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ABSTRACT 

In this work, we study the use of modern portfolio theory in a cost-risk analysis of the 
Electric Reliability Council of Texas (ERCOT). Based upon the risk-return concepts of 
modern portfolio theory, we develop an n-asset minimization problem to create a risk-cost 
frontier of portfolios of technologies within the ERCOT electricity region. The levelized cost 
of electricity for each technology in the region is a step in evaluating the expected cost of 
the portfolio, and the historical data of cost factors estimate the variance of cost for each 
technology. In addition, there are several constraints in our minimization problem to account 
for real-world limitations. Using certain scenario data given by the National Renewable 
Energy Laboratory (NREL) and ERCOT, we analyze the efficient frontier of technology 
mixes for risk reduction of cost. 
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Chapter 1 

INTRODUCTION 

In finance and business, minimizing cost is a constant dilemma [4]. This dilemma is no 
stranger to the sector of energy, where electrical grids that give power to consumers must 
factor demand based on the capacity of generating power. Electricity is a necessary part 
of our modern lives, and the plants that distribute this power do so based on the different 
electrical generating technologies in the region, such as the availability of wind, gas, or nuclear 
power. In fact, many regions share the electricity produced in one area through transmission 
lines. An electricity grid pools power from a variety of resources into a power plant and 
distributes that power to consumers. Every electricity grid has a maximum capacity that 
the system can deliver reliably. This capacity can differ year to year based on the reliability 
and capacity of its mix of generating technologies. These technologies have operating costs, 
and much like many business operations, to minimize cost is an optimization problem of 
generating technology mixes. 

Common methods to optimize generating technologies in an electrical grid come from the 
methods of demand side management (DSM) [5]. Demand side management methods are used 
in electrical systems to manage demand of electricity by incentivizing consumers and creating 
more energy efficiency. For example, when demand for electricity is low, management will 
conserve that energy generated at that time for when demand for energy is higher. In addition, 
some technologies are more costly and have more associated risk than other technologies. 
Natural gas and other fossil fuel prices fluctuate, and the risk associated with this fluctuation 
can affect the cost of producing electricity from those resources. In addition to minimizing 
costs, many countries have opted to progress toward greener energies by implementing green 
energy initiatives to increase the reliability of renewable resource on the electrical grid. With 
green energy in mind, the shift in the reliance of fossil fuels in the grid capacity is forecasted 
to favor renewables. Reactively, reducing CO2 emissions is now a major goal in the energy 
sector of many countries and adds constraints to minimize the emissions caused by generating 
technologies that rely on fossil fuels and other non-renewable resources. 

Optimization techniques used in demand side management are varied and numerous. 
Deterministic, stochastic, and hybrid techniques are umbrella terms for a plethora of opti-

mization techniques, their use dependent upon factors such as maximization or minimization 
of a particular factor, cost factors to observe, and technologies to emphasize in analysis. 
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Figure 1.1 : Optimization Techniques in DSM Tree Diagram [5] 

Deterministic strategies deliver a clear option for the optimization of a system, and many 
rely on linear or nonlinear programming. However, deterministic models do not factor in the 
uncertainty that can arise in real-world problems like stochastic models. Stochastic models 
allow for uncertainty and unpredictability that produces a variety of solutions. Stochastic 
models can make use of fuzzy parameters and heuristic models that use artificial intelligence. 
Hybrid techniques combine characteristics of both deterministic and stochastic models 
that include improvements to the system, depending on the problem at hand. A hybrid 
technique can account for the uncertainty in real-world factors while giving a definitive 
solution, resulting in a method that is often more adaptable and efficient than deterministic 
or stochastic alone. A list of deterministic, stochastic, and hybrid techniques are described 
and compared comprehensively in 2023 by Bakare, Abdulkarim, Zeeshan, and Shuaibu in 
their article "A comprehensive overview on demand side energy management towards smart 
grids: challenges, solutions, and future direction" [5]. Figure 1.1 shows the tree diagram of 
different optimization techniques compared in the article. 
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In this paper, we will take an entirely different approach to optimizing the cost of 
generating technologies within an electrical grid. Instead of looking at only one solution or 
observing only one particular set of optimal technology mixes, we want to create a collection 
of feasible solutions that emphasize the relationships between a technology’s cost and the risk 
of cost associated with operating that technology within the electrical grid. In other words, 
we are using a form of optimization through mean-variance analysis. A particular method of 
mean-variance analysis is often applied in finance when trading different stocks with different 
risks and returns. Modern portfolio theory (MPT), developed by Harry Markowitz in 1952, 
is a framework by which we will study in order to create this collection of feasible solutions. 

1.1 A Brief Introduction to Modern Portfolio Theory 

Also known as Markowitz portfolio theory or the Markowitz model, modern portfolio 
theory is a model that produces a collection of possible efficient portfolios that are categorized 
by their expected return at a certain level of risk. Let us begin with a few definitions. In 
finance, a portfolio is a collection of investments, such as stocks in the New York Stock 
Exchange (NYSE) or bonds and mutual funds. Returns refer to the value of the investment at 
a particular time. In trading stocks, we observe the difference in closing prices of a particular 
time period to calculate the return on the investment. Risk is the chance of losing money on 
an investment. An investor will buy only a certain amount of a particular stock to create 
their portfolio, and by using modern portfolio theory, the investor wishes to create an optimal 
mix of investments to reduce risk but maximize return on their investments. These optimal 
portfolios create what is called the efficient frontier, from which an investor may choose a 
particular portfolio based on their aversion to risk. Likewise, one may use the concept of 
MPT to analyze the cost-risk relationship of a collection of assets. In this paper, those assets 
are our generating technologies in an electrical grid, where we analyze the cost and the risk 
associated with the cost. 

1.2 Related Works in Optimization 

Many methods have been used to minimize costs, but applications of MPT have begun 
to emerge outside of investment problems. One such novel application was determined by a 
former University of Southern Mississippi student David Patterson, under the supervision 
of his advisor Dr. Haiyan Tian, in his master’s thesis work titled Using Modern Portfolio 
Theory to Analyze Virgil’s Aeneid (or Any Other Poem). In his work, he analyzes literature 
using modern portfolio theory to find an optimum writing structure [14]. While Patterson’s 
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work represents one of many potential novel ways to use MPT outside of finance, we will 
continue our research with applications in electricity grids. 

As one of the first to use modern portfolio theory in this nature in 2007, Awerbuch and 
Yang apply MPT to produce an evaluation of the projected 2020 European Union-Business-

as-Usual (EU-BAU) electricity generating mix [3]. In their paper, the goal was to reduce cost 
and market risk as well as CO2 emissions by identifying alternative generating portfolios 
and strategies. In addition, Awerbuch and Yang emphasized that technologies contributing 
to an electrical grid must be analyzed in terms of overall portfolio cost instead of individual 
cost. Modern portfolio theory helped them identify the contribution of overall cost relative 
to the contribution of the overall risk in a portfolio of generating technologies. Further, 
technologies are characterized by cost streams, meaning each technology cost will have cost 
factors or inputs. From their study, they found that the operating cost of a generating 
system with more wind will fluctuate less from year to year than a system with no wind. In 
addition, they detailed how to use cost factors, the standard deviations of components, and 
the correlation of components in their optimization model. As the pioneers of using MPT to 
optimize electricity grids, Awerbuch and Yang helped determine another feasible method of 
cost analysis. 

In 2021, Arévalo, Paz, and Gomez propose the use of modern portfolio theory to analyze 
the electricity grid in Germany [2]. In their paper, they describe the characteristics of the 
German electricity mix and predict the evolution of the grid for Germany’s current transition 
to cleaner energy. In forecasting for the years 2030, 2040, and 2050, they emphasize public 
health, pollution, and the cost of electricity to the consumer. From their analysis, they 
determined that the proportion of green energy to the proportion of fossil fuels will change 
significantly, with 90% of the grid capacity generated from green energy by 2050. The use of 
green energy is expected to increase while the use of conventional energy sources such as 
fossil fuels are expected to decrease. This paper describes how MPT was used to create a 
sustainable production of energy, minimize the dependence on external sources, reduce air 
pollution, diversify production of energy with wind and solar, and provide energy security to 
Germany consumers and suppliers. 

