano algo­

rithms do not have this flexibility. This relationship is the main reason we are comparing

the results to Shannon-Fano-Elias and not the other two algorithms in Chapter 6.

83

Table 5.1: JAKE tabulated results in base 3 with actual and ideal code lengths.

i

Pi

1(P)

code(P)

Ideal Length

1

0.34

1

0

0.982

2

0.11

2

10

2.009

3

0.11

2

11

2.009

4

0.11

2

12

2.009

5

0.11

2

20

2.009

6

0.11

2

21

2.009

7

0.11

2

22

2.009

Table 5.2: Huffman tabulated results in base 2 with actual and ideal code lengths.

i

Pi

l(P)

code(P)

Ideal Length

1

0.34

2

00

1.556

2

0.11

3

010

3.184

3

0.11

3

Oil

3.184

4

0.11

3

100

3.184

5

0.11

3

101

3.184

6

0.11

3

110

3.184

7

0.11

3

111

3.184

5.5.1 JAKE Example

The following example uses seven arbitrary symbols: A, B, C, D, E, F and G represented

by their known probabilities of occurrence (A:34, 5:11, C:ll, D:ll , E:ll, F:l\, G:ll).

The results of each of the sub-equations for JAKE is in Table 5.1 and the resulting code for

Huffman encoding is in Table 5.2

The table illustrates the calculations for JAKE in base 3 and Huffman encoding in

base 2. The ideal compression is also illustrated for both bases. Using the results we

can calculate entropy and the relative efficiency. JAKE in base 3 achieved L(x) = 1.66

and with the ideal 1.659909274984051. Huffman encoding in base 2 achieved L(x) =

2.63089395544898 and the ideal H(x) = 2.66. The efficiency E of the compression for

JAKE is E = 1.659909274984051/1.66 = 0.99995. The efficiency E for Huffman is E =

2.63089395544898/2.66 = 0.98906. The results show that JAKE would have a greater

compression then Huffman in this case. Of greater importance is that the complexity would

not be any greater than with SLM and SLMN as the only difference is the midpoints used

for the comparisons. MaCE in base three is displayed in Fig. 5.10.

For the example we expanded to 7 characters to illustrate the effect of changing the

84

Symbol Space = S

-log3(Pc)

0%
100%

Figure 5.10: JAKE in base 3. MaCE illustrates the mapping of the symbols A:34, 5:11,
C: 11, D:ll , E:\\, F : l l , G:ll to their ideal locations in base 3.

base. The reason we did not use the previous example from the other algorithms is due to

the 5 characters with the given percentages is not ideal for base 3. It was a better choice to

stay in base 2. The choice of base 3 and 7 characters was also only to illustrate the point.

In compression we will not be dealing with only 7 characters and base 3 is not an ideal

base to use for JAKE or information systems. Also, Huffman does have the ability to com­

press in base 3, although that is not the typical implementation. The comparison illustrates

that the change of base does have an effect on the compression efficiency in comparison

to the theoretical ideal. Since the entropy and certainty area and the subcomponents are

complementary, the ideal base chosen must try to match the Pi for as many of the symbols

as possible. The concept of midpoints can help in this decision.

5.5.2 Arithmetic Code

The relationship between the algorithm and the H{x) +d, where d represents the limit of

the system, is observed in Arithmetic encoding. Arithmetic encoding is the leader in loss­

less data compression in terms of actual data compression achieved, however, it does so

with great complexity. Arithmetic encoding inherits some of its complexity from Shannon-

Fano-Elias encoding in Sec. 2.7 from which it is lossy based. The majority of the complex­

ity comes from the models required by Arithmetic encoding to reach optimal compression

and the algorithms computational operations on m number of characters. The encoding

of all m characters instead of n symbols and the use of models by Arithmetic encoding is

85

a departure from the previous algorithms covered in Chapter 2. This poses unique chal­

lenges when comparing the proposed methods to Arithmetic encoding that are still being

researched. The implementation and example of Arithmetic encoding is covered in Ap­

pendix A. Only the analysis of the pros and cons of the method are covered here as the

focus is to analyze the effect of the value of d in H (x) + d.

5.5.3 Arithmetic Code Analysis

Arithmetic encoding is significantly different from the data compression algorithms intro­

duced in Chapter 2. These differences allow Arithmetic encoding to address the H(x) +d.

The first difference is the lack of a one-to-one relationship between the symbol and the

code word. Arithmetic encoding encodes one character (single instance of symbol) at a

time and assigns the character a decimal code word. This means that each character in

the data set will be assigned a different code, unlike the previous methods that assign each

symbol the same code. The intermediate codes are generally not used, but are of interest

for analysis. The final result is a single decimal number to represent the entire encoding of

the document.

The lack of a one-to-one encoding allows the encoding process to remain in decimal and

not convert to binary until the operation is completed. In Sec. 2.7, Shannon-Fano-Elias did

most of the calculations in decimal and the use of binary was only to generate the code word

for the symbol. Arithmetic encoding stays entirely in decimal and the conversion is not

necessary in theory. The use of decimal over binary does have an advantage as Arithmetic

encoding is not required to deal with full bit values except for the final generation of the

code word. This allows an easier manipulation of the line between certainty and entropy in

addressing the H(x)+d. However, since we are dealing with modern computers based on

binary logic the decimal numbers themselves are represented in binary.

The third difference for Arithmetic encoding is the ability to change the base used with

the same algorithm. As with JAKE the ability to change the base in which the algorithm

is operating allows for Arithmetic encoding to pre-compress the data using the symbol

to entropy relationship discussed in Sec. 4.7. This ability substantially reduces the work

applied in the actual compression. It also allows for flexibility of the algorithm to adapt to

changing environments and the ability to address the d in H(x) + d.

Lastly, Arithmetic encoding is heavily dependent on the model representing the data.

The model supplies the certainty required to get the desired results close to the ideal. The

algorithms in Chapter 2 acquire certainty from the sort and the binary system although the

certainty may only be partially modeled. Arithmetic encoding does not require a sort or

86

the encoding table to have predetermined knowledge which makes the statistical model

of utmost importance when making decisions on mapping entropy to the certainty of the

system. An example is given in Appendix A to show the actions required for Arithmetic

encoding.

In the given example, Arithmetic encoding did reach the optimal encoding as the model

corresponded directly to the data. We can see from the example that Arithmetic encoding is

capable of reaching close to L(x) « HM(X), where HM{X) is the limit defined by Shannon's

theory of entropy given model M. In other examples it is also possible to show L(x) =

HM{X)- However, if the model M does not relate to the data, then results may not be

optimal. In [6] they analyze the efficiency and determine the average length produced

by Arithmetic encoding converges on the optimal with a large message sequence given

the correct model. There are several models including Order-n Markov models, adaptive

models and other stochastic modeling techniques. This indicates that the model select is of

utmost importance at achieving H(x) + d.

In [6] the discussion continues to make a comparison to Huffman encoding. The advan­

tage Arithmetic encoding has over Huffman encoding is the ability to represent a symbols

with a fraction rather then full bits as is required by Huffman encoding. Arithmetic code is

better at handling symbol sets that have large percentage values. Huffman encoding using

binary starts to approach the +1 limitation in these conditions as demonstrated in Sec. 5.4.

The comparison between Huffman and Arithmetic encoding also shows the relationship to

H(x) + d. The farther Huffman encoding is from the larger entropy values in base 2 the

better the overall results. Arithmetic encoding in decimal has the opposite effect as the

key advantage is the granularity of the decimal system at the top of the space as shown by

MaCE.

Direct comparison between JAKE and Arithmetic encoding is left for future work as

the objective was not to compete with Arithmetic encoding. The insight into Arithmetic

encoding is important to demonstrate the power of the base on compression. Further work

will need to be accomplished in order to define additional relationships and enhancements

to either JAKE or Arithmetic encoding.

5.6 Symmetry of Encoding and Decoding

An encoding table is simply a table mapping a symbol to a code word. In order to actually

encode the message to the code words and decode the message back we must utilize this

reference. This issue needs to be addressed for completeness. Typically, for static data the

information is compressed once and decompressed many times which usually means the

87

algorithms are willing to sacrifice compression time for decompression time. Due to this

difference in this type of data compression usage an asymmetric algorithm is tolerated in

one direction. For real time data symmetry in encoding and decoding is more desirable as

the data is usually sent and discarded once decoded.

Most encoding techniques use a coding table as do the methods in this dissertation.

