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ABSTRACT 

PHOTOPOLYMERIZATION AND CHARACTERIZATION OF 

THIOL-ENES AND THIOURETHANES 

by Qin Li 

December 2008 

Compared to conventional acrylic monomer systems, thiol-ene 

photopolymerization, an efficient click process leading to the formation of dense and 

uniform molecular networks, has several distinct advantages including relative 

insensitivity to oxygen inhibition, high monomer conversion and low shrinkage. 

Although there has been a revival of interest in thiol-enes in the past 6 years, the 

structure-property relationship of these networks has not been explored in detail. For 

future applications, thiol-enes with higher shelf-life stability and glass transition 

temperatures need to be used. Sulfur containing urethanes, thiourethanes and 

dithiourethanes are a class of widely used materials due to their distinct properties such as 

high refractive index. However, the structure-property relationships of thiourethanes and 

dithiourethanes have not been explored in detail. This research provides a fundamental 

study of the photopolymerization and properties of thiol-enes and the structure-property 

relationships of sulfur containing urethanes. The effect of chemical structure of thiol-ene 

monomers on physical and mechanical properties, the photopolymerization of thiol-ene 

free-radical/ene cationic hybrid systems, the development and characterization of 

thiourethane thiol-ene networks, the effect of hydrogen bonding on the physical aging of 
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thiourethane thiol-ene networks, the investigation of hydrogen bonding behavior of 

thiourethanes and dithiourethanes and the structure-property relationships are all 

presented. 

The first study deals with the photopolymerization and characterization of four 

different types of ene monomers with both primary and secondary multifunctional thiols. 

The results indicate that ene structures can significantly affect the rigidity and the 

physical and mechanical properties of the thiol-ene networks. Network density controlled 

by the functionality of ene monomers was found also to be a major factor in defining 

network properties. Networks formed from the secondary thiol-ene systems are basically 

equivalent to those made from primary thiol-enes with respect to physical mechanical and 

optical properties. The secondary thiol monomer samples evaluated were found to have 

excellent storage stability and relatively low odor. 

The second study reports the photopolymerization kinetics of mixtures containing 

a trithiol and a trivinyl ether (in different molar ratios) with a cationic photoinitiator. 

Using the combination of real-time FTIR and rheology to follow both chemical 

conversion and Theological property development, a clear picture of physical property 

development during the complete polymerization process is obtained. This represents the 

first example of a thiol-ene radical/ene cationic two-step hybrid photopolymerization 

process in which thiol copolymerizes with vinyl ether functional groups in a rapid radical 

step growth process followed by vinyl ether cationic homopolymerization. The sequential 

thiol-vinyl ether copolymerization and the vinyl ether cationic polymerization result in 
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crosslinked networks with thermal and mechanical properties that are combinations of 

each system. 

The third study concentrates on the development of novel thiourethane based 

thiol-ene (TUTE) films prepared from diisocyanates, tetrafunctional thiols and trienes. 

The incorporation of thiourethane linkages into the thiol-ene networks results in TUTE 

films with high glass transition temperatures. Increase of Tg was achieved by aging at 

room temperature and annealing the UV cured films at 85 °C. The aged/annealed film 

with thiol prepared from isophorone diisocyanate and cured with a 10,080 mJ/cm radiant 

exposure had the highest DMA based glass transition temperature (108 °C) and a tan 8 

peak with a full width at half maximum (FWHM) of 22 °C, indicating a very uniform 

matrix structure. All of the initially prepared TUTE films exhibited good physical and 

mechanical properties based on pencil hardness, pendulum hardness, impact and bending 

tests. 

The physical aging behavior of a class of photopolymerized thiourethane thiol-ene 

networks were characterized by thermal and spectroscopic analysis, the results of which 

are directly related to changes in macroscopic physical and mechanical properties. The 

hydrogen bonding associated with the thiourethane chemical structure exerts at most a 

slight retarding effect on the enthalpy relaxation, but there is a significant increase in the 

glass transition temperature of the thiourethane thiol-ene networks, an important 

implication for application of these materials and the stabilization of their physical, 

mechanical and thermal transition properties. 
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To define the difference between ordinary urethanes and thiourethanes, the 

hydrogen bonding behavior of a homologous family of model urethane, thiourethane and 

dithiourethane compounds prepared from primary isocyanates/isothiocyanates were 

investigated in solution, melt and solid states. The relative strengths of hydrogen bonds in 

these systems were evaluated, and the results compared to theoretical calculations of 

hydrogen bonding strength. The polyurethane and polythiourethane were found to have 

approximately equivalent physical and mechanical properties as a result of a similar 

extent of hydrogen bonding, whereas the polydithiourethane model compound, due to a 

lower degree of hydrogen bonding, has reduced thermal and mechanical transition 

temperatures as well as lower hardness values. The polythiourethane and 

polydithiourethane networks exhibit narrower glass transitions compared to polyurethane 

networks apparently the result of an efficient isocyanate/isothiocyanate-thiol reaction 

with little or no side products. Due to weakness of the C-S bond compared to the C-0 

bond, thiourethanes and dithiourethanes have lower thermal stability than corresponding 

urethanes. Finally the thiourethanes and dithiourethane have higher refractive index 

values than their urethane counterparts. 

To complete the comparison study on urethane type materials, another 

homologous family of model urethane, thiourethane and dithiourethane prepared from 

both aliphatic and aromatic secondary isocyanates were comprehensively characterized 

by a series of spectroscopic, thermal, physical and mechanical analysis measurements to 

define the relative hydrogen bond strength and its correlation with properties. The 
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polyurethane and polythiourethane systems have similar physical and mechanical 

properties as a result of their similar structures and hydrogen bonding behavior, whereas 

the polydithiourethane, due to relatively weaker hydrogen bonding has reduced physical 

properties. The NMR, FTIR and XRD measurements of small molecule models in 

solution, melt and solid states indicate the relative hydrogen bonding strength as: 

urethane ~ thiourethane > dithiourethane. The aromatic urethane is more stable under UV 

irradiation than the corresponding thiourethane analogues. Due to the weaker C-S bond 

compared to C-0 bond, thiourethane and dithiourethane have reduced thermal stability 

compared to their urethane counterpart. Similar Tg values observed for polyurethane and 

polythiourethane systems are higher than those for the polydithiourethane, consistent 

with the lower hydrogen bonding in the latter. 
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1 

CHAPTER I 

INTRODUCTION 

Photopolymerization is the process in which low molecular weight species 

(monomers, oligomers and prepolymers) are transformed into high molecular weight 

molecules to yield solid materials upon exposure to either visible or ultraviolet (UV) light. 

The light source can be either a laser or a polychromatic lamp.1'2 The advantages and 

benefits of UV photopolymerization are well know since their early industrial 

applications in the mid-late 1970s:1'3'4 

1) Rapid cure rate 

2) Energy and space saving 

3) Zero Volatile Organic Compounds (VOCs) 

4) Low-temperature operation 

5) Application versatility 

As a result of these advantages, UV polymerization has received increasing industrial 

attention for the last three decades. Due to more strict VOC regulations and increasing 

energy costs, the use of UV polymerizations has expanded into numerous fields including 

decorative and protective coatings, adhesives, printing inks, optics and electronics. 

A typical UV polymerization formulation includes photoinitiators, monomers, 

oligomers, prepolymers and various additives. After absorbing light, photoinitiators 
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generate active species, e.g. free radicals and ions, which initiates the polymerization of 

reactive compounds, e.g. monomers, oligomers and prepolymers. For practical 

considerations, e.g. viscosity, various additives may also be included in the formulation. 

The initiation and photopolymerization rates can be controlled by the combination of 

lamp and chemical systems. The dose, light intensity and wavelength of UV light affect 

the polymerization rate. Other factors include the reactivity of the monomers and 

oligomers, absorption of photoinitiators and monomers, oxygen inhibition, temperature, 

and pigmentation. 

Photopolymerization of (Meth)acrylates and Thiol-Enes 

(Meth)acrylates are the most widely used reactive components in 

photopolymerization due to their versatility and properties of the resultant polymers. The 

polymerization of acrylic monomers follows the conventional free-radical chain growth 

mechanism shown in Figure 1.1. The photoinitiator generates a radical species, which in 

turn forms a free radical via dissociation. The polymerization is then initiated by the 

addition of free radicals to the monomer double bond, leading to a free-radical chain 

process. The very rapid chain growth process and coupling of growing chain ends 

produce crosslinked molecular species in the early stages of polymerization,5'6 resulting 

in gelation and subsequent vitrification of the system at very low double bonds 

conversion. The undesired result of this process is stress built up within the polymer 
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network. A coincident phenomenon of this is an increase in viscosity, which kinetically 

traps free radicals within the network. These trapped active species continue to react, 

resulting in significant changes in polymer properties over a long time period. " In 

multifunctional (meth)acrylates systems, pendent and terminal double bonds having 

different reactivities lead to cyclization reactions, resulting in density differences in the 

final networks. This inhomogeneity is typically characterized by a broad glass transition 

region.8 The nature of the free-radical polymerization of multifunctional (meth)acrylates 

makes it very difficult to control the structure, physical and mechanical properties of the 

resultant polymer network. 

Thiol-ene photopolymerizations, which undergo a free-radical step growth 

mechanism, provide better control of the final network structures and thus superior 

physical and mechanical properties. As shown in Figure 1.2., once a radical is generated 

(with or without photoinitiators), it adds across the double bond of the ene monomer to 

produce a carbon centered radical which then abstracts a hydrogen from another thiol 

monomer, yielding a new thiyl radical that allows the process to continue. Polymerization 

proceeds by this two-step process until termination occurs via radical coupling. 

The gel point of multifunctional thiol-ene polymerizations is given by: 

<x= (1) 
V r(fthiol - l)(fene - 1 ) 

where r (< 1) is the molar ration of thiol and ene functional groups, and fthioi and fene are 
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the functionality of thiol and ene monomers, respectively. Compared with traditional 

acrylates, thiol-ene free radical polymerizations have a delayed onset of gelation, thereby 

forming network structures with less inner-stress.8 One of the most important aspects of 

thiol-ene photopolymerization is its relative insensitivity to oxygen inhibition, which 

generally suppresses free-radical polymerizations under ambient conditions. In this case, 

the peroxide radicals generated by the introduction of oxygen abstracts a thiol hydrogen, 

resulting in a new thiyl radical.10 This process allows propagation to proceed, leaving the 

polymerization rates almost unaffected. 

A particularly important feature of thiol-ene systems is the uniform network 

density that gives polymers exceptional physical properties, such as high impact 

resistance without stress cracking or shattering.8 This feature is demonstrated by the 

polymerization of a trifunctional ene (tris(4-(vinyloxy)butyl) trimellitate (TriVinyl)) with 

a trifunctional thiol (trimethylol propane tris(3-mercaptopropionate) (TriThiol)) which 

yields a network with a narrow glass transition region (about 20 °C) as illustrated by the 

tan 8 vs. temperature curve in Figure 1.3. The dynamic mechanical properties of other 

thiol-ene networks reported in the literature11'12 also show very narrow glass transition 

regions indicative of highly uniform structures. The properties of inhomogeneous 

polyacrylate networks can be significantly altered by the introduction of multifunctional 

thiols as a comonomer. The resultant networks have much more uniform structures as 



evidenced by narrower glass transitions as compared with their pure polyacrylate 

analogues. 

The properties of thiol-ene networks heavily depend on the structure of each 

component. Almost all of the thiols used in reported thiol-ene photopolymerizations have 

been primary.8'"~14 Although primary thiol-ene systems are very photochemically 

reactive, their storage stability is of concern. The short shell-life of certain primary thiol-

ene mixtures limits their applications where a long storage time before use is important. 

Possible reasons for the limited shelf-life of thiol-enes have been extensively studied and 

reviewed.8'15"17 In order to extend the shelf-life of thiol-ene mixtures, numerous types of 

stabilizers, including sulfur, triallyl phosphates and the aluminum salt of N-

nitrosohpenylhydroxylamine have been used to prevent ambient thermal free-radical 

polymerization. Recently, there have been reports of photocurable thiol-enes based on a 

series of hindered multifunctional or secondary thiols, depicted by the following structure 

Ri 

— ( ~ C 2 ^ C SH 

R2 (2) 

where Ri is an alkyl moiety, such as a methyl or a phenyl group, and R2 is either a proton 

or an alkyl group.18"22 A commercialized secondary thiol, the pentaerythritol tetrakis(3-

mercaptobutylate) (s-4T), has recently been reported for use in numerous applications 
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including spacers, color filters and light sensitive coatings for LCD displays. ' ' 

However, to the best of our knowledge there has not been a detailed evaluation of basic 

mechanical and thermal properties of thiol-ene systems as a function of ene structure. 

Hybrid Photopolymerization Systems 

To overcome the limitation of a single type of photopolymerization system and 

thereby synthesize polymers with unique properties, efforts have been undertaken to 

create simultaneously or sequentially polymerized hybrid systems, i.e., simultaneous 

free-radical and cationic photopolymerization process. " It is well known that 

(meth)acrylate free-radical photopolymerizations suffer from oxygen inhibition and 

relatively high polymerization shrinkage, while cationic ring opening polymerizations 

(oxetanes and oxiranes) are characterized by water inhibition and low reaction rates. The 

combination of free-radical and cationic polymerizations is a feasible way to overcome 

their respective limitations. The mechanism of cationic photopolymerization initiated by 

the direct photolysis of sulfonium salts is shown in Figure 1.4.39 Cationic 

photopolymerization systems are industrially important due to advantages including 

lower toxicity of monomers, insensitivity to oxygen, low shrinkage, and excellent 

adhesion. 

Representative examples include the free-radical acrylate/cationic epoxide hybrid 

systems reported by Decker et. al.30'31 and Jessop et.al.40 The oxygen sensitivity of the 
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acrylate is reduced, while its ultimate conversion is enhanced in hybrid 

photopolymerization of acrylates and epoxides. In addition, hybrid acrylate/epoxide 

systems form polymer matrices with superior hardness as compared to either neat 

acrylate or neat epoxide based networks while being more flexible than the neat epoxide 

polymer. Ortiz et al.41'42 investigated free-radical thiol-ene/cationic epoxide hybrid 

systems which were cured by photopolymerization and thermally induced polymerization 

at temperatures over 100 °C. During the initial photopolymerization process, the epoxide 

functional groups only achieve very low conversions because the growing cationic chain 

ends are readily terminated by the polysulfide formed in the system.41'42 Hence, a 

subsequent thermal polymerization at temperatures over 100 °C must be used to fully 

cure the formulation which, to some degree, negates the general advantage of 

photopolymerization. A photocurable free radical thiol-ene/vinyl ether cationic hybrid 

system would resolve this problem. 

Modification of Thiol-Ene Systems 

As described eaerlier, thiol-ene polymers exhibit unique physical and mechanical 

properties, such as network uniformity and low internal stress, which is critical in many 

applications including optical elements ' and dental restoratives. 5 However, the 

addition of thiols across double bonds yields flexible thioether linkages. Thus, the glass 

transition temperatures (Tg) are generally near or below room temperature, limiting the 



8 

application of these materials. The glass transition temperature can be increased by 

selecting more rigid thiol and ene structures, but there are few if any viable options. 

Limited Tg enhancement can be achieved by utilizing ene monomers with rigid structures, 

such as triallyl-l,3,5-triazine-2,4,6(lH,3H,5H)-trione. One alternative is to incorporate 

multifunctional acrylates, which act as ene monomers reacting either with thiols or 

themselves.12'46 The resultant polymers have glass transitions as high as -80 °C (as 

determined by DMA at 1 Hz).47 But the uniformity of the networks, a critical criteria in 

several applications, is greatly reduced as indicated by the broadened tan 5 peaks 

compared with those of pure thiol-ene networks with full-width at half maximum 

(FWHM) values of 15-20 °C. Thus there is a need to develop thiol-ene based systems 

with high Tgs and narrow glass transition regions. 

Physical aging is a widely reported phenomenon for many linear polymers.48'49 

Upon annealing at temperatures below the glass transition temperature, a vitrified 

polymer in a thermodynamic non-equilibrium state will approach the thermodynamic 

equilibrium with coincident changes in physical properties, including a decrease in 

specific volume and enthalpy relaxation.48'49 The process is related to changes in various 

microstructural and macrostructural properties.48 The physical aging behavior of 

polymers is affected by various factors such as temperature, time, and chemical structure. 

For example, hydrogen bonds offer physical linkages within polymer matrices that 



9 

restrict segmental and chain motions, thus affecting the relaxation process. This has been 

discussed previously in literature.50"53 McGonigle et al.50 prepared a series of linear 

polystyrene copolymers capable of forming hydrogen bonds and measured their enthalpic 

relaxation and free volume changes using differential scanning calorimetry (DSC) and 

positron annihilation lifetime spectroscopy (PALS). The physical aging process of these 

copolymers was shown to be sensitive to the formation of hydrogen bonds, resulting in a 

slower relaxation rate during aging process as compared to the polystyrene homopolymer. 

Thus it is important to determine the effect of hydrogen bonding on the physical aging 

process in thiourethane-thiol-ene networks. 

Urethane, Thiourethane and Dithiourethane 

Polyurethanes are high performance materials widely used in such applications as 

coatings, elastomers, and biomedical devices due to their extraordinary combination of 

physical and mechanical properties.54"56 Thiourethanes and dithiourethanes are obtained 

when one or both of the oxygens in the urethane structure is substituted with sulfur. 

Dyer et al. reported two different reactions for preparing linear 

polythiourethanes.57 Polyaddition involves the reaction of diisocyanate and dithiol 

catalyzed by tri-n-propylamine in a co-solvent system of chlorobenzene and o-

dichlorobenzene. Polycondensation (Figure 1.6) utilizes the interfacial polymerization 

technique which yields polymers with high polydispersity. Although the reaction rate of 
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the polycondensation method is high, the polyaddition method exhibits better control of 

the molecular weight distribution. When appropriate basic catalysts are used, the 

isocyanate-thiol reaction can be very efficient.58 

In addition to tri-n-propylamine, various tertiary amines, such as triethylamine, 

tri-n-butylamine, 1 - ethylpiperidine, 1,4-diazabicyclo (2,2,2) octane (DABCO) and 

benzyldimethylamine, are able to catalyze the thiol-isocyanate reaction.58'59 DABCO 

and triethylamine are particularly efficient catalysts. The catalytic ability of the amine is 

C O 

proportional to its base strength. In addition, steric hindrance around the nitrogen atom 

will greatly reduce the catalytic efficiency. Using the 1-butanethiol-phenyl isocyanate 

system as an example, the proposed mechanism of amine catalyzed thiol-isocyanate 
so 

reaction is shown in Figure 1.7. Due to the lower basicity of sulfur, which makes the 

thiol less able to attack the isocyanate carbonyl group, the spontaneous thiol-isocyanate 

reaction (step 1 in Figure 1.7) is usually slower than the corresponding alcohol-

isocyanate reaction. One of the unique features of the thiol-isocyanate reaction is that the 

thiourethane formed in step 2 has some catalytic effect on the thiol-isocyanate reaction in 

step 3, but it is not active enough for side reactions with an isocyanate58"60 that generates 

allophanates generally found in alcohol-isocyanate reactions. ' 

Although the reactions of thiols and isocyanates shown in Figure 1.5 have been 

know for a long time,57'62 and the resultant thiourethanes are widely used in many 
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modern applications including optical lenses and advanced coatings,63"65 the basic 

properties of thiourethanes have not been characterized to the same extent as their 

urethane counterparts. Although limited literature can be found on synthesis, catalysis, 

en co c/y f.fi en 

reaction kinetics, thermal dynamic transitions and hydrogen bonding, '>J > ° > ° > ° detailed 

comparisons of urethane, thiourehane and dithiourethane properties have not been made. 

Some of the physical and chemical properties of the linear polythiourethanes prepared 

from methylenebis (4-phenylisocyanate) and 1,6-hexanediisocyanate with a series of 

difunctional thiols were briefly described by Dyer et al. in a 1960 paper.57 In the work the 

dilute solution viscosity of the polythiourethane was very low (0.06-0.12), indicating a 

low molecular weight. Polythiourethanes have been reported to have higher melting 

points than their polyurethane analogues due to greater molar cohesive energy "7 and 

possess an intermediate hydrolyzability in aqueous base between that of aromatic and 

aliphatic urethanes.7 Polythiourethane are claimed to be insoluble in most organic 

solvents, with only very polar solvents such as dimethylformamide and dimethyl 

sulfoxide being able to dissolve them.57 

Hydrogen bonding is a vital factor in determining the microscopic and 

macroscopic properties of polyurethanes, including phase behavior, glass transition 

temperature, strength and stiffness.72'73 Hydrogen bonding involves a donor A-H and an 

acceptor B. The electronegativity of A must be high in order to alter the electron density, 
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and thus partially deshield the proton. The donor B should have either a lone electron pair 

or polarizable TC electrons.7 '75 Strong hydrogen bonds are formed between donors that 

are electron deficient and acceptors with high electron density. Hydrogen bonds formed 

by neutral donors and acceptors are generally moderate in strength. Weak hydrogen 

bonds are formed when A is slightly more electroneutral than H or when B has only n 

electrons. 

In the past 60 years, the hydrogen bonding behavior of both segmented systems 

T) TX Hf\ ft 1 

and polymer blends ofpolyurethanes have been thoroughly investigated. ' ' 

Polyurethane morphology is greatly affected by the hydrogen bonding between the 

urethane repeat units (Figure 1.8). This hydrogen bonding can create a physically 

crosslinked network which imparts greatly enhanced physical properties. Polyurethanes 

comprised of a diisocyanate, a glycol extender (or diamine), and a long chain polyether or 

polyester polyol form materials comprised of both soft and hard segments (Figure 1.9). 

The hard segments are characterized by a high concentration of urethane groups that 

provide stiffness via hydrogen bonding. The soft segment is generally characterized by 

the long chain polyol that gives the polymer film flexibility. The microphase-separated 

structure formed determines the elastic properties of linear urethane block copolymers, 

with the hard domains behaving as physical crosslinks. By changing the chemical 

structure of the components, the morphology can be optimized for performance desired. 



13 

The nature of hydrogen bonding in thiourethanes and dithiourethanes has not been 

characterized to the same extent as their urethane analogues. Although sporadical reports 

occur in literature,82'83 neither a direct comparison of the hydrogen bonding behavior of 

urethane, thiourethane and dithiourethane nor the correlation of 

thiourethane/dithiourethane structures with their properties has been made. Wheeler et 

al.83 investigated a homologous family of alanine-based dithiocarbamates (Figure 1.10) 

by X-ray crystallography. Although the self-assembly of these molecules relies on the 

formation of the carboxylic acid dimmers via strong hydrogen bonding, the variation in 

molecular alignment arises from the formation of N-H—S=C and N-H—0=C hydrogen 

bonds. Compared to a C=0 group, the hydrogen bond acceptor, C=S group, forms weaker 

hydrogen bonding. The reported hydrogen bond length (for H—S=C) ranges from 2.60 to 

2.70 A,83"85 longer than that of H—0=C (less than 2.2 A).75'83 A comprehensive 

investigation of the hydrogen bonding capability of aliphatic and aromatic urethane, 

thiourethane and dithiourethane has not been conducted to date, and their effect on the 

physical and mechanical properties of the corresponding polymers has not been reported. 

A number of techniques, including infrared (FTIR) and Raman spectroscopy, 

nuclear magnetic resonance spectroscopy (NMR), electronic absorption spectroscopy, X-

ray diffraction (XRD), and neutron scattering spectroscopy have been used to measure 

hydrogen bonding.75 FTIR, historically the most important spectroscopic method, is 
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sensitive to the presence of hydrogen bonds which cause measurable changes in 

vibrational modes. Most of the work in this area has focused on measuring the variation 

in the stretching frequency of the bonds adjacent to hydrogen bonds, e.g. N-H and C=0 

in the case of the N-H—0=C pair. As functional groups (e.g. NH, OH, C=0) are 

involved in hydrogen bonding, their characteristic bands will shift to lower frequencies. 

There has been a great deal of literature trying to correlate this frequency shift (Av) with 

hydrogen bond enthalpy (AH).86"88 However, the use of Av to predict the strength of 

hydrogen bonding, as represented by AH, is limited due to the lack of a general 

relationship between them for different hydrogen bonding pairs. Nonetheless, from a 

comparison of the absorbance of the free and the hydrogen bonded peak, an estimate of 

the percent of functional groups involved in hydrogen bonding can be approximated ' 

M>,NH = T (3) 

1 + 3.46 ^ 
•A-b.NH 

Fb,c=o = r (4) 

A 

where Af;NH, Afsc=o, Ab,NH, and Ab,c=o are the absorbance of free and hydrogen bonded 

NH and carbonyl groups, respectively. 

X-ray diffraction has been proved useful in investigating hydrogen bonded 

systems.89 Hydrogen bonding is assumed to exist, if the sum of van der Waals radii of 
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donor A and acceptor B is greater than the measured distance between A and B, R(A—B). 

The distance values, R(A—B) and also H—B, are reported as measures of relative 

hydrogen bond strength, although the latter value may not be that accurate due to 

difficulty in locating a hydrogen atom. The shorter the distance the stronger the hydrogen 

bond. Neutron diffraction90 complements X-ray diffraction, since this method can 

accurately determine hydrogen bonds lengths. 

The NMR chemical shift is very sensitive to environment changes of the protons 

involved in hydrogen bonds, making this technique very useful in characterizing these 

systems.91 Generally, dissolution of hydrogen bonds by diluting or heating, will move 

proton resonance shifts to lower ppm values and vice versa. It is believed the shifts in 

proton resonance signal are determined by two factors: (1) anisotropic magnetic currents 

in acceptor B, and (2) polarization of the AH bond by B.92 Usually (2) is more important 

than (1), because B provides a strong electric field near A-H which deforms the proton 

electron distribution, leading to a decrease in density and increase in asymmetry of the 

proton electron density. This effect decreases the shielding of the proton, thus resulting in 

a downfield shift upon hydrogen bond forming. However, if the acceptor is an aromatic 

molecule, (1) dominates (2), because the induced ring current generates a secondary 

magnetic field, that causes an upfield shift in proton resonance. Unlike FTIR, the 

observed peak is a weighted average of associated and unassociated protons due to the 
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much slower time scale of NMR spectroscopy as compared to the exchange rate of 

hydrogen-bonded systems. 

