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ABSTRACT

GENE EXPRESSION PROFILES AS MOLECULAR INDICATORS
OF DISSOLVED OXYGEN STRESS IN GRASS SHRIMP
PALAEMONETES PUGIO HOLTHUIS 1949
by Tiandao Li
December 2008

Occurrence and severity of hypoxia is increasing in coastal and estuarine envi-
ronments, and recovery of impacted habitats and living resources is slow. Detection of
early biological effects of hypoxia is needed for timely remedial action to be taken. The
overall objectives of this research was to develop molecular indicators of dissolved oxy-
gen stress to assess the biological impact of hypoxia in coastal estuaries and validate their
use through a combination of laboratory and field studies. To achieve these goals, grass
shrimp, Palaemonetes pugio, oxygen-sensitive and hypoxia-tolerant species abundant in
estuarine systems, were exposed to hypoxia under controlled laboratory conditions, and
significant changes in gene expression were identified. Grass shrimp were collected from
hypoxic field sites to evaluate if these hypoxia-responsive genes can be used as indicators
of dissolved oxygen (DO) stress in the aquatic environment.

Hypoxia inducible factor 1o (HIF-1ot), a key transcription factor that controls a
variety of cellular and systemic homeostatic responses to hypoxic stress, was successfully
cloned and characterized in crustaceans using RT-PCR and RACE. Grass shrimp HIF-1a
protein shows a high level of conservation with other HIF-1a proteins in the bHLH, PAS,
ODD, and TAD domains. Phylogenetic analysis indicates that grass shrimp and vertebrate
HIFs belong to distinct clades within the HIF protein family. HIF mRNA levels were not
responsive to chronic or cyclic hypoxia.

Six libraries of expressed sequence tags (ESTs) were constructed by suppression
subtractive hybridization (SSH) from the grass shrimp exposed to environmental stress:

moderate (DO 2.5 mg/L) and severe (1.5 mg/L) hypoxia, cyclic hypoxia (1.5 —7 mg/L),
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contaminant-induced stress (pyrene and copper), and biological stress (molt). Gene On-
tology (GO) analysis of libraries showed several genes that were present in only one li-

brary suggesting that their expression may be stressor specific. The molting process was
accompanied by changes in expression of many genes not found in the hypoxia/copper/pyrene
libraries. The resulting annotated transcripts were used to design and construct a cDNA
microarray to measure the expression changes in response to hypoxia conditions.

The microarrays were used to examine differentially expressed genes in hypoxic
vs. normoxic groups at 6 (H6), 12 (H12), 24 (H24), 48 (H48), 120 (H120), and 240 (H240)
hours exposure to chronic hypoxia. Cluster analysis showed two response patterns, com-
posed of an up- (including H6, H24, and H120) and down-regulated (including H12, H48,
and H240) dominated cluster. Changes in gene expression are dynamic and transient.
There is no differentially expressed gene up- or down-regulated common to all six groups.

Differentially expressed genes were determined in hypoxic vs. normoxic groups
after 1, 2, 5 and 10 days exposure to cyclic hypoxia. Sampling on each day was con-
ducted at two different time series, one in the morning (representing low DO, CA) and
one in the afternoon (representing high DO, CP). There are distinct differences between
the number and identity of specific genes that are significantly down- or up-regulated in
shrimp collected at the low DO and high DO points of the cyclic DO cycle. Only a few
genes are differentially expressed in grass shrimp exposed to cyclic hypoxia in the field
relative to those collected from a normoxic reference site.

In conclusion, grass shrimp HIF is constitutively expressed and not induced by
chronic and cyclic hypoxia exposures in both laboratory and field studies. Some differ-
entially expressed genes appear unique at certain time points during laboratory and field
exposures. However, changes of significant genes are too dynamic to serve as biomarkers
of hypoxia stress in grass shrimp. Gene expression changes of grass shrimp in response to
cyclic hypoxia conditions are not only dependent on the duration of exposure but also on

the time of day.

1ii



ACKNOWLEDGEMENTS

Being at Gulf Coast Research Laboratory of The University of Southern Missis-
sippi has been a truly enriching and fulfilling experience for me. There are many people I
would like to thank who have made my life and research here enjoyable.

I would like to express my sincere gratitude to my advisor, Dr. Marius Brouwer,
for his overall guidance and support throughout the course of this research. His enthu-
siasm and passion for doing great research, and interests in so many aspects of biology
is unavoidably infectious, and encouraging me to pursue my project. I would also like
to thank my committee members, Dr. Erik A. Carlson, Dr. Chet F. Rakocinski, and Dr.
Shiao Y. Wang, for willingness to serve on the committee and assistance at various points
throughout the project.

I am immensely appreciative of the help from Thea Brouwer throughout the project
on many molecular protocols, techniques, and analysis. I would like to thank Steve Man-
ning and Kevin Ryan for their assistance with developing and setting up all grass shrimp
collection, culture, and exposure. I am grateful for the support from Nancy Brown-Peterson,
Arthur Karels, and Adam Kuhl for field sample collection. I would also like to thank my
fellow graduate students and lab technicians for their daily support, general advice and
feedback: Rachel Ryan, Jonathan A. Roling, Walter Grater, Christy King, and Laura Hen-
don, and many others - thanks for being there and making those frustrating days bearable.
I would also like to acknowledge the EcoArray Inc. for constructing the libraries.

Finally, I would like to thank my parents for their enormous and unconditional
love, encouragement, and support for my life. Special thanks go to my grandparents.
Thanks for their understanding that I couldn’t stay with them at their last moment. Most
importantly, I would like to thank my wife, Bin Zhang, for her love, understanding, and
sacrifice for these years. Her unwavering optimism and constant encouragement made
this work possible. Little thanks to my daughter, Emma G. Li, for her beaming smile that

I get to go home every night, and her little understanding that Daddy can’t play with her

\Y



sometimes. I always treasure our special moment called “Happy Family”. Words can’t
describe the importance of my family, no matter where we go or what we do I know we
will always be there for each other.

This dissertation is dedicated to my wife, my parents, and my grandparents for

their endless love, patience, and support.



