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ABSTRACT 

REMOTE SENSING OF HARMFUL ALGAL BLOOMS IN THE MISSISSIPPI 

SOUND AND MOBILE BAY: MODELLING AND ALGORITHM FORMATION 

by Dan Martin Holiday 

December 2009 

The incidence and severity of harmful algal blooms have increased in recent 

decades, as have the economic effects of their occurrence./The diatom Pseudo-nitzschia 

spp. caused fisheries closures in Mobile Bay during 2005 due to elevated levels of 

domoic acid. In the previous 4 years Karenia brevis counts of >5,000 cells L"1 have 

occurred in Mobile Bay and the Mississippi Sound. Population levels of this magnitude 

had previously been recorded only in 1996. Increases in human populations, urban 

sprawl, development of shoreline properties, sewage effluent and resultant changes in N-

P ratios of discharge waters, and decline in forest and marsh lands, will potentially 

increase future harmful algal bloom occurrences in the northern Gulf of Mexico. 

Due to this trend in occurrence of harmful algal populations, there has been an 

increasing awareness of the need for development of monitoring systems in this region. 

Traditional methods of sampling have proven costly in terms of time and resources, and 

increasing attention has been turned toward use of satellite data in phytoplankton 

monitoring and prediction. 

This study shows that remote sensing does have utility in monitoring and 

predicting locations of phytoplankton blooms in this region. It has described the 

composition and spatial and temporal relationships of these populations, inferring 

salinity, total nitrogen and total phosphorous as the primary variables driving 

ii 



phytoplankton populations in Mobile Bay and the Mississippi Sound. Diatoms, 

chlorophytes, cryptophytes, and dinoflagellates were most abundant in collections. 

Correlations between SeaWiFS, MODIS and in situ data have shown relationships 

between Rrs reflectance and phytoplankton populations. These data were used in 

formation of a decision tree model predicting environmental conditions conducive to the 

formation of phytoplankton blooms that is driven completely by satellite data. Empirical 

algorithms were developed for prediction of salinity, based on Rrs ratios of 510 nm/ 555 

nm, creating a new data product for use in harmful algal bloom prediction. The capacity 

of satellite data for rapid, synoptic coverage shows great promise in supplementing future 

efforts to monitor and predict harmful algal bloom events in the increasingly eutrophic 

waters of Mobile Bay and the Mississippi Sound. 
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CHAPTER I 

INTRODUCTION 

Harmful algal blooms (HABs) are proliferations of microalgae accumulating at 

biomass levels that negatively affect co-occurring organisms and the food web. Some 

harmful algae (HA) species produce phycotoxins that bioaccumulate in shellfish and fish. 

Others proliferate in response to changing environmental conditions, such as nutrient flux 

and eutrophication, creating hypoxic or anoxic conditions. A third type produces 

calciferous appendages that damage gill and digestive tissues of shell and finfish (Graneli 

& Turner, 2006; HAARNESS, 2005). Over the past several decades, the frequency and 

severity of HABs has increased in USA coastal areas (Anderson, Gilbert, & Burkholder, 

2002; HAARNESS, 2005). These blooms have caused regional economic losses at an 

estimated average of 82 million dollars annually in North America since 1987 (Hoagland 

& Scatasta, 2006) due to human health problems, loss of tourism, commercial and 

recreational fishing closures, ecosystem damage, and cleanup costs. 

In Mobile Bay (MB) and the eastern Mississippi Sound (MS), surveys carried out 

by Pennock et al. in 2001 and 2002, the Gulf Coast Geospatial Center (GCGC) from July 

2005 through June 2006, and routine surveys done by Dauphin Island Sea Lab (DISL) 

and the Alabama Department of Public Health (ADPH), regularly identified species of 

microalgae with the potential to create HAB events. To date, 7 known HA species have 

been detected at significant levels (>105 cells L"1) in coastal waters of the northern Gulf 

of Mexico (GoM). These include the diatoms Pseudo-nitzschia spp. and the 

dinoflagellates Karenia brevis, Gymnodinium sanguineum, Dinophysis caudata, and 

Prorocentrum minimum. Pseudo-nitzschia produces domoic acid, the causative agent in 

amnesiac shellfish poisoning (ASP). Karenia, Gymnodinium, and Dinophysis produce 
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brevitoxin, saxitoxins, and okadaic acid, respectively, with these toxins being responsible 

for neurotoxic, paralytic, and diarrhetic shellfish poisoning (NSP, PSP, and DSP) 

(Landsberg, 2002). Karlodinium veneficum, a producer of karlotoxins, Heterocapsa 

triquetra, and Akashiwo sanguined, two dinoflagellates found in high cell concentrations 

leading to hypoxic conditions, have caused fish kills in MB (Bill Smith, ADPH). Other 

potential HA species, such as the dinoflagellates Karenia mikimotoi, associated with 

massive fish kills in Japan and Korea, and two members of the genus Gonyaulax, G 

spinifera and G. polygramma, both associated with red tides in Florida (Landsberg, 2002; 

Steidinger & Penta, 1999), have been found at low levels (<2000 cells L"1). 

Two of these HAB-related organisms are of greatest concern in this region, the 

dinoflagellate K. brevis and diatoms of the genus Pseudo-nitzschia. K. brevis releases 

brevitoxins, causing respiratory damage and NSP in human populations while creating 

adverse affects on ecosystems and food webs, including strandings and death to dolphins, 

fish kills, closures of shell and fmfish operations and subsequent economic losses due to 

halo effects of these events through coastal and regional populations (Steidinger & Penta, 

1999; Steidinger, Landsberg, Truby, & Roberts, 1998). The only known K. brevis bloom 

resulting in closed shellfish operations in coastal Mississippi and Alabama occurred in 

1996 (Dortch et al., 1997). Historically, K. brevis blooms have been documented since 

the Spanish explorers first arrived in the GOM during the 17th century (Magafia, 

Contreras, & Villareal, 2003). In the preceding few decades blooms have occurred bi-

annually or less off the western coast of Florida and coasts of Texas and eastern Mexico 

(Steidinger et al, 1998; Tomlinson et al, 2004; Villareal, Brainard, & McEachron, 2001). 

However, K. brevis blooms have increased in frequency, duration, and intensity in these 
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locations and programs are in place for monitoring and predicting these occurrences 

(Stumpf et al., 2009; Tomlinson et al., 2004). In MB and surrounding waters, K. brevis 

has been detected in samples at cell counts of >5,000 cells L"1 in 2005, 2006, and 2007 

(personal communications, Hugh Maclntyre, DISL, and Bill Smith, ADPH). Mechanisms 

of bloom formation are not yet conclusive but hypotheses include elevated nutrient runoff 

resulting from anthropogenic influences related to increased coastal development and 

human population growth, ecosystem damage, fluctuation in salinity or nutrient 

concentrations and ratios, ocean wave propagation and turbulence due to physical forcing 

and storm events, prevailing winds and currents driving blooms from Florida shores, 

atmospheric input of Sahara dust, and bacterial interactions (Burkholder et al., 2007; 

Cortes-Altamirano, Hernandez-Becerril, & Luna-Soria, 1995; Jewett, Dortch, & 

Etheridge, 2007; Kin-Chung & Hodgkiss, 1991; Maier Brown et al, 2006; Smayda, 

1997; Sommer, 1994). 

There are approximately 50 species of the diatom genus Pseudo-nitzschia found 

world-wide (Bates & Trainer, 2006). Domoic acid, the phycotoxin responsible for ASP, 

is known to be produced by 11 of them. Seven of these toxin-producing species have 

been found in samples from the northern GoM, sometimes in excess of 106 cells L"1 

(Liefer et al., 2009; Thessen, Dortch, Parsons, & Morrison, 2005). These are euryhaline 

organisms, rarely found more than 150 km from shore. They are abundant in coastal 

environments where wide ranges of salinity, temperature, and turbidity are found (Bates 

& Trainer, 2006; Dortch et al, 1997; Hasle, 2002). Domoic acid poisoning has been 

found to be a common cause of die-offs in mammals, birds, turtles, and fish on the 

northeast and southwest coasts of North America (Bates, Garrison, & Horner, 1998; 



Landsberg, 2002), and ASP was shown to be the cause of 5 human deaths in eastern 

Canada in 1987 (Bates et al., 1989). To date, no marine animal die-offs or human cases of 

ASP have been attributed to domoic acid poisoning in the northern GOM. This is due 

possibly to genetic variation and the presence of low or non-toxic strains, and the fact that 

most samples containing high counts of Pseudo-nitzschia spp. and detectable domoic acid 

levels are collected in slightly deeper and more mixed waters away from harvested oyster 

beds (Thessen et al., 2005). However, the fact that these species thrive in the northern 

GOM, combined with expectations of rising nutrient levels driven by increases in human 

population and changes in land use patterns, makes them a potential threat to human and 

ecosystem health. 

