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ABSTRACT 

PREPARATION OF CARBOXYLIC ACID FUNCTIONALIZED GLYCOPOLYMERS 

THROUGH RAFT AND POST-POLYMERIZATION MODIFICATION FOR 

BIOMEDICAL APPLICATION 

by Husnu Alp Alidedeoglu 

December 2008 

The primary theme of this dissertation involves the synthesis of well-defined 

primary amine functionalized polymers, subsequent modification of the polymers to 

produce novel carboxylic acid functionalized glycopolymers and surface polymerization 

of these systems utilizing controlled polymerization techniques. Additionally, the 

synthesis of new water-based allylic copolymer latexes is described. 

Carbohydrates are natural polymers which possess unlimited structural variations. 

They carry a huge density of information, and play major roles in recognition events and 

complex biological operations. For example, hyaluronic acid (HA), an anionic 

glycosaminoglycan, provides lubricating and cushioning properties in the extracellular 

matrix and has been found to be involved in the regulation of many cellular and 

biological processes. In industry, HA is used in a wide range of biomedical applications, 

including post surgical adhesion prevention, rheology modification in orthopedics, 

ophthalmic procedures, tissue engineering, hydrogels and implants. Limitations of current 

systems include cost, allergy induction and reduced performance capabilities in 

comparison to native HA. Therefore, it is of interest to prepare synthetic glycopolymer 

analogues to specifically target performance capabilities for biomedical applications. 
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Reversible addition-fragmentation chain transfer polymerization (RAFT) is 

arguably the most versatile living radical polymerization technique in terms of the 

reaction conditions and monomer selection. Since the introduction of RAFT in 1998, 

researchers have employed the RAFT process to synthesize a wide range of water soluble 

(co)polymers with predetermined molecular weights, low polydispersities, and advanced 

architectures. However the RAFT polymerization of primary amine containing monomers 

such as 2-(aminoethyl metharylate) (AEMA) and ./V-(3-aminopropyl methacrylamide) 

(APMA) directly in water has yet to be reported. Since primary amine groups are 

amenable to a wide range of post-polymerization chemistries, primary amine 

functionalized polymers enable developments in the synthesis of controlled architecture 

glycopolymers. In addition, "click" chemistry can provide us an easy route to modify 

solid substrates with these polymers due to its simple reaction conditions and high 

reaction yield properties. 

The overall goal of this research is to prepare well-defined synthetic anionic 

glycosaminoglycan polymers by combining well-defined primary amine functionalized 

polymers with carboxylic acid functionalized sugars through a one-step reductive 

amination reaction. To achieve these goals, first, primary amine functionalized polymers 

were prepared through aqueous RAFT polymerization of AEMA and APMA. Second, D-

glucuronic acid sodium salt was attached to reactive polymer precursors via reductive 

amination reactions in alkaline medium. Finally, the surface modification capabilities of 

primary amine functionalized polymers were investigated using "click" chemistry to 

create reactive surfaces allowing post-polymerization reactions. 
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In this thesis, the first chapter concerns the first successful RAFT polymerization 

of unprotected AEMA directly in water and its successful block copolymerization with 

iV-2-hydroxypropylmethacrylamide (HPMA). The controlled "living" polymerization of 

AEMA was carried out directly in aqueous buffer using 4-cyanopentanoic acid 

dithiobenzoate (CTP) as the chain transfer agent (CTA), and 2,2'-Azobis(2-

imidazolinylpropane) dihydrochloride (VA-044) as the initiator at 50 °C. The living 

character of the polymerization was verified with pseudo first order kinetic plots, a linear 

increase of the molecular weight with conversion, and low polydispersities (PDIs) (<1.2). 

In addition, well-defined copolymers of poly(2aminoethyl methacrylate-6-./V-2-

hydroxypropylmethacrylamide) (PAEMA-6-PHPMA) have been prepared through chain 

extension of poly(2-aminoethyl methacrylate) (PAEMA) macroCTA with HPMA in 

water. It is shown that the macroCTA can be extended in a controlled fashion resulting 

in near monodisperse block copolymers. 

The second chapter demonstrates the synthesis of novel carboxylic acid 

functionalized glycopolymers prepared via one step post-polymerization modification of 

poly(JV-[3-aminopropyl] methacrylamide) (PAPMA), a water soluble primary amine 

methacrylamide, in aqueous medium. PAPMA was first polymerized via aqueous RAFT 

polymerization using CTP as CTA, and 4,4'-Azobis(4-cyanovaleric acid) (V-501) as the 

initiator at 70 °C. The resulting well-defined PAPMA was then conjugated with D-

glucuronic acid sodium salt through reductive amination in alkaline medium (pH 8.5) at 

45 °C. The successful bioconjugation was proven through proton (^H) and carbon (13C) 

Nuclear Magnetic Resonance (NMR) spectroscopy and Matrix Assisted Laser Desorption 

Ionization Time of Flight (MALDI-TOF) mass spectroscopy analysis, which indicated 
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near quantitative conversion. A similar bioconjugation reaction was conducted with 

PAEMA and PAEMA-6-PHPMA. For the PAEMA homo and block copolymers, 

however, poor conversion was obtained, most likely due to degradation reactions of 

PAEMA in alkaline medium. 

The third chapter details the direct preparation of a-alkynyl-functionalized 

PAEMA via RAFT polymerization. The controlled "living" polymerization of AEMA 

was carried out directly in dimethylsulfoxide (DMSO) using a-alkynyl functionalized 

CTP as CTA, and 2,2'-azobis(2,4-dimethyl-4-methoxyvaleronitrile) (V-70) as the initiator 

at 45 °C. The resulting polymers display low PDIs (<1.2). In addition, the a-alkynyl-

funtionalized PAEMA was attached to an azide functionalized silicon wafer via "click" 

chemistry. Various characterization techniques including ellipsometry, contact angle 

measurements, attenuated total reflectance-Fourier transform infrared spectroscopy 

(ATR-IR), and atomic force microscopy (AFM) were used to characterize the polymer 

modified silicon wafers. It was shown that a non-uniform surface with a thickness of 11.1 

nm was obtained. 

The last chapter (an additional chapter) details the copolymerization behavior of 

styrene with sec-butenyl acetate, whose copolymerization properties have not been 

reported. Copolymers were produced via semicontinuous emulsion polymerization and 

characterized via NMR, gel permeation chromatography, differential scanning 

calorimetry, dynamic light scattering, and atomic force microscopy. A high degree of 

chain termination due to allylic hydrogen abstraction was observed, as expected, with 

resultant decreases in molecular weight and in monomer conversion. However, high 

conversions were achieved, and it was possible to incorporate high percentages of the 
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allylic acetate comonomer into the polymer chain. Copolymer thermal properties are 

reported. 
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CHAPTER I 

INTRODUCTION 

Hyaluronic Acid 

Hyaluronic acid (HA) Q) (Figure 1-1), a linear, high-molecular weight 

polysaccharide, is comprised of alternating TV-acetyl-P-D-glucosamine (2) and P-D-

glucosuronic acid (3) residues linked at 1-3 and 1-4 positions, respectively. Under 

physiological conditions it exists as the sodium salt form (HA-Na) (4), is water soluble, 

and behaves as a weak polyelectrolyte. HA (1) is the primary component of synovial 

fluid and is thought to provide the lubricity of joint surfaces as well as the viscoelastic 

behavior of synovial fluid.1'2 It is currently used in a wide range of biomedical 

applications, including post surgical adhesion prevention, rheology modification in 

orthopedic procedures, ophthalmic surgeries, tissue engineering, hydrogels and 

implants.3'4'5'6'7'8 HA (T) is obtained commercially by either extraction from rooster 

comb or synthesis by microbial fermentation using streptococcus.9 

Figure 1-1. Hyaluronic Acid Q) 
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Limitations of current systems include cost, allergy induction and reduced 

performance capabilities in comparison to native HA (1). Attempts to prepare surface 

coatings based on HA (1) via physisorption and chemisorption produced poorer than 

expected lubrication properties. 4'10'n HA (D is found with a range of molecular weights 

and molecular weight distributions. High molecular weight HA (I) has very high 

viscosity, and exhibits both pseudoplastic and rheopectic rheological behavior.12'13'14 

When the molecular weight of HA (1) is degraded, its viscosity is reduced, which is 

thought to result in decreased lubricity and function of the synovial fluid. It is of interest 

to prepare synthetic glycopolymer analogues to specifically target performance 

capabilities for biomedical applications. 

Glycopolymers 

The term "glycopolymer" is used to describe synthetic polymers containing sugar 

moieties as pendant groups. Advances in controlled radical polymerization (CRP) 

allowing precise control of polymeric structures combined with increased understanding 

of structures required for specific biomimetic functions make glycopolymers promising 

candidates for biomedical applications. Glycopolymers have been investigated in 

diverse applications including macromolecular drugs, drug delivery systems, biocatalytic 

and biosensitive hydrogels, matrices for controlled cell culture, stationary phases for 

chromatographic purposes, and surface modifiers.is.i6.i7.i>.i9^2iA23^25i26^w93WU2 

CRP can be used to prepare glycopolymers from unprotected monomers through post-

polymerization modification strategies using reactive polymer precursors.29'33 An 

alternate method for producing well-defined glycopolymers is the use of a 



3 

macromonomer, where a vinyl monomer carries the sugar moiety. There are advantages 

to both approaches. One of the main disadvantages of the post-polymerization method is 

that the conjugation of a pre-synthesized polymer backbone does not always result in 

100% functionalization, resulting in an inhomogeneous sequence within the polymer 

chain.29 On the other hand, with the post-polymerization approach it is possible to avoid 

the complex reaction and purification procedures often associated with carbohydrate 

monomer synthesis. The preparation of a reactive scaffold from a simple monomer, 

which can then be used to create a wide range of glycol-functionalized polymers through 

highly efficient post-polymerization reactions, is an attractive option. There are several 

successful examples in the literature of the post-polymerization modification approach 

applied to the synthesis of glycopolymers. For example, Haddleton et al. reported the 

polymerization of trimethylsilyl protected propargyl methacrylate via atom transfer 

radical polymerization (ATRP) and synthesis of well-defined glycopolymers with a high 

degree of conjugation utilizing "click" reactions between alkyne functionalized 

polymethacrylate and protected and unprotected glycosyl azides.34 Hawker and 

coworkers reported the use of "click" reactions to successfully prepare asymmetric sugar 

functionalized dendrimers.35 Matrix assisted laser desorption-ionization time of flight 

(MALDI-TOF) mass spectrometry was utilized to provide evidence that a single 

molecular species was obtained without side reactions. Liu and coworkers reported that 

poly(fluorenes) prepared by Sonogashira coupling of bromo-alkane functionalized 

monomers were glycosylated in near quantitative yield (98%) through the reaction of 

bromo-groups with a thio-sugar, using excess reagents.36 Another important post-

polymerization method for the synthesis of glycopolymers involves active esters. 



Although this method often requires an excess of substrate as well as purification, it is 

effective.37 Hu et al. reported ATRP of TV-methacryloxysuccinimide using Cu(I)/bipy, 

which yielded low polydispersity and predicted number average molecular weight (Mn) 

1 0 

polymer, followed by quantitative substitution with gluco- and galactosamine. 

Well-defined primary amine-functionalized polymers were chosen as reactive 

polymer precursors due to their potential for post-polymerization modification reactions 

through primary amine pendant functionality. It was proposed that attachment of D-

glucuronic acid sodium salt (5) to these polymers through the reductive amination 

reaction is possible, a mild reaction between the aldehyde functionality of the D-

glucuronic acid sodium salt (5) and the primary amine functionalities of polymer 

precursors. Therefore, the controlled radical polymerization of primary amine 

functionalized polymers is of great interest for our goal of obtaining well-defined 

glycopolymers. 

Primary Amine Vinyl Monomers 

Primary amine-functionalized methacrylate monomers are of interest for their 

potential utility in post-polymerization modification reactions, such as amide and imine 

formation, ring-opening reactions and Micheal addition reactions, enabling advances in 

areas including new approaches for cross-linking micelles and hydrogels, synthesis of 

novel copolymers for biomimetic scaffold structures under mild conditions, preparation 

of well defined cationic latexes, and surface functionalization for 

bioconjugation.39'40'41'42'43'44'45'46'47'48'49 For example, Alaissari et al. developed 

thermosensitive core-shell latex particles with a core of poly(methyl methacrylate) 
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(PMMA) and a positively charged shell prepared through statistical copolymerization of 

2-aminoethyl methacrylate (AEMA) (6) and jV-isopropylacrylamide (NIPAAm).50 On 

absorption of rhodamine-labeled oligonucleotides, particles with temperature-selective 

fluorescent response were produced.51'52'53 Armes and coworkers reported the synthesis 

of cyclic sugar modified methacrylates from the reaction of AEMA (6) with D-

gluconolactone and lactobionolactone.5 These monomers were further used by various 

research groups to produce well-defined glycopolymers utilized for the stabilization of 

gold nanoparticles.55,56'57 Additionally, AEMA (6) copolymers have been evaluated for 

drug/gene delivery applications.58'59'60 Dubruel et al. synthesized a series of 

polymethacrylates containing primary amine functionalities via conventional free radical 

copolymerization of dimethylaminoethyl methacrylate (DMAEMA), tertbutyl carbonate 

(tBoc) protected AEMA (6) and t-Boc protected 4-methyl-5-imidazoyl methyl 

methacrylate, which were subsequently used for the coupling of the fluorescent probe 

Oregon Green.61 Hennick et al. synthesized random copolymers of DMAEMA with 

AEMA (6) through conventional radical polymerization, reacted the primary amine 

groups with protected thiol groups and subsequently conjugated the copolymers with 

decapeptide, reporting a coupling efficiency of 95%.62 In these examples, AEMA (6) 

was copolymerized via conventional radical polymerization, or the primary amine was 

pre-functionalized prior to polymerization. It is of interest to directly polymerize AEMA 

(6) with preserved functionality in a controlled fashion, and to evaluate copolymers with 

precisely controlled architectures (i.e. crosslinked micelles, block ionomer complexes, 

and vesicles) for potential biomedical applications. 
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Controlled radical polymerization techniques such as ATRP63 and RAFT64, 5 have 

provided facile routes for obtaining polymers of predetermined molecular weights and 

precise architectures for amine-based vinyl monomers. However, the controlled 

polymerization of primary amine containing momomers is challenging. In general, 

primary amine containing monomers should be protected in order to avoid unwanted side 

reactions. For example, AEMA (6) can be rapidly converted to 2-hydroxyethyl 

methacrylamide (7) at high pH through monomer rearrangement.58 It has also been 

suggested that when the amine group is deprotonated, AEMA (6) can undergo Micheal 

addition. In order to circumvent these side reactions, Dufresne and Leroux utilized t-Boc 

protected AEMA (6) for polymerization via ATRP, resulting in reasonably good 

control.66 In addition, He et al. reported the direct polymerization of AEMA (6) under 

acidic conditions via ATRP in water, in a methanol-water mixture and in an isopropyl 

alcohol-water mixture, and also via RAFT polymerization in dimethyl sulfoxide 

(DMSO).67 They reported slow polymerization rates in methanol. Even though 

polymerization rates were faster in water, the reaction exhibited poor control yielding a 

PDI of 1.41. However, when a cosolvent combination of 80:20 2-propanol:water was 

used, well-controlled polymerizations were achieved with PDIs lower than 1.25. For 

RAFT polymerization, polymers with well-defined molecular weights and PDIs between 

1.25 and 1.29 were reported. The authors also reported synthesis of well-defined AEMA 

(6) based diblock copolymers using poly(ethylene oxide)-based ATRP macroinitiators 

and statistical copolymers of AEMA (7) with 2 N-(2-hydroxypropyl) methacrylamide 

(HPMA) (8) and DMAEMA. Further, preparation of shell cross-linked micelles with 
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pH-responsive cores consisting of PAEMA-6-PDAEMA copolymers with polyethylene 

glycol diacrylate crosslinking agent was reported. 

Recently, the McCormick research group reported the aqueous RAFT 

polymerization of HPMA (8) andN-[3-(dimethylamino)propyl] methacrylamide 

(DMAPMA) (9).68 Poly(2 N-(2-hydroxypropyl) methacrylamide) (PHPMA) (10) has 

been proposed as a nonviral carrier for drug delivery because of its biocompatibility and 

nonimmunogenecity.69'70'71'72'73'74'75'76 Block copolymers of HPMA( 8) have been shown 

to form micelles, vesicles and block ionomer complexes in aqueous environments, 

illustrating their potential to be used as nonviral drug/gene carriers.77 McCormick and 

coworkers have also recently reported the aqueous RAFT generated block copolymer 

poly(HPMA-6-DMAPMA) (11), showing the formation of an electrostatic complex 

between the positively charged DMAPMA (9) block with negatively charged 

polynucleotides for gene delivery based applications.78 In addition, McCormick and 

coworkers reported the aqueous RAFT polymerization of 3-aminopropyl methacrylamide 

hydrochloride (APMA) (12), a primary amine methacylamide, in a dioxane-water 

mixture.79 Homopolymers of APMA (12) were then chain extended with N-

isopropylacrylamide (NIPAM) to produce temperature-responsive block copolymers that 

formed vesicles upon increasing the solution temperature. 

Research has demonstrated that the synthesis of well-defined PAEMA and its 

copolymers with controlled architectures and narrow polydispersities is extremely 

challenging. The merits of aqueous RAFT polymerization may allow the direct synthesis 

of AEMA homo and block (co)polymers with controlled structures. The research in this 

thesis involves the attempt to polymerize unprotected AEMA via aqueous RAFT and its 
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subsequent incorporation into hydrophilic block copolymers. Since primary amine groups 

are amenable to a wide range of post-polymerization chemistries, this versatile primary 

amine functionalized polymer can undergo reductive amination reaction with sugars, 

resulting in new controlled glycopolymer architectures with multiple functionalities for 

biomedical and pharmaceutical applications. 

Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization 

RAFT is a controlled radical polymerization technique, first reported by Chiefari 

in 1998. RAFT is similar to conventional free radical polymerizations but the control is 

achieved upon the addition of a suitable chain transfer agent (CTA).80'81 RAFT is a 

versatile polymerization technique, which is capable of polymerizing a variety of vinyl 

monomers and providing facile routes for obtaining polymers of predetermined molecular 

weights and precise architectures.82 Scheme 1-1 demonstrates the accepted mechanism for 

the RAFT polymerization.83 

The RAFT Mechanism 

The RAFT mechanism resembles the conventional free radical polymerization 

mechanism. The difference in the RAFT mechanism is the presence of a series of 

reversible chain transfer reactions to give control. For this reason, in the initiation step, a 

primary radical source is needed to initiate polymerization.82'84'85'86'87 Then, a pre-

equilibrium step is achieved, where initiated oligomeric radicals chains (Pn-) add rapidly 

to the CTA (kadd) and form an intermediate radical species. A new radical (R-) is formed 

upon fragmentation of the intermediate by expelling the R group (kp) and producing a 

macro chain transfer agent (macroCTA). The new R- re-initiates the polymerization. The 



time of the pre-equilibrium period is directly associated to the time required for all R-

fragments to add to monomer. Therefore, the R group must have the ability to effectively 

fragment and R- must be able to quickly re-initiate the polymerization in order to achieve 

narrow molecular weight distributions.88 In the main equilibrium step, polymeric radicals 

react with the macroCTA to yield an intermediate species with two identical polymer 

sides. In this step, all chains have equal rates of addition, fragmentation, and propagation 

and most of the monomer conversion occurs.83'89 The termination step includes radical 

coupling and disproportionation, which are directly related to the initiator's initial 

concentration.83 The termination of the intermediate radicals was also observed.9 The 

number of dead chains can be suppressed using a high [CTA]0/[initiator]0 ratio. 

RAFT Chain Transfer Agent 

The CTA carries both R and Z groups which determine directly the CTA's 

capabilities in the fragmentation and re-initiation process.82 The R group should be a 

good leaving group and capable of re-initiating polymerization during the pre-equilibrium 

stage.91,92 The Z group has two different roles: the activation of the thiocarbonyl double 

bond for free radical addition and the stabilization of the intermediate species for 

successful fragmentation.93'94 However, it was observed that a high stabilization can 

result in slow fragmentation of the intermediate radical adduct. This may cause both a 

decrease in speed of the polymerization95'96'97 and side reactions that could lead to dead 

chains.98'99'100'101 Figure 1-2 shows common CTA's used for RAFT. 
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Scheme 1-1. Accepted RAFT mechanism.11 

Kinetic Behavior 

Ideally, the rate of polymerization observed for a RAFT process should be 

comparable to conventional free radical polymerizations. However, a low polymerization 

rate is observed for most RAFT systems.91'97'102'103 This is related to the observed 

induction period, initialization period, and rate retardation period. The induction period 

describes the deviation from linear pseudo first-order kinetics during the early 

polymerization stages.83'94 It has been shown that the main cause of the deviation is the 

poor fragmentation and reinitiating ability of the R group.104'105'106'107 To minimize the 

induction period, less stabilizing Z groups have been employed.93'94'99108 The 

initialization period is the amount of time it takes for the starting CTA to be consumed.109 
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It was found that the initialization period is a function of both the R group and the 

specific monomer utilized.110'111'112 RAFT polymerization also shows rate retardation, 

which is mainly dependent on the nature of monomer and CTA, and the concentration of 

the CTA. Possible reasons of rate of retardation might be a long lived intermediate 

radical species, "3.114,115.11*117.118,119.120.121 b i m o l e c u l a r termination reactions,122'123'124'125 

and slow reinitiation.126'127'128 
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12 

Equation 1 defines the theoretical molecular weight calculation of the polymer, 

Mn,th in the RAFT polymerization process. 

M„, ° x MW,,„„ x Conversion 
[CTA] + 2f[I]0(\-e^) -kdt\ "Mon 

+ MWCTA (1) 

If the initiator concentration is kept very low compared to the CTA concentration, 

Equation 1 can be simplified into Equation 2. 

K,th - — x MWUn„ x Conversion 
V [CTA]0

 Mon j 
+ MWCTA (2) 

As shown in Equation 2, there is a linear relationship between molecular weight of 

polymer and conversion. This allows us to use Equation 2 to estimate required 

concentrations and conversion levels to achieve polymers with desired molecular weights 

and low polydispersities.82 

The polydispersity of the resulting polymers can be estimated at 100 % 

conversion for a given CTA/monomer system through Equation 3 if the Ctt of the CTA is 

known.129 deBrouwer and coworkers showed that Qr must be > 10 to achieve low 

polydispersity polymers.124,130 

^ = 1 + J - (3) 
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Synthesis of Block Copolymers 

The preservation of the thiocarbonylthio group on the end of the polymer chain 

facilitates the preparation of AB, ABC and ABA block copolymer structures. The 

desired block copolymers can be prepared upon the addition of a second monomer to a 

macroCTA (polymer carrying the thiocarbonylthio group). For successful block 

copolymerization, the preparation of the macroCTA is very important. The desired 

macroCTA is generally synthesized upon cessation of the polymerization before 

quantitative monomer conversion is achieved. The resulting macroCTA is carefully 

purified and used subsequently for block copolymerization with addition of the second 

monomer (Scheme 1-2). For a successful block polymerization, the addition sequence of 

the monomers is crucial because the macroCTA's propagating radical must effectively 

fragment and attach to the second monomer.131'132 In addition, well-defined block 

copolymers can also be prepared using transformation reactions, where previously 

prepared polymers (using different polymerization method) are functionalized with 

thiocarbonylthio groups. For example, Li and coworkers prepared poly(ethylene oxide)-

block-poly(dimethylacrylamide)-block-poly(Ar,Msopropylacrylamide) from 

dithiobenzoate functionalized poly(ethylene oxide).133 
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Aqueous RAFT Polymerization 

The first successful aqueous RAFT polymerization was reported by Chiefari et al. 

They polymerized 4-styrene sulfonate (NaSS) at 70 °C directly in water using 4, 4'-

azobis (4-cyanopentanoic acid) (V-501) (13) as the primary radical source and 4-

cyanopentanoic acid (CTP) (14) as the RAFT agent.84 Subsequently, the McCormick 

research group reported aqueous polymerization behavior of NaSS with CTP (14) at 70 

°C.13 They also prepared the block copolymers of NaSS with 4-vinylbenzoic acid 

(VBA). The resulting block copolymers showed stimuli-responsive behavior with respect 

to pH. The McCormick group performed the aqueous RAFT polymerization of multiple 

water-soluble monomers, including those listed in Figure 1-3, using various water soluble 

CTAs (Figure 1-4). Sumerlin and coworkers first succeeded in the aqueous RAFT 

polymerization of acrylamido monomers.135'136 Donovan and coworkers showed the 

aqueous RAFT polymerization of several zwitterionic monomers.139'137 Thomas and 

coworkers polymerized acrylamide (AM), and observed significant retardation in the 

polymerization rate.138 He and coworkers showed the successful polymerization of AM 



15 

using trithiocarbonate CTAs, which have higher intermediate fragmentation rates. 