Summary 

The photopolymerization of thiol-ene and the properties of the resultant polymer 

networks, e.g. uniform network density and late gel point, have been discussed. The 

shelf-life stability of conventional thiol-ene systems composed of primary thiols are of 

concern, and this issue addressed by using secondary thiol monomers. From a practical 

point of view, there is a need to determine the structure-property relationships of different 

thiol (primary and secondary)-ene (allyl ether, vinyl ether and acrylate) polymers. Hybrid 

photopolymerization systems, used to circumvent the limitations of a single system, is an 

area that has attracted extensive attention. It would be advantageous to generate networks 

formed through consecutive free-radical and cationic photopolymerizations. Another way 

to modify thiol-ene networks is to incorporate rigid monomer structures as well as 

urethane/thiourethane groups able to form hydrogen bonds. The preparation and basic 

properties of polythiourethanes were reviewed to provide critical insight for the work 

described later in this document. Finally, the effect of hydrogen bonding on the 

morphology and properties of polyurethanes as well as the methods used to investigate 

hydrogen bonding were described. 
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Initiation 

PI PI* *- P • + I • 

P + M - P-M • 

Propagation 

P-M • + nM - P-Mn • 

Termination 

P-Mn • + P-Mm - p_Mn+m 

Figure 1.1. Conventional free-radical chain growth polymerization mechanism. 
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Initiation 

R—SH + Pl(if used) —^*- RS ' + Other product 

Propagation 1 

kp RS 
RS • + = \ —p -+ \ — : 

R' ^ R . 

Propagation 2 

RS kct RS H 
N ^ + RSH N < + R S -

R' R' 

Termination 

Coupling of the radicals present 
Figure 1.2. The free-radical step growth mechanism of thiol-ene photopolymerization. 
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Figure 1.3. The tan 8 vs. temperature plot of TriThiol-TriVinyl networks. 
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Ar3S+X- + ZH h v * Ar3S*X" + Z« + HX + Ar« 

HX + M H—M+ + X" 

H—M+ + nM H—(M) n -M+X" 

Figure 1.4. Mechanism of cationic photopolymerization. 
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o o s 
II II II 

- - -N-C-O- - - - - -N-C-S- - - - - -N-C-S- - -
i i i 

H H H 
Urethane Thiourethane Dithiourethane 

Figure 1.5. Structures of urethane, thiourethane and dithiourethane. 
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O H H O 
r II I I II i 

OCN-R-NCO + HS-R'-SH - j - C - N - R - N - C - S - R ' - S - j ^ ; 

Polyaddition method 

0 0 O O H H 
II II r II M i l l 

C I - C - S - R - S - C - C I + H2N-R'-NH2 - - j - C - S - R - S - C - N - R ' - N - ^ + HCI 
Polycondensation method 

Figure 1.6. Methods to synthesis linear polythiourethane. 
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<QKNCO+ / \ / ^ S H {^VN-^S-C.H,, (1) 

C4H9SH ^ - , H O / ^ \ C4H9SH /7-^ H O 
^ J h N C O + (C2H5)3N ^ = ^ Complex A — — - ( V N ^ S - C 4 H 9 + (C2H5)3N (2) 

H O C4H9SH o HO 
<(J^NCO + < ( = ) -N^S -C .Hg ^ ^ Complex B — - j - — - 2 < ^ J - N - " - S - C ^ (3) 

/ r - ^ H 0 C4H9SH /r-A H 0 
Complex A + < ^ J > - N - U - S - C 4 H 9 - Complex C - 2 <^J>-N-"-S-C^g + (C2H5)3N (4) 

Figure 1.7. Suggested mechanism of amine catalyzed thiol-isocyanate reaction. 
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H O H 
> II ' 

- R - N - r p O - R ' - O ^ ^ N - R - N ^ — O -
O H O 

H O H 
I II ' 

-R-N—n— O-R'-O—u— N-R-N—n— O-
O H O 

Figure 1.8. Physically crosslinked networks formed through hydrogen bonding between 

urethane linkages. 
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Soft Segment Hard Segment Sot Segment 

short chain diol 

long chain diol 

urethane group 

diisocyanate 

Figure 1.9. Schematic representation of polyurethane segments. 
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S CH3 

II I 3 

R-S-C-N-C-COOH 

H H 

R= CH3, CH2CH3, CH(CH3)2, CH2C6H5 

Figure 1.10. Structures of dithiocarbamates. 
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CHAPTER II 

OBJECTIVES 

As stated in the introduction it is important and necessary to improve the 

properties of photopolymerized thiol-ene networks through several different ways 

including monomer selection, mechanism selection (combining free-radical and cationic 

photo polymerization) and the incorporation of rigid units, e.g. thiourethanes, into the 

structure. Since hydrogen bonding in thiourethanes is not well characterized, it is also 

deemed essential to conduct a comprehensive investigation on the structure-property 

relationships of thiourethanes. Specifically, the goal of this work is to: 

1. Establish the relationship between ene and thiol structure and the physical and 

mechanical properties of photocured thiol-ene networks. 

2. Prepare dual cure thiol-ene free-radical/vinyl ether cationic hybrid systems and 

probe the effect of monomer ratio on the photopolymerization kinetics and thiol-

ene network properties. 

3. Enhance the glass transition temperature of thiol-ene networks by incorporating 

thiourethane linkages, and characterize the basic physical and mechanical 

properties of the resultant thiourethane thiol-ene networks. 

4. Examine the effect of hydrogen bonding on physical aging of the thiourethane 

thiol-ene networks. 

5. Investigate the hydrogen bonding behavior of thiourethanes and dithiourethanes 

and compare the results with urethanes; correlate the structures of thiourethane 

and dithiourethanes with their physical, optical, thermal and mechanical 



properties. 

The first objective (Chapter III) will establish the effect of ene and thiol structure 

on photopolymerization kinetics and network properties, providing a basic understanding 

of structure-property relationships of thiol-ene networks. The effect of four different enes 

and both conventional primary and novel secondary thiols will be examined. 

The second objective (Chapter IV) will establish the method for preparing a dual 

cure photopolymerization system that contains a free-radically polymerizable thiol-ene 

and cationically polymerizable vinyl ether. The molar ratio of thiol/vinyl ether will be 

related to the polymerization kinetics and physical and mechanical properties of resultant 

hybrid polymers, such as glass transition temperature and tensile strength. 

The third objective (Chapter V) will provide a novel way to prepare thiol-ene 

networks with enhanced glass transition temperatures and very uniform network 

structures for applications at elevated temperatures. DSC and DMA will be used to 

measure the increase in glass transition temperature by introducing thiourethane linkages. 

Physical and mechanical properties of the resultant thiol-ene films will be characterized 

to provide an understanding of the structure-property relationship of the novel 

thiourethane thiol-ene networks. 

The fourth objective (Chapter VI) will help to probe the effect of hydrogen 

bonding on the physical aging of dense thiourethane thiol-ene networks, represented by 

entropy recovery in DSC scans and changes in macro-scale properties. The enthalpy 

relaxation rate of different systems will be measured and compared to draw a basic 

conclusion. 
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Finally, the fifth objective (Chapter VII and Chapter VIII) will address the need to 

conduct a comprehensive comparison and characterization of a homologous family of 

urethane, thiourethane and dithiourethane structures. The hydrogen bonding behavior of a 

series of small molecule and polymeric urethane, thiourethane and dithiourethane 

compounds will be probed and related to their physical and mechanical properties, 

providing a basic understanding of the sulfur containing urethane type materials. The 

results will benefit the future development of polythiourethanes and polydithiourethanes 

widely used in many modern applications. 
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CHAPTER III 

THE EFFECT OF THIOL AND ENE STRUCTURES ON THIOL-ENE NETWORKS: 

PHOTOPOLYMERIZATION, PHYSICAL, MECHANICAL AND OPTICAL 

PROPERTIES 

Abstract 

The photopolymerization of four different types of ene monomers with both 

primary and secondary multifunctional thiols has been evaluated. To understand the effect 

of ene monomer structures on polymer properties, a comprehensive investigation of the 

basic physical, mechanical and optical properties was conducted for the secondary and 

primary thiol-ene networks. The results indicate that ene structures can significantly 

affect the rigidity and the physical and mechanical properties of the thiol-ene networks. 

Network density controlled by the functionality of ene monomers was found also to be a 

major factor in defining network properties. Networks formed from the secondary 

thiol-ene systems are basically equivalent to those made from primary thiol-enes with 

respect to physical, mechanical and optical properties. The secondary thiol monomer 

samples evaluated were found to have exceptional storage stability and relatively low 

odor. 

Introduction 

The photopolymerization of compounds having ethylenically unsaturated bond, 

such as acrylates and methacrylates, often suffers from problems such as oxygen 
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i "\ 

inhibition and insufficient curing. ' The first issue is generally addressed by purging 

with inert gases or covering with an oxygen barrier membrane. One alternative is to 

expose a mixture of multifunctional thiols and multifunctional enes to light, leading to the 

formation of highly cross-linked networks with uniform structure in the presence of 

oxygen. " The photocured thiol-ene networks exhibit narrow glass transition regions and 

excellent mechanical and thermal properties. One of the attractive features of thiol-ene 

photopolymerization is that many types of enes and thiols can be incorporated into 

thiol-ene networks. The reactivity of three basic types of thiols, mercaptopropionate, 

thioglycolate and alkyl thiol, with various types of enes, such as norbornene, vinyl ether, 

allyl ether, allyl triazine, allyl isocyanurate, alkene, acrylate, methacrylate and styrene, 
1 o c /: 

have been reported in the literature. ' ' ' There have been sporadic reports dealing with 

the kinetics of photocured thiol-ene networks and selected physical properties. However 

there has not been a detailed evaluation of basic mechanical and thermal properties of 

thiol-ene systems as a function of ene structure. 

Almost all of the thiols used in thiol-ene photopolymerization studies to date have 

been primary. Coincidentally, the shelf-life stability of these thiol-ene systems has been 

the subject of considerable concern. Possible reasons for the limited shelf-life of 

thiol-enes have been extensively studied and recently reviewed by Hoyle et al. ' " In 

order to extend the shelf-life of thiol-ene mixture, numerous types of stabilizers, 

including sulfur, triallyl phosphates and the aluminum salt of 

N-nitrosohpenylhydroxylamine have been used to prevent the ambient thermal 



free-radical polymerization. " Recently there have been reports of photocurable 

thiol-enes based on a series of hindered multifunctional or secondary thiols, as depicted 

by the following structure 

^ 

Ri 

SH 

where Ri is an alkyl group, such as a methyl or a phenyl group and R2 is either a H or an 

alkyl group. ' " A commercialized secondary thiol, pentaerythritol 

tetrakis(3-mercaptobutylate) (s-4T), has been recently reported for use in numerous 

applications.15'17'19"24 For example, Okamoto et al. added s-4T into a (meth)acrylate 

photocuring formulation to prepare antistatic hard coating films with excellent 

transparency.19 Spacers, color filters and light sensitive coatings for liquid crystal 

displays were also prepared from formulations containing secondary thiols and reported 

to exhibit excellent storage stability and photosensitivity.20"23 Secondary thiols have also 

been produced as photocuring accelerators and for the preparation of thermally stable 

thiourethane containing photoinitiators.16'17 Since thiol-ene resins composed of 

commercial secondary thiols have been reported to exhibit exceptional shelf-life 

stability, ' " it is important to evaluate the properties of networks prepared from 

systems incorporating a commercial secondary thiol. To the best of our knowledge, there 

is almost no any information about the properties of thiol-ene networks based on a 

commercial secondary thiol, let alone the structure-property relationships of these 
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materials. 

Since it is important to understand physical properties of photocured thiol-ene 

networks in order to develop applications that combine a variety of essential properties, 

we decided to provide a comprehensive investigation of a series of thiol-ene networks 

based on four different enes and both primary and secondary thiols. The 

photopolymerization of these enes with both primary and secondary thiols and the 

physical, mechanical and optical properties of the resultant thiol-ene films have been 

thoroughly characterized and analyzed and basic structure-property relationships 

established. 

Experimental 

Materials 

Pentaerythritol tetrakis(3-mercaptobutylate) (s-4T) was obtained from Showa 

Denko K. K. and used as received. Pentaerythritol triallyl ether (APE) was obtained from 

Perstorp and used as received. Polyethylene Glycol (400) Diacrylate (PEGDA) was 

obtained from Sartomer Company and used as received. The photoinitiator, 

2,2-dimethoxy-2-phenylacetophenone (DMPA) was obtained from Ciba Specialty 

Chemical Company and used as received. Pentaerythritol tetrakis(3-mercaptopropionate) 

{AT), triallyl-l,3,5-triazine-2,4,6(lH,3H,5H)-trione) (TTT) and tri(ethylene glycol) 

divinyl ether (TEGDVE) were purchased from Aldrich Chemical Company and used as 

received. 
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Preparation 

To prepare a thiol-ene coating film, 5.0 mmol of S-4T/4T, an equal molar double 

bond concentration of ene monomer (APE, TEGDVE, TTT) or a thiol/ene molar ratio of 

20:80 (PEGDA), and 1 wt% of DMPA were charged into a clean 25 mL glass vial and 

mixed with the aid of sonication (the structures of all monomers are shown in Chart 3.1). 

The glass vial was completely wrapped with a layer of aluminum foil to prevent any 

prepolymerization. Once the photoiniator was dissolved and the formulation 

homogeneously mixed, the mixture was evenly spread onto steel plates (for impact and 

mandrel bend tests) or glass (for all other tests) using a 5 mil (125 um) draw down bar. 

Cured thiol-ene networks were obtained by exposing the coated glass or steel plates 10 

times to the output of a Fusion high-intensity lamp system with conveyer belt (D bulb, 

400 W/in. input, line speed of 10 feet/min, 3.0 W/cm2) as described elsewhere.25 The 

thickness of cured thiol-ene films are approximately 100±20 um. To prepare samples for 

shelf-life measurement, the formulations in the glass vials described above were wrapped 

with aluminum foil and stored in an ambient environment. It should be noted that the 

S-4T/4T-PEGDA samples used for shelf-life and real-time FTIR were equal molar 

mixtures of thiol and double bond. 

Characterization 

A modified Bruker IFS 99 FTIR spectrometer with a horizontal sample stage was 

used to monitor the photopolymerization of thiol and ene monomers and obtain real-time 

IR (RTIR) spectra.26,21 UV light generated from an Oriel lamp system equipped with a 
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high pressure mercury-xenon lamp (200 W) was channel into the sample chamber 

through an optical fiber. The polymerization of thin layers of the above sample (~25 um) 

sandwiched between two sodium chloride plates was initiated by continuous UV light 

irradiation within the sample chamber. The whole process was monitored by the FTIR 

spectrometer operating at 5 scans/s. The thermal properties of the prepared thiol-ene films 

were measured by a differential scanning calorimeter (DSC), TA Q1000 (TA Instruments), 

operating at a heating rate of 10 °C/min. The second heating scan curves were used to 

determine the glass transition temperatures (Tg) by TA Universal Analysis software. The 

thermomechanical properties were measured with a TA Q800 DMA (TA Instruments) 

operating at 1 Hz and a heating rate of 3 °C/min (tensile mode). The peak maximum of 

the tan 8 plot was taken as the glass transition temperature. The thermal stability of each 

thiol-ene network was measured with a TA Q50 (TA Instruments, Inc.) thermal 

gravimetric analysis (TGA) instrument operating at a heating rate of 10 °C/min. 

Refractive index values were measured by a Bausch&Lomb ABBE-3L refractometer at 

24 °C. 1-Bromonaphthalene was applied between the sample film and the prism shield. 

The Persoz pendulum hardness values (average of six tests) were measured following 

ASTM D-4366 using a BYK-Gardner pendulum hardness tester with a square frame 

pendulum. The direct and reverse impact resistance, the mandrel bend tests and pencil 

hardness tests were conducted according to ASTM D-2794, ASTM D 522-93a and ASTM 

D-3363, respectively. 
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Results and Discussion 

Shelf-life and Polymerization Kinetics 

As has already been reported,15'17"23 resins prepared from secondary thiols exhibit 

excellent shelf-life stability. For reference, the shelf-life of all formulations were 

measured and the results are listed in Table 3.1. None of the secondary thiol-ene 

formulations gelled after 20 days storage at room temperature, although the viscosity of 

the TTT and PEGDA based samples did increase, indicating the excellent thermal 

stability of these formulations. The primary thiol-enes evaluated are much less stable 

since all formulations gelled during the 20 day storage period. Particularly interesting, the 

mixture of 4T and TEGDVE, the very reactive vinyl ether monomer, gelled within 12 h 

while the S-4T-TEGDVE mixture had a low viscosity even after 20 days. 

The polymerization kinetics of each of the thiol mixed with four different types of 

ene monomers was next measured by real-time FTIR at room temperature. For all four 

types of ene monomers, as shown in Figure 3.1 the photopolymerizability of the 

secondary thiol, s-4T, is reduced appreciably compared to the primary thiol monomer, 4T 

for the light intensity used. In reactions with APE and TEGDVE, both primary and 

secondary thiols show very fast polymerization rates. High conversions are attained since 

the glass transitions of the networks formed are well below room temperature (shown in 

next section). In cases of the s-4T and 4T with TTT, high polymerization rates were also 

achieved, but with lower conversions than for the systems with APE and TEGDVE under 

the experimental conditions (low light intensity (0.625 mW/cm )). As the three 
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dimensional S-4T-TTT and 4T-TTT networks are formed, the glass transition temperature 

of the networks increases to greater than room temperature (Tg=45 °C) hindering the 

further conversion of functional groups, i.e., diffusion limitation sets in under the present 

irradiation conditions of low light intensity at room temperature. Figure 3.1 shows that 

1:1 molar functional group mixtures of 4T and s-4T with PEGDA are characterized by 

incomplete thiol functional group conversions. The conversion of thiol groups in PEGDA 

was greatly suppressed because of the high homopolymerization propensity of acrylate 

groups as indicated in Figure 3.2. The acrylate monomer achieved complete double bond 

conversions within 50 s. Herein we note that, in order to achieve high monomer 

conversion and eliminate the effect of unreacted monomers on polymer properties, a 

sample with only 20 mol% of thiol and 80 mol% of PEGDA was used to generate fully 

cured films for mechanical and physical testing. Also, in subsequent preparation of 

photocured films for physical property evaluation, complete conversions of all of the 

thiol-ene films was ensured by the experimental conditions used, 10 passes under the 

high-intensity Fusion lamp system (3.0 W/cm"2) at a belt speed of 10 fpm. 

Physical, Mechanical and Optical Properties 

From a practical point of view, it is important to characterize any effect of the 

thiol and ene structures on the physical properties of the photocured thiol-ene networks. 

The glass transition temperatures of the thiol-ene networks prepared from s-4T shown in 

Figure 3.3 and Table 3.2 were marginally higher than the networks prepared from 

primary thiol. These differences, which are quite small, could be due to hindered rotation 



of thiol-ether linkages (-S-) afforded by the additional a-methyl group of s-4T or 

differences inpurity of the 4T and s-4T samples. It is of interest to note that the 4T-TTT 

and S-4T-TTT networks have the same glass transition temperature, perhaps due to the 

more rigid structure of the triallyl triazine (TTT) monomer contributing to the rigidity of 

the networks. The rigid TTT also provides the highest Tg among the systems measured. 

Thiol-ene films based on the softer APE structures have much lower Tgs than the TTT 

based ones. The effect of lower network density and more flexible chemical structure on 

glass transition is exhibited by the very low Tgs of TEGDVE and PEGDA based systems. 

The DMA results are consistent with the DSC Tgs as shown in Table 3.3. 

An interesting phenomenon is that, for networks based on TEGDVE and PEGDA 

which have more flexible structures and lower network densities, there is a greater 

change in specific heat capacity (ACP) at the glass transition region (Table 3.2) consistent 

with increased propensity for molecular motion in the rubbery state. 

The Persoz pendulum hardness of each thiol-ene network was also measured 

(Figure 3.4). Any small differences between the primary and secondary thiol-ene 

networks are inconsequential and may arise from slight structural differences. The TTT 

based networks exhibit the highest Persoz pendulum hardness at room temperature due to 

their rigid structures, which are dictated by their glassy structure at room temperature 

resulting in the high storage modulus at the analysis temperature (23 °C). Less energy is 

damped by the rigid glassy TTT based networks as attested to by the higher oscillation 

times (higher Persoz pendulum hardness values). PEGDA and TEGDVE networks have 
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medium hardness values which are higher than for the APE networks. The low damping 

times for the trifunctional APE based networks result from their DSC based glass 

transition region being located near the testing temperature (room temperature). This 

affords maximum energy damping in the hardness measurements. 

The direct and reverse impact resistance values of the thiol-ene films are shown in 

Figure 3.5. Primary thiol and secondary thiol based networks do not exhibit apparent 

differences with respect to impact resistance values. TEGDVE based networks, benefiting 

from their flexible ethylene glycol units, show the highest direct impact resistance. 

PEGDA networks, with the same type of flexible structures as TEGDVE, do not show the 

high direct impact resistance values possibly due to inhomogeneities present in acrylate 

containing films making them too fragile to endure the impact of the tester. However, 

these films do perform extremely well in the reverse impact resistance tests in which the 

coated panels are subject to impact from the back (not directly making contact with the 

coating films). 

The elongation and cracking resistance of each thiol-ene coating film was also 

measured by mandrel bending tests following an ASTM standard procedure. The coating 

film flexibility is indicated by the elongation values and crack resistance values. The 

crack lengths are simply taken as the crack resistance values, and therefore the smaller 

the value the better the performance. As shown in Figure 3.6, the secondary and primary 

thiol based thiol-ene networks performance was equivalent with respect to flexibility for 

a given ene. The overall better performance parameters for the TTT based films is a result 
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of the combination of high crosslink density and the rigid TTT structure. These TTT films 

exhibit fairly good mechanical properties and are tough. The higher network density also 

contributes to the good performance of the APE based thiol-ene films in the mandrel 

bending tests. The PEGDA based films formed from curing the 20/80 thiol-acrylate 

mixture have very poor mechanical properties and readily tear upon implementation of a 

light force. 

Scratch resistance of network films is determined by many factors including 

network density and glass transition temperature. In all cases, the surface scratch 

resistances of the primary and secondary thiol-ene films measured are essentially 

identical (Figure 3.7). As a result of their high network density, and the fact that they are 

glasses at room temperature, the TTT based films exhibit higher pencil hardness for both 

the 4T and s-4T based films. The lowest pencil hardness values are obtained for the 

TEGDVE and PEGDA films which have low network densities and are rubbery at room 

temperature where the scratch resistance was measured. 

The thermal stability of all of the thiol-ene networks was measured by TGA 

heating at 10 °C/min; the resulting weight loss curves are shown in Figure 3.8 and the 

resultant 5% weight loss temperatures (Ts%) are listed in Table 3.4. Except for slight 

differences for the TEGDVE and APE based films at high temperatures, there are not any 

differentiable variations in thermal stability between primary and secondary based 

thiol-ene films. It is noted that the higher network densities of the TTT and APE based 

networks help to stabilize the network structures at elevated temperature. 
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Finally, the refractive indices of all of the thiol-ene films were measured at -24 °C. 

The relationship of the refractive index to other factors can be expressed by the 

Lorentz-Lorenz equation 

n2-\ =pNava 

n2+2 3M0s0 

where n is the refractive index, p is the density of polymer, a is the average polarizability, 

so is the vacuum permittivity, Nav is the Avogadro constant and Mo is the molecular 

weight of polymer. The dense glassy networks prepared from TTT exhibit the highest 

refractive index at 24 °C (Table 5). The low density and sulfur content of the PEGDA 

based networks lead to particularly low refractive index values. 

Conclusion 

The photopolymerization of four different types of enes with primary and 

secondary thiol was investigated and physical and mechanical properties of the thiol-ene 

networks measured. All ene monomers showed high reactivity with both thiols, with 

PEGDA homopolymerizing as well as copolymerizing with the thiol. 

Higher ACP values were observed for the more flexible networks based on 

TEGDVE and PEGDA. The flexibility, surface scratch resistance and thermal stability of 

films based on the primary and secondary thiols were essentially identical. 

The trifunctional APE and TTT based networks with higher network densities, 

and in the case of TTT with a rigid ring structure, generated films with higher glass 

transition temperatures, pencil hardness values and refractive indices, and better mandrel 



50 

bending performance. The difunctional and flexible TEGDVE and PEGDA based 

networks had lower Tgs, higher ACps and better impact resistance. Finally, all of the resin 

mixtures prepared from the commercial secondary thiol exhibited truly exceptional 

shelf-life than those prepared from the primary thiols, and the secondary thiol sample 

evaluated had little or no objectionable odor making it particularly suitable for many 

applications. 
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Chart 3.1. Chemical structures of thiols and enes. 
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Table 3.1. Shelf-life of thiol-ene formulations (1 wt% DMPA) stored in dark and at room 
temperature. 

4T 

s-4T* 

APE 

15 days 

LOWTJ 

TEGDVE 

12 h 

Lowrj 

TTT 

10 days 

Highrj 

PEGDA 

9 days 

Highrj 

*Storedfor20 days 
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Table 3.2. Glass transition temperature and heat capacity change of thiol-ene networks 
measured by DSC. 

Tg(°C) 

ACP (J/g/K) 

APE 

4T 

3 

0.41 

s-4T 

7 

0.40 

TEGDVE 

4T 

-30 

0.71 

s-4T 

-25 

0.61 

TTT 

4T 

45 

0.31 

s-4T 

45 

0.30 

PEGDA 

4T 

-30 

0.53 

s-4T 

-26 

0.50 
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Table 3.3. Glass transition temperature of thiol-ene networks measured with DMA. 

Tg(°C) 

E' at 23 °C 

(MPa) 

APE 

4T 

8 

15 

s-4T 

13 

20 

TEGDVE 

4T 

-24 

4 

s-4T 

-20 

7 

TTT 

4T 

63 

1568 

s-4T 

64 

1658 

PEGDA 

4T 

-22 

15 

s-4T 

-17 

18 
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Table 3.4. Temperature at 5% weight loss (Tso/o) and temperature at the maximum 
degradation rate (Tmax) of thiol-ene films. 