Mitigation of regional problems caused by HAB outbreaks requires a combination 

of monitoring the presence of HAB species and the conditions leading to or indicative of 

their formation, prediction of ecological conditions allowing their formation, prediction 

of the size and movement patterns of known blooms, and subsequent response and 

control efforts (HAARNESS, 2005; Stumpf et al., 2009). Monitoring of HAB species is 

costly in equipment purchase and ship and shore collection expenditures. Arguably most 

important is the investment of time. This includes both time spent in planning, carrying 

out, and processing sample collections and the subsequent delay in response time due to 

these efforts. For these reasons, there is great interest in the use of remote sensing to 

detect HAB and predict migration patterns of known blooms (Siegel, Maritorena, Nelson, 

Behrenfeld, & McClain, 2005; Stumpf et al., 2003). The use of satellite sensors such as 

the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate-resolution 

Imaging Spectroradiometer (MODIS) enables twice-daily (MODIS Aqua PM and 
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SeaWiFS noon), wide-area coverage not economically or temporally possible with 

traditional ship and shore survey techniques (Tatem, Goetz, & Hay, 2004). 

This research is directed toward understanding the factors driving the spatial and 

temporal composition of phytoplankton populations in this region while evaluating and 

utilizing remote sensing data for development of a predictive model based on these 

factors. The following research objectives will be explained in Chapters II-IV: 

Chapter II: Factors affecting the spatial and temporal distributions of phytoplankton 

populations in Mobile Bay and the Mississippi Sound of the Northern Gulf of Mexico 

The objectives of this chapter are to 1) describe the composition of phytoplankton 

populations at collection sites in Mobile Bay and the eastern Mississippi Sound, 2) 

determine what relationships exist within and between those populations, 3) describe the 

environmental variables most significant in driving these relationships, and 4) illustrate 

seasonality of these populations, and influence of river discharge on significant 

environmental variables. 

Chapter III: Development of a decision tree model for Pseudo-nitzschia spp 

The purpose of this chapter is to utilize SeaWiFS remote sensing reflectance data 

in the formation of a decision tree model that will allow for the prediction of ecological 

conditions most suitable for development of Pseudo-nitzschia spp. blooms. Primary 

objectives are to 1) determine correlations between in situ and remote sensing data and 

utilize SeaWiFS data most suitable for use in a decision tree model, and 2) create and test 

the model using Pseudo-nitzschia spp. population and remote sensing data. 

Chapter IV: Using in situ spectroradiometer data to develop a regional specific 

algorithm for prediction of salinity in the waters of MB and MS 
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The goal of this chapter is to develop regional-specific algorithms for predicting 

salinity in the MS based on in situ CDOM measurements. Primary objectives of this 

chapter are to 1) use in situ surface reflectance values measured during cruises 

undertaken in the MS to emulate the SeaWiFS remote sensing reflectance values (Rrs) at 

412, 443, 490, 510, 555, and 670 nm, 2) compare these emulated Rrs values with 

SeaWiFS and MODIS Rrs values obtained from same day imagery, and 3) develop and 

test a region-specific empirical algorithm for salinity. 
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CHAPTER II 

FACTORS AFFECTING THE SPATIAL AND TEMPORAL DISTRIBUTIONS OF 

PHYTOPLANKTON POPULATIONS IN MOBILE BAY AND THE MISSISSIPPI 

SOUND OF THE NORTHERN GULF OF MEXICO 

Introduction 

Understanding the organization of phytoplankton populations is based upon 

attempts to reveal recurring patterns and variations that occur through space and time as 

explainable phenomena (Levin, 1992). The detection and description of recurring patterns 

that cannot be attributed to chance provide a logically constructed framework used to 

infer causes and comprehend underlying mechanisms of the synergistic relationships 

between biotic and environmental data (Field, Clarke, & Warwick, 1982). 

The majority of studies concerning driving forces behind abundance and diversity 

of phytoplankton populations in near-shore and estuarine environments have focused on 

temperate ecosystems in well-studied estuaries such as Chesapeake Bay (Marshall, 

Lacouture, & Johnson 2006; Harding et al., 1994), San Francisco Bay (Lucas, Koseff, 

Cloern, Monismith, & Thompson 1999a, 1999b) and Pamlico Sound (Gallegos & Piatt, 

1982; Lohrenz, Redalje, Verity, Flagg, & Matulewski, 2002). In recent years attention 

has been given to biological, physical and chemical gradients driving phytoplankton 

population dynamics within sub-tropical blackwater river systems of Florida (Bledsoe & 

Phlips, 2000; Quinlan & Phlips, 2007). The majority of these studies have concentrated 

on estuaries and bays with water residence times in month to year temporal cycles 

(Phlips, Badylak, Youn, & Kelley, 2004; Harding, Itsweire, & Esaias, 1994), systems that 

are influenced primarily by strong tidal regimes (Lucas et al, 1999a; Cloern, 1991), or 
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seasonal upwelling caused by wind and current interactions (Anderson et al., 2008; 

Lanerolle et al., 2006). Recent studies have demonstrated the importance of salinity 

gradients and their effects on spatial patterns of available nutrients and distribution of 

phytoplankton populations in estuaries (Quinlan & Phlips, 2007; Muylaert, Sabbe, & 

Vyverman, 2009). 

This study focuses on Mobile Bay (MB) and the eastern Mississippi Sound (MS) 

in the northern Gulf of Mexico. These systems are dominated by freshwater discharge 

(Schroeder, 1977; Wilber, Clarke, & Rees, 2007) and short residence times of hours to 

days (Schroeder, 1979). Past work within MB has suggested a coupling between 

watershed basin discharge, residence time and nutrient fluxes (Lehrter, 2008) and a 

coupling of benthic and pelagic processes (Cowen, Pennock, & Boynton, 1996) leading 

to spatial variability of nutrients. Neither the taxonomy of the microalgal populations of 

these systems nor the factors which drive their abundance, composition or distribution 

have been well described. Pennock et al. (2001, 2002) conducted cruises which described 

phytoplankton populations within MB and its major sub-estuary, Weeks Bay. They found 

that MB was similar to most shallow estuary systems dominated by freshwater input, in 

that there is a nutrient pulse associated with late winter and spring rains, but there was no 

well-developed spring bloom associated with this input. Liefer et al. (2009) described the 

occurrence and distribution of Pseudo-nitzschia spp. in the southern reaches near the 

mouth of MB. This toxin-producing harmful algal bloom diatom was found to be a 

common member of microalgal communities throughout the Mississippi Bight. Its 

presence within samples was reported over a wide range of salinity and surface 

temperature ranges. They found samples at high numbers correlated to salinity levels and 
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influenced by nutrients from freshwater input, primarily groundwater discharge. 

The objectives of this paper are to describe the spatial and temporal variability of 

phytoplankton populations and their relationships with environmental data in this region. 

The data set used in describing these relationships consisted of sampling stations ranging 

spatially from the north end of MB to Horn Island and Biloxi Bay in the eastern MS (Fig. 

1), and temporally over an 18 month period from 12/2004 - 6/2006. It is shown that 

salinity, total nitrogen, and total phosphorous are the most significant factors driving 

phytoplankton populations in this region. It is inferred that the combined Mobile-Tensaw 

and Biloxi-Pascagoula River discharge influences abiotic variables, which in turn 

influence the composition of phytoplankton populations. Seasonal patterns are shown to 

exist, with diatoms and dinoflagellates exhibiting population peaks in the winter and 

spring months, and chlorophytes and cryptophytes in the summer and fall months. 

Site Description 

The MB estuary (30.5 N, 88.0 W) is a drowned river system, approximately 50 

km long with a width of up to 31 km (Schroeder, 1977). It is a shallow (average depth 

3m), highly stratified estuary with a surface area of approximately 1,070 km2, a relatively 

small volume of 3.2 X 109 m3 and a short residence time of days to weeks (Engle, Kurtz, 

Smith, Chancy, & Bourgeois, 2007). A dredged shipping channel runs north to south 

from the city of Mobile through Main Pass to the east of Dauphin Island, creating 

maximum depth waters of 15 m (Isphording & Lamb, 1979). Disposal of dredged 

materials in open water adjacent to the channel has influenced bottom contours, 

particularly at the northern bay and west of the channel where spoil banks influence water 

circulation and stratification of the water column (Schroeder, Cowan, Pennock, Luker, & 
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Wiseman, 1998). River discharge and seasonal wind patterns rather than tidal cycles 

control the hydrology of the estuary, with water quality being heavily influenced by 

groundwater input, regional weather patterns, dredging and subsequent deposition of 

tailings and human land use patterns throughout the watersheds of the estuary (Engle et 

al., 2007; Schroeder et al., 1998; Turner, Schroeder, & Wiseman, 1987). The mouth of 

MB is formed by Cedar Point to the west and Ft. Morgan Peninsula to the east. At the 

north end, the Mobile River is formed by the confluence of the Alabama and Tombigbee 

Rivers, combining to form the fourth largest watershed in the coterminous United States 

(Bricker et al., 2007). This system dominates water flow into the bay, contributing 95% 

of freshwater input (Schroeder et al., 1979). The addition of freshwater from the Dog and 

Fowl Rivers on the west shore and Fish and Magnolia Rivers flowing into Weeks Bay 

along the east shore create a short freshwater fill time of approximately 20 days (Cowan, 

Pennock, & Boynton, 1996), and an average daily freshwater flow of 1.56 x 108m3 d"1 

(Engle et al., 2007). This creates an average monthly discharge rate into the northern 

GoM of 1,800 m3 s"1 (for the period from 1929 to 1983, see Schroeder & Wiseman, 

1986). The land mass of Dauphin Island channels discharge flow, with approximately 

15% passing to the north and west of the island through the east end of MS by way of 

Pass Aux Heron and the remainder, including contributions from the shipping channel, 

flow south and west through the main pass between the island and Ft. Morgan Peninsula 

(Ryan et al., 1997; Schroeder et al, 1992). These various contributions combine to create 

a highly stratified, rapidly changing environment (Schroeder, Dinnel, & Wiseman, 1990; 

Noble, Schroeder, Wiseman, Ryan, & Gelfenbaum, 1996). 

