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Abstract: Diabetes is a public health problem that requires management to avoid health sequelae.
Little is known about the determinants that influence diabetes self-care activities among rural popula-
tions. The purpose of this analysis was to explore the relationships among diabetes self-care activities,
diabetes knowledge, perceived diabetes self-management, diabetes fatalism, and social support
among an underserved rural group in the southern United States. A diabetes health promotion
program was tested during a cluster randomized trial that tested a disease risk reduction program
among adults living with prediabetes and diabetes. A structural equation model was fit to test
psychosocial factors that influence diabetes self-care activities using the Information–Motivation–
Behavioral Skills Model of Diabetes Self-Care (IMB-DSC) to guide the study. Perceived diabetes
self-management significantly predicted self-care behaviors, and there was also a correlation between
perceived diabetes self-management and diabetes fatalism. Perceived diabetes self-management
influenced diabetes self-care activities in this rural sample and had an association with diabetes
fatalism. The findings of this study can facilitate clinical care and community programs targeting
diabetes and advance health equity among underserved rural groups.

Keywords: rural; diabetes; health promotion; disease risk; diabetes self-management

1. Introduction

Chronic diseases such as heart disease, stroke, cancer, and diabetes are the leading
causes of death, disability, and high health care costs [1,2]. In fact, approximately 6 out of
10 adults living in the United States have been diagnosed with at least one chronic disease,
and 4 out of 10 have at least two chronic diseases [1,2]. Chronic diseases have been associ-
ated with risk behaviors including tobacco and alcohol use, physical inactivity, insufficient
sleep, stress, and poor nutrition [2]. However, diabetes is an underrecognized contributory
risk factor for chronic diseases such as cardiovascular disease, poor health outcomes, and
increased mortality [3,4]. Diabetes is prevalent among rural populations in the southern
United States, where life expectancy rates are the lowest in the nation, especially among
African Americans who have the highest rates of chronic disease prevalence, morbidity,
and mortality [4–13].

Populations living in rural areas bear a disproportionate chronic disease burden [7,8,10,14–17].
Compared with urban groups, those living in rural geographic locations have poorer health
outcomes, fewer healthcare options, higher rates of premature death, and greater chronic
disease risk factors [16–18]. Resource limitations, deficits in disease knowledge, and limited
access to primary and preventive care further exacerbate disease risk [4,6,8,11,12,19,20].
In addition to these factors, worse outcomes among rural populations living with poorly
controlled diabetes have been associated with their lack of adherence to disease manage-
ment recommendations [21–23]. Poor glycemic control is associated with higher glycated
hemoglobin (HbA1C) levels and contributes to the development and progression of chronic
conditions such as heart disease and stroke [3,4].
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Health outcomes associated with diabetes among rural, southern groups can poten-
tially be improved through health promotion and disease risk reduction interventions
that promote healthier lifestyle choices, improved knowledge about diseases and ways
to reduce risk, and strengthen protective psychosocial factors [9,24,25]. However, there
is a gap in knowledge regarding the determinants that influence diabetes self-care and
management among diverse populations living in rural, southern states [22,26–28]. The
Information–Motivation–Behavioral Skills Model of Diabetes Self-Care (IMB-DSC) was the
theoretical framework used to guide this study, which indicates that performing diabetes
self-care activities is influenced by psychosocial factors including diabetes knowledge,
perceived diabetes self-management, diabetes fatalism, and social support [29]. Diabetes
fatalism is described as the emotional distress from daily living with diabetes, coping
using religious and spiritual resources, and self-efficacy in managing diabetes [30]. Social
support is associated with improved diabetes self-management and outcomes [31–34].
More diabetes knowledge and social support and less diabetes fatalism increase the proba-
bility that diabetes self-care behaviors linked to glycemic control would be performed [29].
The purpose of this analysis was to explore the relationships among diabetes self-care
activities, diabetes knowledge, perceived diabetes self-management, diabetes fatalism, and
social support.

2. Materials and Methods

This study involved an analysis of data collected in a cluster randomized trial to test a
culturally relevant disease risk reduction curriculum among people living with diabetes
and prediabetes (ClinicalTrials.gov: NCT04795050). The study included 12 participating
churches situated in a rural area of the southeastern United States, and the primary results
showed statistically significant intervention effects for diabetes knowledge and some of the
measured self-care activities [35]. The study received institutional review board approval
at Florida State University.