As another group of researchers to use modern portfolio theory in 2021, Castro, Regner, et. 
al. analyze generating electricity portfolios for energy economics in Brazil [6]. In their paper, 
they propose a number of improvements to the basic Markowitz optimization model applied 
to optimizing an electrical grid with only variable renewable energy sources. These changes 
include: changing the measure of risk by incorporating a constraint to obtain portfolios that 
maintain a minimum generation level at a given risk; minimizing the standard deviation 
of electricity balance instead of electricity generation; incorporating load into the model as 
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a power plant with negative production. These improvements made significant differences 
when compared to the basic model. Portfolios from the improved model resulted in lower or 
equal costs than the basic model and different costs for all levels of risk. In addition, adding 
demand to the model increased the sharing capacity of photovoltaic solar power. Lastly, they 
emphasize the importance of diversification in their model to help reduce risk of costs. This 
paper is a study on obtaining an optimal portfolio on only renewable resources, excluding 
non-renewable resources such as fossil fuels. Therefore, the experiment is not indicative of 
the entire electricity grid of Brazil; instead, it emphasizes an analysis on a particular resource 
to determine the costs and risks if included into the overall grid capacity. 

In this paper, we study the application of mean-variance analysis to a cost-risk analysis 
of technologies that supply electricity to the electrical grid of a particular servicing agency. 
Since the state of Texas has an independent electrical grid to the United States, the region 
of this service area provides for a small region of interest to conduct our study while still 
maintaining much of the same available country technology data of the US. The Electric 
Reliability Council of Texas (ERCOT) provides electricity to over 90% of the Texas state 
region [10]. The objective is to minimize the risk of costs for a mixture of different generating 
technologies that provide electricity to the region: natural gas, coal, wind, nuclear, and solar. 
From year to year, each of these technologies share different capacities of the electrical grid 
based on demand for power. Minimizing risks associated with the cost of each technology 
helps manage costs for both the electricity provider and the customers who rely on them for 
such services over the years. 

The next chapters of this paper lay out our study of modern portfolio theory to the 
application to finance and the application to the ERCOT electricity grid. Chapter 2 begins 
with a short study of MPT for different finance applications using stocks from the NYSE, 
where we define the basic definitions and theoretical analysis of the Markowitz model and 
end with the application of the model to two different sets of stocks. Chapter 3 lays the 
ground work for our application of finding efficient portfolios of technology mixes by defining 
the model in the n-asset case. Chapter 4 is our cost-risk analysis of the ERCOT region using 
MPT. With redefining equations to cost and risk instead of return and risk, we develop an 
efficient frontier of feasible technology portfolio mixes using available energy data. Results 
and conclusions follow the analysis and calculations. 
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Chapter 2 

PORTFOLIO ANALYSIS OF TWO ASSETS 

2.1 Definitions and Theoretical Analysis 

An efficient portfolio is one that has either more return than any other portfolio with the 
same risk, or is one that has less risk than any other portfolio with the same return. We will 
observe efficient portfolios in the risk and return space, denoted [σ, E(r)]. In this chapter, 
we define the return, risk, covariance,and the correlation coefficient between only two assets. 

In our portfolio analysis, we seek to find the optimum balance between risk and return in 
an investment portfolio. 

Definition 2.1.1. The expected rate of return on a two-asset portfolio is defined as the 
expected value on a return of a two-asset portfolio, where the return is a weighted average of 
the return on the first and second portfolio. 

The expected return of the portfolio is denoted as 

E(r p) = w1E(r1) + w2E(r2), (2.1) 

where the weights w1, w2 ∈ [0, 1] and w1 + w2 = 1. 

Definition 2.1.2. The risk, 
 
σ2 
p, of a two-asset portfolio is the variability of the return, rp 

of the portfolio and is measured by the standard deviation of the returns. We can define the 
risk of the return ri for any asset i ∈ N in our list of assets by first defining the variance of 
returns, where S is the number of states that occur. 

σ 2 
i = E[ri − E(ri)] 2 = 

S 

s=1 
ws[rs − E(ri)] 2 (2.2) 

σ 2 
i = E[(ri − E[ri])(ri − E[ri])] 

= E[r 2 
i − 2riE[ri] + (E[ri]) 2] 

= E[r 2 
i ] − 2(E[ri])2 + (E[ri]) 2 

σ 2 
i = E[r 2 

i ] − (E[ri]) 2 
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If we consider a two-security portfolio, then we have (w1r1 + w2r2) = rp, and by substituting 
this into Equation (2.2), we can derive the risk of portfolio p 

σ 2 
p = E[r p − E(r p)] 2 = E{w1r1 + w2r2 − [w1E(r1) + w2E(r2)]}2 

= E{w1[r1 − E(r1)] + w2[r2 − E(r2)]}2 

= E{w 2 
1[r1 − E(r1)] 2 + w 2 

2[r2 − E(r2)] 2 + 2w1w2[r1 − E(r1)][r2 − E(r2)]} 

= w 2 
1 E[r1 − E(r1)] 2 + w 2 

2 E[r2 − E(r2)] 2 + 2w1w2E{[r1 − E(r1)][r2 − E(r2)]} 

σ 2 
p = w 2 

1 σ 2 
1 + w 2 

2 σ 2 
2 + 2w1w2σ12. (2.3) 

The risk for a portfolio p is now denoted as  
σ2 
p = 

 
w 2 
1 σ

2 
1 + w 2 

2 σ
2 
2 + 2w1w2σ12, (2.4) 

where σ12 is the covariance. 

Definition 2.1.3. The covariance is defined as a statistical measure of the association 
between two random variables and is applied when the price movement of one asset is 
associated with another asset. 

Cov(ri, rj) or σ ij := E[ri − E(ri)][rj − E(rj)] (2.5) 

Definition 2.1.4. Using the definition of covariance, we can define the correlation coefficient. 
Let X be the vector of return data for asset 1 and let Y be the vector of return data for asset 
2, i.e. X = {xi|i = 1, ..., n and n ∈ N} and Y = {yi|i = 1, ..., n and n ∈ N}. 

Pearson’s Correlation Coefficient 
The Pearson’s correlation coefficient can be written in the form 

ρ12 = 
cov(XY ) 
σ1σ2 

, (2.6) 

where ρ12 is the correlation between asset 1 data and asset 2 data, σ1 is the standard deviation 
of asset 1 data, and σ2 is the standard deviation of asset 2 data. By rewriting the correlation 
coefficient using the derivation of covariance from Equation (2.5), σ1, and σ2, we obtain 

ρ12 =
E[XY ] − E[X]E[Y ] 

E[X2] − [E[X]]2 
 
E[Y 2] − [E[Y ]]2 
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Rewriting the Pearson’s correlation coefficient for data sets {xi}, {yi} from i = 1, ..., n where 
n is the sample size and ¯ x, ¯ y are the sample mean for variables x and y respectively is shown 
in the derivation of Equation (2.7). 

ρ12 = 
 n 

i=1(xi − x̄)(yi − ȳ) n 
i=1(xi − x̄)2 

 n 
i=1(yi − ȳ)2 

= 
 n 

i=1(xiyi − xi ̄y − x̄yi + x̄ȳ) n 
i=1(xi − 2xi ̄x + x̄ 2) 

 n 
i=1(yi − 2yi ̄y + ȳ 2) 

ρ12 =

 n 
i=1(xiyi) − nx̄ȳ  

( 
 n 

i=1 x 2 
i − nx̄2) 


( 
 n 

i=1 y 2 
i − nȳ2) 

(2.7) 

In addition, the covariance can be defined in terms of the correlation coefficient and 
standard deviations of each asset, i.e. σ12 = ρ12σ1σ2. When observing the efficient frontier of 
portfolios in the [σ, E(r)] space, we expect to see concavity due to the covariance effect. The 
covariance effect occurs due to the typical correlation between two portfolios being between 
−1 and 1, i.e. −1 < ρ12 < 1. 

To find the optimum balance between risk and return, we utilize all statistics defined 
above and minimize the variance of the portfolio. The weights that minimize a portfolio’s 
variance can be found through standard calculus by taking the derivative of Equation (2.3) 
with respect to each weight w1 and w2: 

∂σ2 
p 

∂w1 
= 

∂ 
∂w1 

[w 2 
1 σ 2 

1 + (1 − w1) 2 σ 2 
2 + 2w1(1 − w1)σ12] 

= 2w1σ 2 
1 − 2(1 − w1)σ 2 

2 + 2(1 − 2w1)σ12 

w1 = 
σ2 
2 − σ12 

σ2 
1 + σ2 

2 − 2σ12 

w2 = 1 − w1 = 
σ2 
1 − σ12 

σ2 
1 + σ2 

2 − 2σ12 

2.2 Case 1: Mean-Variance Analysis of Two Clean Energy Stocks 

In our first mean-variance analysis of two assets, we wish to understand the mechanisms 
of modern portfolio theory by analyzing a pair of assets that would likely have a fairly positive 
correlation. Now we will consider two clean energy stocks traded under the New York Stock 
Exchange (NYSE). Founded in 2019, Maxeon Solar Technologies, Ltd. is a company that 
designs, manufactures, and sells solar technology. As one of the leading solar farms, Maxeon 
has locations across the globe to help expand solar energy. Maxeon stock is abbreviated to 
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MAXN, as will henceforth be referenced. Founded in 2011, Brookfield Renewable Partners, 
L.P. is a partnership that owns and operates renewable resource assets. Brookfield stock is 
abbreviated to BEP, as will henceforth be referenced. 

