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Dispersed Crude Oil Induces Dysbiosis in the Red Snapper
Lutjanus campechanus External Microbiota

Andrea M. Tarnecki,a* Christelle Miller,b Tracy A. Sherwood,b Robert J. Griffitt,c Ryan W. Schloesser,d Dana L. Wetzelb

aMarine Immunology Program, Mote Marine Laboratory, Sarasota, Florida, United States
bEnvironmental Laboratory for Forensics, Mote Marine Laboratory, Sarasota, Florida, United States
cDivision of Coastal Sciences, School of Ocean Science and Technology, University of Southern Mississippi, Ocean Springs, Mississippi, United States
dFisheries Ecology & Enhancement, Mote Marine Laboratory, Sarasota, Florida, United States

ABSTRACT The fish external microbiota competitively excludes primary pathogens
and prevents the proliferation of opportunists. A shift from healthy microbiota com-
position, known as dysbiosis, may be triggered by environmental stressors and
increases host susceptibility to disease. The Deepwater Horizon (DWH) oil spill was a
significant stressor event in the Gulf of Mexico. Despite anecdotal reports of skin
lesions on fishes following the oil spill, little information is available on the impact
of dispersed oil on the fish external microbiota. In this study, juvenile red snapper
(Lutjanus campechanus) were exposed to a chemically enhanced water-accommo-
dated fraction (CEWAF) of Corexit 9500/DWH oil (CEWAF) and/or the bacterial patho-
gen Vibrio anguillarum in treatments designed to detect changes in and recovery of
the external microbiota. In fish chronically exposed to CEWAF, immunoglobulin M
(IgM) expression significantly decreased between 2 and 4 weeks of exposure, coin-
ciding with elevated liver total polycyclic aromatic hydrocarbons (PAHs). Dysbiosis
was detected on fish chronically exposed to CEWAF compared to seawater controls,
and addition of a pathogen challenge altered the final microbiota composition.
Dysbiosis was prevented by returning fish to clean seawater for 21 days after 1 week
of CEWAF exposure. Four fish exhibited lesions during the trial, all of which were
exposed to CEWAF but not all of which were exposed to V. anguillarum. This study
indicates that month-long exposure to dispersed oil leads to dysbiosis in the exter-
nal microbiota. As the microbiota is vital to host health, these effects should be con-
sidered when determining the total impacts of pollutants in aquatic ecosystems.

IMPORTANCE Fish skin is an immunologically active tissue. It harbors a complex commu-
nity of microorganisms vital to host homeostasis as, in healthy fish, they competitively
exclude pathogens found in the surrounding aquatic environment. Crude oil exposure
results in immunosuppression in marine animals, altering the relationship between the
host and its microbial community. An alteration of the healthy microbiota, a condition
known as dysbiosis, increases host susceptibility to pathogens. Despite reports of external
lesions on fishes following the DWH oil spill and the importance of the external microbiota
to fish health, there is little information on the effect of dispersed oil on the external
microbiota of fishes. This research provides insight into the impact of a stressor event
such as an oil spill on dysbiosis and enhances understanding of long-term sublethal effects
of exposure to aid in regulatory decisions for protecting fish populations during recovery.

KEYWORDS Deepwater Horizon, Lutjanus campechanus, dispersed oil, external mucosa,
microbiota, red snapper

Fish skin is immunologically active tissue that harbors diverse microbial communities,
known as the microbiota, which interact intimately with their host (1). The mucosal

skin surface is a primary entry point for pathogens but contains a vast repertoire of
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concentrated immunological factors to prevent infection. These include proteolytic
enzymes, antimicrobial peptides, carbohydrate-binding proteins (lectins), and immuno-
globulins (1). This protective layer also provides a site for adhesion by microorganisms
capable of avoiding these immune factors, some of which gain nutrients from metaboliz-
ing compounds present in the mucus (2). The microbiota typically comprises numerous
mutualistic and commensal species that prevent attachment of and produce antimicro-
bials against pathogenic microbes and thus acts as an extension of the fish’s immune
system.

When the host is healthy, the microbiota is diverse and dominated by mutualists and
commensals that prevent infection from primary pathogens and keep their abundance
low in the community (2). Opportunistic pathogens are also common in the healthy
microbiota (2); however, opportunists may overcome an immunocompromised host dur-
ing times of altered homeostasis, establish infection, and cause disease. Physical and
environmental stressors, such as changes in water parameters (i.e., temperature, pH, sa-
linity, and oxygen), altered diet, and exposure to pollutants, antibiotics, and pathogens,
are associated with deviations from the normal, healthy structure of the microbiota, a
condition known as dysbiosis (3–5). Dysbiosis is characterized primarily by decreased
bacterial diversity and increased relative abundance of primary and opportunistic patho-
gens (3–7). The imbalance of these communities reduces the microbiota’s protective
ability, increasing the host’s susceptibility to infectious disease (6, 8).

The 2010 Deepwater Horizon (DWH) oil spill released nearly 5 million barrels of oil
into the Gulf of Mexico, containing 2.1 � 1010 g of polycyclic aromatic hydrocarbons
(PAHs) (9), which are oil constituents that are toxic in most organisms (10). In an
attempt to distribute the plume throughout the water column and reduce coastal
impacts, 2.1 million gallons of Corexit dispersant were applied to the ocean surface
and injected into the DWH wellhead plume (11). In the decade since the DWH spill,
PAHs and dispersants have received significant attention as environmental stressors.
The effect of these pollutants on the health of fishes has been the topic of numerous
investigations, with studies identifying immunosuppression (12, 13), oxidative stress
(14), tissue damage (15), microbiota changes (15), and increased susceptibility to
pathogens (13).