The MS (30.2 N, 88.3W) is a shallow coastal lagoon with a mean depth of 3 m, 
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approximately 130 km long and 11-24 km wide, bordered on the south by a series of 

barrier islands and on the north by the mainland shoreline of Mississippi (Wilber et al., 

2007). The combination of shipping channels (Gulf Intracoastal Waterway and the Biloxi 

Shipping Channel) running east to west and into Biloxi Bay and the coastal littoral 

current brings MB discharge waters from both Pass Aux Heron and the main pass of MB 

between Dauphin Island and Fort Morgan Peninsula into the MS, where they mix with 

fresh water outputs of the Pascagoula, Biloxi, and several smaller river systems 

(Rabalais, Dagg, & Boesch, 1985; Dinnel & Schroeder, 1989). Waters from the MS are 

generally well-mixed with minimal difference between surface and bottom temperature 

and salinity (Wilber et al., 2007). 

Methods 

In Situ Sampling 

Surface water samples were collected at 3-6 week intervals from December, 2004, 

through June, 2006, at 19 sites in Mobile Bay (N= 197) and from July, 2005 through 

June, 2006 at 5 sites in the Mississippi Sound (N= 50) that encompass the major 

hydrological regimes in Mobile Bay and its adjacent waters in the Mississippi Sound 

(Fig. 1). An additional 25 sites were utilized throughout the collection period. The Mobile 

Bay sites are situated at principle inflows (stations near mouths of Mobile River, Dog 

River, Fowl River, and Weeks Bay), outflows (Pass Aux Herons and Main Pass), over 

oyster beds near Cedar Point and within Bon Secour Bay and at sites located near 

Dauphin Island and Ft. Morgan Peninsula. Sites in the Mississippi Sound follow a south 

transect from the mouth of Biloxi Bay through Dog Keys Pass and between Horn and 

Ship Islands. One exception was off the northeast shore of Horn Island, a site within the 



MS ship channel and away from the influence of the Biloxi Bay discharge. No samples 

were collected in the MS during September and October of 2005 due to environmental 

and infrastructure damage caused by Hurricanes Katrina and Rita. 

— ~ t 1 1 1 
8B*30'0"W W t f f T W 88°30'0"W 88'0'0"W 

Figure 1. Collection sites in Mobile Bay, Pass Aux Herons, and the Mississippi Sound. 
Symbols represent location of site collections, darker symbols represent higher numbers 
of collections at that collection location. 
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Laboratory Analysis 

In the laboratory, nutrient water samples were filtered through GF/F glass filters 

(0.7um pore size) separating water sample into particulate phase collected on the filter 

and dissolved constituents in the filtrate. Physical parameters (T, S, pH) were measured at 

each sampling site using a hand held YSI. Unique surface water samples were taken for 

analysis of nutrient pool sizes and microalgal abundances. For all sampling trips, water 

samples were kept on ice in the dark until processing in the laboratory. 

Chlorophyll a (Chla) was measured fluorometrically on a Turner Designs 

fluorometer (TD 700) and recorded in jag L"1. Inorganic nutrients (NO3" ,NC>2", NH/ , and 

were determined directly by colorimetric techniques modified for the Skalar 

SAN+ nutrient autoanalyzer. Particulate organic phosphorus (POP), dissolved organic 

phosphorus (DOP), and total dissolved nitrogen (TDN) concentrations were also 

measured with the Skalar SAN+ autoanalyzer. Particulate carbon and nitrogen were 

measured on a Costech CNS analyzer. Dissolved inorganic carbon (DIC) and dissolved 

organic carbon (DOC) were determined using a Shimadzu TOC analyzer. Filter pads with 

suspended solids were dried at 60°C and muffled at 500°C. Total suspended solids (TSS) 

were determined as weight of dried particulates per volume filtered, mineral suspended 

solids (MSS) were determined as weight of muffled particulates per volume filtered, and 

organic suspended solids (OSS) were determined as the difference between dried and 

muffled weight per volume filtered. 

Dissolved inorganic nitrogen (DIN) was calculated as the sum of NO3" ,N02~, and 

NT!/. Dissolved organic nitrogen (DON) was calculated as the difference between TDN 
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and DIN. Total nitrogen (TN), total phosphorus (TP), and total carbon (TC) are the sum 

of dissolved and particulate pools, recorded in (a, mol L"1. 

Unique samples were collected from the surface waters for both phytoplankton 

and nutrient sample collection. One liter of whole water was preserved immediately upon 

collection with Lugol's solution. Phytoplankton cell counts were determined by the 

Alabama Department of Public Health (ADPH) using inverted light microscopy. Class 

level cell counts were used in analysis. Diatoms (bacillariophytes, fragilariophytes, 

coscinodiscophytes), dinoflagellates, chlorophytes, prasinophytes, euglenophytes, 

cryptophytes, dictyophytes, chrysophytes, and raphidophytes were enumerated in a 

settling Nunc chamber and counted at cells L" . Colonies rather than individuals of 

cyanobacteria were counted, and therefore not included in the analysis due to potential 

statistical anomalies introduced by this disparity in counting method. 

Statistical Analysis 

Phytoplankton community composition was analyzed using statistical software 

Primer-E v6. Ordination methods of multidimensional scaling (MDS) and principle 

components analysis (PC A) were used to examine spatial patterns of phytoplankton 

community compositions and influence of nutrient fluxes on abundances, based on 

analytical methods described by Clarke and Warwicke (2001). Environmental variables 

used in analysis were determined using draftsman plots to visualize relationships between 

variables, and were log(x+l) transformed if necessary and normalized. Cluster analysis of 

class level data from collections (N=247) was performed (Fig. 2). A 50% threshold 

similarity line was chosen, resulting in groupings of 7 major (>5 collections within a 
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cluster) and 8 minor clusters, or classes (<5 collections within a cluster). These class 

groupings were used as factors to illustrate community composition patterns using MDS, 

plotting the dissimilarity of class groupings within Euclidean space. PCA was used for 

analysis of environmental variables influences on community structure, again using the 

Group average 
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Figure 2. Horizontal dotted line representing a similarity threshold line was set at 50% 
for similarity within community groups of field collections. Clusters (classes) represented 
by the classes below the 50% similarity threshold line were used as factors in MDS and 
PCA analyses. 
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classes as factors within analysis. Similarity of percentage (SIMPER) analysis examine 

contribution of taxa within each class to similarities within class assemblages. The more 

abundant a taxon is within a group, the more it contributes to intra-group similarities. 

Information on the structure of abundance is summarized by Bray-Curtis similarities 

between samples (i. e. classes) and it is by computing the average dissimilarity between 

all pairs of inter-class samples (e.g. all collections within class i compared to all 

collections within class k, and so on), then using these data to perform similar averaging 

to understand the similarities, or the contributions of each taxon within the classes. These 

abundances are illustrated through pie charts demonstrating the contribution (or average 

abundance) of each taxon to the composition of the phytoplankton populations within 

classes, and the average similarity of taxa within the classes. 

Results 

Phytoplankton Populations 

Community composition using the classes from the 50% similarity threshold 

chosen in cluster analysis and used as factors within an MDS plot (Figure 3) resulted in 

strong similarities within phytoplankton communities. Although stress similarities were 

relatively high for this method of ordination (2D= .15, 3D= .11), the number of samples 

(N= 247), each representing class-level phytoplankton populations, and the close 

grouping of samples within the major classes (those consisting of >5 collections) 

illustrate the strength of the relationships (Clarke & Warwick, 2001; Clarke, 1993; 

Kruskal, 1964). Classes i (N= 118) and k (N= 69), the 2 clusters representing the highest 

number of collections during sampling, show close relationships within both the 2D and 

3D graphs (3D not shown). 
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Figure 3. Multi-dimensional scaling plot (based on Bray-Curtis similarity matrices) of 
phytoplankton composition based on factors from Figure 2. Analysis was carried out 
using individual collections from all sites made during the 18 month period. Note the 
high degree of similarity, or close spatial relationship on the 2-dimensional ordination, 
between members of a class resulting in clustering of samples within classes i and k. 