TABLE OF CONTENTS

ABSTRACT . . . . . e e e e e ii
ACKNOWLEDGEMENTS . . . . . . .. e e iv
LISTOF ILLUSTRATIONS . . . . . . . . .. e o viii
LISTOFTABLES . . . . . . . e e e e X
CHAPTER
LINTRODUCTION . . . . . . e e e e e 1
Gulf of Mexicoand Hypoxia . . . . . .. ... ... ... .. ....... 1
Effects of ChronicHypoxia . . . . . ... ... ... ... ... ...... 3
Hypoxia Inducible Factor (HIF) . . ... ... ... ... ......... 7
GrassShrimp . . . . . . . o oo e 13
Hypothesis and Objectives . . . . . . .. ... .. ... .......... 15

II. HYPOXIA INDUCIBLE FACTOR, GSHIF, OF THE GRASS SHRIMP
PALAEMONETES PUGIO HOLTHUIS 1949: MOLECULAR

CHARACTERIZATION AND RESPONSE TOHYPOXIA . . . . ... .. 18
Abstract . . . . . .. e 18
Introduction . . . . . ... .. ... 19
Materialsand Methods . . . . . ... .. .. .. ... .. ... .. ... 22
Results. . . . . . .. . . . 27
Discussion. . . . . . . o 31
Conclusion . .. .. ... .. . . ... 35
ITI. BIOINFORMATIC ANALYSIS OF EXPRESSED SEQUENCE TAGS

FROM GRASS SHRIMP PALAEMONETES PUGIO EXPOSED TO

ENVIRONMENTAL STRESSORS . . . . .. . ... ... ......... 37
Abstract . . . . . .. e 37
Introduction . . . . . ... ... 38
Materialsand Methods . . . . . . . ... ... ... ... ... .. ... 40

vi



Discussion . . . . . . . . . . e e e 54
IV.CHRONICHYPOXIA ... .. ... . i 71
Abstract . . . . . . . L e e 71
Introduction . . . . . . . . . . . e 72
Materials and Methods . . . . . . . ... .. . oo oo 74
Results. . . . . . . . e 85
Discussion . . . . . . . . . . ... e 108
V.CYCLICHYPOXIA . . . . . .. . e 117
Abstract . . . . .. L 117
Introduction . . . . . . . . . . e 118
Materialsand Methods . . . . . . .. .. ... ... ... ... 120
Results. . . . . . . . . . 121
Discussion . . . . . v v vt e e e e e e 144
VL FIELD EXPOSURES . . ... .. . . ... .. o . 152
Abstract . . . . e e 152
Introduction . . . . . . . . ... 152
Materialsand Methods . . . . . .. ... ... ... ... ... ...... 153
Results. . . . . . . . . . . 154
Discussion . . . . . . . . . . . e 160
VIL SUMMARY . . . . . .. e 163
REFERENCES . . . . . . e 169

vii



Figure

> »w

=

10.

11.

12.

13.

14.

15.

16.

17.

LIST OF ILLUSTRATIONS

Amino acid sequence of grass shrimp Trachealess. . . .. ... ...... 29
Amino acid sequence of grass shrimp HIF. . . . . .. ... ... ... ... 29
Neighbor joining tree derived from 21 HIF amino acid sequences. . . . . . 30

Changes in grass shrimp HIF expression in response to chronic hypoxia

exposure (2.5 ppm) at Day 3,7,and 14. . . . . ... ... ... ... ... 31
Overview of Clonetech PCR-Select cDNA Subtraction Procedure. . . . . . 44
Pipeline of PTAmodules. . . . . . .. .. ... . ... ... ........ 44
Amino acid sequence of grass shrimp hemocyanin. . . .. ... ...... 50
Venn diagram of up-regulated transcripts in three DO treatments. . . . . . . 55
Venn diagram of down-regulated transcripts in three DO treatments. . . . . 55

Ratios of background subtracted red (A) or green (B) mean intensities

from different slides for self hybridization. . . . . . . ... ... ... ... 89
Individual intensities of red (A) and green (B) channel at different hy-
bridization concentrations. . . . . . . .. ... ... .o 90
Hierarchical clustering using the differentially expressed genes (p <0.05)

in hypoxia vs. normoxia at the same time points. . . . .. ... ... ... 106

Venn diagram of chronic hypoxia vs. normoxia at the same time points,

down-regulated (A) and up-regulated genes (B) genes. . . . .. .. .. .. 107
Pie chart of KEGG pathways. . . . . . . . ... ... . ... ... ... 109
Dissolved oxygen measured during cyclic DO exposure. . . .. .. .. .. 123

Hierarchical clustering using the differentially expressed genes (p <0.05)

in hypoxia vs. normoxia at the same time points. . . . . . ... ... ... 132
Distribution of differentially expressed genes during cyclic (low) expo-

sure into different GO categories. Only GO terms with at least two genes

assignedtoareshown. . . ... ... ... ... ... ... .. 134



18.
19.

20.
21.

Pie chart of KEGG pathways. . . . . ... ... ... ............ 145
Map of collection sites. Top: Weeks Bay locafcd near Mobile Bay’s east-
ern shore. Center: Weeks Creek, cyclic hypoxic site. Bottom: Weeks Bay
Mouth, normoxiclocation. . . . . . . .. ... ... . e 155
Dissolved Oxygen and Salinity at WBM from September 6 to 13, 2006. . . 157
Dissolved Oxygen and Salinity at WC from September 6 to 11, 2006. . . . 158

ix



Table

A

10.

11.
12,

13.

14.

LIST OF TABLES

Primers designed for grass shrimp RT-PCR and RACE. . . . ... ... .. 23
Sequencing Summary. . . . ... ... 49
Distribution of putative transcripts into different GO categories. . . .. . . 52
Summary of unique genes found only in particular libraries. . . .. .. .. 56

Primers used for grass shrimp PCR. 11,47, 52, 59, 124, 173, and 197 are

clone names for trachealess and hypoxia-inducible factor 1 alpha. . . . . . 77
Loop design for comparison of normoxic (N) and chronic hypoxic (H)

samples (0, 5, and 10 days; 6, 12, 24, and 48 hours). There were 3 pooled
samples for each time point (n=3), for atotal of 3% arrays.. . . . . . . . .. 81
Summary of QPCR primers. . . . . . . .. .. .. ... ... . ... 86
Differentially expressed genes during chronic hypoxia exposures at the

same time points. . . . . . . . . . . o e e e e e e 91

Differentially expressed genes in hypoxia vs. normoxia at the same time

Distribution of differentially expressed genes into different GO categories.

Only GO terms with at least two genes assigned to are shown. . . . .. .. 100
Summary of qPCR. . . . . . . . . . ... 110
Loop design for comparison of normoxic (N) and cyclic hypoxic (H) sam-

ples (0, 1, 2, 5 and 10 days). There were 3 pooled samples for each time

point (n=3). This design was used twice. Once for samples collected at

low DO and once for samples collected at high DO, for a total of 54 arrays. 121
Differentially expressed genes in cyclic hypoxia vs. normoxia at the same

tME POINLS. . . . v v v v v e e e e e e e e e e 124
Differentially expressed genes during cyclic hypoxia exposures at the

same time points (p < 0.05). . . ... ... ... oo L. 131



15.

16.

17.