T5%(°C) 

1 max (. {--) 

APE 

4T 

362 

400 

s-4T 

360 

390 

TEGDVE 

4T 

328 

358 

s-4T 

326 

357 

TTT 

4T 

352 

388 

s-4T 

350 

386 

PEGDA 

4T 

332 

403 

s-4T 

330 

400 



Table 3.5. Refractive indices of thiol-ene films. 

APE 

4T 

1.5350 

s-4T 

1.5280 

TEGDVE 

4T 

1.5215 

s-4T 

1.5155 

TTT 

4T 

1.5622 

s-4T 

1.5620 

PEGDA 

4T 

1.4906 

s-4T 

1.4905 
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Figure 3.1. Percent conversion of thiol group as a function of irradiation time (SH:C=C 
1:1 mol/mol). Light intensity = 0.625 mW/cm2. 
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Figure 3.5. Impact resistance of thiol-ene networks. 
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CHAPTER IV 

THIOL-ENE FREE-RADICAL AND VINYL ETHER CATIONIC HYBRID 

PHOTOPOLYMERIZATION 

Abstract 

The photopolymerization kinetics of mixtures containing a trithiol and a trivinyl 

ether (in different molar ratios) with a cationic photoinitiator were investigated by real­

time infrared and real-time rheology. Using this combination of real-time methods to 

follow both chemical conversion and rheological property development, a clear picture of 

physical property development during the complete polymerization process is obtained. 

This represents the first example of a thiol-ene radical/ene cationic two-step hybrid 

photopolymerization process in which thiol copolymerizes with vinyl ether functional 

groups in a rapid radical step growth process followed by vinyl ether cationic 

homopolymerization. The sequential thiol-vinyl ether copolymerization and the vinyl 

ether cationic polymerization result in crosslinked networks with thermal and mechanical 

properties that are combinations of each system. 

Introduction 

Studies of hybrid photopolymerization have primarily focused on overcoming the 

limitations of polymerization of a single type of system.1 Hybrid polymerizations 

involving simultaneous or sequential polymerizations have led to the creation of a variety 

of novel polymers including interpenetrating polymer networks (IPNs)2"9 and block 

copolymer networks.10"12 In this context, free-radical and cationic photopolymerization 

• 1 1 - 5 

has received considerate attention in recent years " . The primary motivation for such 
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multicomponent hybrid polymerizations has been to develop a system which overcomes 

the limitations of each of the individual systems. For example, (meth)acrylate free-radical 

photopolymerizations suffer from oxygen inhibition and relatively high polymerization 

shrinkage, while ring opening polymerizations (oxetanes and oxiranes) are characterized 

by water inhibition and low reaction rates. Decker et. al. ' and Jessop et.al. 

demonstrated that the oxygen sensitivity of the acrylate is reduced while its ultimate 

conversion is enhanced in hybrid photopolymerization of acrylates and epoxides. In 

addition, hybrid acrylate/epoxide systems exhibit enhancement in the resultant polymer 

matrix hardness compared to either neat acrylate or neat epoxide based networks. And yet 

the hybrid networks are more flexible than the neat epoxide polymer. Similar trends have 

been reported for many other hybrid monomer combinations (acrylate/vinyl ether, vinyl 

ether/ester).2'4 Stansbury et. al.5 reported that the moisture sensitivity of cationic 

photopholymerization is also reduced in methacrylate/vinyl ether hybrid systems. 

Oxman et.al 5 investigated "sequential stage curable hybrid systems" involving an 

acrylate/cycloaliphatic epoxide combination in which the reaction system exhibits several 

discrete stages. Upon exposure to light both free-radical and cationic initiating centers 

were produced by a three component initiator system: the acrylate polymerized first, 

followed by the slower epoxide cationic polymerization. Controlling the order and timing 

of the sequential stages of the hybrid free-radical/cationic monomer system can be 

achieved either by the use of two independent initiators that are activated by distinct 

1 f\ \ 7 

wavelengths of light, ' or the use of a single light source to create both the free-radical 

and cationic active centers simultaneously with chemical control over the sequential 

polymerization stages. This chemical control can be achieved in several ways including 
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using two separate initiators (one a free radical, the other cationic)3'7'9'18 or a single 

initiator system10'15'19'20 that generates both free-radical and cationic initiating species. 

The unique set of properties afforded by hybrid photopolymerization systems make them 

attractive for a wide variety of applications, for example, medical systems, rapid 

prototyping resins,21 advanced coatings and adhesives. 

There has been a revival of interest in thiol-ene photopolymerization in the past 5 

years. It has been clearly shown that thiol-ene polymerization (including thiol and 

acrylate combinations) has distinct advantages over the polymerization of traditional 

acrylates related to the basic polymerization process including reduced oxygen inhibition, 

production of highly uniform crosslink density networks, and low shrinkage/induced 

stress during polymerization.22 Recently, it has been shown that polymerization of 

acrylate and thiol-ene mixtures exhibit interesting mechanical and impact properties. In 

the case of binary thiol-acrylate and ternary thiol-ene-acrylate systems, free-radical step 

growth (thiol-ene and thiol-acrylate) and free-radical chain growth (acrylate 

homopoloymerization) processes occur simultaneously to build up polymer networks 

with properties that potentially can be adapted to a wide variety of applications. In the 

ternary systems, since all free-radical processes occur simultaneously, chain transfer from 

the acrylate to the thiol-ene reaction competes with acrylate homopolymerization. In the 

binary thiol-acrylate systems,24 acrylate homopolymerization reactions and thiol-acylate 

copolymerization reactions occur simultaneously with approximately 2 to 3 acrylate-

acrylate addition steps occurring per thiol-acrylate reaction. The exact kinetics depends 

upon the exact structure and functionalilty of the acrylate. We stress that in all cases 

involving acrylates, multiple radical processes occur simultaneously. 
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In an effort to evaluate processes in which multiple reaction processes occur 

sequentially instead of simultaneously, we have turned to thiol-vinyl ether systems. In 

these systems, as will be shown, depending upon the concentration of each component, 

sequential reactions occur involving a rapid free-radical thiol-vinyl ether process 

followed by a cationic vinyl ether addition process. Herein, we report initial results for a 

thiol-vinyl ether hybrid photopolymerization system that includes a detailed kinetic, 

rheological, structural and mechanical property analysis. This is the first reported 

example of a thiol-ene radical/cationic hybrid photopolymerization process. The results 

reported are indicative of the properties achievable with thiol-ene/cationic systems. The 

results are important since they suggest an opportunity for implementing a totally new 

strategy for fabricating photocurable materials for both thin film and thick crosslinked 

material applications. From an initially non-viscous monomer mixture, a very loose and 

uniform low crosslink density network with excess pendant vinyl ether groups is created 

by a very rapid thiol-vinyl ether free-radical polymerization followed by a subsequent 

cationic addition polymerization that results in a marked increase in crosslink density and 

formation of a unique network. 

Experimental 

Materials 

Tris[4-(vinyloxy)butyl] trimellitate (TriVinyl) and trimethylol propane tris(3-

mercaptopropionate) (TriThiol) were obtained from Aldrich Chemical Co. and Brono 

Bock, respectively, and used without further purification. The chemical structure of 

TriVinyl and the TriThiol used in this study are shown in Figure 1 .The photoinitiator, 

CYRACURE® UVI 6974, triarylsulfonium hexafiuoroantimonate salts mixed with 
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propylene carbonate, was obtained from Union Carbide Corporation. TriThiol-TriVinyl 

mixtures were prepared by blending the trithiol into the trivinyl ether based on molar 

functional group concentration. The amount of UV initiator, UVI 6974, in each case, was 

2 wt%. Films on glass plates (200 urn) were photocured on a Fusion curing line (10 

passes) with a D bulb (belt speed of 10 feet/min, 3.1 W/cm irradiance). Thick samples (1 

mm and 4 mm) were irradiated with low intensity 254-nm low-pressure mercury lamps 

(0.1 mW/cm2 irradiance) Spectroline®, Model XX-15B) for 1 hours in air. Samples were 

then cured on the Fusion curing line (10 passes for both sides). 

Characterization 

Real-time infrared spectra (RTIR) were recorded on a modified Bruker 88 

spectrometer designed to allow light penetration to a horizontal sample using a fiber-optic 

cable attached to a 200 Watt high-pressure mercury-xenon lamp source (obtained from 

Oriel Co.) with primary wavelengths of 313 and 366 ran and light intensity of 1.87 

mW/cm (ND 2.0 filter). The real-time FTIR setup has been described in detail 

elsewhere. Samples were prepared by mixing vinyl ether and thiol based on the moles 

of each functional group. Samples of 10-15 urn thickness were placed between two 

sodium chloride (NaCl) salt plates. UV light intensity at the sample was measured by a 

calibrated radiometer (International Light IL-1400). Infrared absorption spectra of 

samples were obtained upon continuous UV irradiation at a scanning rate of 5-10 

scans/sec. The vinyl ether double bonds were monitored at 1640 or 3116 cm"1 and the 

thiol group at 2575 cm"1. 

Real-time rheological measurements were performed using a Physica MCR 501 

rheometer (Anton Paar, USA) with a Novacure high-pressure mercury lamp with primary 
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wavelengths of 313 and 366 nm and a light intensity of 7.5 mW/cm2 (ND 2.0 filter). The 

lower fixture of the rheometer is a large quartz glass plate, while the top one is an 8-mm 

diameter metal plate. The sample thickness is 50 urn. The light was delivered to the 

sample via a liquid light pipe through neutral density filter (ND 2.0) for a given exposure 

time at a constant temperature (25 °C) and shear frequency (10 rad s"1). Concomitant 

changes in viscoelastic material functions during polymerization (G\ G", and TJ*) were 

measured as a function of exposure time. The measurements were carried out in the linear 

viscoelastic region (strain amplitudes 10%). 

Molecular relaxations of the films were recorded using a TA Q800 dynamic 

mechanical analyzer (DMA). DMA was conducted in the tensile mode for 19 x 5.6 mm 

size samples with thicknesses of 100-150 um. Free standing film samples, obtained by 

removing films cured by Fusion UV curing line from glass substrates, were heated from 

-50 to 200 °C at a rate of 3 °C/min and at a frequency of 1 Hz in air. As described in 

detail in a previous publication,23 a Tinius Olsen instrument (Model 92T) was modified 

with extensive help from the Tinius Olsen Testing Machine Co., Inc. to measure the 

energy absorbed upon moderate impact (1.13 Joules) with a steel head was used to 

investigate the impact resistances of the 4-mra thick samples. The typical sample 

dimensions were 80 mm x 20 mm x 8 mm (L x W x H). Two photocured 4-mra plates 

were pressed together back to back to eliminate any contribution from the steel plate. The 

striking edge of the pendulum, which complied with ASTM 12.3, was made of hardened 

steel, tapered to have an incline angle of 45° and rounded at the edge to a radius of 3.17 

mm. Tensile property measurements were obtained with a Mechanical Testing Machine 

(MTS-AUiance RT/10) according to ASTM D882, using a 100 N load cell with a 
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specimen gauge length of 40 mm at a crosshead speed of 25 mm/min. A width-thickness 

ratio of 8 was used for the tensile testing. Five tests were run for each sample and an 

average value is reported. 

Results and Discussion 

This paper focuses on the hybrid photopolymerization of thiol-ene and cationic 

systems involving the two components in Figure 1: a trithiol (designated TriThiol) and a 

trivinyl ether (designated TriVinyl). Each mixture contains 2 wt % of a cationic 

triarylsulfonium hexafluoroantimonate photoinitiator that generates both radical and 

cationic species upon UV light exposure leading to the initiation of both radical and 

cationic photopolymerization processes.26 A discussion of the real-time chemical kinetics 

and build up of viscoelastic properties is followed by an evaluation of the final film 

properties of several thiol-vinyl ether combinations. 

Real-Time Chemical Kinetics and Rheology 

Kinetic analyses were conducted with real-time FTIR (RTIR). Resultant 

conversion versus irradiation time plots of the TriThiol-TriVinyl sample with 50 to 50 

mol% thiol to ene functional groups (designated hereafter as 50:50 TriThiol-Trivinyl), 

TriVinyl, and TriThiol-TriVinyl with 25 to 75 mol% thiol to ene functional 

groups(designated hereafter as 25:75 TriThiol-TriVinyl) are shown in Figures 2, 3 and 4, 

respectively. For the 50:50 TriThiol-TriVinyl system (Figure 4.1), the vinyl ether ene 

conversion was a little faster than the thiol conversion and reached almost 100 % 

conversion (all 50 mol% of the vinyl ether ene functional groups), about 5 % greater than 

that of the thiol conversion (95% of the original 50 mol% thiol groups reacted). This 

indicates that most of the polymerization proceeds by a thiol-ene step-growth radical 
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process, with a minor contribution from the cationic polymerization of vinyl ether groups. 

For pure TriVinyl (Figure 4.2), there is about a 120 second inhibition period not seen in 

the 50:50 TriThiol-TriVinyl system. This is probably due in large part to the well know 

moisture inhibition of cationic photopolymerization. Also, the pure TriVinyl polymerizes 

cationically much slower than the free-radical step growth thiol-ene polymerization of 

50:50 TriThiol-TriVinyl and reaches a conversion of only about 80 mol%. When 

TriThiol (25 mol% thiol groups of the total moles of thiol + vinyl ether functional groups ) 

was combined with TriVinyl (75 mol % ene groups of the total moles of thiol + ene 

functional groups), the thiol and vinyl ether essentially copolymerized by the thiol-ene 

free-radical reaction in the first 70 seconds (Figure 4.3), with about 22.5 mol % of thiol 

functional groups (90% of the original 25 mol% thiol groups reacted) and 23 mol% of 

vinyl ether ene functional groups (30.7% of the original 75 mol% ene functional groups 

reacted) being converted. After this initial very rapid reaction involving almost 

exclusively thiol-vinyl ether copolymerization, the vinyl ether continued to polymerize 

via a cationic polymerization process reaching an ultimate conversion of about 67.5 

mol% (90% of the original 75 mol% ene functional groups reacted). From the kinetics in 

Figures 4, it is apparent that a two-step hybrid photopolymerization involving an initial 

rapid free-radical thiol-ene polymerization and a subsequent slower cationic 

polymerization occurs for the 25:75 TriThiol-TriVinyl mixture with an excess of vinyl 

ether functional groups. 

In the initial thiol-ene polymerization process, it is speculated that a very loose gel 

network is formed. According to the traditional gel-point Equation (1), which in the past 

has been applied to thiol-ene polymerization by Jacobine et al.,27 with thiol and ene 
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functionalities, y îoi and^e, of 3 and a thiol to ene molar ratio based on functional groups, 

r, of thiol to ene of 1/3, it is predicted that the gel point for the should occur at ~ 86.6% of 

thiol functional group conversion. The RTIR results in Figure 4.3 indicate that a near 

quantitative thiol conversion is attained in the initial polymerization period. This 

suggests that gelation occurs just at the end of the thiol-ene conversion, and thus the 

network formed at this point has a very low crosslink density. Then, the cationic vinyl 

ether homopolymerization proceeds within the framework of the initial loose gel 

established by the thiol-vinyl ether polymerization. To provide evidence that the thiol-

vinyl ether free-radical process leads to gelation, and to provide a dynamic 

characterization of viscoelastic property build up during the polymerization process, we 

turn to real-time photo-rhelological measurements. 

a (fractional conversion at gel point) = [ 1 /r(/"thioi -1) (/ene-1)]m (1) 

Dynamic rheology is an effective method for characterizing the curing process of 

thermosetting polymers and for the examination of the viscoelastic properties and 

transition temperatures of the cured products.28"35 It has been applied in the past to 

characterization of thiol-ene photopolymerization.36'37 The formation of polymer gels can 

be monitored from the time evolution of viscoelastic material functions such as 

G', G", JJ* , where the entire network forming process can be divided into two parts 

separated by the gel point. The light exposure time dependence of the complex dynamic 

viscosity and storage (elastic) modulus, TJ* and G', for 50:50 TriThiol-TriVinyl, pure 

TriVinyl, and 25:75 TriThiol-TriVinyl at T = 25 °C and co= 10 rads~x is shown in 

Figure 4.4. Clearly, the results in Figure 4.4A and 5B show that the time evolution of the 
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viscoelastic properties is strongly influenced by the concentration of TriThiol in the 

mixtures. Considering pure TriVinyl first, after an initial induction period consistent with 

the results in Figure 4.2, a steady rise in both rf and G' occurs, indicating a single 

curing process. Although the cationic polymerization of pure TriVinyl is relatively slow, 

as indicated in Figure 4.2, a conversion of greater than 80 % is achieved. Accordingly, at 

longer light exposure times (t > 130 sec) the value of G' levels off and becomes time 

independent. The G' plateau value at long time is indicative of the formation of an 

equilibrium modulus, Geq: establishment of a plateau for G' is generally accepted as the 

"J 1 oo 

primary criterion for the formation of a stable three dimensional polymer network. " In 

addition to the results for G' for TriVinyl, a plateau was also obtained (Figure 4.4B) for 
the complex dynamic viscosity, rf. 

As already indicated, photorheology results can be used to identify a gelation 

process associated with formation of 3D network structures. We thus compare critical 

viscoelastic parameters for the gelation of both pure TriVinyl and 25:75 TriThiol-

TriVinyl in order to provide a clear real-time rationale for rheological property and 

structure development. The main goal is to provide rheological evidence for gelation at 

the end of an initial thiol-vinyl ether free-radical reaction for 25:75 TriThiol-TriVinyl. 

Figures 6 and 7 show the time dependence of G' and G" at 25 °C and m =10rads~l for 

the TriVinyl and the 25:75 TriThiol-TriVinyl systems. First we consider the results in 

Figure 4.5. Prior to gelation, the value of G" for the pure TriVinyl monomer is about 

one order of magnitude greater than G'. As expected, both G' and G" steadily increase 

(no intermediate plateaus) with UV light exposure, reaching approximate equilibrium 

values fairly rapidly after polymerization begins. The value of G', initially lower in 
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magnitude than G", increased more rapidly than G', becoming greater than G" at a very 

short time after the polymerization begins, following the extended induction period as 

previously described. The early gelation process is certainly consistent expected for 

multifunctional vinyl ethers. The results in Figure 4.6 for the 25:75 TriThiol-TriVinyl, 

indicate that, unlike that for the pure cationic polymerization process of pure TriVinyl in 

Figure 4.5, two distinct and apparently independent processes occur. The initial process, 

consistent with the kinetic results for thiol-ene polymerization in Figure 4.3, occurs 

during the first 20-40 seconds of light exposure and leads to a pleateau in both G' and 

G". More importantly, during this initial period, which as we have indicated corresponds 

to the free-radical thiol-vinyl ether copolymerization process, there is an intersection of 

the G' and G" curves at a point that is very near to the intermediate pleateau value for 

each. The value for the elastic modulus G' exceeding the value for the loss modulus G" 

indicates that the sample has become an infinite gel near the end of the initial thiol-ene 

free-radical polymerization process as previously proposed in our discussion of equation 

1. The additional increase and final plateau of G' and G" subsequent to the initial 

plateau is assigned to the cationic polymerization of the vinyl ether groups that are 

attached to the loose thiol-vinyl ether network formed initially. In summary, the real­

time photo-rheological measurements of 25:75 TriThiol-TriVinyl mixture with an excess 

of vinyl ether functionality confirms that gelation occurs near the end of the rapid thiol-

ene free-radical step-growth polymerization. The subsequent slower cationic 

homopolymerization of the remaining vinyl ether groups leads to additional increase in 

crosslink density of the network. 
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We note that in this paper, the exact gel time has not been presented. The 

relatively fast polymerization kinetics of the system studied makes it impossible to 

evaluate the gel point from classical frequency dependencies of the viscoelastic material 

functions. This is supported by the time dependencies of G'& G" (Figure 4.5) showing a 

polymerization reaction time of 15±5 sec. However, we made measurements of G'& G" 

versus time under different shear frequencies to find out whether the crossover point is 

influenced by the value of shear frequency or not. These results (not shown herein) 

clearly indicated that the crossover point is approximately independent of the different 

values of shear frequency used. The behavior of the other samples was found to be 

similar to that of the pure TriVinyl. We thus project that the crossover point can be 

considered as the gel point for the specific samples of the current study. A follow up 

rheological paper will include complete and extensive results for gel times for a range of 

TriThiol and TriVinyl (as well as other multifunctional vinyl ethers) mixtures over a wide 

concentration regime where tan 8 vesus time plots as a function of oscillation frequency 

will be given. 

Physical, Mechanical and Thermal Properties of Polymerized Networks 

Thermal and mechanical properties of the photopolymerized films of pure 

TriVinyl, 50:50 TriThiol-TriVinyl and 25:75 TriThiol-TriVinyl mixtures were first 

characterized by 1 Hz DMA scans (shown in Figure 4.7) in the tensile mode. We first 

note that the DMA scan results clearly show that the 50:50 TriThiol-TriVinyl film has a 

very narrow tan 8 peak representing a uniform network matrix resulting primarily from a 

free-radical thiol-ene step-growth process, while the corresponding scan for the 25:75 

TriThiol-TriVinyl film is broadened and characterized by a higher temperature (just 
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above room temperature) at the tan 8 peak maximum. The results for the 50:50 TriThiol-

TriVinyl network in Figure 4.7 are consistent with the known high uniformity of thiol-

ene networks.21'22 The film formed by polymerizing 25:75 TriThiol-TriVinyl, where 

both the thiol-ene free-radical and subsequent vinyl ether cationic polymerization occur, 

gives a sample that has a broader tan 5 versus temperature plot with a peak maximum at 

a higher temperature than the plot obtained from the sample formed by 

photopolymerization of 50:50 TriThiol-TriVinyl. The broadened DMA scan for the 25:75 

TriThiol-TriVinyl film is indicative of a more heterogeneous network due to the cationic 

chain growth process which occurs subsequent to the formation of the thiol-ene network. 

Results for additional TriThiol-TriVinyl ether mixtures (not shown) indicate a steady 

increase in the tan 8 peak maximum temperature and progressive broadening with 

increasing vinyl ether concentration. The film produced from pure TriVinyl has a broad 

tan 8 plot indicative of a very heterogeneous network matrix with a main peak maximum 

around 84 °C and a much smaller shoulder around 57 °C. It can be concluded that, from a 

mechanical/thermal basis, the matrix uniformity increases with TriThiol content. In order 

to characterize thermal transitions, DSC scans (not shown) were also recorded for the 

same samples. The DSC results essentially parallel the DMA results, i. e., the film from 

50:50 TriThiol-TriVinyl has a very narrow glass transition region, the film from 25:75 

TriThiol-TriVinyl has a broader but still distinctive transition, while the film from the 

strictly cationic photopolymerization of pure TriVinyl is very broad. 

In view of the observation in Figures 8 that thiol-ene/cationic mixtures can be 

photopolymerized to give crosslinked films with relatively narrow transitions whose peak 

maxima can be adjusted to a given temperature by the concentration of TriThiol, an 
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investigation of the impact resistances of 4-mm thick samples was conducted with a 

Tinius Olsen instrument modified to measure the energy absorbed upon moderate impact 

(1.13 Joules) with a steel head. As shown in Table 4.1, the photocured 25:75 TriThiol-

TriVinyl sample absorbs about 65% of the impact energy of the striking head at room 

temperature, and is more effective in dissipating impact energy than the samples of 50:50 

TriThiol-TriVinyl and pure TriVinyl. The energy absorption depends on the tan 8 value 

(at the frequency of the energy impact) at a given temperature. It is thus not surprising 

that the 25:75 TriThiol-TriVinyl sample has better energy absorbing ability at room 

temperature where it has substantial tan 8 values according to the 1 Hz DMA analysis in 

Figure 4.7. In other work , it has been shown that 1 Hz DMA values provide reasonable 

approximation to the impact measurements as described in the experimental section. 

Finally, it is noted that the amount of energy absorbed is greater than for traditional 

"energy absorbing" materials near room temperature, i.e., commercial ethylene vinyl 

acetate (EVA) often used in sports applications under the same experimental conditions 

were found to absorb 40-50 % of the 1.13 J impact energy. 

The tensile mechanical properties were next evaluated for photocured 1-mm thick 

samples of 50:50 TriThiol-TriVinyl, pure TriVinyl, and 25:75 TriThiol-TriVinyl (Figure 

4.8 and Table 4.1). Interesting enough, the 25:75 TriThiol-TriVinyl sample, which 

according to the kinetic results in Figures 4, 5 and 7 involves both an initial thiol-ene 

free-radical and a subsequent cationic polymerization (Figure 4.3), has both flexibility in 

terms of strain at break, and rigidity in terms of stress at break. This illustrates the ability 

of the hybrid polymerization to combine the properties of two types of systems. The 

energy to break is related to the area underneath a stress-strain curve. Although energy to 
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break is dimensionally dependent, it is one indication of material toughness. From the 

energy to break data in Table 4.1, it is clear that 25:75 TriThiol-TriVinyl has higher 

toughness than both 50:50 TriThiol-TriVinyl and pure TriVinyl. This is coincident with 

the high energy absorption at room temperature found for the 4-mm plates made from the 

25:75 TriThiol-TriVinyl. 

Conclusions 

In summary, real-time infrared analysis shows that the photopolymerization of a 

trithiol and trivinyl ether mixture with excess vinyl ether proceeds by a rapid thiol-ene 

radical polymerization and a subsequent cationic vinyl ether polymerization. Dynamic 

rheology measuremnts indicate that the 25:75 TriTthiol-TriVinyl sample gels at the end 

of the thiol-ene free-radical reaction followed by a cationic polymerization of residual 

vinyl ether groups. Mechanical property and impact measurements indicate an energy 

absorbing, tough material. The results suggest an important strategy for building 

networks via hybrid free-radical thiol-ene/cationic-ene polymerization processes. 

Acknowledgements 

Financial support of this work by the MRSEC Program of the National Science 

Foundation under Award Number DMR 0213883, the Chemical and Transport System 

(CTS 0317646) of the National Science Foundation, and Fusion UV Systems is gratefully 

acknowledged. We also thank Bruno Bock for providing the thiol sample. 



83 

References 

1. Ficek, B. A.; Magwood, L.; Coretsopoulos, C ; Scranton, A. B. Photochemistry and 

UV Curing: New Trends, Editor: Fouassier, J. P. Research Signpost, India, 2006, 25, 294-

300. 

2. Decker, C. Polym. Int. 2002, 52, 1141-1150. 

3. Decker, C; Nguyen, T. V. T.; Deck, D.; Weber-Koehl, E. Polymer 2001, 42, 5531-

5541. 