To create a symmetric set of methods to encode and decode the symbols for the method

present a virtual tree structure is implemented on both sides of the table. To encode the

symbol from the original message to the encoded message the symbol space is recursively

divided until the symbol is reach in the table index. The index is subsequently used to

reference the code word which replaces the symbol in the encoded message. This approach

is a log2(n) operation. No space is required for the tree as it is virtually represented in the

recursive division of the table.

To decode the code word to the symbol we use the decimal representation of the binary

word. The decimal number allows for easy comparisons based on the decimal value of the

code word and the decimal values dividing the range space. Since the message is encoded

using a decimal to binary length conversion, then each of the code words also represents

a unique decimal number. This allows for a similar approach for decoding the message as

encoding the message. We know the encoded symbols are divided across the range 0 to

1 so we use the decimal representation to split the code words until the table is reached.

Again, using the index of the value reached to replace the binary string with the symbol at

the index. This again will take log2(«) time to decode the message. No space is required

for the tree as it has a virtual representation in the recursive division of the table.

5.7 Summary

This chapter introduced three new methods for data compression. SLM uses MaCE to

create a less computationally intensive method to create Shannon-Fano-Elias code. The

basis of this method is the reduction of the entropy equation to contain only the probability

of the symbol Pi. This allows for a direct comparison of P-t to the certainty denned by the

system Pc to map the symbol to the appropriate length. The equality of the comparison

model to Shannon-Fano-Elias is verified visually using MaCE.

The concept of equilibrium is also utilized in order to enhance the computational speed

of SLM. We note that equilibrium represents the most comparisons possible for any level

in the symbol space. We also note that the negative growth of the comparisons above

equilibrium is steep compared to the negative growth below equilibrium. The concept of

the split-tree, as defined by the binary values of 0 and 1, is also explored to further explain

88

the difference in the growth rates above and below equilibrium. The knowledge of the

growth rates and the split-tree allows for a modification of the IF/ELSE comparison logic

to enhance efficiency of SLM. The pros and cons of SLM are examined in comparison to

Shannon-Fano-Elias and in terms of usage.

SLMN uses MaCE to construct a method with an integrated sort to reach H(x) + l in

0(n) total time. The concept of midpoints is defined which gives the ability to directly

compare values to a structure denning certainty. The midpoint goes to a single point of

comparison to determine placement of the symbol in the structure. By placing the values

closer to the theoretical optimal the difference between theoretical entropy and the actual

entropy is reduced to H(x) + 1. The pros and cons of SLMN are also explored.

We also explain the +1 requirement to the entropy algorithms developed in binary.

From this knowledge it is possible to define new algorithms that can decrease the entropy

by defining compression systems that closely emulate the data characteristics. SLM and

SLMN are extended in JAKE to change the base used in order to address the +1 in H(x) + 1.

Arithmetic encoding was examined as the method has the ability to use multiple bases to

increase the compression efficiency. In the final sections we explain the concept of sym­

metry of encoding and decoding information and explain a method to encode and decode

in log2(«) time.Chapter 6 covers the experimental results of SLM in terms of CPU cycles

and SLMN in terms of entropy and compression.

89
Chapter 6

EXPERIMENTAL RESULTS OF SPATIAL METHODS

6.1 Results of SLM and SLMN

Chapter 5 introduces two methods which utilize the knowledge gained from MaCE. This

chapter analyzes the results of SLM in comparison to Shannon-Fano-Elias in terms of CPU

cycles and shows the computational advantage to the comparison model. We also compare

SLMN to Shannon-Fano-Elias and the theoretical ideal in terms of compression in order to

demonstrate the versatility of the mapping methods.

6.2 Test Environment

SLM and SLMN are evaluated on an Intel Core 2 Duo @ 2.00 Ghz and 4 GB RAM. The

operating system for the machine is Windows Vista 64 bit and the code was compiled us­

ing Bloodshed Dev-C++ Version 4.9.9.2. The methods processing speed was measured by

using the kernel function QueryPerf ormanceCounterO [33]. The dynamic-link library

(dll) function is included in Windows.h header file and is used to query the performance-

counter for the current CPU counter. The counter increments at each processor cycle and a

subsequent call to QueryPerformanceCounterO and a calculation of the difference, af­

ter the target computation is concluded, reveals the number of CPU cycles required for the

computation. One issue with this method is the inability to measure the effect of interrupts

caused by other processes on the machine or the operating system during the time of exe­

cution. In order to mitigate the effects of the interrupts only the best of 100 repeated cycles

of the algorithm with the same data set are used for analysis. The H equation for entropy

is utilized to measure the compression and a calculation using the data percentage and the

number of bits in the encoding table is used for the size comparison. The compression ratio

is calculated based on the original file size and the compressed file size.

The test data consists of a static 256 number of symbols representing an 8 bit input due

to the current usage for prefix-free algorithms. We can assume the number of characters is

static as the current compression model is a two step process using a fixed length compres­

sion scheme followed by a variable length prefix-free scheme. The ability to optimize the

prefix-free algorithm to this process is possible since the number is static and the ability to

optimize is a notable trait for the methods that have the ability.

90
22000

20000

18000

16000

w
0)

'o 14000

o

£>
O, 12000
U

10000

8000

6000
0 10 20 30 40 50 60 70 80 90 100

I t e r a t i ons
Figure 6.1: Total number of CPU cycles for SLM and Shannon-Fano-Elias. The dashed
line represent SLM and the solid line represents SFE.

6.3 CPU Time Comparison between SLM and Shannon-Fano-Elias

In Sec. 5.2 SLM more efficiently creates Shannon-Fano-Elias code. The method uses the

concepts of MaCE to reduce the number of computations required by the logarithm and

ce i l i ng functions utilized by the Shannon-Fano-Elias algorithm. The method also uses

the concept of equilibrium and the split tree to prioritize the order of operations to the levels

with the most possible comparisons. The combination of the computational reduction and

priority given to the levels with the largest number of comparisons shows a significant

improvement in processing time.

Figures 6.1-6.3 graph the results of SLM and Shannon-Fano-Elias in terms of CPU

processing time in CPU cycles. Figures 6.8-6.13 separate the composite graphs by the

individual methods and place the graphs on the same page for quick analysis. The cycle

comparison focuses on the difference between the logarithm and ce i l ing functions used

by Shannon-Fano-Elias with the comparison model used by SLM by isolating the time

samples to these segments of the source code. The focus is possible as SLM only differs

from Shannon-Fano-Elias for those operations and the rest of the code is identical between

the two methods. The logarithm function for Shannon-Fano-Elias is a software version

used to compare like technologies without caching and other tricks to increase the speed of

SFE -
SLM -

i r

l i _l l_

91

the logarithm function.

The data set consists of 256 symbols randomly assigned count values and the test in­

cluded a total of 100 random data sets for each iteration. The statistics were taken over

100 iterations of the same data set to mitigate the effects of the interrupts and the results

published are the lowest value of the statistics: minimum, maximum and total CPU cycles.

Figures 6.1-6.3 display the comparisons between the two methods in terms of total CPU

cycles, minimum number of CPU cycles required by a single operation and the maximum

number of CPU cycles required by a single operation.

Figure 6.1 represents the total number CPU cycles taken for each of the 100 iterations.

The total is the summation of the best result for each of the 100 iterations of the same

random generated symbol to symbol count relationship. The summation includes system

interrupts and it notes that the best total may not correspond to the same data set where the

best minimum and maximum CPU cycles are acquired. A direct correlation between the

average CPU cycles and the totals cannot be ascertained due to the inability to make the

relationship between the data elements in each metric. The total CPU cycles for SLM is

about one third the number of CPU cycles for Shannon-Fano-Elias which is a considerable

improvement. The results for both are relatively flat at this resolution, so both of the results

will be analyzed in more detail in their separate graphs.

Figures 6.8-6.9 displays separate graphs for total CPU cycles of the two methods. The

separation of the totals into two graphs shows the volatility of the methods using the ran­

dom data sets. Figure 6.8 shows the CPU cycles range from approximately 7050 — 7325 for

SLM, while Fig. 6.9 shows Shannon-Fano-Elias with a range from approximately 20325 —

20575 CPU cycles. The range of the total relates to approximately a 300 cycle range be­

tween data sets for SLM, while Shannon-Fano-Elias is more constrained at approximately

250 for the same data sets. We also observe that many of the fluctuations in the number

cycles occur simultaneously between both methods, although as stated the totals may not

have a one-to-one correspondence due to the sampling method. The number of CPU cycles

used by SLM is about a third the number used by Shannon-Fano-Elias even with the greater

volatility for SLM.