Distribution of differentially expressed genes during cyclic (low) expo-

sure into different GO categories. Only GO terms with at least two genes
assignedtoareshown. . . ... .............. ... . ..., 137
Distribution of differentially expressed genes during cyclic (high) expo-

sure into different GO categories. Only GO terms with at least two genes
assignedtoareshown. . . . .. . .. .. . e 140

List of differentially expressed genes from field samples. . . . . .. .. .. 159

X1



CHAPTER 1

INTRODUCTION

Gulf of Mexico and Hypoxia

The Gulf of Mexico, bordered by North, Central and South America, is the ninth
largest body of water in the world. The total area of the Gulf of Mexico is approximately
615,000 square miles (1.6 million square km), and almost half of it is shallow intertidal
waters. It connects with the Atlantic Ocean via the Florida Strait between the U.S. and
Cuba, and with the Caribbean Sea through the Yucatan Channel between Mexico and
Cuba. The Gulf’s eastern, north, and northwestern shores lie within the states of Alabama,
Florida, Louisiana, Mississippi and Texas. This coastline spans 1,680 miles (2,700 km),
receiving water from thirty-three major rivers that drain 31 states. Many important indus-
tries along the coast include petrochemical processing and storage, shipping, paper man-
ufacture, and tourism. Another important commercial activity is fishing; major catches
include various fishes, oysters, crabs, and shrimp (NCAT, 1999).

The Gulf owes its great biodiversity and productivity to abundant nutrients such
as nitrogen, phosphorus, and silica, which enhance the growth of marine life. Nutrients
provided through upwelling encourage the growth of algae, a basic element of the Gulf
food chain. More algae mean more plankton in the euphotic zone, more shrimp and more
fish. However, algal production is a good thing only up to a point. The volume of nutri-
ents now delivered to the Gulf due to human-related activities is causing algae to grow
too fast, with deadly consequences for these waters. When these plants die, their organic

material sinks to the bottom waters and is decomposed by bacteria, consuming oxygen in
the process, which lead to hypoxia, and in extreme cases, anoxia (Water Marks, 2004). A
number of factors including natural ones can cause oxygen depletion in estuarine ecosys-
tems. The contributions of anthropogenic pollution and eutrophication to this phenomenon

are of the major concern.



Nutrients that fuel the Gulf of Mexico hypoxia are mostly derived from fertiliz-
ers applied in the watershed of the Mississippi River (Mississippi River Gulf of Mexico
Watershed Nutrient Task Force, 2001). Generally, excess nutrients lead to increased algal
production and availability of organic carbon within an ecosystem, a process known as
eutrophication, which is recognized as one of the major water quality concerns in the Gulf
of Mexico (EPA, 2003). There are multiple sources of excessive nutrients in watersheds,
both point and non-point, and the transport and delivery of these nutrients is a complex
process which is controlled by a range of factors. These include chemistry, ecology, hy-
drology, geomorphology of the various portions of a watershed and that of the receiving
system. Both the near-coastal hydrodynamics that generate water column stratification
and the nutrients that fuel primary productivity contribute to the formation of hypoxic
zones in Gulf of Mexico (Rabalais et al., 2002). Over the last few decades, there have
been increases in the frequency, duration, and spatial extent of hypoxic events, which are
regarded as one of the major factors responsible for declines in habitat quality and har-
vestable resources in estuarine ecosystems (Rabalais et al., 1999).

In aquatic ecosystems, hypoxia refers to a depletion of the concentration of dis-
solved oxygen in the water column from 7mg/L (roughly the maximum solubility of oxy-
gen in estuarine water on an average summer day) to below 2mg/L. (NCAT, 2000; NSTC,
2003). Hypoxia can easily occur in semi-closed microtidal shallow waters like coast areas
of the Gulf of Mexico. Marine hypoxic areas were first observed in the 1970s. In 2003
146 hypoxic areas in the world oceans were reported (GEO, 2003, 2004). The Gulf of
Mexico exhibits the largest area of hypoxia in the United States. Hypoxia has been ob-
served in Gulf of Mexico since routine monitoring since 1980s. In the summer of 2004,
the hypoxic zones, “Dead Zone” off the Louisiana Coast, measured up to 8,500 square
miles (Water Marks, 2004), larger than the size of Massachusetts. These waters do not
carry enough oxygen (<2mg/L) to sustain marine life. Hypoxia begins in late spring,

reaches a maximum in midsummer, and disappears in the fall. Fish and other mobile



aquatic species are forced to migrate from hypoxic areas, disrupting their life cycles and
increasing their loss to disease and predation. Less mobile species may simply be killed
off. Hypoxia is not unique to the Gulf of Mexico; however, the Dead Zone is now consid-

ered one of the largest seasonally recurring hypoxic areas in the world (NCAT, 1999).

Effects of Chronic Hypoxia
Effects on Ecosystem and Fisheries

Hypoxia in the Gulf of Mexico has raised considerable concern throughout the
United States. This annually enlarging “Dead Zone” is a major threat to the fishing indus-
try and public health because the zone forms in the middle of the most important com-
mercial and recreational fisheries. It is also an indication of the quality of the waters that
feed the Gulf, including the Mississippi River Basin. Nitrogen is the most common driver
of estuarine eutrophic conditions and currently comes from non-point sources. The ni-
trogen concentration in Mississippi River Basin water has doubled since the 1950s (EPA,
2003). The growing population in the Mississippi watershed increases activities that can
contribute to introducing nitrogen into streams and estuaries (Rabalais et al., 1996).

The Gulf of Mexico Dead Zone is incapable of supporting most marine life, and it
has become a serious threat to commercial fishing and recreation industries. The wetlands
and marshes of the Gulf of Mexico support a vital ecosystem and one of the world’s great-
est fisheries. The fisheries contribute 200,000 jobs and more than $5 billion to the region
annually, while providing up to 30% of the national catch (NCAT, 1999). In 2004 Texas
and Louisiana landed 64% of the nation’s shrimp tails (NOAA, 2006). In recent years, hy-
poxia changed the fisheries significantly. During late spring and early summer, the warm
coastal waters and abundant marine vegetation provide juvenile fish, shrimp, and other
sea-life with nursery grounds before they move to deeper waters. However, as the Dead
Zone grows offshore, it prevents migration, and alters the energy flow of the ecosystem.

Hypoxia kills some species and forces others to seek alternative habitats. Even the popu-



lation of mobile species is severely impacted by their inaccessibility to offshore feeding
and spawning grounds. At least for the time being, hypoxia appears to promote the in-
shore and near-shore fisheries while diminishing the offshore catch. Blocked from mov-
ing to deeper waters to complete their life cycles, the species are now caught at a rela-
tively small size, and the market value is lower for small size than for large one. At the
same time, commercial fishers move away from the Gulf because of low catches of fish,
shellfish, and crustaceans due to hypoxia and anoxia (Turner and Rabalais, 1994).