4. Decker, C. Acta Polymer 1994, 45, 333-347. 

5. Lin, Y.; Stansbury, J. Polym. Adv. Technol. 2005,16, 195-199. 

6. Dean, K.; Cook, W. D. Macromolecules 2002, 35, 7942-7954. 

7. Dean, K.; Cook, W. D.; Rey, L.; Galy, J.; Sautereau, H. Macromolecules 2001, 34, 

6623-6630. 

8. Dean, K.; Cook, W. D.; Zipper, M. D.; Burchill, P. Polymer 2001, 42, 1345-1359. 

9. Lin, Y.; Stansbury, J. Polymer 2003, 44, 4781-4789. 

10. Degirmenci, M.; Hepuzer, Y.; Yagci, Y. J. App. Polym. Sci. 2002, 85, 2389-2395. 

11. Mecerreyes, J. A.; Pomposo, J. A.; Bengoetxea, M.; Grande, H. Macromolecules 

2000, 33, 5846-5849. 

12. Itoh, H.; Kameyama, A.; Nihikubo, T. J. Polym. Sci. Part A: Polym. Chem. 1996, 34, 

217-225. 

13. Chen, Z. G.; Webster, D. C. Polymer 2006, 47, 3715-3726. 

14. Cai, Y.; Jessop, J. L. P. Polymer 2006, 47, 6560-6566. 

15. Oxman, J. D.; Jacobs, D. W.; Trom, M. C; Sipani, V.; Ficek, B.; Scranton, A. B. J. 

Polym. Sci. Part A: Polym. Chem. 2005, 43, 1747-1756. 



84 

16. Decker, C. Prog. Polym. Sci. 1996,21, 593-650. 

17. Kawabata, M.; Sato, A.; Sumiyoshi, I.; Kubota, T. Appl. Optics. 1994, 33, 2152-2156. 

18. Cho, J. D.; Hong, J. W. J. App. Polym. Sci. 2004, 93, 1473-1483. 

19. Crivello, J. V. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 4241-4254. 

20. Crivello, J. V.; Rajaraman, S.; Mowers, W. A.; Liu, S. Macromol. Symp. 2000, 157, 

109-119. 

21. Lawton, J. US Patent 2004, 6,811,937. 

22. Hoyle, C. E.; Lee, T. Y.; Roper, T. J. Polym. Sci. Part A: Polym. Chem. 2004,42, 

5301-5338. 

23. Senyurt, A. F.; Wei, PL; Phillips, B.; Cole, M.; Nazarenko, S.; Hoyle C. E.; Piland, S. 

G.; Gould, T. E. Macromolecules, 2006, 39(19), 6315-6317. 

24. Cramer, N. B.; Bowman, C. N. J. Polym. Sci. Part A: Polym. Chem. Part A: Polym. 

Chem. 2001, 39, 3311-3319. 

25. Lee, T. Y.; Roper, T. M.; Jonsson, E. S.; Kudyakovc, I.; Viswanathan, K.; Nason, C ; 

Guymon, C. A.; Hoyle, C. E. Polymer 2003, 44, 2859. 

26. Crivello, J.V.; Dietliker, K. Chemisty & Technology ofUV&EB Formulation for 

Coatings, Inks & Paints, Bradley, G. Editor. John Willey &Sons Ltd., 1998, Vol. Ill, 

326-477. 

27. Jacobine, A. F. In Radiation Curing in Polymer Science and Technology III, 

Polymerization Mechanisms; Fouassier, J.D.; Rabek, J.F., Eds,; Elsevier Applied 

Science: London, 1993; Chapter 7. 

28. Izuka, A.; Winter, H. H.; Hashimoto, T. Macromolecules 1992, 25, 2422 - 2428. 

29. Adolf, D.; Martin, J. E.; Wilcoxon, J. P. Macromolecules 1990, 23, 527 - 531. 



85 

30. Hodgson, D. F.; Amis, E. J. Macromolecules 1990,23,2512 - 2519. 

31. Muller, R.; Gerard, E.; Dugand, P.; Rempp, P.; Gnanou, Y. Macromolecules 1991, 24, 

1321-1326. 

32. Takahashi, M.; Yokoyama, K.; Masuda, T.; Takigawa, T. J. Chem. Phys. 1994, 101, 

798 - 804. 

33. Madbouly, S. A.; Otaigbe, J. U. Macromolecules, 38, 2005,10178-10184. 

34. Madbouly, S. A.; Otaigbe, J. U.; Macromolecules, 39, 2006, 4144-4151. 

35. Madbouly, S. A.; Ougizawa, T. J. Macro. Set part B-Phys. 2004, B43, 819 - 832. 

36. Chiou, B. S.; English, R. J.; Khan, S. A. Macromolecules, 29,1996, 5368-5374. 

37. Chiou, B. S.; Khan, S. A. Macromolecules, 30,1997, 7322-7328. 



86 

SH SH 

SH 

TriThiol TriVinyl 

Chart 4.1. Chemical structures of TriThiol and TriVinyl. 
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Table 4.1. Mechanical properties of 0:1 OOTriVinyl, 25:75 TriThiol-TriVinyl and 50:50 
TriThiol-TriVinyl. 

Energy Absorbance (Joule) 
Stress at break (MPa) 
Strain at break (%) 

Energy to break (N*mm/rnm ) 

50:50 
0.15(13%) 
1.0 
13.7 

49.8 

25:75 
0.73(65%) 
3.0 
13.0 

128.4 

0:100 
0 (cracked) 
3.3 
1.3 

14.0 
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Figure 4.1. Real-time IR percent conversion versus time plots of 50:50 TriThiol-TriVinyl: 
(a) thiol and (b) vinyl ether. Irradiance (full arc) is 1.87 mW/cm . 
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Figure 4.2. Real-time IR percent conversion versus time plots of pure TriVinyl. 
Irradiance (full arc) is 1.87 mW/cm2. 
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Figure 4.3. Real-time IR percent conversion versus time plots of 25:75 TriThiol-TriVinyl: 
(a) thiol and (b) vinyl ether. Irradiance (full arc) is 1.87 mW/cm2. 
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Figure 4.4. Time dependence of (A) dynamic storage modulus, G', and (B) complex 
viscosity, TJ* , of different concentrations of TriThiol/TriVinyl mixtures at constant shear 
frequency (m=lOrads~l) and 25 °C: O (pure TriVinyl); A (25:50 TriThiol-TriVinyl); • 
(50:50 TriThiol-TriVinyl). Irradiance is -7.5 mW/cm2. 
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Figure 4.5. Time dependence of G' and G" at 25 °C and 10 rad s"1 for the 
photopolymerization process of pure TriVinyl. The arrow shows the t<,e\ obtained from 
intersection point of G' and G". Irradiance is -7.5 mW/cm . 
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Figure 4.6. Time dependence of G' and G" at 25 °C and 10 rad s"1 for the UV 
polymerization process of 25:75 TriThiol-TriVinyl. The inset-plot shows the same figure 
at a smaller scale; the arrow shows the t%e\ obtained from intersection point of G' and G". 
Irradiance is -7.5 mW/cm . 
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Figure 4.7. Tan 8 versus temperature plots for films formed from (a) pure TriVinyl, (b) 
25:75 TriThiol-TriVinyl, and (c) 50:50 TriThiol-TriVinyl. DMA plots obtained with scan 
rate 3 °C/min and frequency 1 Hz. 
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Figure 4.8. Tensile strain versus stress plots of 1-mm thick samples of (a) pure TriVinyl, 
(b) 25:75 TriThiol-TriVinyl, and (c) 50:50 TriThiol-TriVinyl. 



CHAPTER V 

THIOURETHANE THIOL-ENE HIGH Tg NETWORKS: PREPARATION, THERMAL, 

MECHANICAL, AND PHYSICAL PROPERTIES 

Abstract 

Thiourethane based thiol-ene (TUTE) films were prepared from diisocyanates, 

tetrafunctional thiols and trienes. The incorporation of thiourethane linkages into the 

thiol-ene networks results in TUTE films with high glass transition temperatures. 

Increases of Tg were achieved by aging at room temperature and annealing the UV cured 

films at 85 °C. The aged/annealed film with thiol prepared from isophorone diisocyanate 

and cured with a 10,080 mJ/cm2 radiant exposure had the highest DMA based glass 

transition temperature (108 °C) and a tan 8 peak with a full width at half maximum 

(FWHM) of 22 °C, indicating a very uniform matrix structure. All of the initially 

prepared TUTE films exhibited good physical and mechanical properties based on pencil 

hardness, pendulum hardness, impact and bending tests. 

Introduction 

An efficient process leading to the formation of highly cross-linked and uniform 

molecular networks results from exposure of a mixture of a multifunctional thiol and a 

multifunctional ene to light. " The uniform structure of the thiol-ene matrices is attested 

to by very narrow tan 8 versus temperature plots derived from dynamic mechanical 

analysis (DMA).2'3 The network uniformity is critical in applications requiring polymers 
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with high homogeneities, e.g. optical elements.4'5 Another attractive advantage of 

thiol-ene polymerization is the low shrinkage and consequential low stress built up in the 

polymeric network, which is quite desirable in applications such as dental restorative 

materials.6 Unlike acrylates, thiol-ene photopolymerizations are not very sensitive to 

• 9 7 

oxygen inhibition, resulting in efficient polymerization in air. ' There is no question that 

thiol-ene polymers exhibit unique physical and mechanical properties which make them 

useful in many applications. However, the addition of thiols across double bonds results 

in the formation of flexible thioether linkages, and thus the glass transition temperatures 

(Tg) are generally limited to near or below room temperature. For applications requiring a 

material with a high Tg,
8 there are few if any viable options for thiol and ene monomer 

structure selection. Limited Tg enhancement can be achieved by utilizing ene monomers 

with rigid structures, such as triallyl-l,3,5-triazine-2,4,6(lH,3H,5H)-trione (see Chart 

5.1).M 

One method for producing crosslinked thiol-ene networks with high Tgs is to add 

a multiacrylate comonomer which can both copolymerize with the thiol as well as 

homopolymerize. ' Compared with the thiol-ene copolymerization process, these two 

additional reaction processes result in a material with a glass transition that can be as high 

as -80 °C (determined by DMA).11 However, the corresponding high temperature glass 

transition regions of these ternary systems are broad compared to the traditional thiol-ene 

networks which can have tan 8 versus temperature plots with full width at half maximum 

(FWHM) typically as narrow as 15-20 °C. There is absolutely no question that generation 



of thiol-ene based networks with narrow glass transition regions at high temperatures 

(greater than 90 °C) remains an illusive and very important goal in the thiol-ene field. 

Such high temperature thiol-ene networks would certainly open up new application 

opportunities. Herein, we describe the synthesis of multifunctional thiols connected by 

thiourethane groups which, when combined with a triazine triene, give networks with 

glass transition temperatures above 90 °C with relatively narrow FWHM values. 

Experimental 

Isophorone diisocyanate (IPDI), toluene diisocyanate (TDI) and dicyclohexyl 

methane diisocyanate (H12MDI) were obtained from Bayer and used as received. 

Triallyl-l,3,5-triazine-2,4,6(lH,3H,5H)-trione (Triallyl Triazine) and pentaerythritol 

tetrakis(3-mercapto-propionate) (Tetra Thiol) were purchased from Aldrich Chemical Co. 

and used as received (see Chart 5.1). The photoinitiator 

2,2-dimethoxy-2-phenylacetophenone (DMPA) was obtained from Ciba Specialty 

Chemical Company. Other chemicals, such as anhydrous acetone, were also obtained 

from Aldrich Chemical Co. and used as received. 

Nuclear magnetic resonance (NMR) spectra were obtained on a Mercury 300 

(Varian Inc.) using 5 wt% oligomer dissolved in deuterated-chloroform. A modified 

Bruker IFS 88 FTIR spectrometer with a horizontal sample accessory was used to obtain 

real-time IR (RTIR) spectra. UV light from an Oriel lamp system equipped with a 200 

Watt, high-pressure mercury-xenon bulb was channeled to the sample chamber through a 
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fiber-optic cable. Photoinitiated polymerization was performed by exposing a thin sample 

(about 25 urn) between two sodium chloride salt plates to continuous UV light. The 

process was monitored by the FTIR operating at a scanning rate of 5 scans/sec. Gel 

permeation chromatography (GPC) with a Waters 515 pump (Waters Corp.) and Waters 

2414 refractive index detector were used to measure the polystyrene standard based 

molecular weight of thiourethane thiol oligomers. 

In preparing the thiourethane thiol oligomers which are viscous liquids, 2.0 mmol 

of diisocyanate, 3.0 mmol Tetra Thiol and 10 mL acetone, were first charged into a one 

neck flask, and then 1 drop (0.2-0.3 wt%) of dibutyl tin dilaurate (DBTDL) was added. 

The mixture was allowed to react for 4-8 hours (until the isocyanate IR band around 2260 

cm"1 completely disappeared) at 60 °C in an oil bath before acetone was evaporated under 

N2 flow at room temperature. The different diisocyanates were chosen in order to 

illustrate the effect of molecular structure on the final polymer properties. The rigid 

triallyl triene (Triallyl Triazine) was used to ensure that the glass transition temperatures 

of the final films would be high. The preparation procedure of the thiourethane thiol 

oligomer, IPDI Thiol, formed from IPDI is shown in Scheme 5.1, as well as the 

procedure for forming the TUTE crosslinked films. The synthesis of H12MDI Thiol, 

formed from H12MDI and Tetra Thiol, and TDI Thiol, formed from TDI and Tetra Thiol, 

follows the same procedure. 

It is necessary to point out that the product of the thiol-diisocyanate reaction are 

predicted to be an oligomer with number average degree of polymerization (X n ) of 5 



100 

1 0 

(pentamer) by equations (1) and (2), 

Xn=—?— (1) 
J avg 

Javg NA+NB
 KJ 

where favg is the average functionality of the nonstoichiometric mixture of Tetra Thiol 

and diisocyanates, NA and NB are the moles of isocyanate and thiol groups, respectively, 

used in the synthesis, and fA is the functionality of isocyanate. The number average 

molecular weight (M„) of IPDI Thiol is calculated as -1911 g/mol which is, taking into 

account the assumptions made in using polystyrene calibration standards, in close 

agreement with the Mn of-1573 g/mol measured by GPC. The number average 

structures (pentamers) prepared from the three diisocyanates (IPDI, H12MDI and TDI) 

and Tetra Thiol, are shown in Chart 5.2 as representatives of the oligomers and verified 

by H NMR results in Table 5.1. The urethane protons (8) and thiol protons (1) are 

represented by a wide peak at 5.5-6.5 and a triplet at 1.2, respectively. 

To prepare films, the thiourethane thiol oligomers (made from 2 mmol 

isocyanate and 3 mmol Tetra Thiol) or Tetra Thiol (2 mmol) were homogeneously 

mixed with 2.67 mmol Triallyl Triazine and 1 wt% DMPA and evenly spread onto glass 

(for pencil and Persoz pendulum hardness), aluminum (for DSC and DMA) or steel 

plates (for impact and bending). Cured thiol-ene films (75-150 microns) were obtained 

by exposing the coated plates to the output of a Fusion high intensity UV lamp system 

with conveyer belt. The lamp system was equipped with a D bulb (400 W/inch input, 



line speed of 12.2 m/min, 3.0 W/cm ). The UV radiant exposure delivered to the coated 

plates was 504 mJ/cm2 for every pass at a line speed of 12.2 m/min. Films were either 

evaluated (pencil hardness, Persoz hardness, and initial DSC) immediately after curing 

(both unannealed and annealed), or aged for 1 year at room temperature and then 

evaluated by DSC analysis (again) and DMA either directly or upon additional 

annealing. Annealing was conducted by heating in an oven at 85 °C, which is at least 20 

°C above the 1st scan DSC Tg of all the films, for either 2 hours (for pencil and Persoz 

pendulum hardness measurements) or 18 hours (for DSC and DMA measurements). 

This annealing (both aged and imaged samples) resulted in further conversion of 

unreacted functionalities. A differential scanning calorimeter (DSC), TA Q1000 (TA 

Instruments Inc.), operating at a heating rate of 10 °C/min was used to measure thermal 

properties. In the case of the DSC for both aged and imaged samples, the first heating 

scan was from 0 °C to 180 °C (isothermal at 180 °C for 5 min) at 10 °C/min, followed by 

cooling to 0 °C at the same rate. The samples were then heated again from 0 °C to 180 

°C to obtain the 2nd heating scan. Tg values were determined using TA Universal 

Analysis software. The thermomechanical spectra were obtained on a TA Q800 DMA 

(TA Instruments Inc.) operating at 1 Hz and a heating rate of 3 °C/min (tensile mode). 

The peak maximum of the tan 8 plot was taken as the Tg. 

For both unannealed and annealed films, the pencil (ASTM D-3363) and Persoz 

pendulum hardness (ASTM D-4366 using a BYK-Gardner pendulum hardness tester 

with a square frame pendulum) values were the average of six tests. The direct and 
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reverse impact resistance tests (ASTM D-2794) and the bending (mandrel) tests (ASTM 

D 522-93a) were conducted for unannealed samples only due to delamination 

considerations. 

Results and Discussion 

Polymerization Kinetics 

The polymerization kinetics of each of the thiourethane thiols mixed with the 

trifunctional ene was measured via real-time FTIR. Since the C=C ene double bonds and 

thiols had identical conversion-time curves, to simplify, only the thiol conversion versus 

time plots are shown in Figure 5.1. All three systems, IPDI Thiol-Triallyl Triazine, 

H12MDI Thiol-Triallyl Triazine and TDI Thiol-Triallyl Triazine, had final conversions 

over 80% under ambient conditions with conversion rates commensurate with previous 

results for the Terra Thiol-Triallyl Triazine system.6 

DSC and DMA of Photopolymerized Networks 

DSC was used to investigate the glass transition temperature of the TUTE films 

immediately after curing. As an example, results are shown for films prepared from an 

IPDI Thiol and Triallyl Triazine mixture (Figure 5.2) subjected to a radiant exposure of 

10,080 mJ/cm . We point out that the glass transition increase for the second cycle is no 

doubt a result of increased conversion upon heating. As summarized in Figure 5.3a for 

samples made with Triallyl Triazine and all three thiourethane thiol oligomers (only 

results for IPDI Thiol-Triallyl Triazine are shown), it is obvious that for both the 1st and 
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2nd heating scans an increase in Tg occurs with an increase in the UV radiant exposure for 

each sample, and a concomitant increase in conversion of the TUTE films. Focusing on 

differences in the 1st and 2nd heating scans, we note that for all three samples cured using 

different radiant exposures, the 1st heating scan Tg is lower than the Tg of the sample after 

the 2nd heating cycle. The 1st heating scan since this involved heating to 180 °C (1st scan), 

holding the temperature for 5 min and subsequent cooling to a low temperature (see 

Experimental) before initiating the 2n scan. The increase in the glass transition 

temperature for the 2" scan can be explained as additional thiol-ene polymerization 

attained during the 1st scan. We also found by a separate FTIR analysis of annealed films 

that during the photocuring process a small amount of isocyanate was generated, which 

upon thermal annealing reacted, presumably with residual thiol. Specifically, the 

conversions of thiol and ene groups in IPDI Thiol-Triallyl Triazine film (UV radiant 

exposure= 1,008 mJ/cm ) annealed at 85 °C for 18 h increased by about 7 % and 4 %, 

respectively. The higher conversion of thiol than ene may result from the reaction of 

isocyanate present in the photocured films. 

Based upon the DSC results in Figure 5.3a for the imaged films (analyzed just 

after curing) which imply that annealing at high temperatures for short periods results in 

additional conversion and concomitant increase in Tg, samples were thermally aged for 1 

year at room temperature to see if a long storage period (at a temperature well below the 

initial DSC scan Tgs) would result in an additional increase in the 1st scan DSC based Tg. 

Accordingly, the IPDI Thiol-Triallyl Triazine aged films were chosen as examples to 
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demonstrate the effect of aging on the Tg. For each IPDI Thiol-Triallyl Triazine film, the 

1st DSC scan of the aged samples (Figure 5.3b) resulted in Tgs about 15 °C higher than 

the unaged samples (Figure 5.3a). The 2nd scans of the three aged samples were 

essentially identical to the 2n scans of the unaged samples, indicating that the aging 

process did not affect the results of the annealing process afforded by the 1st DSC scan 

process. The DMAs of the aged IPDI Thiol-Triallyl Triazine films were next measured 

both before and after annealing at 85 °C for 18 h. The results in Figure 5.4 a-b, 

summarized in Figure 5.4 c, for the tan 5 vs temperature plots indicate modest increases 

in the peak maxima as a result of the additional annealing process, consistent with the 2n 

scan DSC results. For example, the film cured with a 10,080 mJ/cm2 radiant exposure 

had Tgs of 101 °C (unannealed) and 108 °C (annealed). A pure 1:1 molar Tetra 

Thiol-Triallyl Triazine polymeric film cured and aged under identical conditions has Tgs 

of 62 °C (unannealed) and 66 °C (annealed). For comparison, Tgs of all aged TUTE films 

and the Tetra Thiol-Triallyl Triazine films are listed in Table 5.2. The TUTE based 

networks have much higher Tgs than the Tetra Thiol-Triallyl Triazine films. As addressed 

above, the Tg enhancement upon annealing the aged samples results from additional 

reaction at 85 °C. It seems reasonable that the combination of the triallyl triazine ring 

rigidity and the formation of strong hydrogen bonds via the thiourethane groups results in 

a network with high Tg. 

Another important observation of the results in Figure 5.4 is the very narrow tan 8 

peaks. For a pure thiol-ene system, the FWHM value can be as narrow as 15-20 °C. As 



mentioned in the Introduction section, these narrow glass transitions imply uniform 

thiol-ene molecular networks resulted from the step growth free-radical mechanism1'2 of 

thiol-ene reactions. Epoxy resins upon curing by a step growth mechanism also have 

narrow glass transition regions indicating network uniformity. The FWHM of epoxy 

networks can vary from -20 °C to 60 °C.13"17 The tan 8 vs. temperature plot of the aged 

but unannealed IPDI Thiol-Triallyl Triazine film (cured with 10,080 mJ/cm2 radiant 

exposure) has a FWHM value of 28 °C (Table 5.3). The tan 8 peak of the aged/annealed 

IPDI Thiol-Triallyl Triazine film cured with the same radiant exposure has a FWHM of 

22 °C. The narrowed FWHMs after annealing indicate additional reactions, e.g. thiol-ene 

and .thiol-isocyanate. 

For photopolymerized H12MDI Thiol-Triallyl Triazine and TDI Thiol-Triallyl 

Triazine aged films, the Tgs are also much higher than those of the Tetra Thiol-Triallyl 

Triazine films and, in general, further increase by the annealing process (Figure 5.5). Tgs 

greater than 90 °C are achieved in the aged/annealed H12MDI and TDI films cured with 

the 5,040 mJ/cm and 10,080 mJ/cm UV radiant exposure. One particularly interesting 

observation of the results for the TDI Thiol-Triallyl Triazine films is the decrease in the 

Tg for the aged/unannealed samples for the higher radiant exposures (5,040 mJ/cm2 and 

10,080 mJ/cm ). This may be due both to the photodegradation that is well known for 

aromatic polyurethanes and/or absorption by the aromatic urethane groups that 

competes with absorption by the photoinitiator. 



106 

Physical Characterization of Films 

We also subjected TUTE films to some general ASTM type tests traditionally 

used to assess their performance immediately after curing (no aging). The results for 

pendulum hardness values of these TUTE films are given Table 5.4. The initially 

unannealed IPDI Thiol and TDI Thiol based films have pendulum hardness values of up 

to twice that of the H12MDI film. A 2 h annealing process at 85 °C increases the 

pendulum hardness values of all three films to values near 200 s. The results of pencil 

hardness tests in Table 5.4 are in accordance with the pendulum hardness results. The 

unannealed IPDI Thiol-Triallyl Triazine and TDI Thiol-Triallyl Triazine films have 

medium hardness, while the unannealed H12MDI Thiol-Triallyl Triazine films are much 

softer. As with the pendulum hardness values, after annealing at 85 °C for 2 h, 

presumably additional thiol-ene curing and conversion of residual isocyanate groups 

obtained during the photocuring process takes place and the pencil hardness of all three 

films increased significantly to over 5H, indicating the formation of films with surface 

hardness comparable to traditional hard films reported in the literature.19"21 Obviously, the 

increase in conversion after the annealing process results in substantial enhancement of 

both the pencil and pendulum hardness of the TUTE films. Direct and reverse impact 

resistance values of the unannealed TUTE films were also obtained (Table 5.5). H12MDI 

Thiol based films perform better upon impact presumably because the cyclohexyl groups 

in the H12MDI structure provide a mechanism for better energy dissipation.22 Annealed 

samples were not evaluated due to difficulties in sample preparation and delamination 
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from the metal substrates during the annealing process. Additional results in Table 5.5 

indicate that all three unannealed films have reasonable elongations and resistance to 

cracking upon bending. The TDI based film has greater elongation than the other two 

films, consistent with the lower Tg. 

Conclusions 

Thiourethane-thiol-ene (TUTE) films with high glass transition temperatures were 

prepared from the thiol-ene polymerization of a triene with multifunctional thiol 

oligomers based upon three diisocyanates: IPDI, H12MDI and TDI. Further increases in 

Tg were achieved after the initial photocuring process by aging and/or annealing at 85 °C 

due to additional reaction of the thiol and ene functional groups, as well as the reaction of 

isocyanates formed during the photocuring process. All the aged and annealed TUTE 

thiol-ene films had Tgs greater than 90 °C. The hardness of the initially (unaged) cured 

TUTE films increased markedly after annealing. Also, the unaged TUTE films exhibit 

fairly good impact and bending properties. Further work will involve more extensive 

evaluation of both aging (at room temperature) and/or annealing at elevated temperatures 

and correlation with changes in physical and mechanical properties. 
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Chart 5.1. Structures of components. 
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Chart 5.2. Representative average structures of the three thiol end-capped oligomers: 
IPDI Thiol pentamer, H12MDI Thiol pentamer and TDI Thiol pentamer (the hydrogens 
are numbered and their H NMR chemical shifts are listed in Table 5.1 under the same 
number). 
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Scheme 5.1. Synthesis of IPDI Thiol and formation of the corresponding TUTE film. 
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Table 5.1. *H NMR chemical shifts of the SH end-capped oligomers. 

