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Binding of solvated peptide (EPLQLKM) with a graphene sheet via
simulated coarse-grained approach
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Binding of a solvated peptide A1 (1E 2P 3L 4Q 5L 6K 7M) with a graphene sheet is studied by a
coarse-grained computer simulation involving input from three independent simulated interaction
potentials in hierarchy. A number of local and global physical quantities such as energy, mobility,
and binding profiles and radius of gyration of peptides are examined as a function of temperature (T).
Quantitative differences (e.g., the extent of binding within a temperature range) and qualitative simi-
larities are observed in results from three simulated potentials. Differences in variations of both local
and global physical quantities suggest a need for such analysis with multiple inputs in assessing the
reliability of both quantitative and qualitative observations. While all three potentials indicate bind-
ing at low T and unbinding at high T, the extent of binding of peptide with the temperature differs.
Unlike un-solvated peptides (with little variation in binding among residues), solvation accentuates
the differences in residue binding. As a result the binding of solvated peptide at low temperatures is
found to be anchored by three residues, 1E, 4Q, and 6K (different from that with the un-solvated pep-
tide). Binding to unbinding transition can be described by the variation of the transverse (with respect
to graphene sheet) component of the radius of gyration of the peptide (a potential order parameter)
as a function of temperature. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4876716]

I. INTRODUCTION

Understanding the peptide binding to a graphene sheet1–3

has attracted a considerable interest in recent years primarily
due to its vast potential in designing bio-functionalized nano-
materials.4–10 Kim et al.2 have recently reported an unusual
edge-binding characteristic of a peptide A1 (EPLQLKM) to
graphene which not only binds more than that of its mutations
but also leads to different surface morphology as a result.
Computer simulations involving all-atom Molecular Dynam-
ics (MD) as well as coarse-grain approaches are performed
to probe binding further.11, 12 Because of the limitations of
the tools including force-fields, verification of experimental
observations is still illusive. All-atom MD simulations with
atomistic details provide useful insight into its binding of
peptide with the identification of underlying atoms in anchor-
ing and residues in simplified systems (e.g., dilute solution
with few peptides at an ambient temperature). Coarse-grained
simulations, on the other hand, can be carried out for a range
of temperature with a variety of peptides with relatively more
ease to understand the large-scale binding characteristics.
There are many ways to coarse-graining.11, 13–20 However, the
properties under investigation and its reliability depend on
the choice of coarse-grain interactions (e.g., residue-residue,
residue-solvent, residue-substrate, etc.) and incorporate
pertinent characteristics of the constitutive elements (e.g.,
residues and peptides).

Binding of peptide A1 and its mutations with a
graphene sheet has been very recently examined by a hi-
erarchical coarse-grained approach without the presence of
solvent.11, 12 Residue-graphene and residue-residue interac-
tions are involved in this study.11 The residue-graphene in-
teraction, critical in binding, can be estimated by an all-
atom MD simulations.11 The residue-residue interactions can
be similarly estimated from simulations involving atom-
istic scale details.16 Additionally, alternate methods such as
hydropathy-index11, 12 and knowledge-based residue-residue
contact matrices21–27 can also be used to estimate interac-
tions among the residues. In some of our recent studies
of peptide-graphene binding, residue-residue interactions are
based on hydropathy index.11, 12 We would like to constrain
to the same approach (hydropathy index) for the residue-
residue interactions to investigate the binding of peptide A1
with the graphene. However, unlike the previous studies, we
would like to consider solvated systems as the solvent plays
a critical role in modulating the interactions of the underly-
ing residues.28–30 Very recently, residue-graphene interactions
have been evaluated with three independent all-atom MD sim-
ulations in presence of solvent.11, 31, 32 These simulated data
for the solvated residue-graphene interactions can be used as
input to a coarse-grain approach in hierarchy similar to previ-
ous studies in absence of solvent.11, 12 The model is presented
in Sec. II followed by results and discussion in Sec. III and
concluding remarks in Sec. IV.