SIMPER analysis was used to determine which taxa were responsible for 

differences between and within classes. The influence of diatoms in the biomass of all 

sites (Fig. 4) was shown through their being absent as a significant component of 

collections in only one class (class h). Dinoflagellates comprised the majority of 

collections only in Class h, due to a February, 2006, Heterocapsa triquetra bloom in 

Mobile Bay. Chlorophytes were dominant in class i, comprising the majority of 

collections made during the mid- to late summer of 2005. Collections dates surrounded 

the passages of Hurricanes Katrina and Rita. Cryptophytes dominated in class j , 

consisting primarily of collections in November, 2005. 
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Figure 4. Pie graphs illustrating SIMPER analysis of the average abundance of taxa 
contributing to within site similarity. Data represented below class taxa is the average 
abundance within classes. 
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Seasonal shifts in phytoplankton populations were graphed by month and relative 

abundance (Fig. 5). Collections throughout the year often consisted of representatives of 

o i 

most classes, often with high numbers (>10 cells L"). Cryptophytes and chlorophytes 

were most abundant in summer months. Cryptophyte populations peaked in late summer 

and fall, with maximum population counts of >2xl0 cells L"1. Chlorophytes were most 

abundant in middle to late summer, showing ranges similar to those of cryptophytes. 
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Figure 5. Relative abundance of diatom, chlorophytes, cryptophytes, and dinoflagellate 
collections. Charts show seasonal trends with diatom and dinoflagellate 
abundanceshigher in winter and spring, and chlorophytes and cryptophytes abundances 
higher in summer and fall months. Note difference in Y-axis between upper and lower 
panels. 
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Opposite trends existed within diatom and dinoflagellate populations. Diatoms 

peaked during late winter and early spring months, exhibiting highest maxima of class 

data (7x106 cells L"1). Dinoflagellates exhibited similar population cycles with highest 

population peaks in early spring and maximum counts of >6.5xl06 cells L"1. 

Nutrient Analysis 

PCA analysis used the classes as factors and the most relevant environmental 

variables as determined by draftsman plot analysis to determine the effects of 

environmental variables on phytoplankton populations. PCI (Fig. 6) explains 53% of the 

variation between classes. The addition of PC2 shows a cumulative variation of 70.3%. 

4 T 

2 + 

CM 
O 0 
Q. 

-4 

n O i r Q 

o 
D 

D 

O 

O 

-6 -2 0 
PC1 

50class 
A n 
T g 
Dk 
O i 
O e 
+ o 
x j 
* a 
/ I m 
V c 
Q d 
O b 
Of 
A l 
V h 

H 
6 

Figure 6. PCA analysis of S, T, pH, TN, TP, aD400, TSS, and MSS. Note the axes of the 
eigenvectors S, TN, and TP, and their orientation with the data classes i (red diamond) 
and k (blue square). 
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This represents a better than normal account of the factors most influencing the 

similarity between classes. Within PCI, the axis created by the eigenvectors of S (0.404), 

TN (-0.428), and TP (-0.376) fits well with the ordination of samples within the classes i 

and k. This axial plane and the respective values of the eigenvectors (Table 1) allow for a 

reduction of data from the original 8 variables to the 3 most applicable in explaining 

population counts in the classes, those being S, TN, and TP. These three factors were 

utilized in creation of graphs that illustrating relationships of water discharge and S, S 

and TN, and subsequent influence on nutrient distribution and phytoplankton populations. 

Table 1 

Eigenvalues and eigenvectors from PCA analysis in Figure 5 

Eigenvalues 

PC Eigenvalues %Variation Cum.%Variation 
1 
2 
3 
4 
5 

4.24 
1.38 

0.886 
0.63 
0.548 

53.0 
17.3 
11.1 
7.9 
6.8 

53.0 
70.3 
81.4 
89.3 
96.1 

Eigenvectors 
(Coefficients in the linear combinations of variables making up PC's) 

Variable PCI PC2 PC3 PC4 PC5 
T 
Exp(Log(S)) 
pH 
Log(TN) 
Log(TP) 
Log(TSS) 

0.095 
0.404 
0.181 

-0.427 
-0.376 
-0.428 

-0.677 
0.263 

-0.305 
-0.135 
-0.246 
0.193 

-0.175 
0.082 
0.886 
0.126 
0.137 
0.251 

0.625 
-0.015 
0.022 

-0.305 
-0.352 
0.340 

0.311 
0.546 

-0.255 
0.221 
0.554 
0.100 

Log(MSS+l) -0.340 0.454 0.172 0.525 0.083 
Log(aD[400]) -0.416 -0.241 -0.227 -0.010 -0.409 
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The station at Mid-Bay light in Mobile Bay was chosen as the primary site for the 

comparison of discharge, S, TN, and TP due to its centralized location and having the 

highest number of collections over the period of study (N=18). Trends exhibited by data 

at this station are similar to all collections sites in the study. Daily mean discharge (daily 

means of the total discharge (m3 s"1) of the Tombigbee and Alabama Rivers (combining 

to form the Mobile River), and Tensaw Rivers downloaded from the 

nearest upriver data collection site of the USGS National Water Information System 

website) were summed and compared to S, TN, and TP (Fig. 7), with concentrations of 

Chla used as a proxy for biomass. Results showed a high degree of response in S to 

discharge volumes and resultant swings in nutrient levels with high and low discharge 

levels causing low and high salinity readings. This response is consistent throughout the 

year, with high river discharge exhibiting a positive relationship with TN, TP, and Chla 

during the periods of high discharge volume, and corresponding lower nutrient and Chla 

levels with low discharge levels. 

An inverse relationship between S and discharge is further illustrated in Figure 8, 

with fresh water input to Mobile Bay strongly influencing salinity readings at stations in 

the middle of Mobile Bay (Mid-Bay Lighthouse) and stations further from the influence 

of river discharge from the combined Mobile-Tensaw River system (east end of Dauphin 

Island, at the mouth of Mobile Bay). This inverse relationship exists at all stations within 

MB and throughout the study area, although the data are not shown. The response of S 

and the opposite response of TN, TP, and Chla, to the influence of fresh water and 

riverine and estuarine inputs of nutrients to the waters of the Mississippi Bight also is 

consistent throughout the study area. 
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quartile, respectively. The bars extending from the boxes represent data range, black 
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Box and whisker plots of ranges, first quartile, median, and third quartile 

readings, and outlier data from the Mid-Bay Lighthouse (Fig. 9) showed a range of near 0 

to31 psu and a median of 9 psu in S during the collection period, indicating a relatively 

constant low salinity level at this station. TN (Range=28-49 |j. mol L"1, median=38 \i mol 

L"1) and TP (Range=1.2-1.7 u. mol L"1, median=1.4 JI mol L"1) showed higher relative 

concentration levels. This is consistent with the fact this station was strongly influenced 
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by river discharge levels causing relatively lower salinity levels and higher nutrient levels 

consistently throughout the collection period. 

Conclusions 

MB is dominated by freshwater inputs that can vary at hourly scales, creating a 

changing environment with abiotic and biotic variables subject to rapid change. In spite 

of these unstable conditions, this study has shown that patterns do exist within a 

framework of conditions that are seemingly difficult to predict. Phytoplankton 

populations, with individual collections consisting of millions of individuals per liter and 

numerous taxa, thrive within these nutrient rich waters. Inverse relationships between 

salinity and freshwater discharge and subsequent shifts in nutrient availability with 

nitrogen and phosphorous increasing as freshwater input increases, drive the seasonal 

population trends. 



27 

CHAPTER III 

THE USE OF SEAWIFS DATA IN FQRMING DECISION TREE MODELS TO 

PREDICT BLOOMS OF PSEUDO-NITZSCHIA IN MOBILE BAY 

Introduction 

During the past three decades, continual development has been seen in the area of 

pattern recognition and classification of remotely sensed data (Pal & Mather, 2003). 

Research into algorithmic aspects of pattern recognition has proceeded alongside the 

development of both in situ and remote sensor instruments that are capable of producing 

high volumes of data, including images with increasingly finer spatial and spectral 

resolution (DeFries & Townshend, 1994; Pal & Mather, 2003). In recent years the use of 

decision tree modeling (DT) in remote sensing studies has increased. DT models are 

computationally fast, make no statistical assumptions, and are able to manage data 

represented on different measurement scales, factors which must be addressed when 

incorporating large, heterogenous data matrices such as those formulated using sensor 

imagery (Gahegan & West, 1998). In comparison to neural networks they may be trained 

quickly and with minimal data (Borak & Strahler, 1999), an important consideration 

when working with the small spatial scales of phytoplankton blooms in shoreline areas of 

the northern GoM. 