2.1. Sample and Setting

The design of the cluster randomized trial involved calculating the number of partici-
pating churches and individual participants within churches needed to account for potential
intra-cluster correlation [35]. For example, individuals within a participating church may
share similar characteristics or kinship bonds that could have the effect of inducing cor-
relation among study outcomes [36]. A conservative intra-correlation value (r = 0.008)
from previous health research [37] and a medium standardized effect size (d = 0.50) from
a similar study [38] were used to determine the sample size. For sufficient power (80%),
the study required the inclusion of at least 5 different churches and at least 71 individual
participants, accounting for 10% attrition, for each of the two groups. Serving as the statisti-
cal cluster, the rural churches situated in non-metropolitan areas as classified by ZIP codes
were randomized to intervention and control groups after the pastors expressed interest in
study participation. Randomization involved using a randomly selected five-digit random
number sequence and assigning each church to either an intervention (even number) or
control (odd number) group while ensuring the parity imbalance did not exceed two.
The individual study participants were recruited from within the participating church
congregations and self-identified as African American, were at least 22 years old, had
previously been diagnosed with either diabetes or prediabetes, and could understand and
speak English. Those deemed eligible and willing to participate provided written informed
consent. The participants recruited from churches allocated to the intervention group
received a culturally relevant diabetes risk reduction intervention, and those in churches
randomized to the control group received a patient education sheet.

2.2. Measures

Participants in the intervention group completed the measures at baseline and post-
intervention following the third weekly session while participants in the control group
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completed baseline measures and attended a second data collection period three weeks
later. Sociodemographic information was collected at baseline, and the items included age,
gender, employment status, educational attainment, previous diagnosis of either diabetes
or prediabetes, diabetes management regimen, family history of heart disease or diabetes,
and personal history of diabetic retinopathy. The self-reported measures for diabetes self-
care activities, diabetes fatalism, perceived diabetes self-management, social support, and
diabetes knowledge were collected during each data collection period.

2.2.1. Diabetes Self-Care Activities

Diabetes self-care activities were measured using the Summary of Diabetes Self-care
Activities, which had adequate internal consistency (α = 0.71) [39]. The instrument contains
15 items that measure self-care activities, such as blood sugar testing, dietary factors,
medications, and foot care, using an 8-point Likert scale for the number of days (0–7) the
behavior had been performed during the last week.

2.2.2. Diabetes Fatalism

Diabetes fatalism was measured using the Diabetes Fatalism Scale, a 12-item, 6-point
Likert scale that had good overall internal consistency (α = 0.80) [30]. The constructs
of diabetes fatalism that were included in the instrument were the emotional distress
(α = 0.86), religious and spiritual coping (α = 0.77), and perceived self-efficacy (α = 0.77)
subscales. Greater diabetes fatalism was indicated by higher scores (Range 12–72) on the
overall instrument, including these subscales.

2.2.3. Perceived Diabetes Self-Management

Perceptions of diabetes self-management were measured using the Perceived Diabetes
Self-Management Scale (PDSMS), which has eight questions and Likert scale-type answer
options with total score possibilities ranging from 8 to 40 [40]. The instrument had good
internal consistency (α = 0.83), with higher scores indicating a greater level of confidence
in diabetes self-management.

2.2.4. Social Support

The 20-item Medical Outcomes Study Social Support Survey was used to measure
social support in this study [41]. The instrument had 1 fill-in-the-blank item to record the
number of close friends and relatives and 19 Likert-scale, 5-point options. The total social
support score as well as the subscales (tangible support, emotional/informational support,
affectionate support, and positive social interaction) had excellent internal consistency
(α = 0.91–0.97). The tangible support items measured help provided by others during
an illness such as providing transportation to a doctor and assisting with daily chores.
Emotional/informational support measured the availability of someone else to share
concerns, assist during a crisis, and provide advice. Affectionate support can be described
as having someone to show displays of love and affection, and positive social interaction
involves having someone to share enjoyable things with.

2.2.5. Diabetes Knowledge

The Revised Diabetes Knowledge Test had adequate reliability (α = 0.77) and was used
to measure diabetes knowledge [42]. The measure includes 23 multiple choice questions,
but 3 items about insulin were not scored because the curriculum did not address insulin
therapy. The 20 items were totaled, for a maximum possible score of 100 points.

2.3. Intervention

The participants in the intervention group received a manualized culturally relevant
curriculum that was developed by the American Diabetes Association to improve dia-
betes self-management and reduce disease risk among African American adults in church
settings. The program was delivered by the same advanced public health nurse in the par-
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ticipating churches randomized to the intervention group over 3 weekly sessions that lasted
approximately 90 minutes to 2 hours, depending on questions and discussion. The sessions
were similar to other diabetes health promotion interventions and included information
about diabetes risk and pathology, managing diabetes and prediabetes through diet and
exercise, maintaining glucose and HbA1C levels within therapeutic ranges, and linkages
with heart disease, kidney damage, and stroke. Interactive strategies were employed,
which facilitated group discussion and engagement. The control group received a brochure
about diabetes.