Hypoxia can profoundly affect the health of an ecosystem and have a variety of
impacts on aquatic organisms, including reduced growth rates, decreasing size of repro-
ductive organs, low egg counts, lack of spawning, increased susceptibility to predation,
disruption of spawning and recruitment, and in extreme cases, mortality. These changes
can further lead to disruption of aquatic food webs due to changes in the relative impor-
tance of organisms and pathways of carbon/energy flow, and to large reduction in the
abundance, diversity, and harvest of species within affected waters. The negative effects
of hypoxia can potentially make both the aquatic population and entire coastal ecosystems
more susceptible to additional human and natural stressors (Justic et al., 1995).

Craig et al. (2005) found that hypoxia has resulted in 25% habitat loss for brown
shrimp (Farfantepenaeus aztecus) on the Louisiana shelf west of the Mississippi delta,
and the spatial distribution shift forced them to aggregate on the periphery of the hypoxic
zone, where temperatures may be suboptimal for growth. The change in spatial distribu-
tion lead to decreases in metabolic scope due to exposure to suboptimal temperatures, low
DO concentrations, and possibly lower food supply (Craig and Crowder, 2005), which
can result in a long-term decrease in brown shrimp size and weight in the Gulf (Diaz and

Solow, 1999),



Effects on Organisms

Many organisms in coastal environments are generally well adapted to hypoxia,
however, specific adaptations vary depending on the duration of hypoxia. Some mobile
organisms can detect and avoid hypoxic waters. However, such behavior, even though
it increases survival, can have substantial costs, in terms of increased stress and energy
consumption, potential interference with feeding, decreases in growth rate, and greater
susceptibility to predation.

Avoidance is not always possible and animals must rely on physiological mech-
anisms to take up as much oxygen as possible from ambient environment or switch to
anaerobic metabolic pathways to supply energy, or both. Some crustaceans respond to
short-term hypoxia by increasing the ventilatory flow of water past the gills to accelerate
the diffusion of oxygen into the blood. The process can produce a respiratory alkalosis,
which increases the hemolymph pH and thereby giving rise to an adaptive increase in
the pH-dependent oxygen affinity of hemocyanins. This short-term adaption to chronic
hypoxia only persist for five days, and then returns to the normoxic baseline (deFur and
Pease, 1988). Similarly, L-lactate, a by-product of anaerobic metabolism binds to blue
crab hemocyanin resulting in increased oxygen affinity (Johnson et al., 1984).

In addition to modulation of oxygen affinity by metabolites, adjustments to pro-
longed exposure to hypoxia may involve modulation of hemocyanin concentration, struc-
ture and function. Long term chronic hypoxia stimulates significant changes in the con-
centration and structure of hemocyanin molecules of C. sapidus (Mangum, 1997) and
shrimp Crangon crangon (Hagerman, 1986). Hemocyanin concentration of blue crab in-
creases by about 40% to enhance the capacity of the hemolymph to carry oxygen. There
are six different types of subunits that make up the large hemocyanin molecule in C.
sapidus (Mangum and Rainer, 1988). Three of them, subunits 3, 5, and 6, decrease their
concentrations in response to chronic hypoxia. The change of hemocyanin structure can

increase the oxygen affinity by favoring the more primitive subunits of hemocyanin dur-



ing chronic hypoxia in blue crab (Mangum, 1997). Active species such as crabs and shrimp
are also capable of anaerobic metabolism, and utilize it as a survival strategy during hy-
poxic exposures.

Hypoxia can favor opportunistic species with shorter life cycles. Some algal species
that affect human health, previously absent or only present in very small numbers, are
now prevalent. For example, the increased incidence of the toxic algae N. pungens has
been associated with amnesic shellfish poisoning. Human health risks increase when the
toxins produced by blooms accumulate in fish and shellfish. Further they may cause prob-

lems if airborne toxins from a bloom are inhaled (NSTC, 2003).

Effects of Cyclic (Intermittent) Hypoxia

In addition to chronic hypoxia, oxygen concentrations may vary throughout the
day. In most mid-Atlantic estuaries the daily oxygen concentration is associated with time
of day (light) and other factors, such as tides. However a strong cyclical pattern of DO oc-
curs in the Gulf of Mexico estuaries. The daily variations of dissolved oxygen range from
super-saturation at mid-day due to photosynthesis, to hypoxia at night due to benthic res-
piration, Estuarine organisms are not only at risk of being subjected to chronic hypoxic
conditions, but also face increases in amplitude and frequency of hypoxia/normoxic cy-
cles (Gupta et al., 1996).

Hypoxia and hypoxic/normoxic cycles can cause severe organ damage in mam-
malian species through the generation of reactive oxygen species (ROS), including su-
peroxide, peroxide, and hydroxyl radicals. During hypoxia, oxidative phosphorylation is
inhibited, cellular ATP becomes depleted, and reducing equivalents accumulate in the mi-
tochondrial electron transport chain, a condition knew as reductive stress (Dawson et al.,
1993; Czyzyk-Krzeska, 1997). The reduced electron carriers are capable of forming the
superoxide radical directly from oxygen still available in the tissues or when oxygen is

reintroduced. The formation of reactive oxygen species promotes cell killing by oxidation



of intracellular lipids, proteins and DNA, a condition kown as oxidative stress. Therefore,
cycles of hypoxia and reoxygenation can lead to increased reactive oxygen species and
tissue injury (Dawson et al., 1993). Usually the presence of cellular antioxidant defense
systems can maintain oxygen radical-induced damage at low levels. These systems in-
clude enzymes, such as superoxide dismutase (CuZnSOD in the cytosol, and MnSOD in
mitochondria), catalase, glutathione (GSH) peroxidase and GSH reductase, metal-binding
proteins such as metallothionein, lipophilic (B-carotene, &-tocopherol) and water soluble
(ascorbic acid) vitamins, and the abundant intracellular tripeptide, glutathione. However,
when these mechanisms are overwhelmed, oxidative damage ensues. Synthesis of the pro-
teins mentioned above is controlled by the intracellular redox state (Kehrer, 1993; Yu,

1994).

Hypoxia Inducible Factor (HIF)

All organisms possess mechanisms to maintain oxygen homeostasis, which are
essential for survival. In a state of hypoxia oxygen demand exceeds supply, and a physio-
logical response is mounted which increases the capacity of blood to carry oxygen to tis-
sues, and alters cellular metabolism, such as facilitating ATP production by anaerobic gly-
colysis. The hypoxia inducible factor (HIF), conserved during evolution from nematodes
to flies to vertebrates, is central to adaptation to low oxygen availability and plays an es-
sential role during evolution (Semenza, 1998). HIF regulates transcription of many genes
involved in control of cellular and systemic responses to hypoxia, including breathing, va-
sodilation, anaerobic metabolism, erythropoiesis and angiogenesis (Bracken et al., 2003).
Thus, HIF regulates both short term responses to hypoxia, such as erythropoiesis and gly-
colysis, and long term responses such as angiogenesis. Therefore, HIF is a master gene
that controls of oxygen homeostasis during embryonic development and postnatal life in
both physiological and pathophysiological processes such as tumor growth and metasta-

sis. The products of HIF target genes are known to promote increased vascularization and



glycolytic metabolism, both of which are essential for solid tumor formation. Constitutive
activation of HIF has been correlated with the progression of a variety of human tumors.
Prolonged HIF induction leads to the expression of genes affecting the balance between
cell death and survival (Ryan et al., 1998).