Since its launch onboard the Orbview-II satellite in August 1997, the Sea-viewing 

Wide Field-of-view Sensor (SeaWiFS) has provided ocean color data products for use in 

global and local studies for the oceanographic community (Gordon & Franz, 2008; 

Gordon, Clark, Mueller, & Hovis, 1980; McClain, John, Karl, & Steve, 2009). Ocean 

color data are able to provide global or local information based on the spectrum of 
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radiation from the sun and sky that has penetrated the oceans surface and emerged from 

below after being scattered upward from subsurface depths. This recorded spectrum of 

upwelling water leaving radiance (Lw) is a result of the scattering and absorption of light 

measured at wavelengths in the visible and near infrared regions and is influenced by the 

concentration and optical properties of the organic and inorganic constituents of seawater 

(Gordon et al., 1980; Green, Gould, & Ko, 2008). Another commonly used parameter in 

the field of ocean color is the remote sensing reflectance, Rrs, which is defined as the ratio 

between the upwelling radiance, Lw, just above the water surface to the downwelling 

irradiance, Ed, at the same level. Rrs is a function of wavelength, X, as well as the viewing 

angle (IOCCG, 2000; Johnson, 1978). In Case I waters variations in a(k) and bb(k) are 

due to phytoplankton only (McClain, Feldman, & Hooker, 2004; Morel & Gentili, 1991). 

Consequently, these measurements are used to interpret the gradations of ocean color 

from blue to green as proxies for concentrations of phytoplankton within the area of study 

(Gordon et al., 1988; McClain et al., 2009). These reflectance measurement products are 

the foundation of remote sensing data, all ocean color algorithm products and data studies 

are reliant upon their usage. The use of the SeaWiFS sensor for primary production 

(Wawrick & Paul, 2004) and phytoplankton studies (Stumpf et al , 2009; Tomlinson et 

al., 2009) have shown the utility of Rrs data in carrying out synoptic and rapid coverage 

of regional waters, improving the recognition and response time to potential HA events. 

Anderson et al. (2008) showed that increase in coastal water nutrient loads 

correlated directly with increased microalgal populations. As human populations increase 

in the Mobile Bay and Mississippi Sound regions, anthropogenic nutrient loading will 

rise correspondingly (Baya et al., 1998; USEPA, 1999), demonstrating a need for 
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economical and efficient means of HAB detection and prediction in the northern GOM. 

The focus of this study was to develop an integrative DT prediction model that can utilize 

specific products of readily available SeaWiFS reflectance data products to predict the 

occurrence of phytoplankton populations in the region in and near MB. 

Methods 

Phytoplankton Population Description 

Surveys carried out in Alabama waters by Pennock et al. in 2001 and 2002 and 

routine surveys done by Dauphin Island Sea Lab (DISL) and the Alabama Department of 

Public Health (ADPH) regularly identify species of microalgae, mostly dinoflagellates 

and diatoms, with the potential to create HAB events (unpublished data, ADPH). To date, 

5 known toxin-producing HAB species have been detected at significant levels (>10 

cells L"1) in coastal waters of the northern GOM. These include the diatoms Pseudo-

nitzschia spp. and the dinoflagellates Karenia brevis, Gymnodinium sanguineum, 

Dinophysis caudata, and Prorocentrum minimum. Karlodinium veneficum, a producer of 

karlotoxins, and Heterocapsa triquetra, a dinoflagellate found in high cell concentrations 

leading to hypoxic conditions, have caused fish kills in MB (Bill Smith, ADPH). Other 

potential HAB species, such as the dinoflagellates Karenia mikimotoi, associated with 

massive fish kills in Japan and Korea, and two members of the genus Gonyaulax, G. 

digitale and G polygramma, associated with non-toxic red tides in Florida (Landsberg, 

2002) have been found at low levels (<2000 cells L"1). The members of the genus 

Pseudo-nitzschia were chosen as the taxa used during the formation of this DT due to the 

potential of this genus for production of domoic acid (Bates & Trainer, 2006; Maier 

Brown et al., 2006) and the relatively high numbers, seasonal aspects of occurrence, and 
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frequency with which they have been collected in this region (Dortch et al., 1997; Liefer 

et al., 2009). 

Phytoplankton Collections 

Surface water samples were collected at 4-6 week intervals from December, 2004, 

through June, 2006, at 17 sites (N= 120) that encompass the major hydrographic regimes 

in southern Mobile Bay and its adjacent waters in the Mississippi Sound (Fig. 10). The 

stations were situated near Dauphin Island and Cedar Point, within Bon Secour Bay, and 

near Little Lagoon and the Ft. Morgan Peninsula, (an area of high cell concentrations, see 

Liefer et al., 2009). 

One liter of surface water was preserved immediately upon collection with 

Lugol's solution. Identification and enumeration of phytoplankton species were 

determined by the Alabama Department of Public Health (ADPH) using inverted light 

microscope. Diatoms, dinoflagellates, chlorophytes, prasinophytes, euglenophytes, 

cryptophytes, dictyophytes, chrysophytes, and raphidophytes were enumerated in a 

settling Nunc chamber, only diatoms and dinoflagellates identified to species. 

SeaWiFSData 

SeaWiFS data was obtained from the Naval Research Laboratory Offices, Code 

7330, Ocean Sciences Branch, at Stennis Space Center, Mississippi (NRL). The 1 km 

resolution imagery was processed with the Naval Research Laboratory's Automated 

Processing System (APS). APS Version 3.5 utilized atmospheric correction algorithms 

proscribed by NASA's fifth SeaWiFS reprocessing, and includes a near-infrared (NIR) 

correction for coastal waters (Gordon, 1995; Stumpf et al., 2003). The NIR atmospheric 

correction method used by APS improves estimates of bio-optical parameters in 
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Figure 10. Map of collection sites in Mobile Bay, AL, and the eastern Mississippi Sound. 
Pseudo-nitzschia spp. population data from sites marked in solid gray were used in DT 
formation and testing. Sites from this area of Mobile Bay and surrounding waters were 
used due to maximum values of population data and common presence of Pseudo-
nitzschia spp. within collections. 

coastal regions by applying an iterative technique in which water-leaving radiance at 765 

run and 865 nm is estimated from water-leaving radiance at 670 nm. An absorbing 

aerosol correction was also applied to improve underestimates of satellite-derived water 

reflectance (Ransibrahmanakul & Stumpf, 2006). Weekly composites were used due to 

high percentage of cloud coverage or other aerosol interference in the region. Mobile, 

Alabama, is listed by the Weather Service as the rainiest city in the United States, with an 
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annual average rainfall of 67 inches and 59 rain days (National Weather Service, 2005). 

Field collections were undertaken 32 days during the 18 month collection period, with 

same-day SeaWiFS imagery available 12 of those days. 

Decision Tree Development and Evaluation 

DT is a type of modeling technique that provides qualitative discrete outputs of a 

database under certain conditions represented by those data. These outputs are 

represented by parameters used in challenging those data products with a simple 

statement (Solomatine & Dulal, 2003). It splits products, or outputs, of those statements 

into sub-domains for which the output of each is determined by the nature of the 

statement. Each statement is termed a node, each product of the statement a leaf. The DT 

classifier function of ENVI v4.3 was used to construct the model (Fig. 11). This function 

performs multistage classifications by using a series of binary decisions (the statement 

within the nodes) to place pixels into classes (sub-domains represented by leaves). The 

challenge of the statement within each node divides the pixels in an image into two 

leaves. The products of the leaves are represented by a numerical output of total pixels 

affected by the statement and the percentage of pixels surviving the challenge of the 

statement of each node. The final output is visually represented by a raster image 

mapping the placement of surviving pixels. In this model, the parameters of the challenge 

are derived from statistical analysis of the Rrs values from the SeaWiFS sensor and their 

relationship with population counts of the diatom genus Pseudo-nitzschia. 

TableCurve 2-D v5 was used to determine variables used in formation of the 

nodes of the model. Threshold levels of wavelengths (412, 443, 488, 531, 551, and 670 

nm) and all quotients derived from ratios of wavelength products were tested using 



33 

Gaussian algorithms with least-squares minimization applied to outputs. Only those 

quotients yielding an R <A were used in formation of binary decisions decision tree 

nodes. Ratio quotients of 670/555, 555/443, and 555/490 were used in model formation. 
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Figure 11. Visualization of Decision Tree classifier from ENVI v4.3. Notice titles of 
nodes indicating factors used in formation of the statement for the node, while 
percentages within each leaf represent number of pixels affected by the statement. This 
output is a result of the test performed on figure 3.D., showing 0.91% of pixels (1,409 of 
158,400) having the unique set of environmental properties enabling Pseudo-nitzschia 
spp. to be present in high population numbers. 