Figure 6.2 represents the minimum number of CPU cycles required to encode a sin­

gle symbol using SLM and Shannon-Fano-Elias. Although the minimum is an interesting

statistic, it cannot represent the encoding process as a whole as both of the algorithms have

a variability dependent on the symbol percentage. The speed of Shannon-Fano-Elias is

primarily dependent on the number of digits and the numerical size of the mantissa for

the logarithm and ce i l ing functions the algorithm utilizes. SLM is primarily dependent

the number of comparisons required to reach a resolution of level by the IF/ELSE block.

w
o
u
u

(X,

92

70

60

50

40

30

on

r i i i

V y y v v A A y v V - ^

-

-

'"\._.'v*-. A A , - \ ._.yV~\._,y_-'vV._
i i ' i i

1

N/^

l

1

"¥

- - i i i
SFE
SLM

-y^^vA/̂

i i i

V .

-

-

-

-

-•'

10 20 30 40 50 60 70 80 90 100

I t e r a t i ons

Figure 6.2: Minimum number of CPU cycles for SLM and Shannon-Fano-Elias.

Similar optimizations for both algorithms are possible to achieve results closer to the mini­

mum and with these optimizations the minimum for SLM will require less comparisons on

equivalent data sets then the logarithm function used by Shannon-Fano-Elias resulting in a

better overall time. The results for both are flat at this resolution, so both the results will be

analyzed in more detail in their separate graphs.

Figures 6.10-6.11 display separate graphs for minimum CPU cycles of the two meth­

ods. Figure 6.10 shows a volatility of 2 cycles with a range from 21 — 23 CPU cycles for

SLM. Figure 6.11 shows a volatility of 5 cycles with a range from 68 — 73 CPU cycles

for Shannon-Fano-Elias. These results concur with the total CPU usage as the minimum

for SLM is approximately a third of the cycles taken Shannon-Fano-Elias. A minimum of

21 — 23 CPU cycles is a metric to aspire to in future developments.

Figure 6.3 represents the minimum of the maximum CPU cycles required to encode a

single symbol using SLM and Shannon-Fano-Elias algorithm. The minimum of the max­

imums was taken in order to reduce the effect of interrupts as the actual maximum of all

iterations may contain one or more system interrupts within the time slice. The technique

appears to work well as the results are relatively flat as with the minimum and totals. Their

are some spikes within the maximums which maybe the result of smaller interrupts, but we

expect more volatility in the maximums than the minimums due to the variability in the

symbol percentage. The results for both methods in this case are not as flat as the previ-

93

ous graphs. However, for completeness the results will be analyzed in more detail in their

separate graphs.

Figures 6.12-6.13 display separate graphs for minimum of the maximum CPU cycles

of the two methods. Figure 6.12 shows a volatility of 60 cycles with a range from 35 — 95

CPU cycles for SLM and Fig. 6.13 shows a volatility of 50 cycles with a range from 175 —

225 CPU cycles for Shannon-Fano-Elias. The maximum results for Shannon-Fano-Elias

correspond directly with the totals as the range is approximately one-hundredth of the total

cycles used by Shannon-Fano-Elias. The results for SLM are significantly less then the

total, which may indicate that this method is more susceptible to interrupts. More study

will be required to determine the actual cause of the difference. The comparison shows

SLM with the advantage compared to Shannon-Fano-Elias and the further study would

only show if the efficiency can be further increased for SLM.

Figures 6.12-6.13 have another interesting feature to note. The graph for SLM in

Fig. 6.12 is fairly flat, while the graph for Shannon-Fano-Elias in Fig. 6.13 has a oscil­

lation. The oscillation of Shannon-Fano-Elias is in response to the length and numerical

size of the mantissa being the dominate factor in the logarithm function. The mean of the

oscillation represents the median variation of the mantissa. SLM is not dependent on the

specifics of the value, only the value itself to make the IF/ELSE comparisons. The number

of comparisons will be relatively flat in most cases.

All the comparison graphs show the advantage SLM has over Shannon-Fano-Elias and

all three show that SLM takes approximately a third of the time to reach the same point

dictated by the algorithm.

In addition to the random data test, the two extremes of the data distributions are also

tested represented by the best case and worst case for SLM. The best case occurs when all

values are equal by design explained in Sec. 5.2.6 and the worst case occurs when one value

dominates the distribution and the remaining values are placed on the lowest level possible.

The best case was tested by assigning all 256 symbols the same count value and the same

methodology as the random test was applied to determine the best statistics. The best case

for SLM requires 6819 total CPU cycles, a minimum of 22 CPU cycles and a maximum

of 42 CPU cycles for one comparison. The best case for Shannon-Fano-Elias requires a

total of 12940 CPU cycles with a minimum of 45 and a maximum of 170 CPU cycles. The

best case for SLM requires half as much time as Shannon-Fano-Elias to complete the table

creation for the same data set. The advantage over Shannon-Fano-Elias was diminished in

this test case in comparison to the times of the random data, however, the number of CPU

cycles is the best of all the testing.

The worst case for SLM was tested by assigning one symbol a count of 16384 and all

94

240

220

200

180

160
CO
<D 140
rH
U
O* 120

£>

O 10°

80

60

40

20

0 10 20 30 40 50 60 70 80 90 100

I t e r a t i ons

Figure 6.3: Maximum number of CPU cycles for SLM and Shannon-Fano-Elias.

other symbols the count of 2, which results in the first symbol being located in the second

level and the rest located at the bottom of the space in the 31st level. The CPU cycles

required in the worst case had a total of 12718 CPU cycles with a minimum of 39 and a

maximum of 71 CPU cycles. In contrast, Shannon-Fano-Elias requires a total of 20869

CPU cycles with a minimum of 75 and a maximum of 196 CPU cycles. The worst case for

SLM required approximately 60% of time requires by Shannon-Fano-Elias to complete the

table creation for the same data set.

In summary, the direct comparisons of the range for the total number of CPU cycles for

Shannon-Fano-Elias was between 20350 and 20575 to complete each of the 100 random

generate sample data sets, while SLM's range was between 7050 and 7550 CPU cycles. On

average SLM requires one third of the CPU cycles required by Shannon-Fano-Elias. The

minimum number of CPU cycles required for one length procedure containing the loga­

rithm and ce i l ing functions for Shannon-Fano-Elias was between 68 to 73 CPU cycles,

while SLM required 21 to 23 CPU cycles to complete a length procedure using the IF/ELSE

comparisons. The ratio of the two minimums corresponds directly to the ratio of the method

totals for both algorithms. Shannon-Fano-Elias requires a maximum of 175 to 230 CPU

cycles and SLM required 40 to 95 CPU cycles. Although the results for Shannon-Fano-

Elias correspond directly to the total and the minimums, the ratio did not hold for SLM.

The range of the maximum would seem to indicate that the method is more susceptible

' i ;

- V V J U I . A A . / \ V y \ , ' -
A
.'i .-.

V.' 1/ \ M .' \
.-' * - • ' V

95

to interrupts as that is currently the only known cause of the disparity. Further study is

required to determine the direct cause, but the result would only increase the efficiency of

SLM over Shannon-Fano-Elias.

6.4 Entropy Comparison between SLMN, SFE, and Theoretical Ideal

In Sec. 5.3 SLMN was introduced to create a more efficient code than Shannon-Fano-Elias

code in terms of space. The method uses the concepts of MaCE to reduce the number

of computations required by the sort function. A traditional comparison sort requires

O(nlogn) operations while the bucket sort using MaCE will require 0(n) operations. The

sort is integrated into the algorithm based on the concept of midpoints which is also used to

determine the final position in the space. The difference from the actual symbol percentage

and the certainty percentage is used to make future decisions on placement of subsequent

symbols. The method uses the concept of equilibrium and the split tree to prioritize the

comparison to the levels with the most possible comparisons. The combination of the

reduction and the priority given to the larger levels show a significant improvement in pro­

cessing time in SLM. The replacement of the Shannon-Fano-Elias fitting function with the

midpoint comparison model reduces the code to H(x) + 1.

Figure 6.4 displays the results for Shannon-Fano-Elias, SLMN and the theoretical ideal

in terms of entropy. The graph shows that the difference between the theoretical ideal and

the results for SLMN stay with the +1 requirement. The data was based on a static 256

symbols count with varying distributions in symbols count between each iteration. The

analysis of the peaks and valleys of the three results shows the modeling is pretty accurate

over the span, but there are conditions when the one model may diverge slightly repre­

senting subtle differences in the results. The minimum entropy difference for Shannon-

Fano-Elias from the theoretical ideal is 1.64 bit spaces per symbol while the minimum

entropy difference for SLMN from the theoretical ideal is 0.11 bit spaces per symbol. The

maximum entropy difference for Shannon-Fano-Elias from the theoretical ideal is 1.53 bit

spaces per symbol while the minimum entropy difference for SLMN from the theoretical

ideal is 0.26 bit spaces per symbol. A markable improvement in terms of entropy were

both the minimum and the maximum difference between SLMN and Shannon-Fano-Elias

is over 1.25 bit spaces per symbol.