Following the DWH spill, there was an increase in anecdotal reports of fish species
exhibiting unusual external lesions and ulcers (16). The observations of potentially
impacted red snapper (Lutjanus campechanus) became a focal point of controversy sur-
rounding the DWH spill as various media outlets reported on the presence of lesions
(17–19), and studies by Murawski et al. (16) found a lesion rate of approximately 3% on
this species in the year following the spill. Red snapper support an economically signifi-
cant fishery in the United States, whose commercial landings value has increased by
73% since 2009, reaching a value of $32.8 million in 2019 (20). In the Gulf of Mexico, 16.6
million pounds of red snapper were landed in 2019, and with.80% of this harvest from
recreational fisheries (21), these reports of lesions were of concern for local fishermen.
Researchers failed to reject the hypothesis that the DWH spill caused these lesions due
to correlations between ulcers and PAH concentrations in the fish (16). Further support-
ing a possible link between skin lesions and PAHs, red drum (Sciaenops ocellatus) col-
lected from oil-contaminated sites exhibited a 20% higher incidence of skin lesions than
those from oil-free reference sites (22). Additionally, southern flounder (Paralichthys leth-
ostigma) exposed to oil through sediments developed bloody skin lesions similar to
those reported in wild fishes (13). Immunosuppression in exposed flounder led to
increased colonization by and mortality from the marine bacterial pathogen Vibrio
anguillarum (formerly Listonella anguillarum) during experimental challenges (13). A pre-
vious study exposing red snapper to oil and V. anguillarum did not report lesions after
14 days; however, studies in Pacific herring suggest that longer-term exposure (29 days)
is needed in order to increase susceptibility to this pathogen (23).

V. anguillarum is the causative agent of vibriosis, a disease characterized by hemor-
rhagic septicemia in marine fishes worldwide (24, 25). Signs of vibriosis in fishes
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include development of skin lesions that may become bleeding, open sores (25), like
those reported following the DWH spill; however, the causative agent of the lesions
during the DWH spill has not been determined. The main infection route for V. anguil-
larum is through the skin, particularly through injuries or damaged mucosa (25). The
bacterium is lethal at seawater concentrations of 104 CFU/mL and mortality may occur
as soon as 5 days following exposure (25). The pathogen is attracted to fish mucus via
chemotaxis, harbors resistance to fish-produced antimicrobials in these protective
layers, and remains adhered to fish during shedding of the mucosal layer (25). Its role
as a mucosal pathogen that can cause lesions similar to those seen in the DWH spill
has made it a common challenge pathogen in oil exposure studies (12, 13, 23).

Sublethal impacts of PAHs include alteration of development, behavior, and gene
expression, leading to reduced reproductive success, mutations, tissue damage, and
long-term mortality (26). To truly understand population-level impacts, which are vital
to assessing the extent of damage caused by contaminant exposures such as that dur-
ing the DWH oil spill, we must understand how animals adapt following exposure. Few
studies have investigated the impact of oil exposure on the fish microbiota. Bayha et
al. (13) and Brown-Peterson et al. (15) detected a significant effect of oil exposure on
the gill and intestinal microbiota of southern flounder after exposures of 1 month and
7 days, respectively. However, neither documented the ability of the microbiota to
recover following dysbiosis. Larsen et al. (27) did not observe any impact of oil expo-
sure on wild Gulf killifish (Fundulus grandis) external (skin-associated) microbiota a year
after the DWH spill, perhaps identifying adaptation to or rehabilitation from contact
with oil. Thus, measuring nonexposure versus exposure alone does not consider the
organism's ability to recover following a stressor event.

The purpose of this study was to investigate the immunosuppressive effects of oil
exposure on the external microbiota of red snapper. Microbial communities, PAH con-
centrations in fish liver, and immunoglobulin M (IgM) gene expression were monitored
through a 4-week trial designed to determine the influence of exposure duration, re-
covery potential, and response to a combined exposure to dispersed DWH oil and the
bacterial fish pathogen V. anguillarum. The experimental design is shown in Fig. 1. As
the external microbiota is an extension of the host immune system, characterization of

FIG 1 Experimental design and sampling points used in this study. CEWAF, chemically enhanced water-
accommodated fraction; PAH, polycyclic aromatic hydrocarbon; IgM, immunoglobulin M.
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dysbiosis and the fish’s ability to recover from these altered communities provides
insight into the chronic, sublethal effects of oil exposure on fish health at the individual
and population levels.

RESULTS
Morphological observations. There were no behavioral differences observed

among treatments. There was no statistical difference in fish weights among treat-
ments, nor was there a significant change in measurements between sampling days.
Initial weights (average 6 standard deviation [SD]) were 31.0 6 15.9 g. Weights (aver-
age6 SD) were 37.8 6 18.3 g and 33.8 6 17.2 g for days 14 and 28, respectively. A few
individuals exhibited skin lesions during sampling, including 3 from day 14 (one each
from the chemically enhanced water-accommodated fraction of Corexit 9500/DWH oil
[CEWAF]/Recovery, CEWAF/Bacteria/Recovery, and CEWAF treatment groups) and 1 at
day 28 from CEWAF/Bacteria/Recovery (see Fig. S1 in the supplemental material).

PAH concentrations in liver and CEWAF exposure solution. The average
P

48

PAH concentration of the tank water for the 4-CEWAF treatments—two with 7 days only
of CEWAF exposure and two with 28 days of CEWAF exposure—was 11.61 6 9.37 mg/L.
Livers were collected and analyzed from each of the exposure treatments at day 14 and
again at day 28 (Table 1). The Seawater Control and Bacteria/Recovery fish had similar
P

48 PAH background levels, with an average of 304.19 ng/g wet weight at day 14 and
235.16 ng/g wet weight at day 28 (Table 2). The two treatments with 7 days of CEWAF
exposure (CEWAF/Recovery and CEWAF/Bacteria/Recovery) averaged

P
48 PAH liver con-

centrations of 1,239.58 ng/g wet weight at the 14-day sampling time and decreased to
888.50 ng/g wet weight after 14 more CEWAF-free days. For the CEWAF constant expo-
sures (CEWAF/Bacteria/CEWAF and CEWAF), there was an average