Subsets of Pseudo-nitzschia spp. data were used in formulation and validation of 

the decision tree. Collections from 05/06/2005 and 05/11/2005 (N=21) were used as 

training sites for development of the decision tree due to high cell counts (range 6,800-

1.5xl06 cells L"1). 

Results 

Thresholds of Pseudo-nitzschia spp. counts when related to Rrs data were noted 

early in the analysis of collection data (Fig. 12). Wavelengths of 670, 555, and 443 nm 

exhibited Gaussian relationships in analysis with population data. These relationships 
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improved as quotients of Rrs wavelength products were computed and those quotients 

applied to analysis. No similar relationships were noted in standard SeaWiFS algorithm 

products such as Chla, attenuation, or TSS, thus these products were not used in 

formation of the DT. 
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Figure 12. SeaWiFS Rrs products at 555 and 670nm, and quotient of these wavelengths 
at 670/555, with Pseudo-nitzschia spp. (cells L"1) represented on the y-axis, natural log 
scale applied to data for allowing observation of cell numbers >104 cells L"1. Note the 
spread of data points <104 at all wavelengths, and narrowing of data range when a 
670/555 nm ratio is applied to Rrs data. 

DT results were based on a per-pixel comparison of image data. Errors of 

omission were computed by applying regions of interest to pre- and post-testing images. 

Total number of pixels corresponding to field data collections of Pseudo-nitzschia spp. 
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populations are shown on final classifications of output imagery (Fig. 13), and 

percentage of pixels misclassified by the model were counted as errors of model output. 

The model exhibited an average error of omission rate of 21%, and average accuracy rate 

of 79% in testing of 10 collection periods. The results indicated a trend toward offshore 

motion of waters corresponding to high ratio quotient products (Fig. 13B & 13D). 

Figure 13.A. SeaWiFS image from May 6, 2006, Rrs at 670 nm, 1 km resolution. Red 
dots indicate locations of in situ collections. 
B. Results from decision tree analysis, using Pseudo-nitzschia spp. counts from May 6, 
2006. White dots indicate location of in situ data collections, spatial coverage is identical 
to Figure 3A. 
C. SeaWiFS image from April 4, 2005, Rrs at 670 nm, 1 km resolution. Red dots indicate 
locations of in situ collections. 
D. Results from decision tree analysis , using Pseudo-nitzschia spp. counts from April 4, 
2005. White dots indicate location of in situ data collections, spatial coverage is identical 
to Figure 3C. 
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Discussion 

This model represents an elegant and relatively simple method of tracking waters and the 

inherent environmental conditions leading to the formation of harmful algal blooms. It is 

computationally simple, uses satellite data input products that are provided without 

cost and obtained , processed, and extracted to usable form for model input with relative 

ease by users of the NASA Ocean Color website. Also, it is capable of being automated 

by computer programming, and may be adjusted for accuracy with changing water 

conditions if a different region of the collection territory is to be monitored. 
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CHAPTER IV 

THE USE OF IN SITU REMOTE REFLECTANCE DATA TO FORM REGIONAL 

ALGORITHMS FOR SALINITY PREDICTION 

Introduction 

Estimating phytoplankton biomass and distribution through quantifying and 

mapping nutrient concentrations in near shore environments has been a major application 

of remote sensing in coastal waters (Harding, Itsweire, & Esaias, 1994; Stumpf et al, 

2009). The concentration of Chla is often used as a proxy of the phytoplankton biomass, 

and is essential in mapping the biological activity at the ocean surface, including 

monitoring of algal blooms and estimation of primary production (Antoine, Andre, & 

Morel, 1996; O'Reilly et al., 1998; Stumpf et al, 2009). Remote sensing studies 

involving phytoplankton are based on the study of ocean color, which is determined by 

absorption and scattering of visible light by the pure water component of the ocean as 

well as by the inorganic and organic, particulate and dissolved, materials present in the 

water (Behrenfeld & Falkowski, 1997; McClain et al., 2009; Siegel et al., 2005). The 

influence of salinity gradients in the distribution of these constituents has been 

emphasized in numerous studies (Quinlan & Phlips 2007; Marshall et al., 2006; Muylaert 

et al., 2009), with the contribution of estuarine DOC and CDOM of riverine origin being 

of major importance to the formation of salinity gradients (Del Castillo & Miller, 2008; 

D'Sa, Miller, & Del Castillo, 2006). Formation of regionally specific algorithms for the 

purpose of predicting CDOM and salinity values are important for inputs to HAB 

prediction models based solely on remote sensing values, and none presently exist for this 

region. This study involves the use of remote sensing reflectance (Rrs) as measured in situ 
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during two cruises within the Mississippi Sound to compute regional specific algorithms 

for use in satellite-derived salinity values. 

An Explanation of Remote Sensing Reflectance 

When dealing with Case I, or open ocean, waters, pure water and phytoplankton 

are the dominant components influencing the remote sensing signal (Mobley, 1999; 

Morel & Prieur, 1977). In these waters, the optical contribution from components such as 

DOC and CDOM are minimal. In contrast, Case II waters are defined to contain 

numerous components derived from riverine and terriginous inputs that vary 

independently of chlorophyll, and in such amounts that they significantly influence the 

optical properties in the water (Del Vecchio & Blough, 2002; IOCCG, 2000). Case II 

waters are generally found in inland and coastal water bodies, carrying CDOM and DOC 

from terrestrial sources by river runoff (Johannesssen, Miller, & Cullen, 1999). 

The measurement of these water properties is reliant upon RrS; which is defined as 

the ratio between the upwelling radiance (Xw) just above the water surface to the 

downwelling irradiance (Ed) at the same level (Mobley, 1994). Rrs is a function of 

wavelength (k) as well as the viewing angle. Studies have shown that Rrs can be 

expressed in terms of the absorption coefficient (a(X)) and the backscattering coefficient 

(bb(X)) in the water (IOCCG, 2000; Gordon & Franz, 2008). In Case I waters variations 

in a(X) and bb(X) are due to effects of phytoplankton only (Morel & Prieur, 1977; Carder 

et al., 1999). Consequently, simple empirical relationships can be established between 

Chla and variations in Rrs, when a large number of concurrent in situ measurements of 

these two parameters are utilized (Morel & Gordon, 1980; O'Reilly et al., 1998). 

However, in Case II waters, CDOM, organic and inorganic constituents, and 
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phytoplankton contribute to a(k) and bb(X) and do not conform to their inputs (IOCCG, 

2000). However, the contribution to a(X) and bb(X) from each of these constituents are 

additive, and can for each be expressed as the product between the concentration of the 

constituent and its concentration-specific absorption and backscattering coefficients, 

respectively. These coefficients are collectively termed inherent optical properties (IOP) 

(Hoge et al., 2001; Kuchinke et al, 2009; Mobley, 1994). The IOP are functions of the 

wavelength, and can vary substantially between different water bodies containing various 

types of constituents (IOCCG, 2000; Morel & Gentili, 1996). Even though expressions 

relating the IOP and in-water constituent concentrations to Rrs theoretically can be 

universally applicable for Case II waters, the coefficients of IOP, and products relying 

upon this input, must be determined for each water body in question. 

Studies have shown the importance of salinity in understanding the spatial and 

temporal relationships among phytoplankton populations (Quinlan & Phlips, 2007; 

Muylaert et al., 2009; Wawrick & Paul, 2004). Ocean color remote sensing has been 

shown to provide reasonable estimates for salinity in the nearby Mississippi River plume 

(Del Castillo & Miller, 2008; D'sa, Miller, & Del Castillo, 2006) based solely on Rrs 

ratios and empirical algorithms. The purpose of this study is to provide a salinity 

algorithm based on Rrs data from the SeaWiFS ocean color sensor specific to the waters 

of the MS. 