Figure 2.1 : MAXN and BEP Closing Share Prices 2020-2023 

Figure 2.1 shows the daily closing share price of each stock from August 14, 2020 to 
August 29, 2023. The data in Figure 2.1 is downloaded directly into Excel from the NASDAQ 
website. Figure 2.2 shows the monthly returns for both MAXN and BEP stocks up to 
thirty-six months from August 2020 to August 2023. The first closing price of each month 
was extracted and used to calculate the monthly returns for each stock. Only the most recent 
three years were collected because of the short existence of Maxeon Solar Technologies. 

To determine the distribution of each monthly return stock data, we conduct both a 
graphical analysis as well as a normality test. From Figures 2.3 and 2.4, we see that both 
monthly returns for each stock appear to have a normal Gaussian distribution. To confirm 
our conclusions of the graphical analysis, we use the Shapiro-Wilks normality test in the 
programming language Python. In the Shapiro-Wilks normality test, we can test if a data 
set is normally distributed by calculating the equation 

W = 
( 
 n 

i=1 ai(xn+1−i − xi))2  n 
i=1(xi − x̄)2 , (2.8) 

where W is the significant value we compare with the chosen alpha. Weights ai are specified 
based on the pre-defined Shapiro-Wilks weight table, and {xi|i = 1, ..., n and n ∈ N} are 
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Figure 2.2 : MAXN and BEP Monthly Returns 2020-2023 

the n number of data points of the variable we are testing, sorted from least to greatest in 
value. Our null hypothesis is that the data set is normally distributed. Table 2.1 shows the 
statistics calculated with the Shapiro-Wilks normality test in Python. With the alpha level 
set to 0.05, we compare the significant value of each data set. MAXN stock has a significant 
p value of 0.986, which is greater than our alpha value of 0.05. Similarly, BEP stock has a 
significant p value of 0.796, which is greater than our chosen alpha value of 0.05. Therefore, 
we fail to reject the null hypotheses that each of the data sets are normally distributed. 

Table 2.1 : Shapiro-Wilks Normality Test Statistics Table 
Statistic Degree of Freedom Significant Value 

MAXN 0.990 35 p=0.986 
BEP 0.982 35 p=0.796 

Let X be the vector (x1, ..., xn) of share prices for the MAXN common stock and Y 
be the vector (y1, ..., yn) share prices for the BEP common stock, where n = 36. We can 
calculate the correlation of these stocks by the Pearson Correlation Coefficient: 

ρ12 = 
 n 

i=1(xi − x̄)(yi − ȳ) n 
i=1(xi − x̄)2 

 n 
i=1(yi − ȳ)2 

(2.9) 

Then the correlation between common stocks MAXN and BEP is ρ12 = 0.481. Since this 
value is relatively close to 0.5, we can say that the two stocks share a significant level of 
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Figure 2.3 : Histogram of MAXN Monthly Return 

Figure 2.4 : Histogram of BEP Monthly Return 

positive correlation, meaning that they move similarly in the market. Figure 2.5 graphs the 
monthly returns of each stock as points to show the correlation between each stock. Note 
how the linear regression line illustrates that the stocks have a positive correlation. 

Using Excel Spreadsheet, we calculated the average monthly returns, monthly variance, 
average yearly returns, and yearly variances for each stock observed. We calculate returns 
for each month by r = (P1−P0) 

P0
where r is the monthly return, P0 is the starting purchase 

price and P1 is the purchase price of the next month. Then (P1 − P0) is the price change in 
a month. Then we find the average return for each month over 3 years, adding the return of 
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Figure 2.5 : Correlation between MAXN and BEP Monthly Returns 

Table 2.2 : Returns and Variances from Monthly Share Prices 
MAXN BEP 

Average Monthly Return 1.5566% 0.2548% 
Monthly Variance 7.8595% 0.7300% 

Average Yearly Return 18.6791% 3.0578% 
Yearly Variance 94.3173% 8.7597% 

each month and dividing by the number of months. Then we calculate the returns of each 
month as follows: 

R1 = (r1, ..., rn−1) where ri = 
xi − xi−1 

xi−1 
, i = 1, ...n − 1 are the monthly returns of MAXN 

R2 = (r̃1, ..., ̃rn−1) where r̃i = 
yi − yi−1 

yi−1 
, i = 1, ...n − 1 are the monthly returns of BEP 

The average yearly return is the average monthly return multiplied by 12 (the number of 
months in a year), i.e. r1 = ¯ R1 · 12 and r2 = ¯ R2 · 12 .The results of these calculations are 
observed in Table 2.2. 

Let µ1 be the mean of monthly returns of R1, and µ2 the mean of monthly returns of R2. 
The variance of each common stock is found through the formulas: 

σ 2 
1 = 

 
n−1 

i=1 
(ri − µ1)

2 

 

/(n − 1), σ 2 
2 = 

 
n−1 

i=1 
(r̃i − µ2)

2 

 

/(n − 1) (2.10) 
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Through calculating the variances from the data, we obtain σ2 
1 = 0.9299 and σ2 

2 = 0.08636. 
From Definition 2.1.3, we define the covariance in terms of the correlation coefficient and 
standard deviations of each asset: 

σ12 = ρ12σ1σ2 = 0.481( 
√ 
0.9299)( 

√ 
0.08636) = 0.1343 

The two-asset portfolio variance σ2 
p , as denoted in Equation (2.3), can be written as a 

matrix:  
+w1w1σ11 +w1w2σ12 
+w2w1σ21 +w2w2σ22 

 

Table 2.3 is the variance-covariance matrix, calculated by using the average yearly returns of 
18.6791% and 3.0578% for MAXN and BEP stock respectively. By looking at the covariance 
between MAXN and BEP, we see that the returns move in the same directions, i.e. both 
stocks appear to increase over time. The matrix also confirms that the covariance of a 
variable with itself is positive. 

Table 2.3 : Variance-Covariance Matrix 
MAXN BEP 

MAXN 0.9299 0.1343 
BEP 0.1343 0.08636 

For the optimal weighted risky portfolio, we minimize the variance by solving for the 
weights. We take the derivative with respect to w1 using Equation (2.3): 

∂σ 2 
p 

∂w1 
= 

∂ 
∂w1 

[w 2 
1 σ 2 

1 + (1 − w1) 2 σ 2 
2 + 2w1(1 − w1)σ12] 

= 2w1σ 2 
1 − 2(1 − w1)σ 2 

2 + 2(1 − 2w1)σ12 

Solving for w1, 

w1 = 
σ2 
2 − σ12 

σ2 
1 + σ2 

2 − 2σ12 
(2.11) 

= 
(0.08636) − (0.1343) 

(0.9299) + (0.08636) − 2(0.1343) 
Solving for w2, 

w2 = 
σ2 
1 − σ12 

σ2 
1 + σ2 

2 − 2σ12 
(2.12) 

= 
(0.9299) − (0.1343) 

(0.9299) + (0.08636) − 2(0.1343) 
The minimum variance portfolio weights for the risky portfolio is 

w1 = −0.064 w2 = 1.064 
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Using Equation (2.1) with these weights, E(rp) = −0.064(0.186791) + 1.064(0.030578) = 
0.0205 = 2.05%. 