Convertine and coworkers demonstrated the first room temperature aqueous RAFT 

polymerization of dimethyl acrylamide (DMA) and AM using 2-(l-carboxy-l-

methylethylsulfanylthiocarbonylsulfanyl)-2-methyl-propioniacid (CMP) as CTA, 

resulting in narrow polydisperities.139 Convertine and coworkers also demonstrated the 

controlled polymerization of JV-isopropylacrylamide (NIPAM) in both organic and 

aqueous media, using room temperature RAFT conditions.140'141 

Synthesis of Polymeric Brushes 

RAFT polymerization can be also used for surface polymerization to form 

polymer brushes.142,143'144'145 Polymer chains tethered by one end to a surface or an 

interface produce monolayer assemblies on the surface called polymer brushes. There are 

two successful routes for the preparation of well-defined polymer brushes through RAFT 

polymerization using the "grafting from" approach. The first method involves the 

attachment of the conventional radical initiator on the targeted surface and the 

polymerization is carried out from the surface with the addition of a CTA. In the second 

method, an appropriate CTA is directly attached on the surface from either R or Z 

groups.146'147'148'149 There are also successful examples for the preparation of polymer 

brushes using the "grafting to method".48'150'151'152 In this method, telechelic polymers are 

first synthesized through the functionalization of the a- or ©-chain end. These telechelic 

polymers are then attached to a suitably functionalized surface. 

"Click" chemistry, described in the next section, has been recently employed for the 

modification of surfaces.153 Surface modification using both "grafting to" and "grafting 

from" approaches is possible by combining "click" chemistry and RAFT 
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polymerization.154'155 This approach can be experimentally simple and provide better 

control of the polymerization with high grafting density. This thesis explores the 

utilization of combined RAFT and "click" chemistry for the preparation of primary amine 

functionalized polymer brushes, which will enable further developments in surface 

modification, including surface attachment of bio-related materials such as 

glycopolymers. 

Anionic Monomers 

CH2=CH CH2=CH CH2=CH CH2=CH CH2=CH CH2=CH CH2=CH 

C=0 C=0 C=0 C=0 6=0 
NH NH NH NH NH 

H3C-C-CH3 H3C-C-CH3 HC",,,CH3 HC-CH3 HC-'VCH(CH3)2 

S03-Na+ C00Na+ CH 2 CH2 C00"Na+ COO"Na+ COO"Na+ 

S03"Na+ C00'Na+ 

Cationic Monomers 

CH2=CH CH2=CH CH2=CH CH2=CH 

H 

H3C-N+CH3 H3C-N+CH3 

H CI- l 

Zwitterionic Monomers 
CH2=CH CH2^CH 

CH2 CH2 

H3C-N+-CH3 H3C-N+CH3 

(CH2)3 (CH2)3 

SO3- coo-

Neutral Monomers 
CH2=CH CH2=CH CH2=CH CH2=CCH3 CH2=CH 

C=0 C=0 C=0 C=0 C=0 

™> H,<AH, J," t ? 

Figure 1-3. Examples of water-soluble monomers polymerized by RAFT. 
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"Click" Chemistry 

Recent advancements in CRP techniques have resulted in the development of 

facile routes to obtain telechelic polymers with predetermined molecular weights and 

narrow molecular weight distributions. Although CRP has been used for the 

polymerization of a wide range of monomers, there is intense interest in synthesis of 

functional polymers with capabilities for post-polymerization modification. This method 

requires specific end group functionality that must be compatible with polymerization 

conditions.156,157 As CRP polymerization provides predetermined chain end functionality 

that is easily controlled, there have been numerous reports of CRP preparation of 

functional polymers for post-modification applications such as fluorescently labeled 

chains, polymeric bioconjugates and surface-immobilized polymers.68'158'159'160'161 
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The term "click" chemistry was originally coined in a generic sense to mean 

reactions that are easy to perform, relatively unaffected by the presence of oxygen and 

water, and demonstrate high yield and facile isolation.1 However, the Huisgen 1,3-

dipolar cycloaddition of terminal alkynes with azides to give 1,2,3-triazoles has emerged 

as the leading "click" reaction.163'164 The Huigen 1,3-dipolar cycloaddition is a more 

versatile method, as the usage of copper (I) catalyst promotes both the speed and the 

regiospecificity of the reaction(Scheme I-3).165'166 Most methods use Cu (I) salts directly, 

other methods generate the copper (I) species by reduction of Cu(II) salts using sodium 

ascorbate or metallic copper. Besides the copper catalyst, a base is added, mechanistically 

for promoting the formation of the copper(I)-acetylide. 

.FT 

N-N-N , ^ \ o * mil H ^ ^ N 3 

R Hi' 5 (1 2 

R 

Scheme 1-3. Regioselective "click" chemistry in the presence of copper catalyst. 

"Click" chemistry was originally used in organic synthesis, and more recently 

expanded to materials science. There are numerous reports of the use of "click" 

chemistry as a post-polymerization modification technique for functionalizing polymers 

Drenared b v C R P m e t h o d s 167'168'169'170'171-172'173.174'175,176,177,178,179,180,181,182,183,184,185,186,187 

Given the telechelic nature of polymers prepared via CRP techniques, "click" chemistry 

is an attractive method for the functionalization of polymer chain ends. For example, 
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Agut et al. prepared a-azide and alkyne functionalized poly[2-(dimethylamino)ethyl 

methacrylate] (PDMAEMA) through ATRP using a-co-functionalized initiators for the 

preparation of hybrid diblock copolymers.183 These blocks were composed of a 

polypeptide PDMAEMA block that were covalently linked utilizing "click" chemistry. 

Lutz et al. recently reported ATRP synthesized polymers that were co-chain end 

functionalized with azides.184 These azide functional polymers were subsequently 

reacted with various alkyne functional compounds to prepare co-hydroxy, co-carboxyl and 

co-methyl-vinyl functionalized polystyrene. In addition, the combination of ATRP and 

"click" chemistry was employed by Sumerlin et al. to prepare well-defined co-

(meth)acryloyloxy functionalized poly(«-butyl acrylate) and co-acryloyloxy 

functionalized polystyrene macromonomers.185 Unlike ATRP, the use of "click" 

chemistry for the post-polymerization modification of RAFT synthesized polymers has 

been minimal. One such example was carried out by Hawker et al. who reported the 

synthesis of alkyne-functionalized block copolymers via RAFT polymerization. An 

alkynyl-functionalized RAFT chain transfer agent (CTA) was used directly for the 

sequential polymerization of tetrahydropyran acrylate and styrene (15), followed by 

selective cleavage of the tetrahydropyran esters to give a-alkynyl-functionalized block 

copolymers that are capable of forming surface-functionalized "clickable*" micelles in 

aqueous solutions. Another example utilizing RAFT polymers was reported by Sumerlin 

et al. who synthesized a-azido terminal polymers using an a-azido functionalized chain 

transfer agent (CTA) that allowed the preparation of a range of functional telechelics. 
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"Click" chemistry has also been extensively employed for the modification of 

surfaces with different types of polymers. Meldal et al. were the first to demonstrate that 

"click" chemistry can be used to modify solid substrates.153 They reported the successful 

synthesis of diversely 1,4-substituted [l,2,3]-triazoles in peptide backbones or side chains 

upon using the combination of "click" chemistry and solid-phase peptide synthesis. 

Given the success of Medal and coworkers, other researchers began to explore the 

attachment of CRP polymers to various surfaces. For example, Brittain et al. reported the 

immobilization of an a-alkyne functionalized polymer, prepared via RAFT 

polymerization, to azide functionalized silica nanoparticles via "click" chemistry. The 

same group also demonstrated a "grafting from" approach by first attaching a-alkynyl 

functionalized CTA to azide functionalized silica nanoparticles followed by RAFT 

surface polymerization of styrene (15) and methyl methacrylate.155 They achieved a 

grafting density of 1.2-1.3 RAFT agent/nm2 for the immobilization of CTA onto silica 

nanoparticles, resulting in high density polymer brushes. Additionally, Drockenmuller et 

al. grafted oo-azido functionalized polymers prepared through ATRP and nitroxide 

mediated radical polymerization (NMP) on alkynyl-fuctionalized silicon wafers using 

click chemistry.188 Polymer brushes with a thickness of 6 nm and grafting densities of 

0.2 chains/nm2 were reported. 
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Motivation for Research 

Native carbohydrates and their synthetic analogues are the main interest of this 

research. As described in previous sections, the synthetic analogues of carbohydrates, 

also called glycopolymers, are important for studying the complex roles of native 

carbohydrates in many biological processes. To our knowledge, there are only two prior 

reports of the synthesis of charged glycopolymers, both of which involve complex 

reaction steps, protection chemistry and complex purification steps. Development of a 

facile, direct technique for synthesis of charged glycopolymers is therefore of interest. 

Although the post-polymerization method is an attractive option for glycopolymer 

synthesis, as it can be performed without complex reactions and purification procedures, 

its application is limited due to the demand for a highly reactive polymer precursor and 

an efficient post-polymerization reaction. "Click" chemistry has been reported for the 

synthesis of neutral glycopolymers. However, this approach requires multiple reaction 

steps, including synthesis of alkynyl functionalized polymers, synthesis of azide 

functionalized sugars, and purification of resulting glycopolymers from transition metal 

impurities. Thus there is a need for demonstration of an alternative post-polymerization 

methodolgy with reduced complexity. 

Primary amine-functionalized polymers are of interest for their potential utility in 

post-polymerization modification reactions, enabling synthesis of novel glycopolymers 

under mild conditions. However, the controlled polymerization of primary amine 

functionalized momomers is challenging. In general, primary amine containing 

monomers should be protected in order to avoid unwanted side reactions. Prior work has 

demonstrated that the synthesis of well-defined primary amine functionalized polymers 
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and their copolymers with controlled architectures and narrow polydispersities is 

extremely challenging. Therefore, there is a need to find an alternative method for the 

synthesis of well-defined homo and block copolymers of primary amine functionalized 

monomers directly, without the use of protecting groups. 

There has been continuous interest in surface modification by glycopolymers. 

Although there are successful examples of the synthesis of glycopolymer brushes on solid 

substrates, these reports include multiple reaction steps and complex purification 

procedures. Therefore, there is a need to develop an alternative method to facilitate the 

synthesis of well-defined glycopolymer brushes. 

In summary, the motivation for this study is to find alternative and simpler 

solutions for the current problems, which are: 

• Direct synthesis of homopolymers and copolymers from primary amine-

containing monomers without the use of protecting groups. 

• Synthesis of well-defined primary amine functionalized polymers and 

their copolymers with controlled architectures and narrow polydispersities 

• Synthesis of well-defined charged glycopolymers through post-

polymerization reactions, avoiding multiple reaction steps and complex 

purification methods. 

• Synthesis of well-defined glycopolymer brushes through an alternative 

method to reduce the complexity of reaction steps. 
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Prospectus of Research 

Glycosaminoglycans, HA (I) and heparin, are involved in a wide range of 

physiological processes, including cell proliferation and migration, modulation of 

angiogenesis and inflammatory responses.189'190'191 Each of these processes are based on 

carbohydrate interactions. However, many of the physiological activities that are 

mediated by glycosaminoglycans have not been completely defined due to their diverse 

and complicated structures and capacity to interact with biologically active proteins. 

Therefore, their synthetic analogues are emerging as important tools for investigating 

carbohydrate-based interaction processes.192 Combination of the synthetic diversity of 

polymers with the multivalency of saccharides results in a new class of synthetic 

bioconjugates, which allows mimicking of these carbohydrate interactions. To date the 

reported synthesis of model glycosaminoglycans is limited to two examples, where 

conventional free radical chemistry was used for the polymerization of sulfate and amine 

functionalized macromonomers.194'195 The resulting functionalized glycopolymers 

displayed high polydispersity. 

Controlled radical polymerization (CRP) has emerged as an important 

polymerization method to obtain well-defined glycopolymers of controlled 

architecture.196 CRP allows us to probe the effects of molecular architecture, topology, 

and molecular weight on biological function. Multiple reports of CRP methods have 

appeared in the literature for the synthesis of neutral glycopolymers. However, there have 

been no reports of synthesis of charged glycopolymers through CRP methods. Moreover, 

there are some issues that must be resolved. These include potential problems caused by 

transition metal impurities in glycopolymers remaining either from ATRP or "click" 



reactions and the requirement for stringent purification methods during the synthesis of 

glycomacromonomers. 

Most efforts toward the synthesis of well-defined glycopolymers have utilized the 

macromonomer route, which suffers from complex purification steps. However, the 

post-polymerization method is an attractive option for glycopolymer synthesis that does 

not involve complex reaction and purification procedures. Therefore, it is of interest to 

prepare a reactive scaffold from a simple functionalized monomer, which can then be 

used to create a wide range of glyco-functionalized polymers through highly efficient 

reactions. 

The success of the post-polymerization method is directly related to the 

reactivity of the polymer precursor and the efficiency of the post-polymerization 

• 1Q7 • • 

reaction. Well-defined primary amine functionalized polymers are promising 

candidates for the preparation of reactive scaffolds, due to the presence of primary amine 

functionality, which can easily undergo post-polymerization reactions under mild 

conditions. However, CRP of primary amine functionalized monomers is challenging. In 

the literature, there are limited examples showing the controlled polymerization of 

primary amine functionalized polymers in organic solvent.67'69 However, these reactions 

suffered from side reactions and long reaction times. Determining RAFT polymerization 

conditions that will result in controlled polymerization of primary amine functionalized 

monomers such as AEMA (6) and APMA (12) in aqueous solvent can lead to the 

development of facile preparation techniques for well-defined glycopolymers. 



HA, an anionic glycosaminoglycan, is an important carbohydrate in the human 

body, performing key rolew in the regulation of many cellular and biological 

processes.4'10'11'12 However, the industrial application of HA Q) has limitations including 

high cost, allergy induction and reduced performance capabilities in comparison to native 

HA (1). It is of interest to prepare its synthetic polymer conjugate analogues to 

specifically target performance capabilities for biomedical applications. The reductive 

amination reaction between synthetic primary amine functionalized polymers and 

carboxylic acid functionalized sugars has the potential to provide a route for effective 

post-polymerization reactions to obtain well-defined carboxylic acid functionalized 

glycopolymers to mimic HA (1). 

The continuous evolution of polymer brush synthesis and other surface 

functionalization methods allow surface modification by glycopolymers, which has 

potential utility in glycomics and biocoating applications. Recently, researchers have 

used "click" chemistry to functionalize surfaces.186'187 However, the attachment of 

glycopolymers to flat surfaces utilizing "click" chemistry has not been reported. The 

attachment of primary amine functionalized polymers on a surface using "click" 

chemistry and the subsequent post-polymerization reaction with carboxylic acid 

functionalized sugars has the potential to be a promising, practical method to create 

carboxylic acid functionalized glycopolymer brushes on a given substrate. 

In this research, we intend to fill a gap in the area of glycopolymer research by 

proposing the synthesis of carboxylic acid functionalized glycopolymers through a 

practical one-step post-polymerization reaction between well-defined primary amine 

functionalized polymers and carboxylic acid functionalized sugars, without the need for 



complex purification steps. We also propose to evaluate "click" chemistry methodology 

for the preparation of primary amine functionalized polymer brushes, which have 

potential application for the creation of surface attached glycopolymers. 
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CHAPTER II 

RESEARCH GOAL AND OBJECTIVES 

Carbohydrates are natural polymers, in which various monosacharide building blocks are 

assembled in diverse chain lengths and architectures.197'198 Because of their unlimited 

structural variations, carbohydrates carry a large density of information.199,200 It is now 

clear that carbohydrates play a major role in recognition events, which are the key step in 

a variety of biological processes based on cell-cell interactions, such as blood 

coagulation, immune response, viral infection, inflammation, embryogenesis and cellular 

signal transfer.201 Carbohydrates participate in complex biological functions, including 

the storage and transport of energy (e.g. starch, glycogen), the generation of structure and 

support (e.g. cellulose, chitin, chitosan), controlling osmotic pressure in connective 

tissues (e.g. proteoglycans), providing lubricating and cushioning properties in the extra 

cellular matrix (e.g. glycosaminoglycansuch as HA (1)) and helping blood coagulation 

(the sulfated polysaccharide, heparin).202 

The combination of synthetic polymer backbone with pendent mono or 

oligosaccharide segments allows preparation of synthetic carbohydrates resulting in 

polymers with unique properties. Such structures are generally called glycopolymers. 

Development of biomimetic polymers that could reproduce the lubricating, cushioning or 

anti-inflammatory properties of native carbohydrates is of intense 

interest.203'204'205'206207'208 However, the synthesis of glycopolymers with complex 

carbohydrate segments is still limited. Therefore, there is a need to achieve synthetic 

polymers with well-defined carbohydrate segments, capable of conveying sophisticated 

functions in biological systems. 



Hyaluronic Acid (HA) (1), an anionic glycosaminoglycan, is a linear 

polysaccharide consisting of alternating 7V-acetyl-(3-D-glucosamine (2) and |3-D-

glucosuronic acid (3) residues. HA (1) is widely studied due to its key role in the 

regulation of many cellular and biological processes, as well as its important physical 

properties such as hydration, lubricity, and viscosity control. HA (I) also plays an 

important role in protein-carbohydrate interaction during the regulation of cell 

activities.209 The industrial application of HA (I) possesses some limitations including 

cost, allergy induction and reduced performance capabilities in comparison to native HA 

(1). It is of interest to prepare synthetic polymer conjugate analogues of HA to 

specifically target performance capabilities for biomedical applications. 

There are two main methods to prepare well-defined glycopolymers: the 

macromonomer route and the post-polymerization route.197 The macromonomer route 

involves the controlled polymerization of a vinyl monomer carrying the sugar moiety at 

the pendant group. An alternative is the post-polymerization route where a reactive 

polymer precursor is prepared from a functional monomer and sugar molecules are 

attached to polymer chains using a highly efficient organic reaction. Both methods have 

advantages and disadvantages. The macromonomer route provides a well-defined 

homogeneous glycopolymer, but it suffers from stringent purification requirements 

during macromonomer synthesis. The post-polymerization method does not always result 

in 100% functionalization, yielding inhomogeneous polymer chains, but it does not 

require complex purification steps.197 Therefore, the post-polymerization route with 

highly efficient reactions is an attractive method to synthesize a wide range of glycol-

functionalized polymers. 
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The hypothesis of this study is that well-defined synthetic anionic 

glycosaminoglycans can be prepared easily using the post-polymerization strategy, where 

anionic sugar moieties are bioconjugated with the well-defined reactive polymer 

precursor. The overall goal of this research is to synthesize well-defined synthetic anionic 

glycosaminoglycans using a reductive amination reaction between carboxylic acid 

functionalized sugar, glucuronic acid sodium salt, and well-defined primary amine 

functionalized polymers such as poly(3-aminopropylmethacrylamide) (PAEMA) (16) 

and poly(2-aminoethylmethacrylate) (PAPMA) (17). This approach will avoid stringent 

purification steps and provide a new bioinspired polymer, which can be used to model the 

protein-carbohydrate interactions and lubricity properties of anionic glycosaminoglycans. 

To achieve this goal, the following objectives will be addressed: 

1. Develop RAFT conditions to control the polymerization JV-3-aminopropyl 

methacrylamide (APMA) (12) and 2-aminoethyl methacrylate (AEMA) (6) 

directly in aqueous medium; 

2. Investigate the aqueous polymerization behavior of AEMA (6) and APMA (12) 

mediated by CTP (14); 

3. Investigate the block copolymerization behavior of AEMA (6) with HPMA (8) 

directly in aqueous medium; 

4. Develop the reductive amination conditions for the post-polymerization reaction 

between two different primary amine functionalized polymers and glucuronic acid 

sodium salt (5); 

5. Synthesize carboxylic acid functionalized glycopolymer using reductive 

amination reaction. 



6. Characterize the resulting synthetic carboxylic acid functionalized glycopolymer 

using nuclear magnetic resonance (NMR) and matrix assisted laser desorption-

ionization (MALDI) mass spectroscopy; 

7. Attach PAEMA (16) chains to the surface of silicon wafers using "click" 

chemistry and characterize the surface using atomic force microscopy (AFM), 

ATR-FTIR, and water contact angle measurements. Investigate the post-

polymerization reaction capability of these chains with D-glucuronic acid sodium 

salt on the silicon-wafer surface. 
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CHAPTER III 

AQUEOUS RAFT POLYMERIZATION OF NON-PROTONATED 2-AMINOETHYL 

METHACRYLATE TO PRODUCE WELL-DEFINED, PRIMARY AMINE 

FUNCTION HOMO- AND COPOLYMERS FOR BIOMEDICAL APPLICATIONS 

Introduction 

Primary amine-functionalized methacrylate monomers are of interest for their 

potential utility in post-polymerization modification reactions, such as amide and imine 

formation, ring-opening reactions and Micheal addition reactions, enabling advances in 

areas including new approaches for cross-linking micelles and hydrogels, synthesis of 

novel copolymers for biomimetic scaffold structures under mild conditions, preparation 

of well defined cationic latexes, and surface functionalization for bioconjugation.39"49 For 

example, Alaissari et al. developed thermosensitive core-shell latex particles with a core 

of poly (methyl methacrylate) (PMMA) and a positively charged shell prepared through 

statistical copolymerization of 2-aminoethyl methacrylate (AEMA) (6) and N-

isopropylacrylamide (NIPAAm).50 On absorption of rhodamine-labeled 

oligonucleotides, particles with temperature-selective fluorescent response were 

C I C I 

produced. " Armes and coworkers reported the synthesis of cyclic sugar modified 

methacrylates from the reaction of AEMA(6) with D-gluconolactone and 

lactobionolactone.54 These monomers were further used by various research groups to 

produce well-defined glycopolymers utilized for the stabilization of gold 

nanoparticles.55,56'57 Additionally, AEMA (6) copolymers have been evaluated for 

drug/gene delivery applications.58"60 Dubruel et al. synthesized a series of 

polymethacrylates containing primary amine functionalities via conventional free radical 
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copolymerization of dimethylaminoethyl methacrylate (DMAEMA), tertbutyl carbonate 

(tBoc) protected AEMA (6) and t-Boc protected 4-methyl-5-imidazoyl methyl 

methacrylate, which were subsequently used for the coupling of the fluorescent probe 

Oregon Green.61 Hennick et al. synthesized random copolymers of DMAEMA with 

AEMA (6) through conventional radical polymerization, reacted the primary amine 

groups with protected thiol groups and subsequently conjugated the copolymers with 

decapeptide, reporting a coupling efficiency of 95%.62 In these examples, AEMA (6) was 

copolymerized via conventional radical polymerization, or the primary amine was pre-

functionalized prior to polymerization. It is of interest to directly polymerize AEMA (6) 

with preserved functionality in a controlled fashion, and to evaluate copolymers with 

precisely controlled architectures (i.e. crosslinked micelles, block ionomer complexes, 

and vesicles) for potential biomedical applications. 

Controlled radical polymerization techniques such as ATRP63 and RAFT64'65 have 

provided facile routes for obtaining polymers of predetermined molecular weights and 

precise architectures for amine-based vinyl monomers. However, the controlled 

polymerization of these momomers is challenging. In general, primary amine containing 

monomers should be protected in order to avoid unwanted side reactions. For example, 

AEMA {€) can be rapidly converted to 2-hydroxyethyl methacrylamide (7) at high pH 

through monomer rearrangement.58 It has also been suggested that when the amine group 

is deprotonated, AEMA (6) can undergo Micheal addition. In order to circumvent these 

side reactions, Dufresne and Leroux utilized t-Boc protected AEMA (6) for 

polymerization via ATRP, resulting in reasonably good control.66 In addition, He et al. 

reported the direct polymerization of AEMA (6) under acidic conditions via ATRP in 



33 

water, in a methanol-water mixture and in an isopropyl alcohol-water mixture, and also 

via RAFT polymerization in dimethyl sulfoxide (DMSO).67 They reported slow 

polymerization rates in methanol. Even though polymerization rates were faster in water, 

the reaction exhibited poor control yielding a PDI of 1.41. However, when a cosolvent 

combination of 80:20 2-propanol:water was used, well-controlled polymerizations were 

achieved with PDIs lower than 1.25. For RAFT polymerization, polymers with well-

defined molecular weights and PDIs between 1.25 and 1.29 were reported. The authors 

also reported synthesis of well-defined AEMA based diblock copolymers using 

poly(ethylene oxide)-based ATRP macrointiators and statistical copolymers of AEMA 

(6) with 2-hydroxypropyl methacrylate (8) and DMAEMA. Further, preparation of 

shell cross-linked micelles with pH-responsive cores consisting of PAEMA-6-PDAEMA 

copolymers with polyethylene glycol diacrylate crosslinking agent was reported. 