Methods 

Study Site Description 

The MS (30.2 N, 88.3W) is a shallow coastal lagoon with a mean depth of 3 m, 

approximately 130 km long and 11-24 km wide, bordered on the south by a series of 
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barrier islands and on the north by the mainland shoreline of Mississippi (Wilber et al., 

2007). Waters from the MS are generally well-mixed with minimal difference between 

surface and bottom temperature and salinity (Dinnel & Schroeder, 1989). The MS is 

influenced by groundwater discharge and inputs from the Pascagoula, Escatabwa, and 

Biloxi River systems and MB discharge (Loyacano & Smith, 1979). The MB estuary 

(30.5 N, 88.0 W) is a drowned river system, approximately 50 km long with a width of 

up to 31 km (Schroeder, 1977). It is a shallow (average depth 3m), highly stratified 

estuary with a surface area of approximately 1,070 km , a relatively small volume of 3.2 

X 109 m3 and a short residence time of days to weeks (NOAA/EPA, 1989). MB is 

dominated by nutrient laden freshwater inputs of riverine and groundwater discharge 

origins (Loyacano & Smith, 1979). At the north end of MB, the Mobile River is formed 

by the confluence of the Alabama and Tombigbee Rivers, combining to form the fourth 

largest watershed in the coterminous United States (Bricker et al., 2007). This system 

dominates water flow into the bay, contributing 95% of freshwater input (Schroeder et 

al., 1979). The addition of freshwater from the Dog and Fowl Rivers on the west shore 

and Fish and Magnolia Rivers flowing into Weeks Bay along the east shore create an 

average daily freshwater input of 1.56 x 108m3 d"1 (Engle et al., 2007), and short 

freshwater fill time of approximately 20 days (Cowan et al., 1996). Average monthly 

discharge rate into the northern GoM is 1,800 m s" (for the period from 1929 to 1983, 

see Schroeder & Wiseman, 1986). 

Fieldwork 

Water samples and above water optical measurements were collected at 22 

stations (Fig. 14) during two cruises to the Mississippi Sound on October 25 and 26, 
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2007. Skies were overcast the morning of the first day with afternoon clearing, but clear 

the second day, permitting measurements during simultaneous satellite overpasses. 

Figure 14. Locations of stations used in collection of water samples, in situ 
spectroradiometer readings, and SeaWiFS data extractions. 

Spectroradiometer Readings and Optical Measurements 

Above-water remote sensing reflectance at 1-nm intervals between 400 and 

825 nm were recorded using an Ocean Optics Spectroradiometer, following the 

measurement protocol of Mueller and Austin (1995). Above-water remote sensing 

reflectance, i?rs(/l), was derived according to Mueller and Austin (1995). Radiance 

spectra were recorded from surface waters (L^ea), followed by measurements of sky 

radiance (Lĵ ky) and atmospheric radiance using a 98% reference Spectralon placard 

(Labsphere). All measurements were taken five times. Rrs at wavelength 
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(Rrs (A,)) was calculated as 

KsW = ( ( 4 , e a - P ( ^ ) ^ , s k y ) / ( ^ p , /pj) " 4es.dua.750 d ) 

O 

where p (0.025) is the Fresnel reflectance at the viewing angle 6 (30 ), ppl is the 

reflectance of the Spectralon, and Lresiduai750 is the Rrs at 750 nm subtracted to remove any 

residual reflected radiance from the sky. 

Water Sampling and Analysis 

Water samples for CDOM analyses were collected simultaneously with the 

optical measurements. CDOM samples were filtered using 0.22 urn membrane filters 

mounted on polycarbonate apparatus. Filters were pre-rinsed with methanol and nanopure 

water. The filtration system was flushed with approximately 20 ml of sample water 

before measurement of CDOM samples. 

Absorption Spectroscopy 

Absorption spectra of filtered samples were obtained between 250 and 700 nm at 

1-nm intervals using a Perkin Elmer Lamda-18 double-beam spectrophotometer equipped 

with matching 10-cm quartz cells. Nanopure water was used in the reference cell. The 

absorption coefficients, a(X), were calculated using a{X) = 2.303A(A)/l, where A is the 

absorbance (log10(/0 / / ) ) and / is the path length in meters. Absorption at 412 nm was 

used as an index of CDOM concentration and will be referred to as ag412. 

Results 

Field Samples 

Table 2 shows station information and salinity and ag412 values for all field 

samples used in the study. Note the inverse relationship between salinity and ag412, 

indicating a conservative relationship. The CDOM absorption spectra obtained from the 

http://4es.dua.750


water samples (Fig. 15) shows a wide range of CDOM absorption properties indicating 

the data set is representative of the water types found in the MS, consistent with previous 

work in coastal areas of the Gulf of Mexico (Del Castillo, 2005; Del Castillo & Miller, 

2007). Best fit functions were derived using TableCurve 2D v5 (SYSTAT Software). 

Best fit exponential and linear equations are shown, with the exponential function 

returning marginally improved results (Fig. 16) of R = .93 as opposed to R = .9 for the 

linear equation. 

Table 2 

Station information, salinity and CDOM values. Note the inverse relationship between 

salinity and ag412 

Station ID 

sl l 
slO 
s9 
s5 
s6 
s8 
sl2 
Ol 
02 
03 
04 
05 
06 
SI 
sl3 
sl4 

Date 

10/25/2007 
10/25/2007 
10/25/2007 
10/25/2007 
10/25/2007 
10/25/2007 
10/25/2007 
10/26/2007 
10/26/2007 
10/26/2007 
10/26/2007 
10/26/2007 
10/26/2007 
10/26/2007 
10/26/2007 
10/26/2007 

Time 

10:00 
10:25 
11:00 
11:20 
11:50 
12:35 
13:40 
10:25 
10:40 
10:55 
11:06 
11:25 
11:40 
12:10 
12:40 
13:00 

Latitude 

30.326 
30.308 
30.286 
30.243 
30.270 
30.338 
30.336 
30.200 
30.156 
30.055 
30.103 
30.100 
30.150 
30.255 
30.300 
30.285 

Longitude 

88.756 
88.602 
88.157 
88.340 
88.250 
88.343 
88.658 
88.775 
88.775 
88.770 
88.726 
88.667 
88.672 
88.774 
88.767 
88.834 

salinity 

18 
28 
27 
31 
32 
29 
25 
33 
35 
35 
35 
35 
29 
30 
26 
25 

ag 412 ii 

3.712 
0.928 
1.193 
0.675 
0.398 
0.861 
1.796 
0.366 
0.235 
0.251 
0.267 
0.214 
0.877 
0.686 
1.271 
1.460 

Local time 
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Optical Measurements 

Weather conditions were favorable for the collection of water measurements of 

radiance and solar irradiance. Low winds and calm waters created surface water 

conditions without whitecaps that reflect light and negatively affect spectroradiometer 

measurements. Day one was completely overcast in the AM with clear afternoon skies, 

day two had clear skies. Figure 12 illustrates all Rrs spectra generated from in situ 

spectroradiometer field measurements. The data show the variability in optical conditions 

found in the study area, with Revalues at 555 nm ranging from .01 to .08 1/sr with 

changing in situ conditions. MODIS and SeaWiFS data were comparable across all 

stations (Fig. 17). Most variability was caused by spectroradiometer measurements of 

water reflectance. The variability in sky and placard measurements was negligible for 

most stations (data not shown). 

Remote sensing measurements of Rrs done with SeaWiFS and MODIS-Aqua 

compared well with field measurements (Fig. 18). Comparison between 

spectroradiometer and MODIS measurement values yielded R2= .87, with SeaWiFS 

showing only slight improvement (R = .89). These results are exceptional considering 

that only stations 06, SI, SI 3, and S14 were within two hours of a satellite overpass. 

Furthermore, these spectroradiometer measurements represent points within a 1 km2 pixel 

in a highly variable coastal environment, as opposed to the multi-spectral satellite sensor 

remote sensing measurement consisting of the mean of a 1 km pixel. 
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Figure 15. Absorption spectra of CDOM obtained from samples collected in the MS. 

Figure 16. ag412 vs. salinity from samples collected in the Mississippi sound, 
stations (data not shown). 
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Figure 17. Rrs data collected from in situ stations in the MS. 
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Figure 18. Comparison between field and remote sensing measurements of Rrs. Field and 
remote sensing images were collected on October 25 and 26, 2007. Linear equations 
developed using TableCurve v5. Note R2= .87 using MODIS data, and R2= .89 using 
SeaWiFS data. Spectroradiometer field data and corresponding Rrs sensor data show 
ranges of <0.025 1/sr. 



Algorithm Development 

Field spectroradiometer data and laboratory measurements of ag412 and salinity 

were used to develop empirical algorithms for the region, with best fit functions 

determined using TableCurve 2-D v5. The algorithms are based on the ratio of 510 nm to 

555 nm, valid only for SeaWiFS data. The ratio of 510 nm/555 nm was chosen because 

it had previously been successfully used in coastal waters of the Gulf of Mexico (Del 

Castillo & Miller, 2007), and SeaWiFS data are available since 1997, enabling the option 

of determining salinity for archived data. The SeaWiFS CDOM algorithm is a power 

function of the form 

ag(412) = 0.2953(Rrs 510/Rrs 555/4J464 

and the salinity algorithm is a linear function of the form 

salinity = 23.975(Rrs 510/Rrs 555) + 9.967 

SeaWiFS images (Fig. 19) of the Mississippi Sound from October 26, 2007, are provided. 

These images were processed using the Ocean Biology Processing Group at NASA 

Goddard Space Flight Center SeaDAS v5.4 software, and represent processing using the 

ag412 and salinity algorithms developed within this work. 