Figure 6.4 also shows another interesting result as both the theoretical ideal and SLMN

represent compression of the data set while the entropy results for Shannon-Fano-Elias

actually shows the opposite. The number of symbols is equal to 256 and if all values were

encoded in ASCII text the entropy would be equal to 8 bit spaces per symbol. The results

96
10

9.5

^ 9

>>
Q*
O
U 8.5
-P
0
W

8

7.5
0 10 20 30 40 50 60 70 80 90 100

Iterations

Figure 6.4: Entropy Comparison between SLMN, Shannon-Fano-Elias and the theoretical
ideal.

in Fig. 6.4 show that Shannon-Fano-Elias produces between 9.12 and 9.36 bit spaces per

symbol which means that throughout the span of 100 random data sets Shannon-Fano-Elias

added « 1.12 bits per symbol and produces a larger file then the original data file that the

algorithm was suppose to compress. This scenario will occur because of the fitting function

that always increases the space in order to avoid the conflicts as explained in Sec. 2.7.3. The

problem with the fitting function is also displayed when the file to be compression has all

equally weighted values. For example, with 256 symbols of all equal counts Shannon-

Fano-Elias will produce an encoding with 9 bit spaces per symbol of entropy while both

SLMN and the theoretical ideal will produce and encoding of 8 bit spaces per symbol

and the original file contained 8 bit ASCII. This shows that Shannon-Fano-Elias has the

potential to actually increase the file size it is trying to compress.

The condition where all the symbol counts are equal exhibits one of the extreme con­

ditions in the possible data distribution. The other extreme is when all the values are ap­

proximately one half of the previous symbols count. In order to test this condition, on a

32 bit system, the symbol count was limited to 30 ranging in value from 1073741824 to 2.

The results show that SLMN and the theoretical ideal both require 2 bit spaces per symbol,

while Shannon-Fano-Elias requires 3 bit spaces per symbol. The end result in both the

extreme conditions is Shannon-Fano-Elias requiring extra bits per symbol to represent the

97

same data where SLMN would produce optimal compression in both extremes.

The final test for SLMN is designed to show how the algorithm handles increasing

entropy from the base case where one symbol count dominates the distributions and the

other values increase over time. In order to accomplish this task, the test used 256 symbols

with a static total count of 65536 and the distribution starts with one symbol having a count

of 65281 and the remaining 255 symbols having a count of 1. The increase in entropy

from this condition is accomplished by recursively dividing the sum of the counts of the

adjacent indexes by 2 until the symbol count to be split is equal to 1, at which point the

process is started again from the starting index. The remainder of 1 for the odd value

counts is added to the leading index value in the sum to maintained a sorted order. For

example, with the initial distribution of (65281,1,1,1,...), the first division would result in

(32641,32641,1,1,...) and the second (32641,16321,16321,1,...). For the first iteration

the process restarts when the following is reached (... ,5,3,2,1,1,...).

The process was applied with 50000 iterations and the results are shown in for entropy

in Fig. 6.6 and in file size Fig. 6.7. Figure 6.6 shows the increase in entropy as the symbol

count is distributed more evenly with each iteration. The minimum entropy difference from

the theoretical ideal for SLMN from the ideal is 0.00237 bit spaces per symbol and for

Shannon-Fano-Elias the minimum is 1.25 bit spaces per symbol. The maximum entropy

difference from the theoretical ideal for SLMN is 0.963 bit spaces per symbol and for

Shannon-Fano-Elias the maximum is 1.990 bit spaces per symbol. The condition for the

maximum difference in entropy from the theoretical ideal occurred for both methods on the

very first iteration when one symbols count dominated the distribution and the minimums

occurred at various points in the distribution. A cycle is noted in the graph of SLMN of

increasing wavelength as the number of iterations increase.

Figure 6.7 shows the increase in file size as entropy increases for both Shannon-Fano-

Elias and SLMN along with the static size of the file. The file size is 65536 x 8 = 524288,

which is displayed as the original file size in the figure. The file sizes for both Shannon-

Fano-Elias and SLMN are both calculated using the percentage representing the symbol P,,

the total number of symbols representing the file n, the number of bits b in the encoding

table. Although this may not be 100% accurate due to rounding error the end result will

be comparable to a live data set. Using this data we can see the relationship between

entropy and the file size by comparing Fig. 6.6 and Fig. 6.7. They follow the same general

plot which concures with the explanation of entropy as it represents the uncertainty of the

symbols P, mapped onto the certainty represented by a Pc times bj and the sum represents

the final file size. The failure of the mappings and the system to model entropy can also

be observered in Fig. 6.6 as the difference between the theoretical ideal and the methods

98
10

9.5

-—. 9

&5
>̂ a, o
U 8.5
•P a w

8

7.5
0 10 20 30 40 50 60 70 80 90 100

I t e r a t i ons
Figure 6.5: Entropy Comparison between SLMN, SFE and the theoretical ideal for SLMN
using only the direct difference used as an offset.

results.

The compression ratio for the two methods was calculated using the original file size

F0 = 524288 and the calculated file size based on the encoding. The test data starts with

a single symbol with the count of 65281 and the other 255 symbol counts equal to 1 and

total count symbol of 65536. The size F0 is divided by each of the compressed files sizes

for SLMN FSLMN = 67576 and Shannon-Fano-Elias F$FE = 134897 to determine the ratios

r. The ratios acquired by the calculations are: r$LMN = Fo/FSLMN ~ 7.7585 and r$FE =

Fo/FSFE^ 3.8866.

The file size concurs with the theory of entropy where the starting condition represented

approximate 0.0679 bit per symbol space for the theoretical ideal and the actual obtained

by SLMN is 1.03113 and the file size is approximately a one-to-one relationship between

symbols and entropy. If we multiply the original number of symbols n x L(x) = 65536 x

1.03113 = 67576 negating floating point errors. In short, entropy is defining how many bits

on average it takes to represent a symbol because of the duality of the meaning of the length

between the root and the symbols representing certainty and uncertainty. Theoretically,

we should be able to reach the n x H(x) = 65536 x 0.0679 = 4450 negating floating point

errors. The difference shows the failure of base 2 to represent the symbols exact percentage

as Pc ^ Pi in the mapping.

SFE
SLMN
IDEAL

* : A / ^ ^ ' ^ ^ ^ ^ -^ f.\.i.--.\ i

i i _i i_

99

Although this graph is far from exhaustive, there is nothing to indicate a failure for

SLMN to adhere to the H(x) + 1 specification. The sequential test creates a continual cycle

with an elongating wavelength which suggests that the method would not deviate sharply

and would come close to level with the ideal at some point. We can be fairly confident that

this point is equilibrium and as the test of this condition resulted in the entropy for SLMN

and the theoretical ideal to be exactly equal. The bounds of the distribution of equilibrium

and the slope equate to the ideal and the 100 random values close to the equilibrium also

concur with SLMN remaining in H(x) + 1. SLMN does a good job at maintaining the

relationship between the theoretical and the actual results which means there maybe better

way to model the difference. It is noted that the inability of the current implementation to

model the percentage past beyond 32 bits does have an effect on the results. The random

example the entropy was reduced to 0.02 — 0.08 from the 0.11 — 0.26 in the current model

by only passing the average difference to the following symbols in the list. The results

are shown in Fig. 6.5 and the difference is evident when comparing the figure to Fig. 6.4.

The 32 bit limit was exceeded in complete tests used to test the unmodified version of

SLMN. The limit caused errors to occur during testing which keeps the complete test results

from being published and further testing and development is required to determine the best

course of action.

Another possibility of improvement to the method is to change the method to only

average the negative difference after equilibrium is reached. This change may result in

lower entropy values as the larger percentage. Those above equilibrium would receive a

better location in terms of entropy and the lower percentages values would simply receive

a lower level as a result. The precedence given to the larger values in terms of space used

in the system goes with the assumption that the larger values would have the greatest effect

on the difference between the actual certainty of the system and the symbol percentage.

Further testing is required to determine the best course of actions in this regard. Other

improvements to increase compression will also be possible with time and there is room

for improvement in the terms of speed of the algorithm as the method was implemented

with ease of understanding and the desire to produce an encoding with L(x) < H(x) + 1,

which was demonstrated in the results.