2.4. Data Analysis

A confirmatory factor analysis (CFA) model was fit to test the measurement model
where self-care behavior, a latent variable, was predicted to load onto eight measured vari-
ables. These measured variables are general diet, specific diet related to fat intake, specific
diet related to carbohydrate intake, specific diet related to produce intake, exercise, blood
glucose testing, foot care, and medication management. The CFA model was nested into
the full structural model testing the hypothesis that diabetes knowledge, diabetes fatalism,
perceived diabetes self-management, and social support predict self-care behaviors. The
hypothesized model is similar to the one proposed in a previous publication by Osborn
and Egede, although the specific diet subscale is three individual subscales, and there is
no smoking subscale included [29]. Additionally, perceived diabetes self-management
was included as a predictor of self-care behaviors. The structural model and the CFA
model were tested using MPlus version 8.5 [43]. Variables with factor loadings that were
not significant were excluded from the full SEM analysis. Model fit was assessed with
likelihood ratio chi-square tests and the root mean square error of approximation (RM-
SEA) [44,45]. Insignificant chi-square test results indicate that the data fit the hypothesized
structure. RMSEA values less than 0.05 indicate a close fit, whereas values between 0.05 and
0.08 indicate a reasonable fit. RMSEA values larger than 0.1 indicate a poor fit [46].

3. Results

The sample included 12 participating churches that were randomized to the inter-
vention (n = 7) and control (n = 5) groups. Of the 146 individual participants recruited
from the randomized churches, 75 received the intervention, and 71 were in the waitlisted
control group. However, a few participants (n = 9) from both the intervention (n = 7)
and control (n = 2) groups ceased participation after providing informed consent and
completing baseline measures [35]. All self-identified as African American, and there
were no significant between-group differences regarding sociodemographic characteristics
except that more participants in the intervention group had previously been diagnosed
with diabetic retinopathy (p = 0.003) and were unemployed (p = 0.02) [35]. The average
ages for participants in the intervention group were 61.8 and 61.6 for those in the control
group, and there were more participants (72%) who self-identified as being unemployed in
the intervention group, compared with those (49%) in the control group [35]. Additionally,
women (n = 110; 75%) participated in the study more than men (n = 36; 25%), but there
was no statistically significant gender difference (p = 0.08) between groups [35]. Similar
numbers of people in both the intervention (n = 43) and control (n = 44) groups had been
diagnosed with diabetes, and of those diagnosed with prediabetes, there were a few more
in the intervention group (n = 32), compared with the control group (n = 27).

The CFA model is graphically depicted in Figure 1. The initial CFA model demon-
strated a poor fit (χ2 (20) = 54.450, p < 0.001; RMSEA = 0.109) to the data; thus, model
adjustments were made. First, the measured variable for specific diet related to fat intake
was removed, as it was insignificant. This model also demonstrated a poor fit to the data
(χ2 (14) = 48.256, p < 0.001; RMSEA = 0.129), and therefore, a further refinement was made
by adding the correlation between blood glucose testing and medication management to
the model. The adjusted model demonstrated an adequate fit (χ2 (13) =13.224, p = 0.4307;
RMSEA = 0.011 [90%CI: 0.000, 0.083]). Diabetes self-care behaviors loaded significantly
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onto general diet (0.719, p < 0.001), specific diet for produce intake (0.592, p < 0.001), specific
diet for carbohydrate intake (0.643, p < 0.001), exercise (0.511, p < 0.001), blood glucose
testing (0.372, p < 0.001), foot care (0.374, p < 0.001), and medication management (0.258,
p = 0.006).
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Figure 1. Confirmatory factor analysis (CFA) model. Standardized CFA solution; *** p < 0.001.

The structural model that was estimated is displayed with parameter estimates for each
path in Figure 2. The estimated model showed a goodness of fit (χ2 (37) = 31.906, p = 0.7065;
RMSEA = 0.000 [90%CI: 0.000, 0.046]). The resulting model had no multivariate outliers or
issues with collinearity. The path beginning with perceived diabetes self-management was
the only significant direct path predicting self-care behaviors (r = 0.286, p = 0.002).

Table 1. Correlations.

Diabetes
Knowledge

Perceived Diabetes
Self-Management

Diabetes
Fatalism

Social
Support

Diabetes
Knowledge 1 −0.098 −0.066 0.155

Perceived Diabetes
Self-Management 1 −0.301 *** 0.101

Diabetes Fatalism 1 −0.074
Note. *** p < 0.001.