The discovery of HIF was enabled by the identification of a minimal hypoxia-
responsive element (HRE), A/(G)CGTG, in the 5° enhancer region of the erythropoietin
gene (EPO), a hormone that stimulates erythrocyte proliferation and undergoes hypoxia-
induced transcription (Semenza and Wang, 1992). Subsequent analysis identified HIF as
a phosphorylation-dependent protein which binds the major groove of DNA under hy-
poxic conditions (Bracken et al., 2003). HIF is a heterodimer consisting of one of four
hypoxia-regulated o-subunits (HIF-1a, HIF-2a, HIF-3a, and HIF-4¢t) and the oxygen-
insensitive B-subunit (HIF-1, also called aryl hydrocarbon receptor nuclear translator,
or ARNT) (Luo and Shibuya, 2001). The latter is a constitutive nuclear protein which
also serves as a binding partner of the dioxin/aryl hydrocarbon receptor (DR/AhR) and
hence participates in the cellular response to environmental toxins. In addition, it is an
obligate heterodimeric partner for HIF-1q, and it is also required in multiple signaling
pathways (Berra et al., 2001, 2003). HIF-2a shares 48% amino acid sequence identity
and some structural and biochemical similarities with HIF-1a.. However, HIF-2a has par-
tially different target gene specificity from HIF-1a., and its expression is limited to the
endothelium, lung, and carotid body (Tian et al., 1997). In contrast to HIF-1¢ and HIF-
20, HIF-30 appears not to be as efficient in mediating the hypoxic response or to act as a
negative regulator of hypoxia-inducible gene expression. A splice variant of mouse HIF-
3a, inhibitory PAS protein (IPAS), interacts with the amino-terminal region of HIF-1a,
prevents its DNA binding, and inhibits its activity (Makino et al., 2001). HIF-4q iden-
tified recently in fish shares equal sequence similarity (50%) with HIF-1a, HIF-20, and
HIF-3a from different vertebrate species. Both HIF-1a and HIF-4o proteins contain the

characteristic bHLH, PAS and ODD (oxygen-dependent degradation) domains typically



found in HIF-1a proteins (Law et al., 2006).

In mammalian systems, HIF belongs to a class of transcription factors termed the
basic helix-loop-helix/Per-ARNT-Sim (bHLH/PAS) proteins, characterized by two con-
served domains, bHLH and PAS. The bHLH/PAS proteins have a stereotypic structure
consisting of several domains with diverse levels of conservation. All known members
of bHLH/PAS family function as dimers. The bHLH domain is involved in DNA bind-
ing and dimerization, and the PAS domain in target gene specificity, transactivation, and
dimerization. The bHLH signature domain consists of approximately 15 predominantly
basic amino acids responsible for direct DNA binding. This region is adjacent to two
amphipathic o helices, separated by a loop of variable length, which forms the primary
dimerization interface between family members. The PAS domain, named after the first
three identified proteins (Per (period circadian protein), ARNT (aryl hydrocarbon recep-
tor nuclear translator protein) and Sim (single minded protein)), encompasses 200-300
amino acids containing two loosely conserved hydrophobic regions of approximately 50
amino acids, designated PAS-A and PAS-B. This domain forms a secondary dimerization
interface between family members in addition to other roles, such as ligand and chaperone
binding in the dioxin receptor (DR) (Isaacs et al., 2002). Despite of not directly bind-
ing DNA, the PAS domain has also been reported to confer target gene specificity to the
Drosophila protein Trachealess (trh) and Single minded (Sim). The functions played by
PAS in HIF still remain unknown (Hansson et al., 2002; Berra et al., 2003).

Although oxygen availability regulates muitiple steps in HIF-mediated transcrip-
tional activation, the dominant control mechanism occurs through HIF-1a. The predom-
inant mode of HIF-1a regulation by hypoxia occurs by post-translational modifications,
such as hydroxylation, ubiquitination, and acetylation. In normoxia, the HIF-1o subunit
is constitutively synthesized, but rapidly degraded, mediated by post-translational hydrox-
ylation of conserved proline residues within the oxygen-dependent degradation (ODD)

domain, which comprises residues 401-603 in human HIF-1a (Huang et al., 1998; Mas-
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son et al., 2001) and 692-863 in Drosophila Sima (HIF-1) (Nambu et al., 1996; Lavista-
Llanos et al., 2002). The first proline residues (Pro402 in human HIF-1a, Pro405 in hu-
man HIF-2¢) locates at the N-terminal end of the ODD within a LXXLAP sequence
motif, and the second Pro residue (Pro564 in human HIF-1o, Pro530 in human HIF-2)
resides in the C-terminal ODD. A family of iron (II)-dependent prolyl hydroxylase en-
zZymes uses oxygen as a substrate to catalyze the hydroxylation of these critical proline
residues. Because oxygen is rate limiting for their activity, these enzymes appear to func-
tion as oxygen sensors and provide a direct link between oxygen concentration and the
HIF-mediated hypoxic response pathway (Bruick and McKnight, 2002; Bruick, 2003).
The hydroxylated proline residues in ODD are recognized by pVHL, the multiprotein
product of the von Hippel-Lindau tumor suppressor gene, which functions as an E3 ubig-
uitin ligase only in the presence of oxygen, and targets HIF- 1o for polyubiquitination
and proteasome-dependent degradation (Semenza, 1998), resulting in a half-life of less
than 5 min (Erez et al., 2004). Under hypoxic conditions, the proline residues are unmod-
ified and degradation of HIF-1a is blocked, allowing it to accumulate within the nucleus
where, upon binding to HIF-1, it recognizes HREs within the promoters of hypoxia-
responsive target genes (Huang et al., 1998; Masson et al., 2001; Bruick, 2003).

In addition to proline hydroxylation, an asparagine residue in the C-terminal trans-
activation domain (C-TAD) of HIF-1a is also hydroxylated under normoxic condition
blocking its interaction with transcriptional coactivators such as p300, thereby inhibit-
ing transcription of downstream HIF target genes (Lando et al., 2002a,b; Bruick, 2003).
Lysine residue (Lys532) located in the ODD domain of HIF-1q, has been reported to be
acetylated by an acetyl-transferase named arrest-defective-1 (ARD1), which was origi-
nally identified in defective yeast mutants in the mitotic cell cycle. Acetylation of Lys532
favors the interaction of HIF-1a with pVHL, and thus destabilizes HIF-1a (Jeong et al.,
2002). However, other studies demonstrated that ARD1 had limited, if any, impact on the

HIF signaling pathway (Bilton et al., 2005).