Calculating the standard deviation: 

σp = 
 
w 2 
1 σ

2 
1 + w 2 

2 σ
2 
2 + 2w1w2σ12 

σ p = 
 
−0.0642(0.9299) + 1.0642(0.08636) + 2(−0.064)(1.064)(0.1343) 

σ p = 0.2889 = 28.89% 

Figure 2.6 : Efficient Frontier 1 for MAXN and BEP 

Figure 2.6 displays the opportunity curve of efficient and inefficient portfolios in the risk 
and return space [σ,E(r)]. The minimum variance portfolio occurs at the point (0.02, 0.28) 
for which we know has a negative weight. For a negative weight to be present, short sales 
must be allowed. Short sales occur when an investor borrows shares of an asset and sells 
them in anticipation that the price will fall in order to buy back the share for cheaper to 
make a profit and pay back what was borrowed. Although short selling stock shares is legal 
in the U.S., there have been times when short selling was temporarily banned, such as in the 
2008 financial crisis. If short selling is not allowed, then the weights must be constrained to 
w1, w2 > 0. In this case, we must only look at portfolios within the efficient frontier that 
come from nonnegative weights. To observe when a negative weight may occur, we see from 
the numerator in Equation (2.11) of minimizing w1 of the minimum variance portfolio that 
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σ 2 
2 − σ12 = σ 2 

2 − σ2ρ12σ1 

= σ 2 
2 

 
1− ρ12 

σ1 

σ2 

 

To determine when a negative weight would occur, we observe that  
1− ρ12 

σ1 

σ2 

 
< 0 ⇒ ρ12 > 

σ2 

σ1 
(2.13) 

We observe that a negative weight occurs when the correlation between the returns for each 
asset is sufficiently positive. Using the variances of MAXN and BEP, 

σ1 = 
√ 
0.9299 = 0.9643, σ2 = 

√ 
0.08636 = 0.2939 

σ2 

σ1 
= 

0.2939 
0.9643 

= 0.305 < ρ12 = 0.481 

Figure 2.7 : Efficient Frontier 2 for MAXN and BEP 

Figure 2.7 displays the efficient frontier of possible portfolios for MAXN and BEP stocks 
with weights constrained to be nonnegative. If we constrained the weights to the nearest 
nonnegatives, we would use 

w1 = 0 and w2 = 1. 

Using these weights, we again use Equation (2.1) to find the expected return: 

E(r p) = 0(0.186791) + 1(0.030578) = 0.030578 
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Similarly, we calculate the standard deviation: 

σp = 
 
w 2 
1 σ

2 
1 + w 2 

2 σ
2 
2 + 2w1w2σ12 

σ p = 
 
02(0.9299) + 12(0.08636) + 2(0)(1)(0.1343) 

σ p = 29.39% 

Then we have invested into the BEP stock entirely and our return is the average yearly return 
of BEP at 3.06% and our risk is the variance of the BEP monthly returns at approximately 
29.39%. Different weights give different risks and returns, and the efficient frontier shows how 
each pairs of weights affect the optimal portfolio. From our observations of the daily share 
price for each stock in Figure 2.1, we see that it is reasonable to assume investment into only 
BEP would give us the minimum risk with max return. With respect to the volume of each 
stock, the daily share price of BEP stays above MAXN share prices for most of the time. 
Despite both stocks being clean energy stocks, there may be other factors not considered in 
this study that affect MAXN monthly returns. This conclusion brings to light one of the 
distinct caveats of using Modern Portfolio Theory to minimize risk in an investment. 

2.3 Case 2: Mean-Variance Analysis of Two Opposing Stocks 

Next, we will consider two stocks of different origin. Founded in 1999, First Solar Energy 
is a sustainable energy stock whose company is an American-based leading manufacturer of 
solar panels. In contrast, Sentinel One stock is an artificial intelligence stock founded in 2013 
whose company delivers cybersecurity methods run by their patented AI modeling. In the 
NYSE, First Solar Energy is abbreviated by FSLR and Sentinel One is abbreviated by S, by 
which they will henceforth be referenced. Collecting stock data from the official NASDAQ 
website, each stock has a different length of data based on how much previous data from 
the past 5 years were collected from the NYSE. The stock for FSLR begins in September of 
2018, while the stock for S starts in July of 2021. Therefore, we concatenate FSLR stock to 
July of 2021 to have the same length of data. 

Figure 2.8 illustrates the closing share price in USD of each stock from July 31, 2021 
until September 5, 2023. The green line represents FSLR stock and shows a drastic decrease 
in closing price before steadily increasing again later. S stock is shown by the yellow line and 
describes how the stock settled with low closing prices relative to FSLR before increasing 
price near 2023. The data is downloaded directly into Excel, where the monthly returns for 
both FSLR and S stocks are calculated from July 2021 to September 2023. We calculate 
returns for each month by r = (P1−P0) 

P0
where r is the monthly return, P0 is the starting 

purchase price and P1 is the purchase price of the next month. Then (P1 − P0) is the price 
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Figure 2.8 : FSLR and S Closing Share Prices 2021-2023 

Figure 2.9 : FSLR and S Monthly Returns 2021-2023 

change in a month. Then we find the average return for each month over 2 years, adding the 
return of each month and dividing by the number of months. Then we calculate the returns 
of each month as follows: 

R1 = (r1, ..., rn−1) where ri = 
xi − xi−1 

xi−1 
, i = 1, ...n − 1 are the monthly returns of FSLR 

R2 = (r̃1, ..., ̃rn−1) where r̃i = 
yi − yi−1 

yi−1 
, i = 1, ...n − 1 are the monthly returns of S 

The average yearly return for FSLR, r1, and the average yearly return for S, r2, is the average 
monthly return multiplied by 12, i.e. r1 = ¯ R1 · 12 and r2 = ¯ R2 · 12 respectively. The results 
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of these calculations are observed in Table 2.5. Figure 2.9 shows the monthly returns for 26 
months; FSLR is again in green while S is in yellow. 

To determine the distribution of each monthly return stock data, we again conduct 
both a graphical analysis as well as a normality test. From Figures 2.10 and 2.11, we see 
that stock S monthly returns appear to have a normal Gaussian distribution; however, it is 
difficult to determine whether stock FSLR distribution is normal. To confirm our conclusions 
from the graphical analysis, we use the Shapiro-Wilks normality test in Python. Using the 
same equation as Equation (2.8) in the two clean energy stocks case, we can test if a data 
set is normally distributed by calculating the equation with our new opposing stock data 
with 26 data points where W is the test statistic we compare with the chosen alpha. Our 
null hypothesis is that the data set is normally distributed. Table 2.4 shows the statistics 
calculated with the Shapiro-Wilks normality test in Python. With the alpha level at 0.05, 
we compare each statistical value to determine whether the data shows normality. Table 2.4 
displays the statistical values calculated and the p value compared to the alpha. As seen 
from Table 2.4, the p-value of FSLR data is just barely above our chosen alpha of 0.05, but 
we still fail to reject the null hypthesis. Then the monthly return data for FSLR is normally 
distributed. The p-value of S data is 0.442, which is well above our alpha 0.05. Then we 
can safely reject the null hypothesis and declare that S monthly return data is also normally 
distributed. 

Figure 2.10 : Histogram of FSLR Monthly Return 

Let X be the vector (x1, ..., xn) of monthly returns for the FSLR common stock and 
Y be the vector (y1, ..., yn) of monthly returns for the S common stock, where n = 26. We 
can calculate the correlation of these returns by the same Pearson Correlation Coefficient 
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Figure 2.11 : Histogram of S Monthly Returns 

Table 2.4 : Shapiro-Wilks Normality Test Statistics Table FSLR & S 
Statistic Degree of Freedom Significant Value 

FSLR 0.928 26 p=0.069 
S 0.962 26 p=0.442 

defined in Equation (2.7). Then the correlation between common stocks FSLR and S is 
ρ12 = 0.3474. Since this value is close to 0, we cannot say that these two stocks have a high 
positive correlation. Figure 2.12 plots the monthly returns of FSLR and S stocks as points. 
The linear regression fit shows how little correlation occurs between these two stocks. 

Figure 2.12 : Correlation between FSLR and S Monthly Returns 
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Table 2.5 : Returns and Variances from Monthly Share Prices 
FSLR S 

Average Monthly Return 3.86% -1.74% 
Monthly Variance 2.34% 2.93% 

Average Yearly Return 46.27% -20.88% 
Yearly Variance 28.14% 35.12% 

Let µ1 be the mean of monthly returns of FSLR, and µ2 the mean of monthly returns of 
S. The variance is calculated using the same formula from Equation (2.3). By calculating the 
variances from the data, we obtain σ2 

1 = 0.2705 and σ2 
2 = 0.3377. From Definition 3.1.2, we 

define covariance in terms of the correlation coefficient and standard deviations of each asset: 

σ12 = ρ12σ1σ2 = 0.3474 
√ 
0.2705 

√ 
0.3377 = 0.105 

Table 2.6 is the variance-covariance matrix for FSLR and S stock, calculated by using the 
average yearly returns of for FSLR and S stock respectively. By looking at the covariance 
between each stock, we see that the returns move in the same directions, i.e. both stocks 
appear to increase over time. 