P
48 PAH liver concen-

tration at the 14-day sampling time of 1,571.66 ng/g wet weight, which increased 250%
to 4,040.19 ng/g wet weight by 28 days. The lower-molecular-weight (LMW) PAHs
(where LMW represents 2 or 3 aromatic rings) comprised an average of .98% of the
P

48 PAHs in the liver of the day 14 CEWAF exposures (CEWAF, CEWAF/Recovery,
CEWAF/Bacteria/Recovery, and CEWAF/Bacteria/CEWAF) compared to the higher-molec-
ular-weight (HMW) PAHs (where HMW represents 4 or more aromatic rings), which com-
prised ,2% of the analyzed PAHs (see Table S1 in the supplemental material). After the
28-day exposure, the liver LMW PAHs declined slightly to an average of 96%, while the

TABLE 1 Number of samples analyzed during this study

Treatment

Day 14 Day 28
P

48 PAH IgM
P

48 PAHa IgM Microbiota
Seawater Control 6 (3 composites of 2) 4 6 (3 composites of 2) 4 4
Bacteria/Recovery 6 (3 composites of 2) 4 8 (4 composites of 2) 4 4
CEWAF/Recovery 6 (3 composites of 2) 4 6 (3 composites of 2) 4 4
CEWAF/Bacteria/Recovery 6 (3 composites of 2) 4 8 (4 composites of 2) 4 4
CEWAF 6 (3 composites of 2) 4 8 (4 composites of 2) 4 4
CEWAF/Bacteria/CEWAF 6 (3 composites of 2) 4 10 (5 composites of 2) 4 4
aThe number of targeted fish sampled for

P
48 PAH on each day was 6 per treatment, with a total fish load per

treatment of 16 fish, allowing for potential mortalities. At day 28, all remaining fish were sampled.

TABLE 2 Liver PAH and IgMmeasurements in this studya

Treatment

Liver
P

48 PAH (ng/g) IgM [log2(22DDCT)]

Day 14 Day 28 Day 14 Day 28
Seawater Control 115.166 80.18 81.846 30.28 0.006 1.97 0.006 1.87
Bacteria/Recovery 571.966 213.21 439.706 42.51 0.046 0.94 1.206 0.84
CEWAF/Recovery 1,112.916 422.41 551.576 205.57 0.986 1.58 0.626 1.73
CEWAF/Bacteria/Recovery 1,366.256 539.07 1,225.436 991.87 0.706 0.94 1.236 1.45
CEWAF 1,406.196 610.39 3,937.096 2,164.88 2.286 1.67 21.046 0.68
CEWAF/Bacteria/CEWAF 1,737.126 646.90 4,122.666 736.29 0.116 1.01 0.286 0.56
aThe values shown are the average6 standard deviation.
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HMW PAHs increased to approximately 4% of the total concentration (see Table S2 in
the supplemental material). PAH concentrations in Seawater Control and Bacteria/
Recovery are likely attributed to ambient laboratory conditions and are trivial to the

P
48

PAH measured in the livers of fish exposed to CEWAF.
Chronic CEWAF alters IgM expression. There was a significant interaction between

treatment and sampling day (P , 0.05) for IgM expression in the liver, which was driven
by significantly lower IgM expression on day 28 than on day 14 in fish within the CEWAF
treatment group, likely due primarily to IgM suppression associated with increased PAH
concentrations in the liver. On day 14, observed differences in IgM expression were asso-
ciated with dispersed oil exposure, with CEWAF having higher IgM expression than other
treatments, but due to the high variability among individuals and limited samples avail-
able, this suppression was not statistically significant (Table 2). On day 28, fish within the
CEWAF treatment demonstrated suppression of the IgM response compared to other
treatments, but as with day 14 results, this suppression was not statistically significant.
Although not statistically significant, there was a trend for the bacterial challenge to
enhance IgM response at day 28. This apparent increase was diminished when fish
remained in CEWAF following bacterial exposure (CEWAF/Bacteria/CEWAF).

CEWAF exposure induces dysbiosis in the red snapper external microbiota.
Good's coverage exceeded 99% in all samples, indicating thorough external microbiota
sequencing (Table 3; see Fig. S2 in the supplemental material). There were no signifi-
cant differences in any calculated alpha diversity measurements among treatments.
Nonmetric multidimensional scaling (NMDS) and principal-component analysis (PCA)
both suggested differences in microbiota structure between treatments (Fig. 2). These
were confirmed statistically with permutational multivariate analysis of variance
(PERMANOVA) (P = 0.001) and analysis of similarity (ANOSIM) (P = 0.001, R = 0.221).
Both tests indicated the CEWAF treatment harbored statistically different microbiota
than each of the other treatments. PERMANOVA detected significant differences
between CEWAF/Bacteria/CEWAF and both Seawater Control and Bacteria/Recovery
treatments, whereas these relationships were not significant using ANOSIM, with P val-
ues of 0.086 and 0.057, respectively. There were no other significant differences
detected among overall community structures.

The red snapper external microbiota was dominated by members of the Proteobacteria
and Bacteroidetes, with some individuals harboring relatively high abundances of Firmicutes
(Fig. 3A). The Gammaproteobacteria composed over 75% of the microbiota of the lesioned
individual, compared to an average of approximately 35% across all other individuals.
Nearly 49% of sequences in the lesioned individual were ascribed to the genus Vibrio
(Fig. 3B), with the next highest abundances of this genus found in an individual within
CEWAF/Recovery (33%) followed by another individual within the CEWAF/Bacteria/Recovery
treatment (23%).