11

Additional mechanisms can influence HIF degradation. One such regulation in-
volves p53. The p53 tumor suppressor is a homotetrameric multifunctional transcription
factor induced by DNA damage and cellular stress, including hypoxia. HIF-1a binds to
p53 and the complex may recruit Mdm2 (murine double minute 2), an E3 ubiquitin ligase
known to ubiquitinate p53 and mark it for proteasomal degradation. In this manner p53
provides a route for the degradation of HIF-1a in hypoxic tumor cells. Studies demon-
strate p53 primarily mediates slow hypoxic degradation of HIF-1a that is not hydroxy-
lated at the two proline residues, while VHL mediates rapid normoxic degradation (Hans-
son et al., 2002).

Modulation of transactivation domain function is a second major mechanism by
which HIF-1a activity is controlled, and the transactivation domains are repressed in nor-
moxia but active under hypoxia. Vertebrate HIF- 1. contains two transactivation domains
(TADs) responsible for recruitment of transcriptional coactivators essential for gene ex-
pression: N-TAD, the amino-terminal transactivation domain, comprised of amino acid
residues 540-580 in mammals, and C-TAD, the carboxyl-terminal transactivation domain,
comprised of amino acid residues 786-826 in mammals (Jiang et al., 1997; Pugh et al.,
1997; Bruick and McKnight, 2002). These two domains are separated by a region termed
the inhibitory domain (ID), which is responsible for normoxic repression of TAD activity.

C-TAD is inactive in normoxia due to hydroxylation of a conserved asparagine
residue (N803 in HIF-1a and N851 in HIF-20t) via dioxygenase FIH-1 (factor inhibit-
ing HIF) (Lando et al., 2002a,b). However, N-TAD is active in normoxia. Transcriptional
activation via N-TAD can lead to robust activation of HIF-1 target genes despite the pres-
ence of oxygen through inactivation of pVHL (Berra et al., 2003). N-TAD is sufficient
to maintain full-length activity without the C-TAD, whereas the C-TAD alone shows a
25-50% reduction in the absence of N-TAD. Both N-TAD and C-TAD can function inde-
pendently and the N-TAD likely contributes more than the C-TAD to gene activation. It is

N-TAD, not C-TAD, which is responsible for differential transcriptional activity of HIF-o
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protein (Hu et al., 2007). N-TAD is highly conserved in vertebrate HIF-1a. and contains
the second proline hydroxylation motif in the C-ODD. Regulation of its activity is likely
to be a by-product of protein stability (Pugh et al., 1997; Bruick and McKnight, 2002).
C-TAD operates independently of the ODD and is able to recruit coactivator complexes
such as CBP/p300 only under hypoxic conditions (Kallio et al., 1998; Kung et al., 2000;
Bruick, 2003). The molecular event that controls C-TAD activity involves the hydroxyla-
tion of an asparagine residue under normoxic conditions. The hydroxylation of asparagine
blocks the interaction of C-TAD with the CBP/p300 transcriptional coactivators. Abro-
gation of asparagine hydroxylation under hypoxic conditions allows for the interaction
of C-TAD with CBP/p300 (Lando et al., 2002a,b). The asparaginyl hydroxylase enzyme
that catalyzes the reaction belongs to the same family of 2-oxoglutarate/Fe(Il) dependent
oxygenases as the prolyl hydroxylases that require oxygen for hydroxylation and iron(II)
and ascorbate as cofactors (LLando et al., 2002a; Masson and Ratcliffe, 2003). A recent
study suggested that both the N-TAD and C-TAD are important for HIF-1a and HIF-2o
common target genes; however, N-TAD is the principal transactivation domain respon-
sible for target gene specificity of HIF-1a or HIF-2a, and C-TAD alone activates some
HIF-1o/HIF-20 common targets (Hu et al., 2007).

Both prolyl and asparaginyl hydroxylases serve as direct oxygen sensors and must
be turned on to fully induce HIF in mammals (Lando et al., 2002a,b). HIF activity is thus
subjected to multiple independent levels of regulation responsible for graded responses to
subtle changes in oxygen concentration. On the other hand, dependence on two indepen-
dent regulations ensures that the hypoxic response pathway is tightly controlled.

A third way of controlling HIF-1a activity may involve the process of nuclear

translocation. Under hypoxic conditions HIF-1o accumulates and translocates to the nu-
cleus and heterodimerises with HIF-1B. Conversely, HIF-1a is shuttled back into the cy-
toplasm during reoxygenation. However, nuclear translocation per se is not sufficient to

upregulate gene expression, nor to protect HIF-1a from degradation (Kallio et al., 1998).
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Two nuclear localization sequences (NLSs) are constitutively actived under both nor-
moxia and hypoxia, The N-terminal NLS is situated in the bHLH domain (17-74 in hu-
man HIF-1a), which mediates the nuclear translocation of these proteins, and C-terminal
one is located between N-TAD and C-TAD (718-721 in human HIF-1a). Both NLSs can
contro] the nuclear translocation of HIF-1a, with the C-terminal NLS being more im-
portant in the nuclear translocation under both normoxia, in cells that lack VHL, and hy-
poxia. The control of nuclear localization is regulated at multiple levels, including sta-
bilization and nuclear import, which may provide a mechanism to activate target genes

under normoxia for the development of multiple vascular tumors of VHL syndrome (Luo

and Shibuya, 2001).

Grass Shrimp

Grass shrimp can be found along the shores of the Atlantic and Gulf of Mexico
of the United States. Their range extends from Maine to Texas. Their basic habitat is
the salt marshes and connecting streams with low salinity (Anderson, 1985). There are
five species of grass shrimp in the Gulf of Mexico (Palaemonetes vulgaris; pugio; inter-
medius; paludosus; kadiakensis), all relatively similar in morphological characteristics
and most with over-lapping distribution. Because of their similarities, these species are
often misidentified as P. vulgaris.

Palaemonetes pugio are among the most widely distributed, abundant, and con-
spicuous of the shallow water benthic macroinvertebrates in the estuaries of the Atlantic
and Gulf Coasts. It is an important food source for many species of commercially impor-
tant fish that utilize estuaries for refuge or reproduction, and has limited value as fish bait
or food for cultured fish or humans (Welsh, 1975). It is also intimately involved in en-
ergy and nutrient transport between various estuarine trophic levels: primary producers,
decomposers, carnivores, and detritivores (Griffitt et al., 2007).

P. pugio has been recognized as one of the most intensively studied organisms in
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ecotoxicology, particularly among estuarine invertebrates. As a useful bioassay test organ-
ism (American Public Health Association, 1975), grass shrimp have been shown to can
be significantly affected by a number of contaminants, including pesticides, polycyclic
aromatic hydrocarbons (PAHs), and metals (Burton and Fisher, 1990; Key and Fulton,
1993; Finley et al., 1998; Key et al., 1998). Some chemical contaminants can also affect
reproductive hormone function in grass shrimp (Oberdorster et al., 2000).