0021-9606/2014/140(20)/204901/8/$30.00 © 2014 AIP Publishing LLC140, 204901-1
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II. MODEL AND METHOD

The simulation box consists of a number of peptide
chains with a graphene sheet positioned at the center. A pep-
tide chain is a set of residues (amino acids) tethered together
via flexible covalent bonds in a specific sequence (E-P-L-Q-
L-K-M). Each amino acid is unique with its characteristic side
chain anchored by C-alpha at the center with amine and car-
boxylic acid group at the opposite ends. Even with a relatively
small number of atoms (order of 10–27), the degrees of free-
dom (torsional, covalent elastic bonds, translational) associ-
ated with an amino acid are appreciably large. The degrees
of freedom associated with a peptide chain are accordingly
enhanced with the number of underlying amino acids at the
atomic scale; the number of chains (in many applications)
further increases the multiplicity in degrees of freedom. Cov-
ering the huge conformational phase space in a large-scale
simulation (usually needed to estimate equilibrium thermody-
namic properties) requires large time steps; analysis of many
local and global physical quantities by all-atom MD simula-
tions alone may not be feasible.

Unique characteristics of each amino acid (embedded
in its atomic scale structure) are also critical in exploring
the versatility and specificity of peptides, its assembly, and
binding. Therefore, some degree of coarse-graining, i.e., re-
ducing the degrees of freedom and/or adopting efficient and
effective procedures while preserving the pertinent character-
istics, becomes a necessity in order to perform large-scale
computer simulations. Recent years have witnessed an ex-
plosive growth towards developing coarse-grained models in-
volving both Monte Carlo (MC) and Molecular Dynamics
methods. We have been using a multi-scale approach that uti-
lizes the input of results from all-atom simulations in a coarse-
grained representation of peptide with an efficient compu-

tational model in a hierarchical fashion to investigate large-
scale properties.

A. Binding of amino acids with the graphene

All-atom MD simulations with amino acids (AAs) and a
graphene sheet in the box can be performed to assess their
binding energy which is a measure of its unique interac-
tion with the graphene. Binding energy of amino acids has
been recently examined by several research groups with dif-
ferent surfaces. For example, Nawrocki and Cieplak33 have
studied the binding of amino acids and protein at the ZnO-
water interface and Feng et al.34 have estimated the bind-
ing of amino acids on gold surfaces. Binding of amino acids
with the graphene in aqueous solution has been extensively
examined by three all-atom MD simulations.11, 31, 32 Figure 1
shows the normalized binding energy from these three inde-
pendent studies. Despite similarity in general binding features
(i.e., most binding residues W(tryptophan, trp), Y(tyrosine,
tyr), R(arginine, arg)), there are some differences. For exam-
ple, cysteine (C, cys) appears to bind readily with graphene
in data from Pandey et al.11 in contrast to results from
Camden et al.31 while reverse seem to be the case for
F(phenylalanine, phe). Fluctuation in binding energy (i.e.,
variation in the average estimate among 20 amino acids) is
generally higher in the data by Pandey et al.11 and Camden
et al.31 than that from Dragneva et al.32 Such discrepancies
in results are common in all-atom MD simulations, as the re-
sults are sensitive to type of the force field and its implemen-
tation. Lower binding energy of residues with the graphene
surface in presence of solvent is due to presence of explicit
solvent molecules between the amino acids and the substrate
as pointed out by Dragneva et al.32 Thus, it is a good to look
at results from independent simulations particularly when it
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FIG. 1. Normalized binding energy of 20 amino acids (AAs) with the graphene sheet in presence of solvent from three independent all-atom MD simulations
(Kuang,11 Camden,31 and Dragneva32).
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is used as input (follows) to such hierarchical coarse-grained
modeling as the one used here.