A total of 58 operational taxonomic units (OTUs) were determined to be differentially
abundant between at least two treatments in both ALDEx2 and ANCOM (analysis of com-
position of microbes) analyses (see Table S3 in the supplemental material). OTUs that could
be classified to the genus level and that contain members identified as hydrocarbon

TABLE 3 Alpha diversity measures of the red snapper external microbiotaa

Treatment Good's coverage (%) Richness
Shannon evenness
index Simpson index

Phylogenetic
diversity

Seawater Control 99.66 0.05 3376 60 0.666 0.06 0.0596 0.032 27.66 4.17
Bacteria/Recovery 99.66 0.03 3566 54 0.686 0.09 0.0496 0.037 29.66 4.79
CEWAF/Recovery 99.66 0.04 3316 43 0.666 0.08 0.0576 0.050 27.86 2.72
CEWAF/Bacteria/Recovery 99.66 0.02 3846 59 0.596 0.10 0.1116 0.095 31.66 4.38
CEWAF 99.66 0.07 3416 59 0.706 0.05 0.0386 0.015 28.56 2.70
CEWAF/Bacteria/CEWAF 99.66 0.02 3036 65 0.686 0.05 0.0336 0.014 26.36 4.86

Avg 99.66 0.05 3426 62 0.666 0.08 0.0586 0.051 28.66 3.96
P value 0.501 0.529 0.511 0.502 0.553
aThe values shown are the average6 standard deviation (n = 4 per treatment).
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degraders (28, 29) and/or fish pathogens (24) are shown in Fig. 4. Within the potential fish
pathogens, OTU0041, identified as Photobacterium, was on average more abundant in fish
maintained in seawater at day 28 than in fish chronically exposed to CEWAF. OTU0052
Arcobacter was significantly higher in the CEWAF treatment than the Seawater Control,
CEWAF/Bacteria/Recovery, and CEWAF/Bacteria/CEWAF treatments. OTU0128 Streptococcus
was generally higher in fish exposed to both CEWAF and a bacterial challenge, with this dif-
ference only significant between CEWAF and CEWAF/Recovery. Six differentially abundant
OTUs fell into taxa containing known hydrocarbon degraders. OTU0007 Marinobacter was

FIG 2 (A) Nonmetric multidimensional scaling (NMDS) and (B) principal-component analysis (PCA) analysis of
red snapper external microbiota. n = 4 fish per treatment.

FIG 3 Taxonomic classification of red snapper external microbiota by individual and treatment. (A) Phylum-level classifications. (B) Genus-level classifications.
The red asterisk indicates the individual with a lesion.
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significantly higher in Seawater Control than in the CEWAF/Recovery, CEWAF/Bacteria/
Recovery, and CEWAF treatments. OTU0047 Labrenzia was more abundant in Bacteria/
Recovery than in CEWAF/Bacteria/Recovery. OTU0014 Algoriphagus was significantly higher
in CEWAF than Seawater Control, Bacteria/Recovery, and CEWAF/Bacteria/Recovery. Both
OTU0044 Alcanivorax and OTU0079 Solimonas were on average more abundant in chroni-
cally exposed treatments but were significant only between CEWAF and CEWAF/Bacteria/
Recovery. OTU0046 Colwellia was more abundant in Recovery treatments, but only signifi-
cantly so when CEWAF/Bacteria/Recovery was compared to Seawater Control and
Bacteria/Recovery. Four OTUs were identified as genera that contain members asso-
ciated with fish disease and hydrocarbon degradation. Of these, OTU0015

FIG 4 Differentially abundant OTUs among treatments. OTUs included in this figure were able to be classified to the genus level and contain members
that have been identified as fish pathogens and/or hydrocarbon degraders. Gray indicates members that contain both fish pathogens and hydrocarbon
degraders, red indicates members that contain fish pathogens only, and blue indicates members that contain hydrocarbon degraders only.
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Halomonas and OTU0634 Shewanella were generally more abundant in fish never
exposed to CEWAF. For OTU0015, Seawater Control harbored significantly higher
abundances than CEWAF and both Exposure/Recovery treatments, whereas
OTU0634 was higher in Seawater Control and Bacteria/Recovery than CEWAF.
OTU0253 Mycobacterium was significantly higher in CEWAF treatment than both
Exposure/Recovery treatments. OTU0351 Vibrio was significantly higher in CEWAF
than Seawater Control, CEWAF/Recovery, and CEWAF/Bacteria/CEWAF.

Differentially abundant OTUs were correlated with IgM and liver
P

48 PAH using partial
least-squares (PLS) regression and visualized using clustered image maps (CIM) (see Fig.
S3 in the supplemental material). Twenty-nine OTUs were correlated at 0.3 or greater
with at least one variable (Fig. 5). The OTUs positively correlated with liver

P
48 PAH

included OTU0044 Alcanivorax, OTU0034 Microbacteriaceae, OTU0128 Streptococcus, and
OTU0056 C1-B045. The greatest negative correlations with liver

P
48 PAH include 3 OTUs

identified as Rhodobacteraceae (OTU0063, OTU0380, and OTU0161), OTU0117 Bacteroidia,
and OTU0273 Bacteria. The highest positive correlations with IgM included OTU0014
Algoriphagus and OTU0061 OM190, while the greatest negative correlations with IgM
included OTU0146 Proteobacteria and OTU0089 Gammaproteobacteria.

DISCUSSION

During this study,
P

48 PAH accumulated in the liver with exposure to CEWAF,
which supports other studies indicating that PAHs accumulate in fatty, high-blood-
flow tissues (26). The concentrations measured in this study, with an average of
approximately 1,400 ng/g in the liver at day 14 of fish exposed to CEWAF, are within
ranges reported in other oil exposure studies (14, 30) and wild fishes (31, 32). The

FIG 5 Correlations between OTUs and liver
P

48 PAH and IgM expression. Only OTUs with a
correlation of $0.3 for at least one variable are included.
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higher concentrations (�4,000 ng/g) detected in liver after a 28-day exposure to dis-
persed oil have been measured in wild fish livers (33, 34) and are thus not outside the
potential concentrations detected in nature.