6.5 Summary of Results for SLM and SLMN

The results from the experimental results of SLM and SLMN show a significant improve­

ment over Shannon-Fano-Elias in terms of CPU cycles and file size. The minimum, max­

imum and total CPU cycles were graphed and examined in detail for SLM and the experi-

100

ments included a best and worst case as well as a random and sequential data set analysis.

The analysis shows a significant improvement in all three categories by SLM in compari­

son to Shannon-Fano-Elias with a software implementation of the logarithm function. The

results in all categories shows SLM uses less then 1/2 the number of CPU cycles required

by SLM and in most cases examined SLM used 1/3 the number of CPU cycles.

SLMN is examined in comparison to Shannon-Fano-Elias and the theoretical ideal in

terms of entropy, file size and compression ratio. The minimum, maximum and total en­

tropy values were graphed and examined in detail. It is noted that Shannon-Fano-Elias has

the possibility to actually create a larger file size if the compression is within one bit of the

original data representation due to the fitting functions. SLMN does not have this problem

as the limits for both the upper and lower bounds were tested using the best and worst

case data sets. It was shown through the experiments that SLMN stays within the limit of

H(x) + l and through random and sequential analysis there is no indication that the method

will deviate beyond this limit. We also observe the +1 requirement in the initial condition

of the sequential test and compare this to the theoretical ideal throughout the testing. In

addition to the results, we used graphs to display the improvement related to the failure of

the 32 bit system to model the data in the sequential data set. The systems limiting factor

was the inability to have a range of values that exceeded 2~31. The inability required the

code tested to have additional specification to avoid this situation which reduces the com­

pression efficiency of the model. However, the random values do not exhibit this problem

as they stayed within the system requirement. The results show a substantial improvement

in data compression and the solution to the 32 bit limitation is left for future work.

a. o
-p

w

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

I t e r a t i ons

Figure 6.6: Entropy comparison between SLMN and Shannon-Fano-Elias.

w
-p
•H m
a
•H
0)
N
•H
CO

Ui

600000

500000

400000 h

300000 h

200000 h

100000 h

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

I t e r a t i o n s

Figure 6.7: File size comparison between SLMN and Shannon-Fano-Elias.

102

w
0)

r-i
U
>>

o
P-

o

7350

7300

7250

7200

7150

7100

7050

7000

'1 !

SLM

w
o

r-{
o
>>
o

a.
o

20600

20550

20500

20450 H

20400

20350

20300

t i
l| i '
Ii 1
'i i
1 i i
1 i 1
1 i 1
i i 1

i i
i I
i !
i }
i j
if
if
i

t
' i i

i /
ii
ii

<
ii

1
i

i

.4

t

>
t
ii
!i
'i
ii
i i
i i
! i
i i
i i
i i
' i
' i ,

' ' V

ii '

i i

M
i
i

i

i
i!
i!
i!
i!
)
1

r.
i!
i!
i !
: !
!
!
!

i

Ii
i
i
i '

i\

.'i '

\ i

! ii
! iV

S

!i I
!i ;i
•' i /

•' i •

i .".
i .'!
i M
i ! \

I! '
i1

i!
1

/
. (
A /

i'

i
1

i
i
i
i
i
i i
i/!
v !

i

i\

\ A

i •

10 20 30 70 80 40 50 60

I t e r a t i ons

Figure 6.8: Total Number of GPU cycles for SLM.

90 100

40 50 60

I t e r a t i ons

100

Figure 6.9: Total CPU cycles for Shannon-Fano-Elias.

w
CD

i—l
o
>>
u

CL,

o

25

24

23

22

21

20

u

SLM

i! I M u n MM
ill iUi MUM M l i
i i i i ! i i ! ! ! ! i ! i
i i i ! i i '•! ! ! i ! i i
i i i •' i i ! ! ' . ' . i ! i i
i i i ! ' I '• '• ' ' i ']

i i

1 I
i! i!
i !'•
i ! i !
i ! i !
i Vi !
i !i !
i S !

103

10 20 30 40 50 60 70 80 90

I t e r a t i ons
Figure 6.10: Minimum number of CPU cycles for SLM.

100

W
0)

rH
O
>>
u
&
a.
o

40 50 60

I t e r a t i ons
Figure 6.11: Minimum number of CPU cycles for Shannon-Fano-Elias.

100
SLM

104

90

80

w
CD

1—1
O
>>

U

i=>

u

70

60

50

40 . / \ / \ ! i
!/•'

i (

i i ,'\ A

'.A / •' l •' i ' l ii

30
10 20 30 70 80 40 50 60

I t e r a t i ons

Figure 6.12: Maximum number of CPU cycles for SLM.

90 100

230

40 50

Iterations

100

Figure 6.13: Maximum number of CPU cycles for Shannon-Fano-Elias.

105

Chapter 7

CONCLUSION

7.1 Conclusion

This dissertation represents a fundamental shift in perspective from the previous views used

to construct data compression algorithms for prefix-free, lossless compression algorithms.

The foundational algorithms of Shannon-Fano, Huffman and Shannon-Fano-Elias were ex­

amined in detail in Sees. 2.5-2.7 in order to make their views clear. The examination of

these algorithms included the relationship between the algorithms in terms of information

theory and the entropy equation, H{x) = —/3/log(P,), defined by Claude Shannon, as sum­

marized in Sees. 2.2-2.4. The relationship between entropy in general defined by S and the

transition of S to H is examined to understand the relationships between the equations. The

rudiments of the entropy equation were defined in order to further understand the relation­

ship between the equations and the space they represents. The concept of the theoretical

ideal is the part of the entropy equation that receives special attention in information the­

ory. The theoretical ideal, — log(P,), represents the information that is contained within

a message. This was proposed by Shannon as an extension of the Hartley function. The

duality of this portion of the equation is also explained with the concept of "surprisal" as

the same length function, — log(Z^), that defines the location of the information or certainty

also defines entropy (uncertainty).

In Chapter 3 the models of the data compression environment were examined to show

the relationship between the model and the algorithms. The algorithms examined were

Shannon-Fano, Huffman and Shannon-Fano-Elias encoding. The data compression envi­

ronment consists of both the certainty relationship between the code words and the ex­

istence of the specific symbol to adhere to the lossless compression property. The data

compression environment also consists of uncertainty inherent to the complete data set and

the binary environment not relating to a specific symbol. The views of environment for

each of the algorithms varies, which relates directly to the produced solution for each of

the algorithms. The relationship between the model of the environment and the entropy

equation was examined in detail in order to understand how the final algorithm accom­

plishes data compression. The analysis shows the process the algorithms use to map the

entropy of the data onto the certainty of the system and the efficiency related to the map­

ping. We show that Shannon-Fano encoding uses certainty of the binary system to divide

106

the entropy of the symbols, Huffman encoding combines the maximum entropy symbol(s)

and builds the certainty in the system in a bottom-up fashion and Shannon-Fano-Elias di­

vides the space containing both entropy and certainty by the symbol percentage to extract

length represented by the theoretical ideal. All the algorithms use a unique model of the en­

vironment and the model influences how the algorithm is designed as well as the efficiency

of the algorithm in both speed and compression efficiency.

In Chapter 4 we continue the discussion about the models of the data compression en­

vironment with more focus on the ability to represent the complete environment related to

data compression and through this analysis a list of requirements to define the space. This

list is utilized to define MaCE which consists of a two-dimensional space that is able to

map both the certainty of a system and the entropy of the data in a common visual. This

allows for a easy examination of the contents and interactions within the space. Via this

model the orientation and the two types of entropy are defined along with the certainty

of the system representing the symbols. The analysis of the two types of entropy shows

that the discontinuous certainty and the continuous uncertainty can be mapped using arith­

metic comparisons between the percentages Pc, representing the certainty of the space in

the system, and Pi, representing the uncertainty of the data.

Chapter 5 uses MaCE and entropy concepts developed in Chapter 4 to create three meth­

ods which improve the efficiency of Shannon-Fano-Elias in both CPU cycles and data

compression. The first method, SLM, is used to increase the computational efficiency by

dividing the entropy space and the equation by — log(Pc), representing certainty, to enable

the ability to use the arithmetic comparison model. Once the reduction is accomplished an

IF/ELSE model is implemented to determine the appropriate encoding of the symbol. The

efficiency of the algorithm is further enhanced using the concepts of equilibrium and the

split tree which gives the insight to prioritize the IF/ELSE block to the levels with the great­

est number of comparisons and enhance the efficiency of the methods. SLM addresses the

speed of data compression using the spatial concepts and maintains the same compression

as Shannon-Fano-Elias.