B. Coarse-grained approximation

In our coarse-grained description,11 a residue is repre-
sented by a node (particle), i.e., the structural detail of the
residue (at atomic scale) is ignored. The peptide is described
by a set of seven nodes tethered together via peptide (cova-
lent) bonds, 1E-2P-3L-4Q-5L-6K-7M. On a cubic lattice grid,
a node occupies a cube (eight lattice sites) and the bond
length between consecutive nodes can vary (fluctuate) be-
tween 2 and

√
10 in unit of lattice constant. Such bond fluctu-

ation methods35 are extensively used in studying the structure
and dynamics of homo-polymer systems,36 multi-component
nano-composites,8, 9 and protein chains29, 30 and is known36

for its computational efficiency with ample degrees of free-
dom. A generalized Lennard-Jones potential is used for the
residue-residue and residue-graphene interactions,

Uij =
[
|εij |

(
σ

rij

)12

+ εij

(
σ

rij

)6
]
, rij < rc, (1)

where rij is the distance between the residue at site i and an-
other residue or graphene at site j; rc = √

8 is the range of
interaction and σ = 1 in units of lattice constant. Strength
εij (a measure of the depth) of the potential is unique for
the interaction of each residue (node) with the substrate
and other residues. The interaction between residue of the
peptide and the substrate is critical in binding of peptides
with the graphene. Data from three independent MD sim-
ulations (Figure 1) are used as input for εij. Estimates for
the residue-residue interaction (εij) are based on the hydropa-
thy index. It involves a generalized interaction between hy-
drophobic (h), polar (p), and electrostatic (e) residues, i.e.,
εhh = −0.1, εpp = −0.2, εpe = −0.2; the interactions (εee) be-
tween the electrostatic residues (E, K) εEE = εKK = 0.1, εEK

= −0.4. Among each group (h, p, e) the residue-residue in-
teractions are weighted by their hydropathy index9, 11 which
makes each residue-residue pair interaction unique. Residue-
graphene interactions are generally much stronger (see
Figure 1) than the residue-residue interactions and therefore
play a critical role in understanding the peptide binding with
the graphene substrate. As pointed out above, there are few
more choices for residue-residue interaction (consisting of an
interaction matrix with 210 elements for 20 AAs) such as
simulation-based residue-residue interaction,16 knowledge-
based residue-residue interaction21–30 which are used exten-
sively in study of protein folding. We have selected the phe-
nomenological residue-residue interaction potential based on
hydropathy index of the AAs because we wanted to use the
same interactions used in our un-solvated simulations11 for
consistency and comparison.

C. Simulation procedure

The computer simulation11 is set up on a cubic lattice
(L3) with the graphene sheet fixed at the center. Peptide chains
with a concentration Cp (which is the volume fraction occu-

pied by its residues) are then inserted randomly in the sim-
ulation box to perform their stochastic motion. Each residue
in each peptide chain executes its stochastic movement with
the Metropolis algorithm subject to constraints imposed by
the excluded volume and the limitations on changes in the co-
valent bond length. That is, a randomly selected residue of a
randomly selected peptide chain is moved from a site i to site
j with the Boltzmann probability exp(−�Eij/T), where �Eij

is the change in energy between its new (Ej) and old (Ei) con-
figuration �Eij = Ej − Ei and T is the temperature in reduced
units (εij/kB) of the energy (εij) and the Boltzmann constant
(kB). Because of the specificity of the interaction energy (εij),
the magnitude of the reduced temperature is different for dif-
ferent residue while the absolute temperature Ta = T kB/εij

remains the same. Unfortunately, we are unable to provide
the absolute unit due to lack of experimental measurement of
the appropriate physical quantities for calibration. The unit
Monte Carlo step (MCS) is defined by attempts to move each
residue once. Parameters and variables such as temperature,
interaction energy, time, etc., are in arbitrary units to identify-
ing the trends, i.e., the changes in variation of the observables;
the units of the all-atom simulations can however be used to
assess their order of magnitude since it is used as input for the
constitutive component.