Table 2.6 : Variance-Covariance Matrix 
FSLR S

FSLR 0.2705 0.105 
S 0.105 0.3377 

  

For the optimal weighted risky portfolio, we first minimize the variance to find the 
minimum variance portfolio (MVP). We solve for the weights and take the derivative with 
respect to weight 1 (w1) again using Equation (2.3). 
Solving for w1, we obtain: 

w1 = 
σ2 
2 − σ12 

σ2 
1 + σ2 

2 − 2σ12 
= 

(0.3377) − (0.105) 
(0.2705) + (0.3377) − 2(0.105) 

Solving for w2, we obtain: 

w2 = 
σ2 
1 − σ12 

σ2 
1 + σ2 

2 − 2σ12 
= 

(0.2705) − (0.105) 
(0.2705) + (0.3377) − 2(0.105) 

The approximate minimum variance weights for the minimum variance portfolio are calculated 
to be: 

w1 = 0.5843, w2 = 0.4156 
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Next, using the expected return Equation (2.1) with these weights we obtain: 

E(r p) = 0.5843(0.4627) + 0.4156(−0.2088) = 0.18357 

In calculating the standard deviation, we obtain: 

σp = 
 
w 2 
1 σ

2 
1 + w 2 

2 σ
2 
2 + 2w1w2σ12 

σ p = 
 
0.58432(0.2705) + 0.41562(0.3377) + 2(0.5843)(0.4156)(0.105) 

σp = 0.44912 

Figure 2.13 : Efficient Frontier for FSLR and S stocks 

The efficient frontier shown in Figure 2.13 displays the elliptical nature of risk and return 
of both assets, known as the opportunity curve. The MVP is the dividing point between 
inefficient and efficient portfolios, and in Figure 2.13, this point is at (0.18, 0.45) within 
the risk and return space [σ, E(r)]. Those points above the MVP on the elliptical line are 
efficient and is known as the efficient frontier, while those below are inefficient. 

2.4 Comparing Results Between the Two-Asset Cases 

In Case 1, we observed a positively correlated pair of assets in the clean energy sector. 
Through creating an efficient frontier, we found that the minimum variance portolio between 
these two assets indicated that short selling our first asset, MAXN, would create the minimum 
risk for our level of return. Without allowing short-selling an asset, we determined that 
putting all weight into our second asset, BEP, will give us our minimum risk portfolio. In 
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Case 2, we observed a pair of less correlated assets in two completely different sectors, solar 
energy asset FSLR and artificial intelligence asset S. With these two assets we created an 
efficient frontier with a minimum variance portfolio weighted almost equally between our 
two assets. In our two cases, we see the effects of correlation and diversification played into 
our efficient portfolios. Table 2.7 displays the summary of results from our two-asset cases. 

Table 2.7 : Results of Two-Asset Cases 1 and 2 
MAXN & BEP FSLR & S 

Correlation Coefficient 0.481 0.3474 
MVP Weights w1, w2 0,1 0.5843, 0.4156 
MVP Return E(r) 0.0306 0.1836 

MVP Risk σp 0.2939 0.44912 

Table 2.8 : Returns and Variances from Monthly Share Prices: Case 1 
MAXN BEP 

Average Yearly Return 18.6791% 3.0578% 
Yearly Variance 94.3173% 8.7597% 

As one of the main conceptual ideas of modern portfolio theory, diversification helps us 
minimize risk for a given level of return. The correlation coefficient helps us determine how 
much diversification we are able to achieve between our two assets. If our two assets are 
highly positively correlated, we will not achieve much diversification because the assets move 
so similarly in the market. This means that we must choose the asset with the least risk for 
its level of yearly return. Table 2.8 displays the average yearly return and variance of MAXN 
and BEP. Looking back at the annual returns and variances of MAXN and BEP, we see 
that although MAXN has a higher yearly return than BEP, it also has a much higher yearly 
variance for its yearly return. Our asset BEP has a much smaller yearly return compared 
to MAXN, but also a much smaller yearly variance for its return. We can interpret this as 
meaning BEP has less risk associated with its returns than MAXN, despite the yearly return 
being negative. Hence, the weight of the minimum variance portfolio between MAXN and 
BEP all goes to BEP. 

Table 2.9 : Returns and Variances from Monthly Share Prices: Case 2 
FSLR S 

Average Yearly Return 46.27% -20.88% 
Yearly Variance 28.14% 35.12% 

If our two assets have a lower positive correlation, or close to no correlation such as 
our assets FSLR and S, then we can increase our level of diversification and minimize risk 
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by putting equal weight into each asset. Table 2.9 restates the yearly return and variance 
for FSLR and S stocks. Here, FSLR has less yearly variance than S, meaning there is 
less risk involved with investing yearly in that particular stock. In addition, with a higher 
yearly return of FSLR, the diversification of a negative yearly return from S reduces our 
overall portfolio risk. Hence, we invest only a little more into FSLR than S in our minimum 
variance portfolio. The importance of finding less positively correlated assets is now clear: 
diversification helps reduce risk, and diversification is found in less positively correlated 
assets. We can now expand our lesson of diversification to an application with more than 
two assets, applying our knowledge of this mean-variance analysis to n-asset applications to 
reduce risk within a portfolio. 
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Chapter 3 

PORTFOLIO ANALYSIS OF N-ASSETS 

3.1 Definitions for N-Asset Case 

Suppose now that we want to observe a portfolio with more than two assets. We can 
redefine the expected return and risk of a portfolio with n assets. We begin with the basic 
modern portfolio assumptions that our data must first have a normal distribution. Again, 
we can ensure this assumption with any data set either graphically with a histogram or by 
using a normality test. The Shapiro-Wilks normality test as defined in the previous chapter 
can be restated for the n-asset case. 

Definition 3.1.1. Given a set of data X = {xi|i = 1, ..., n and n ∈ N}, we can test if the 
set is normally distributed by calculating the significant value W : 

W = 
( 
 n 

i=1 ai(xn+1−i − xi))2  n 
i=1(xi − x̄)2 (2.8) 

and compare with our chosen alpha value, usually 0.05. Weights ai are predetermined by a 
Shapiro-Wilks weight table, and data in X is sorted from least to greatest in value. If our 
significant p-value is greater than our alpha value, then our null hypothesis that the data set 
is normally distributed fails to be rejected. 

Definition 3.1.2. The expected return of an n-asset portfolio is defined as the expected 
value on a return of an n-asset portfolio, where the return is a weighted average of the return 
on each portfolio. The expected return of the portfolio is denoted as 

E(r p) = 
n 

i=1 
wiE(ri) (3.1) 

Definition 3.1.3. The risk, σp, of an n-asset portfolio is defined as the variability of the 
return, rp, of the portfolio, measured by the standard deviation. 
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With the return of an n-asset portfolio defined as rp = 
n

i=1 wiri, we define the variation: 

σ 2 
p = E[r p − E(r p)] 2 = E 

 
n 

i=1 
wiri − 

 
n 

i=1 
wiE(ri) 

 2 

= E 

 
n 

i=1 
(wiri − wiE(ri)) 

 2 

= E 

 
n 

i=1 
wi(ri − E(ri)) 

 2 

= E 

 

n 

i=1 
w 2 
i (ri − E(ri)) 2 + 2 

n 

i<j 
wiwj(ri − E(ri))(rj − E(rj))

   

= 
n 

i=1 
w 2 
i E(ri − E(ri)) 2 + 2 

n 

i<j 
wiwj E [(ri − E(ri))(rj − E(rj))] 

= 
n 

i=1 
w2 
i σ 2 

i + 2 
n 

i<j 
wiwjσij 

= 
n

i=1 

n 

j=1 
wiwj σij 

Then the variation of an n-asset portfolio can be denoted as 

σ 2 
p = 

n
i=1 

n 

j=1 
wiwj σij =

   
w1w1σ11 . . . w1wnσ1n 

. . . . . . . . . 
wnw1σn1 . . . wnwnσnn 

   (3.2) 

The risk is the standard deviation: 
 
σ2 
p = σp. For the n-asset portfolio, we still use the 

same definition of covariance as found in Definition 2.1.3 and Equation (2.5). 

3.2 Generalized Analysis of N-Asset Cases 

We wish to create the efficient frontier for this n-asset portfolio where the variance is minimized. 
The problem now becomes one of minimizing the weights in our objective function: the 
variance Equation (3.2). The Equation (3.2) is subject to two Lagrangian constraints: 

I. We wish to achieve a desired expected level of return 

n 

i=1 
wiE(ri) = E(r p) (3.3) 
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− 

 

E(r p) − 
n 

i=1 
wiE(ri) 

 

= 0 

II. The weights must sum to 1 

n 

i=1 
wi = 1 (3.4) 

− 

 

1− 
n 

i=1 
wi 

 

= 0 

With these Lagrangian constraints, we obtain our Lagrangian objective function of the 
form L = f(x)−λg(x) −γh(x), where f(x) is our objective function and the desired expected 
return constraint g(x) and weight constraint h(x) are multiplied by the Lagrangian multipliers 
λ and γ, respectively. 