H 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

8 (ppm) 
IPDI Thiol 

.1.2 

2.6-2.8 

2.6-2.8 

4.1 

4.1 

2.6-2.8 

2.9-3.1 

5.5-6.5 

2.9-3.1 

0.9-1.1 

1.5-1.8 

0.9-1.1 

1.5-1.8 

3.5-3.6 

1.5-1.8 

H12MDI Thiol 

1.3 

2.6-2.8 

2.6-2.8 

4.2 

4.2 

2.6-2.8 

3.2 

5.5-6.0 

3.7 

1.7 

1.7 

1.0-1.2 

1.0-1.2 

TDI Thiol 

1.3 

2.6-2.8 

2.6-2.8 

4.2 

4.2 

2.6-2.8 

3.2 

6.9-8.5 

6.9-8.5 

6.9-8.5 

6.9-8.5 

2.3 
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Table 5.2. Tgs (°C) of aged TUTE films and 1:1 molar Tetra Thiol-Triallyl Triazine 

films. All Tgs were measured by DMA operating at 1Hz and 3 °C/min. 

Sample Component 

IPDI Thiol-
Triallyl Triazine films 

H12MDI Thiol-
Triallyl Triazine films 

TDI Thiol-
Triallyl Triazine films 

Tetra Thiol-
Triallyl Triazine films 

Heat 
Treatment 

Unannealed 

Annealed 

Unannealed 

Annealed 

Unannealed 

Annealed 

Unannealed 

Annealed 

Tg (°C) 
1,008 

(mJ/cm ) 

78 

91 

87 

94 

79 

85 

55 

65 

5,040 
(mJ/cm ) 

92 

96 

92 

94 

77 

91 

61 

69 

10,080 
(mJ/cm ) 

101 

108 

95 

93 

72 

92 

62 

66 
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Table 5.3. FWHM values of tan 8 peaks of aged IPDI Thiol-Triallyl Triazine films. 

Sample Component 

IPDI Thiol-
Triallyl Triazine films 

Heat 
Treatment 

Unannealed 

Annealed 

FWHM (°C) 
1,008 

(mJ/cm2) 

18 

18 

5,040 
(mJ/cm2) 

24 

20 

10,080 
(mJ/cm2) 

28 

22 
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Table 5.4. Hardness of unaged TUTE films. 

Sample Component 

IPDI Thiol-
Triallyl Triazine films 

H12MDI Thiol-
Triallyl Triazine films 

TDI Thiol-
Triallyl Triazine films 

Persoz hardness (sec) 
Unannealed 

105 

45 

70 

Annealed 

215 

186 

209 

Pencil hardness 
Unannealed 

HB 

5B 

H 

Annealed 

7H 

5H 

7H 

Annealed samples were heated at 85 °C for 2 h 
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Table 5.5. Impact and elongation of imaged TUTE films. 

Sample Component 

IPDI Thiol-
Triallyl Triazine films 

H12MDIThiol-
Triallyl Triazine films 

TDI Thiol-
Triallyl Triazine films 

Impact 
Direct 
(m-kg) 

0.46 

0.86 

0.46 

Reverse 
(m-kg) 

0.18 

0.46 

0.12 

Bending 
Elongation 

(%) 

18.30 

19.10 

28.20 

Resistance to 
cracking (cm) 

0.51 

0.33 

0.35 
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Figure 5.1. (a) RTIR spectra of thiol (2575 cm"1) and ene (3083 cm"1) in thiol-ene 
photopolymerization. Percent conversion of thiol group as a function of irradiation time 
of (b) IPDI Thiol-Triallyl Triazine, (c) H12MDI Thiol-Triallyl Triazine, and (d) TDI 
Thiol-Triallyl Triazine mixtures. Light intensity is 18.7 mW/cm and 1 wt% of DMPA is 
used as photoinitiator. 
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Figure 5.2. 1st and 2nd DSC heating scans and first DSC cooling scans for unaged IPDI 
Thiol-Triallyl Triazine films polymerized with UV radiant exposure of 10,080 mJ/cm . 
All scans at 10°C/min. 
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from 1st and 2nd DSC heating scans at 10 °C/min. 
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Figure 5.4. (a) Tan 8 peaks for aged IPDI Thiol-Triallyl Triazine unannealed films, (b) 
Tan 8 peaks for aged IPDI Thiol-Triallyl Triazine annealed (18 h, 85 °C) films, (c) Tg 

obtained from tan 5 peak maxima in (a) and (b) vs. light radiant exposure. DMA scans 
obtained at 1Hz and 3 °C/min. 
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Figure 5.5. (a) Tg of aged H12MDI Thiol-Triallyl Triazine films, and (b) Tgs of aged TDI 
Thiol-Triallyl Triazine films obtained by DMA at 1Hz and 3 °C/min. Annealed samples 
were heated at 85 °C for 18 h. 
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CHAPTER VI 

PHYSICAL AGING OF THIOURETHANE THIOL-ENE NETWORKS 

Abstract 

The physical aging behavior of a class of photopolymerized thiourethane thiol-ene 

networks were characterized by thermal and spectroscopic analysis, the results of which 

are directly related to changes in macroscopic physical and mechanical properties. The 

hydrogen bonding associated with the thiourethane chemical structure exerts at most a 

slight retarding effect on the enthalpy relaxation, but there is a significant increase in the 

glass transition temperature of the thiourethane thiol-ene networks, an important 

implication for application of these materials and the stabilization of their physical, 

mechanical and thermal transition properties. 

Introduction 

When annealed at temperatures lower than its glass transition temperature, a 

polymer at a temperature below its glass transition temperature in the thermodynamic 

non-equilibrium state will approach the thermodynamic equilibrium state with coincident 

change in physical properties including a decrease in specific volume and enthalpy 

relaxation. ' The initial deviation from the equilibrium state at the physical aging 

temperature greatly depends on the thermal history of the glassy polymer which can be 

effectively removed by heating the polymer to the equilibrium state, approximately 50 °C 

higher than the glass transition temperature, and holding for more than 10 minutes. From 
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a practical point of view, physical aging is vital for any long-term application because the 

macroscopic properties of polymers change with time. This effect is accelerated when the 

polymer materials are maintained at a temperature close to their glass transition 

temperature. 

Although hydrogen bonds, offering physical linkages within polymer matrices by 

restricting segmental and chain motions, may affect the relaxation process of 

macromolecules and help maintain the dimensional and physical properties of polymer 

materials, the physical aging of hydrogen bond containing polymer systems have not 

received much attention in the literature except for a limited number of reports.4"6 

McGonigle et al.4 prepared a series of linear polystyrene copolymers that are capable of 

hydrogen bonding, the enthalpy relaxation and free volume changes of which were 

measured with differential scanning calorimetry (DSC) and positron annihilation lifetime 

spectroscopy (PALS). The physical aging process of these copolymers was shown to be 

sensitive to the formation of hydrogen bonds, resulting in slower relaxation rate during 

aging process compared to the polystyrene homopolymer. Through comparing the 

thermal properties of polystyrene, poly (4-hydroxystyrene) and poly 

(4-hydroxystyrene-co-styrene) measured by DSC, Yoshida et al. also found that the main 

chain motion and relaxation of polymers are restricted by hydrogen bonding. The 

relaxation time strongly depends on the content of hydroxyl groups in the copolymer.6 

Upon characterizing the physical aging of the silica-poly(methyl methacrylate) (PMMA) 

nanocomposite by florescence spectroscopy, Priestley et al. found that the relaxation rate 
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of the 0.4 vol% silica-PMMA is 20 times slower than the PMMA polymer without 

nanoparticles.5 And via dielectric spectroscopy measurements, the strength of the P 

relaxation, being responsible for the physical aging and related to the motion of PMMA 

ester dipoles, was also reduced by about 50% for the silica-PMMA composite. These 

changes were attributed to the hydrogen bonds formed between the ester side groups of 

PMMA and the hydroxyl groups on the surface of the silica nanoparticles. 

Understanding the effect of hydrogen bonding on sub-Tg aging in the glassy state 

is particularly important because of the wide applications of crosslinked 

polymers/polymer networks in industries including coatings and high performance 

materials. Hydrogen bonding containing thiourethane thiol-ene are ideal for probing such 

hydrogen bonding-aging effects due to their exceptional uniformity and high extent of 

hydrogen bonding.7 The uniform thiourethane thiol-ene networks were prepared from 

isocyanates, multifunctional thiol and multifunctional ene monomers as described in 

reference 7. It has been shown the glass transition temperatures of the thiourethane 

containing networks are significantly higher than the analogue hydrogen bonding free 

thiol-ene networks as a result of the formation of physical crosslinks due to hydrogen 

bonding. Herein, the thiourethane-thiol-ene networks were evaluated by DSC and the 

results were compared to base thiol-ene networks to illustrate the effect (very small) of 

hydrogen bonding on enthalpy relaxation (glass) of the networks. Changes in 

macroscopic properties such as the refractive index, Persoz pendulum hardness, and 

tensile stress/strain were also measured for samples subjected to sub-Tg aging. 
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Experimental 

Materials 

Dicyclohexyl methane diisocyanate (H12MDI), 2,4-toluene diisocyanate (TDI) 

and Isophorone diisocyanate (IPDI) were obtained from Bayer and used as received. 

Triallyl-l,3,5-triazine-2,4,6(lH,3H,5H)-trione (TTT) and pentaerythritol 

tetrakis(3-mercapto-propionate) (Tetra Thiol) were purchased from Aldrich Chemical Co. 

and used as received. The photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA) 

was obtained from Ciba Specialty Chemical Company. Other chemicals, such as 

anhydrous acetone, were also obtained from Aldrich Chemical Co. and used as received. 

The thiourethane thiol-ene (TUTE) films were prepared from diisocyanate, Tetra Thiol 

and TTT as described in detail elsewhere7 and shown in Scheme 6.1. TUTE films 

prepared from IPDI, TDI and H12MDI are designated IPDI Thiol-TTT, TDI Thiol-TTT 

and H12MDI Thiol-TTT, respectively. The base thiol-ene network, Tetra Thiol-TTT, was 

prepared from equal molar (based on functional groups) amounts of Tetra Thiol and TTT 

using 1 wt% of DMPA photoinitiator following a thiol-ene photopolymerization 

mechanism described elsewhere.7'8 All films were postcured at temperatures higher than 

their glass transition temperature for 3-5 h to make sure complete conversion of 

functionalities was achieved; complete conversion was confirmed by FTIR showing no 

residual unreacted ene or thiol and DSC measurement which showed no shift in the glass 

transition temperature upon repeated heating scans for a specific sample. 

Characterization 
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Tensile tests were conducted by clamping a piece of-125 urn film between the 

tensile clamps of a dynamic mechanical analysis (DMA), TA Q800 DMA (TA 

Instruments, Inc.), operating at a tension rate of 10 %/min with 0.05 N of preload force. 

The stress at break and strain at break was recorded as the tensile stress and tensile strain, 

respectively. The Persoz pendulum hardness of films (-125 urn) on glass substrates was 

measured according to ASTM D-4366 using a BYK-Gardner pendulum hardness tester 

with a square frame pendulum. Refractive index of films (-125 um) was measured with a 

Bausch&Lomb ABBE-3L refractometer using 1-Bromonaphthalene as the contacting 

liquid between the sample film and the prism shield. A Bruker IFS 88 FTIR spectrometer 

operating at 5 scans/s was used to investigate films (-20 urn) located in a sample 

chamber controlled by a Harrick temperature controller with an accuracy of ±1 °C. All 

differential scanning calorimetry (DSC) measurements were conducted with a TA Q100 

(TA Instruments, Inc.). To investigate the effect of temperature on enthalpy relaxation of 

TUTE and base thiol-ene networks, -6 mg of samples were annealed in situ in the DSC at 

various temperatures for 1 h (isochronal measurements), cooled down to Tg-50 °C and 

then reheated to Tg +50 °C to obtain the enthalpy relaxation peak (Figure 6. la). To 

investigate the annealing time effect on enthalpy relaxation, films were annealed in situ in 

the DSC at Tg-10 °C for various period of time (isothermal experiments), cooled down to 

Tg-50 °C and then reheated to Tg +50 °C to obtain the enthalpy relaxation peak (Figure 

6.1b). All cooling and heating rates were 10 °C/min. In each DSC measurement, the 

sample was first annealed at Tg +50 °C for 30 min to remove any thermal history, 
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followed by cooling down to Tg-50 °C and a subsequent heating scan to obtain the 

reference curve. Using TA Universal Analysis (V3.9A) software, the reference curve was 

subtracted from the following scan curves to produce recovery peaks around the glass 

transition region which are integrated to give the enthalpy loss values. 

Results and Discussion 

Physical and Mechanical Property Changes 

The glass transition temperatures determined by DSC for all samples are listed in 

Table 6.1. Before measuring by DSC, all films were postcured for 20 h at temperatures 

higher than Tg to convert all unreacted functional groups and eliminate any postcuring 

effects on the DSC results. For all thiourethane thiol-ene films prepared from isocyanates, 

Tgs much higher than those of base thiol-ene films were observed. This is, at least 

partially, because of the hydrogen bonding associated with thiourethane linkages as 

reported in a previous publication.7 There may also be some effect on the Tg due to the 

higher functionality of the thiourethane thiol-ene films; however for thiols with 

functionality greater than four, the functionality is not expected to play a large role in 

determining the Tg since looping results from multiple reactions between interacting thiol 

and ene molecules. 

It is well known that physical aging can cause changes in both microstructural and 

macrostructural properties include enthalpy, dielectric response and mechanical 

performance.1 As shown in Figure 6.2, by annealing the IPDI Thiol-TTT film at 10 °C 



129 

lower than Tg for 20 h, increases in tensile stress, strain and Young's modulus are 

observed. This is due to the densification of network structure as well as the coincident 

conditions facilitating the formation of hydrogen bonding. The physical aging process, in 

principle, is reversible, resulting in reversible changes in physical properties. This is 

demonstrated in Figure 6.3 for the IPDI Thiol-TTT film, where the pendulum hardness of 

the IPDI Thiol-TTT film (measured at room temperature for each film) increases to over 

250 s upon annealing at Tg-10 °C for 20 h. Upon further heating at 50 °C above the Tg for 

30 min to remove the sub-Tg thermal aging history, the pendulum hardness of the film at 

room temperature returns to the original unannealed value, i.e., the sub-Tg aging process 

is recyclable. 

Refractive index has also been used to monitor the physical aging process of 

polymers. In our case, both a thiourethane thiol-ene and a thiol-ene based film exhibit 

reversible changes in refractive indices upon annealing and heating. As shown in Figure 

6.4, the refractive index of the IPDI Thiol-TTT film apparently increases upon annealing 

due to the increase in film density as suggested by the Lorentz-Lorenz equation,10 

n2-\ =pNava 

n2+2 3M0sQ 

where n is the refractive index, p is the density of polymer, a is the average polarizability, 

so is the vacuum permittivity, Nav is the Avogadro constant and Mo is the polymer 

molecular weight. Further heating of the film in the equilibrium rubbery state removes 

the thermal history and the refractive index of the film returns to the initial value. The 
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reversible change in refractive index is also observed for the TetraThiol-TTT based 

thiol-ene film. 

Isochronal Measurements 

In order to investigate the effect of annealing temperature (Ta) on sub-Tg aging of 

the thiourethane thiol-ene and thiol-ene films, enthalpy relaxation was measured by DSC 

as described in the Experimental section. As shown for an example system in Figure 6.5a, 

IPDI Thiol-TTT films were annealed in the DSC at various temperatures ranging from 10 

°C above Tg to 25 °C below Tg. The relaxed enthalpy obtained by subtracting the 

reference peak area from the enthalpy recovery peak area is plotted as a function of Ta in 

Figure 6.5b. At annealing temperatures higher than Tg where molecular chains are mobile, 

no enthalpy recovery peaks are detected. With the decrease of annealing temperature to 

Tg, enthalpy recovery peaks appear implying that network relaxation occurs, which is 

reasonable considering that the glass transition region extends over a finite temperatures 

range. With a further decrease of the annealing temperature, significant enthalpy recovery 

peaks are observed at Tg-5 °C to Tg-15 °C. When the annealing temperature is too low to 

activate effective segmental motion, e.g. Tg-20 °C and Tg-25 °C, enthalpy relaxation is 

hindered and therefore, in the 1 h annealing process, only a very limited amount of 

enthalpy recovery will be obtained. The same trend can be observed in Figure 6.6 for the 

Tetra Thiol-TTT film. It is noted that the relaxed enthalpy of the IPDI Thiol-TTT film 

approaches zero for Tg-Ta values less than 20 °C, while that of Tetra Thiol-TTT remains 

measurable at temperatures up to Tg-40 °C. This small effect may reflect the role of 
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hydrogen bonding in limiting the extent of enthalpy relaxation during the 1 h annealing 

period; however, no conclusions can be made. 

All of the other thiourethane thiol-ene films were measured by DSC following the 

same procedures used to obtain the data in Figure 6.5, and the recovered enthalpy is 

plotted as a function of annealing temperature in Figure 6.7. At essentially all annealing 

temperatures, the TetraThiol-TTT sample exhibited a little greater enthalpy relaxation 

than all of the thiourethane thiol-ene samples, and a significant amount of relaxation for 

the 1 h aging process can still be observed even at 40 °C below Tg. The slightly lower 

relaxation tendency of the thiourethane thiol-ene networks may be related to the 

hydrogen bonding. But the retarding effect of hydrogen bonding is not as great as those 

shown for linear polymers reported in the literature.4'5 This is presumably because that 

the physical aging of the networks prepared from multifunctional thiol and enes has 

already been greatly restricted by the very high network density. Therefore, the additional 

hydrogen bonding may not generate any significantly effect on the already restricted 

relaxation of molecular chains. 

Isothermal Measurements 

To compare the enthalpy relaxation rate of TetraThiol-TTT and the thiourethane 

thiol-ene networks, the films were annealed at a specific temperature for different periods 

of time and measured by DSC scans at 10 °C/min as described in the Experimental 

section. For all samples, Tg-10 °C was selected as the annealing temperature where the 

highest extent of relaxation was found for each system in the 1 h annealing process 
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(Figure 6.7). 

As seen in Figure 6.8 for the TetraThiol-TTT an IPDI Thiol-TTT networks, an 

increase in enthalpy relaxation occurs with an increase in annealing time. As shown in 

Figure 6.9, the slope of the enthalpy relaxation versus log annealing time plot typically 

used to assess the rate of enthalpy relaxation11"18 is greatest for the TetraThiol-TTT 

network. This may reflect a restrictive effect of hydrogen bonding on the relaxation of the 

network structure.However, due to the significant difference in the chemical structures of 

the thiols, it must be concluded that any effect of hydrogen bonding, if any, is very small. 

The enthalpy relaxation rate, (3H, 

dlogta 

for each of the networks calculated from the linear least-square fit of the relaxation loss 

data shown in Figure 6.9 is given in Table 6.2. Again, slightly slower enthalpy relaxation 

rates were found for each of the thiourethane thiol-ene networks, but this may not be 

correlated with a retarding effect of hydrogen bonding on the relaxation process4"6'20 

since the difference in PH are very small and again there are significant structural 

differences in the thiols. We note that the linear relationship between enthalpy loss and 

log annealing time in Figure 6.9 is clear over the measured time range with no signs of 

leveling off. It has been noted that the time required for achieving enthalpic equilibrium 

91 

states in linear polymers is very long. For example, the reported polystyrene with the (3H 

of 0.85 at Tg-15 °C requires over 100 h to achieve its enthalpic equilibrium states. The 



thiol-ene based networks, clearly do not achieve enthalpic equilibrium within the 20 h 

annealing period. 

FTIR Investigation 

Thiourethane linkages (-N(H)-C(=0)-S-) have similar hydrogen bonding 

capabilities that are essentially identical to the analogous urethane groups 

99 

(-N(H)-C(=0)-0-). Since hydrogen bonding is an vital factor affecting properties of 

urethane type polymers, it is important to understand the effect of physical aging on 

hydrogen bonding. The change of hydrogen bonding before, during and after physical 

aging process of thiourethane thiol-ene networks can be easily monitored by FTIR. 

Basically, when a functional group, e.g. the NH group in thiourethanes, is involved in 

hydrogen bonding, its IR characteristic band will shift to lower frequencies.23'24 When 

hydrogen bonding is disrupted at elevated temperature its IR band will shift to higher 

frequencies.2 '2 As shown in Figure 6.10, the IR spectra of the IPDI Thiol-TTT film in 

the region of the hydrogen bonded N-H stretching band at ~3350 cm"1, heated to Tg+50 

°C to remove thermal history, followed by annealing at Tg-10 °C, or 83 °C, for 20 h 

(curve b, measured at 83 °C immediately after annealing and curve c, measured when the 

annealed sample is cooled to 25 °C) shows no noticeable shift in the NH band compared 

to the spectrum recorded before the 20 h annealing process (curve a). A semiquantitative 

analysis of N-H hydrogen bonding fraction, Fb,NH, can be obtained using equation 2, 
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l + 3A6fhML 
A 
^b .NH 

where Af>NH and Ab,NH are the absorbance of free (-3236 cm"1) and hydrogen bonded NH 

groups (-3360 cm"), respectively. The area of the free and hydrogen bonded bands are 

obtained through a peak deconvolution method described elsewhere.24 The results in 

Figure 6.11 show that Fb,NH for the aged IPDI Thiol-TTT (84.0 % for curve b and 86.4% 

for curve c) is essentially identical to the value of F^NH (85.4%) for the same sample prior 

to the 20 h annealing process. 

Conclusions 

The effect of annealing temperature and annealing time on the enthalpy relaxation 

of thiol-ene and thiourethane thiol-ene networks have been investigated qualitatively by 

DSC, and quantitatively by relaxation rate calculations. Compared with a model thiol-ene 

network, all of the hydrogen bonding containing thiourethane thiol-ene networks exhibit 

almost identical enthalpy relaxation rates at Tg-10 °C. FTIR analysis of IPDI Thiol-TTT 

films indicated no change in the extent of hydrogen bonding upon sub-Tg aging. The 

hydrogen bonding associated with the thiourethane linkages thus influence the networks 

in one distinct way. By introducing hydrogen bonding, the glass transition temperatures 

of the networks are very high compared to traditional thiol-ene systems. However, there 

appears to be little effect of hydrogen bonding on enthalpy relaxation of these dense 

networks. 
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Scheme 6.1. Preparation of thiourethane-thiol-ene films. IPDI, TDI and H12MDI were 
used as the diisocyanates to prepare thiourethane thiols with different structures. 
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Table 6.1. Glass transition temperatures of thiourethane-thiol-ene and the base thiol-ene 
networks measured with DSC operating at 10 °C/min and full width of half maximum 
(FWHM) ( 

Tg (°Q 

)fTanopeaksmeas 

Tetra Thiol-TTT 

47 

ured with DMA ope 

IPDI Thiol-TTT 

93 

rating at 3 C/rain. 

H12MDI Thiol-TTT 

86 

TDI Thiol-TTT 

83 
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Table 6.2. Enthalpy relaxation rate of thiol-ene and thiourethane-thiol-ene networks. 

PH 

(Jg_1per decade) 

R 

Tetra 

Thiol-TTT 

0.88 

0.997 

IPDI 

Thiol-TTT 

0.83 

0.998 

H12MDI 

Thiol-TTT 

0.77 

0.998 

TDI 

Thiol-TTT 

0.76 

0.997 

* R is the correlation coefficients of the linear fit. 
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Figure 6.2. Tensile stress and strain of unannealed and annealed (Tg-10 °C for 20 h) IPDI 
Thiol-TTT film measured at room temperature. 
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Figure 6.3. Pendulum hardness of IPDI Thiol-TTT film measured at room temperature. 
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Figure 6.4. Refractive index of IPDI Thiol-TTT and Tetra Thiol-TTT films measured at 
room temperature. 
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Figure 6.5. Enthalpy relaxation of IPDI Thiol-TTT film annealed for 1 h at various 
temperatures measured with DSC. 
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Figure 6.6. Enthalpy relaxation of TetraThiol-TTT film annealed at various temperatures 
measured with DSC. 
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Figure 6.10. FTIR spectra of the NH group of the IPDI Thiol-TTT network measured at 
different conditions: (a) unannealed, (b) immediately after annealing at Tg-10 °C for 20h, 
and (c) when the annealed sample is cooled to 25 °C. The thermal history has been 
removed by heating at 150 °C for 30 min before FTIR measurements. 
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CHAPTER VII 

COMPARISON OF SMALL MOLECULE AND POLYMERIC URETHANES, 

THIOURETHANES AND DITHIOURETHANES: HYDROGEN BONDING AND 

THERMAL, PHYSICAL AND MECHANICAL PROPERTIES. PART 1 

Abstract 

The hydrogen bonding behavior of a homologous series of small molecule and 

plymeric carbamate, thiocarbamates and dithiocarbamate, was investigated in solution, 

melt and solid states. The relative hydrogen bonding strengths in these systems were 

evaluated, and the results compared to theoretical calculations of hydrogen bonding 

strength. The polyurethane and polythiourethane were found to have approximately 

equivalent physical and mechanical properties as a result of a similar extent of hydrogen 

bonding, whereas the polydithiourethane model compound, due to a lower degree of 

hydrogen bonding, has reduced thermal and mechanical transition temperatures as well as 

lower hardness values. The polythiourethane and polydithiourethane networks exhibit 

narrower glass transitions compared to polyurethane networks, apparently the result of an 

efficient isocyanate/isothiocyanate-thiol reaction with little or no side products. Due to 

weakness of the C-S bond compared to the C-0 bond, thiourethanes and dithiourethanes 

have lower thermal stability than corresponding urethanes. Finally the thiourethanes and 

dithiourethane have higher refractive index values than their urethane counterparts. 
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Introduction 

Polyurethanes, since their discovery in 1947,1 have been widely used in many 

coatings and elastomer applications due to an extraordinary combination of physical 

and mechanical properties. Accordingly, the structure-property relationships of 

polyurethanes have been extensively studied.2' 4"n Hydrogen bonding, providing physical 

linkages within the material matrix, is a vital factor that determines the microscopic and 

macroscopic properties of polyurethanes, including their phase behavior, glass transition 

temperature, strength and stiffness.8,9 Considerable effort has been extended to 

understand the hydrogen bonding behavior of polyurethanes in both segmented systems 

and polymer blends.4'6'10'11 

Although the reactions of thiols and isocyanates have also been know for a long 

time ' and the resultant polythiourethanes (containing a structure unit as 

-N(H)-C(=0)-S-) are used in many modern applications including optical lenses due to 

high refractive index values ' 5 and advanced coatings, " the basic physical and 

mechanical properties of thiourethanes/polythiourethanes have not been characterized to 

the same extent as their urethane counterparts, although limited literature can be found on 

synthesis/catalysis, ' reaction kinetics, thermodynamic transitions and hydrogen 

bonding.21'22 Materials based on a similar structure, dithiourethane or dithiocarbamate, 

-N(H)-C(=S)-S-, have also been explored for use in optical applications due to their high 

refractive index values.14'15 

One of the distinct advantages of thiourethane and dithiourethane chemical 
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structural units is the feasibility of incorporating them into photopolymerizable systems 

which has the potential of opening up whole new application areas. For example, in our 

previous study on photopolymerized thiol-ene films,23 a notable enhancement in glass 

transition temperature was attained for thiourethane-thiol-ene (TUTE) systems 

presumably due to several factors including the hydrogen bonding associated with the 

thiourethane linkages. However, questions related to the strength of the hydrogen bonds 

of thiourethanes and dithiourethanes compared with those of ordinary urethanes and the 

corresponding effect on polymer properties remain to be delineated. 