SLMN is the second method introduced in Chapter 5 and is designed to show the ability

of the spatial concepts to increase the compression of the data to less than H(x) + 1. The

midpoints are introduced in order to make this possible as they define the reference points to

use the comparison model. The defined midpoints are utilized to create a bucket sort which

decreases the sorting complexity from 0(nlog(n)) to and order 0(n). The significance of

the sort in data compression is to allow the ability to map more precisely the symbols to

the correct location without the added space required by an algorithm without a sort, such

as Shannon-Fano-Elias. The addition of the sort and the midpoints allow for a compression

107

less than//(x) + 1.

In Sec. 5.4 the meaning of the +1 in H(x) + 1 is discussed as it pertains to the inability

of the system defining the certainty percentage Pc to map the uncertainty represented by the

symbol percentage P, uniquely. The variance between Pc and P, for all symbols i results in

the inefficiency of the compression algorithm. The ability to understand the meaning of the

+1 allows for SLM and SLMN to be extended to any base with greater efficiency in both

computation complexity and compression ratio than the current algorithms. The extension

is the third method, JAKE, which adds the ability to change the base. JAKE is introduced

with the general pseudo-code and requirements of the IF/ELSE block modification. In

Sec. 5.5.2 we use Arithmetic encoding to demonstrate the power of changing the base and

using decimal in data compression. In the future we hope to use the techniques and visual­

izations developed in this work to address some of this complexity. The symmetry of the

encoding table used to encode and decode data is also discussed, since the purpose of the

encoding table is to make a mapping between the code word and the symbol. A symmetric

scenario is explained to accomplish both actions in log(n) for each symbol or code word.

Chapter 6 examines the experimental results of SLM and SLMN concepts in compari­

son to Shannon-Fano-Elias and the theoretical ideal. The comparisons between SLM and

Shannon-Fano-Elias are in terms of CPU cycles to gage the relative speed of the methods.

The minimum, maximum and total CPU cycles were graphed and examined in detail. The

experiments includes a best and worst case scenario as well as a random and sequential

data set analysis. The analysis showed a significant improvement in all three categories

by SLM in comparison to Shannon-Fano-Elias with a software implementation of the log­

arithm function. The results show SLM uses less then 1/2 the number of CPU cycles

required by Shannon-Fano-Elias and, in most cases examined, SLM used 1/3 the number

of CPU cycles.

SLMN is examined in comparison to Shannon-Fano-Elias and the theoretical ideal in

terms of entropy, file size, and compression ratio. The minimum, maximum and total

entropy values were graphed and examined in detail. It is noted that Shannon-Fano-Elias

has the possibility to actually create a larger file size if the compression is within one bit

of the original data representation due to the fitting functions. SLMN does not have this

problem as the limits for both the upper and lower bound were tested using the best and

worst case data sets. It was shown through the experiments that SLMN stays within the

limit of H(x) + I and through random and sequential analysis there is no indication that

the method will deviate beyond this limit. We also observed the +1 requirement in the

initial condition of the sequential test and compared this to the theoretical ideal through

the testing. In addition to the results, we display a graph of an improvement related to the

108

failure of the 32 bit system to model the data in the sequential data set. SLMN code tested

required an additional condition statement to avoid this situation. This addition reduced the

compression efficiency of the model. The testing of the random values does not exhibit this

problem as they stay within the 32 bit system requirement. The results show a substantial

improvement in data compression and is left for future work.

The shift in perspective provided by the analysis of the lossless compression outlined

in this dissertation opens many new avenues that have not been explored. MaCE SLM,

SLMN and JAKE represent the start of this endeavor. Through these methods it is pos­

sible to employ parallelism to increase the algorithms throughput; dynamic compression

techniques to accomplish real time compression; and the use of the modeling techniques to

increase the speed of other algorithms.

For future work, the further development of JAKE is of highest importance. The general

algorithm has the potential to increase the efficiency in both time and space over other

compression algorithms currently used in the field. The testing of the binary compression

of SLMN and SLM confirms this potential. Most of the improvement will be related to

specifics to which the method is applied, such as data distribution and preprocessing of the

data via other fixed length compression methods, such as the algorithm Lempel-Ziv-Welch

(LZW). All future work also applies to JAKE as it is an extension of SLM and SLMN.

The benefit of JAKE is the added compression inherent to the change in base reducing the

entropy and the reduction in the range of comparisons thereby making JAKE even more

efficient in higher bases.

Dynamic compression can be accomplished through a simple bubble up algorithm using

SLM and midpoints to determine the appropriate compression. Each of the levels L refers

to the pipe containing a set number of code words possible determined by base bL. The use

of a code word in one level cancels the certainty representable by the subsequent code using

Pc as the offset. The updates of the compression scheme are not tied to the data distribution

directly so and incremental update is possible. SLMN can also be employed to increase the

compression efficiency.

SLM allows for easy parallelism as the pipes representing each level can be divided

amongst processors to load share and increase the throughput. The parallelism can be

applied to either the dynamic or the static cases. The ability to use incremental update

allows for a variety of parallelization and update schemes to be utilized for the process.

Hardware implementation is another area of importance. As the ability to use a com­

parison model reduces the number of hardware resources required to accomplish data com­

pression. The ability to scale the compression to the hardware is a distinct advantage as the

resources on the hardware components are limited and often desired for more robust appli-

109

cation. Any improvement on common tasks, such as data compression, is felt throughout

the industry as this reduction frees the resource for the prime purpose of the device.

In summary, the development of SLM, SLMN and JAKE in this dissertation repre­

sents a new avenue to address the uncertainty and certainty of the information systems as

it relates to data compression. SLM and SLMN have shown that the new approach is pos­

sible and represents improvement over the current algorithm Shannon-Fano-Elias. JAKE

represents the ability to extend SLM and SLMN to larger bases in order to increase the

compression with little added complexity. The ability of JAKE to extend to other bases

without a substantial increase in complexity allows for even a greater array of solutions to

be accomplished in addition to the future work outlined.

no
Appendix A

ARITHMETIC ENCODING EXAMPLE

Arithmetic encoding is a derivative of Shannon-Fano-Elias algorithm which uses decimal

code words, modeling and single character encoding to achieve greater compression then

the algorithm in Chapter 2. The arithmetic method uses recursive segmentation of the range

space to create a single decimal number to represent the encoded message. The algorithm

does not require sorted data as it use modeling techniques to determine the appropriate

encoding of a character. Arithmetic encoding's use of modeling and the single character

encoding to a decimal number allow it to acquire better compression then those proposed

in Chapter 2. Arithmetic encoding uses the — log() function transpose the decimal number

to determine the code length in binary.

This example is based on the demonstration shown in [9]. The initial condition is a

series of symbols represented by their probabilities P,. The P, values are used to create

sub-ranges in an interval from 0— 1.0. For example, with three symbols A, B, and C

represented by their known symbol counts (A:2, 5:1, C:l). The ranges for each symbol are

(A:[0 - 0.50), B:[0.50 - 0.75), C:[0.75 - 1.00)). We refer to the individual highs and lows

for each character as hic and loc. For example, the highs are (hi^, hig, hie) a nd the l ° w s

(IOA, log, loc) for the given character set.

The process of Arithmetic encoding begins with a full entropy environment and cal­

culates the encoding range for one character c on each iteration. The encoding ranges

sub-section the environment to represent each character via several calculations. The main

calculation is the range r. The range r for each character c is calculated as the difference be­

tween the hipc and lopc, where hipc and lopc are the high and low values from the previous

iteration. The pc subscript represents previous character's encoding range. The difference

between hi and lo represents the remaining range r to represent c. The starting condition

of lo = 0 and hi =1.0 with range 1.0 representing a complete environment.

In addition to the range calculation, a combination of scaling and shifting is used to

fit the next character. Scaling is accomplished by the multiplication of the r times the

previous high and low values, hipc and lopc, in the calculation of the range for c. Shifting

is accomplished by the addition of the previous calculated low value lopc. A loop structure

is used to iterate through all n characters. The equations for the lo and the hi are in (A.l)-

I l l

(A.2) and the pseudo code for the algorithm is represented (in Algorithm 8).

lo = lopc + (rxloc), (A.l)

hi = lopC + (r x hic), (A.2)

where r = hipc — lopc.

Algorithm 8 Arithmetic encodingseudo code.