Some lab-based studies report a decrease in IgM expression following oil exposure
(12, 13); however, these studies used crude oil or high-energy water-accommodated
fractions (HEWAF) for exposures. Interestingly, Jones et al. (35), who exposed sheeps-
head minnows to HEWAF and CEWAF and measured gene expression using microar-
rays, found increased expression of genes associated with antibody-mediated immune
response and disease resistance in CEWAF-exposed fishes versus HEWAF treatments,
suggesting CEWAF leads to activation of the antibody response. Gulf killifish collected
from natural environments showed increased expression of IgM heavy-chain genes in
liver tissue when exposed to DWH versus control sites, indicating activation of the
adaptive immune response (36). As samples were collected in late June, these fish may
have been exposed to dispersant, which was applied starting in May following the spill
(11). In our study, IgM expression was notably increased at day 14 for fish exposed to
dispersed oil compared to day 28, when the antibody expression was reduced from
chronic exposure. This contrasted with stable antibody expression in their clean sea-
water and pathogen-challenged counterparts. Although not statistically significant, a
trend in IgM data suggests an increase in expression on day 28 in treatments where V.
anguillarum-challenged individuals were maintained in clean seawater (Bacteria/
Recovery, CEWAF/Bacteria/Recovery). However, fishes maintained in CEWAF following
challenge (CEWAF/Bacteria/CEWAF) had reduced expression compared to these other
treatments, indicating potential suppression of immune function in response to bacte-
rial pathogens following chronic CEWAF exposure. Similarly, Bayha et al. (13) reported
greater suppression of IgM in flounder challenged with oil and V. anguillarum than in
fish exposed to oil alone. However, a similar study in red snapper exposed to crude oil
and V. anguillarum did not exhibit these trends (12). Rodgers et al. (12) used HEWAF
and a higher pathogen concentration (7.5 � 105 CFU/mL), and concluded the study af-
ter 17 days, any of which may contribute to differences in immune response between
our red snapper and the ones in that study. Overall, these results and those of other
studies suggest differing effects on immune function when fish are exposed to crude
oil versus CEWAF and point to potential immunosuppression and a decreased ability
to launch an antibody response to pathogens in chronically exposed individuals.

Four fish developed lesions during the study, all exposed to CEWAF but not all
exposed to V. anguillarum. This suggests that skin lesion development was driven more
by the exposure to dispersed oil than to this bacterial pathogen. Microbiota data col-
lected from the individual sampled at day 28 indicated that Vibrio is associated with
lesion formation, as the external microbiota of this lesioned fish was composed of nearly
49% Vibrio sequences versus an average of 6% in nonlesioned fish. Unfortunately, Vibrio
cannot be identified to the species level using 16S rRNA genes alone (37), so although
one OTU was primarily responsible for the high relative abundance of the genus, we can-
not determine which species it represents. Rodgers et al. (12) did not report lesions in
red snapper exposed to HEWAF and V. anguillarum for 17 days, whereas Bayha et al. (13)
observed hemorrhagic lesions in flounder within 2 days. Pacific herring were protected
against V. anguillarum for up to 29 days following oil and pathogen exposure, but their
susceptibility increased at that time (23). The variation in lesion appearance among these
studies may be due to exposure material (crude oil versus oil and dispersant), exposure
time, species-specific physiological responses, or life history, as red snapper are reef asso-
ciated, flounder are benthic, and herring are pelagic. Other unmeasured parameters may
also contribute to lesion formation, as research indicates metal exposure is associated
with the appearance of lesions in wild fishes (38) and increased susceptibility to V.
anguillarum (39).

Community-level analyses indicated that the external microbiota of chronically
exposed red snapper (CEWAF and CEWAF/Bacteria/CEWAF) were significantly different
from those of Seawater Control and Bacteria/Recovery fish, indicating that CEWAF
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exposure induces dysbiosis in the fish external microbiota. However, the bacterial chal-
lenge combined with chronic CEWAF exposure altered the external microbiota differ-
ently than exposure to CEWAF alone, as these two treatments harbored distinct com-
munities from one another and 13 OTUs were differentially abundant between these
two treatments. Fish exposed to CEWAF only maintained distinct microbiota composi-
tions from those exposed to both Exposure/Recovery treatments, whereas the CEWAF/
Bacteria/CEWAF group was not significantly different from either of these. We hypothe-
size these differences were due to a combination of pathogen challenge and physio-
logical changes within the fish, as demonstrated by changes in IgM expression over
time in CEWAF. As the cross talk between the fish immune system and mucosal micro-
biota results in alterations of the immune response by bacteria and vice versa, the
changing IgM response may provide some insight into the continued dysbiosis
detected in CEWAF-only individuals compared to their bacterium-challenged counter-
parts. The microbiota of fish within the Exposure/Recovery treatments were not statisti-
cally distinct from the Seawater Control or Bacteria/Recovery treatments, or each other,
indicating that clean seawater for 21 days post-CEWAF exposure prevents dysbiosis in
the fish microbiota.

Dysbiosis was also detected at the OTU level. Patterns of OTUs identified as
Halomonas and Marinobacter were nearly identical across treatments, with Seawater
Control fish containing higher abundances than those receiving the Recovery treat-
ments and CEWAF only. An OTU classified as Shewanella was also higher in Seawater
Control and Bacteria/Recovery than in CEWAF only. These genera have been reported
previously in the external microbiota (7, 40–42) and may provide benefits such as stim-
ulation of immunity (43–45), as well as increasing growth and nutritional conditions
(46). These genera include known crude oil degraders (29); however, the OTUs were ei-
ther negatively correlated or lacked correlation with liver PAH and may not be func-
tioning primarily as crude oil degraders in this study.