L = 
1 
2 

n 

i=1 

n 

j=1 
wiwjσij + λ 

 

E(r p) − 
n 

i=1 
wiE(ri) 

 

+ γ 

 

1− 
n 

i=1 
wi 

 

(3.5) 

To minimize the Lagrangian objective function in Equation (3.5), we set all partial 
derivatives from i = 1, ..., n respective to wi, and the partial derivatives with respect to λ 
and γ equal to 0. This results in a system of n + 2 partial derivative equations: 

∂L 
∂w1 

= w1σ11 + . . . + wnσ1n − λE(r1) − γ = 0 

. . . 
∂L 
∂wn 

= w1σn1 + . . . + wnσnn − λE(rn) − γ = 0 

∂L 
∂λ 

= w1E(r1) + . . . + wnE(rn) − E(r p) = 0 

∂L 
∂γ 

= w1 + . . . + wn − 1 = 0 

These partial derivatives can be written as the Jacobian matrix equation  
σ11 σ12 . . . σ1n E(r1) 1 
. . . 

. . . . . . . . . 
. . . 

. . . 
σn1 σn2 . . . σnn E(rn) 1
E(r1) E(r2) . . . E(rn) 0 0
1 1 . . . 1 0 0 

 

  
w1 
. . . 
wn 
−λ
−γ 

  =

  
0 
. . . 
0 

E(rp) 
1 

   (3.6) 
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To rewrite the matrix equation in matrix notation, let A be the (n + 2) by (n + 2) Jacobian 
matrix, x⃗ the (n + 2) by 1 matrix of weights to be minimized and the Lagrangian multipliers, 
and b⃗ the (n + 2) by 1 matrix of constants. We can solve for x⃗ by the equation 

Ax⃗ = ⃗b 

x⃗ = A−1⃗b 

Definition 3.2.1. Portfolios with a risk free asset are portfolios in which the risk σ2 
i of asset 

i means σ2 
i = 0. If one risk-free asset is held in conjunction with a portfolio of risky assets, 

the expected return of the entire portfolio is defined as 

E(r p) = (1 − 
n 

i=1 
wi)rf + 

n 

i=1 
wiE(ri), (3.7) 

where n is the number of risky asset returns ri from i = 1, ..., n, and rf is the return of the 
risk-free asset. 

While the analysis of an n-asset case can vary based on the listed constraints needed for 
a particular optimization, the generalization as described in Chapter 3 lays the foundation 
by which Chapter 4 is created. Through our study of mean-variance analysis in modern 
portfolio theory, we now understand the mechanisms and equations needed for an application 
outside of strictly finance. Our next chapter details how we convert our study of MPT to 
a different application related to analyzing cost and risk in the service field of electricity 
providers. 

27 



Chapter 4 

COST-RISK ANALYSIS 

In our application of using Modern Portfolio Theory to the real world, we will take an 
examination of the electricity grid of the US state of Texas. In a report from the American 
Council for an Energy-Efficient Economy (ACEEE), Texas was cited to have Energy Efficient 
Resource Standards (EERS) that result in energy efficient program investments and savings 
below the national average [1]. However, instead of analyzing the return, it is more realistic 
to observe the cost to determine the least-cost portfolio. Hence, we will utilize modern 
portfolio theory to analyze the cost and risk of electricity operation based on the different 
technologies that produce electricity for the state of Texas. It is important to note that the 
primary source of electricity does not serve all of the state of Texas, although the servicer 
covers a majority of the state. The Electric Reliability Council of Texas (ERCOT) covers 
about 75% of the land area in Texas and carries 90% of Texas electricity load [10]. Figure 4 
shows the service area of ERCOT. 

In our analysis of cost-risk for efficient electricity generating portfolio, we measure the 
generating cost (USD per kWh) as the inverse of a return (kWh per USD). 

Figure 4.1 : ERCOT Service Area [10] 

28 



Definition 4.0.1. Expected Portfolio Cost of Electricity: 

E(Cp) = 
n 

i=1 
wiE(Ci) (4.1) 

where Ci is the generating cost of the ith of n number of technologies, known as the levelized 
cost of electricity (LCOE), and wi is the capacity share of the ith technology. 

Definition 4.0.2. Expected Portfolio Risk: (expected year-to-year variation in generating 
costs) 
We can define the expected portfolio risk in terms of the variation in generating costs. 

σ 2 
p = 

n
i=1 

n 

j=1 
wiwj σ ij (4.2) 

where σij is the covariance of the LCOE for each technology. Then the portfolio risk can be 
defined as the standard deviation: 

σp = 
 
σ2 
p (4.3) 

To create the cost-risk efficient frontier, we want to minimize the weights in our objective 
function, the variance σ2 

p, subject to some reasonable constraints relative to an electricity 
grid. 

I. The weights must sum to 0.97: 

n 

i=1 
wi = 0.97 : ∀i = 1, 2, ..., n (4.4) 

Observing the historical data of the grid sharing capacity of our major technologies, we 
choose a sum of 0.97 to account for the 3% of "other" non-major contributors to the 
electrical grid which include biothermal, hydro-electric power, and other technologies. 

II. Each weight must be positive: 

wi ≥ 0 : ∀i = 1, 2, ..., n (4.5) 

It is impossible for a technology to share a negative capacity in an electrical grid. There 
is no way for a technology to "give back" its electrical generation through its resources. 
However, as noted in one of the literatures reviewed, negative weights could be used 
to denote the load of electrical generation as a power plant with negative generation. 
This improvement will not be used in our analysis in this paper. 
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III. Each weight must not be greater than the maximum fractional sharing capacity of its 
technology, denoted as max{Si}, where S is the sharing capacity: 

wi ≤ max{Si} : ∀i = 1, 2, ..., n (4.6) 

In other words, each technology produces a varying percentage of the overall electrical 
grid that supplies power to consumers of the region, and it would be unrealistic to 
assume a technology can produce more than its capable amount of power for the grid. 

We formulate our minimization problem as follows: 

min f (w1, ..., wn) = 
n

i=1 

n 

j=1 
wiwj σij 

subject to 
n 

i=1 
wi = 0.97 

wi ≥ 0 : ∀i = 1, 2, ..., n 

wi ≤ max{Si} : ∀i = 1, 2, ..., n 

where max{Si} = si is the maximum sharing capacity of an ith technology. Our Lagrangian 
objective function becomes 

L = 
1 
2 

n
i=1 

n 

j=1 
wiwj σij + λ 

 

0.97 − 
n 

i=1 
wi 

 

+ 
n 

i=1 
γi(q 2 − wi) + 

n 

i=1 
ϕi(st − wi − p 2) (4.7) 

where λ, γi, and ϕi are the Lagrangian multipliers, and q2 , p2 are the slack variables of the 
inequality constraints. We solve the optimization problem through linear programming in 
MATLAB using cost and capacity factor data extracted from the ERCOT, the NREL, and 
the Energy Information Administration (EIA) [15] [11] [7]. Additionally, this optimization 
problem can be directly solved in Excel, where the data is stored. 

The main data we need to complete our cost-risk analysis includes data for each generating 
power source: the predicted levelized cost of electricity, historical levelized cost of electricity, 
the variances of cost, and the covariances of cost between each generating power source. 
Instead of analyzing returns of each asset as done in our previous analyses, we calculate the 
levelized cost of electricity (LCOE) for each power source to analyze the expected cost of each 
power source. Some assumptions must also be made about our data. First, the historical 
LCOE for each generating technology is assumed to be normally distributed in order to 
conduct our analysis in modern portfolio theory. Our first step in our cost-risk analysis is to 
find the LCOE for each generating technology, both predicted values and historical data. 
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4.1 Levelized Cost of Electricity 

The need for a levelized cost of electricity comes from calculating the cost of a generating 
technology that encompasses more than just the surface cost of producing power. The 
levelized cost of electricity is a metric that evaluates all costs of a generating technology 
over its entire lifespan. This assessment includes operation and maintenance costs, fuel costs, 
capital costs, and capacity factors. Since this cost is determined for the technological lifetime, 
we also have to include the interest rate, also known as the discount rate, by which the 
investment changes over time due to annuity factors and inflation. 

The levelized cost of electricity (LCOE) is determined by calculating all of the expenditures 
of a generating technology. These expenditures include: 

capital construction costs (CAPEX), 

operation and maintenance costs (OPEX), 

fuel costs, 

and carbon costs. 