The synthesis of functional block copolymers directly in aqueous media without 

using protection/deprotection chemistry is of particular interest for stimuli-responsive 

systems. RAFT polymerization has been widely used to yield water-soluble polymers 

with well-controlled structures.65 For example, homopolymers and block copolymers 

with anionic,146'147'210 cationic,159'211 zwitterionic212'213 and 

neutrall03'105'145'151'152'214'152-151'215'216'217'218 functionality have been synthesized directly in 

water without post-polymerization modification. Recently, the McCormick research 

group reported the aqueous RAFT polymerization of N-(2-hydroxypropyl) 

methacrylamide (HPMA) (8) andN-[3-(dimethylamino)propyl] methacrylamide 

(DMAPMA) (9).31 PHPMA (10) has been proposed as a nonviral carrier for drug 

delivery because of its biocompatibility and nonimmunogenecity.69"76 Block copolymers 
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of HPMA (8) have been shown to form micelles, vesicles and block ionomer complexes 

in aqueous environments, illustrating their potential to be used as nonviral drug/gene 

carriers.77 McCormick and coworkers have also recently reported the aqueous RAFT 

generated block copolymer poly(HPMA-6-DMAPMA), showing the formation of an 

electrostatic complex between the positively charged DMAPMA block with negatively 

charged polynucleotides for gene delivery based applications. In addition, this same 

group reported the aqueous RAFT polymerization of 3-aminopropyl methacrylamide 

hydrochloride (APMA) (12) in a dioxane-water mixture.79 Homopolymers of AMP A 

(12) were then chain extended with iV-isopropylacrylamide (NIPAM) to produce 

temperature-responsive block copolymers that formed vesicles upon increasing the 

solution temperature. 

Herein we report, for the first time, the unprotected controlled aqueous RAFT 

polymerization of AEMA (6) yielding near monodisperse homopolymers. Well-defined 

block copolymers of AEMA-6-HPMA (18) were also prepared directly in aqueous 

solution through the chain extension of AEMA (6) macroCTA with HPMA (8). 
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Experimental 

Materials. All reagents were used without further purification unless otherwise 

noted. Methacryloyl chloride (>97%), ethanolamine (>98%) and hydroquinone (99%) 

were purchased from Aldrich. Phenylmagnesium bromide solution (3M in diethyl ether) 

was purchased from Fluka. Acetic acid, sodium acetate, sodium bicarbonate, 

diethylether, ethylacetate, hexane, and hydrochloric acid were purchased from Fisher. 

Carbon disulfide and potassium ferric cyanide were purchased from Acros Organics. 

2,2'-Azobis(2-imidazolinylpropane) dihydrochloride (VA-044) (19) was purchased from 

Wako Pure Products and recrystallized from methanol. 4,4'-Azobis(4-cyanovaleric acid) 

(V-501) (13) was purchased from Fluka and recrystallized from methanol. 4-

Cyanodithiobenzoic acid (CTP) (14) was synthesized according to literature procedure.145 

2-Aminoethyl methacrylate (AEMA) (6) was synthesized using a previously reported 

procedure.54 7V-(2-hydroxypropyl methacrylamide) (HPMA) (8) was synthesized 

according to Kopecek et al.219 

Aqueous RAFT homopolymerization of AEMA (6). The aqueous RAFT 

polymerization of AEMA (6) was conducted at 70°C and 50°C. The polymerization of 

AEMA (6) at 50 °C was performed using VA-044 (19) as the radical initiator and CTP 

(14) as the RAFT chain transfer agent (CTA). An initial monomer concentration ([M]o) 

of 1 M was used with a monomer to CTA ratio ([M]0/[CTA]0) of 400. The CTA to 

initiator ratio ([CTA]o/[I]o was 5:1. A typical procedure is as follows: in a 10 ml round 

bottom flask, CTP (14) (3.5 mg, 0.0125 mmol) and AEMA (0.825 g, 5 mmol) were 

dissolved in 0.6 ml of acetate buffer (pH=5, 0.27 mol/L acetic acid and 0.73 mol/L 

sodium acetate), followed by the addition of VA-044 Q9) (0.7 mg, 0.0025 mmol). The 
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solution was diluted to 5 ml with acetate buffer. The flask was sealed with a rubber 

septum and purged with nitrogen for 30 min, and placed in a 50 °C water bath. Aliquots 

for kinetic analysis were removed at predetermined time intervals and quenched by rapid 

cooling in liquid nitrogen. 

For the homopolymerization at 70 °C, V-501 (13) was employed as the primary 

radical source and CTP (14) was used as the CTA. The polymerization was performed 

directly in acetate buffer (pH=5, 0.27 mol/L acetic acid and 0.73 mol/L sodium acetate) 

with an initial monomer concentration ([M]0) of 1 M. The initial [M]o/[CTA]0 was 400, 

while the CTA to initiator ratio was 5:1. The homopolymerization was conducted by 

dissolving AEMA (6) (1.65 g, 10 mmol), CTP (14) (6.2 mg, 0.022 mmol) and V-501 Q3) 

(1.25 mg, 0.004 mmol) in a 25 ml round-bottom flask and diluting the resulting mixture 

to a final volume of 10 ml with acetate buffer. The reaction solution was purged with 

nitrogen for 45 minutes and subsequently placed in a water bath at 70 °C. Aliquots for 

kinetic analysis were removed from the polymerization solution at appropriate time 

intervals and immersed in liquid nitrogen to terminate the polymerization. 

Synthesis ofMacroCTA of AEMA (20). AEMA (6) (8.3g, 0.05 mol), CTP (14) 

(31.1 mg, 0.11 mmol), and VA-044 (19) (6.23 mg, 0.022 mmol) were added to a 100 ml, 

round bottom flask and dissolved with 5 ml of acetate buffer (pH=5, 0.27 mol/L acetic 

acid and 0.73 mol/L sodium acetate). The solution was then diluted to a final volume of 

50 ml. The flask was sealed with a rubber septum and cooled in an ice bath. The contents 

were purged with nitrogen for 30 min at 5 °C. The flask was subsequently immersed in a 

water bath at 50 °C. The polymerization was allowed to proceed for 75 minutes before 
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being quenched by rapid cooling in liquid nitrogen. The PAEMA macro-CTA (20) was 

then purified by dialysis against deionized water and then lyophilized. 

JH NMR (D20): 5 4.21 (br, 2H, -OCH2); 5 3.31 (br, 2H, -NH2CH2); 5 1.95 (br, 2H, -

CH2); 5 0.83-1.36 (br, 3H, -CH3).
 13C NMR (D20): 5 184.6 (C=0); 5 68.4 (C-O); 8 58.7 

(C); 8 49.5 (C-N); 8 43.6 (CH2); 8 23.3 (CH3). 

Chain extension of PAEMA MacroCTA (20) with HPMA (8). Block copolymers of 

PAEMA (16) and HPMA (8) were prepared directly in acetate buffer by dissolving V-

501 (13) (1.49 mg, 0.006 mmol), PAEMA macroCTA (20) (0.827 g, 0.03 mmol), and 

HPMA (8) (1.718 g, 12 mmol) in 12 ml of buffer. The resulting polymerization solution 

was divided into four separate 5 ml round bottom flasks (3 ml in each flask) and each 

flask was subsequently sealed and purged with nitrogen for 30 minutes. The flasks were 

then placed in a water bath at 70 °C and removed from the water bath at predetermined 

time intervals. Upon removal, the flasks were exposed to oxygen and quenched by rapid 

cooling in liquid nitrogen. 

(Co)polymer Characterization. PAEMA macroCTAs (20) and AEMA-b-HPMA 

(18) copolymers were characterized by aqueous size exclusion chromatography (ASEC-

MALLS) at ambient temperature using Eprogen CATSEC columns (100, 300, and 1000 

°A; Eichrom Technologies, Inc). A Wyatt Optilab DSP interferometric refractometer (k 

= 690 nm) and a Wyatt DAWN DSP multiangle laser light scattering detector (k = 633 

nm) were employed using 1 wt % acetic acid/0.1 M Na2S04 (aq) solution as the eluent at 

a flow rate of 0.25 ml/min. The dn/dc of the PAEMA (16) was determined to be 0.153 in 

the above eluent at 25 °C using a Bausch and Lomb refractometer. Conversions in each 

system were determined by comparing the area of the UV signal corresponding to 
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monomer at to to the area at tx. Absolute molecular weights and polydispersities were 

calculated using the Wyatt ASTRA SEC/LS software package. 

A Varian 300 MHz NMR equipped with a standard 5 mm !H/13C probe was 

utilized to identify the structure of PAEMA (16) via ]H NMR (256 scans with a 

1 -J 

relaxation delay of 1.0 second and a pulse angle of 45 degrees) and C NMR (512 scans 

with a relaxation delay of 1 second and a pulse angle of 45 degrees). 

A Varian 500 MHz NMR equipped with a standard 5 mm ' H / 1 ^ probe was 

utilized to identify the homopolymer structure of PAEMA (16) (nt = 64, dl = 3.1 (is, 

pw90 = 16 us, at = 1.89 (is). The degree of polymerization and molecular weight were 

determined via !H NMR through integration of the relative intensities of methylene-

protons resonance at 3.31 ppm and phenyl-protons of CTP (14) between 7.51 and 7.89 

ppm. 

The copolymer structures, degrees of polymerization and molecular weights were 

identified via !H NMR (nt = 32, dl - 4.1 \is, pw90 = 15.3 (is, at = 1.89 (is) by integration 

of the relative intensities of methyne-proton resonances at 3.8 ppm (HPMA) (8) and 

methylene-proton resonances at 4.2 ppm (PAEMA) (16). Samples were prepared at 5 

wt% in deuterated water (D2O). All pH measurements were performed with accuracy 

±0.02 with 900A (Orion) pH meter. 
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Results and Discussion 

Aqueous RAFT Homopolymerization ofAEMA (6). The careful selection of the 

chain transfer agent (CTA) and reaction conditions for the monomer of interest are key 

points for a successful RAFT polymerization.103'212,213 McCormick and coworkers have 

previously shown the polymerization of a wide range of amine containing monomers via 

aqueous RAFT polymerization.65'77 However, it is necessary to optimize reaction 

conditions because the CTA may be susceptible to hydrolysis and aminolysis. These side 

reactions result in a loss of active chain ends and diminish control while increasing the 

polydispersity of the resulting polymers. After careful examination of CTP (14) for the 

aqueous RAFT polymerization of AM, it was shown that the solution pH has a strong 

influence on the rate of hydrolysis and aminolysis. This study suggested that aqueous 

RAFT polymerization of amine containing monomers should be performed at pH values 

below 7. Recently, McCormick and coworkers reported the successful 

homopolymerization and block copolymerization of methacrylamido monomers bearing 

both tertiary and primary amines via aqueous RAFT polymerization.65'77'79'103'146'151 In a 

typical homopolymerization procedure, monomers were polymerized in an aqueous 

buffer employing CTP (14) as chain transfer agent at 70 °C and pH 5 to reduce 

hydrolysis and aminolysis. 

Considering the above issues, AEMA (6) polymerizations were carried out at 50 

°C using VA-044 Q9) as the radical source and CTP (14) as the CTA in an acetic 

acid/sodium acetate buffer (pH = 5) (SchemeIII-1). For the polymerizations, the initial 

ratio of [M]0 to [CTA]0 was maintained at 400 /l and a [CTA]0/[I]o ratio of 5/1 was 
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employed. Molecular weights, polydispersities and conversion data are shown in Table 

III-l. 

O 

OH 
CN 

O M CH3 CH3 M 7=0 
O 

.N 3 N~ 
n. 

r y-j-N=N-[-f J 
^ N H CH3 C H H N ^ 

NH~3 c f 1 • Acetate Buffer pH = 5 NH3C|9 

AEMA 2. [M] = 1M PAEMA 
3. [CTA]: [I] = 5 
4. 50 °C 

Scheme III-l. Aqueous RAFT polymerization of AEMA (6) at 50 °C. 

ASEC-MALLS evaluation revealed shifts to lower elution volumes as a function 

of polymerization time, indicating increasing molecular weight (Figure III-l). The traces 

are unimodal and free from high molecular weight termination products, providing a first 

indication of controlled polymerization. A plot of ln([Mo]/[M]) as a function of reaction 

time is given in Figure III-2. A short inhibition period is observed, which may be related 

to: (i) slow fragmentation of CTP (14) just after first addition of initiated polymer chains, 

(ii) slow reinitiation following first fragmentation in the pre-equilibrium stage, or (iii) 

tendency of the expelled radical to add to the CTA rather than the monomer. The rate 

of fragmentation and the reinitiation of the leaving group of the CTA just after first 

fragmentation depend on the radical reactivity.90'212'213 The more stable, bulky R radical 

leaving group of CTP (14) should add to AEMA (6) significantly slower than the 
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monomer radical adds to AEMA (6), and is more likely to add back to CTP (14) 

again.90,212'213 After this inhibition period, a linear relationship is observed indicating 

pseudo first order kinetic behavior, providing further evidence of controlled 

polymerization. This also indicates that PAEMA (16) radical is inherently a good leaving 

group, though the weaker Pn-S bond of polymeric CTA results in a moderate rate of 

polymerization. For polymerization times longer than 240 minutes, a deviation from 

linearity is observed that can be attributed to a decrease in the radical concentration (most 

1 ^7 

likely due to termination) in the polymerization medium at higher conversion. 

Table III-l. Aqueous RAFT polymerization of AEMA (6) at 50 °C. 

Time 
(min) 

30 

45 

60 

90 

120 

150 

180 

240 

300 

360 

420 

460 

540 

M n x 104; 

1.5 

2.1 

2.6 

3.8 

4.8 

5.5 

6.3 

7.0 

7.7 

8.1 

8.3 

8.4 

8.7 

M„ x 104 2 

0.37 

0.95 

1.6 

2.2 

2.8 

3.3 

3.8 

4.5 

4.9 

5.1 

5.3 

5.5 

5.6 

PDI; 

1.19 

1.15 

1.13 

1.11 

1.11 

1.10 

1.10 

1.12 

1.13 

1.14 

1.14 

1.17 

1.15 

Conv/ 

(%) 

5.1 

14 

23 

34 

43 

50 

58 

69 

75 

77 

80 

83 

84 

1. Determined by ASEC/MALLS 
2. Theoretical molecular weight 
3. [M]:[CTA]:[I] = 400:1:0.2 
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Figure III-l. ASEC traces for the homopolymerization of AEMA (6) at 50 °C showing 
the RI signal as a function of elution volume. 

The apparent molecular weight values as a function of time are given in Figure 

III-3. The low polydispersities (Table III-l) and the linear increase in apparent Mn with 

increasing conversion indicate the controlled synthesis of PAEMA (16) in an aqueous 

solvent. The apparent molecular weights are higher than the theoretical molecular 

weights. Similar molecular weight overshoots have also been reported for the 

polymerization of other amine containing polymers. In an ideal RAFT polymerization, 

the chain transfer process should be fast and intermediate RAFT-adduct radical should be 

short-lived. Because of the rapid transfer of the growing polymeric radicals between free 
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Figure III-2. Pseudo-first-order kinetic plot for the homopolymerization of AEMA (6) at 
50 °C. 

and dormant forms, unwanted radical-radical termination processes are minimized 

without reducing the rate of the polymerization.90 However, we observe a significant 

inhibition period, which is strongly related to the nature of the CTA. One possible 

explanation for this observation is that after addition of oligomeric radicals to the RAFT 

CTA, the resulting intermediate radical is short-lived allowing it to undergo bimolecular 

termination. Another possibility is that the poor initiating and fragmentation ability of R 

group radicals can lead to bimolecular termination of the intermediate radical resulting in 

higher than predicted molecular weights.90'212'213 
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Figure III-3. Mn determined by GPC as a function of conversion for the aqueous 
homopolymerizations of AEMA (6) at 50 °C. 

AEMA (6) polymerizations were also performed at 70 °C using V-501 (13) as the 

initiator with [CTA]/[I] ratios of 5/1. To avoid CTA hydrolysis in basic conditions (pKa 

of AEMA (6) = 8.8) and possible aminolysis of CTA due to the monomer hydrolysis, an 

acetic acid/sodium acetate buffer (pH = 5) was used as the buffer. Experimental data for 

the homopolymerization of AEMA (6) at 70 °C are summarized in Table III-2. Shown in 

Figure III-4 is the evaluation of molecular weight, as determined by ASEC-MALLS, for 

aliquots taken from the AEMA (6) homopolymerization. The molecular weight of 

resulting aliquots increases with time and unimodal peaks are observed at decreasing 

elution volumes. However, a broadening is observed in molecular weight distribution 

curves after 90 minutes. 
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Figure III-4. ASECs traces for the homopolymerization of AEMA (6) at 70 °C showing 
refractive index as a function of elution volume. 

Table III-2. Aqueous RAFT polymerization of AEMA (6) at 70 °C. 

Time 
(min) 

30 

45 

60 

75 

90 

120 

150 

180 

240 

300 

360 

M nxl0
4 i 

1.2 

2.0 

2.5 

3.1 

4.3 

5.7 

6.7 

7.4 

8.7 

8.9 

9.7 

M„ x 104 2 

0.44 

1.2 

2.1 

1.9 

2.6 

2.9 

3.6 

4.0 

5.0 
5.4 

5.7 

PDI* 

1.24 

1.16 

1.26 

1.26 

1.21 

1.27 

1.35 

1.46 

1.62 

1.84 

1.89 

Conv.* 

(%) 

6 

17 

31 

28 

39 

45 

54 

59 

74 

82 

85 

1. Determined by ASEC/MALLS 
2. Theoretical molecular weight 
3. [M]:[CTA]:[I] = 400:1:0.2 



The kinetic plot shows, for polymerization times longer than 45 minutes, a 

deviation from linearity that can be attributed to termination reactions in the 

polymerization medium at higher conversions (Figure III-5). Actual molecular weight is 

greater than predicted molecular weight (Figure III-6) and an increase in polydispersity 

(PDI) is observed over time (Table III-2). It was also observed that the polymerization 

solution changed from pink to colorless within one hour. This suggests loss of CTA 

during the reaction, resulting in an increase in the monomer to CTA ratio and production 

of polymers with higher molecular weights than predicted. Continued increase in PDI 

with time is also indicative of a non-controlled polymerization. Recently, Le et al. 

reported the RAFT polymerization of AEMA (6) in DMSO at 70 °C using dithiocumyl 

ester. We suggest that the relatively high PDFs reported by Le et al. are due to the high 

polymerization temperature, which resulted in side reactions that broadened molecular 

weight distribution. The loss of control we observe at 70 °C for aqueous polymerization 

of AEMA (6) may be related to increase of the equilibrium rate between unprotonated 

and protonated primary amine groups with consequent side reactions such as Micheal 

addition or aminolysis reactions, where the unprotonated primary amine group undergoes 

reaction with either AEMA (6) monomer or the chain transfer agent. The controlled 

polymerization of AEMA (6) in an aqueous solvent thus depends not only on the solution 

pH but also on the polymerization temperature. 
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Figure III-5. Pseudo-first-order kinetic plot for the homopolymerization of AEMA (6) at 
70 °C. 
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Figure III-6. Mn determined by GPC as a function of conversion for the aqueous 
homopolymerization of AEMA (6) at 70 °C. 



Copolymerization of AEMA (6) with HPMA (8). Having established conditions 

for the controlled polymerization of AEMA (6) in aqueous solvent, AEMA macroCTAs 

(20) were prepared at both 50 and 70 °C (Table III-3). The Mn of the resulting 

macroCTAs, calculated through proton NMR, is close to that obtained from 

ASEC/MALLS for both macroCTAs. However, the polydispersity of the macroCTA 

synthesized at 70 °C is greater, presumably due to side reactions as mentioned in the 

previous section. 

In order to demonstrate the presence of active chain ends, the AEMA macroCTA 

(20) prepared at 50 °C was chain extended with HPMA (8) to form an AB diblock 

copolymer. Reaction conditions, [CTA]/[I] = 5/1 and 70 °C, were chosen to mimic 

previously reported conditions for the block copolymerization of DMAPMA (9) and 

HPMA (8) (Scheme III-2).216 

Table III-3. Conditions for synthesis and physical properties of AEMA MacroCTA (20) 
at 50 and 70 °C. 

[M]:[CTA]:[I] ™£J T™?- M„l Mn2 Mn3 P m l Conv.l D p 2 

400:1:0.2 60 70 24900 24000 21000 1.12 31 145 

450:1:0.2 75 50 31200 34100 34900 1.05 47 204 

1. Calculated through GPC. 
2. Calculated through *H NMR. 
3. Theoretical molecular weight. 
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Scheme III-2. Block copolmerization of AEMA (6) with HPMA (8). 

Figure III-7 shows ASEC-MALLS chromatograms presenting the controlled chain 

extension of the macroCTA with HPMA (8) under aqueous conditions. The traces are 

unimodal and shift to lower elution volumes as a function of time indicating high 

blocking efficiency. Table III-4 lists the conversion, molecular weight, and 

polydispersity data for each block copolymer. These data indicate that AEMA 

macroCTAs (20) were extended in a controlled fashion, resulting in diblock copolymers 

with low PDIs(<l.l). 

Table III-4. PAEMA-6-PHPMA (18) copolymerization and physical properties. 

Time Temp. j 2 , Conv.2
 2 

(min) (°C) M n M n P D I (»/„) D P 

60 
120 

180 

240 

70 
70 

70 

70 

43000 

48400 

53700 

55400 

44100 

51000 

57100 

65100 

1.05 

1.05 

1.07 

1.05 

18 
33 

44 

54 

70 
130 

177 

216 

1. Calculated through GPC. 
2. Calculated through 'H NMR 
3. [M]:[CTA]:[I] =400:1:0.2 
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Figure III-7. ASEC RI traces for diblock copolymers of AEMA (6) and HPMA (8) and 
the corresponding AEMA homopolymer macroCTA (20). 

Copolymer compositions and experimental molecular weights were determined by 

comparing relative normalized resonances of the methyne proton peaks at 3.8 ppm of 

PHPMA (10) and methylene peaks at 4.2 ppm of PAEMA (Id) (Figure III-8). The 

experimentally derived molecular weights are slightly larger than theoretical molecular 

weights, attributed to a loss of active chain ends throughout the polymerization, but are 

still in good agreement. Thus the higher temperature conditions do not appear to cause 

significant side reactions or loss of control for HPMA (8) block copolymerization. 
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Figure III-8. *H NMR spectrum of PAEMA-6-PHPMA Q8). 
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Conclusions 

Well-defined, narrowly dispersed homopolymer and diblock copolymers of 

AEMA (6) have been synthesized via aqueous RAFT polymerization. Specifically, 

AEMA (6) monomer has been homopolymerized directly in aqueous solution with PDIs 

below 1.2 and conversions up to 95%. To our knowledge, this is the first report of 

aqueous AEMA (6) RAFT polymerization with very low polydispersity and good control 

without the necessity of protecting group chemistry. The resulting PAEMA (16) was also 

chain extended with HPMA (8) to produce well defined diblock copolymers with high 

blocking efficiency and PDIs lower than 1.1. Building on our earlier work and recent 

literature reports, we show for the first time a series of novel, well-defined block 

copolymers of AEMA (6J and HPMA (8) with high conversion. Since primary amine 

groups are amenable to a wide range of post-polymerization chemistries, such as rapid 

formation of amides and imines, ring-opening of epoxy groups and Micheal addition, we 

believe that this study will enable developments in several areas, including synthesis of 

controlled architecture, bio-inspired polymers through the conjugation of the primary 

amine pendant groups with targeted sugars, peptides or amino acids. Improved 

crosslinking strategies for shell cross-linked micelles, and robust surface 

functionalization for various surface chemistries are also possible. Diblock copolymers 

of AEMA (6) and HPMA (8) may prove useful as drug/gene delivery vehicles through 

electrostatic complexation of the positively charged AEMA (6) block with the negatively 

charged phosphate backbone of polynucleotides. In addition, the susceptibility of the 

AEMA (6) block to post-polymerization reactions facilitates the conjugation of this 

diblock-copolymer with targeted drugs or bio-molecules. 
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CHAPTER IV 

BIOCONJUGATION OF D-GLUCURONIC ACID SODIUM SALT TO WELL-

DEFINED PRIMARY AMINE CONTAINING HOMO- AND BLOCK COPOLYMERS 

FOR POTENTIAL BIOMEDICAL APPLICATIONS 

Introduction 

Hyaluronic acid (HA) (I), a linear, high-molecular weight polysaccharide, is 

comprised of alternating JV-acetyl-P-D-glucosamine (2) and P-D-glucosuronic acid 

residues linked (3) at 1-3 and 1-4 positions, respectively. Under physiological conditions 

it exists as the sodium salt form (HA-Na), is water soluble, and behaves as a weak 

polyelectrolyte. HA (I) is the primary component of synovial fluid and is thought to 

provide the lubricity of joint surfaces as well as the viscoelastic behavior of synovial 

fluid.1'2 It is currently used in a wide range of biomedical applications, including post 

surgical adhesion prevention, rheology modification in orthopedics, ophthalmic 

procedures, tissue engineering, hydrogels and implants.3"8 HA (t) is obtained 

commercially by either extraction from rooster comb or synthesis by microbial 

fermentation using streptococcus.9 Limitations of current systems include cost, allergy 

induction and reduced performance capabilities in comparison to native HA. Attempts to 

prepare surface coatings based on HA (I) via physisorption and chemisorption produced 

poorer than expected lubrication properties.4'10'11 HA (Vf is found with a range of 

molecular weights and molecular weight distributions. High molecular weight HA Q) 

has very high viscosity, and exhibits both pseudoplastic and rheopectic rheological 

behavior.12'13'14 When the molecular weight of HA (1) is degraded, its viscosity is 

reduced, which is thought to result in decreased lubricity and function of the synovial 



fluid. It is of interest to prepare synthetic glycopolymer analogues to specifically target 

performance capabilities for biomedical applications. 