Few OTUs were differentially abundant between Exposure/Recovery treatments
compared to other treatments, supporting lack of dysbiosis with 3 weeks of clean sea-
water post-CEWAF exposure. One OTU identified as Colwellia was significantly more
abundant in the CEWAF/Bacteria/Recovery treatment compared to Seawater Control
and Bacteria/Recovery. This genus contains strains that are known crude oil degraders
(29) and dominate microbial communities of diluted plumes (47), pointing to a role in
later stages of degradation. In a mesocosm study, the genus Colwellia was dominant
only in treatments that received dispersant, and it was hypothesized that these bacte-
ria participate in the metabolism of the sulfur compounds resulting from dispersant
use (48). The enrichment of Colwellia in CEWAF/Bacteria/Recovery occurred when pe-
troleum hydrocarbons were no longer being added, and the genus was positively cor-
related with liver PAHs that remained in these fish following 3 weeks of recovery. Thus,
the selection for this genus may reflect the natural hydrocarbon degradation process
that has been detected in open water marine environments. Perhaps worth noting is
one OTU identified as Streptococcus, which was significantly more abundant in CEWAF/
Bacteria/Recovery than CEWAF/Recovery. This OTU also reached high abundances in
some individuals within the CEWAF/Bacteria/CEWAF treatment. Streptococcus is gener-
ally reported in diseased fishes (49, 50), and in this study, it was strongly positively cor-
related with liver PAH concentrations.

Differential abundance analysis indicated a number of OTUs that were enriched in
the CEWAF treatment. One OTU identified as Algoriphagus, a genus that contains spe-
cies capable of degrading crude oil (29), was significantly more abundant in CEWAF
fish compared to Seawater Control, Bacteria/Recovery, or CEWAF/Bacteria/Recovery
fish. An OTU within the genus Alcanivorax was enriched in CEWAF versus CEWAF/
Bacteria/Recovery. This genus is well known for its ability to degrade alkanes (29), is
enriched in oil-contaminated environments (51, 52), and is more abundant in flounder
exposed to oiled sediments (13, 15). The genus Arcobacter was also represented by an
OTU that was significantly more abundant in CEWAF than in the Seawater Control,
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CEWAF/Bacteria/Recovery, and CEWAF/Bacteria/CEWAF groups. Members of this genus
can cause disease in fishes (24) and were also enriched in flounder exposed to oiled
sediments (15). Additionally, an OTU identified as Mycobacterium was enriched in
CEWAF compared to either Exposure/Recovery treatment. The genus contains mem-
bers capable of degrading phenanthrene hydrocarbons (29) and causing disease in
fishes (24). A Vibrio OTU was significantly enriched in CEWAF compared to Seawater
Control and CEWAF/Recovery, and this genus also contains members capable of
degrading phenanthrene (29) and causing disease (24). Thus, many of the OTUs differ-
entially abundant in CEWAF-driven dysbiosis are attributable to microbial groups that
play a role in hydrocarbon degradation and/or fish disease. It will be important to iden-
tify if the specific bacterial strains in these groups are opportunistic pathogens and/or
PAH degraders to understand the effects of these changes on fish health.

The microbiota of fish recovering from CEWAF exposure was generally restored to a
Seawater Control-type microbiota following 21 days in clean seawater. Few studies
monitor the external microbiota of fishes following perturbations. Tarnecki et al. (41)
found that dysbiosis in the external microbiota of common snook (Centropomus unde-
cimalis) caused by captive rearing was greatly remediated within 2 days of acclimation
in the wild environment. Captive common snook exposed to copper sulfate did not
recover a wild-type microbiota 2 years following chemical treatment; however, these
bacterial community alterations did not cause noticeable detriments to fish health
(53). Investigations on the effects of disease and antibiotics on the external microbiota
of seabass (Dicentrarchus labrax) (54) indicate the external microbiota takes longer
than a week to recover and may return to a healthy state in 3 weeks; however, differen-
ces in beta diversity measures and a single dominant taxon persisted. In our study,
CEWAF-exposed red snapper maintained relatively high levels of PAHs in the liver fol-
lowing the 3-week recovery period. Despite this, the external microbiota was similar to
that of Seawater Controls at the overall community structure level. A few differentially
abundant OTUs remained, including Exposure/Recovery fish having lower abundances
of OTUs within the Marinobacter and Halomonas genera and having higher abundan-
ces of OTUs within the Proteobacteria class. A similar experimental design in southern
flounder (Paralichthys lethostigma) indicated a lasting effect of crude oil, leading to an
alteration of oxidative homeostasis after a 3-week recovery (14). Chemical reactions
due to reactive oxygen species can alter sulfur and nitrogen metabolism, thereby
changing microbiota structure and leading to dysbiosis (55). Therefore, it is not unrea-
sonable to hypothesize that concentrations of PAHs in recovering snapper cause last-
ing oxidative stress that contributes to slightly altered microbiota, even 3 weeks post-
CEWAF exposure.

In conclusion, CEWAF exposure induced dysbiosis in the red snapper external
microbiota, enriching OTUs within genera containing known hydrocarbon degraders
and potential pathogens. IgM data from this study suggest that fish maintained in
clean seawater may launch a more consistent immune response following challenge
with a bacterial pathogen than if they are continually exposed to CEWAF, as IgM
expression decreases over time during chronic CEWAF exposure. CEWAF exposure for
as little as 7 days was able to induce lesion formation in red snapper. This data summa-
tion indicates that continued exposure to CEWAF causes dysbiosis concurrent with sig-
nificant reduction of immunoglobulin expression.