The estimates of adsorption energy of residues in
all-atom simulations are typically at the room temperature
(300 K) in equilibrium.11 The relative values of the adsorption
energy of each residue is used as input in our phenomenolog-
ical interaction potential via parameter εij to assess relative
binding of peptides and its residues qualitatively. Note that, in
all-atom MD simulations, there may be some dependence of
the absolute values of the adsorption energy on the tempera-
ture, estimates of its relative value however should not affect
our result. Since a residue is represented by a unit cube of the
underlying lattice space (see above), the magnitude of the re-
duced lattice constant is therefore comparable to the size of
a residue (∼3−10 A ∼0.5 nm). The simulation box of size
1003 in dimensionless unit is comparable to similar size in
unit of nm3. A typical estimate of the time to relax a residue
in all-atom MD simulation is in the range from picosecond to
nanosecond; 40 ns is used to relax residues in Ref. 11. If we
use 40 ns as MCS unit; a 106 time step in MC simulation is
equivalent to about 0.01 s. Order of magnitude of the tempo-
ral and spatial scales in observable units is just an estimate
and should not be used for quantitative comparison with the
laboratory data. Variations in relative binding of peptides as a
function of temperature should be comparable to results from
appropriate experimental observations. Within the limitation
of the model our results could be used to interpret the labora-
tory observations.

III. RESULTS AND DISCUSSION

We analyze both local and global physical quantities
to assess the binding of peptide with the graphene sheet
as a function of temperature with the input of three in-
dependent simulated interaction potentials described above.
It is worth reminding that the generalized potential for
the residue-graphene and residue-residue interactions are
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FIG. 2. Representative snapshots at the temperature T = 0.012 ((a), (b)) and 0.020 (c) (in unit of εij/kB) with the peptide concentration Cp = 0.010 at the time
steps t = 103 (a) and 106 steps (b, T = 0.012 and c, T = 0.020). Graphene sheet (242) is at the center of the box (1003). Residues that are bound to graphene are
shown by spheres (grey (hydrophobic), golden (polar), blue (electrostatic)) with corresponding bonds (magenta). Free peptide chains are golden. The binding
energy of AAs with the graphene from Ref. 32 is used as input for the simulated interaction potential (Figure 1) in coarse-grained interaction potential (Eq. (1))
to generate these snapshots.

phenomenological. Figure 2 shows typical snapshots at a low
(T = 0.012) and a high (T = 0.020) temperature. At short
times, i.e., t = 103 steps, the peptide chains are highly dis-
perse (closer to initial random distribution) with few chains
bound by some of their residues at T = 0.012. As simulation
proceeds more chains come in contact with the graphene sheet
and become adsorbed. In the asymptotic (long) time regime
(∼106 step) most of the chains are adsorbed at such a low
temperature (Figure 2(b), T = 0.012). Adsorption reduces on
increasing the temperature to T = 0.020 (see Figure 2(c)). As
expected, adsorption is enhanced on reducing the temperature
while desorption becomes more prevalent on raising the tem-
perature. Visual analysis of snapshots and animation provide a
general idea about the adsorption and desorption as a function
of time step and temperature. In order to quantify the extent

of adsorption, identify the residue that anchors the binding,
and the rate of adsorption, it is desirable to examine some of
the local and global physical quantities (follows).

Figure 3 shows the energy profile of residue which is
the average equilibrium energy of each residue (bound or un-
bound) at two temperatures T = 0.010 and 0.016 in unit of
εij/kB. We see that the proline (2P) has the lowest energy with
all three potentials. Minimum energy does not necessarily
mean strongest binding (see below). Estimate of energy in-
volves average over all residues in each peptide with residue-
residue and residue-graphene interaction energy within the
range of interaction in asymptotic (equilibrium) time regime.