The term "glycopolymer" is used to describe synthetic polymers containing sugar 

moieties as pendant groups. Advances in controlled radical polymerization (CRP) 

allowing precise control of polymeric structures combined with increased understanding 

of structures required for specific biomimetic functions make glycopolymers promising 

candidates for biomedical applications, glycomics, medicine, biotechnology, sensors and 

separation science. Glycopolymers have been investigated as macromolecular drugs, 

drug delivery systems, biocatalytic and biosensitive hydrogels, matrices for controlled 

cell culture, stationary phases for chromatographic purposes, and surface modifiers. 

CRP can be used to prepare glycopolymers from unprotected monomers through post-

polymerization modification strategies using reactive polymer precursors.29'33 An 

alternate method for producing well-defined glycopolymers is the use of a 

macromonomer, where a vinyl monomer carries the sugar moiety. There are advantages 

to both approaches. One of the main disadvantages of the post-polymerization method is 

that the conjugation of a pre-synthesized polymer backbone does not always result in 

100% functionalization, resulting in an inhomogeneous sequence within the polymer 

chain. On the other hand, with the post-polymerization approach it is possible to avoid 

the complex reaction and purification procedures often associated with carbohydrate 

monomer synthesis. The preparation of a reactive scaffold from a simple monomer, 

which can then be used to create a wide range of glycol-functionalized polymers through 

highly efficient post-polymerization reactions is an attractive option. 
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There are several successful examples in the literature of the post-polymerization 

modification approach applied to the synthesis of glycopolymers. For example, 

Haddleton et al. reported the polymerization of trimethylsilyl protected propargyl 

methacrylate via atom transfer radical polymerization (ATRP) and synthesis of well-

defined glycopolymers with a high degree of conjugation utilizing "click" reactions 

between alkyne functionalized polymethacrylate and protected and unprotected glycosyl 

azides.34 Hawker and coworkers reported the use of "click" reactions to successfully 

prepare asymmetric sugar functionalized dendrimers.35 MALDI-TOF mass spectrometry 

was utilized to provide evidence that a single molecular species was obtained without 

side reactions. Liu and coworkers reported that poly(fluorenes) prepared by Sonogashira 

coupling of bromo-alkane functionalized monomers were glycosylated in near 

quantitative yield (98%) through the reaction of bromo-groups with a thio-sugar, using 

excess reagents. Another important post-polymerization method for the synthesis of 

glycopolymers involves active esters. Although this method often requires an excess of 

substrate as well as purification, it is effective.37 Ffu et al. reported ATRP of N-

methacryloxysuccinimide using Cu(I)/bipy, which yielded low polydispersity and 

predicted number average molecular weight (Mn) polymer, followed by quantitative 

substitution with gluco- and galactosamine.38 

Primary amine-functionalized vinyl monomers have attracted great interest 

recently due to the potential for post-polymerization modification reactions through 

primary amine pendant functionality.39"49 For example, Armes and coworkers reported 

the synthesis of well-defined glycopolymers upon the controlled radical polymerization 

of sugar modified methacrylates, prepared from the reaction of 2-aminoethyl 
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methacrylate (AEMA) (6) with D-gluconolactone and lactobionolactone.54"57 

Additionally, AEMA (6) and JV-(3-aminopropyl)methacrylamide (APMA) (12) 

copolymers have been used for post-polymerization reactions in drug/gene delivery 

applications.58"60 Peptide conjugated random copolymers have been prepared by Hennick 

and coworkers through the reaction of primary amine moieties of random copolymers of 

DMAEMA with AEMA (6) with protected thiol groups,, yielding a coupling efficiency 

of 95%. Jindrich, Kopecek and coworkers have also reported the synthesis of 

copolymers containing APMA (6) and JV-(2-hydroxypropyl)methacrylamide (HPMA) (8) 

to prepare cell penetrating peptide (CPP) conjugates after bioconjugation of primary 

amine functionalized copolymers with targeted cPPs.221,222,223'224 

The development of controlled radical polymerization techniques such as ATRP 

fiA iTC 1 ef t ' N ^ r *"n^C , i)0'7 

and RAFT ' ' ' ' ' polymerizations have provided a facile route to obtain 

polymers of predetermined molecular weights and precise architectures for amine-based 

vinyl monomers. However, the controlled polymerization of primary amine-based 

momomers is challenging. Recently, in our laboratories, we reported for the first time the 

unprotected controlled aqueous RAFT polymerization of AEMA (6) yielding near 

monodisperse homopolymers.228 Well-defined block copolymers of AEMA-6-HPMA 

(18) were also prepared directly in aqueous solution through the chain extension of 

AEMA macroCTA (20) with HPMA (8). Recently, the McCormick research group 

reported the aqueous RAFT polymerization of APMA (12) in a dioxane-water mixture.79 

Homopolymers of APMA (12) were then chain extended with JV-isopropylacrylamide 

(NIPAM) to produce temperature-responsive block copolymers that formed vesicles upon 

increasing the solution temperature. 
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Herein, we report for the first time the synthesis of well-defined carboxylic acid 

functionalized glycopolymers prepared via the reductive amination reaction between 

PAPMA (17), synthesized by aqueous RAFT polymerization, and D-glucuronic acid 

sodium salt. The bioconjugation is effective, giving near quantitative yields. We also 

report the bioconjugation of PAEMA (16) and PAEMA-6-PHPMA (18) using the same 

method, resulting in poorer yields (60-82%). 

Experimental 

Materials. All reagents were used without further purification unless otherwise 

noted. Methacryloyl chloride (>97%), ethanolamine (>98%), D-Glucuronic acid sodium 

salt monohydrate (5) and hydroquinone (99%) were purchased from Aldrich. 

Phenylmagnesium bromide solution (3M in diethyl ether), boric acid and sodium 

cyanoborohydride (NaCNBHa) were purchased from Fluka. Acetic acid, sodium acetate, 

sodium bicarbonate, diethylether, ethylacetate, hexane, and hydrochloric acid were 

purchased from Fisher. Carbon disulfide and potassium ferric cyanide were purchased 

from Acros Organics. 2,2'-Azobis(2-imidazolinylpropane) dihydrochloride (VA-044) 

(19) was purchased from Wako Pure Products and recrystallized from methanol. N-3-

Aminopropyl methacrylamide (APMA) (12) was purchased from Polysciences, Inc. 4'-

Azobis(4-cyanovaleric acid) (V-501) (13) was purchased from Fluka and recrystallized 

from methanol. 4-Cyanodithiobenzoic acid (CTP) (14) was synthesized according to 

reported procedure.145 2-Aminoethyl methacrylate (AEMA) (6J was synthesized using a 

previously reported procedure.54 Ar-2-Hydroxypropyl methacrylamide (HPMA) (8) was 

synthesized according to Kopecek et al.211 
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Synthesis ofPAPMA (17). The aqueous RAFT polymerization of APMA (12) was 

performed at 70 °C. V-501 (13) was employed as the primary radical source and CTP 

(14) was used as the CTA. The polymerization was performed directly in acetate buffer 

(pH=5, 0.27 mol/L acetic acid and 0.73 mol/L sodium acetate) with an initial monomer 

concentration ([M]0) of 2 M. The initial [M]0/[CTA]0 was 200, while the CTA to initiator 

ratio was 5:1. The homopolymerization was conducted by dissolving APMA (40) (1.65 g, 

10 mmol), CTP Q4) (28 mg, 0.1 mmol) and V-501 (13) (5.61 mg, 0.004 mmol) in a 25 

ml round-bottom flask and diluting the resulting mixture to a final volume of 10 ml with 

acetate buffer. The reaction solution was purged with nitrogen for 45 minutes and 

subsequently placed in a water bath at 70 °C. The polymerization was allowed to proceed 

for 60 minutes before being quenched by rapid cooling in liquid nitrogen. The PAPMA 

(17) was then purified by dialysis against deionized water followed by lyophilization. 

*H NMR (D20) : 8 3.11 (br, 2H, -NH2CH2); 8 2.94 (br, 2H, -NH2CH2); 5 1.79 (br, 2H, -

CH2); 1.63 (br, 2H, -CH2); 8 0.85-1.16 (br, 3H, -CH3).
 13C NMR (D20): 8 184.6 (DO); 

8 68.4 (C-O); 8 58.7 (C); 8 49.5 (C-N); 8 43.6 (CH2); 8 23.3 (CH3). 

Synthesis ofPAEMA (16). PAEMA (6) was synthesized according to previous 

chapter. Molecular weights, polydispersities and conversion data are shown in Table IV-

1. 

*H NMR (D20) : 8 4.21 (br, 2H, -OCH2); 8 3.31 (br, 2H, -NH2CH2); 8 1.95 (br, 2H, -

CH2); 8 0.83-1.36 (br, 3H, -CH3).
 13C NMR (D20): 8 184.6 (C=0); 8 68.4 (C-O); 8 58.7 

(C); 8 49.5 (C-N); 8 43.6 (CH2); 8 23.3 (CH3). 
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Preparation ofPAEMA-b-PHPMA (18). PAEMA-6-PHPMA (18) was 

synthesized according to previous chapter. Molecular weights, polydispersities and 

conversion data are shown in Table IV-1. 

*H NMR (D20): 5 4.21 (br, 2H, -OCH2); 8 3.82 (br, H, -CHOH); 5 3.31 (br, 2H, -

NH2CH2); 5 3.29-2.99 (br, 2H, -NH2CH2); 8 2.05 (br, 2H, -CH2); 8 1.95 (br, 2H, -CH2); 8 

1.10 (br, 3H, -CH3); 5 1.06 (br, 3H, -CH3); 8 0.83-1.36 (br, 3H, -CH3).
 13C NMR (D20): 

8 184.6 (C=0); 8 183.5 (C=0); 8 71.0 (CH); 8 68.4 (C-O); 8 58.7 (C); 8 58.2 (C); 8 56.7 

(C-N); 8 49.5 (CH2); 48.9 (CH2); 8 43.6 (C-N); 8 25.4 (CH3); 8 23.3 (CH3); 8 23.0 

(CH3). 

Model Study for Bio-conjugation of (Co)polymers with D-Glucuronic Acid 

Sodium Salt (5). A model study was conducted by attachment of D-Glucuronic acid 

sodium salt to the APMA (12) through reductive amination reaction. APMA (12) (0.382 

g, 2.14 mmol), D-Glucuronic acid sodium salt (5) (1 g, 4.27 mmol), sodium 

cyanoborohydride (NaCNBH3) (0.268 g, 4.27 mmol) and hydroquinone (0.024 g, 0.217 

mmol) were dissolved in 15 ml of sodium borate buffer solution (0.1 M, pH 8.5) 

containing 0.5 M sodium chloride (NaCl). The flask was sealed with a rubber septum. 

The contents were purged with nitrogen for 30 min. The flask was subsequently 

immersed in an oil bath at 40 °C. The reaction was allowed to proceed for 4 days under 

continuous stirring. The solution was precipitated in selective solvent acetone and passed 

through a silica plug using water as eluent. 
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XH NMR (D20) of APMA (12): 5 5.55 ( 1H, =CH); 8 5.29 (1H, =CH) 8 3.16 ( 2H, -

NH2CH2); 8 2.86 ( 2H, -NH2CH2); 8 1.79 (2H, -CH2); 8 1.72 (3H, -CH3).
 13C NMR 

(D20) of APMA (12): 8 172.3 (CO) ; 8 138.5 (=C); 8 120.4 (=C); 8 37.4 (C-N); 8 35.6 

(C-N); 8 25.9 (CH2); 8 16.3 (CH3). 

*H NMR (D20) of D-glucuronic acid sodium salt (5): 8 5.12 (1H, laCH); 8 4.53 (1H, 

lpCH); 8 3.95 (1H, 5aCH); 8 3.61 (1H, 5pCH); 8 3.46-3.34 ( 1H, 3pCH, 3aCH, 4pCH, 

4aCH, 2aCH); 8 3.15 (1H, 2pCH). ° C NMR (D20) of D-glucuronic acid sodium salt 

(5): 8 180.6 (6aC=0); 8 179.4 (6pC=0); 8 98.9 (lpC); 8 94.9 (laC); 8 79.8-73.7 (2pC, 

2aC, 3PC, 3aC, 4pC, 4aC, 5pC, 5aC). 

*H NMR (D20) of Bio-conjugated APMA (21J: 8 5.63 ( 1H, =CH); 8 5.38 ( 1H, =CH); 

8 4.11 (1H, 5aCH); 8 3.94 (1H, 5pCH); 8 3.84-3.44 (1H, 3pCH, 3aCH, 4pCH, 4aCH, 

2aCH); 3.22 (1H, 2pCH); 8 3.93 (2H, -NH2CH2); 8 3.00 (2H, -NH2CH2); 8 1.89 (2H, -

CH2); 8 1.82 (3H, -CH3).
 13C NMR (D20) of Bio-conjugated APMA (21): 8 183.8 

(6aC=0); 8 181.8 (6pC=0); 8 175.7 (C=0); 8 138.5 (=C); 8 120.4 (=C); 8 98.9 (IPC); 8 

94.9 (laC); 8 79.8-73.7 (2pC, 2aC, 3pC, 3aC, 4pC, 4aC, 5PC 5aC), 8 37.4 (C-N); 8 

35.6 (C-N); 8 25.9 (CH2); 8 16.3 (CH3). 

Bio-conjugation of (Co)polymers with D-Glucuronic Acid Sodium Salt (5). 

PAEMA (16), PAPMA Q7) and PAEMA-6-HPMA (18) were bio-conjugated with D-

glucuronic acid sodium salt (5) through reductive amination reaction. In a typical 

experimental protocol, PAPMA86 Q6) (Mn = 15,400) (100 mg, 6.5 x 10"3 mmol), D-

glucuronic acid sodium salt (5) (10 times mole equivalent of primary amine group in 

polymer) (1.31 g, 5.59 mmol), NaCNBH3 (10 times mole equivalent of D-glucuronic acid 

sodium salt (5)) (3.18 g, 0.051 mol) were dissolved in 25 ml of sodium borate buffer 
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solution (0.1 M, pH 8.5) containing 0.5 M NaCl. The flask was sealed with a rubber 

septum and the contents were purged with nitrogen for 30 min. The flask was 

subsequently immersed in an oil bath at 45 °C. The reaction was allowed to proceed for 4 

days under constant stirring, followed by dialysis against a 0.5 M NaCl aqueous solution 

using a Spectra/Por 7 membrane (molecular weight cutoff of 14000) to remove excess 

sugar. The solution was desalted by dialysis against DI water, and the resulting bio-

conjugated polymer was obtained by lyophilization. 

*H NMR (D20) of Bio-conjugated PAPMA (22): 5 3.10 (br, 2H, -NHCH2); 8 2.94 (br, 

2H, -NH2CH2); 5 4.28-3.13 (br, 1H, 5<xCH, 5pCH, laCH, lpCH); 5 3.13-2.82 (br, 1H, 

3pCH, 3aCH, 4pCH, 4aCH, 2aCH, 2pCH); 8 1.79 (br, 2H, -CH2); 8 1.62 (br, 2H, -CH2); 

8 0.99-0.84 (br, 3H, -CH3).
 13C NMR (D20) of Bio-conjugated PAPMA (22): 191.2-

189.1 (6a, 6p C=0) 8 182.6 (C=0); 8 82.6-68.9 (laC, lpC, 2pC, 2aC, 3pC, 3aC, 4pC, 

4aC, 5PC, 5aC); 8 55.4 (C); 8 47.2 (C-N); 8 48.1 (C-N); 8 40.1 (CH2); 8 28.6 (CH2); 8 

19.0 (CH3). 

*H NMR (D20) of PAEMA (16): 8 4.21 (br, 2H, -OCH2); 8 3.31 (br, 2H, -NH2CH2); 8 

1.95 (br, 2H, -CH2); 8 0.83-1.36 (br, 3H, -CH3).
 13C NMR (D20) of PAEMA (101): 8 

184.6 (C=0); 8 68.4 (C-O); 8 58.7 (C); 8 49.5 (C-N); 8 43.6 (CH2); 8 23.3 (CH3). 

*H NMR (D20) of Bio-conjugated PAEMA (23): 8 4.03 (br, 2H, -OCH2); 8 3.82 (br, 

2H, -NH2CH2); 8 3.98-3.52 (br, 1H, 5aCH, 5PCH, laCH, lpCH); 8 3.29-2.40 (br, 1H, 

3pCH, 3aCH, 4pCH, 4aCH, 2aCH, 2pCH); 8 1.95 (br, 2H, -CH2); 8 0.76-1.31 (br, 3H, -

CH3).
 13C NMR (D20) of Bio-conjugated PAEMA (23): 8 188.7-185.0 (6a, 6p C=0); 

8 182.8 (C=0); 8 98.9 (lpC); 8 94.9 (laC); 8 80.3-71.3 (2PC 2aC, 3pC, 3aC, 4pC, 4aC, 

5PC, 5aC), 8 68.4 (C-O); 8 58.7 (C); 8 49.5 (CH2); 8 76.1 (C-N); 8 23.3 (CH3). 
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Characterization. PAPMA (17), PAEMA (16) and PAEMA-6-PHPMA (18) 

copolymers were characterized by aqueous size exclusion chromatography (ASEC-

MALLS) at ambient temperature using Eprogen CATSEC columns (100, 300, and 1000 

A0). A Wyatt Optilab DSP interferometric refractometer (X = 690 nm) and a Wyatt 

DAWN DSP multiangle laser light scattering detector (X = 633 nm) were employed using 

1 wt % acetic acid/0.1 M Na2S04 (aq) solution as the eluent at a flow rate of 0.25 ml/min. 

The dn/dc of the PAEMA Q6) was determined to be 0.153 and the dnldc of the PAPMA 

(17) was determined to be 0.181 in the above eluent at 25 °C using a Bausch and Lomb 

refractometer. Conversions in each system were determined by comparing the area of the 

UV signal corresponding to monomer at to to the area at tx. Absolute molecular weights 

and polydispersities were calculated using the Wyatt ASTRA SEC/LS software package. 

The conjugated polymers were incompatible with the GPC columns, so MALDI-

TOF was used to determine the peak molecular weight values and the degree of 

conjugation. MALDI-TOF mass spectrometry was performed on a Bruker Microflex 

equipped with a 337 nm N2 laser in linear mode and 20 kV acceleration voltage. Pulsed 

ion extraction (200 ns) was employed during the collection of all data. 2,5-

Dihydroxybenzoic acid (DHB, Fluka, 99.5%) was used as the matrix and triflouroacetic 

acid (TFA) was used as the charging agent. The matrix and samples were prepared in 

HPLC H2O without addition of a charging agent. Samples were then mixed (10 ul 

polymer/10 ul Matrix) in separate microcentrifuge tubes and 1.0 ul of the mixture was 

spotted directly on a stainless steel target. Due to the propensity of the conjugated 

polymers to precipitate upon addition of TFA, 0.5 ul of 0.5 % TFA in acetonitrile was 

added once the sample had been spotted on the target to facilitate charging and drying. 
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Two different external calibration standards were used for polymers (Bruker, Protein 

Standard I) and for conjugated polymers (Bruker, Protein Standard II). For each sample, 

an average of 800 laser shots was taken. The peak molecular weight values of the 

polymers were determined by mass spectrometry and compared to GPC values. 

A Varian 500 MHz NMR equipped with a standard 5 mm lWl3C probe was 

utilized to identify the homopolymer structure of PAEMA (16), PAPMA (17), PAEMA-

6-PHPMA (18) and bio-conjugated polymers (nt = 64, dl = 3.1 us, pw90 = 16 us, at = 

1.89 us). The degree of polymerization and molecular weight were determined via lH 

NMR through integration of the relative intensities of methylene-protons resonance at 

3.31 ppm of PAEMA (16) and 3.10 ppm of PAPMA Q7)and phenyl-protons of CTP (14) 

between 7.51 and 7.89 ppm. 

The copolymer structures, degrees of polymerization and molecular weights were 

identified via !H NMR (nt = 32, dl = 4.1 us, pw90 = 15.3 us, at = 1.89 us) by integration 

of the relative intensities of methylene-proton resonances at 3.78 ppm (HPMA) (8) and 

methylene-proton resonances at 4.2 ppm (PAEMA (16)). Samples were prepared at 5 

wt% in deuterated water (D2O). All pH measurements were performed with ±0.02 

accuracy with a 900A (Orion) pH meter. 
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Results and Discussion 

Aqueous RAFT Homopolymerization ofAPMA (12) andAEMA (6). The aqueous 

RAFT polymerization of primary amine containing monomers is challenging because the 

chain transfer agent and the monomer are susceptible to side reactions due to the 

moderate nucleophilic character of the primary.103'213'214 For example, AEMA (6) is 

rapidly rearranged to 2-hydroxyethyl methacrylamide (7) at alkaline pH through the 

attack of the deprotonated amine group on its own carbonyl group, forming a stable six 

member ring intermediate. It has also been suggested that AEMA (6_) can undergo 

Micheal addition, through the intermolecular nucleophilic attack of the deprotonated 

primary amine group on the double bond. Considering these issues, primary amine 

containing monomers are generally polymerized using protecting group chemistry. 

However, recent advances in aqueous RAFT polymerization provide a facile route for the 

controlled polymerization of primary amine containing monomers. Our research group 

has recently reported the direct synthesis of well-defined PAEMA (16) through aqueous 

RAFT polymerization without the necessity of protecting group chemistry.228 

Specifically, AEMA (6) monomer was homopolymerized directly in aqueous solution at 

50 °C with polydispersities (PDIs) below 1.2 and conversions up to 95%. Additionally, it 

was deduced that the controlled polymerization of AEMA (6) depends on polymerization 

temperature. AEMA (6) polymerization performed at 70 °C resulted in loss of the CTA 

within 45 minutes leading to an increase in PDI. Our results suggested that the relatively 

high PDIs reported by previous groups 67 are due to the high polymerization temperature, 

which resulted in various side reactions that led to broadened molecular weight 

distributions. We also demonstrated the synthesis of well-defined PAEMA-6-PHPMA 



65 

(18) block copolymers upon the chain extension of PAEMA (16) with HPMA (8). 

Based upon our previously reported results, well-defined PAEMA (16) and PAEMA-6-

PHPMA (18) were prepared.228 Molecular weights, polydispersities and conversion data 

of resulting PAEMA (16) and PAEMA-6-PHPMA (18) are shown in Table IV-1. 

Table IV-1. (Co)polymers results. 

Polymer 

PAPMA86 

PAEMA2i6 
PAEMA204-b-PHPMAm 

Time 
(min) 

60 
75 
120 

Temp. 