MATERIALS ANDMETHODS
Exposure systems. Juvenile red snapper were obtained from, and the exposure study carried out at,

the University of Southern Mississippi’s Gulf Coast Research Laboratory (GCRL). Fish were exposed to the
chemically enhanced water-accommodated fraction of Corexit 9500/DWH oil (CEWAF) and/or bacteria in
a flowthrough system consisting of 24 tanks, each holding 75-L. Water was maintained at 20°C, 15-ppt
salinity, dissolved oxygen content of .5 mg/L, and a pH of 8.5. Fish were maintained on a 16-h/8-h
light/dark cycle and fed daily. Each tank held 4 fish, and each treatment was replicated in 4 tanks, for a
total of 16 fish per treatment. This number was selected to allow for sampling of at least 6 individuals at
two time points per treatment (n = 12) while providing additional individuals to account for potential
mortalities. Fish were weighed in grams prior to stocking. There were six treatments, which included a

Dispersed Crude Oil Induces Dysbiosis in Red Snapper

Volume 10 Issue 1 e00587-21 MicrobiolSpectrum.asm.org 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

09
 A

ug
us

t 2
02

2 
by

 1
31

.9
5.

21
8.

19
.

https://www.MicrobiolSpectrum.asm.org


control, a challenge/recovery treatment, two exposure/recovery treatments, and two chronic exposure
treatments (Fig. 1): (i) Seawater Control, seawater for 28 days; (ii) Bacteria/Recovery, seawater for 7 days,
a 1-h bacterial challenge, and then seawater for 21 days; (iii) CEWAF/Recovery, CEWAF for 7 days fol-
lowed by clean seawater for 21 days; (iv) CEWAF/Bacteria/Recovery, CEWAF for 7 days, a 1-h pathogen
challenge, and then seawater for 21 days; (v) CEWAF, CEWAF for 28 days; and (vi) CEWAF/Bacteria/
CEWAF, CEWAF for 7 days, a 1-h pathogen challenge, and then CEWAF for 21 days.

During CEWAF exposure periods, fish were continuously exposed to Corexit 9500/DWH crude oil at a
flow rate of 2 L/h. During periods of clean seawater exposure, fish were exposed to seawater at the
same flow rate. The targeted nominal CEWAF exposure solution of 1 ppm total petroleum hydrocarbons
(TPH), an environmentally relevant concentration found in Gulf of Mexico subsurface water samples col-
lected during and after the DWH oil spill (56), was prepared fresh every 48 h following standard proto-
cols issued by the Chemical Response to Oil Spills Ecological Effects Research Forum (CROSERF) (57).
This stock CEWAF served as a source to supplement all exposure tanks at equal rates using a dilution sys-
tem as in previous studies (12). Water quality (salinity, oxygen, pH, and temperature) and chemistry (am-
monia, nitrite, nitrate, and alkalinity) were monitored and controlled to maintain appropriate environ-
mental conditions during experimental trials. PAH concentrations were measured periodically in water
of both exposure and control tanks, but liver PAH concentrations were used as the primary metric of
PAH exposure. Bacterial challenges were performed with a Vibrio anguillarum strain (Listonella anguilla-
rum [Bergeman] MacDonell and Colwell [ATCC 19264]), isolated from lesions in cod. This strain is of sero-
type O2, one of the dominant serotypes causing vibriosis in fish (25), for which Koch’s postulates have
been demonstrated (https://www.atcc.org/products/19264). Fish were challenged with V. anguillarum at
a concentration of 4.0 � 105 CFU/mL of seawater. This concentration was chosen to reflect a slightly
higher concentration than that used in previous research (13), as the previous study used juvenile floun-
der, which were smaller than the individuals used in the current study.

Measurements and morphological observations. During the exposure experiments, fish were
observed for changes in behavior and morphology. All exposures were conducted under approved pro-
tocols: Mote Marine Laboratory’s Institutional Animal Care and Use Committee (IACUC; 18-04-KM2) for
toxicity testing of oil and dispersed oil on marine fishes and the University of Southern Mississippi
Coastal Sciences Department’s IACUC (19103001) for aquatic toxicological studies with small fish species.
Sampling sizes are shown in Table 1. On day 14, 6 fish per treatment were randomly selected for sam-
pling, with all 6 analyzed for liver PAH and 4 per treatment analyzed for immunoglobulin M (IgM)
expression. The remaining fish were sampled on day 28 for liver PAH, with 4 randomly selected per
treatment sampled for IgM expression and microbiota composition. Fish were euthanized and weighed
in grams. These measurements took place following collection of microbiota swabs at day 28 to prevent
potential contamination from the scale. Following measurements, tissues were dissected using aseptic
techniques. Spleens for RNA analysis were placed immediately in RNAlater and stored at 220°C until
analysis. Composite liver samples and tank exposure solutions collected for PAH analysis were stored in
TraceClean glass jars at 220°C until analyzed.

Water and liver PAH analysis. Water samples (250 mL) were liquid-liquid extracted, and homoge-
nized liver (2 to 5 g) was extracted using ASE 300 accelerated solvent extraction system by EPA method
3545. Due to the small size of the livers of fish used in this study, 2 individuals per treatment were ran-
domly combined into a composite for PAH analysis. Prior to PAH extraction, samples were spiked with
PAH surrogates naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-
d12. Surrogate recoveries were acceptable if they fell within the range of 70 to 120% recovery (EPA ac-
ceptance criteria). Liver samples were further purified by gel-permeation chromatography (GPC, SX3
Biobeads, 70 g in dichloromethane [DCM]) for lipid removal. Samples were then concentrated under
nitrogen and exchanged with DCM for a final volume of 10 mL. PAH internal standards dibenzothio-
phene-d8 and benzo(e)pyrene-d12 were added before analysis. Extracts were analyzed by an Agilent
7890A gas chromatograph coupled to an Agilent 5975C mass selective detector. Analyte separation was
achieved using a Zebron-5MS column (30 m by 0.250 mm by 0.250 mm) with helium as the carrier gas.
Each sample batch was extracted with a method blank and laboratory control sample for quality assur-
ance, and a continuing calibration verification was run at the beginning and end of every sequence and
after every 10 samples. Gas chromatography-mass spectrometry selective ion monitoring (GC/MS-SIM)
was used to analyze 48 PAHs following methods described by McDonald et al. (58).