From both a basic and practical view point, a detailed investigation and 

comparative analysis of the hydrogen bonding behavior of a homologous family of 

structures including urethanes (-N(H)-C(=0)-0-), thiourethanes (-N(H)-C(=0)-S-) and 

dithiourethanes (-N(H)-C(=S)-S-), and the resulting correlation of polymer structure and 

physical, mechanical and optical properties is important in establishing guidelines for 

future development. Accordingly, to provide a comprehensive understanding of the 

hydrogen bonding behavior of each urethane type (polyurethane, polythiourethane and 

polydithiourethane) and to characterize critical structure-property relationships, a series 

of small molecule model compounds were synthesized. The relative strength of their 

hydrogen bonds was measured in solution and melt, and the results correlated with 

theoretical calculations. Based on the results of these simplified model systems, a 

contiguous set of polyurethane, polythiourethane and polydithiourethane networks were 

evaluated, and the effect of hydrogen bonding on physical and mechanical properties was 
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determined. The polyurethane and polythiourethanes were found to exhibit similar 

properties, quite different from those of polydithiourethanes, apparently due to 

differences in hydrogen bonding. The results reported herein are important in providing a 

clear theoretical and experimental basis for tailoring polymer properties through 

introducing different urethane type linkages, i.e., urethanes, thiourethanes and 

dithiourethanes. 

Experimental 

Materials 

Chemicals for model compound synthesis, hexyl isocyanate (HI), hexyl 

isothiocyanate (HIT), 1-hexanol (HA), 1-hexanethiol (HT), butyl 3-mercaptopropionate 

(BMP), 1,6-hexanediol (HexDiol), 1,6-hexanedithiol(HexDithiol), dibutyltin dilaurate 

(DBTDL) and triethylamine (TEA) were purchased from Aldrich Chemical Co. and used 

as received. 1,6-Hexamethylene diisocyanate (HDI) and the HDI trimer or Desmodur® 

N3600 (3NCO) were obtained from Bayer Materials Science and used as received. 

1,6-Hexane diisothiocyanate (HDIT) was purchased from Trans World Chemicals Inc. 

and used as received. Trimethylolpropane tris(3-mercaptopropionate) (TriThiol) was 

obtained from Bruno Bock Thiochemical and used as received. Other chemicals, such as 

anhydrous acetone, were also obtained from Aldrich Chemical Co. and used as received. 

Preparation 

Typical procedures for synthesizing the small molecule model compounds listed 
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in Scheme 7.1, N-hexyl hexylcarbamate (HIHA), N-hexyl S-hexylcarbamate (HIHT), and 

N-hexyl S-butyl 3-mercaptopropionate thiocarbamate (BMPHI), and N-hexyl S-butyl 

3-mercaptopropionate dithiocarbamate (BMPHIT) are as follows (HIHA is taken as an 

example). 0.03 Mol of hexyl isocyanate and 0.03 mol of 1-hexanol were first charged into 

a 3 neck flask before 10 mL of hexane was added. The reactor was then purged with dry 

N2 for 30 min followed by 0.02 wt% of dibutyltin dilaurate (DBTDL) being added and 

stirred. The mixture was allowed to react for 8 h at 65 °C under dry N2 flow. All the 

model products were purified by recrystallization from hexane 2-3 times, and their 

structures verified by nuclear magnetic resonance spectroscopy (NMR). TEA was used in 

all thiol reactions with isocyanates or isothiocyanates due to its highly efficiency as a 

catalyst.24 DBTDL was used in all alcohol reactions. 

'HNMR: 

HIHA(CDC13): 8 0.89 (t, 6H, -CH3), 1.30 (m, 12H, -CH2-), 1.55 (m, 4H, -CH2-), 

3.17 (q, 2H, -CH2-N), 4.04 (t, 2H, -CH2-0-), 4.60 (s, 1H, -N(H)-). 

HIHT (CDCI3): 8 0.88 (t, 6H, -CH3), 1.29 (m, 12H, -CH2-), 1.55 (m, 4H, -CH2-), 

2.90 (q, 2H,-CH2-N), 3.29 (t, 2H, -CH2-S-), 5.25 (s, 1H, -N(H)-). 

BMPHI (CDCI3): 8 0.93 (t, 6H, -CH3), 1.29 (m, 8H, -CH2-), 1.56 (m, 4H, -CH2-), 

2.69 (t, 2H, -CH2-C(=0)-), 3.15 (t, 2H, -CH2-S-), 3.27 (q, 2H, -CH2-N), 4.10 (t, 2H, 

-CH2-0-), 5.27 (s, 1H, -N(H». 

BMPHIT (CDC13): 8 0.93 (t, 6H, -CH3), 1.32 (m, 8H, -CH2-), 1.56 (m, 4H, -CH2-), 

2.77 (t, 2H, -CH2-C(=S)-), 3.51 (t, 2H, -CH2-S-), 3.72 (q, 2H, -CH2-N), 4.11 (t, 2H, 
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-CH2-0-), 7.02 (s, 1H, -N(H». 

To prepare the polymeric networks, 3NCO-HexDiol and 3NCO-HexDithiol 

(Scheme 7.2), 0.03 mol of 3NCO and 0.02 mol of HexDiol (or HexDithiol) were first 

charged into a scintillation vial before 2 mL of anhydrous acetone was added to form a 

transparent solution. -0.03 Wt% (based on the whole mixture) of DBTDL (or -0.003 

wt% of TEA) was then added to the monomer solution and mixed homogeneously. The 

solution was then evenly coated onto a piece of clean glass, followed by purging with dry 

N2 in a sealable chamber for 1 h at room temperature, curing at 80 °C overnight and 

heating under vacuum (70 °C) for about 24 h. This yielded completely cured 200 urn 

thick film with no trace of solvent (verified by FTIR at 2272 cm"1 and thermal 

gravimetric analysis). To prepare HDI-TriThiol and HDIT-TriThiol (Scheme 7.2), 0.006 

mol of TriThiol and 0.009 mol of HDI (or HDIT) were charged into a scintillation vial 

and mixed homogeneously before 0.01 wt% (or 0.4 wt%) of TEA was added and mixed. 

The mixture was then coated onto a piece of clean glass using a 5 mil draw down bar, 

followed by purging with dry N2 in a sealable chamber for 1 h, curing at 80 °C overnight 

and then heating under vacuum to yield transparent films with thicknesses of-120 um. 

The HDI-TriThiol films were completely cured (total loss of NCO groups at -2272 cm"1) 

and the conversion of isothiocyanate groups (-2082 cm"1) in HDIT-TriThiol films was 

-99%. The type and concentration of catalysts were adjusted for each system, as 

described above, to achieve efficient curing, while also allowing enough time for mixing 

and film coating. 
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Characterization 

Proton nuclear magnetic resonance (lH NMR) spectra were obtained on a 

Mercury 300 (Varian Inc.) spectrometer, the temperature of which was controlled by a 

Bruker Variable Temperature Unit equipped with a Eurotherm 818 Controller. Each 

spectrum was recorded as the co-addition of 64 scans after 25 min of equilibrium at the 

desired temperature. For regular NMR measurements, concentrations of 3.7 mM (in 

either CDCI3 or d-DMSO) were used for small molecules in solution. Regular and 

temperature-resolved infrared spectra were collected on a Bruker IFS 88 FTIR 

spectrometer by holding samples (small molecules or polymer films prepared) 

sandwiched between two NaCl plates in a heating unit controlled by a Harrick 

temperature controller with an accuracy of ±1 °C. Each spectrum was recorded after 

equilibrating for 25 min at the desired temperature. Peak deconvolution was conducted 

using a Gaussian function in Origin software to obtain free and hydrogen bonded NH 

o r 

peaks as described elsewhere. Thermal stability of model polymers were measured with 

a TA Q60 (TA Instruments, Inc.) thermal gravimetric analysis (TGA) operating at a 

heating rate of 20 °C/min. Glass transition temperatures were measured with a TA Q1000 

differential scanning calorimetry (DSC) operating at 10 °C/min and a TA Q800 dynamic 

mechanical analysis (DMA) operating at 1 Hz and 3 °C/min. Two heating scans were 

conducted for all samples and the second scan were selected to determine Tg values using 

TA Universal Analysis software (V 3.9A). Tensile properties measurements were also 

conducted on the TA Q800 DMA using the strain rate module operating at a strain rate of 
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10 %/min. Pencil hardness was measured according to ASTM D-3363. The Persoz 

pendulum hardness was measured according to ASTM D-4366 using a BYK-Gardner 

pendulum hardness tester with a square frame pendulum. At least six tests were 

performed for each film (different parts of the film) coated on a glass substrate and the 

average value of the six was taken as the final result. Adhesion tests were conducted 

according to ASTM D 3359-02. All of the computations of hydrogen bonding energy 

were performed using density function theory. The function employed was the 

three-parameter B3 hybrid function of Becke and the LYP correlation function of Lee, 

97 

Yang and Parr. The basis sets used were the correlationally-consistent basis sets 

cc-pVDZ28 and cc-pVTZ29 created by Dunning and coworkers. The cc-pVDZ basis set 

uses a double-zeta description for valence electrons, while the cc-pVTZ basis employs a 

triple-zeta description for valence electrons. Both basis sets use a single-zeta description 

for core electrons, and both have a consistent set of polarization functions. Refractive 

index was measured by a Bausch&Lomb ABBE-3L refractometer at 24 °C at a 

wavelength of 589 nm. 1-Bromonaphthalene was applied between the sample film and 

the prism shield. The density of the polymers was measured using a density column 

constructed from toluene and carbon tetrachloride according to ASTM-D 1505. 

Results and Discussion 

Model Compounds in Solution 

To ascertain the position of hydrogen bonded and free N-H peaks, model 
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compounds in solution were measured by infrared spectroscopy as described in the 

Experimental section. The FTIR spectra of the carbamate (HIHA), thiocarbamates (HIHT 

and BMPHI), and the dithiocarbamate (BMPHIT) are shown in Figure 7.1. At very low 

concentrations, e.g. 0.37 mM and 3.7 mM, where the model compounds are unable to 

associate through hydrogen bonding, only free N-H stretching peaks appear at about 3453 

cm"1 (HIHA), 3428 cm"1 (HIHT), 3428 cm"1 (BMPHI), and 3376 cm"1 (BMPHIT). 

Generally, intermolecular hydrogen bonding is not likely to occur at a concentration 

lower than 10 mM in a nonpolar solvent.30 Apparently, the difference in free N-H peaks 

position is due to a variation in hydrogen bonding strength caused by the 

electronegativity difference of sulfur and oxygen atoms in the urethane, thiourethane and 

dithiourethane groups. At higher concentrations, e.g. 74 mM and 185 mM, however, both 

the free N-H peak at higher frequencies and the hydrogen-bonded N-H peak at lower 

frequencies are present. The shift of the N-H peak reflects a decrease in bond strength 

resulting from the formation of hydrogen bonds. A big difference is observed between the 

spectra of BMPHI and BMPHIT. A significant contribution from the NH hydrogen 

bonded to the carbonyl oxygen is present in the BMPHI solution at a concentration of 

185 mM, while for the dithiocarbamate BMPHIT, the hydrogen bonded NH peak is only 

found at a much higher concentration, i.e. 925 mM. This indicates a lower propensity for 

hydrogen bonding for the dithiourethane in solution compared to the urethane and 

thiourethane. 

To confirm the above observations, the model compounds were dissolved in both 
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polar and nonpolar solvents and the !H NMR recorded to determine the effect of 

hydrogen bonding on the chemical shifts of the NH protons. Figure 7.2 shows the NMR 

spectra of HIHA in neat d-DMSO and CDCI3 as an example. The concentration (3.7 mM) 

is so low that no inter- or intra- molecular hydrogen bonds are formed between HIHA 

molecules in the nonpolar solvent (CDCI3) as observed by FTIR, and by inference in 

d-DMSO. The only possible hydrogen bonding is between HIHA and d-DMSO. In 

d-DMSO, hydrogen bonds are formed between the model compound NH groups and the 

sulphinyl group (-S=0) of d-DMSO, resulting in a downfield shift of the NH proton peak 

due to a decrease in electron density around the NH proton and a corresponding increase 

in the asymmetry of the electron density due to the polarization of the NH bond by the 

-S=0 group.31 The extent of this shift or the difference in chemical shifts for associated 

and unassociated NH is a direct indication of the ability of the NH group to form 

hydrogen bonds with an oxygen acceptor. The stronger the hydrogen bond formed, the 

greater the downfield shift. As already mentioned the unassociated NH chemical shift 

refers to that at infinite dilution. This was confirmed since the NMR results show no 

significant change in the NH peak upon diluting the HIHA/CDCI3 solution to as low as 

0.37 mM (not shown). The chemical shift of the NH in CDCI3 (3.7 mM) can thus be 

regarded as the unassociated value for comparison purposes. The chemical shift of NH in 

d-DMSO can then be taken as the associated NH value representing the hydrogen 

bonding between the NH of HIHA and the sulphinyl group of d-DMSO. NMR spectra 

were recorded for all the model compounds in a similar manner to that for HIHA in 
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Figure 7.2, and the results are plotted in Figure 7.3. As shown in Figure 7.3, there is only 

a small difference in the values (8d-DMSO-8cDci3) obtained for HIHA and HIHT, indicating 

similar strengths of the urethane and thiourethane hydrogen bonds. Also, BMPHIT does 

not show a lower shift value than BMPHI, indicating that the hydrogen bonding forming 

ability of the donor group, NH, is not adversely affected by the substitution of the 

carbonyl group with the thiocarbonyl. This suggests that the lower extent of hydrogen 

bonding found by FTIR in Figure 7.1 for BMPHIT results from the effect of sulfur on the 

hydrogen bonding capability of the carbonyl oxygen. 

Another interesting characteristic of BMPHI and BMPHIT is the intramolecular 

hydrogen bonding that forms between the NH proton and the ester carbonyl hydrogen 

bonding acceptor, in addition to the NH proton hydrogen bonding with the carbonyl on 

the urethane/dithiourehane group. An effective way to quantify the extent of 

intramolecular hydrogen bonding can be expressed as 

"d-DMSO ~ " C D C 1 3 

vr = (1) 
°ref 

where 5 ref is the chemical shift of a reference compound with a similar structure to the 

compound being evaluated, but free of intramolecular hydrogen bonding. ' A vr value 

smaller than 1.0 indicates the formation of intramolecular hydrogen bonding; the smaller 

the value, the greater the extent of intramolecular hydrogen bonding. Because of the 

similar structures of HIHT and BMPHI, HIHT can serve as a reference compound for 

BMPHI for comparison purposes. The calculated vr value of 1.03 indicates that no 
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intramolecular hydrogen bonds are formed. If any such bonds were formed, a significant 

bonded IR peak should have been observed at the concentrations around 3.7 mM.34 

However, as shown in Figure 7.1 and 7.2 this is clearly not the case for either BMPHI or 

BMPHIT. 

Model Compounds: Melt 

The melting point of the small model compounds measured by DSC are listed in 

Table 7.1. The two thiourethanes have similar melting points, higher than those of the 

urethane and the dithiourethane. The melting point is influenced by hydrogen bonding as 

well as other factors related to the unit crystal structure. Temperature-resolved infrared 

spectroscopy, an effective technique that has been extensively used to investigate 

r n T 1 i f 

hydrogen bonding, ' ' ' was employed to measure the hydrogen bonding behavior of 

model compounds on a semiquantitative basis. Two distinctly separated NH peaks, 

representing free (higher frequency) and bonded (lower frequency) groups, are observed 

within the NH stretching region of HIHA and HIHT (Figure 7.4). A reduction in the 

bonded peak intensity and a corresponding increase in the intensity of the free peak with 

increasing temperature clearly illustrates disassociation of hydrogen bonds at elevated 

temperature. Similar changes are also observed in the IR spectra of BMPHI and BMPHIT. 

However, compared with the symmetrical and sharp bonded peaks of HIHA and HIHT, 

the bonded NH stretch bands of BMPHI and BMPHIT are unsymmetrical and much 

broader than those of HIHA and HIHT (Figure 7.4). 

The absorbance of each peak, free and bonded, obtained through a peak 
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deconvolution method described previously,25 can be used to approximate the hydrogen 

bonding fraction (F^NH), the percent of NH groups involved in hydrogen bonding, based 

on the equation given below5'36 

1 + 3 . 4 6 ^ 5 1 

where Af;NH and At,,NH are the absorbance of free and hydrogen bonded NH groups, 

respectively, and the constant 3.46 is used as the extinction coefficient ratio of the bonded 

and free NH groups. Although, as stated in the literature,4 the extinction coefficient of the 

NH group changes with the strength of the hydrogen bond, for semi-quantitative 

comparison purposes, the error introduced by using 3.46 is minimal. 

The NH stretching region of HIHA and HIHT can be deconvoluted into two 

distinct peaks, the free NH and the bonded NH peak. In the deconvolution process 

applied to BMPHI and BMPHIT, however, to obtain satisfactory curve fits, two peaks 

must be included in the bonded region (Figure 7.5). This is reasonable considering that 

two types of hydrogen bonding acceptors exist for BMPHI and BMPHIT, the ester 

carbonyl and the thiourethane carbonyl, or dithiourethane thiocarbonyl. The competition 

between different types of acceptors are well known in similar polyester and polyether 

urethanes.5' 7" The assignments of all the peaks are listed in Table 7.2 for comparison. 

The thiourethane bonded peaks in HIHT and BMPHI appear at exactly the same 

frequency with the same frequency shift value (Av). The two ester bonded peaks in 

BMPHI and BMPHIT appear at different frequencies as a result of differences in electron 
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density, consistent with reported shifts of about 80 cm"1 for urethane systems.5'37 

The hydrogen bonding fractions of each sample as a function of temperature, 

calculated using equation 2, are shown in Figure 7.6. The AI,,NH values of BMPHI and 

BMPHIT are the result of adding the absorbances of the ester bonded peaks and the 

thiourethane/dithiourethane bonded peaks. In each case, with an increase in temperature, 

the hydrogen bonding fraction decreases as a result of disassociation. HIHA and HIHT 

show very similar hydrogen bonding fractions at a given temperature, indicative of 

similar hydrogen bonding ability. Due to the abundant hydrogen bonding acceptors 

present, BMPHI has the greatest extent of hydrogen bonding at a given temperature. 

Although the dithiocarbamate, BMPHIT, as a result of a high concentration of carbonyl 

acceptors, still has a hydrogen bonding fraction of over 70%, the weaker hydrogen 

bonding forming ability of thiocarbonyl results in measurably lower hydrogen bonding 

fraction at a given temperature than its thiourethane analogue, especially at elevated 

temperatures. These results are in agreement with the weaker hydrogen bonding ability of 

the thiocarbonyl (C=S) group compared to the carbonyl group (C=0) determined by 

FTIR and crystallographic measurements has been reported.22'40 

The contributions of ester, thiourethane and dithiourethane groups can be 

quantitatively expressed by, 
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A 
p _ b.Thiourethane SA\ 

Thiourethane ~ A _i_ A 
b.Ester b.Thiourethane 

A 
.-i _ b,Dithiourethane / ^ \ 

Dithiourethane A _i_ A 
Ab,Ester "*" Ab,Dithiourethane 

where C and A stand for the contribution and the NH group absorbance, respectively. 

Although the extinction coefficient of NH groups bonded with different acceptors may 

be different, the results of these simple calculations are still reasonable for comparison 

purposes. As shown in Figure 7.7, for the thiocarbamate, BMPHI, the initial 

contribution (35°C) of the ester group, 33%, is much lower than that of the thiourethane 

group, 67%. These values change very little with an increase in temperature, indicating 

a stronger hydrogen bonding forming ability of the thiourethane carbonyl groups 

compared to the ester carbonyls. Interestingly, for BMPHIT, at room temperature, an 

equal amount of hydrogen bonds are formed between the NH hydrogen and the ester 

carbonyl and thiocarbonyl groups. With an increase in temperature, the contribution of 

the ester groups sharply increases to over 60% while that of the dithiourethane groups 

decreases to less than 40%, consistent with weaker and less stable hydrogen bonding 

between NH and the thiocarbonyl groups. 

Model compounds were also investigated with temperature-resolved !H NMR 

spectroscopy. For all of the model compounds (the results for HIHA in Figure 7.8 are 

shown as an example), the NH peaks exhibit an upfield shift due to the disassociation of 

hydrogen bonds as temperature increases, while the position of all other peaks remain 

unchanged. Apparently, the extent of the shift (A8=835°c - Sio5°c) is related to hydrogen 



bonding strength since more energy is required to reduce stronger hydrogen bonding. 

The temperature dependant chemical shift coefficient, A5/AT, that have been used to 

distinguish between free and bonded NH in peptides and amides,34'41 can also be used 

to evaluate the extent of hydrogen bonding. As shown in Figure 7.9 and Table 7.3, as 

expected, the urethane, HIHA, and thiourethane, HIHT, have similar coefficient values 

that are larger than that of the ester containing BMPHI which has greater hydrogen 

bonding forming capability. Interestingly, BMPHIT, exhibiting lower extent of hydrogen 

bonding in all other measurements reported herein, has a lower value than BMPHI. This 

inconsistency were also observed in the literature which claims that it is difficult to 

correlate the extent of hydrogen bonding with A8/AT values because both free hydrogen 

bonds and very stable hydrogen bonds result in lower chemical shift coefficient values. 

Theoretical Calculations 

In order to substantiate the experimental results, ab initial calculations were 

conducted for urethane, thiourethane and dithiourethane models. To simplify the 

calculation process, the model compounds shown in Chart 7.1 were used to conduct the 

theoretical calculation. The conclusions regarding the relative strength of hydrogen 

bondings can be readily extended to the more complicated models in Scheme 7.1. As 

shown in Table 7.4, the urethane and the thiourethane models have almost identical 

hydrogen bonding energies between N-H and C=0, while weaker hydrogen bonds are 

calculated for the dithiourethane model. This supports the experimental FTIR and NMR 

results. We note that based upon the theoretical hydrogen bonding energies in Table 7.5 
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and the margin of error in the theoretical calculations, it is not possible to predict whether 

the carbamate or the thiocarbamate has a higher hydrogen bonding energy. 

Polymer Networks 

To achieve an understanding of the hydrogen bonding behavior of urethane, 

thiourethane and dithiourethane groups when incorporated into polymer structures, a 

polyurethane, two polythiourethanes and a polydithiourethane were prepared as described 

in the Experimental Section (see Scheme 7.2 for polymer acronyms). The mechanical, 

spectral, and thermal properties of the 3NCO-HexDiol and 3NCO-HexDithiol networks 

have been measured to provide an evaluation of any differences between the urethane 

(-N(H)-C(=0)-0-) and thiourethane (-N(H)-C(=0)-S-) linkages in the representative 

polymer networks. Differences in hydrogen bonding between thiourethane and 

dithiourethane (-N(H)-C(=S)-S-) groups in the networks will be evaluated by comparing 

corresponding experimental results for HDI-TriThiol and HDIT-TriThiol. Before 

continuing we point out that the protocol used to cure each film resulted in essentially 

quantitative conversion (confirmed by FTIR) of all isocyanates and isothiocyanates in 

each case. However, in the case of the 3NCO-HexDiol films, although the curing takes 

place in a dry N2 atmosphere, there is the potential for side reactions which may consume 

some of the isocyanate groups. 

Thermogravametric analysis of each polymer was first conducted (Figure 7.10) at 

a heating rate of 20 °C/min. For 3NCO-HexDiol and 3NCO-HexDithiol, the onset of 

weight loss of the urethane and thiourethane linkages occured at 291 °C and 258 °C, 
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respectively, followed presumably by decomposition of the isocyanurate at temperatures 

greater than 380 °C.45 An enhanced thermal stability of the polyurethane is attributed to 

the higher bond energy of the C-0 bond than the C-S bond.46 HDI-TriThiol and 

HDIT-TriThiol also show a two-step decomposition process involving the thermal 

decomposition of the thiourethane and dithiourethane linkages followed by 

decomposition of the TriThiol segments at higher temperatures. The lower thermal 

stability of the poly dithiourethane is consistent with a literature report that 

dithiourethanes undergo decomposition at temperatures between 150 °C and 200 °C with 

the aid of AgN03.47 While the conditions for thermal decomposition in Figure 7.10 

certainly do not include a catalytic process, the low onset temperature is consistent with 

that reported by Gomez et al. 

Following the analysis used in the investigation of the small molecule models, 

temperature-resolved FTIR spectral measurements were also made for the four 

urethane-type polymers over a temperature range from 25 °C to 125 °C. Figure 7.11 

shows a plot of the hydrogen bonding fraction of polymer networks as a function of 

temperature that is consistent with the results for the small molecule models. The fraction 

of hydrogen bonding for the polyurethane and two polythiourethane networks is greater 

than the hydrogen bonding fraction for the poly dithiourethane. The thiourethane, 

HDI-TriThiol, benefits from the less sterically hindered ester groups of the flexible 

trithiol based species resulting in the highest extent of hydrogen bonding. As observed for 

the small molecule compounds, analysis of the contributions of the two different carbonyl 
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donors in HDI-TriThiol and HDIT-TriThiol indicates that the thiourethane carbonyl 

dominates the hydrogen bonding in the former polymer, while hydrogen bonding to the 

thiocarbonyl groups in the polydithiourethane at elevated temperature is significantly 

reduced (Figure 7.12). 