70 
50 
70 

Mn1 

15000 
33000 
48400 

M n
2 

15400 
35000 
51000 

M„3 

21000 
33500 

PDI1 

1.08 
1.05 
1.05 

Conv. 
(%) 
31 
47 
33 

1. Calculated through GPC. 
2. Calculated through lH NMR. 
3. Theoretical molecular weight. 

In the current research, APMA (12) polymerization was evaluated in comparison 

to AEMA (6). APMA (12) exhibits higher stability in alkaline medium when compared 

to AEMA (6). Owing to its longer pendant group, APMA (12) is not susceptible to 

rearrangement reactions. McCormick and coworkers recently reported the successful 

homopolymerization and copolymerization of APMA (12) via RAFT polymerization 

using dioxane-water mixture as a solvent.79 In this study, APMA polymerizations were 

carried out at 70 °C using V-501 (13) as the radical source and CTP (14) as the CTA in 

an acetic acid/sodium acetate buffer (pH = 5). For the polymerizations, the initial ratio of 

[M]o to [CTA]0 was maintained at 200 /l and a [CTA]o/[I]o ratio of 5/1 was employed. 

Molecular weights, polydispersities and conversion data are shown in Table IV-1. 
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Model Study for Bioconjugation ofPAPMA (17) with D-Glucuronic Acid Sodium 

Salt (5). In order to gain understanding of expected chemical shifts in 'H and 13C NMR 

spectra after bioconjugation, a model study was performed reacting APMA (12) 

monomer with D-glucuronic sodium salt (5) (Scheme IV-1). 

Sodium Borate Buffer pH = 8.5 
O" Hydroquinone 

Q H NaCNBH3 

Glucuronic Acid 
Sodium Salt 2 days 

APMA 

0̂ Ja NH 
I OH 

OH 

Scheme IV-1. Model Study for bioconjugation of D-glucuronic acid sodium salt (5) with 
PAPMAQ7). 

The reductive amination reaction was carried out in a sodium borate buffer (pH = 8.5) in 

the presence of NaCNBH3 reducing agent. The 13C NMR spectra of APMA (12) 

monomer, D-glucuronic acid sodium salt (5) and bio-conjugated APMA (22) with D-

glucuronic acid sodium salt (5) are given in Figure IV-1. The reductive amination 

reaction is evidenced by the chemical shift upfield of the carbon atoms of D-glucuronic 

acid sodium salt (5) labeled as laC and ipC.54,229 In addition, a significant downfield 

chemical shift is observed for the carbon atom of APMA Q2) labeled as c. The *H NMR 

spectra (Figure IV-2) also provide evidence for the success of the reaction with the 



67 

chemical shifts of loH and ipH of the D-glucuronic acid sodium salt (5) upfield and the 

shift of c and d protons of APMA (12) downfield. It is difficult to label the exact 

chemical shifts of loH and ipH due to the broadness of the sugar peaks. A potential 

reason for this peak broadening is hydrogen bonding between carboxylic acid and 

secondary amine functionalities. 

H 0 i^-OH c d f a 
C2, C3, C4, C5 (a+p) 

6 (a+p) , g e 

B 

6a 6p 
1P 

OH 1 

1a C2, C3 C4, C5 (a + P) 
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Figure IV-1.13C NMR spectra of A. Bioconjugated APMA (21) with D-glucuronic acid 
sodium salt (5); B. D-Glucuronic acid sodium salt (5); and C. APMA monomer (12). 
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Figure IV-2. !H NMR spectra of A. Bioconjugated APMA (21) with D-glucuronic acid 
sodium salt (5); B. D-Glucuronic acid sodium salt (5); and C. APMA monomer (12). 

Bio-conjugation of PAPMA (17) with D-Glucuronic Acid Sodium Salt (5). 

PAPMA (17) (Table IV-1) was reacted with ten times molar excess of D-glucuronic acid 

sodium salt in the presence of NaCNBH3 reducing agent in alkaline medium (Scheme IV-

2). The ionic strength of the medium was increased (0.5-1 M NaCl) to suppress the 

formation of an ion complex with D-glucuronic acid sodium salt. The resulting polymer 

mixture was dialyzed against water to remove excess sugar. 13C NMR spectra of PAPMA 

(17) and bioconjugated PAPMA (22) are given in Figure IV-3. The appearance of sugar 

peaks between 82.6 and 68.9 ppm in the 13C NMR spectrum of bioconjuagted PAPMA 
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(22) verifies the conjugation. Further, the upfield chemical shifts of laC and ipC of D-

glucuronic acid sodium salt and the upfield chemical shift of the e carbon of PAPMA 

(17) provide evidence for the successful bioconjugation reaction. 

O^ P • H2o 

Glucuronic Acid 
Sodium Salt 

O Sodium Borate Buffer pH = 8.5 
OH NaCNBH3 

40 °C 
2 days 

H3N
eeCl 

PAPMA 

Scheme IV-2. Bioconjugation of PAPMA (22) with D-glucuronic acid sodium salt (5). 
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Figure IV-3.13C NMR spectra of A. Bioconjugated PAPMA (22) with D-glucuronic acid 
sodium salt (5); B. PAPMA (17). 

The !H NMR spectra (Figure IV-4) shows the characteristic signals of both D-glucuronic 

acid sodium (5) and PAPMA (17) moieties. The integration value of proton resonances 

appearing between 4.2 and 2.6 ppm matches the number of protons which correspond to 

e, d and sugar unit protongs (9 protons). The integration value of proton resonances 

appearing between 2.0 and 0.8 ppm matches the number of protons corresponding to a, b, 

c, and d units (7 protons). Comparing the integration values of the resonances to the 

number of protons in each unit yields a conversion of nearly 100%. 
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Figure IV-4. 'H NMR spectra of A. Bioconjugated PAPMA (22) with D-glucuronic acid 
sodium salt (5); B. PAPMA (17). 

Further evidence of high conversion is observed qualitatively in MALDI TOF 

analysis. As shown in Figure IV-5, MALDI TOF analysis of PAPMA Q7) yields a 

narrow, unimodal mass distribution with peak molecular weight of 13,917. A small 

shoulder is observed in the lower mass region indicating the presence of terminated, low 

molecular weight chains during the early stage of the RAFT polymerization. The 

MALDI TOF mass spectrum of bioconjugated PAPMA (22) is given in Figure 1V-6. A 

unimodal mass distribution is observed, with a peak molecular weight value of 34,052. 

The theoretical molecular weight for 100% substituted PAPMA Q7) with starting 

molecular weight of 13,917 is 34,000. The close agreement of the theoretical value with 
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the peak molecular weight obtained through MALDITOF analysis indicates near 100% 

conversion. A small high mass distribution is also observed in the bioconjugated PAPMA 

(22) MALDI TOF spectrum, which shows a peak molecular weight approximately two 

times that of the main peak. This is attributed to either disulfide formation between the 

polymer chains upon reduction of the dithioester end group or ion complexation of two 

charged polymer chains with a single charged sodium cation. 

Figure IV-5. MALDI TOF mass spectrum of PAPMA (17). 
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Figure IV-6. MALDITOF mass spectrum of bio-conjugated PAPMA (22) with D-
glucuronic acid sodium salt (5). 

Bio-conjugation ofPAEMA (16) with D-Glucuronic Acid Sodium Salt (5). 

PAEMA (16) (Table IV-1) was also bioconjugated with D-glucuronic acid sodium salt (5) 

through the method described previously. Figure IV-7 shows the 13C NMR spectra 

recorded for PAEMA (16) and bioconjugated PAEMA (23). The sugar incorporation is 

evidenced by the carbon resonances observed between 82.6 and 68.9 ppm. In addition, a 

significant chemical shift is observed for the f carbon resonance of PAEMA (16) from 44 

ppm to 64 ppm due to the reaction of the primary amine groups with the reducing end of 

the of D-glucuronic acid sodium salt (5). 
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Figure IV-7. 13C NMR spectra of A. Bio-conjugated PAEMA (23) with D-glucuronic 
acid sodium salt (5); B. PAEMA (16). 

Further evidence of the incorporation of the D-glucuronic acid sodium salt (5) with 

PAEMA (16); is observed in !H NMR analysis (Figure IV-8). laH and lpH proton 

resonances of D-glucuronic acid sodium salt are shifted upfield after reaction. In addition, 

the d proton resonance of PAEMA (16) (3.31 ppm) is shifted downfield, also indicating 

the successful incorporation of D-glucuronic acid sodium salt (5). It is difficult to 

calculate the extent the reaction from the !H NMR spectra due to overlapping of the 

resonance peak of D2O with the resonance peaks of sugar and c proton resonances of 

PAEMA (16). After comparing the relative intensities of all peaks, we roughly calculated 

a yield of 95%. 
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Figure IV-8. XH NMR spectra of A. Bioconjugated PAEMA (23) with D-glucuronic acid 
sodium salt (5); B. PAEMA (16). 

However, a peak molecular weight shift from 30697 to 64337 is observed from the mass 

spectra of PAEMA (16) and bioconjugated PAEMA (23) (Figure IV-9), suggesting a 

yield of 67%. The reason for such a low conversion might be the rearrangement reaction 

of PAEMA (16) in alkaline medium (pH 8.5), where some deprotonated primary amine 

groups attack the carbonyl group rather than reacting with D-glucuronic acid sodium salt 

(5), yielding unreacted hydroxyethyl methacrylamide pendant groups. He et al. recently 

reported the degradation of PAEMA (16) in alkaline solutions at 20 °C.67 They found 



that PAEMA (16) is very stable at pH 9, but slow degradation occurred over long time 

periods in more alkaline solution. In our case, even though the pH of the medium was 

held at 8.5, PAEMA (16) is still susceptible to degradation reactions due to the higher 

reaction medium temperature. 
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Figure IV-9. MALDITOF mass spectra of A. Bio-conjugated PAEMA (23) with D-
glucuronic acid sodium salt (5); B. PAEMA (16). 
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Bioconjugation ofPAEMA-b-PHPMA (18) with D-Glucuronic Acid Sodium Salt 

(5). PAEMA-6-PHPMA (18) was bioconjugated with D-glucuronic acid sodium salt (5) 

to prepare glycoblock copolymers via post-polymerization reactions. The bioconjugation 

was evidenced through 13C and *H NMR (Figure IV-10, Figure IV-11). The appearance 

1 ^ 

of D-glucuronic acid sodium salt (5) resonances between 83.2 and 72.9 ppm in the C 

NMR spectra indicates successful conjugation (Figure IV-10). Further evidence of the 

reaction is provided by the upfield chemical shifts of laC and lpC of D-glucuronic acid 

sodium salt (5) and the downfield chemical shift of the f carbon of PAEMA (16) block 

from 43 ppm to 66 ppm. 
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Figure IV-10.13C NMR spectra of A. Bioconjugated PAEMA-6-PHPMA (24) with D-
glucuronic acid sodium salt (5); B. PAEMA-6-PHPMA (18). 
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The incorporation of the D-glucuronic acid sodium salt (5) with PAEMA (16) block is 

also evidenced through !H NMR analysis (Figure IV-11). laH and ipH proton 

resonances of D-glucuronic acid sodium salt (5) are shifted upfield upon the reductive 

amination reaction with PAEMA (16) block. Furthermore, the d proton resonance of 

PAEMA block is shifted downfield from 3.32 ppm to 3.73 ppm, suggesting the 

successful conjugation of D-glucuronic acid sodium salt (5). 
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Figure IV-11. !H NMR spectra of A. Bioconjugated PAEMA-6-PHPMA (24) with D-
glucuronic acid sodium salt (5); B. PAEMA-6-PHPMA (18). 
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The mass distributions of PAEMA-6-PHPMA (18) and biocojugated PAEMA-6-PHPMA 

(24) are shown in Figure IV-12. A molecular weight increase of 39392 was obtained, 

indicating 82% of the primary amine pendant groups were bioconjugated. The relatively 

low conversion is attributed to rearrangement reactions of the PAEMA (16), as discussed 

in the previous section. 
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Figure IV-12. MALDI TOF mass spectra of A. PAEMA-6-PHPMA (18); B. 
Bioconjugated PAEMA-6-PHPMA (24) with D-glucuronic acid sodium salt (5). 



Conclusions 

The synthesis of well-defined, carboxylic acid functionalized glycopolymers has 

been accomplished through high yield post-polymerization modification approaches. 

Specifically, APMA (12) monomer was homopolymerized directly in aqueous solution 

with PDIs below 1.1 through aqueous RAFT polymerization. The well-defined, narrowly 

dispersed PAPMA (17) was bioconjugated with D-glucuronic acid sodium salt (5) via a 

reductive amination reaction pathway in alkaline medium to obtain well-defined 

glycopolymers with near quantitative substitution. 

In addition, the bioconjugation of PAEMA Q6) and PAEMA-b-PHPMA (18) 

with D-glucuronic acid sodium salt (5) was demonstrated. Lower yields of 

bioconjugation were achieved, likely due to the degradation of PAEMA (16) under 

alkaline conditions at high temperature. The resulting glycopolymers appear to include 

inhomogeneous sequences within the chain. 

Building on our earlier work and recent literature reports, we show for the first 

time well-defined carboxylic acid functionalized glycopolymers via one step, high-yield 

post-polymerization modification. PAPMA (17) is demonstrated to be a versatile primary 

amine functionalized polymer which readily undergoes reductive amination reactions 

with sugars with high yields. We believe that this study will enable new capabilities in 

the synthesis of controlled architecture glycopolymers with multiple functionalities for 

biomedical and pharmaceutical applications, without the need for stringent purification 

methods. 
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CHAPTER V 

SURFACE MODIFICATION OF a-ALKYNYL-FUNCTIONALIZED POLY(2-

AMINOETHYL METHACRYLATE) VIA "CLICK" CHEMISTRY TO PRODUCE 

PRIMARY AMINE FUNCTIONALIZED SURFACES 

Introduction 

The recent development of controlled radical polymerization (CRP) techniques 

such as atom transfer radical polymerization (ATRP)63 and reversible addition-

fragmentation chain transfer polymerization (RAFT)64'65 polymerization have provided a 

facile route to obtain telechelic polymers with predetermined molecular weight and 

narrow molecular weight distributions. Although CRP has been used for the 

polymerization of a wide range of monomers, post-polymerization modification is an 

important method that requires specific end group functionality that must be compatible 

with polymerization conditions.156'157 Since the chain end functionality of CRP polymers 

is predetermined and easily controlled, there has been numerous reports on the 

preparation of fluorescently labeled chains, polymeric bioconjugates and surface-

immobilized polymers.68'158"161 

The Cu(I) catalyzed 1,3-dipolar cycloaddition reaction between azide and alkyne 

groups results in very stable 1,4-disubstituted 1,2,3-triazole products.165'166 Due to its 

high thermodynamic driving force, this reaction can be performed in high yield under 

ambient conditions. This coupling process can be conducted in aqueous or organic media 

and is tolerable to various functional groups. Due to its simplicity and efficiency, the 

term "click" chemistry was given to this category of reactions by Sharpless and 

coworkers in 2001.162 
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In the literature, "Click" chemistry has been used extensively as a post-

polymerization modification technique for functionalizing polymers prepared by CRP 

methods.167"187 Given the telechelic nature of polymers prepared via CRP techniques, 

"click" chemistry is an attractive method for the functionalization of polymer chain ends. 

For example, Agut et al. prepared a-azide and alkyne functionalized poly[2-

(dimethylamino)ethyl methacrylate] (PDMAEMA) through ATRP using a-co-

functionalized initiators for the preparation of hybrid diblock copolymers. These 

blocks were composed of a polypeptide and poly[2-(dimethylamino)ethyl methacrylate] 

(PDMAEMA) block that were covalently linked utilizing "click" chemistry. Lutz et al. 

recently reported ATRP synthesized polymers that were co-chain end functionalized with 

azides.184 These azide functional polymers were subsequently reacted with various 

alkyne functional compounds to prepare co-hydroxy, co-carboxyl and co-methyl-vinyl 

functionalized polystyrene. In addition, the combination of ATRP and "click" chemistry 

was employed by Sumerlin et al. to prepare well-defined co-(meth)acryloyloxy 

functionalized poly(«-butyl acrylate) and co-acryloyloxy functionalized polystyrene 

macromonomers.185 Unlike ATRP, the use of "click" chemistry for the post-

polymerization modification of RAFT synthesized polymers has been minimal. One such 

example was carried out by Hawker et al. who synthesized alkyne-functionalized block 

copolymers via RAFT polymerization.186 An alkynyl-functionalized RAFT chain transfer 

agent (CTA) was directly used for the sequential polymerization of tetrahydropyran 

acrylate and styrene, followed by selective cleavage of the tetrahydropyran esters to give 

a-alkynyl-functionalized block copolymers that are capable of forming surface-

functionalized "'clickable" micelles in aqueous solutions. Another example utilizing 
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RAFT polymers was performed by Sumerlin et al. who synthesized a-azido terminal 

polymers using an a-azido functionalized chain transfer agent (CTA) that allowed the 

preparation of a range of functional telechelics.187 

"Click" chemistry has also been extensively used for the modification of surfaces 

with various polymers. Meldal et al. was the first to demonstrate that "click" chemistry 

can be used to modify solid substrates.153 They succeeded in synthesizing diversely 1,4-

substituted [l,2,3]-triazoles in peptide backbones or side chains upon using the 

combination of "click" chemistry and solid-phase peptide synthesis. Given the success of 

Medal and coworkers, other researchers began to explore the attachment of CRP 

polymers to various surfaces. For example, Brittain et al. reported the immobilization of 

an a-alkyne functionalized polymer, prepared via RAFT polymerization, to azide 

functionalized silica nanoparticles via "click" chemistry.154 The same group also 

demonstrated a "grafting from" approach by first attaching a-alkynyl functionalized CTA 

to azide functionalized silica nanoparticles followed by RAFT surface polymerization of 

styrene and methyl methacrylate.155 They achieved a grafting density of 1.2-1.3 RAFT 

agent/nm for the immobilization of CTA onto silica nano particles, resulting in high 

density polymer brushes. Additionally, Drockenmuller et al. grafted co-azido 

functionalized polymers prepared through ATRP and nitroxide mediated radical 

polymerization (NMP) on alkynyl-fuctionalized silicon wafers using click chemistry.188 

Polymer brushes with a thickness of 6 nm and grafting densities of 0.2 chains/nm2 were 

synthesized. 



The use of primary amine-functionalized methacrylates are of interest for the 

potential utility in post-polymerization modification reactions, such as amide and imine 

formation, ring-opening reactions and Micheal addition reactions, enabling advances in 

areas that include new approaches for cross-linking micelles and hydrogels, synthesis of 

novel copolymers for biomimetic scaffold structures, and bioconjugation.39"49 However, 

the controlled polymerization of 2-aminoethyl methacrylate (AEMA) (6) is challenging 

because it is susceptible to side reactions such as Micheal addition in alkaline medium. 

Recent developments in RAFT polymerization provide a facile route for the controlled 

polymerization of AEMA (6) without using protecting group chemistry. Our research 

group recently reported the aqueous RAFT polymerization of AEMA (6) yielding near 

monodisperse homopolymers. 

Herein, we report the direct synthesis of a-alkynyl functionalized PAEMA (26) 

through RAFT polymerization yielding near monodisperse homopolymers. In addition, 

the successful surface attachment of a-alkynyl functionalized PAEMA (26) on azide 

functionalized silicon wafers was achieved through "click" chemistry using the "grafting 

to" approach. PAEMA (6) modified surfaces were characterized through ellipsometry, 

contact angle measurements, attenuated total reflectance-Fourier transform infrared 

spectroscopy (ATR-IR), and atomic force microscopy (AFM). 
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Experimental 

Materials. All reagents were used without further purification unless otherwise 

noted. Methacryloyl chloride (>97%), propargyl alcohol (99%), 3-

bromopropyltrichlorosilane (96%), anhydrous toluene, copper sulfate, 

azidotrimethylsilane (Si(CH3)3N3) (95%), sodium ascorbate (>98%) ethanolamine 

(>98%) and hydroquinone (99%) were purchased from Aldrich. 4-Dimethylamino-

pyridine (99%) (DMAP) and W-dicyclohexyl-carbodiimide (99%) (DCC) were 

purchased from Acros Organics. Phenylmagnesium bromide solution (3M in diethyl 

ether) was purchased from Fluka. Dimethylsulfoxide (DMSO), 30% hydrogen peroxide 

(H2O2), sulfuric acid (H2SO4), diethylether, ethylacetate, hexane, and hydrochloric acid 

were purchased from Fisher. 2,2'-Azobis(2,4-dimethyl-4-methoxyvaleronitrile) (V-70) 

(27) was purchased from Wako Pure Products and recrystallized from methanol. Silicon 

wafers were purchased from Silicon Inc., and cut into 1 x 2 cm pieces using a diamond-

tipped glass cutter. 4-Cyanodithiobenzoic acid (CTP) (14) was synthesized according to 

literature procedure.145 2-Aminoethyl methacrylate (AEMA) (6) was synthesized using a 

previously reported procedure.54 a-Alkynyl-Functionalized CTP (25) was synthesized 

according to literature procedure.231 

Preparation of a-Alkynyl-Functionalized PAEMA (26)). a-Alkynyl-functionalized 

PAEMA (26) was prepared via RAFT polymerization. The RAFT polymerization of 

AEMA (6) was conducted at 45 °C using V-70 (27) as the radical initiator and a-alkynyl-

functionalized CTP (25) as the RAFT chain transfer agent (CTA). An initial monomer 

concentration ([M]0) of 1 M was used with a monomer to CTA ratio ([M]o/[CTA]o) of 

400. The CTA to initiator ratio ([CTA]0/[I]o was 10:1. A typical procedure is as follows: 
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in a 30 ml round bottom flask, a-alkynyl functionalized CTP (25) (23.8 mg, 0.075 mmol), 

AEMA (6) (4.952 g, 30.0 mmol) and V-70 (27) (2.31 mg, 0.0075 mmol) were dissolved 

in 30 ml of DMSO. The flask was sealed with a rubber septum and purged with nitrogen 

for 30 min at 5 °C, and placed in a 45 °C water bath. The polymerization was allowed to 

proceed for various time intervals before being quenched by rapid cooling in liquid 

nitrogen. The a-alkynyl-fuctionalized PAEMA (26) was purified by dialysis against 

deionized water followed by lyophilization. 

Purification of Silicon Wafers. Silicon wafers were cleaned using piranha solution 

(30:70 v/v solution of 30% hydrogen peroxide and concentrated sulfuric acid). The 

solution was heated for 2 h at 100 °C. Caution: piranha solution is extremely caustic. 

Wafers were cleaned in HPLC water, ethanol and acetone sequentially, characterized 

through ellipsometry, water contact angle, and atomic force microscopy (AFM), and used 

immediately for subsequent modification. 

Deposition of 3-Bromopropyltrichlorosilane on Silicon Wafers. Cleaned wafers 

were placed in clean, dry glass tubes (in glove box) containing 20 mL of anhydrous 

toluene. 3-Bromopropyltrichlorosilane (0.2 ml, 1 wt %) was directly added via syringe, 

and the tubes were sealed. Wafers were removed after 45 minutes and sequentially 

cleaned with toluene, ethanol, and acetone and dried in a stream of air. 

Synthesis ofAzide Modified Silicon Wafers. The azide modified silicon wafer was 

prepared by the substitution of a bromo-terminated monolayer with azidotrimethylsilane 

(Si(CH3)3N3). The bromo-functionalized silicon wafer was placed in clean, dry glass 

tubes (in glove box) containing 20 mL of anhydrous toluene. Si(CH3)3N3 (0.4 ml, 2%) 

was added directly into the toluene by a syringe and the tubes were sealed. The reaction 
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was heated at 80 °C for 48 hours. The substrate was removed and rinsed with toluene, 

ethanol, and acetone and dried in a stream of air. 

Click Coupling between PAEMA (16) andAzide Modified Silicon Wafers. A 

previously published procedure for the modification silica nanoparticles through "click" 

chemistry was implemented.187 A large excess of PAEMA (16) (0.5 g, 0.017), 0.005 g 

(0.031 mmol) of CuS04, 0.015 g (0.75 mmol) of sodium ascorbate and 20 mL of DMSO 

were combined in a round-bottomed flask and stirred until the a-alkynyl functionalized 

PAEMA (16) was dissolved. The azide modified silicon wafer was placed in the flask. 

The mixture was heated in an oil bath at 80 °C for 2 days. Following the reaction, the 

silicon wafer was placed in a Soxhlet extractor and extracted with water for 18 h. 