Immunoglobulin M expression. IgM was measured from fish spleens using quantitative PCR. Total
RNA was extracted from individual spleens using TRI reagent (Invitrogen) following the manufacturer’s
protocol with the addition of a second final wash with 75% ethanol. Residual DNA was removed by
treating the total RNA with Turbo DNase following the manufacturer’s protocol. One microgram of the
DNase-treated RNA was reverse transcribed (RT) using the GoScript reverse transcription system
(Promega) following the manufacturer’s protocol. Success of the RT was confirmed by endpoint PCR
using the 18S housekeeping gene (HKG) and GoTaq green master mix (Promega), which included a no-
RT control to test for DNA contamination and a no-template water control. The red snapper IgM and
18S gene-specific primers were obtained from Rodgers et al. (12). Quantitative PCR was performed using
the PowerUp SYBR green master mix, in which 25 ng cDNA was combined with 300 nM (each) forward
and reverse primer in a 15-mL reaction mixture. Samples were run in quadruplicate, including no-tem-
plate blanks on a Chromo4 system (Bio-Rad) with a PCR cycle of 50°C for 2 min and 95°C for 2 min, fol-
lowed by 44 cycles of 95°C for 15 s and 60°C for 60s. Relative expression was calculated using method
described by Livak and Schmittgen (59), and IgM is reported as the log2-transformed threshold cycle
(22DDCT) calculated against the Seawater Control group.
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Microbiota characterization. To determine long-term effects of exposures on the external micro-
biota, skin mucosal swabs were collected from four randomly selected red snapper per treatment on
day 28. Sterile swabs (Puritan sterile cotton-tipped applicators, individually wrapped; Puritan Medical
Products Company LLC, Guilford, ME) were coated thoroughly with mucus from the fish’s right side
beneath the dorsal fin. Swabs were stored in sterile cryogenic vials and immediately placed in liquid
nitrogen. DNA was extracted from swabs using the DNeasy PowerSoil kit (Qiagen, Valencia, CA) follow-
ing the manufacturer's instructions. Sequencing of the 16S rRNA gene V4 hypervariable region was per-
formed at MR DNA (Shallowater, TX [www.mrdnalab.com]) following established protocols. Briefly, pri-
mers 515F (59-GTGCCAGCMGCCGCGGTAA-39) and 806R (59-GGACTACHVGGGTWTCTAAT-39) with
barcodes on the forward primer were used to amplify the V4 region using the HotStarTaq Plus master
mix kit (Qiagen, Valencia, CA) as follows: 94°C for 3 min, then 30 cycles of 94°C for 30 s, 53°C for 40 s,
and 72°C for 1 min, followed by a 5-min elongation at 72°C. PCR products were verified on a 2% agarose
gel. Samples were pooled in equal proportions based on molecular weight and DNA concentration and
purified using calibrated Ampure XP beads. Paired-end sequencing was performed on an Illumina MiSeq
(2 � 300 bp) platform (Illumina, Inc., San Diego, CA).

Sequences were processed using the MiSeq standard operating procedure (SOP) (60), accessed 19
August 2019, in Mothur v1.42.3. Sequences less than 275 bp, containing homopolymer stretches greater
than 8 bp, flagged as chimeras, or classified as Archaea, Eukarya, mitochondria, chloroplast, or unknown
at the domain level were removed from the analysis. Sequence processing resulted in final sequences of
approximately 252 bp. Operational taxonomic units (OTUs) were defined at 97% sequence similarity and
classified using the Silva v132 database (61). Good’s coverage, rarefaction curves, and alpha diversity
were determined following normalization to the sample with the fewest sequences (34,783 sequences),
with species richness indicated by the total number of OTUs within a sample and species evenness cal-
culated using the Shannon evenness index. Phylogenetic diversity and Simpson diversity indices were
also calculated.

Data analysis. Alpha diversity measures were compared among treatments using ANOVA followed
with Tukey’s post hoc tests. The microbiota community was analyzed via compositional data analysis (62,
63). OTU tables resulting from Mothur were loaded into R 4.0.3 as a phyloseq object using the phyloseq
package (64). The microbiome package (65) was implemented to transform the data using the centered
log ratio (CLR) transformation. Differentially abundant OTUs between treatments were determined using
ALDEx2 (66) and ANCOM (67). CLR-transformed OTU tables were loaded into Primer v6 (68). Resemblance
matrices were formed using Aitchison distance (62) and visualized using nonmetric multidimensional scal-
ing (MDS) and principal-component analysis (PCA). Differences between communities were determined
using PERMANOVA and ANOSIM with Primer v6. Taxa containing potential fish pathogens were desig-
nated according to the book by Austin and Austin (24), whereas those containing potential hydrocarbon
degraders were chosen based on the reviews by Prince et al. (28) and McGenity (29). Potential hydrocar-
bon degraders were correlated with IgM expression and liver

P
48 PAH using partial least-squares (PLS)

regression and visualized using clustered image maps (CIM) with the mixOmics package 6.14.0 (69) in R.
Relationships between treatment and physiological responses were determined using general linear

models (GLM) using the GLM function in R 4.0.3 (70). Where appropriate, Tukey’s honestly significant dif-
ference tests were used to analyze multiple comparisons among treatments. All GLM distributions were
assumed normal, as supported by data visualization (histograms and qq-plots) and model residuals, and
no recommended transformations from Box-Cox analyses better fit model assumptions of normality and
homogeneity of variances.

Data availability. Data are publicly available through the Gulf of Mexico Research Initiative Information
& Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (https://doi.org/10.7266/n7-8804-yj09;
https://doi.org/10.7266/n7-za4m-yx30; https://doi.org/10.7266/NE9XYA5C). The microbiota data sets gener-
ated during the current study are available in the Sequence Read Archive repository (www.ncbi.nlm.nih.gov/
sra/) under SRA study accession no. SRP227352.
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