Mobility of each residue is also analyzed along with the
global mobility of each peptide. Mobility (Mn) of a residue
is defined as the average number of its successful moves.
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FIG. 3. Energy profile of peptide at two temperatures (T = 0.010, 0.016 in unit of εij/kB) with the input from three simulated interaction potentials, Kuang,11

Camden,31 and Dragneva32 (Figure 1). En is the average energy (in arbitrary unit) of each residue. Lattice of size 1003 with a 242 sheet at the center is used
with the concentration of peptides Cp = 0.01 and 100 independent realizations each for a 106 time steps.

Figure 4 shows the mobility profile of the peptide at two rep-
resentative temperatures (corresponding to Figure 3). Most
of the peptides are adsorbed at low temperatures (e.g., T
= 0.010) as seen in our visual animations (see also Figure 2).
Lowest mobility for 4Q and 6K with all three potential sug-
gests that these residues are most likely anchoring the peptide
binding. Even though the mobility of each residue increases
on raising the temperature to T = 0.016, the residues 4Q and
6K remain least mobile with all three potentials. The magni-

tude of the change in mobility however varies from one poten-
tial to another but the distinction in residue mobility is clear
enough to identify the anchoring residues. Raising the tem-
perature to high value (e.g., T = 0.028) leads to high mobility
for each residue when the binding ceases to occur and dis-
tinction in residue mobility vanishes. It should be pointed out
that the higher mobility of 7M is not only due to competition
between its interaction and temperature alone but also due to
its position at the end in the sequence with relatively least
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FIG. 4. Mobility (average number of successful move) profile of peptide at two temperatures (T = 0.010, 0.016 in unit of εij/kB) with the input from three
simulated interaction potentials, Kuang,11 Camden,31 and Dragneva.32 Lattice of size 1003 with a 242 sheet at the center is used with the concentration of
peptides Cp = 0.01 and 100 independent samples, each for a 106 time steps.
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FIG. 5. Surface binding (average number of graphene sites within the range of interaction) profile of peptide at two temperatures (T = 0.010, 0.016 in unit of
εij/kB) with the input from three simulated interaction potentials, Kuang,11 Camden,31 and Dragneva.32 Lattice of size 1003 with a 242 sheet at the center is used
with the concentration of peptides Cp = 0.01 and 100 independent samples each for a 106 time steps.

constraint by only one covalent bond. Lowest connectivity is
also providing higher mobility to residue 1E at the other end
of the peptide chain.

As the peptide is adsorbed its contact with the graphene
sheet is enhanced. The average number (Ng) of graphene sites
around each residue within the range of interaction in equi-
librium can provide the strength of its binding. As in all es-
timates, the average is performed over the time steps (last

one-third) in equilibrium and the number of independent sam-
ples at each temperature. The larger value of Ng for a residue
obviously implies its higher probability of binding with the
graphene and is a measure of the characteristic binding pro-
file of the peptide. Binding profiles of the peptide with three
simulated interaction potentials are presented in Figure 5.
There are similarities and differences in the binding profiles
with different simulated potentials. Binding of peptide A1 to
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FIG. 6. Variation of the average radius of gyration (Rg) of the peptide in time at various temperatures in the range of T = 0.010–0.024 (in unit of εij/kB) with
the input from three simulated interaction potentials, Kuang,11 Camden,31 and Dragneva.32 Lattice of size 1003 with a 242 sheet at the center is used with the
concentration of peptides Cp = 0.01 and 100 independent samples each for a 106 time steps.
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FIG. 7. Variation of the average equilibrium radius of gyration (Rg) and its components (Rgx, Rgy, Rgz) of the peptide A1 with the temperatures (in unit of
εij/kB) with three simulated interaction potentials, Kuang,11 Camden,31 and Dragneva.32 Lattice of size 1003 with a 242 sheet at the center is used with the
concentration of peptides Cp = 0.01 and 100 independent samples each for a 106 time steps. The statistical error bar is of the order of symbols; a representative
value for Rg at T = 0.020 is shown.