Polymer and Surface Characterization, a-alkynyl functionalized PAEMA (26) 

was characterized by aqueous size exclusion chromatography (ASEC-MALLS) at 

ambient temperature using Eprogen CATSEC columns (100, 300, and 1000 °A). A 

Wyatt Optilab DSP interferometric refractometer (k = 690 nm) and a Wyatt DAWN DSP 

multiangle laser light scattering detector (X = 633 nm) were employed using 1 wt % 

acetic acid/0.1 M Na2SC>4 (aq) solution as the eluent at a flow rate of 0.25 ml/min. 

Conversions in each system were determined by comparing the area of the UV signal 

corresponding to monomer at to to the area at tx. Absolute molecular weights and 

polydispersities were calculated using the Wyatt ASTRA SEC/LS software package. 

A Varian 500 MHz NMR equipped with a standard 5 mm !H/13C probe was 

utilized to identify the homopolymer structure of a-alkynyl functionalized PAEMA (26) 

(nt = 64, dl = 3.1 us, pw90 = 16 us, at = 1.89 us). The degree of polymerization and 

molecular weight were determined via !H NMR through integration of the relative 
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intensities of the a-alkynyl functionalizedPAEMA (26) methylene-proton resonances at 

3.31 ppm and phenyl-protons of CTP (14) between 7.51 and 7.89 ppm. 

Ellipsometric measurements were carried out on a Gaertner ellipsometer, model 

LI 16C, with a 632.8 nm heliumneon laser at a 70° angle of incidence. Refractive indices 

were fixed at 1.455 for all respective surface modifications. Contact angle measurements 

were performed utilizing a Rame-Hart goniometer with a 10.0 ul syringe. Static (9a) 

water contact angles were recorded at 0° from horizontal. Five measurements were taken 

across each sample, with their average being used for analysis. Attenuated total 

reflectance Fourier transform infrared (ATR FTIR) spectra were collected using a Bio-

Rad FTS- 6000 FT-IR single beam spectrometer set at a 4 cm"1 resolution equipped with 

a deuterated triglycine sulfate (DTGS) detector and a 45° face angle Ge crystal. Each 

spectrum represents 400 co-added scans ratioed against a reference spectrum obtained by 

recording 400 co-added scans of an empty ATR cell. All spectra were corrected for 

spectral distortions using Q-ATR software.232 

Tapping mode atomic force microscopy (AFM) measurements were performed 

with an Agilent 5500 PicoPlus microscope (Agilent Technologies Inc., Santa Clara, CA, 

USA). Experiments were conducted at room temperature in the presence of air (20-25 

°C). Images were taken with 1 and 5 um2 scan areas. Standard phosphorous doped silicon 

cantilevers (RTESPW cantilevers, Veeco Probe Center, Santa Barbara, CA, USA), with a 

nominal spring constant of 20-80 N/m and a typical radius of curvature < 10 nm, were 

used as received. The scan rate was 0.7 Hz, and as an additional precaution to eliminate 

artifacts, images were obtained from at least three macroscopically separated areas of 

each sample. All images were processed using Pico View 1.4 AFM software and the 
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Gwyddion 2.7 SPM data analysis framework. All experiments were performed at 22±1 

°C unless specified otherwise. Surface roughness analysis was performed Nanoscope 

version 5.30 r2 image analysis software. To verify the reproducibility, two sets of 

readings were taken for each sample and an average value is reported. The difference 

between the two readings was less than 1%. 

Results and Discussion 

Preparation of a-Alkynyl-Functionalized PAEMA (26). By virtue of the accepted 

mechanism for RAFT-mediated polymerization, the degenerative chain transfer process 

that involves a CTA allows one to prepare polymers that carry the respective Z and R 

groups at the a,ro-termini of the polymer chains.233 Thus, by synthetically modifying the 

R group of the CTA, a variety of end-functionalized polymers can be obtained. Due to its 

carboxylic acid functionality, CTP (14) has been widely used for modifying the R group 

yielding various functionalized CTAs.234 In this work, we prepared a-alkynyl-

functionalized CTP (25) by the conversion of the terminal carboxyl group of CTP (14) to 

an alkyne group via DCC/DMAP-mediated esterification with propargyl alcohol (70% 

yield) (Scheme V-l). The product structure was confirmed by *H NMR as shown in 

Figure V-l confirming the attachment of propargyl alcohol to CTP (14). 

k^« + H ° ^ CH2CI2 
propargyl alcohol 

Scheme V-l. Preparation a-alkynyl-functionalized CTP (25). 
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Figure V-l^H NMR spectrum of a-alkynyl functionalized PAEMA (26). 

CTP (14) was chosen based on results reported by our research group for the 

synthesis of well-defined, narrowly dispersed homopolymer and diblock copolymers of 

AEMA (6) via aqueous RAFT polymerization. Specifically, AEMA (6) monomer was 

homopolymerized directly in aqueous solution at 50 °C with PDIs below 1.2 and 

conversions up to 95%. We also determined that the controlled polymerization of AEMA 

(6) depends on polymerization temperature. AEMA (6) polymerization performed at 70 

°C resulted in loss of CTP (14) within 45 minutes leading to an increase in 

polydispersity. Our results suggested that the relatively high PDI's reported by previous 

groups67 are due to the high polymerization temperature, which results in various side 

reactions that lead to broadened molecular weight distributions. 
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Scheme V-2. Preparation a-alkynyl-functionalized PAEMA (26) via RAFT 
polymerization at 45 °C. 
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Figure V-2. ASECS chromatograms for a-alkynyl functionalized PAEMA (26) prepared 
at 45 °C in DMSO. 
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Table V-l. Preparation of a-Alkynyl-Functionalized PAEMA (26) at 45 °C. 

Time 
(min) 

150 

240 

Mnl 

29000 

35000 

M n2 

27000 

32000 

M n3 

26000 

33000 

PDI1 

1.12 

1.13 

Conv.1 

(%) 

42 

50 

1. Calculated by ASEC-MALLS. 
2. Calculated through *H NMR. 
3. Theoretical molecular weight. 
4. [M]:[CTA]:[I] = 400:1:0.1 

Regarding the above issues, AEMA (6) polymerizations were carried out at 45 °C 

using V-70 (27) as the radical source and a-alkynyl-functionalized (25) as the CTA in 

DMSO (Scheme V-2). For the polymerizations, an initial ratio of [M]0 to [CTA]0 of 400 

/l and a [CTA]0/[I]o ratio of 10/1 were used. Molecular weights, polydispersities and 

conversion data are shown in Table V-l. ASEC-MALLS traces show unimodal 

distribution with PDIs below 1.2 and are free from high molecular weight termination 

products (Figure V-2). In addition, the degree of polymerization and thus the molecular 

weight were determined via !H NMR through integration of the relative intensities of 

methylene-protons resonance at 3.31 ppm and phenyl-protons of CTP (14) between 7.51 

and 7.89 ppm (Figure V-3). The measured molecular weights by ASEC are in close 

agreement with the theoretical molecular weights and the molecular weights calculated 

through lH NMR. The existence of the alkyne group at the end of PAEMA (16) chains 

was evidenced via !H NMR, which displays a peak at 2.85 ppm (Figure V-3). 
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Figure V-3. 'H NMR spectrum of a-alkynyl functionalized PAEMA (26). 

Table V-2. Preparation of a-Alkynyl-Functionalized PAEMA (26) at 45 °C. 

Samples 

Neat Silicon Wafer (SW) 

Bromide Functionalized SW 

Azide Functionalized SW 

Polymer Modified SW 

Surface 
Thickness1 

(nm) 

2.1 ±0.06 

6.3 ± 0.4 

6.5 ± 0.4 

17.1 ±2.7 

Static Contact 
Angle2 

(°) 

22 ± 0.3 

77 ± 0.4 

80 ± 0.3 

55 ± 0.3 

RMS Surface 
Rhoughness3 

(nm) 

0.02 

0.60 

0.70 

9.10 

1. Calculated through ellipsometry. 
2. Calculated through goniometer. 
3. Calculated through AFM. 

Azide Modification of Silicon Wafers. Silicon wafers were functionalized with 

azide groups using a two step reaction procedure (Scheme V-3). In the first step, 3-

bromotricholorosilane was used to introduce a bromide group on the surface of the 

silicon wafer. Confirmation of the deposition of 3-bromotricholorosilane was achieved 

by ellipsometry (Table V-2), contact angle goniometer (Table V-2), and AFM (Table V-2 



and Figure V-4). Ellipsometry data for bromide modified silicon wafer showed a 

thickness change of 4 nm. This thickness indicates that multilayers were obtained, which 

may be due to the extended reaction time or the trichlorosilane anchoring group having a 

tendency to undergo some degree of surface cross-linking.235 The resulting bromide 

functionalized silicon wafer was observed to have a contact angle of 77°, which is close 

to previously reported values.236 Tapping mode AFM images of neat silicon wafer and 

bromide modified silicon wafer are shown in Figure V-4 A and Figure V-4B. The neat 

silicon wafer displays a smooth surface topography with root mean square (RMS) 

roughness value of 0.02 nm (Table V-2). Although a morphology change is observed for 

the bromide modified silicon wafer surface, the appearance of large bright spots indicate 

a high surface thickness, which may be attributed to dust or multilayer formation on the 

silicon wafer surface (Figure V-4B). 

Br 

3-Bromopropyl Silane 
CI 

CI—Si ̂ ^ ^ Br / f x y f \ 
OH OH OH OH OH ci" OH OH O O O SiH,N3 OH OH O O O 

-J 1 1 1 1 , _ J I I I I — • _l I I I l_ 

Silicon Wafer 1 "„ „ 2D„ays 

under N2 80 °C 
Toluene Toluene 

Scheme V-3. Synthesis of Azide modified silicon wafer. 

It was attempted to covert the bromide functionality to azide through reaction 

with Si(CH3)3N3. In general, this substitution reaction is conducted by using sodium 

azide. However, we found that the limited solubility of sodium azide in DMF, giving a 

heterogeneous solution, leads to a low yield of substitution on the wafers. For this 
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reason, Si(CH3)3N3 was used for the substitution reaction, which gives a homogeneous 

solution in toluene. Surfaces were analyzed through ellipsometry (Table V-2), 

goniometer (Table V-2), and AFM (Table V-2 and Figure V-4). As expected, there is 

virtually no change in thickness, contact angle or RMS roughness after azide substitution. 

However, AFM images indicated unexpected changes in the morphology of the azide 

functionalized silicon wafer in the comparison to the bromide functionalized silicon 

wafer, that are not easily explained. To verify substitution, XPS (x-ray photoelectron 

spectroscopy) and further AFM studies should be performed. 

Click" reaction between azide functionalized silicon wafer and a-alkynyl-

functionalized PAEMA (26). The Cu(I)-catalyzed reaction of the Huisgen 1,3-dipolar 

cycloaddition of azides and alkynes to afford 1,2,3-triazoles (Scheme V-4) is commonly 

referred to as a "click" reaction..237 Although 1,3-dipolar cycloaddition reactions are 

often performed in water for faster reaction times, the reaction was conducted directly in 

DMSO to avoid any possible rearrangement reactions of PAEMA (16) at high 

temperatures. The grafting of a-alkynyl-functionalized PAEMA (16) on azide 

functionalized silicon wafer was evaluated through ellipsometry (Table V-2), goniometer 

(Table V-2), ATR-FTIR (Figure V-5) and AFM (Table V-2 and Figure V-3). 
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Figure V-4. Tapping mode AFM images of A. Neat silicon wafer; B. Bromide 
functionalized silicon wafer; C. Azide functionalized silicon wafer; D. PAEMA (6) 
modified silicon wafer. 

The successful modification is evidenced by the appearance of a carbonyl peak at 

1720 cm", associated with the carbonyl stretch, indicating the existence of the ester 

group of a-alkynyl-functionalized PAEMA (26). Ellipsomefry demonstrated a surface 

thickness increase of 11.1 nm. Water contact angle measurements of a-alkynyl-

functionalized PAEMA (26) modified silicon wafer showed a static contact angle of 55° 

which indicates a decrease of 25° in contact angle when compared to azide functionalized 

silicon wafers (Table V-2). The tapping mode AFM image of a-alkynyl-functionalized 

PAEMA (26) modified silicon wafer shows granular features with an increase of surface 

RMS roughness to 9.10 nm (Figure V-4D). Furthermore, three dimensional (3D) surface 
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topography images of neat silicon wafers and a-alkynyl-functionalized PAEMA (26) 

modified silicon wafer are shown in Figure V-6. A clear surface topography change is 

observed, indicating the successful surface modification of a-alkynyl-functionalized 

PAEMA (26) via "click" chemistry. However, 3D surface topography of a-alkynyl-

functionalized PAEMA (26) modified silicon wafers demonstrates a non-uniform 

tethered polymer layer. 

OH OH 0 0 0 
J I I I I 

CuS04 

Sodium Ascorbate 

80 °C 
48 h 

OH OH O 0 O 
J I I I L 

Scheme V-4. Surface attachment of a-alkynyl-functionalized poly(AEMA) (26) on azide 
functionalized silicon wafer through click chemistry. 
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Figure V-5. ATR-FTIR spectra of A. PAEMA (6) modified silicon wafer; B. Neat silicon 
wafer. 
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Figure V-6. 3D surface topography of A. Neat silicon wafer; B. PAEMA (16) modified 
silicon wafer. 
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This may be related to the "grafting to" approach. Even though this approach is 

experimentally simple and functionalized polymers are synthesized in solution providing 

better control, it usually suffers from a lower grafting density because of the steric 

hindrance imposed by grafted chains. This may result in non-uniform polymer layers on 

silicon wafers. However, Brittain's research group has recently reported that a relatively 

high grafting density, comparable with the "grafting from" approach, was obtained via a 

"click" reaction, indicating the efficiency of surface modification through "click" 

chemistry.112 To understand our coupling efficiency on the silicon wafer, an estimated 

grafting density (o) can be calculated through the following equation (1); 

o = rNAxl(r2 1 /M - (6.023rxl00)/M„ (1) 

where T is the surface coverage (absorbed amount, mg/m2), M (g/mol) is the molar mass 

of the attached molecule and NA is Avogardo's number. F is calculated according to 

equation (2); 

T - h p (2) 

where p is the bulk density of the attached molecule (g/cm3) and h is thickness of the 

tethered polymer layer calculated through ellipsometry. A grafting density of 0.39 

chains/nm was obtained. This grafting density is relatively high for a "grafting to" 

approach. However, Brittain and coworkers performed the same technique with different 

polymers for the modification of silica nanoparticles and estimated a similar grafting 

density value. This high grafting density was attributed to the excellent efficiency of 

"click" chemistry.187 It should be noted that an average thickness is utilized in the 

calculation, and the AFM analysis indicates variable thickness of the polymer layer. 



Conclusions 

In this chapter, we report the synthesis of well-defined, narrowly dispersed a-

alkynyl-functionalized homopolymer of AEMA (6) via RAFT polymerization. 

Specifically, AEMA (6) monomer has been homopolymerized directly in DMSO with 

PDIs below 1.2 using a-alkynyl CTP (25) as the CTA. The resulting a-alkynyl-

fiinctionalized PAEMA (26) was also tethered to azide functionalized silicon wafers 

through a "grafting to" method using a "click" chemistry approach to produce a well-

defined primary amine functionalized surface. The successful surface modification is 

evidenced through ellipsometry, water contact angle, ATR-FTIR and AFM analysis. An 

estimated grafting density of 0.39 chains.nm"2 is calculated, indicating an excellent 

grafting density for "grafting to" method. However, 3D AFM surface topography image 

demonstrates a non-uniform surface feature. This may be related to "grafting to" 

approach. Since primary amine groups are amenable to a wide range of post-

polymerization chemistries, such as rapid formation of amides and imines, ring-opening 

of epoxy groups and Micheal addition, we believe that this study will enable 

developments in surface modification of bio-related materials such as sugars, 

carbohydrates, peptides and proteins to study bio-lubricity, surface drug-delivery, and 

protein-carbohydrate interactions. Further research in bio-functionalization of these 

PAEMA (16) modified surfaces is underway. 
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CHAPTER VI 

COPOLYMERIZATION OF SEC-BUTENYL ACETATE WITH STYRENE VIA 

EMULSION POLYMERIZATION 

Introduction 

Allylic monomers typically exhibit chain transfer to monomer via facile hydrogen 

atom abstraction from the allylic methylene group during free radical 

homopolymerization, resulting in a dead chain and stable allylic radicals.238'239'240'241 The 

degradative chain transfer effects a slow homopolymerization rate and a diminished 

average kinetic chain length.242'243'244'245 Moreover, the overall degree of polymerization 

(DP) is reduced because of the allylic radical's characteristic slow homopolymerization 

and re-initiation rates.246'247 Despite these restrictions, allylic monomers are commonly 

used in thermosetting resins_248>249'250>251 They are used at low levels in free-radical 

copolymerizations to improve chemical, electrical, and storage properties of 

polymers,232,253 and in emulsion copolymerizations for coatings and adhesive 

applications.254 The copolymerization behavior of allylic acetate with a variety of vinyl 

monomers has been reported.255 Shigetomi et al. studied the copolymerization behavior 

of various allyl esters, such as allyl propionate, allyl butyrate, allyl isobutyrate, allyl 

valerate and allyl trimethylacetate, with vinyl acetate, and determined reactivity ratios 

using the Kelen-Tudos method.256 The reactivity ratios of comonomers reported were: 

allyl propionate (Mi)-vinyl acetate (M2): (ri = 0.42 and r2 = 1.29), allyl butyrate (Mi)-

vinyl acetate (M2): (n = 0.64 and r2 = 0.97), allyl isobutyrate (Mi)- vinyl acetate (M2): (n 

= 0.51 and r2 = 1.04), allyl valerate (Mi)-vinyl acetate (M2): (n = 0.58 and r2 = 1.07) and 

allyl butyrate (Mi)-vinyl acetate (M2): (n = 0.34 and r2 = 1.15). The relatively low 



reactivity ratios for the ally] monomers in comparison with those for the comonomers in 

each pair indicate the allyl monomer's reduced tendency to incorporate into the polymer 

chain. The authors also reported that as the feed ratio of allyl esters increases, molecular 

weight and reaction rate decrease. McDonald et al. studied the free radical 

copolymerization of allyl acetate with methyl methacrylate , n-butyl acrylate and styrene 

(15), and determined reactivity ratios from dyad fractions determined by proton ( H) and 

carbon (13C) NMR spectroscopy.257 The comonomer reactivity ratios reported were: 

allylic acetate (Ml)-methyl methacrylate (M2): (ri = 0.024 and r2 = 41), allylic acetate 

(Mi)-n-butyl acrylate (M2): (ri = 0.04 and r2 = 11.7) and allylic acetate (Mi)-styrene (15) 

(M2): (ri = 0.021 and r2 = 66). The very large difference in reactivity ratios for allylic 

acetate in comparison to those of styrene (15) and acrylate commoners indicates the low 

reactivity of allylic acetate with itself and its low propensity to incorporate in the 

copolymer due to the production of a stable allylic radical after allylic hydrogen 

O A £* O A T 

abstraction. ' Pomery et al. studied free radical bulk polymerization of methyl 

methacrylate and allyl acetate using electron spin resonance and Fourier transform near 

infrared spectroscopy. '"" It was reported that allylic acetate delays the Trommsdorff 

effect and increases the percentage of total conversion at which the onset of the 

Trommsdorff effect occurs. Moreover, allylic acetate dominates the copolymerization 

behavior by altering the molecular weight distribution as well as the glass transition 

temperature. 
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Emulsion polymerization is employed in the production of a wide range of 

specialty polymers including adhesives, coatings, binders for nonwoven fabrics, additives 

for paper, textiles and construction materials, impact modifiers for plastic matrices and 

polymeric drug-delivery systems.260'261'262'263'264'265'266'267'268'269'270 Incorporation of a 

comonomer is commonly desirable to obtain specific polymer properties. In a batch 

emulsion copolymerization, the comonomers are added at a given ratio at the start of the 

reaction. Incorporation of the comonomers into the polymer is governed by the reactivity 

ratios, the relative solubility and the partitioning of the monomers into the aqueous and 

organic phases. Differences in reactivity ratios and partitioning result in compositional 

drift during copolymerization and chemically heterogeneous copolymers.271 

Semicontinuous emulsion polymerization offers a way to control compositional drift, and 

also provides greater control of particle size distribution.272 Addition strategies used in 

semicontinuous emulsion polymerization include the constant addition of a given 

monomer mixture at a rate lower than the polymerization rate (starved conditions), and 

the addition of monomers at rates higher than the polymerization rate (flood 

OTX 7 7 4 7 7 ^ 

conditions). ' '" In starved conditions, the consumption rate generally is equal to the 

feeding rate, so the copolymer composition is equal to the monomer feed ratio at any 

given time." For systems in which at least one of the monomers has a relatively high 

water solubility, the situation is more complex.276 In this case, some of the monomer is 

present in the aqueous phase and not in the polymer particle where polymerization takes 
777 

place. Thus, the comonomer ratio and monomer concentration are affected, which 

influence the copolymer composition. In these systems it is important to control the 
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monomer to water ratio in addition to the monomer feed ratio to achieve the desired 

copolymer composition. 

The allylic monomer sec-butenyl acetate (28) (SBA, Scheme VI-1) is produced as 

a by-product of a recently reported direct addition process for production of butyl 

acetate," and thus has potential availability as a low-cost comonomer and 

polymerization additive. Gaylord et al. studied the homopolymerization behavior of SBA 

(28) in bulk.279'280 They report an average DP of 2.8, with a high degree of effective chain 

transfer in addition to degradative chain transfer. The SBA (28) oligomers produced 

displayed on average one double bond for every three SBA (28) repeat units, indicating 

that the relatively stable radical produced via hydrogen abstraction from the SBA (28) 

monomer was able to react with the double bond of a second SBA (28) monomer. The 

authors suggest that the SBA (28), due to the electron donating nature of the methyl 

substituent on the allylic carbon, exhibits higher levels of hydrogen abstraction in 

comparison to the unsubstituted allyl acetate. However, the resulting radical is more 

reactive in the substituted form due to differences in the resonance stabilized structures of 

the radicals. These results indicate that SBA (28) is an effective chain transfer agent with 

potential for use in copolymerization reactions to control molecular weight and produce 

copolymers of desired composition. 

To our knowledge, the copolymerization behavior of SBA (28) has not been 

reported, nor has its behavior in emulsion polymerization. We report the 

copolymerization of SBA (28) with styrene (STY) (15) at varying comonomer feed ratios 

via semicontinuous emulsion polymerization. Copolymer analysis was performed using 

NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 
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gas chromatography with flame ionization detection (GC-FID), dynamic light scattering 

and atomic force microscopy (AFM). Additionally, a kinetic study of the styrene (15)-

SBA (28) copolymerization conversion behavior in batch emulsion polymerization was 

performed. 

Experimental 

Materials. All reagents were used without further purification unless otherwise 

noted. 3-Butene-2-ol (97%), acetic anhydride (99%), ammonium persulfate 

((NH4)2S208) (98%) and Amberlystl 15 (dry) ionexchange resin were purchased from 

Acros Organics. Styrene (STY) (15) (99%) and t-butyl hydroperoxide (TBHP) (70% in 

water) were purchased from Sigma. Sodium bicarbonate (NaHC03) (99%) and 

magnesium sulfate (MgS04) (99%) were purchased from Fisher Scientific. Sulfated 

ethoxylated nonyl ammonium salt (Rhodapexl CO-436) and polyoxyethylene 

nonylphenyl ether (Igepall CO-887) were obtained from Rhodia Co. Bruggolitel FF6 

was obtained from Bruggemann Chemicals and dioctyl sodium sulfosuccinate (Aerosol 1 

OT (75%)) was obtained from Cytec. 

'H-NMR Measurement. A Varian 200 MHz NMR equipped with a standard 5 

mm 1H/13C probe was utilized to identify the structure of the SB A monomer. The 

copolymer structure and composition were identified via ^-NMR. Samples were 

prepared at 5 wt % in deuterated chloroform (CDCB) containing 0.03 vol % 

tetramethylsilane (TMS) as an internal standard. 'H-NMR spectra of monomers and other 

small molecules were obtained from 256 scans with a relaxation delay of 1 s and a pulse 

angle of 45 degrees. 
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Particle Size Determination by Dynamic Light cattering Technique. The latex 

particle size was measured via dynamic light scattering using a Microtracl UPA 250 

Particle size Analyzer. The Microtracl software was employed to determine particle sizes 

and particle size distributions. Samples were prepared in glass scintillation vials via 

diluting a few droplets of latex with deionized (DI) water until a concentration of 

approximately 1% (w/w) concentration as reached. Two scans were averaged (via the 

instrumentation software) to determine the average article diameter. 