Dissolved oxygen regulates the distribution and abundance of grass shrimp (Harper
and Reiber, 1999). In Louisiana waters, P. pugio are common in DO concentrations of 6
to 11 mg/L. Grass shrimp sometimes climb out of the water during periods of oxygen
deficiency, especially during warm summer nights, but such attempts to avoid hypoxia
can be effective only for a few hours. Grass shrimp are adapted to the low oxygen envi-
ronment of the decomposer system to avoid or limit predation and competition (Welsh,
1975). Respiratory studies indicated that P. pugio is an oxygen regulator, with its oxy-
gen uptake being fairly constant between pO; values of 150 and 50 torr (~ 9 to 3 mg/L).
However, grass shrimp is neither a complete oxygen regulator nor a complete oxygen
conformer. The critical oxygen pressure at which grass shrimp can no longer regulate
their oxygen uptake and become dependent on anaerobic metabolism is between 30 and
35 torr (~ 1.8 mg/L) (Cochran and Burnett, 1996a). They have a limited home range and
are hypoxic tolerant, and because of that, must be able to respond to hypoxia found in
their immediate environment (Finley et al., 1998; Lee et al., 1998). Also they can be eas-
ily maintained in the laboratory (Oberdorster et al., 2000). In aquatic environments, water
can become hypoxic as well as hypercapnic, due to increased benthic respiration, result-
ing in decreases in water pH. The direct result of hypercapnia is acidification of tissues
and body fluids, since CO5 is highly permeable across body surfaces. Cochran and Bur-
nett (1996a) found carbon dioxide increases the hemocyanin oxygen affinity in the grass
shrimp. Because of that, moderate hypercapnia induced by hypoxia doesn’t affect grass

shrimp’s ability to regulate oxygen uptake. Taken together, these properties make grass
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shrimp an excellent model for the search of molecular indicators of the impact of oxygen

stress on estuarine organisms.

Hypothesis and Objectives

Despite the wide-spread occurrence of hypoxia in the world’s aquatic ecosystems,
a clear view of the impact of hypoxia on living organisms is lacking. In contrast to at-
mospheric oxygen, the oxygen concentration in aquatic environment varies significantly
daily, seasonally, and spatially. Widely divergent organisms have the ability to adapt to
variable oxygen concentrations, which suggests that mechanisms of hypoxic sensing and
response may have been established early in evolutionary history. Aquatic organisms
present us therefore with a unique opportunity to study the evolution, function, and reg-
ulation of oxygen dependent genes and their role in environmental adaptation.

The existence of HIF in crustacea and other invertebrates in general (with the ex-
ception of C. elegans and Drosophila) has not been demonstrated. Whether HIF in an
aquatic invertebrate, if present, is structurally and functionally equivalent to HIF in verte-
brates is unknown. The natural habitat of Palaemonetes pugio is often hypoxic, especially
in summer, and grass shrimp can adapt to very low environmental oxygen levels. Since
HIF has not been characterized in crustacean, this study will clone and sequence grass
shrimp HIF-1q, and test it as a potential molecular indicator of hypoxic stress in labora-
tory and field studies.

Several hypoxia responsive genes have been identified and characterized in P. pu-
gio. These include cadmium metallothionein (AY935987), mitochondrial superoxide dis-
mutase (AY935986), HSP70 (AY935982), cytosolic manganese superoxide dismutase
(AY211084), hemocyanin (AY935988), and hypoxia-inducible factor 1 alpha (AY655698)
(Brouwer et al., 2007; Li and Brouwer, 2007). In addition a custom cDNA macroarray
with a limited number of 78 clones from a hypoxia-responsive SSH cDNA library has

been developed (Brouwer et al., 2007). However, the relationship between a stressor and
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a given effect may involve hundreds of genes simultaneously. High-throughput genomic
technologies such as microarrays can perform expression profiling of a large number of
genes in a single experiment, and are therefore an ideal tool for the exploration of ge-
netic regulatory pattern changes induced by hypoxia. For this study, six EST libraries
have been generated from grass shrimp exposed to environmental stress: moderate (DO
2.5 mg/L) and severe (1.5 mg/L) hypoxia, cyclic hypoxia (1.5—7 mg/L), contaminant-
induced stress (pyrene and copper), and biological stress (molt). Using cDNA microar-
rays constructed from these cDNA libraries, genes responsive to different environmental
stressors may be identified, and gene expression profiles determined in specified con-
ditions can be used as molecular indicators of contaminant impacts on grass shrimp in
coastal waters. Therefore, the major objective of this research is to develop molecular in-
dicators of DO stress to assess the biological impact of hypoxia in coastal estuaries and
validate their use through a combination of laboratory and field studies. The remain-

ing challenge is to determine if the molecular indicators can be linked to ecologically-
important parameters, such as reproductive fitness, which, if impaired, may have population-
level impacts.

Hypotheses
1. HIF is present in grass shrimp under hypoxic conditions.

2. HIF expression can be used as a molecular indicator of chronic and cyclic hypoxia

exposure in grass shrimp in both laboratory and field studies.

3. Gene expression profiles of hypoxia-responsive genes can be used as indicators of

chronic and cyclic hypoxic stress in grass shrimp from both laboratory and field

studies.
Objectives

1. Clone and sequence grass shrimp HIF.
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. Perform sequence analysis of ESTs from SSH libraries.

. Determine if HIF can be used as an indicator of chronic and cyclic hypoxia expo-
sure by analyzing HIF expression level using microarrays and real-time quantitative

PCR.

. Determine if expression of hypoxia responsive genes can be used as an indicator of

chronic and cyclic hypoxia exposure in the laboratory and field using microarrays.