In an attempt to determine any physical/thermal differences in the four urethane 

type polymers, a battery of thermal and mechanical property measurements were made. 

The DSC thermal scans in Figure 7.13, and corresponding Tg values in Table 7.5, are all 

above room temperature, although the Tg for HDIT-Trithiol is not much greater than 

room temperature. The Tg of 3NCO-HexDithiol is only 2 °C greater than 3NCO-HexDiol. 

Its glass transition region is very narrow and there is a distinct enthalpy relaxation peak. 

These results are strong indication of a very uniform structure in the case of the 

3NCO-HexDithiol network. The polythiourethane (HDI-TriThiol) has a higher Tg than 

that of the polydithiourethane (HDIT-TriThiol). This can be attributed to the chain 

rigidity afforded by the higher hydrogen bonding fraction and hydrogen bond strength for 

HDI-Trithiol compared to HDIT-TriThiol (see Figures 7.11 and 7.12). However, it should 

be noted that the Tg difference between the polythiourethane and the polydithiourethane 

is only ~10 °C and both have narrow glass transitions and enthalpy relaxation peaks as 

evidenced by the DSC scans in Figure 7.13. This is indicative of very uniform networks. 

The narrow glass transition region found in the DSC scans in Figure 7.13 are confirmed 

by the DMA plots in Figure 7.14 for the 3NCO-HexDithiol and the HDI-TriThiol 

networks which have full-width at half maximum (FWHM) temperature ranges of 14 °C 
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and 12 °C, respectively, considerably smaller than the FWHM values for their 

3NCO-HexDiol (30 °C) and HDIT-TriThiol (20 °C) counterparts. The very low FWHM 

values for HDI-TriThiol and 3NCO-HexDithiol are suggestive of and consistent with 

very efficient reactions between the aliphatic isocyanates and thiols with little or no side 

products compared to the isocyanate-alcohol reactions used to make the 3NCO-HexDiol 

network, which are well documented48 to undergo side reactions presumably resulting in 

broadening of the thermal (Figure 7.13) mechanical (Figure 7.14) transitions. The near 

quantitative conversions for the reactions of isocyanates and thiols with no side products 

is indeed well documented.19'24,49 Interestingly, the HDIT-TriThiol network formed by 

reactions between the isothiocyanate and thiols also have very narrow glass transition 

regions, although the Tg of the HDIT-TriThiol network is lower than that of the 

HDI-TriThiol network due presumably to the higher extent of hydrogen bonding for the 

latter. Returning again to the results in Figure 7.13 and 7.14, we reiterate that it is 

remarkable that such narrow transitions occur in such high density networks. These 

results are reminiscent of the results obtained by photoinitiated thiol-ene free-radical 

step-growth polymerization where highly uniform networks are also formed.23'50'51 The 

thiol-isocyanate reaction is a clear candidate for a "click" process characterized by 

essentially quantitative conversions obtained under relatively benign conditions with little 

or no side reactions.52 This premise is under evaluation and will be reported on in future 

publications. 

Although 3NCO-HexDiol and 3NCO-HexDithiol have many similar properties as 



have been and will be shown, they still have some differences resulting from the network 

structure as discussed previously. To follow up on these differences, sub-Tg aging studies 

were conducted. DSC heating scans obtained after annealing, i.e. physical aging, at Tg-10 

°C for 3NCO-HexDiol and 3NCO-HexDithiol for a specific period of time are shown in 

Figure 7.15. As is well known for many linear polymers53 and is demonstrated in Figure 

7.15 for the urethane and thiourethane polymer networks, the enthalpy relaxation peak 

increases with the annealing time. The relaxed enthalpy, obtained from the integration of 

the enthalpy relaxation peak, and relaxation rate are different for the two networks as is 

obvious from the plots of the relaxed enthalpy versus time in Figure 7.16. The faster rate 

of enthalpy relaxation for 3NCO-HexDithiol compared to 3NCO-HexDiol is consistent 

with the narrowness of the glass transition region. 

3NCO-HexDiol, 3NCO-HexDithiol and HDI-TriThiol all exhibit similar 

pendulum hardness indicating that energy damping even at 25 °C, well below the Tg of 

each polymer, is similar for all three systems (Table 7.6). The polydithiourethane 

(HDIT-TriThiol), however, exhibits significantly greater damping, i.e., the oscillation 

time is about 100 s lower than for the other three polymer films. This no doubt reflects 

the lower hydrogen bonding for HDIT-TriThiol and corresponding greater energy 

dissipation (i.e. energy damping) at room temperature. The polyurethane and 

polythiourethanes also exhibit better surface scratch resistance as indicated by higher 

pencil hardness (Table 7.6), while all four of the urethane type polymers exhibited 

excellent adhesion to glass (Table 7.6). A number of factors, including mechanical 
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interlocking, dipole-dipole interactions and covalent bonding54 affect adhesion and hence 

it is not surprising that all four polymers adhere well to glass. 

Results obtained from stress-strain curves (Figure 7.17) of each system are listed 

in Table 7.7 for comparison. The stress-strain curves for 3NCO-HexDiol and the two 

polythiourethane model compounds (3NCO-HexDithiol and HDI-TriThiol) are typical of 

non-crystalline polymers. In the first region, tensile stress increases linearly with strain 

that is recoverable (obeying Hook's law) when the external force is removed, due to 

relaxation of bond length and bond angle, until the polymer yields. The larger hydrogen 

bond fraction no doubt plays a key role in explaining the higher yield stress of 

HDI-TriThiol compared to HDIT-TriThiol (Table 7.7). The comparable yield stress for 

3NCO-HexDiol and 3NCO-HexDithiol is consistent with the near equivalency of 

hydrogen bonding. In the second region, a plateau is achieved after passing the yield 

point as a result of chain segmental motion. Tensile strains greater than 50% are achieved 

by a combination of stretching/orientation and coincident breaking of intermolecular 

interactions (i.e. van der Waals force and hydrogen bonding). Interestingly, the stress 

plateau for HDI-TriThiol, which has a higher fraction of hydrogen bonding according to 

the FTIR results in Figure 7.11, appears at a higher level than its polydithiourethane 

analogue. The polymers prepared from 3NCO have very similar tensile properties in the 

second region due to only minor differences in their structures and hydrogen bonding 

behavior. The tensile stress increases sharply in the third region for each urethane type 

polymer due to further stretching of the orientated structures. The final break is a result of 
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covalent bonding cleavage and complete disassociation of secondary interactions such as 

van der Waals and hydrogen bonding. The difference between the stress at break (cTb) of 

the two polymers prepared from 3NCO may well be due to the difference in bonding 

energy of C-O and C-S4 since hydrogen bonding is almost equivalent for these two 

systems. The polydithiourethane exhibits the characteristics of rubbery materials, the 

tensile stress of which increases continuously after the linear elastic region until the 

polymer breaks at a relatively higher strain. This rubbery property and the lower tensile 

strength is partly the results of a lower fraction of hydrogen bonding resulting in a 

relatively lower glass transition region near 25 °C. Summarizing, comparing 

HDI-TriThiol with the other three polymer networks, it is reasonable to conclude that a 

combination of appropriate flexibility in the backbone and abundant sterically accessible 

hydrogen bonding acceptor sites leads to a tough and hard urethane type material as 

indicated by Young's modulus, the energy to break (area below the stress-strain curve) 

and hardness. 

Although comprehensive analysis and discussions on hydrogen bonding behavior 

of urethane type polymers have been made based on several types of measurements, there 

is still one critical parameter that needs to be evaluated. Since mechanical and optical 

properties of network films can be related to density, the densities of each system were 

measured (Table 7.8). The results in Table 7.3 show that all of the cured networks have 

approximately equivalent densities, confirming that the property differences between the 

polydithiourethane and the polythiourethane are not directly related to differences in 



density. 

Finally, it is noted that a major interest in polythiourethane and 

polydithiourethanes is a result of their high refractive indices. The results in Table 7.8 

clearly show that indeed the refractive index is directly related to the sulfur content in the 

films with 3NCO-HexDithiol having a higher refractive index than 3NCO-HexDiol and 

HDIT-TriThiol having the highest refractive index of all four systems. 

Conclusions 

A series of small molecule and polymeric urethane, thiourethane and 

dithiourethane compounds were prepared and measured by FTIR, NMR, DSC, and DMA 

establishing the order of the hydrogen bonding strength as: urethane -thiourethane > 

dithiourethane. Due to their similar hydrogen bonding behavior, polyurethane and 

polythiourethane networks have similar physical and mechanical properties, i.e., Tg, 

hardness and tensile properties. The polydithiourethane model compound with lower Tg 

is softer, more flexible and less tough because of weaker hydrogen bonding forming 

ability. The comprehensive characterization and comparison of urethane, thiourethane 

and dithiourethane compounds reported herin provides experimental and theoretical 

guidance for various applications of sulfur containing polyurethanes. 
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Scheme 7.1. Synthesis of carbamate (HIHA), thiocarbamates (HIHT and BMPHI) and 
dithiocarbamate (BMPHIT). 
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Scheme 7.2. Preparation of polyurethane (3NCO-HexDiol), polythiourethanes 
(3NCO-HexDithiol and HDI-TriThiol) and polydithiourethane (HDIT-TriThiol). 
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Chart 7.1. Molecular structures of (a) N-methyl methylcarbamate, (b) N-methyl 
S-methylthiocarbamate and (c) N-methyl S-methyldithiocarbamate used in hydrog 
bonding strength calculation. 
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Table 7.1. Melting point (Tm) of small model compounds measured by DSC operating at 
1 °C/min. 

Tra(°C) 

HIHA 

10 

HIHT 

24 

BMPHI 

31 

BMPHIT 

5 
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Table 7.2. Assignments of free and hydrogen bonded peaks in model compounds at 35 
°C. 

HIHA 

HIHT 

BMPHI 

BMPHIT 

Free 

Wave Number 

(cm"1) 

3459 

3434 

3434 

3385 

Bonded Peak (Acceptor 1) 

Wave Number 

(cm"1) 

Av* 

(cm'1) 

Urethane 

3340 119 

Thiourethane 

3311 123 

Thiourethane 

3311 123 

Dithiourethane 

3247 138 

Bonded Peak (Acceptor 2) 

Wave Number 

(cm"1) 

Av 

(cm"1) 

Ester 

3358 76 

Ester 

3310 75 

*Av is the wave number difference between bonded and free peaks. 
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Table 7.3. Slope and chemical shift difference for model compounds calculated from 

Figure 7.9. 

A8 (ppm) 

A8/AT(*10"3ppm/K) 

HIHA 

0.733 

9.77 

HIHT 

0.715 

9.53 

BMPHI 

0.556 

7.41 

BMPHIT 

0.356 

4.75 

A8-835°c - 8io5°c 
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Table 7.4. Hydrogen bonding energy of carbamate, thiocarbamate and dithiocarbamate. 

Hydrogen bonding energy 

(kcal/mol) 

Carbamate 

5.36 

Thiocarbamate 

5.18 

Dithiocarbamate 

4.44 
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Table 7.5. Glass transition temperatures of polymer networks measured by DSC and 
DMA. 

DSC (°C) 

DMA(°C) 

3NCO-HexDiol 

48 

69 

3NCO-HexDithiol 

50 

67 

HDI-TriThiol 

45 

65 

HDIT-TriThiol 

35 

55 
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Table 7.6. Pendulum hardness and pencil hardness of polymer networks. 

Pendulum Hardness (s) 

Pencil Hardness 

Cross Hatch Adhesion 

3NCO-HexDiol 

266 ±3.0 

5H 

5B 

3NCO-HexDithiol 

270 ± 6.9 

5H 

5B 

HDI-TriThiol 

287 ±5.3 

5H 

5B 

HDIT-TriThiol 

178 ±5.5 

H 

5B 
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Table 7.7. The yield stress (Gy), yield strain (Sy), stress at break (Ob), strain at break (£{,) 

and Young's modulus (E) of polymer networks. 

3NCO-HexDiol 

3NCO-HexDithiol 

HDI-TriThiol 

HDIT-TriThiol 

ay(MPa) 

19.99 ±2.68 

19.94 ±0.63 

30.71 ±3.44 

4.67± 1.11 

Sy (%) 

3.48 ± 0.56 

3.73 ±0.80 

3.97 ±2.19 

4.77 ±1.50 

Ob (MPa) 

33.41 ±3.26 

28.62 ± 0.60 

32.13 ±3.05 

27.83 ±5.01 

Sb (%) 

91.73 ±3.92 

90.52 ±1.73 

107.80 ±5.40 

125.00 ±6.88 

E (MPa) 

1057.83 ±98.37 

1074.68 ±69.77 

1676.60 ±77.90 

310.50 ±34.76 



Table 7.8. Densities and refractive indices of polymer networks. 

Density (g/cm3) 

Refractive Index 

3NCO-HexDiol 

1.2518 

1.5151 

3NCO-HexDithiol 

1.2466 

1.5505 

HDI-TriThiol 

1.2698 

1.5470 

HDIT-TriThiol 

1.2795 

1.6092 
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Figure 7.1. IR spectra of model compounds dissolved in chloroform. Note that the 
"bump" in the spectra for HIHA, HIHT and BMPHT between 3400 and 3500 cm"1 is an 
instrumental artifact. 
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Figure 7.2. The *H NMR spectra of 3.7 mM HIHA in CDCl3 and d-DMSO. 
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Figure 7.3. Chemical shift difference between NH protons in d-DMSO and CDC13. 
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Figure 7.4. FTIR spectra of HIHA, HIHT, BMPHI and BMPHIT measured at different 
temperatures. The arrows indicate the direction of peak intensity as a function of 
temperature increase. 
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Figure 7.5. Peak deconvolution of the IR spectra of BMPHI and BMPHIT measured at 
35 °C. 
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Figure 7.6. Hydrogen bonding fractions of model compounds. 



• BMPHI-Ester 
A BMPHI-Thiourethane 
• BMPHIT-Ester 
A BMPHIT-Dithiourethane 

40 60 80 100 
Temperature (°C) 

Figure 7.7. Contributions of different hydrogen bonding acceptors of BMPHI and 
BMPHIT model compounds. 



199 

ppm 

Figure 7.8. The H NMR spectra of HIHA measured at temperatures from 35 °C to 105 
°C with a 10 °C interval. 
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Figure 7.10. Thermogravimetric analysis of polymer networks. 
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Figure 7.15. DSC curves of 3NCO-HexDiol and 3NCO-HexDithiol networks annealed 
for different times. 
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CHAPTER VIII 

COMPARISON OF SMALL MOLECULE AND POLYMERIC URETHANES, 

THIOURETHANES AND DITHIOURETHANES: HYDROGEN BONDING AND 

THERMAL, PHYSICAL AND MECHANICAL PROPERTIES. PART 2 

Abstract 

A homologous family of small molecule and polymeric urethane, thiourethane 

and dithiourethane were prepared from both aliphatic and aromatic isocyanates and 

comprehensively characterized by a series of spectroscopic, thermal, physical and 

mechanical analysis measurements to define the relative hydrogen bond strength and its 

correlation with properties. The NMR, FTIR and XRD measurements of the small 

molecules in solution, melt and solid states indicate the relative hydrogen bonding 

strength as: urethane ~ thiourethane > dithiourethane. The aromatic urethane is more 

stable under UV irradiation than the corresponding thiourethane analogues. Due to the 

weaker C-S bond compared to the polythiourethanes and polydithiourethane have 

reduced thermal stability compared to their urethane counterparts. Similar Tg values 

observed for the polyurethane and polythiourethanes are higher than those for the 

polydithiourethane, consistent with the lower hydrogen bonding in the latter. 

Introduction 

Hydrogen bonding is a type of strong noncovalent interaction which can be 

represented by A-H—B, where A and B are atoms that are more electronegative than 
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hydrogen (F, CI, O, S, N, P).1'2 Since their recognition in the 1920s,3 hydrogen bonds 

have been extensively investigated because of the very important role they play in 

biological and polymer systems.1' ' 

Polyurethanes, which exhibit extensive hydrogen bonding, have been widely used 

in many applications including coatings5 and elastomers due to an extraordinary 

combination of physical and mechanical properties. The structure-property relationships 

of polyurethanes have been thoroughly studied5' " with an extensive effort in 

characterizing hydrogen bonding. Hydrogen bonding results in physical linkages within 

the material matrix and is a vital factor in defining the microscopic and macroscopic 

properties of polyurethanes, including their glass transition temperature, strength, 

11 i -j 

stiffness and phase behavior. ' 

The related polythiourethanes are prepared from thiol-isocyanate reactions. ' 

Although polythiourethanes (containing the structure unit -N(H)-C(=0)-S-) are 

extensively used in many modern applications including optical lenses and advanced 

coatings,15"17 the hydrogen bonding in polythiourethanes has not been thoroughly studied. 

Only limited literature can be found on subjects including synthesis/catalysis,13,14 

kinetics of thiol-isocyanate reaction,18 thermodynamics of thiocarbamates19 and hydrogen 

bonding of polythiourethanes.20 For polydithiourethanes or polydithiocarbamates, 

-N(H)-C(=S)-S-, which are also interesting because of their high refractive indices, 

there are only limited reports on their hydrogen bonding behavior. They have not been 

thoroughly characterized, especially with respect to structure-property relationships. 
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From both a basic and a practical point of view, a comprehensive investigation 

and comparison study of the hydrogen bonding behavior of a homologous family of both 

small molecule and polymer urethanes (-N(H)-C(=O)-0-), thiourethanes 

(-N(H)-C(=0)-S-), and dithiourethanes (-N(H)-C(=S)-S-) is necessary to provide a clear 

relationship between structure and properties in these important polymer materials. 

Herein, in order to achieve a thorough and complete comparison and evaluation of 

polyurethanes, polythiourethanes and polydithiourethanes, small molecule and polymeric 

urethanes, thiourethanes and dithiurethanes prepared from both aliphatic and aromatic 

secondary isocyanates, were characterized with respect to their hydrogen bonding 

behavior and structure-property relationships. The results show that urethanes and 

thiourethanes exhibit similar hydrogen bonding capabilites and mechanical/physical 

properties that are measurably different from those of the less hydrogen bonded 

dithiourethane. A theoretical and experimental starting point for further development of 

sulfur-containing aliphatic and aromatic urethane polymer materials is thus established. 

Experimental 

Materials 

Chemicals for model compound synthesis, cyclohexyl isocyanate (CI), phenyl 

isocyanate (PI), phenyl isothiocyanate (PIT), 1-hexanol (HA), 1-hexanethiol (HT), 

1,6-hexanediol (HexDiol), 1,6-hexanedithiol(HexDithiol), dibutyltin dilaurate (DBTDL) 

and triethylamine (TEA) were purchased from Aldrich Chemical Co. and used as 
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received. 1,6-Hexamethylene diisocyanate (HDI) and HDI trimer, or Desmodur® N3600 

(3NCO), were obtained from Bayer Materials Science and used as received. 1,6-Hexane 

diisothiocyanate (HDIT) was purchased from Trans World Chemicals Inc. and used as 

received. Trimethylol propane tris(3-mercaptopropionate) (TriThiol) was obtained from 

Bruno Bock Thiochemical and used as received. Other chemicals, such as anhydrous 

acetone, were also obtained from Aldrich Chemical Co. and used as received. 

Preparation 

Typical procedures for synthesizing the small molecule model compounds listed 

in Scheme 8.1, N-cyclohexyl hexylcarbamate (CIHA), N-cyclohexyl S-hexylcarbamate 

(CIHT), N-phenyl hexylcarbamate (PIHA), N-phenyl S-hexylcarbamate (PIHT) and 

N-phenyl S-hexyldithiocarbamate (PITHT), are as follows (CIHA is taken as an example). 

0.03 Mol of cyclohexyl isocyanate and 0.03 mol of 1-hexanol were first charged into a 3 

neck flask before 10 mL of hexane was added. The reactor was then purged with dry N2 

for 30 min until 0.02 wt% of dibutyltin dilaurate (DBTDL) was added and stirred. The 

mixture was allowed to react for 8 h at 65 °C under dry N2 flow. All the model products 

were purified by recrystallization from hexane 2-3 times, and their structures were 

verified with nuclear magnetic resonance spectroscopy (NMR). TEA was used in all thiol 

compounds reactions with isocyanates or isothiocyanates due to its highly efficiency as a 

catalyst.25 DBTDL was used in all alcohol reactions for the same reason. 

'HNMR: 

CIHA(CDC13): 8 0.89 (t, 3H, -CH3), 5 1.30-1.94 (18H, -CH2-), 8 3.49 (m, 1H, 
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-CH-N-),8 4.03 (t, 2H, -CH2-0-), 5 4.50 (s, 1H, -N(H)-). 

CIHT (CDC 13): 8 0.88 (t, 3H, -CH3), 5 1.32-1.92 (18H, -CH2-), 5 2.89 (t, 2H, 

-CH2-S-), 5 3.75 (m, 1H, -CH-N-), 5 5.18 (s, 1H, -N(H)-). 

PIHA (CDC13): 5 0.89 (t, 3H, -CH3), 5 1.31 (6H, -CH2-), 8 1.66 (m, 2H, 

-CH2-C-O-), 5 4.15 (t, 2H, -CH2-O-), 5 6.55 (s, 1H, -N(H)-), 8 7.05-7.54 (5H, benzene 

ring). 

PIHT (CDCI3): 8 0.90 (t, 3H, -CH3), 5 1.32 (6H, -CH2-), 8 1.66 (m, 2H, 

-CH2-C-O-), 8 2.97 (t, 2H, -CH2-O-), 8 7.00 (s, 1H, -N(H)-), 8 7.11-7.40 (5H, benzene 

ring). 

PITHT (CDCI3): 8 0.90 (t, 3H, -CH3), 8 1.32 (6H, -CH2-), 8 1.70 (m, 2H, 

-CH2-C-0-),8 3.29 (t, 2H, -CH2-0-), 8 7.21-7.45 (5H, benzene ring), 8 8.73 (s, 1H, 

-N(H)-). 

The polyurethanes, IPDI-HexDiol and TDI-HexDiol, polythiourethanes, 

IPDI-HexDithiol and TDI-HexDithiol, and polydithiourethane, TDIT-HexDithiol, were 

prepared as described below and are depicted in Scheme 8.2. 0.03 Mol of IPDI 

(IPDI-HexDiol is taken as an example) and 0.02 mol of HexDiol were first charged into a 

scintillation vial before 2 mL of anhydrous acetone was added to form a transparent 

solution. ~0.6 Wt% (based on the whole mixture) of DBTDL was then added into the 

monomer solution and mixed homogeneously. The solution was then evenly coated onto 

a piece of clean glass, followed by purging with dry N2 in a sealable chamber for 1 h at 

room temperature. The sealed chamber was then moved to an oven set at 80 °C and kept 
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overnight, followed by heating under vacuum (70 °C) for about 24 h to yield a 200 um 

thick film without any solvent (verified by thermal gravimetric analysis). The 

conversions of all films are greater than 95%. As described for the small models 

preparation, TEA is preferred as a catalyst for thiourethane and dithiourethane 

preparation. The type and concentration of catalysts were adjusted for each system to 

achieve efficient polymerization while also allowing enough time for mixing and film 

coating. The catalyst concentrations used for IPDI-HexDithiol, TDI-HexDiol, 

TDI-HexDithiol and TDIT-HexDithiol are 0.06 wt% (TEA), 0.18 wt% (DBTDL), 0.0002 

wt% (TEA) and 0.4 wt% (TEA), respectively. 

Characterization 

Proton nuclear magnetic resonance (JH NMR) spectra were obtained on a 

Mercury 300 (Varian Inc.) spectrometer, the temperature of which was controlled by a 

Bruker Variable Temperature Unit equipped with a Eurotherm 818 Controller. Each 

spectrum was recorded as the co-addition of 64 scans after 25 min of equilibrium at a 

given temperature. For regular NMR measurements, concentrations of 3.7 mM (in either 

CDCI3 or d-DMSO) were used for small molecules in solution. Infrared spectra were 

collected on a Bruker IFS 88 FTIR spectrometer by holding samples sandwiched between 

two NaCl plates in a heating unit controlled by a Harrick temperature controller with an 

accuracy of ±1 °C. Each spectrum was recorded after equilibrating for 25 min at the 

desired temperature. Peak fitting was conducted using a Gaussian function in Origin 

software to assign the free and hydrogen bonded NH peaks as described elsewhere. 



Thermal stability of the polymers was measured with a TA Q60 (TA Instruments, Inc.) 

thermal gravimetric analysis (TGA) operating at a heating rate of 20 °C/min. Glass 

transition temperatures were measured with a TA Q1000 differential scanning calorimetry 

(DSC) operating at 10 °C/min. Two heating scans were conducted for all samples and the 

second scan were selected to determine Tg values using TA Universal Analysis software 

(V 3.9A). Pencil hardness was measured according to ASTM D-3363. Persoz pendulum 

hardness was measured according to ASTM D-4366 using a BYK-Gardner pendulum 

hardness tester with a square frame pendulum. At least six tests were performed for each 

film coated on a glass substrate at different parts of the film, and the average value of the 

six was taken as the final result. The crystallographic properties and data were collected 

using CuKa radiation and the charge-coupled area detector (CCD) on an Oxford 

Diffraction Systems Gemini S diffractometer at 296 K. The sample crystal was attached 

to the tip of a fine glass fibre and mounted on a goniometer head. The crystal structures 

were solved using by direct methods with SHELXS-86,27 and refined with SHELXL.28 

The computations of hydrogen bonding energy were performed for N-methyl 

methylcarbamate, N-methyl S-methylthiocarbamate, and N-methyl 

S-methyldithiocarbamate using density function theory. The function employed was the 

three-parameter B3 hybrid function of Becke and the LYP correlation function of Lee, 

Yang and Parr.30 The basis sets used were the correlationally-consistent basis sets 

cc-pVDZ31 and cc-pVTZ32 created by Dunning and coworkers. The cc-pVDZ basis set 

uses a double-zeta description for valence electrons, while the cc-pVTZ basis employs a 



triple-zeta description for valence electrons. Both basis sets use a single-zeta description 

for core electrons, and both have a consistent set of polarization functions. 