Residual Monomer Determination through Gas-Chromatography Flame 

Ionization Detection (GC-FID). Residual monomer content was measured using a 

ThermoQuest Trace GC 2000 Gas Chromatograph (GC) and Flame Ionization Detector 

(FID) with an AS 2000 Autosampler. The GC column was an Agilent DB-1 capillary 

column measuring 30 m in length and 0.35 mm inner diameter with helium as the carrier 

gas at a flow rate of 5.0 mL/min. Samples were prepared by dissolving 1 g of wet latex in 

10 g acetone. A 1 uL aliquot was then removed for analysis. The injection port 

temperature was maintained at 200 °C and the FID temperature was maintained at 250 

°C. The temperature programutilized was 40 °C for 3 min, followed by ramping at 10 

°C/min to 220 °C and holding for 30 s before again ramping 30 °C/min to 250 °C and 

holding for 3 min. Results were analyzed using ChromQuest software and were reported 

in parts per million (ppm). 
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Reverse Phase High Performance Liquid Chromatography (RP-HPLC). A Waters 

1525 binary HPLC pump equipped with two 250 mm 3 4.6 mm Hypersil ODS (C-18) 5 

urn columns and a Waters 2414 RI detector was utilized to characterize reagents 

according to polarity. The columns were maintained at ambient temperature. 

Dimethylformamide (DMF) was used as a mobile phase at a flow rate of 1 mL/min. 

Molecular Weight Determination through GelPermeation Chromatography (GPC). 

Polymer molecular weight was determined via a GPC equipped with a Waters 515 HPLC 

pump and two 300 mm 3 7.5 mm PL-Gel 5 jam Mixed-C columns maintained at 40 °C. A 

Polymer Laboratories ELSD 1000 refractive index detector calibrated with poly(methyl 

methacrylate) standards was utilized to identify the molecular weights. A tetrahydrofuran 

(THF) mobile phase was utilized at a rate of 1 mL/min. Samples were prepared at a 

concentration of 20 mg/mL. Results were analyzed using Millenium 1-4.0 software. 

Thermal Analysis through Differential Scanning Calorimetry (DSC). A TA Q-1000 

Series DSC was utilized to identify the glass transition temperature (Tg) of the latex 

polymer and provide evidence for the copolymerization of SBA (28) with styrene (15). 

Measurements were performed under nitrogen purge. Samples (9-15 mg) were first 

heated to 150 °C, and then cooled at a rate of 25 °C at 20 °C/min to erase effects of 

thermal history. Polymer Tg was then determined from a second scan performed at a 

heating rate of 10°C/min from 25 °C to 150 °C. The inflection point of the resultant curve 

was reported as the Tg. Results were analyzed using TA Instruments Universal Analysis 

software. 
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Latex Solids and Percent Conversion. Percent conversion was calculated 

gravimetrically from the actual percent solids and the theoretical percent solids. The 

actual percent solids was determined by adding approximately 1.0-1.5 g of latex to an 

aluminum pan of known weight and drying the sample in a 100 °C oven for 1 h. The 

actual percent solids were then calculated by dividing the weight of the dried sample by 

the weight of the wet sample. The percent conversion was determined by dividing the 

actual percent solids by the theoretical percent solids. 

Gel Content Analysis. A polymer sample weighed to the nearest 0.5 g (D) was 

added to a scintillation vial as a dried polymer film. 10 mL of methyl ethyl ketone (MEK) 

was added, and the vial was sealed and placed in a 60 °C oven. After 1 h, the sample was 

removed and placed on a Vortex shaker for 30 min. The solution was filtered through a 

preweighed 400 mesh screen (E), dried, and reweighed to obtain the dry screen plus gel 

weight (F). The percent gel was then calculated from equation 1. Samples were tested in 

triplicate and the averaged results were reported. 

% G e l = ^ r ^ x 1 0 0 (1) 

Atomic Force Microscopy (AFM). AFM was utilized to identify latex film 

morphology and the extent of film formation. Samples were prepared by spin casting 

films from latex on freshly cleaved mica at 1800 rpm for 15 s. A Digital Instruments 

Nanoscope Ilia AFM equipped with etched silicon probes, 125 urn long with a resonance 

frequency of 175 kHz, nominal force constant of 40 N/m and a nominal tip radius of 10 

ran was utilized in tapping mode to image the dried film surface. Height and phase 
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images were recorded on 1 nm - 1 um scan size with an image resolution of 256-256 

pixels at a scan rate of 1 Hz. Image analysis was performed using Nanoscope version 

5.30 r2 image analysis software. 

Monomer Synthesis. Prior to synthesis, Amberlyst 15 (dry) ion exchange resin 

was washed with methanol for six hours and dried under vacuum. 3-Butene-2-ol (1 mol) 

was added very slowly into a mixture of acetic anhydride (1.05 mol) and Amberlyst 15 

(dry) ion exchange resin (2% by weight of acetic anhydride). After addition, the solution 

was stirred for 30 min and the product mixture was added through an addition funnel to a 

sodium bicarbonate solution (1 M) while stirring. Three consecutive extractions were 

performed in a separatory funnel using sodium bicarbonate solution washes. The organic 

phase was dried over magnesium sulfate. The resulting organic phase was filtered into a 

completely dried flask and the resulting organic solution was vacuum distilled for further 

purification. A yield of 65% was calculated based on the moles of resulting product after 

purification versus the initial moles of 3-butene-2-ol. The boiling point of SBA (28) was 

determined to be 114 °C, which is consistent with previously reported values.281 

The structure was confirmed through 'H-NMR (Figure VI-1) and 13C-NMR 

(Figure VI-2) analysis. Proton NMR signals are assigned as shown in Figure V-l, with 

SBA double bond protons a (5.1 ppm), b (5.2 ppm), and c (5.8 ppm), allylic proton d (5.0 

ppm), doublet -CH3 protons e (1.2 ppm) and singlet -CH3 protons f (1.9 ppm). Additional 

resonances are also observed, which are attributed to the presence of crotyl acetate, and 

are assigned as double bond protons h (5.7 ppm) and i (5.6 ppm), secondary allylic 

protons j (4.3 ppm), multiplet -CH3 protons g (1.6 ppm) and singlet -CH3 protons k (2.2 

ppm). Crotyl acetate formation presumably results from rearrangement of the double 
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bond. Integration and comparison of characteristic resonances attributed to crotyl acetate 

(29) (j, 4.3 ppm) and SBA (f, 1.9 ppm) provide an estimate of the relative concentrations 

of the two species. Vacuum distillation increases the SBA (28) purity from 88 to 97%. 

ppm (tl) 5.0 4.0 3.0 2.0 

Figure VI-l.1!! NMR spectrum of SBA (28) after purification by vacuum distillation. 

The C-NMR spectrum of purified SBA (28) is depicted in Figure VI-2, with 

signals assigned as: carbonyl carbon e (168 ppm), double bond carbons a (113 ppm) and 

b (135 ppm), allylic carbon c (68 ppm), -CH3 carbon at allylic position d (17 ppm) and -

CH3 carbon next to carbonyl group f (19 ppm). Additional faint resonances are observed 

that are attributed to crotyl acetate (29) and are assigned as: carbon k (167 ppm), double 

bond carbons h (123 ppm) and i (129 ppm), secondary allylic carbon j (63 ppm), -CH3 

carbon next to double bond g (15 ppm) and -CH3 carbon next to carbonyl group 1 (19 

ppm). 
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Figure VI-2.13C NMR spectrum of SBA (28) after purification by vacuum distillation. 

Latex Synthesis through Semicontinuous Emulsion Polymerization. Latices (STY-

SBA (30)) were synthesized using a semicontinuous process in which both pre-emulsion 

and initiator were introduced into the reactor over time at a controlled rate. A Camilel 

2000 automated data acquisition and control system was utilized during latex synthesis to 

control monomer addition rates. Manually programmed syringe pumps were used to 

control initiator feed rate. Reaction temperature was controlled by submerging the 

reaction vessel in an immersion circulator water bath maintained at 70 °C. The water bath 

and reaction temperatures were monitored and recorded by Camilel controlled 

thermocouples. 

Emulsion polymerizations were conducted in 100 mL glass reactors, according to 

the recipe given in Table VI-1 A. Agitation was achieved with a mechanical stirrer fitted 

through the center opening of the reactor lid. A Claisen adapter was utilized to mount a 

nitrogen inlet and a condenser. The remaining reactor lid openings were sealed with 
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rubber septa. Initiator solutions and monomers were introduced into the reactor through 

needles placed in the septa, taking care to keep the needle tips separated. A water and 

surfactant mixture was then introduced into the reactor and purged with nitrogen for 10 

min. The pre-emulsion was sheared at 1800 rpm for 20 min. Initiator solutions (7.24 

mL/h) and pre-emulsion (0.015 niL/min) were introduced into the reactor using the 

Masterflex console drive. Copolymerization reactions were performed with different 

comonomer feeds, 100% STY-0% SB A (31), 93.9% STY-6.1% SBA (STY-SB A 6.1) 

(30), 87.5% STY-12.5% SBA (STY-SBA 12.5) (30) and 75% STY-25% SBA (STY-

SBA 25) (30), at 70 °C for 90 min. The reactor was then removed from the water bath 

and cooled to ambient temperature before characterization. For proton NMR analysis, 

latices were washed with sodium chloride salt solution and then acidic solution to 

separate the emulsifier from the copolymer. Precipitated copolymers were then washed 

with water and dried under vacuum. 

Kinetic Study in Batch Emulsion Polymerization. Kinetic studies were performed 

in batch emulsion polymerization reactions. Reactor charge, initiator, and preemulsion 

were prepared according to the recipe given in Table VI-IB, and added simultaneously to 

a 100 mL reactor. The solution was then stirred at 1800 rpm for 50 min. The reactor was 

then placed in a water bath adjusted to 70 °C and agitated with a mechanical stirrer fitted 

through the center opening of the reactor lid. A Claisen adapter was utilized to mount a 

nitrogen inlet and a condenser. Total reaction time was 225 min. Aliquots were taken at 

15 min intervals and quenched in liquid nitrogen for solid content. Conversion was 

calculated based on solid content results of each aliquot by dividing the actual percent 

solids by theoretical percent solids. 
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Table VI-1. A) Latex Recipe for Semi-Continuous Batch Process (93.9% STY-6.1% 
SB A) (30); B) Recipe for Batch process (93.9% STY-6.1% SB A) (30). 

A 

Reactor Charge 

DI water 
Bfe«kp« CO 436 

BreemtiWo» 

DI water 
NaHC03 

Rhodapex CO 486 
%epal CO 887 
Aeresal OT 
SBA. 
SSywate 

Initiator 

TBHP 
DI water 
PP6 
• * •*• w 

DI water 

Amount <g) 

15 
1 

Amount (g) 

25 
1.25 
2 
2 
1 
2.18 

32.7 

Amouat (g) 

0,44 
0.89 
8 
0.77 
ft 

B 

Eeaetor Chaise 

DI Water 
Khodapst CO 486 

PreemwMoB 

DI water 
M«HCOa 

Itttodspex CO 4S8 
SUA 

Initiator 

<NH<)aSiO* 
BI water 

Amount Cg) 

25 
I 

Amount (g) 

35 
1.25 
8.5 
2.1 

81.8 

Amount (g) 

1.85 

Results and Discussion 

Synthesis of sec-Butenyl Acetate. The allylic monomer sec-butenyl acetate (SBA) 

(28) was synthesized through the esterification reaction of 3-butene-2-ol with acetic 

anhydride in the presence of Amberlyst 15 ion exchange catalyst at room temperature 

(Scheme VI-1). The resulting product was colorless, with a yield of 65%. NMR analysis 

indicated the presence of crotyl acetate (29) in addition to the SBA (28) (see experimental 

section and figures in appendix). Crotyl acetate (29) formation presumably results from 

rearrangement of the double bond.277 After vacuum distillation the SBA (28) purity is 

97%. 
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Scheme VI-1. SB A (28) Synthesis. 

Emulsion Copolymerization ofSBA (28) w/Y/z Slyrene (15) (STY-SBA). 

Copolymerization reactions were performed using purified SBA (28) with styrene (STY) 

(15). Latices were synthesized using a semicontinuous emulsion process to control latex 

properties (homogeneity, rate of polymerization, particle size, and particle size 

distribution) in light of the following potential problems: degradative chain transfer 

arising from SBA, large differences in reactivity ratios for SBA (28) and STY (15), 

solubility differences of the monomers and monomer partitioning. A single latex recipe 

was used for copolymerization of SBA (28) with a range of comonomers, including STY 

(15), acrylate family monomers (methyl methacrylate and butyl acrylate) and vinyl 

acetate, but only STY-SBA (30) copolymer results are presented in this paper. A 

surfactant combination (5% (w/w) in 100 g emulsion formulation) of two anionic 

surfactants, Rhodapex CO-436 and Aerosol OT 75, and a nonionic surfactant, Igepal CO-

887, were used in the pre-emulsion preparation. Rhodapex CO-436 belongs to the sulfate 

family of anionic surfactants, which are most commonly applied in emulsion 

polymerization of the acrylate family and convenient for polymerization in an acidic 

medium.261 Igepal CO-887 nonionic surfactant 

was employed in conjunction with Rhodapex CO-436 anionic surfactant to help control 

particle size and size distribution.241'253 Additionally, this combination produces a final 

polymer latex that is insensitive to changes in pH over a wide range.241 Aerosol OT 75 is 
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an efficient wetting agent and emulsifier, characterized by its quick migration to the 

interface.282 It can be used as the primary or coemulsifier for the synthesis of a wide 

variety of latex types such as styrene-butadiene, styrene-acrylic, vinyl acrylic and vinyl 

acetate and is a good emulsifier for hydrophobic resins as well as polar monomers like 

vinyl acetate.282 It thus helps ensure the stability of the STY-SB A (30) pre-emulsions, 

where the monomers exhibit large polarity differences and the growing polymer chains 

demonstrate increase in hydrophobic character. 

In heterogeneous polymerization systems such as emulsions, the type of initiator 

directly influences the residual monomer content.283 Residual monomer will reside 

primarily in the organic or the water phase, depending on its solubility. Therefore, in 

choosing an initiator, it is important to consider its solubility in both phases. The 

copolymerization was initiated through a redox initiator system (1.3%) including water-

soluble ammonium persulfate ((NH4)2S20g) and oil-soluble ^-butyl hydroperoxide 

(TBHP) as oxidizing agents. Bruggolite FF6, which is a formaldehydefree reducing agent 

based on a sulfinic acid derivative, was used as a reducing agent. This initiator system 

was used to accommodate the polarity difference between SBA (28) and STY (15) and 

the high possibility of chain termination reactions due to the allylic hydrogen abstractions 

of SBA. Moreover, such redox systems also allow polymerization over a wide 

temperature range. Persulfate initiators form acidic byproducts as they are consumed 

during polymerization, which lowers the pH as the reaction proceeds. The acid catalyzes 

784. 

the hydrolysis of esters (main chain) of vinyl acetate and acrylate family monomers. 

Thus, NaHC03 (1.2%) was employed as a buffer in the pre-emulsion recipe to avoid 

possible hydrolysis during copolymerization. 
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Comparative water solubility of SBA was evaluated by RP-HPLC, by comparing 

retention time with common commercial monomers used in emulsion polymerization 

based on their polarity.285 RP-HPLC is not a quantitative technique but does offer useful 

qualitative information. Polar monomers are attracted to the polar mobile phase used for 

RP-HPLC, resulting in shorter retention times. Longer retention times are characteristic 

of nonpolar compounds that are more attracted to the stationary nonpolar column. 

Table VI-2 gives retention times for 2-hydroxyethyl acrylate (2-HEA), hydroxyethyl 

methacrylate (HEMA), vinyl acetate (VA), methyl methacrylate (MMA), butyl acrylate 

(BA), styrene (STY) Q5), 2-ethylhexyl acrylate (2-EHA), and SBA (15). The results 

indicate that hydrophobicity and polarity properties of SBA are very similar to those of 

MMA (retention time 5.7 min). Styrene (15) monomer, however, displays substantially 

reduced polarity and increased hydrophobicity (retention time at 6.6 min), as is expected 

from the structure of the monomers. 

Table VI-2. Retention time of SBA and common commercial monomers characterized 
through RP-HPLC. 

Monomers 

2-Hydroxyethyl Acrylate 

2-Hydroxyethyl Methacrylate 

Vinyl acetate 

Methyl Methacrylate 

SBA (28) 

Butyl Acrylate 

Styrene 

2-Ethylhexyl Acrylate 

Retention Time 
(min) 

5 

5.2 

5.1 

5.7 

5.7 
6.3 

6.5 

8.7 
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The emulsion system employed resulted in successful copolymerization of SBA 

(28) with STY (15), as validated by !H-NMR, GPC and DSC analysis. Proton NMR 

spectra for the copolymers are shown in Figure VI-3. Incorporation of SBA into the 

copolymer is indicated by the appearance of the characteristic SBA (28) allylic proton 

signal at 3.6 ppm. Moreover, the area under this peak increases with increasing SBA feed 

ratio. Integration and comparison of the peaks attributed to styrene (15) (phenyl protons -

7 ppm) and SBA (allylic proton 3.6 ppm) yield values of 6% SBA incorporation for the 

STY-SBA 6.1% (30) latex, 13% SBA incorporation for the STY-SBA 12.5% (30) latex 

and 22.6% SBA incorporation for the STY-SBA 25% latex (30). Thus, SBA is 

incorporated at a high level into the copolymer at all feed ratios evaluated, even though a 

slight drop in SBA content is observed for the highest feed ratio. The level of allylic 

monomer incorporation observed for the SBA-STY (30) system is significantly higher 

than that generally reported for other allylic systems,256'257 indicating that the chosen 

emulsion polymerization system allows increased incorporation of the allylic monomer. 

No signals are observed in the double bond region (-5-6 ppm), thus there is no indication 

of residual vinyl groups in the copolymer via proton NMR. Thus, in contrast to the bulk 

homopolymerization study of Gaylord et al.,279'280 the SBA vinyl groups appear to be 

fully reacted in the emulsion copolymerization. The signal at 1.6 in the STY-SBA 6.1% 

(30) copolymer spectrum is most likely due to residual water. In the STY-SBA 25% (30) 

copolymer spectrum, additional signals are observed in the 0.7-2.2 ppm region that are 

indicative of increasing SBA (28) incorporation. The signal at 2.2 ppm is assigned as a -

CH group of SBA. The signals at~-1.4 ppm (at the pendant group) and at 0.8 ppm (at the 

chain ends) are both attributed to separate -CH3 protons. 
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proton. 
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Figure VI-3. 'H NMR spectra of STY-SBA 6.1% (30), STY-SBA 12.5% (30) and STY-
SBA 25% (30) copolymers showing increase in SBA tertiary allylic proton signal (3.6 
ppm) with increasing SBA feed content. 

Further evidence of copolymer production is observed in GPC analysis. 

Unimodal, broad distribution traces are observed for the styrene (15) homopolymer and 

STY-SBA copolymers (Figure VI-4), with general shifts to lower molecular weight with 

increasing SBA feed ratio. The unimodal curves indicate that broad molecular weight 

distribution copolymers were produced, with no evidence of simultaneous production of 

styrene (15) homopolymer. Molecular weight data for the copolymers is given in Table 

VI-3. Molecular weight decreases with increasing SBA content. Measured polydispersity 

indices (PDI) for the styrene (15) homopolymer and copolymers with 6.1% and 12.5% 

SBA feed ratios are high (2.9-3.3), but PDI is dramatically reduced (2.1) when SBA 

monomer feed ratio is increased to 25%. Chain transfer reactions produce dead polymer 
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chains and stable radicals, and chain transfer to monomer is known to affect the 

molecular weight distribution, particularly at high conversion. ' In the present 

copolymerization reactions, Mn and Mw decrease at a similar rate for low SBA feed 

ratios. When the SBA feed is increased to 25%, Mw drops faster than Mn, leading to 

reduced polydispersity. 

/ STY 100 
STY-SBA 6.1% 
STY-SBA 12.5% 

— - -STY-SHA25* 

' •* >• 1 v 

1 * / % 
, * / \ \ : 
I * \ 

' / \ * ". 
/ * / * 

* V * '. 
' .' S, % \ X5 

10 
—v— 

14 

flutioB Time (mill) 

Figure VI-4. GPC traces of STY 100 (30), STY-SBA 6.1% (30), STY-SBA 12.5% (30) 
and STY-SBA 25% (30) copolymers. 



Table VI-3. Molecular weight, polydispersity index (PDI) and glass transition 
temperature (Tg) for copolymer systems. 

Latex Mnxl04a Mwxl04a PDIa I* 

STY 100 7.2 21.2 2.9 104 

STY-SBA6.1% 3.2 10.7 3.3 90 

STY-SBA12.5% 3.0 8.9 3.0 82 

STY-SBA 25% 2.3 4.7 2.1 75 
a Determined by GPC. 
* Determined by DSC. 

DSC traces exhibit a single Tg, with shifts to lower values as a function of 

increasing SBA feed ratio (Table VI-3), providing further evidence for copolymer 

production. The reduced Tg is explained by the lower expected Tg of the acetate 

homopolymer relative to polystyrene (31), and also in part due to the lower molecular 

weight of the copolymers in comparison to the homopolystyrene (31). Appearance of a 

single Tg indicates copolymer formation. Films formed from the homopolystyrene (31) 

latex were friable, even when dried at elevated temperatures. In general, styrene (15) 

must be copolymerized with a lower Tg comonomer to produce continuous films. The 

incorporation of SBA monomer in the polystyrene (15) chain results in a more flexible, 

lower Tg copolymer, which is desirable for film applications requiring higher ductility. 

The semicontinuous emulsion process employed yielded relatively small latex 

particles with monomodal particle size distributions, indicating the synthesis of a 

homogeneous product. Dynamic light scattering traces for two representative copolymers 

systems are shown in Figure VI-5. Similar unimodal traces were obtained for all of the 

systems (as produced by the light scattering software). There is no evident trend in 



121 

a 

o,*ioo o.tm two 

Size (microns) Size (microns) 

Figure VI-5. Dynamic light scattering traces for a) 6.1% SBA and b) 25% SBA. 

particle size as a function of SBA feed content (Table VI-4), and the latex particle sizes 

are desirably small and consistent for all copolymers. Copolymerizations were repeated 

three times for the STY-SBA 6.1% (30) and STY-SBA 12.5% (30) samples to evaluate 

the reproducibility of particle size and particle size distributions of the latex produced 

from the semicontinuous emulsion polymerization system. Each repetition produced a 

unimodal distribution with minimal differences between batches (within experimental 

error). Tapping mode AFM images of spin coated films prepared from the copolymer 

latices are shown in Figure VI-6. The films appear well coalesced. The measured 

diameters of the coalesced particles in the dried films are consistent with the latex particle 

sizes determined by light scattering (within statistical variation) (Table VI-4). The 

homopolystyrene (31) latex, on the other handed, yielded poorly coalesced, friable films 

which were not imaged. Residual (unreacted) monomer levels were determined via GC-

FID for each latex at the end of the ninety-minute polymerization cycle (Table VI-5). 
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TableVI-4. Number average particle size of latex (via dynamic light scattering (DLS)) 
and of film (via AFM). 

Latex 

STY 100% 
STY-SBA 6.1% 
STY-SBA 12.5% 

STY-SBA 25% 

Particle size 
by (DLS) ° 

run 1 
(nm) 
89±17 
151±29 
91±18 

103±18 

Particle size 
by (DLS)" 

run 2 
(nm) 

114±20 
134±27 

Particle size 
by (DLS) a 

run 3 
(nm) 

121±18 
113±19 

Particle size 
by (AFM)6 

(nm) 

147±30 
108±21 

112±22 
a DLS error represents range from 2 scans. 

AFM error represents one standard deviation. 

Residual monomer levels increase as a function of SBA feed ratio. This increase is due to 

both the high difference in the reactivity ratios of the comonomers and to the chain 

transfer to allylic monomer. As reported for the copolymerization of vinyl acetate with 

butyl methacrylate,281 a high reactivity ratio difference causes a near cessation of 

polymerization, with resultant increase in the levels of unreacted monomer. Although 

residual levels of both STY and SBA monomers increase with increasing SBA feed 

ratios, there are lower levels of unreacted STY (25) than SBA (28) for all latices. It is 

likely that copolymer chains initially grow through STY (15) polymerization prior to 

SBA (28) copolymerization. Copolymer chains are terminated with SBA(28) monomer 

via chain transfer. Higher SBA feed concentrations effect greater chain transfer, as 

expected. 
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Figure VI-6. AFM tapping mode height and phase images of spin coated films prepared 
from A) STY-SBA 6.1% (30), B) STY-SBA 12.5% (30) and C) STY-SBA 25% (30) 
latexes. 
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Table VI-5. Solids, gel content, residual monomer and conversion results for semi-
continuous emulsion copolymerization reactions. 