Additionally, the correlation between perceived diabetes self-management and dia-
betes fatalism was also significant (Table 1). Model results indicated that higher perceived
diabetes self-management, higher diabetes knowledge, less diabetes fatalism, and more
social support predicted better self-care behaviors, with the model explaining 17.3% of the
variability in diabetes self-care behaviors.
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4. Discussion

The IMB-DSC helped conceptualize the determinants of diabetes self-care activities
among rural participants living with diabetes and prediabetes including diabetes knowl-
edge as information, diabetes fatalism as personal motivation, social support as social moti-
vation, and diabetes self-care as health behaviors [29]. The current study included the same
components with the addition of the perceived diabetes self-management scale to represent
self-efficacy in relation to diabetes self-care activities [40]. As a chronic disease, diabetes
requires individual confidence, or self-efficacy, to perform the diabetes self-management
activities necessary for preventing adverse consequences associated with lack of glycemic
control [40]. Little is known about factors that influence diabetes self-care outcomes, and
the findings of this study contribute to the literature about diabetes outcomes among
underserved rural groups. In this sample, the intervention had no statistically significant
impact on perceived diabetes self-management, and a possible rationale could be that the
levels were already high at baseline and left little room for improvement at post-test [47].
However, in this analysis, perceived diabetes self-management had the largest impact on
self-care behaviors, as greater self-efficacy in performing self-care activities was associated
with the actual performance of those behaviors. Similarly, another study conducted among
Chinese participants concluded that self-efficacy was an independent predictor of diabetes
self-care behaviors [48].

There are a few published studies that discussed perceived diabetes self-management
in other populations. For example, a study that included adults in Saudi Arabia showed a
significant correlation between perceived diabetes self-management and social support [49].
Another showed that a telephone intervention delivered to Turkish adults significantly
improved diabetes self-efficacy and perceived self-management [50]. Additionally, moti-
vational interviewing had a significant impact on perceived diabetes self-management in
Turkish adults [51]. An educational health technology program discussed in another study
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improved the perceptions of diabetes self-care as well as glycemic control among study
participants in Asia [52]. The positive associations and promising intervention delivery
methods discussed in these articles provide important considerations when developing
future public health interventions targeting diabetes.

In this sample, the negative correlational relationship between perceived diabetes
self-management and diabetes fatalism was statistically significant. This result makes
clinical sense since, with an increase in the perception of diabetes self-management, it
would seem likely that people would have greater feelings of self-efficacy and fewer
fatalistic beliefs about living with and managing diabetes. However, even though the
perceived diabetes self-management score was reported as high in this population, diabetes
fatalism was moderate, which suggests that interventions should include efforts to reduce
fatalism by directly impacting psychological and behavioral factors [47,53]. This has clinical
importance because other studies found that higher diabetes fatalism was directly linked
to poor glycemic control, poor medication adherence, and decreased self-care [53–55]. The
results of this study showed that diabetes fatalism had a small negative effect in that lower
levels of fatalism were associated with a greater likelihood of performing diabetes self-care
behaviors. In comparison, having more social support and increased diabetes knowledge
had small positive effects on self-care activities. A future study having a larger sample size
could potentially show larger effects on these outcomes in this population.

Future research can also focus on the impact of individual perceptions of diabetes
self-management on self-care behaviors in similar rural groups as well as urban popula-
tions. The strategies previously discussed such as using motivational interviewing, health
technology, and telephone interventions could be used to enhance diabetes health interven-
tions and improve accessibility among underserved populations residing in any location.
Poverty and poor living conditions and built environment conditions can adversely affect
diabetes outcomes [56]. Further research is needed to explore the impact of social deter-
minants of health on factors related to diabetes self-care, such as fatalism, self-efficacy,
and social support in other geographic areas, and brainstorm strategies to improve health
among diverse populations living with diabetes. Additionally, a future analysis can ex-
plore the impact of sociodemographic characteristics and diabetes-related complications on
outcomes. For example, a study among Lebanese adults showed that fatalistic attitudes
were associated with characteristics such as younger age, lower educational attainment,
higher BMI, and fewer diabetes comorbidities [57]. This study had some limitations as
well. First, the study was conducted among participants living in a southern region of the
United States, which could limit generalizability to other populations. Second, the data
were self-reported by participants, and there could have potentially been recall bias when
completing the survey instruments.

5. Conclusions

Confronting inequalities requires solutions that are practical, relevant, and encompass
the unique characteristics of those communities that have experienced multiple geographic
and systemic disadvantages [58]. For example, people living in rural geographic locations
often experience hardships related to poverty and limited access to health information,
access to health care, and other resources that affect health program responses and impact
outcomes. The COVID-19 pandemic has further exacerbated these challenges and will
likely contribute to a resurgence of diabetes-related sequelae in addition to the conse-
quences of other chronic diseases. Mitigating rural disparities associated with diabetes
involves community-relevant strategies that address the psychological and behavioral
determinants of standardized diabetes care that improve diabetes self-care activities [53]
Healthy lifestyle recommendations promote longer life expectancy and reduce chronic
disease risk associated with the major causes of death associated with diabetes such as
cancer, stroke, and cardiovascular disease [59–61]. The development and testing of such
tailored interventions can potentially impact health outcomes, decrease chronic disease
development and exacerbation, and improve the quality of life among rural dwellers.
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