Results and Discussion 

Solution 

NMR spectra of model compounds dissolved in both polar and nonpolar solvents 

were recorded to show the effect of hydrogen bonding on the NH proton chemical shifts. 

Figure 8.1 shows the NMR spectra of CIHA in pure and co-solvents of CDCI3 and 

d-DMSO as an example. The concentration (3.7 mM) is low such that no intermolecular 

hydrogen bonds are formed, i.e., the only possible hydrogen bonding is between CIHA 

molecules and the d-DMSO solvent molecules. With an increase of the d-DMSO 

concentration, hydrogen bonding occurs between the model compound NH groups and 

the sulphinyl group (-S=0) of d-DMSO, resulting in a downfield shift of the NH peak. 

This can be explained by the decrease in electron density around the NH proton and an 

increase in the asymmetry of the electron density due to polarization of the NH bond by 

-S=0 group. The extent of this shift, or the difference in chemical shifts for associated 

and unassociated NH, is a direct indication of the hydrogen bonding strength.2 The 

stronger the hydrogen bonding, the greater the downfield shift that occurs. Although, 

theoretically, the unassociated NH proton chemical shift refers to that at infinite dilution, 

since NMR results show no significant shift in the NH peak upon diluting the 

CIHA/CDCI3 solution to as low as 0.37 mM (not shown), the chemical shift of NH in 
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CDCI3 (3.7 mM) can be regarded as the unassociated value for comparison purposes. And 

the chemical shift of NH for CIHA in d-DMSO can represent the hydrogen bonding 

between NH of the model compounds and sulphinyl groups of d-DMSO. As shown in 

Figure 8.2, essentially equivalent values are obtained for thiocarbamates and carbamates 

in terms of the NMR downfield shift for both the aliphatic (CIHA and CIHT) and 

aromatic (PIHA and PIHT) compounds, indicating similar hydrogen bonding strength in 

the carbamates and thiocarbamates. The shift for the dithiocarbamate compound, however, 

is lower than its analogues, implying weaker hydrogen bonding between the NH proton 

in PITHT and the sulphinyl oxygen in d-DMSO. This is reasonable considering that, 

comparing with the urethane linkage, -N(H)-C(=0)-0-, and even the thiourethane linkage, 

-N(H)-C(=0)-S-, the lower electronegativity of the two sulphur atoms results in a less 

electrophilic N-H hydrogen in the dithiourethane linkage, -N(H)-C(=S)-S-, reducing the 

tendency to form hydrogen bonds. We point out that the results in Figure 8.2 only reflect 

the hydrogen bonding forming ability of the N-H group of these model compounds, 

which is to say, in these NMR experiments, the model compounds only behave as 

hydrogen bonding donors. 

Melt 

Since temperature is one of the most important factors affecting hydrogen 

bonding, model compounds were also investigated by temperature-resolved !H NMR 

spectroscopy. For all model compounds (results for CIHA in Figure 8.3 is shown as an 

example), the NH peaks exhibit an upfield shift due to the disassociation of hydrogen 
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bondings as temperature increases, while the position of other peaks remain unchanged. 

The temperature dependence chemical shift coefficients, AS/AT, that have been used to 

distinguish between free and bonded NH in peptides and amides,33"36 can be used to 

evaluate the extent/strength of hydrogen bonding in the carbamates and thiocarbamates. 

As shown in Figure 8.4 and Table 8.1, no significant differences are observed between 

the carbamates and thiocarbamates, both aliphatic and aromatic, confirming that equally 

strong hydrogen bonds are formed in both cases. In accordance with the NMR solution 

study discussed earlier, the results for the dithiocarbamate, PITHT, gives a larger slope 

than both the carbamate, PIHA, and thiocarbamate, PIHT. The chemical shift difference 

between 65 °C and 105 °C, A8, is also related to the strength of hydrogen bonding. As 

shown in Table 8.1, both the aliphatic and aromatic carbamates and thiocarbamates 

exhibit the same chemical shift difference while the dithiocarbamate shows a larger value 

for A8, indicating the order of the hydrogen bonding strength as: carbamate ~ 

thiocarbamte > dithiocarbamate. 

Temperature-dependent infrared spectroscopy, an effective technique that has 

been extensively used to investigate hydrogen bonding, ' ' ' was also used to measure 

the hydrogen bonding behavior of the model compounds, and provide a semiquantitative 

analysis of the hydrogen bonding. Distinctly separated NH peaks, representing free 

(higher frequency) and bonded (lower frequency) groups, are observed in the NH stretch 

region of all five model compounds (CIHAand CIHT are shown in Figure 8.5 as 

examples). A direct observation is the reduction in the bonded peak intensity and relative 
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enhancement in the intensity of the free peak with temperature increase due to 

disassociation of hydrogen bonding at elevated temperatures. The absorbance of each 

peak, obtained through a peak deconvolution method described previously,26 can be used 

to calculate the approximate hydrogen bonding fraction (Fb,NH), the percent of NH groups 

involved in hydrogen bonding, based on the equation given below8'38 

1 
F, b,NH — A 

1 + 3.46 ^ 
A 

^ b . N H 

where A^NH and Ah,NH are the absorbance of free and hydrogen bonded NH groups, 

respectively, and the constant 3.46 is used as the extinction coefficient ratio of the bonded 

and free NH groups. Although, as stated in reference 7, the extinction coefficient of the 

NH group changes with the strength of the hydrogen bond, for semi-quantitative 

comparison purposes in our case over the narrow temperature range from 45-95 °C, the 

error introduced by using 3.46 is minimal. As shown in Figure 8.6, with an increase in 

temperature, Ft,;NH decreases as a result of hydrogen bonding disassociation as expected. 

Carbamates and thiocarbamates shows very similar hydrogen bonding fractions, an 

indication of similar hydrogen bonding ability in these compounds, whereas the 

dithiocarbamate exhibits a lower hydrogen bonding fraction. The results are in agreement 

with the weaker hydrogen bonding ability of the thiocarbonyl (C=S) group compared to 

the carbonyl group (C=0) reported previously via FTIR and crystallographic 

r i i 24 39 

measurements ot related systems. ' 
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Crystals 

X-ray diffraction provides an effective basis for qualitatively assessing 

intermolecular interactions which bear on crystal properties such as density, melting point, 

and heat of fusion. In the present study, both carbamates and thiocarbamates show 

hydrogen-bonding between functional groups. The interactions link the molecules in 

chains in the fashion of P-sheets, with nearly linear N-H.. .0 contacts. The metrics are 

summarized in Table 8.2 and 8.3, and show the relatively long N.. .0 distances (3.0A) 

typical of neutral donor and acceptor groups, and consistent with the generally lower 

melting points of the compounds. Crystal forms for the carbamates are nearly 

isomorphous with the analogous thiocarbamates, and the hydrogen-bonding metrics are 

similar. Both the distance values and angle values of the carbamates and thiocarbamates 

are very close (Table 8.2), indicating similar hydrogen bonding strength. The 

dithiocarbamate phase is nicely crystalline but forms very slender needles; the XRD data 

are at poor resolution and therefore not included in this study. However, ab initial 

calculations have shown the hydrogen bonding strength of the dithiocarbamate (4.44 

kcal/mol) to be less than that of the carbamate (5.36 kcal/mol) or the thiocarbamate (5.18 

kcal/mol). 

A comparison of the melting temperatures of the phases studied shows some 

interesting phenomena. The aliphatic carbamate (CIHA) and thiocarbmate (CIHT) have 

similar melting points, consistent with their similar structures and hydrogen-bond 

forming abilities (Table 8.4). However, the aromatic thiocarbamate exhibits a 
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significantly higher melting point. This presumably results from the stronger n-n 

interactions between the phenyl rings in PIHT and may be connected to a somewhat 

better packing arrangement in crystals of PIHT as suggested by its higher density (1.192 

g/cm3) compared to the corresponding carbamate PIHA (1.149 g/cm3). Interestingly, 

based on the comparison of linear polyurethanes and polythiourethanes, Dyer et al. 

claimed that the polythiourethanes generally have higher melting points than their oxygen 

analogs due to the greater molar cohesive energy of sulfide links than ether links.40 

Photolysis of Aromatic Model Compounds 

In order to provide a comprehensive characterization, the photolytic 

decomposition of the aromatic species was investigated. As shown in Figure 8.7a, the 

primary bands of all samples decrease and small shoulders appear at higher wavelength 

after 20 min exposing to a medium pressure mercury lamp with output from 254 nm to 

over 400 nm. The absorbance of the primary band peak maxima of PIHA, PIHT and 

PITHT at 235 nm, 250 nm, and 286 nm are reduced by 30%, 68% and 76%, respectively, 

indicating the greater photostability of the urethane than the sulfur containing 

thiourethane or dithiourethane. It has been suggested that the photodegradation of 

urethanes occurs mainly through the cleavage of C-N and C-O/C-S bonds as shown in 

Chart 8.1.41 For PIHA (Figure 8.7b), after photodegradation, the new band appears at 

-340 nm is due to the ortho photo-Fries product reported in the literature.4 '4 The 

corresponding band for the degraded PIHT sample shifts to 358 nm with higher 

absorbance. While for PITHT, only a tail appears in this region which implies a different 
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photodegradation mechanism. The solutions of the model compounds with equal 

absorbance at 254 nm were then irradiated with 254 nm UV lamps in the Rayonet 

photoreactor for 10 min (Figure 8.8). Interestingly, PIHA and PIHT exhibit significant 

increase in absorbance at long wavelengths above 300 nm. For PITHT, after the 10 min 

irradiation, the absorbance band at 285 nm almost completely disappears and a small tail 

appears at higher wavelengths. The formation of similar free radicals shown in Scheme 

8.341'44 were suggested for aromatic carbamate and thiocarbamates as a result of cleavage 

reactions at the C=0 groups. No literature references are available for the photostability 

of dithiourethanes. Although the retarding effect of hydrogen bonding on photolysis of 

aromatic polyurethanes has been reported,45 the samples investigated herein are not 

affected by hydrogen bonding under the experimental conditions, 0.06 mM concentation 

in dichloromethane. 

Polymer Properties 

To understand the effect of hydrogen bonding on polymer properties, two 

polyurethanes, two polythiourethanes and one polydithiourethane were prepared as 

described in the Experimental section (Scheme 8.2). 

The change in the N-H hydrogen bonding fraction, FI,,NH, of each polymer as a 

function of temperature (25 °C- 105 °C) was measured by FTIR using a similar method to 

that for evaluating the small molecules model compounds in Figure 8.5. As shown in 

Figure 8.9, the values for Ft,,NH as a function of temperature for the two polyurethanes, 

IPDI-HexDiol and TDI-HexDiol, exhibit values similar to the two polythiourethanes, 
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IPDI-HexDithiol and TDI-HexDithiol. The polydithiourethane, TDIT-HexDithiol, 

exhibits the lowest hydrogen bonding fraction with a significant decrease in hydrogen 

bonding at the higher temperatures. 

In order to determine any physical difference between the polyurethanes, the 

polythiourethanes and the polydithiourethane, a series of physical measurements were 

conducted. As indicated by the absence of any melting peaks for any of the polymers 

upon heating in the DSC up to 300 °C, the model polymers are amorphous. The glass 

transition temperatures, measured by DSC scans, are shown in Figure 8.10 and Table 8.5. 

As expected, the glass transitions of the polyurethanes and polythiourethanes appears at 

about the same temperature range, both higher than that of the polydithiourethane. 

Films of the polyurethanes and the polythiourethanes all exhibit similar Persoz 

hardness values as indicated in Table 8.5, consistent with the glass transition temperature 

and hydrogen bonding results. The polydithiourethane has only a slightly lower Persoz 

hardness value, presumably due to the hydrogen bonding fraction that is very close to 

those of polyurethanes and polythiourethanes at the testing temperature (23 °C). Finally 

all of the films exhibited very good surface scratch resistance as indicated by the pencil 

hardness test results in Table 8.5. 

To investigate thermal stability, thermogravimetric analysis was conducted 

(Figure 8.11 and Table 8.5). Polyurethanes and polythiourethanes show very similar 

degradation behavior. Both the aliphatic and aromatic polyurethanes exhibit greater 

thermal stability than the polythiourethanes which have about 30 °C lower T5»/o values 
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(temperature at 5% weight loss). The lower bond energy for C-0 compared to that of C-S 

contributes to the thermal stability differences between polyurethanes and 

polythiourethanes.46 The polydithiourethane, TDIT-HexDithiol, is much less stable than 

either the polyurethanes or the polythiourethanes. The much lower thermal stability of a 

polydithiourethane with the -N(H)-C(=S)-S- linkage has been reported.47 

Conclusions 

The hydrogen bonding and structure-property relationships of a series of small 

molecule and polymeric urethane, thiourethane and dithiourethane systems prepared from 

both aliphatic and aromatic secondary isocyanates were characterized. The extent of 

hydrogen bonding for the urethanes and thiourethanes was greater than that of the 

dithiourethane. Similar physical and mechanical properties for the polyurethanes and 

polythiourethanes (both aliphatic and aromatic) were consistent with the hydrogen 

bonding results. The dithiourethane based small molecule model and polymer exhibited a 

lower melting point (small molecule) and glass transition temperature (polymer) than the 

urethane and thiourethane counterparts. 
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Scheme 8.1. Synthesis of carbamates (CIHA and PIHA), thiocarbamates (CIHT and 
PIHT) and dithiocarbamates (PITHT). 
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Scheme 8.2. Synthesis of polyurethanes, IPDI-HexDiol and TDI-HexDiol, 
polythiourethanes, IPDI-HexDithiol and TDI-HexDithiol, and polydithiourethane, 
TDIT-HexDithiol. 
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Scheme 8.3. Free radicals formed in the photolysis of aromatic urethane and 
thiourethane. 
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Chart 8.1. Structures and bond length (A) of PIHA and PIHT. Bond length values are 
measured by X-Ray diffraction. 
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Table 8.1. Temperature dependent chemical shift coefficients, A8/AT, and variation in 
chemical shift, A8, of model compounds. 

AS/AT 

(ppm/K*l(T3) 

AS (ppm) 

CIHA 

11.2 

0.45 

CIHT 

1.12 

0.45 

PIHA 

0.94 

0.38 

PIHT 

0.88 

0.35 

PITHT 

1.17 

0.47 

A8-865°c - 8io5°c 



Table 8.2. Hydrogen-bonding metrics from crystal structures. 

N-H—0 (A) 

Angle at H (°) 

CIHA 

2.930(3) 

161.2(2) 

CIHT 

3.015(6) 

162.2(4) 

PIHA 

2.992(7) 

159.3(4) 

PIHT 

3.078(9) 

160.7(5) 
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Table 8.3. Crystallographic data for crystal structures. 

Space Group 
C

el
l 

C
on

st
an

ts
 

a (A) 

b(A) 

c(A) 

a(°) 

P(°) 

Y(°) 

Volume (A3) 

CIHA 

P2A21 (#19) 

5.0663(2) 

13.4317(8) 

21.1721(12) 

90 

90 

90 

1440.74(13) 

CIHT 

P-l (#2) 
(Z=4) 

5.1365(5) 

15.567(3) 

19.266(3) 

73.196(14) 

88.684(10) 

89.231(10) 

1474.3(4) 

PIHA 

P-l (#2) 

5.1270(6) 

7.8674(13) 

16.5435(17) 

88.855(11) 

84.942(9) 

74.160(12) 

639.46(15) 

PIHT 

P-l (#2) 

5.2198(3) 

7.8737(6) 

16.9331(16) 

88.951(7) 

95.277(7) 

107.335(6) 

661.48(9) 
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Table 8.4. Melting point of model compounds measured by DSC at a heating rate of 1 
°C/min. 

Tm(°C) 

CIHA 

37 

CIHT 

35 

PIHA 

39 

PIHT 

60 

PITHT 

42 
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Table 8.5. Polymer properties. 

Tg(°C) 

Pencil 

Hardness 

Persoz 

Hardness 

T (5%)* 

IPDI-HexDiol 

71 

5H 

284±5 

285 

IPDI-HexDithiol 

74 

5H 

288±4.9 

255 

TDI-HexDiol 

86 

5H 

267±5.2 

270 

TDI-HexDithiol 

84 

6H 

293±6.1 

240 

TDIT-HexDithiol 

62 

5H 

250±5.2 

140 

*T(5%) is temperature at 5% weight loss 
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ppm (tlfA 

Figure 8.1. The JH NMR spectra of 3.7 mM CIHA in CDCl3/d-DMSO solvent mixtures. 
The numbers in the figure indicate the volume ratios of the two solvents. 



239 

£ 
Q_ 
Q. 

12 

11 

10 

9 

8^ 

7 

6 

5 

4 

PITHT PIHT,© 

PI HA 

0 20 40 60 80 100 

Ratio of d-DMSO/CDCL (v/v%) 

Q_ 

o 
Q 
O CO 

I 
o 
CO 

to 

3.4-

3.2-

3.0-

2.8-

2.6-

2.4-

2.2-

2.0-

2 
2.659 

yA 
If 
§| 

i 

.79 

| f 
A 
i 

3 

2 

.13 

% 

M, 
% 

3 
8 

1 

.25 

W 

3 

2 .89 

% 

I 

8 

CIHA CIHT PIHA PIHT PITHT 

Figure 8.2. (a) Chemical shift values of NH protons of model compounds as a function of 
volume ratio of d-DMSO/CDCl3. (b) Chemical shift difference between NH protons in 
d-DMSO and CDC13. 
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Temperature (°C) 

Figure 8.4. Chemical shift of model compounds as a function of temperature. 
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Figure 8.5. FTIR spectra of CIHA and CIHT measured at temperatures from 45 to 95°C 
with a 10 degrees interval. The arrows indicate the direction of temperature increase. 
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Figure 8.6. FI,,NH of carbamates, thiocarbamates and dithiocarbamate as a function of 
temperature. 
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Figure 8.7. UV spectra of PIHA, PIHT and PITHT before and after photolysis conducted 
by exposing all samples dissolved in CH2CI2 (0.06 mM) to the output of a medium 
pressure mercury lamp for 20 min. 
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Figure 8.8. UV spectra of model compound solutions (in CH2CI2) with equal absorbance 
at 254 nm before and after photolysis conducted by exposing all samples to the output of 
a Rayonet photoreactor equipped with 254 nm lamp. 
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Figure 8.9. Hydrogen bonding fraction of polymers as a function of temperature. 
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Figure 8.10. DSC curves of polymers. 
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Figure 8.11. Thermogravimetric analysis of polymers. 



CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS 

The research reported in this dissertation has dealt with the photopolymerization 

and physical and mechanical property measurements of thiol-ene based systems and a 

comparison study of urethane, thiourethane and dithiourethane based materials. The main 

conclusions of each study are outlined in the following paragraphs. 

The photopolymerization of four different types of enes with primary and 

secondary thiol was investigated and physical and mechanical properties of the thiol-ene 

networks measured. All ene monomers showed high reactivity with both thiols, with 

PEGDA homopolymerizing as well as copolymerizing with the thiol. Higher ACP values 

were observed for the more flexible networks based on TEGDVE and PEGDA. The 

flexibility, surface scratch resistance and thermal stability of films based on the primary 

and secondary thiols were essentially identical. The trifunctional APE and TTT based 

networks with higher network densities, and in the case of TTT a rigid ring structure, had 

higher glass transition temperature, pencil hardness and refractive indices, and better 

mandrel bending performance. The difunctional and flexible TEGDVE and PEGDA 

based networks show lower Tgs, higher ACps and better impact resistance. Finally, all of 

the resin mixtures prepared from the commercial secondary thiol exhibited much better 

shelf-life than those prepared from the primary thiols, and the secondary thiol sample 

evaluated had little or no objectionable odor making it particularly suitable for many 

applications. 
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Real-time FTIR analysis shows that the photopolymerization of a trithiol and 

trivinyl ether mixture with excess vinyl ether proceeds by a rapid thiol-ene radical 

polymerization and a subsequent cationic vinyl ether polymerization. Dynamic rheology 

measuremnts confirms that the TriTthiol-TriVinyl (25 to 75 mol%) sample gels at the end 

of the thiol-ene free-radical reaction followed by a cationic polymerization of residual 

vinyl ether groups. Mechanical property and impact measurements indicate an energy 

absorbing, tough material. The results suggest an important strategy for building 

networks via hybrid free-radical thiol-ene/cationic-ene polymerization processes. 

Thiourethane-thiol-ene (TUTE) films with high glass transition temperatures were 

prepared from the thiol-ene polymerization of a triene with multifunctional thiol 

oligomers based upon three diisocyanates: IPDI, H12MDI and TDI. Further increases in 

Tg were achieved after the initial photocuring process by aging and/or annealing at 85 °C 

due to additional reaction of the thiol and ene functional groups, as well as the reaction of 

isocyanates formed during the photocuring process. All the aged and annealed TUTE 

thiol-ene films had Tgs greater than 90 °C. The hardness of the initially (unaged) cured 

TUTE films increased markedly after annealing. Also, the unaged TUTE films exhibit 

fairly good impact and bending properties. 

The effect of annealing temperature and annealing time on the enthalpy relaxation 

of thiol-ene and thiourethane thiol-ene networks have been investigated qualitatively by 

DSC, and quantitatively by relaxation rate calculations. Compared with a model thiol-ene 

network, all of the hydrogen bonding containing thiourethane thiol-ene networks exhibit 
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almost identical enthalpy relaxation rates at Tg-10 °C. FTIR analysis of IPDI Thiol-TTT 

films indicated no change in the extent of hydrogen bonding upon sub-Tg aging. The 

hydrogen bonding associated with the thiourethane linkages thus influences the networks 

in one distinct way. By introducing hydrogen bonding, the glass transition temperatures 

of the networks are very high compared to traditional thiol-ene systems. However, there 

appears to be little effect of hydrogen bonding on enthalpy relaxation of these dense 

networks. 

A series of small molecule and polymeric urethane, thiourethane and 

dithiourethane model compounds were prepared and measured by FTIR, NMR, DSC, and 

DMA establishing the order of the hydrogen bonding strength as: urethane ~ thiourethane 

> dithiourethane. Due to their similar hydrogen bonding behavior, model polyurethane 

and polythiourethane networks have similar physical and mechanical properties, 

including close Tg, hardness and tensile properties. The polydithiourethane model 

compound with lower Tg is softer, more flexible and less tough because of weaker 

hydrogen bonding forming ability. The comprehensive characterization and comparison 

of urethane, thiourethane and dithiourethane compounds provides experimental and 

theoretical guidance for various applications of sulfur containing urethane materials 

based upon their unique features including high refractive index, the quantitative 

conversion of the isocyanate-thiol reaction, and the feasibility of incorporating them into 

photopolymerizable systems. 

The hydrogen bonding and structure-property relationships of a series of small 
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molecular and polymeric urethane, thiourethane and dithiourethane systems prepared 

from both aliphatic and aromatic secondary isocyanates were characterized. The extent of 

hydrogen bonding for the urethanes and thiourethanes was greater than that of the 

dithiourethane. Similar physical and mechanical properties for the polyurethanes and 

polythiourethanes (both aliphatic and aromatic) were consistent with the hydrogen 

bonding results. The dithiourethane based model and polymers exhibited a lower melting 

point (small molecule) and glass transition temperature compared to the urethane and 

thiourethane counterparts. 

Summarizing, the research reported in this dissertation has probed the effect of 

monomer structures on thiol-ene network properties and important strategies to prepare 

hybrid free-radical thiol-ene/cationic ene networks and high Tg thiol-ene networks with 

uniform structures. A comprehensive comparison and characterization was also 

conducted on a series of aliphatic, aromatic, primary and secondary 

isocyanate/isothiocyanate based urethane type materials to define any differences 

between urethanes, thiourethanes and dithiourethanes. Several suggestions can be made 

for future work as outlined in the following paragraphs. 

To build up a complete set of structure-property relationships for thiol-ene 

networks, formulations containing an expanded set of thiol and ene structures should be 

investigated. Although, for primary and secondary Tetra Thiol based thiol-ene systems, 

almost no difference were observed in photopolymerization and film properties, it would 

still be interesting to investigate systems based on more hindered secondary thiols, such 



as those with two methyl groups or a benzene ring attached to the a-carbon. This might 

significantly reduce the photopolymerization rate under the experimental conditions used 

in Chapter III and generate greater differences in network properties compared to those 

made from primary thiols. 

Due to their excellent adhesion properties and complementary low shrinkage 

during curing, epoxides are worth to be incorporated into a free-radical/cationic hybrid 

thiol-ene system. Preliminary studies on TriThiol/4-vinyl-l-cyclohexene 1,2-epoxide (1:1 

mol) shows that the propagating cationic chain ends are readily terminated by the 

nucleophilic sulfide linkages of the thiol-ene product. This was also reported in the 

literature.Thiol-ene polymers prepared from highly hindered secondary thiols, such as 

those mentioned in the above paragraph, may help reduce the chain end termination 

because of the steric hindrance around the sulfide bond. 

The process for preparing thiourethane thiol-ene networks could be modified by 

mixing isocyanates, thiol and ene together and coating the mixture onto substrates. After 

the initial room-temperature isocyanate-thiol reaction was catalyzed by tertiary amine 

catalyst, such as triethyl amine or DABCO, the thiol-ene networks could be formed via 

the same conditions used in Chapter V. A combination of a rigid structure arising from 

thiourethane linkages and flexibility from more flexible enes may provide thiourethane 

thiol-ene films with better impact and mandrel bend performance. 

Although a comprehensive investigation of the hydrogen bonding of 

thiourethanes and dithiourethanes in simplified small models, linear polymer and 
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polymer networks has been conducted, the hydrogen bonding behavior of thiourethanes 

and dithiourethanes in more complicated systems, such as phase separated polymers 

resembling polyester-polyurethane or polyether-polyurethane systems, would establish an 

even greater understanding of structure-property relationships in sulfur containing 

polyurethanes. 

Thiol-ene photopolymerization offers an efficient process to form high density 

networks with uniform structures which have important potential applications. The 

conclusions drawn from this research and future work recommendations made in this 

section should result in the improvement of thiol-ene polymer properties. The 

conclusions regarding the thiourethanes and dithiourethanes should provide a theoretical 

and experimental basis for designing of new materials with enhanced performance. 
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