Latex 

STY 100% 
STY-SBA 6.1% 
STY-SBA 12.5% 
STY-SBA 25% 

Solid 
(%) 

41 
41 
39 
26 

Gel Content 
(%) 

1.5 
2.3 
1.3 
1.7 

SBA 
Residual 

Monomer" 
(%) 

0 
0.75 
2.22 
2.53 

Styrene 
Residual 

Monomer" 
(%) 
0.4 

0.75 
1.04 
1.33 

Conversion 
(%y 

99 
98 
93 
62 

a Determined by GC-FID. 
* Determined from percent solids. 

Solid content analysis of the latex indicates the amount of polymer produced. 

Relatively high solid contents of approximately 40% are achieved for the homopolymer 

styrene (15), STY-SBA 6.1% (30), and STY-SBA 12.5% (30) polymerizations (Table 

VI-5). A sharp reduction in the solid content to 26% is observed for the STY-SBA 25% 

(30) latex, attributed to high levels of chain transfer to monomer with concomitant 

decrease in monomer conversion. Monomer conversions calculated from solid content 

values indicate 98% conversion for the STYSBA 6.1% latex (30), 93% for the STY-SBA 

(30) 12.5% latex and only 62% conversion for the STY-SBA 25% latex (30). 

Conversions calculated from residual monomer, however, estimate much higher levels, 

with 97% conversion for the STY-SBA 12.5% (30) latex and 96% conversion for the 

STY-SBA 25%) (30) latex. It is likely that low molecular weight oligomers are produced 

as a result of chain transfer reactions, and that their production levels increase with 

increasing SBA content in the monomer feed. Volatile oligomers evaporate during the 

solid content evaluation at 100 °C after 1 h, and thus these low molecular weight species 

are not included in the monomer conversion calculated from solid content. At the same 

time, residual monomer levels are reduced when the oligomers are formed, so conversion 
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calculated from residual monomer data appears higher than that calculated from solid 

content levels. Additional low level peaks were observed in the GC-FID chromatogram 

that may indicate the presence of the oligomers; however, these peaks were not 

specifically identified. There is no evident trend in gel content for the copolymers (Table 

VI-5). 

Kinetic Study using Batch Emulsion Polymerization. The effects of degradative 

chain transfer are further exhibited in studies of conversion as a function of reaction time 

in a batch emulsion polymerization. In this study, overall conversion of both monomers 

was determined (based on solid content) to observe the effects of chain transfer reactions 

in the case where feed ratio is not controlled over time (Figure VI-7). For the lowest 

monomer feed ratio, STY-SB A 6.1% (30), conversion increases steadily over a period of 

three hours until almost 100% conversion is achieved. For the higher SB A (28) feed 

ratios, conversion rate decreases. After 200 min, only 60% conversion is achieved for the 

STY-SBA 12.5% (30) copolymer and 40% conversion is obtained for the STY-SBA 25% 

(30) copolymer. Chain transfer increases with increasing SBA (28) content, producing 

unreactive polymer chains due to the high amount of allylic hydrogen abstraction and 

formation of stable radicals, thereby decreasing rate of copolymerization and conversion. 

However, these effects are minimal at low concentrations of SBA (28) in the latex. At 

low SBA (28) concentrations, high conversions and high levels of incorporation of allylic 

monomer into thecopolymer are easily achieved. 
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Figure VI-7. Conversion as a function of time for STY-SBA 6.1% (30), STY-SBA 
12.5% (30) and STY-SBA 25% (30) copolymers performed in batch process. 

Conclusions 

Copolymers of the allylic monomer sec-butenyl acetate (28) with styrene (15) 

were successfully produced via semicontinuous emulsion polymerization, as evidenced 

by 1H-NMR, GPC, and DSC analysis. Latices produced exhibited unimodal particle size 

distributions. Copolymers exhibiting a single Tg, with unimodal molecular weight 

distribution, were obtained for monomer feed ratios up to 25% SBA(28). At low 

concentrations of SB A (28) in the latex (up to 6%) conversion of 98% was readily 

achieved, with over 99% incorporation of the allylic monomer into the resultant 

copolymer. At higher SBA (28) feed concentrations, conversion and comonomer 

incorporation into the copolymer were reduced, especially at the 25% SBA (28) level, 



because of degradative chain transfer. Copolymer molecular weights and Tgs are 

decreased with increasing SB A (15) incorporation. These studies indicate the potential 

utility of sec-butenyl acetate, especially at low concentration levels, as an effective chain 

transfer agent to control molecular weight of styrene polymers, while providing high 

conversions, Tg modification and enhanced film formation properties. This allylic 

monomer was readily copolymerized with styrene via emulsion polymerization, despite 

large differences in polarity and reactivity ratio of the two monomers, and is thus 

expected to prove useful in a wide range of vinyl polymerizations. 
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CHAPTER VII 

CONCLUSIONS 

This research specifically focused on the synthesis of well-defined, carboxylic 

acid functionalized glycopolymers through high yield post-polymerization reactions 

between well-defined primary amine functionalized polymers and carboxylic acid 

functionalized sugars. The surface modification of silicon wafers with PAEMA (16) was 

also studied using "click" chemistry. The resulting surface presented a non-uniform, high 

grafting density polymer brush layer. 

The first step of this research was to overcome the current challenges of 

polymerizing AEMA (6) through CRP techniques, which include the loss of 

polymerization control, high polydispersity and slow polymerization rate. For this 

purpose, well-defined, narrowly dispersed homopolymer and diblock copolymers of 

AEMA have been synthesized via aqueous RAFT polymerization. Specifically, AEMA 

monomer has been homopolymerized directly in aqueous solution with PDIs below 1.2 

and conversions up to 95%. To our knowledge, this is the first report of aqueous AEMA 

(6) RAFT polymerization with very low polydispersity and good control without the 

necessity of protecting group chemistry. The resulting PAEMA (16) was also chain 

extended with HPMA (8) to produce well defined diblock copolymers with high blocking 

efficiency and PDIs lower than 1.1. Building on our earlier work and recent literature 

reports, we show for the first time a series of novel, well-defined block copolymers of 

AEMA (6) and HPMA (8) with high conversion. Since primary amine groups are 

amenable to a wide range of post-polymerization chemistries, such as rapid formation of 

amides and imines, ring-opening of epoxy groups and Micheal addition, we believe that 



this study will enable developments in several areas, including synthesis of controlled 

architecture, bio-inspired polymers through the conjugation of the primary amine pendant 

groups with targeted sugars, peptides or amino acids. Improved crosslinking strategies 

for shell cross-linked micelles, and robust surface functionalization for various surface 

chemistries are also possible. Diblock copolymers of AEMA (6) and HPMA (8) may 

prove useful as drug/gene delivery vehicles through electrostatic complexation of the 

positively charged AEMA (6) block with the negatively charged phosphate backbone of 

polynucleotides. In addition, the susceptibility of the AEMA (6) block to post-

polymerization reactions facilitates the conjugation of this diblock copolymer with 

targeted drugs or bio-molecules. 

The second part of the research demonstrates for the first time the synthesis of 

well-defined carboxylic acid functionalized glycopolymers via one step, high-yield post-

polymerization modification approaches. Specifically, APMA (12) monomer was 

homopolymerized directly in aqueous solution with PDIs below 1.1 through aqueous 

RAFT polymerization. The well-defined, narrowly dispersed PAPMA (17) was 

bioconjugated with D-glucuronic acid sodium salt (5) via a reductive amination reaction 

pathway in alkaline medium to obtain well-defined glycopolymers with near quantitative 

substitution. 

In addition, the bioconjugation of PAEMA (Id) and PAEMA-6-PHPMA Q8) 

with D-glucuronic acid sodium salt (5) was also demonstrated. Lower yields of 

bioconjugation were achieved, due to the possible degradation of PAEMA (16) in 

alkaline medium at high temperature. The resulting glycopolymers probably include 

inhomogeneous sequences within the chain. 
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Building on our earlier work and recent literature reports, this study shows the 

first example of well-defined carboxylic acid functionalized glycopolymers prepared via 

one step, high-yield post-polymerization modification. PAPMA is demonstrated to be a 

versatile primary amine functionalized polymer which readily undergoes reductive 

amination reactions with sugars with high yields. Therefore, this study will enable new 

capabilities in the synthesis of controlled architecture glycopolymers with multiple 

functionalities, without the need for stringent purification methods. 

The third part of this research shows the preparation of the PAEMA (16) brushes 

on a silicon wafer via one step using a "click" chemistry approach. First, a well-defined, 

a-alkynyl-functionalized homopolymer of AEMA (26) was synthesized via RAFT 

polymerization with PDIs below 1.2 using a-alkynyl CTP (25) as the CTA. The resulting 

a-alkynyl-functionalized PAEMA (26) was also tethered to azide functionalized silicon 

wafers through a "grafting to" method using a "click" chemistry approach. The 

preliminary results of ellipsometry, water contact angle, ATR-FTIR and AFM analysis 

demonstrated a non-uniform polymer brush layer with an estimated grafting density of 

0.39 chains/nm"2, indicating an excellent grafting density for the "grafting to" method. 

This study shows that "click" chemistry is a simple and effective method to obtain 

primary amine functionalized polymer brushes. These studies will potentially enable 

further developments in surface modification of bio-related materials such as sugars, 

carbohydrates, peptides and proteins to study biomaterials related processes including 

bio-lubricity, surface drug-delivery, and protein-carbohydrate interactions. 
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The primary contribution of this research is the demonstration of a simple and 

effective synthetic pathway to obtain carboxylic acid functionalized glycopolymers 

without the need for complex, time-consuming purification steps. The proposed 

objectives of this research included development of a direct synthetic pathway for 

production of well-defined primary amine functionalized polymers using aqueous RAPT 

polymerization techniques, followed by post-polymerization reactions involving 

reductive amination reaction between the well-defined amine functionalized polymers 

and D-glucuronic acid sodium salt (5) to form glycopolymers. The accomplishments in 

the first part of the research indicate that the aqueous RAFT polymerization is a 

convenient technique to achieve well-defined primary amine functionalized polymers 

without using protective group chemistry. The second part of the study validates the 

effectiveness of the reductive amination reaction in the synthesis of well-defined 

homogeneous carboxylic acid functionalized glycopolymers. This approach provides 

mild, effective post-polymerization reactions and facilitates the complex glycopolymer 

synthesis. These new synthetic charged glycopolymers can serve as synthetic analogues 

to HA (1) for evaluation of their utility in biomedical applications. The fifth chapter 

addresses the last objective, which was the evaluation of the effectiveness of "click" 

chemistry in the preparation of primary amine functionalized polymer brushes through 

the "grafting to" method. The preliminary results indicate that "click" chemistry is an 

effective method for attaining primary amine functionalized polymer brushes on the 

silicon wafer. 



RECOMMENDED FUTURE WORK 

This dissertation demonstrates the successful controlled polymerization of 

primary amine functionalized vinyl monomers (AEMA (6) and APMA (12)) through 

aqueous RAFT polymerization and their bioconjugation with D-glucuronic acid sodium 

salt (5) through reductive animation. A quantitative conversion was achieved in the 

bioconjugation between PAPMA (16) and D-glucuronic acid sodium salt (5). The 

resulting polymer presents the first example of a carboxylic acid functionalized 

glycopolymer. This glycopolymer may specifically be used for comparative evaluation 

with hyaluronic acid. Suggested further studies involving the glycopolymers include 

evaluation of nanotribological performance of thin films prepared from the 

glycopolymer, investigation of protein-glycopolymers interactions and development of 

stimuli-responsive films utilizing layer-by-layer assembly processes. 

We also demonstrate the surface attachment of PAEMA (16) through "click" 

chemistry. However, there is still an incomplete understanding of the factors controlling 

the surface morphology observed for this system. Therefore, a detailed surface 

characterization using AFM and XPS spectroscopy is recommended to determine the 

extent of functionalization and coverage of the surfaces. Additionally, the synthesized 

alkynyl-functionalized CTP (25) can be attached to the azide functionalized surface to 

produce PAEMA (16) brushes through the "grafting from" technique. A comparison of 

the grafting density and surface morphology of systems prepared through "grafting to" 

and "grafting from" approaches is recommended. The resulting primary amine 

functionalized brushes can further be bioconjugated with D-glucuronic acid sodium salt 

(5) to yield carboxylic acid functionalized gylocopolymer brushes. 
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APPENDIX 

Introduction 

Recently, much research has focused on the synthesis of polymer brushes through 

RAFT polymerization techniques. Researchers have used five different approaches to 

develop polymer brushes on both silica nanoparticles and silicon wafer. First, a 

conventional surface initiator was attached on the surface and then RAFT polymerization 

attempted upon addition to CTA.288'289 Second, CTA was attached on the surface through 

the R group.290'291,292 Third, the CTA was immobilized on the surface from the Z 

group.293,294'295 Fourth, the functional polymer was first prepared through RAFT 

polymerization and attached on the surface through click chemistry or reacting with a 

surface double bond in the presence of excess radical initiator296 Finally, the block 

copolymers carrying triethoxysilyl groups were synthesized and attached on the 

907 9QR 

surface. ' Among these methods, R group approach has attracted much attention due 

to its simple reaction conditions and having a potential to provide higher molecular 

grafted polymers and grafting density. 

In this chapter, two attempted methods to attach the CTA on the silicon wafer 

using the R group approach are described. However, these two approaches failed, most 

likely due to side reactions. Additionally, an attempt to synthesize a conventional free 

radical initiator for the purpose of surface polymerization is described. 
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Experimental 

Materials. All reagents were used without further purification unless otherwise 

noted. Methacryloyl chloride (>97%), aminopropyltrimethaxysilane (98%) (APTMS), 9-

Decen-1-ol (97%), allyl alcohol (99%), trichlorohydrosilane (99%), anhydrous 

tetrahydrofurane (THF), dichloroethane (CH2CI2) and anhydrous toluene, were purchased 

from Aldrich. 4-Dimethylamino-pyridine (99%) (DMAP), 2-mercaptothiazoline (98%) 

and JV,Af'-dicyclohexyl-carbodiimide (99%) (DCC) were purchased from Acros Organics. 

Phenylmagnesium bromide solution (3M in diethyl ether), Karstedt catalyst were 

purchased from Fluka. 30% Hydrogen peroxide (H2O2), sulfuric acid (H2SO4), 

diethylether, ethylacetate, hexane, and hydrochloric acid were purchased from Fisher. 

4,4'-azobis(4-cyanovaleric acid) (V-501) (13) was purchased from Wako Pure Products 

and recrystallized from methanol. Silicon wafers were purchased from Silicon Inc., and 

cut into 1 x 2 cm pieces using a diamond-tipped glass cutter. 4-Cyanodithiobenzoic acid 

(CTP) (14) was synthesized according to literature procedure.180 

The Synthesis ofDec-9-enyl 4-Cyano-4-(Phenylcarbonothioylthio)-Pentanoate 

(32). In a 100 ml flask equipped with stir bar and an additional funnel, a solution of CTP 

(14) (1 g, 3.58 mmol), 9-Decen-l-ol (0.614 g, 3.94 mmol), 4-(dimethylamino)pyridine 

(DMAP) (40 mg, 0.317 mmol) in 30 ml of dichloromethane was cooled to 0 °C under 

nitrogen. DCC (0.812 g, 3.94 mmol) was dissolved in 5 ml of dichloromethane and added 

dropwise to the reaction flask under stirring. The reaction was stirred under room 

temperature for overnight. Dec-9-enyl 4-cyano-4-(phenylcarbanothioylthio)-pentanoate 

was purified via column chromatography using 2:1 heaxane:ethyl acetate eluent mixture. 
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After removal of solvent, the red fraction gave 4-cyano-4-((thiobenzoyl)sulfanyl)-

pentanoic acid as a red oil. The product solidified upon sitting at -20 °C. 

!H NMR (CDCI3) 8 (ppm): 1.95 (s, 3H, CH3); 2.40- 2.80 (m, 4H, CH2CH2); 7.42 

(m, 2H, w-ArH); 7.60 (m, lH^-ArH); 7.91 (m, 2H, o-ArH). 

Hydros ilylation ofDec-9-enyl 4-Cyano-4-(Phenylcarbonothioylthio)-Pentanoate. 

Hydrosilylation experiment was implemented for the addition of trichlorosilane on the 

double bond of dec-9-enyl 4-cyano-4-(phenylcarbanothioylthio)-pentanoate. In a glove 

box, to a dry flask were added 1.0 g of 1 and 15 ml of trichlorosilane, followed by the 

addition of 4ul of Karstedt catalyst. The mixture was stirred at room temperature within 5 

h. The starting color of the mixture was dark pink and this was maintained during the 

reaction. After the reaction, reaction medium was filtered and excess trochlorosilane was 

removed under reduced pressure. The resulting product was red solid, which was 

dissolved in CDCI3 and characterized through lU NMR. 

Activation ofCTP (14). CTP Q4) (1.40 g, 5.00 mmol), 2-mercaptothiazoline 

(0.596 g, 5.00 mmol), and dicyclohexylcarbodiimide (DCC) (1.24 g, 6.00 mmol) were 

dissolved in 20 mL of dichloromethane. (Dimethylamino)pyridine (DMAP) (61 mg, 0.50 

mmol) was added slowly to the solution, which was stirred at room temperature for 6 h. 

The solution was filtered to remove the salt. After removal of solvent and silica gel 

column chromatography (5:4 mixture of hexane and ethyl acetate), activated CPDB was 

obtained as a red oil (1.57 g, 83% yield). 



!H NMR (300 MHz,CDCl3): 5 (ppm) 7.90 (d, 2H, ph); 7.56 (t, 1H, ph); 7.38 (t, 2H, ph); 

4.58 (t, 2H, NCH2CH2S); 3.60-3.66 (m, 2H, (CN)C(CH3)-CH2CH2CON); 3.31 (t, 2H, 

NCH2CH2S); 2.50-2.56 (m,2H, (CN)C(CH3)CH2CH2CON); 1.95 (s, 3H, 

(CH3)C(CN)S). 

Functionalization of Silicon Wafers with CTP (14). Pre-cut silicon wafers were 

rinsed with ethanol, acetone and then immersed in piranha solution (cone. H2SO4/H2O2) 

for approximately 1 h. The silicon substrates were then washed thoroughly with 

deionized water. After a washing step with ethanol the wafers were blown dried and 

immediately immersed in a solution of aminopropyltrimethaxysilane (APTMS) (1 vol.-

%) in toluene for 1 h. The samples were rinsed with toluene, acetone, and ethanol. After 

drying the silicon pieces were immersed in a solution of actiavated CTP (14) in dry 

toluene (5 vol.-%). The mixture was left to react over night. The samples were then 

rinsed with toluene and ethanol. 

Synthesis of Asymmetric Azo-Initiator. 4,4'-azobis(4-cyano valeric acid) (13) 

(3.0 g, 11 mmol), dimethylaminopyridine (DMAP) (80 mg, 0.65 mmol) and butanol 

(0.815 g, 11 mmol) were dissolved in tetrahydrofuran (THF) (25 mL) in a 250 mL round 

bottom flask under an Ar atmosphere. The solution was cooled to 0 °C and 

dicylcohexylcarbodiimide (DCC) (2.2 g, 11 mmol) in 20 ml of THF was added dropwise 

with vigorous stirring. The reaction mixture was stirred at 0 °C for 5 min and then 

allowed to warm to room temperature overnight. Precipitated dicyclohexylurea (DCU) 

was removed by filtration and 100 mL of dichloromethane (CH2CI2) was added. The 

crude mixture was washed with water (25 mL x 2) and dried over magnesium the crude 

mixture, allyl alcohol (0.65 g, 11.2 mmol) and DMAP (80 mg, 0.65 mmol) were 



dissolved in 25 mL of CH2C12 and cooled to 0 °C. DCC (2.2 g, 11 mmol) in 25 mL of 

CH2CI2 was added dropwise via syringe. The reaction was kept at 0 °C for 5 minutes and 

then allowed to warm to room temperature overnight. The solids were removed by 

filtration and the filtrate was washed with saturated sodium bicarbonate (25 mL x 2), 

water (25 mL x 2) and dried over MgSCv The solids were removed by filtration and the 

solvent was removed by rotary evaporation. The residue was passed through a short plug 

of silica gel using CH2CI2 as an eluent. After removal of solvent, the final product was 

obtained as a yellow oil that solidified upon standing at -4 °C. 

1HNMR(300MHz,CDCl3)5:0.918(t, 3H); 1.12-1.85 (m, 1 OH); 2.21-2.65 (m, 

8H); 4.00-4.15 (m, 2H); 5.42-4.64 (m, 2H); 5.18-5.38 (m, 2H); 5.80-5.95 (m, 1H). 

Hydrosilylation of Asymmetric Azo-Initiator. Hydrosilylation experiment was 

performed as described in the previous section. 

Results and Discussion 

Initially, the synthesis of trichlorosilane functionalized CTP (14) was attempted. 

First CTP (14) carrying a double bond on the R group was synthesized (Scheme 

Appendix-1). CTP (14) was reacted with 9-decen-l-ol in the presence of DCC/DMAP 

coupling agents. The resulting product was verified through }H-NMR (Figure Appendix-

1). 

It was attempted to attach the resulting product, 9-enyl 4-cyano-4-

(phenylcarbanothioylthio)-pentanoate, to the silicon wafer surface using 

trichlorohydrosilane coupling agent in the presence of Karstedt catalyst. However, the 



reaction appeared unsuccessful. The reason for this may be the potential complexation of 

the catalyst with the sulfur atoms of the CTP (14) double bond. 
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Dec-9-enyl4-Cyano-4-(phenylcarbonothioylthio)-pentanoate 

Scheme Appendix-l.Synthesis of 9-enyl 4-cyano-4-(phenylcarbanothioylthio)-
pentanoate. 
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Figure Appendix-1. 'H-NMR of 9-enyl 4-cyano-4-(phenylcarbanothioylthio)-
pentanoate. 
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Regarding the possible side reactions during the hydrosilylation reaction, it was 

decided to attempt to attach the CTP (14) directly to the amine functionalized silicon 

wafers through the R group. For this purpose, CTP (14) was first activated upon the 

reaction with 2-mercaptothiazoline in the presence of DCC/DMAP coupling agents 

(Scheme Appendix-2). The resulting product was characterized through 'H-NMR (Figure 

Appendix-2). The activated CTP (14) was reacted with amine functionalized silicon 

wafers overnight using toluene as solvent. However, a color transformation was observed 

in the solution from red to yellow, indicating the aminolysis reaction, where the free 

amine attacks to dithiocarbonyl group resulting in side products. 
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Scheme Appendix-2. CTP activation. 
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Figure Appendix-2. ^-NMR of CTP activation. 
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Finally, it was attempted to synthesize trichlorosilane functionalized asymmetric 

diazoinitiator to use for the surface polymerization. 4,4'-azobis(4-cyanovaleric acid) (13) 

was first reacted with n-butanol in the presence of DCC/DMAP coupling agents and then 

the resulting product was reacted with allylic alcohol to yield double bond functionalized 

asymmetric diazoinitiator (Scheme Appendix-3). The resulting product was proved 

through ^-NMR (Figure Appendix-3). However, the addition of trichlorohydro silane to 

the double bond did not occur. The reason of this might be incorrect choice of catalyst 

system. 
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OH 

Scheme Appendix-3. Synthesis of double bond functionalized asymmetric diazoinitiator. 
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Conclusion 

In this part of the dissertation, it was attempted to synthesize a convenient surface 

CTA or initiator for RAFT polymerization from the surface. However,none of the 

approaches were successful. The main problem in the synthesis of surface CTA is the 

hydrosilylation step, where trichlorohydrosilane adds to the double bond in the presence 

of a specific catalyst system. The reactions were performed in the presence of the 

Karstedt catalyst, which is widely reported for hydrosilylation reactions of double 

bonds.299 It is likely that both sulfur and nitrogen atoms form complexes with the 

catalyst. This decreases the catalysis activity during the reaction. In addition, although a 

strong activation agent was used to activate the carboxylic acid group of the CTP (14), 

the direct deposition of CTP (14) on the amine functionalized surface failed. The results 

prove that the aminolysis reaction can be avoided even in the presence of the strong 

activation agent. 
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