Conclusions 

Empirical algorithms were generated to estimate values of salinity and ag412 in 

the Mississippi Sound. The algorithms are based on the wavelength ratio of Rrs 510 to 

Rrs555. Comparisons between field and remote sensing measurements of Rrs are 

acceptable for both MODIS and SeaWiFS, with R2 values of .87 and .89, respectively. A 

small spectral bias exists between spectroradiometer and satellite remote sensing 

measurements, and between SeaWiFS and MODIS sensor products. Therefore, a multi-
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sensor approach can be used in the area to increase remote sensing coverage for salinity 

and CDOM, compensating for lack of coverage by either sensor caused by split-scene or 

other anomalies. 
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Figure 19. Remote sensing retrievals of ag412 and salinity based on empirical algorithms 
developed in this work. Images are based on SeaWiFS data collected on second 
collection day, and processed using SeaDAS v5.4. 
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CHAPTERV 

SUMMARY 

Spatial and temporal patterns in phytoplankton populations are a result of 

response to ecological conditions within their environment. In order to understand how 

blooms of phytoplankton, particularly potential HA species, form in the diverse and 

rapidly changing conditions present within the northern GoM we must work toward a 

better understanding of the conditions that create, maintain, and disperse these 

populations. The use of remote sensing data from sensors such as SeaWiFS have been 

shown to be of utility in other regions of the GoM, and this study shows their potential in 

this optically complex region. 

Chapter II analyzed the species composition of phytoplankton populations at 44 

sites in Mobile Bay from December 2004, through June 2006, and at 5 sites in the 

Mississippi Sound from July 2005 through June 2006. These sites encompassed the major 

hydrological regimes in Mobile Bay and its adjacent waters in the Mississippi Sound. The 

data set used in describing these relationships consisted of sampling stations ranging 

spatially from the north end of MB to Horn Island and Biloxi Bay in the eastern MS, and 

temporally over an 18 month period. This temporal period encompassed a complete 

annual seasonal cycle, and included the excess nutrient flows, drought, and 

environmental changes occurring due to the passages of Hurricane Katrina and Hurricane 

Rita during the months of August and September, 2005. In this study it is shown that 

salinity, total nitrogen, and total phosphorous are the most significant factors driving 

phytoplankton populations in this region. It is inferred that the combined Mobile-Tensaw 

and Biloxi-Pascagoula River discharge influences abiotic variables, which in turn 



50 

influence the composition of phytoplankton populations. Seasonal patterns are shown to 

exist, with diatoms and dinoflagellates exhibiting population peaks in the winter and 

spring months, and chlorophytes and cryptophytes peaking in the summer and fall 

months. These results have implications in future regional planning of MB and MS, 

allowing better understanding of relationships between waters in the region and how 

decisions made for one area may affect others. 

Chapter III investigated the utility of satellite data in the formation of a model for 

predicting the presence of the domoic acid producing diatoms of the genus Pseudo-

nitzschia. The model predicts the presence of water conditions allowing for the formation 

of Pseudo-nitzschia spp. blooms with an omission accuracy of 21%. It is computationally 

simple, uses satellite data input products that are provided without cost and obtained, 

processed, and extracted to usable form for model input with relative ease by imagery 

download from the NASA Ocean Color website. Also, the capacity exists for automation 

by computer programming, and adjustment for accuracy with changing environmental 

conditions if different regions of the collection territory need to be monitored. Members 

of this genus are commonly represented, sometimes in high numbers (<10 cells L"1), in 

phytoplankton collections undertaken by state health officials, fisheries management 

offices, and academic programs. The formation of this decision tree model allows a 

potential decision making tool to be made available for use by management officials to 

aid in the planning of collections and closure decisions. 

Chapter IV provides algorithms allowing for regional prediction of salinity and 

CDOM through the use of SeaWiFS Rrs products at 510 nm and 555 nm. The algorithm 

uses the inherent relationships between CDOM and salinity. This relationship is based on 
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freshwater input and subsequent region specific riverine input of organic and inorganic 

nutrients, particularly DOC. Therefore the efficacy of the algorithm is tied to unique 

properties of water and specific to a particular body of water, such as the Mobile Bay 

discharge into the MS. The model uses input from both in situ collections of an Ocean 

Optics Spectroradiometer and SeaWiFS derived Lw and Rrs values of a 510 nm/555 nm 

wavelength ratio to predict CDOM, applying a second algorithm to predict salinity. A 

high predictive value was achieved (R = .91) using simple linear equation applied to 

readily available satellite products. 

In conclusion, this study showed that remote sensing does have utility toward the 

efforts to monitor and predict location of phytoplankton blooms in the Case II waters of 

the northern GoM. The characterization of phytoplankton populations in the MS and MB 

and the understanding of the relationship between salinity, surface temperature, and 

species composition has allowed for the formation of a decision tree model that is driven 

completely by satellite data. This model provides another tool for potential use by 

managers to enhance decision making processes for phytoplankton monitoring networks 

in the region. Owing to the relationships between salinity and phytoplankton populations 

noted in Chapter I, and the use of SeaWiFS derived data products as input values to the 

decision tree developed in Chapter II, the development of predictive algorithms for 

salinity will enhance the prediction of phytoplankton populations through allowing an 

input parameter not available through present satellite data collections. 
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APPENDIX 

SPECIES LIST 

Class level identification was achieved for 9 of 13 class level taxa. Diatoms 

(including the Bacillariophyceae, Fragilariophyceae, and Coscinodiscophyceae) were 

identified to genus. Dinoflagellates were identified to genus and species when possible, 

and to genus when identification to species was not possible, with light microscopy. A 

total of 41 genera of diatoms and 27 genera of dinoflagellates with representatives of 

>67 species of dinoflagellates were recorded during the study. 

Class Level Taxa 

Chlorophyceae 
Prasinophyceae 
Euglenophyceae 
Chrysophyceae 
Cryptophyceae 
Bacillariophyceae 
Fragilariophyceae 
Coscinodiscophyceae 
Dinophyceae 
Dictyophyceae 
Raphidophyceae 

Diatom 
Genera 

Bacillaria 
Bacteriastrum 
Cylindrotheca 
Cymbella 
Diploneis 
Gyrosigma 
Haslea 
Hemiaulus 
Navicula 
Nitzschia 
Pleurosigma 
Pseudo-nitzschia 



Actinoptychus 
Chaetoceros 
Coscinodiscus 
Cyclotella 
Dactylosolen 
Ditylum 
Eucampia 
Guinardia 
Leptocylindrus 
Lithodesmium 
Melosira 
Odontella 
Paralia 
Pseudoguinardia 
Rhizosolenia 
Proboscia 
Pseudosolenia 
Skeletonema 
Stephanopyxis 
Thalassiosira 
Asterionella 
Asterionellopsis 
Cymatosira 
Fragilaria 
Lioloma 
Rhaphoneis 
Striatella 
Synedra 
Tabellaria 
Thalassionema 

Dinoflagellate 
Genera/species 

Akashiwo sanguinea 
Amphidinium carterae 
Amphidinium rotundata 
Amphidiniopsis kofoidii 
Ceratiumfurca 
Ceratium fusus 
Ceratium hircus 
Ceratium lineatum 
Ceratium trichoceros 
Ceratium tripos 
Cochlodinium sp. 
Dinophysis acuta 
Dinophysis acuminata 
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Dinophysis caudata 
Dinophysis sp. 
Diplopsalis lenticula 
Gonyaulax digitate 
Gonyaulax minima 
Gonyaulax polygramma 
Gonyaulax spinifera 
Gonyaulax sp. 
Gyrodinium estuariale 
Gyrodinium simplex 
Gyrodinium spirale 
Heterocapsa rotundata 
Heterocapsa sp. 
Heterocapsa triquetra 
Karenia brevis 
Karenia mikimotoi 
Karenia sp. 
Karlodinium veneficum 
Katodinium glaucum 
Kryptoperidinium foliaceum 
Lingulodinium sp. 
Noctiluca scintillans 
Oxyphysis oxytoxoides 
Oxytoxum scolopax 
Paleophalacroma sp. 
Pheopolykrikos hartmannii 
Podolampas palmipes 
Polykrikos kofoidii 
Polykrikos schwartzii 
Prorocentrum compressum 
Prorocentrum conicum 
Prorocentrum emarginatum 
Prorocentrum gracile 
Prorocentrum mexicanum 
Prorocentrum micans 
Prorocentrum minimum 
Prorocentrum scutellum 
Prorocentrum triestinum 
Prorocentrum sp. 
Protoperidinium conicum 
Protoperidinium crassipes 
Protoperidinium depressum 
Protoperidinium divergens 
Protoperidinium grande 
Protoperidinium leonis 
Protoperidinium oblongum 
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Protoperidinium pellucidum 
Protoperidinium pentagonum 
Protoperidinium quinquecorne 
Protoperidinium steidingerae 
Protoperidinium sp. 
Pyrophacus horologium 
Scripsiella trochoidea 
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