graphene sheet is anchored by three residues, 1E, 4Q, and
6K—a common feature of three potentials considered here.
Note that 1E remains bound to graphene despite its higher
mobility than that of 4Q and 6K (see Figure 4). The binding
profile of the solvated peptide A1 is very different from that
of the un-solvated peptide (see Refs. 11 and 12) where lit-
tle distinction exists in binding profile of residues. Although
the solvation reduces the interaction32 between the residues
and the graphene it accentuates the distinction in their bind-
ing. The binding is reduced on increasing the temperature; the
thermal response is highest with Dragneva potential.31 Let us
look closely into the differences. With the Kuang potential,11

probability of binding of the remaining residues (3L, 5L, 7M)
is relatively high while the probability of anchoring by 3L and
5L with Camden potential31 and that by 2P with Dragneva
potential32 is relatively low.

Differences in binding profiles with the three simulated
potential may affect the conformation and therefore the av-
erage radius of gyration of the peptides that are bound to
graphene sheet. Binding of peptides depends on temperature
(with the binding is more prevalent at lower temperatures)
which should be reflected in response of the radius of gyra-
tion. Variation of the radius of gyration with the time steps
is presented in Figure 6 for a range of temperatures (low-to-
high) with three simulated interactions. We see that the ra-
dius of gyration reaches steady-state particularly at moder-
ate to high temperature; approach to near-equilibrium at low
temperatures is good enough to assess its relative thermal re-
sponse and differences in results from three simulated interac-
tions. Response of the radius of gyration is relatively similar
with Kuang11 and Camden31 potentials and differs somewhat
from the data with the Dragneva32 potential. Apart from the
shift in the temperature range, the nature of the temporal vari-

ation of Rg with temperature remains somewhat similar with
all three. The graphene sheet is fixed at the center of the sim-
ulation box in zx-plane. Therefore, the transverse (y) compo-
nent of the radius of gyration should be more affected due to
binding than (x or z). We have analyzed the temporal varia-
tion of the transverse component of the radius of gyration and
found that the pattern shares similar thermal response as the
total radius of gyration.

Variation of the equilibrium radius of gyration and its
components (x, y, z) with the temperature is presented in
Figure 7 with three simulated interaction potentials. Thermal
response of x and z components of the radius of gyration is
different from that of its transverse (y) component. Apart from
the shift in temperature range, the general response is rela-
tively similar (z, x). As the binding reduces with the temper-
ature, transverse component of the gyration radius increases
accordingly rather linearly with the temperature. It is tempt-
ing to identify the radius of gyration (Rg) as an order param-
eter of binding transition due to its continuous decay with the
temperature, similar to second order phase transitions (liquid
to gas, ferro- or antiferro-magnet to paramagnet).

IV. CONCLUSION

Binding of a solvated peptide A1 with the graphene sheet
is examined by a hierarchical coarse-grain simulation involv-
ing three independent simulated interaction potentials.11, 31, 32

Results from three potentials show some common features
as well as quantitative differences. Common findings include
general binding patterns, i.e., the peptide is adsorbed at low
temperatures and desorbed at high temperature. Adsorption to
desorption transition can be described by the variation of the
transverse component (Rgy) of the radius of gyration with the
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temperature; Rgy could be a measure of the order parameter
for the adsorption-desorption transition. The range of temper-
ature over which the variation in the magnitude of the radius
of gyration occurs can vary with the potentials.