These costs, except carbon costs, can be found for each technology in the 2022 Annual 
Technology Baseline (ATB) Workbook provided by the U.S. Department of Energy’s National 
Renewable Energy Laboratory. As part of the Office of Energy Efficiency and Renewable 
Energy, this workbook provides capital expenditures (CAPEX), operation expenditures 
(OPEX), net capacity, energy production, and all other factors needed to calculate the LCOE 
for generating technologies in the United States. For convenience, the NREL, partnered 
with the Open Energy Data Initiative (OEDI), has provided the workbook in an AWS CLI 
data lake for easy programming and research. We use the Python programming language 
to extract this data for easier filtering and calculations, while using Excel to calculate the 
LCOE and analyze the data. 

The simple levelized cost of electricity (sLCOE) is calculated from the ATB data using 
the following formula defined by the NREL: 

ci = 
Cc ∗ Cr + Fom 

Cf ∗ 8760 
+ (Fc ∗ Hr) + Vom + (Co2 ∗ Ccc), (4.8) 

where 

ci is the levelized cost of electricity for the ith technology, 

Cc is capital costs ($/kW), 
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Cr is the capital recovery factor and Cr ∈ [0, 1], 

Fom is the fixed operation and maintenance costs ($/kW-yr), 

Cf is the capacity factor, a percentage of the annual production of energy of a system, 
multiplied by the number of hours in a year (8760), 

Fc is fuel cost ($/MMBtu), 

Hr is the heat rate (Btu/kWh), 

Ccc is carbon clearing cost, 

and Vom is the variable operation and maintenance cost ($/kWh). 

To calculate specifically for the ERCOT region, we take the capacity factor of each of the 5 
technologies listed from the ERCOT 2022 Long-Term System Assessment for the years 2023, 
2027, 2032, and 2037. Fuel cost, heat rate, and carbon clearing costs are optional since these 
variables are not applicable to renewable energies. Texas does not have carbon emissions 
pricing policies, nor do they have a statewide emissions reduction goal. Therefore, we take 
the U.S. standard carbon clearing price of $47.10 per ton of CO2. 

The data included in the ATB is categorized by certain scenarios for each technology, 
namely advanced, moderate, and conservative. These scenarios dictate the different values of 
factors for each year based on a level of advancement from innovations in the marketplace [12]. 
For this study, we chose the moderate scenario to reflect the expected costs for a base year 
of 2022. There are a total of 18 generating technologies outlined in the ATB that displays 
each generating technology’s total electricity generation from the years 2022 to 2050. From 
the ATB, we collected the capital expenditures, operation and maintenance expenditures, 
and fuel cost for the years 2023, 2027, 2032, and 2037, since the capacity factors for Texas 
were only found for these years. We keep the base assumptions within the ATB to collect 
the calculated costs for each technology. The chosen financial case is Market, which presents 
market and policy changes over time. The second assumption is the capital recovery period, 
defined as the time in years it takes to recover from an initial investment in a technology. 
This capital recovery period is 30 years. 

Although the ATB lists 18 different technologies, we will only collect data for the 5 major 
technologies listed in the capacity of the Texas grid. The first technology is natural gas, 
and more specifically, the natural gas-combined cycle energy source. As a fossil energy, this 
technology will have a fuel cost designated by the yearly fuel cost per MWh of fuel and 
a carbon clearing cost. The second technology is coal, another fossil fuel that will have 
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a fuel cost per MWh and carbon clearing cost for each observed year. For specific coal 
technology, we chose the common verson of coal resources for Texas: integrated gasification 
combined cycle (IGCC). Third, we have solar energy, by which we specify the utility-scale 
solar photovoltaic. We use the utility-scale solar data only to simplify our equation and 
levelized cost of energy, and according to the NREL, utility-scale solar creates the majority 
of solar energy in the United States. In addition, the utility-scale solar energy is also split 
into 10 classes, each with a difference level of average yearly solar irradiance. Figure 4.2 
shows the levels of solar irradiance for all parts of the United States. Observing the levels in 
Texas, we see all irradiance levels. Therefore, in our calculation of LCOE for solar data, we 
chose the average of the United States, Class 5 Solar PV. Next, we have wind power. For 
calculating the LCOE of wind power for Texas, we use the class 5 land-based wind data, 
since this type of wind power produces more electricity than the off-shore wind power in 
Texas. Lastly, we have nuclear power, which does not have a specified technology. This 
is because all nuclear power in the United States is created by nuclear fission; in addition, 
nuclear power plants produce electricity at a consistent level under nuclear fission, based on 
the size of the nuclear plant. Texas has two nuclear power plants that each have two reactors. 
These plants each have an installed capacity of 5,000 MW [9]. 

Figure 4.2 : NREL Global Solar Irrandiance for the United States [16] 

Table 4.1 lists the capacity factors of each technology as calculated in the ERCOT 
Long-Term System Assessment. The capacity factors describe the proportion of electricity 
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Table 4.1 : ERCOT Capacity Factors of each generating technology 
Capacity Factors (%) 

Technology 2023 2027 2032 2037 
Natural Gas 54.6 42.97 39.37 38.53 

Coal 54 54 54 54 
Wind 55.2 55.2 55.2 55.2 
Solar 25.3 25.3 25.3 25.3 

Nuclear 95.4 95.4 95.4 95.4 

Table 4.2 : EIA Fuel Costs 
Fuel Costs ($/MMBtu) 

Technology 2023 2027 2032 2037 
Natural Gas 3.10 3.44 4.39 5.04 

Coal 1.85 2.21 2.48 2.58 
Nuclear 0.69 0.69 0.70 0.71 

each technology provides to the overall grid. Table 4.2 lists the fuel costs for natural gas, 
coal, and nuclear resources. Although not listed in the ATB, these prices can be found within 
the data of the Energy Information Administration. Since wind and solar are renewable 
resources, they do not incur a fuel cost. Table 4.3 lists the heat rate from technologies that 
incur a fuel cost, listed in the ATB. Heat rate describes the rate of converting fuel into 
electricity and the heat generated from this conversion. Heat rate is directly correlated to 
carbon emissions, as the conversion from fuel to electricity also produces CO2. 

To calculate the levelized cost of energy, we use data in Tables 4.1-4.3 as well as additional 
cost factor data for each technology located in the ATB to input into our LCOE Equation 
(4.7). The resulting LCOE for each technology in each year is listed in Table 4.4. 

4.2 Results of Cost-Risk Analysis 

Now that we have the levelized cost of electricity of each technology, the efficient frontier 
can be created. First, we solve our minimization problem by minimizing Equation (4.7) 
using data from Table 4.1 to create the minimum variance portfolio (MVP). The MVP is the 
portfolio with the minimum amount of variance for an expected cost. The weights solved for 

Table 4.3 : ATB Technology Heat Rates 
Heat Rate (MMBtu/MWh) 

Technology 2023 2027 2032 2037 
Natural Gas 6.36 6.36 6.36 6.36 

Coal 8.01 7.60 7.20 7.20 
Nuclear 10.44 10.44 10.44 10.44 
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Table 4.4 : Levelized Cost of Electricity of each technology for selected years 
Levelized Cost of Energy 

Technology 2023 2027 2032 2037 Average Cost Variance 
Natural Gas 2.879 2.863 2.859 2.858 2.86 0.0001 

Coal 5.055 4.91 4.856 4.836 4.91 0.01 
Wind 3.15 2.665 2.257 2.142 2.55 0.21 
Solar 5.634 4.675 3.888 3.712 4.48 0.77 

Nuclear 4.639 4.543 4.455 4.307 4.49 0.02 

Table 4.5 : Pearson Correlation Coefficients for 5 Major Technologies 
Gas Coal Wind Solar Nuclear 

Gas 1 0.998 0.969 0.973 0.854 
Coal 0.998 1 0.982 0.984 0.887 
Wind 0.969 0.982 1 0.999 0.934 
Solar 0.973 0.984 0.999 1 0.925 

Nuclear 0.854 0.887 0.934 0.925 1 

our minimization problem describes the sharing capacity of each technology. These weights 
are listed in Table 4.7. As seen from the correlation coefficient Table 4.5, all technologies are 
highly positively correlated. Nuclear has the least correlation with each technology. Wind 
and solar and coal and gas have high positive correlations with one another. This may 
be due to the fact that those pairs of resources come from much of the same places. The 
variance-covariance matrix between each of the generating technologies is listed in Table 4.6. 