The code subtracts the range representing the character for each iteration.
to = 0 - initialize lo to zero

hi = 0 - initialize hi to one

for all Characters / to n do

r = hipC - lopc

lo = lopc+(r x loc)

hi = lopc+(r x hic)

end for

The results of the series of calculations for the given symbols is represented in Ta­

ble A. 1. Since there is only three symbols and four characters in the series it is a very short

example, but it shows the functionality of the method. The first calculation for B has a

range of 0— 1.0. The previous low lopc — 0 and the previous high hipc = 1. The high

and low for B is MB = 0.75 and log = 0.50. The range r = hipc — lopc = 1 — 0 = 1.0. By

substituting the values into (A.1)-(A.2) the range representing B is acquired. The low lo =

lopCHr x loB)= 0+(l *0.50)= 0.50 and the high hi = lopc+(r x MB)= 0+(l *0.75)= 0.75.

This is shown in the table as lo and hi on the row denoted by B. The following iterations

use the same substitution method for the remaining sequence A, C, A to finish the table.

The output number can be any number in the final range 0.59375 — 0.609375 and typ­

ically the smallest value in the range is used as this produces the shortest codeword. If we

use 0.59375 to represent the final encoding we can convert it to binary for transmission and

storage. The decimal number 0.59375 is equal to 100110, which is 6 bits long. If we en­

coded the same sequence using Huffman encoding the encode values are (A:0, B: 10, C: 11).

The series of bits to represent the message is 100110 which is 6 bits. SLMN would result

in the same code as Huffman. JAKE could also use base 3 but the conversion to binary

would result in 6 bits as well. The theoretical ideal for the value is 6 bits in binary and with

this arrangement none violate entropy theory.

112

Table A.l: Arithmetic encoding tabulated results for example

Character c

Initial

B

A

C

A

Range r

1

1

0.25

0.125

0.03125

lo

0

0.5

0.5

0.59375

0.59375

hi

1

0.75

0.625

0.625

0.609375

It is interesting to note that in this example arithmetic code could drop the zero and

actually be represented with 5 bits. This may seem to be a contradiction to entropy theory,

but it is only possible because of the relationship to truncating the trailing 0 in decimal

relates to the same number. In this case the choice is trivial to get the result as the percentage

is the first value, however, in general you would need to search the range to find this value

and the search adds to the complexity of the problem and only saves 1 bit on average.

Typically this step is not used [38].

113

Appendix B

COMPUTER RESULTS SELECT LEVEL METHOD

Table B.l: SLM tabulated results in CPU cycles. The first number is total CPU cycles T,
the second number is maximum CPU cycles TM, and the third number is minimum CPU
cycles Tm.

7240 4122 7206 37 23 7193 45 22 7238 37 23 7178 40 23

7218 39 23 7212 37 22 7240 4122 7198 40 22 7209 37 22

7339 40 23 7146 49 21 7167 37 22 7168 36 22 7192 37 23

7168 42 22 7234 37 22 7196 40 22 7189 38 23 7206 38 22

7214 39 22 7232 6122 7297 4122 7195 37 23 7245 39 22

7216 42 22 7184 45 22 7175 42 22 7250 38 23 7159 38 22

7216 39 23 7187 36 23 7143 47 23 7228 43 23 7180 4123

7232 38 22 7234 4122 7184 37 23 7224 45 23 7120 40 22

7242 39 23 7222 35 23 716137 22 7098 4122 7120 36 21

7224 60 22 7246 43 23 7226 38 23 7234 39 22 7166 36 23

7185 38 22 7187 38 22 7227 37 22 7206 39 23 7164 44 23

7206 39 22 7227 36 22 7110 48 22 7224 4123 7159 5122

7170 53 22 7245 40 22 7264 37 23 7272 43 22 7253 38 22

7135 37 23 7234 4122 7325 93 23 7218 38 23 7267 37 22

7209 37 22 7229 40 23 7124 40 22 7144 36 23 7250 42 23

7256 39 23 7260 42 22 7134 37 22 7208 37 22 7194 36 22

7119 4122 7192 40 22 7180 38 22 7224 39 21 7230 40 22

7164 37 22 724155 23 7127 38 22 7180 38 22 7239 38 22

7308 37 22 7147 37 22 7043 38 22 7228 36 22 7149 38 22

7220 43 22 7184 47 23 7208 50 23 7257 4122 714139 23

114

Table B.2: Shannon-Fano-Elias tabulated results in CPU cycles. The first number is total
CPU cycles T, the second number is maximum CPU cycles TM , and the third number is
minimum CPU cycles Tm.

1M J-m * 1M Im J- J-M lm 1 i-M im i- -*M t-m

20519 204 70 20463 199 72 20405 199 70 20429 197 71 20457 209 71

20443 187 70 20455 189 69 20495 195 70 20369 194 69 20406 203 70

20439 184 71 20476 185 69 20516 211 69 20405 203 70 20327 193 69

20485 228 69 20438 194 72 20459 204 73 20375 206 68 20383 199 71

20449 207 71 20408 195 71 20501 205 71 20408 199 71 20395 193 69

20476 200 71 20422 198 70 20413 182 71 20416 199 71 20404 183 70

20458 20172 20456 205 70 20452 209 71 20428 197 71 20426 210 70

20377 194 68 20486 209 72 20359 213 70 20469 206 71 20374 194 72

20452 186 71 20452 183 71 20427 193 69 20423 193 70 20439 197 70

20380 176 70 20438 199 72 20425 194 68 20454 198 68 20409 187 69

20446 209 71 20436 196 71 20491199 70 20379 190 70 20371202 70

20517 188 72 20396 194 70 20453 200 71 20399 195 71 20458 184 70

20418 193 70 20522 184 69 20424 198 70 20461 204 71 20567 203 71

20403 196 71 20399 194 70 20511 196 72 20483 198 71 20440 187 71

20423 209 71 20401 208 71 20488 196 71 20443 197 70 20460 198 72

20464 195 69 20407 197 70 20412 194 72 20406 207 70 20366 219 71

20430 199 70 20411 201 71 20379 212 71 20456 193 72 20430 184 70

20422 195 70 20480 195 70 20425 19170 20393 202 71 20386 197 71

20473 197 72 20404 190 70 20439 195 70 20425 174 71 20405 203 70

20457 195 71 20488 199 71 20399 207 71 20447 197 71 20361 196 71

115

Appendix C

COMPUTER RESULTS SORT LINEAR METHOD NIVELLATE

Table C.l: SLMN tabulated entropy results.

The values represent entropy for 100 cycles described in Sec. 6.4

7.86380

7.95406

7.72379

7.93388

7.91575

7.88369

7.88055

7.91116

7.88731

7.85343

7.92998

7.94562

7.92536

7.86632

7.88729

7.93600

7.89889

7.95587

7.91995

7.94534

7.91228

7.84012

7.87160

7.95314

7.97988

7.86408

7.81574

7.91459

7.94926

7.95978

7.88998

7.90460

7.93395

7.86423

7.91335

7.95269

7.95981

7.83586

7.95336

7.90986

7.96010

7.88523

7.89782

7.90271

7.83246

7.89295

7.87736

7.95915

7.95318

7.97330

7.98061

7.95326

7.96615

7.97317

7.95853

7.94587

7.95999

7.96597

7.92818

7.91055

7.93293

7.95390

7.86263

7.90293

7.85599

7.93945

7.93949

7.96027

7.87107

7.94218

7.84791

7.90124

7.88744

7.85153

7.95017

7.90334

7.94436

7.95308

7.95883

7.96819

7.95853

7.89994

7.95979

7.93608

7.92153

7.87584

7.95131

7.94478

7.83399

7.95165

7.94362

7.78498

7.94725

7.92429

7.96575

7.91873

7.95114

7.86657

7.96540

7.97296

Table C.2: Shannon-Fano-Elias tabulated entropy results.

The values represent entropy for 100 cycles described in Sec. 6.4

9.31661

9.33913

9.12432

9.30988

9.30820

9.25358

9.32333

9.34896

9.27474

9.27607

9.35761

9.32462

9.30287

9.27199

9.31628

9.34116

9.27822

9.35522

9.31840

9.33236

9.31230

9.24889

9.29598

9.30933

9.31883

9.31716

9.22697

9.32922

9.33684

9.33967

9.30634

9.32901

9.31405

9.26623

9.33563

9.29964

9.36435

9.24868

9.32838

9.33152

9.32998

9.32322

9.32599

9.29948

9.25001

9.30014

9.32437

9.30854

9.33506

9.32065

9.34462

9.30854

9.31400

9.34593

9.29973

9.32848

9.30640

9.31989

9.35405

9.33710

9.33386

9.33848

9.27849

9.33098

9.28549

9.34239

9.31097

9.34150

9.27634

9.34607

9.25050

9.31110

9.33127

9.26250

9.31741

9.29941

9.31626

9.34741

9.29530

9.36444

9.32337

9.27578

9.31808

9.34409

9.34559

9.28164

9.34137

9.33014

9.25136

9.36301

9.32823

9.20707

9.33294

9.32674

9.33961

9.35527

9.33391

9.27079

9.32959

9.31484

Table C.3: Ideal tabulated entropy results.