Binding of the un-solvated peptide (A1) has been ex-
tensively studied by all-atom as well as coarse-grained
simulations.11, 12 The un-solvated peptide can bind at low tem-
peratures and unbind at high temperatures similar to solvated
peptide. The binding strength of all residues in un-solvated
peptide is about the same, although it is feasible to iden-
tify the residues that can bind with lower probability. The
binding strength of residues in solvated peptide, on the other
hand, is accentuated despite their reduced interaction32 with
the graphene. As a result it is easier to identify the residues
1E, 4Q, and 6K that can anchor the binding of solvated peptide
A1. There are quantitative differences in results from the three
simulated potentials particularly the temperature range of the
thermal response of the overall size (measured by the radius
of gyration) of the peptide and therefore its structure and con-
sequently their binding. Thermal response to binding strength
(measured by Ng) of the anchoring residues (1E, 4Q, 6K) also
depends on the simulated potentials. While this study would
be useful in interpreting the laboratory observations2, 11 it also
suggests a need for multiple inputs particularly the force field,
potential, and its implementation in assessing the reliability of
qualitative and quantitative findings.

ACKNOWLEDGMENTS

This work is supported by the Air Force Research Labo-
ratory (GR04691). N.D. and O.R. would like to acknowledge
NSERC Discovery grant program (386018-2010). We thank
Diana Lovejoy for reading the paper and corrections.

1Y. Cui, S. N. Kim, S. E. Jones, L. L. Wissler, R. R. Naik, and M. C.
McAlpine, Nano Lett. 10, 4559 (2010).

2S. N. Kim, Z. Kuang, J. M. Slocik, S. E. Jones, Y. Cui, B. L. Farmer, M. C.
McAlpine, and R. R. Naik, J. Am. Chem. Soc. 133, 14480 (2011).

3S. M. Tomasio and T. R. Walsh, J. Phys. Chem. C 113, 8778 (2009).
4S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, and A. M. Belcher,
Nature (London) 405, 665 (2000).

5M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, and F. Baneyx, Nat.
Mater. 2, 577 (2003).

6Y. Fang, Q. Wu, M. B. Dickerson, Y. Cai, S. Shian, J. D. Berrigan,
N. Poulsen, N. Kroger, and K. H. Sandhage, Chem. Mater. 21, 5704
(2009).

7M. J. Pender, L. A. Sowards, J. D. Hartgerink, M. O. Stone, and R. R. Naik,
Nano Lett. 6, 40 (2006).

8R. B. Pandey et al., Phys. Chem. Chem. Phys. 11, 1989 (2009).
9H. Heinz et al., J. Am. Chem. Soc. 131, 9704 (2009).

10L. F. Drummy et al., ACS Appl. Mater. Interfaces 2, 1492 (2010).
11R. B. Pandey, Z. Kuang, B. L. Farmer, S. S. Kim, and R. R. Naik, Soft

Matter 8, 9101 (2012).
12R. B. Pandey and B. L. Farmer, J. Chem. Phys. 139, 164901 (2013).
13A. Chakrabarty and T. Cagin, Polymer 51, 2786 (2010).
14A. E. van Giessen and J. E. Straub, J. Chem. Phys. 122, 024904 (2005).
15D. Reith, M. Putz, and F. Muller-Plathe, J. Comput. Chem. 24, 1624

(2003).
16R. B. Pandey, Z. Kuang, and B. L. Farmer, PLoS One 8, e70847 (2013).
17A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga, J. Chem. Phys.

115, 2323 (2001).
18J. Zhou, I. F. Thorpe, S. Izvekov, G. A. Voth, Biophys. J. 92, 4289 (2007).
19S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de

Vries, J. Phys. Chem. B 111, 7812 (2007).
20Z. Wu, Q. Cui, and A. Yethiraj, J. Chem. Theory Comput. 7, 3793 (2011).
21S. Tanaka and H. A. Scheraga, Macromolecules 9, 945 (1976).
22S. Miyazawa, R. L. Jernigan, Macromolecules 18, 534 (1985).
23M. R. Betancourt and D. Thirumalai, Protein Sci. 8(2), 361 (1999).
24A. Godzik, A. Kolinski, and J. Skolnick, Proteins: Struct., Funct., Genet. 4,