Using Equations (4.1) and (4.2), we find the expected cost and risk for the MVP. The 
expected cost of the minimum variance portfolio of the listed technologies is $3.07/kWh 
while the risk of cost is 15.72% 

E(c p) = 3.07 

σp = 
√ 
0.027 = 0.1572 

The efficient frontier of possible portfolios is displayed in Figure 4.3. The efficient frontier, 
created in Excel, uses 10,000 possible combinations of sharing capacities of the major 

Table 4.6 : Variance-Covariance Matrix for 5 Major Technologies 
Gas Coal Wind Solar Nuclear 

Gas 7.88 × 10−5 0.0008 0.0034 0.0066 0.0009 
Coal 0.0008 0.007 0.0333 0.064 0.0093 
Wind 0.0034 0.0333 0.1563 0.3003 0.045 
Solar 0.0066 0.064 0.3003 0.5773 0.0858 

Nuclear 0.0009 0.0093 0.0451 0.0858 0.0149 
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Table 4.7 : Weights calculated for the Minimum Variance Portfolio (MVP) 
Natural Gas Coal Wind Solar Nuclear 
w1 = 0.416 w2 = 0.119 w3 =0.334 w4 = 3.547 × 10−8 w5 = 0.099 

technologies. Each combination of differently weighted technologies is shown as a diamond, 
while the MVP is shown as a square. The efficient frontier is a result of our constraints as 
well as our specific data chosen for our minimization problem. 

Figure 4.3 : Efficient Frontier for ERCOT region. The square among the diamonds represents 
the MVP at (0.1572, 3.07) 

4.3 Conclusions 

In our risk-cost analysis we observe a calculated minimum variance portfolio among our 
efficient frontier in the risk-cost space [σ, E(c)], denoted by the square amidst the diamonds 
at point (0.157, 3.07). The MVP denotes that the minimum risk of cost is at approximately 
16% for the cost of $3.07 per kilowatt hour produced by the combination of all technologies. 
The efficient frontier displayed in Figure 4.3 is a study of mean-variance analysis applied to a 
small amount of data available from the ERCOT website and the Annual Technology Baseline. 
The minimum variance portfolio tells us that the options along the bottom points in the 
space are caused by our constraints and optimization of the weights for our variance function. 
Any points like the ones displayed in Figure 4.3 are viable options for decision-makers with 
different degrees of risk-taking. These are forecasted solutions because we used forecasted 
data as outlined in the Annual Technology Baseline workbook. We also observe that the 
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expected cost of the minimum variance portfolio is near the average of the total cost of each 
listed technology. Observing the sharing capacities obtained from the MVP, natural gas still 
has the highest sharing capacity, with solar having the least amount of sharing capacity, 
nearly 0. In addition, since the solar costs have the most risk associated with its cost, the 
minimum variance portfolio gave solar technology the smallest share of total electricity grid 
capacity. With sharing capacities for generating technologies weighted as 41.6% natural 
gas, 11.9% coal, 33.4% wind, and 9.9% nuclear, we are left with a 3.2% sharing capacity for 
other technologies in the electricity grid mix of ERCOT. Therefore, we conclude from this 
minimum variance portfolio that ERCOT should minimize usage of solar technology due to 
the increased risk in solar costs. 

Some setbacks of our analysis include not having as much data available to us as the 
NYSE stock finance minimization problems. This is due to finding the capacity factor data 
for each technology specific to the state of Texas. While the EIA does list a few years of 
capacity factors for every state, the data is lacking in the years observed. Our conclusions 
here are not meant to be the final discussion with this application. 

4.4 Further Research 

Continued and current research includes adding more historical data to the levelized cost 
of electricity for each generating technology. We could also add more terms and weights to 
include all technologies listed in the sharing capacity of the ERCOT service grid, given the 
correct data for all technologies can be found. In addition, there are more constraints that 
could be added to our lagrangian objective function to increase specifications. Numerous 
other scenarios can be analyzed, including scenarios that increase the sharing capacity of 
different weights based on forecast sharing capacity data. Lastly, the ATB lists factors for 
technologies based upon different levels of advancement. From advanced, moderate, and 
conservative scenarios, the ATB allows for different analyses to be conducted based upon the 
observers assumptions and expectations. 
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Appendix A 

DATA 

A.1 Chapter 2 Stock Data MAXN and BEP 

Table A.1 : MAXN and BEP Monthly Returns Data from August 2020 to August 2023 

MAXN BEP MAXN (Contd.) BEP (Contd.) 

-0.1376 -0.0499 -0.1256 0.0042 
-0.0437 -0.0282 -0.2974 -0.1231 
0.0784 -0.0113 0.3471 0.1087 
-0.0200 0.0148 0.0193 -0.0991 
0.5160 0.1685 0.1127 0.0511 
-0.1741 -0.0917 -0.2367 0.0081 
0.4377 0.1061 0.2962 -0.0266 
-0.2919 -0.0965 -0.0874 0.0300 
0.2471 -0.0198 -0.4524 -0.1029 
-0.3021 -0.0861 -0.1010 0.0014 
0.3107 -0.1366 -0.1150 -0.0681 
0.0825 -0.0117 0.3051 0.0355 
0.3686 0.0668 0.1489 0.0885 
0.0814 0.0147 0.6139 0.0698 
0.0324 -0.0069 -0.0762 0.0591 
-0.1843 -0.1474 -0.1761 0.1946 
0.2027 0.1283 -0.6482 0.0285 
0.1423 0.0888 
-0.3129 -0.0697 
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A.2 Chapter 2 Stock Data FSLR and S 

Table A.3 : FSLR and S Monthly Return Data from July 2021 to September 2023 
FSLR S 
-0.0805 0.0153 
0.0590 0.1203 
-0.0831 -0.2698 
0.1542 0.2626 
-0.1326 -0.0036 
0.0655 0.0751 
0.0862 -0.0316 
0.2344 0.0858 
-0.1341 -0.0306 
0.1344 -0.3230 
0.0875 -0.1471 
0.0687 0.0128 
0.2850 0.0359 
0.4599 0.0566 
-0.0384 -0.0471 
-0.0376 -0.2708 
-0.1234 -0.1309 
0.1109 -0.0747 
-0.0268 -0.1039 
-0.1228 -0.0153 
-0.1285 -0.0196 
-0.1610 -0.2747 
0.2544 0.2123 
0.0267 -0.1787 
0.0656 0.2942 
-0.0211 0.2980 

A.3 2022 Annual Technology Baseline Data for Major Technologies 

Note: 2022 Annual Baseline Technology Data is used in the "Market" scenario and the 
"Moderate" scenario for all technologies. 

Table A.4 : ATB and EIA Factors and Units 
Cc Fom Vom Fc Cf Cr Hr Co2 Ccc 

$/kW $/kW-yr $/MWh $/MMBtu (%) N/A MMBtu/MWh lbs/MMBtu $/t 
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Table A.5 : Natural Gas ATB and EIA Data 
Cc Fom Vom Fc Cf Cr Hr Co2 Ccc 

2023 1026.098 27.94 1.78 3.1 54.6 0.274841 6.36 118.62 47.1 
2027 1005.624 27.94 1.78 3.44 42.97 0.146693 6.36 118.62 47.1 
2032 981.0515 27.94 1.78 4.39 39.37 0.095843 6.36 118.62 47.1 
2037 957.4631 27.94 1.78 5.04 38.534 0.077799 6.36 118.62 47.1 

Table A.6 : Coal ATB and EIA Data 
Cc Fom Vom Fc Cf Cr Hr Co2 Ccc 

2023 5184.772 140.54 13.86 1.85 54 0.274841 8.01 199.4 47.1 
2027 4990.793 140.54 13.86 2.21 54 0.146693 7.6 199.4 47.1 
2032 4859.078 140.54 13.86 2.48 54 0.095843 7.2 199.4 47.1 
2037 4744.127 140.54 13.86 2.58 54 0.077799 7.2 199.4 47.1 

Table A.7 : Wind ATB and EIA Data 
Cc Fom Vom Fc Cf Cr 

2023 1308.4 41.785 0 0 55.2 11.61 
2027 1106.348 40.165 0 0 55.2 11.61 
2032 936.8009 38.365 0 0 55.2 11.61 
2037 889.0049 36.90513 0 0 55.2 11.61 

Table A.8 : Solar ATB and EIA Data 
Cc Fom Vom Fc Cf Cr 

2023 1073.784 19.35443 0 0 25.3 11.61 
2027 890.9969 16.98315 0 0 25.3 11.61 
2032 740.952 15.02043 0 0 25.3 11.61 
2037 707.3404 14.52195 0 0 25.3 11.61 

Table A.9 : Nuclear ATB and EIA Data 
Cc Fom Vom Fc Cf Cr Hr 

2023 7302.005 145.96 2.84 7.179558 95.4 5.2 10.44 
2027 7011.51 145.96 2.84 7.242345 95.4 5.3 10.44 
2032 6872.195 145.96 2.84 7.326079 95.4 5.3 10.44 
2037 6637.247 145.96 2.84 7.409802 95.4 5.3 10.44 
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