The values represent entropy for 100 cycles described in Sec. 6.4.

7.70450

7.75072

7.64363

7.70403

7.72554

7.69560

7.73161

7.72846

7.69699

7.68302

7.73683

7.73633

7.73162

7.71258

7.69453

7.72495

7.70796

7.74166

7.72172

7.76002

7.72666

7.71548

7.72142

7.72227

7.75914

7.69179

7.69257

7.72775

7.73171

7.75013

7.74047

7.73548

7.71884

7.73272

7.71522

7.72232

7.74454

7.70214

7.73558

7.71760

7.72152

7.71590

7.70634

7.71891

7.71685

7.71088

7.73141

7.72516

7.72800

7.74244

7.77255

7.71000

7.74430

7.74485

7.73286

7.74031

7.73466

7.74302

7.73221

7.72687

7.72579

7.73052

7.71233

7.74344

7.69385

7.70434

7.72407

7.73276

7.69518

7.75776

7.68691

7.72673

7.73035

7.70813

7.71821

7.72577

7.72551

7.75353

7.69653

7.76044

7.74072

7.69676

7.72038

7.72531

7.73482

7.70080

7.73583

7.73316

7.69593

7.76634

7.70810

7.67341

7.73441

7.71932

7.74775

7.73745

7.72805

7.70031

7.72591

7.75793

BIBLIOGRAPHY
118

[1] J. Abrahams. Code and parse trees for lossless source encoding. Compression and Complexity
of Sequences 1997, pages 145-171, 1997.

[2] N. Abramson. Information Theory and Coding. McGraw-Hill, New York, New York, 1963.

[3] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data compression scheme.
Commun. ACM, 29(4):320-330, 1986.

[4] E. Bergman and S. Klein. Fast decoding of prefix encoded texts. Data Compression Confer­
ence, pages 143-152, 2005.

[5] M. Biskup. Guaranteed synchronization of Huffman codes. Data Compression Conference,
pages 462-471, 2008.

[6] E. Bodden, M. Clasen, and J. Kneis. Arithmetic coding revealed - a guided tour from theory
to praxis, 2001.

[7] A. Broder and M. Mitzenmacher. Pattern-based compression of text images. Data Compres­
sion Conference, page 300, 1996.

[8] M. Buro. On the maximum length of Huffman codes. Information Processing Letters,
45(5):219-223, 1993.

[9] A. Campos. Arithmetic coding @http://www.arturocampos.com/ac_arithmetic.html. World
Wide Web electronic publication, July 1999.

[10] R. Capocelli and A. De Santis. Tight upper bounds on the redundancy of Huffman codes.
IEEE Trans. Inf. Theory, 5:1084-1091, 1989.

[11] C. Chen, Y. Pai, and S. Ruan. Low power Huffman coding for high performance data trans­
mission. 2006 International Conference on Hybrid Information Technology, 1:71-77, 2006.

[12] S. Chen and J. Reif. Fast pattern matching for entropy bounded text. Data Compression
Conference, page 282, 1995.

[13] K. Cheung and A. Kiely. An efficient variable length coding scheme for an iid source. Data
Compression Conference, page 182, 1995.

[14] B. Ergude, L. Weisheng, F. Dongrui, and M. Xiaoyu. A study and implementation of the
Huffman algorithm based on condensed Huffman table. 2008 International Conference on
Computer Science and Software Engineering, 20:42^-5, 2008.

[15] R.M. Fano. Transmission of Information. M.I.T. Press, Cambridge, Mass, 1949.

[16] R. Franceschini and A. Mukherjee. Data compression using encrypted text. Third Interna­
tional Forum on Research and Technology Advances in Digital Libraries, page 130, 1996.

[17] R. Gallager. Variations on a theme by Huffman. IEEE Trans. Inform. Theory, 24(6):668-674,
1978.

http://www.arturocampos.com/ac_arithmetic.html

119

[L8] B. Geoghegan. Historiographic conceptualization of information: A critical survey. IEEE
Annals of the History of Computing, pages 66-81, 2008.

[19] M. Golin and H. Na. Generalizing the kraft-mcmillan inequality to restricted languages. Data
Compression Conference, pages 163-172, 2005.

[20] A. Grigoryan, S. Dursun, and E. Regentova. Lossless encoding based on redistribution of
statistics. International Conference on Information Technology: Coding and Computing,
2:620, 2004.

[21] R. Hashemian. Direct Huffman coding and decoding using the table of code-lengths. Inter­
national Conference on Information Technology: Computers and Communications, page 237,
2003.

[22] D.A. Huffman. A method for the construction of minimum-redundancy codes. PIRE,
40(9): 1098-1101, September 1952.

[23] X. Kavousianos, E. Kalligeros, and D. Nikolos. Optimal selective Huffman coding for test-
data compression. IEEE Transactions on Computers, pages 1146-1152, 2007.

[24] S. Klein and D. Shapira. Huffman coding with non-sorted frequencies. Data Compression
Conference (dec 2008), page 526, 2008.

[25] D.E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6(2): 163-180, 1985.

[26] L.G. Kraft. A device for quantizing, grouping, and coding amplitude-modulated pulses. PhD
thesis, Massachusetts Institute of Technology, 1949.

[27] L. L. Larmore and D. S. Hirschberg. A fast algorithm for optimal length-limited Huffman
codes. Journal of ACM, 37(3):464-473, 1999.

[28] L.L. Larmore and T.M. Przytycka. Constructing Huffman trees in parallel. SIAM Journal on
Computing, 24(6): 1163-1169, 1995.

[29] D.A. Lelewer and D.S. Hirschberg. Data compression. ACM Computing Surveys, 19:261-296,
1987.

[30] R.L. Milidii, E.S. Laber, and A.A. Pessoa. A work efficient parallel algorithm for constructing
Huffman codes. Data Compression Conference, 0:277', 1999.

[31] A. Moffat and J. Katajainen. In-place calculation of minimum-redundancy codes. 4th Intl.
Workshop on Algorithms and Data Structures, pages 393^-02, 1995.

[32] A. Moffat and A. Turpin. On the implementation of minimum-redundancy prefix codes. IEEE
Trans. Comm., 45(10): 1200-1207, 1997.

[33] Microsoft (MSDN). Queryperformancecounter function @http://msdn.microsoft.com/en-
us/library/ms644904(VS.85).aspx. World Wide Web electronic publication, August 2009.

[34] H. K. Reghbati. Special feature an overview of data compression techniques. Computer,
14(4):71-75, 1981.

[35] J. J. Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal Research
Development, 20:198-203, 1976.

http://msdn.microsoft.com/en-

120

[36] X. Ruan and R. Katti. Reducing the length of Shannon-Fano-Elias codes and Shannon-Fano
Codes. M1LCOM, pages 1-7, 2006.

[37] X. Ruan and R. Katti. Using an innovative coding algorithm for data encryption, submitted to
the IEEE Transactions, NA.

[38] A. Said. Introduction to arithmetic coding - theory and practice
@http://www.hpl.hp.com/techreports/2004/HPL-2004-76.pdf. World Wide Web electronic
publication, April 2004.

[39] C.E. Shannon and W. Weaver. A mathematical theory of communication. BSTJ, 27:379^123,
1948.

[40] H. Tanaka. Data structure of Huffman codes and its application to efficient encoding and
decoding. IEEE Trans. Inform Theory, 33(1): 154-156, 1987.

[41] A. Turpin and A. Moffat. Efficient approximate adaptive coding. Data Compression Confer­
ence, page 357, 1997.

[42] J. Vitter. Design and analysis of dynamic Huffman codes. J. ACM, 34(4):825-845, 1987.

[43] T. Welch. A technique for high-performance data compression. IEEE Computer, pages 8-18,
1984.

[44] I. Witten, R. Neal, J., and Cleary. Arithmetic coding for data compression. Commun. ACM,
30(6):50-540, 1987.

[45] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Computer,
23:337-342, 1977.

http://www.hpl.hp.com/techreports/2004/HPL-2004-76.pdf

	Entropy and Certainty in Lossless Data Compression
	Recommended Citation

	ProQuest Dissertations