363 (1996).
25S.-Y. Huang and Z. Xiaoqin, Proteins: Struct., Funct., Genet. 79, 2648

(2011).
26M. Fritsche, R. B. Pandey, B. L. Farmer, and D. Heermann, PLoS One 7,

e32075 (2012).
27R. B. Pandey and B. L. Farmer, PLoS One 7, e49352 (2012).
28V. G. Sakai, S. Khodadadi, M. T. Cicerone, J. E. Curtis, A. P. Sokolov, and

J. H. Roh, Soft Matter 9, 5336 (2013).
29R. B. Pandey and B. L. Farmer, PLoS One 8, e76069 (2013).
30M. Fritsche, R. B. Pandey, B. L. Farmer, and D. Heermann, PLoS One 8,

e64507 (2013).
31A. N. Camden, S. A. Barr, and R. J. Berry, “Simulations of peptide-

graphene interactions in explicit water,” J. Phys. Chem. B 117, 10691
(2013).

32N. Dragneva, W. B. Floriano, D. Stauffer, R. C. Mawhinney, G. Fanchini,
and O. Rubel, J. Chem. Phys. 139, 174711 (2013).

33G. Nawrocki and M. Cieplak, Phys. Chem. Chem. Phys. 15, 13628 (2013).
34J. Feng, R. B. Pandey, R. J. Berry, B. L. Farmer, R. R. Naik, and H. Heinz,

Soft Matter 7, 2113 (2011).
35I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).
36Monte Carlo and Molecular Dynamics Simulations in Polymer Science,

edited by K. Binder (Oxford University Press, New York, 1995).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  65.39.15.37

On: Fri, 23 May 2014 19:32:36

http://dx.doi.org/10.1021/nl102564d
http://dx.doi.org/10.1021/ja2042832
http://dx.doi.org/10.1021/jp8087594
http://dx.doi.org/10.1038/35015043
http://dx.doi.org/10.1038/nmat964
http://dx.doi.org/10.1038/nmat964
http://dx.doi.org/10.1021/cm9011525
http://dx.doi.org/10.1021/nl051899r
http://dx.doi.org/10.1039/b816187a
http://dx.doi.org/10.1021/ja900531f
http://dx.doi.org/10.1021/am1001184
http://dx.doi.org/10.1039/c2sm25870f
http://dx.doi.org/10.1039/c2sm25870f
http://dx.doi.org/10.1063/1.4825370
http://dx.doi.org/10.1016/j.polymer.2010.03.060
http://dx.doi.org/10.1063/1.1833354
http://dx.doi.org/10.1002/jcc.10307
http://dx.doi.org/10.1371/journal.pone.0070847
http://dx.doi.org/10.1063/1.1383989
http://dx.doi.org/10.1529/biophysj.106.094425
http://dx.doi.org/10.1021/jp071097f
http://dx.doi.org/10.1021/ct200593t
http://dx.doi.org/10.1021/ma60054a013
http://dx.doi.org/10.1021/ma00145a039
http://dx.doi.org/10.1110/ps.8.2.361
http://dx.doi.org/10.1002/prot.23086
http://dx.doi.org/10.1371/journal.pone.0032075
http://dx.doi.org/10.1371/journal.pone.0049352
http://dx.doi.org/10.1039/c3sm50492a
http://dx.doi.org/10.1371/journal.pone.0076069
http://dx.doi.org/10.1371/journal.pone.0064507
http://dx.doi.org/10.1021/jp403505y
http://dx.doi.org/10.1063/1.4828437
http://dx.doi.org/10.1039/c3cp52198b
http://dx.doi.org/10.1039/c0sm01118e
http://dx.doi.org/10.1021/ma00187a030

	Binding of Solvated Peptide (EPLQLKM) With a Graphene Sheet Via Simulated Coarse-Grained Approach
	Recommended Citation
	Authors

	tmp.1658333507.pdf.1c_Vb