. Validate microarray results using gPCR of selected genes.
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CHAPTERII

HYPOXIA INDUCIBLE FACTOR, GSHIF, OF THE GRASS SHRIMP
PALAEMONETES PUGIO HOLTHUIS 1949: MOLECULAR CHARACTERIZATION
AND RESPONSE TO HYPOXIA

Abstract

Hypoxia inducible factor 1o (HIF-1) is a key transcription factor that controls
a variety of cellular and systemic homeostatic responses to hypoxic stress. Expression
and function of HIF-1a have not been studied in crustaceans, which experience wide fluc-
tuations of oxygen tensions in their aquatic environment. Here we show that a HIF-1o
homolog, gsHIF, is present in the hypoxia-tolerant grass shrimp Palaemonetes pugio. Us-
ing RT-PCR and 3’ and 5’ RACE, we cloned a full-length gsHIF cDNA (3822bp) with an
open reading frame encoding a 1057 amino acid protein. Similar to vertebrate HIF-1q,
gsHIF has one basic helix-loop-helix (bHLH) domain, two PAS domains, an oxygen-
dependent degradation domain (ODD) with two proline hydroxylation motifs, and a C-
terminal transactivation domain (C-TAD) with an asparagine hydroxylation motif. In ad-
dition to these conserved sequences, gsHIF has a unique 230 amino acid sequence (aa
790-1020) not found in any vertebrate HIF proteins. Phylogenetic analysis indicates that
grass shrimp and vertebrate HIFs belong to distinct clades within the HIF protein fam-
ily. Expression analysis shows that gsHIF is constitutively expressed under normoxic (7.5
ppm DO), moderate (2.5 ppm DO) and severe (1.5 ppm DO) hypoxic conditions. In ad-
dition to gsHIF, we cloned a fragment of a second bHLH-PAS transcription factor from
the grass shrimp, which had one bHLH and two PAS domains, and an overall 68% amino
acid sequence homology with Apis mellifera trachealess protein.

Keywords - Palaemonetes pugio; hypoxia; hypoxia-inducible factor; gene expres-

sion; phylogenetic classification; trachealess protein.
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Introduction

All organisms possess mechanisms to maintain oxygen homeostasis which are
essential for survival. In a state of hypoxia, when oxygen demand exceeds supply, a phys-
iological response is mounted which increases the capacity of blood to carry oxygen to
tissues, and alters cellular metabolism, such as facilitating ATP production by anaerobic
glycolysis. The hypoxia inducible factor (HIF), conserved during evolution from worms
to flies to vertebrates, is central to adaptation to low oxygen availability (Semenza, 1998).
HIF regulates the transcription of many genes involved in control of cellular and short-
term and long-term systemic responses to hypoxia, including glycolysis, erythropoiesis,
breathing, vasodilatation, and angiogenesis. HIF controls oxygen homeostasis during em-
bryonic development and postnatal life in physiological processes and also in pathophysi-
ological processes such as tumor growth and metastasis (Ryan et al., 1998).

The discovery of HIF was enabled by the identification of a minimal hypoxia-
responsive element (HRE), A/(G)CGTG, in the 5’ enhancer region of the erythropoietin
gene. Subsequent analysis identified HIF as a phosphorylation-dependent protein which
binds the major groove of DNA under hypoxic conditions (Bracken et al., 2003). HIF is
a heterodimer consisting of one of four hypoxia-regulated o-subunits (HIF-1o., HIF-2q,
HIF-3q, and HIF-4a) and the oxygen-insensitive HIF-1B subunit. The latter is a consti-
tutive nuclear protein which also serves as a binding partner (so called Arnt or aryl hy-
drocarbon receptor nuclear translator) of the dioxin/aryl hydrocarbon receptor (DR/AhR)
and hence participates in the cellular response to environmental toxins. In addition, HIF-
1B/Arnt is required in multiple signaling pathways (Berra et al., 2001, 2003).

In mammals, HIF belongs to a class of transcription factors termed the basic helix-
loop-helix/Per-Arnt-Sim (bHLH/PAS) proteins, characterized by two conserved domains,
bHLH and PAS. The PAS domain was named after the first three proteins in which it was
identified: Per (period circadian protein), Arnt (Ah receptor nuclear translocator protein)

and Sim (single-minded protein). All known members of bHLH/PAS family function as
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dimers. The bHLH domain is involved in DNA binding and dimerization, and the PAS
domain in target gene specificity, transactivation, and dimerization. The bHLH signature
domain consists of approximately 60 amino acids with two functionally distinct regions.
The basic region, located at the N-terminal end of the domain, is involved in DNA bind-
ing and consists of 15 amino acids with a high number of basic residues. The HLH re-
gion, at the C-terminal end, functions as a dimerization domain and is constituted mainly
of hydrophobic residues that form two amphipathic helices separated by a loop region of
variable sequence and length. The PAS domain encompasses 200-300 amino acids con-
taining two loosely conserved hydrophobic regions of approximately 50 amino acids,
designated PAS-A and PAS-B. This domain forms a secondary dimerization interface
between family members in addition to other roles, such as ligand and chaperone bind-
ing in the dioxin receptor (DR) (Isaacs et al., 2002). Despite of not directly binding DNA,
the PAS domain has also been reported to confer target gene specificity to the Drosophila
protein Trachealess (trh) and Single minded (Sim). The functions played by PAS in HIF
still remain unknown (Hansson et al., 2002; Berra et al., 2003).

Although oxygen availability regulates multiple steps in HIF-mediated transcrip-
tional activation, the dominant control mechanism occurs through HIF-1a. In normoxia,
HIF-1o subunit is constitutively synthesized, and two proline residues in the so-called
HIF oxygen-dependent degradation domain (ODD) are hydroxylated by HIF prolyl hy-
droxylase. This modification targets HIF for rapid degradation by the ubiquitin-proteasome
pathway, resulting in a half-life of less than 5 min (Erez et al., 2004). Under hypoxic
conditions, the proline residues are unmodified and degradation of HIF-1a. is blocked,
allowing it to accumulate within the nucleus where, upon binding to HIF-1, it recog-
nizes HREs within the promoters of hypoxia-responsive target genes (Huang et al., 1998;
Makino et al., 2001; Bruick, 2003). In addition to proline hydroxylation, an asparagine
residue in the C-terminal transactivation domain (C-TAD) of HIF-1« is also hydroxylated

under normoxic conditions blocking its interaction with transcriptional coactivators such
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as p300, thereby inhibiting transcription of downstream HIF target genes (Lando et al.,
2002a,b; Bruick, 2003).

Most of our knowledge of molecular responses to hypoxia comes from in vitro
studies of terrestrial mammalian systems. Relatively little is known about molecular re-
sponses of aquatic organisms to hypoxia. The oxygen content in aquatic environment
varies markedly daily, seasonally, and spatially. Due to the low oxygen content of water,
increased respiration by benthic (micro)organisms stimulated by excess organic mate-
rial, a condition known as eutrophication, can cause hypoxia or anoxia (Rabalais et al.,
2002). It is thus not surprising that environmental oxygen levels play a significant role
in the evolution of aquatic animals. They have developed various physiological and bio-
chemical adaptations to enable survival in hypoxic and anoxic environments, including air
breathing organs, specialized metabolic pathways enabling long-term anoxic survival, and
modifications of hemoglobin molecules to optimize oxygen transport. At the same time,
they present a unique opportunity to study the evolution, function, and regulation of oxy-
gen dependent genes and their role in the environmental adaptation (Soitamo et al., 2001).
Since widely divergent organisms have the ability to adapt to variable oxygen concentra-
tions, mechanisms of hypoxic sensing and response may have been established early in
evolutionary history.

The first full-length cDNA (3605 bp) of HIF-1a in fish was cloned from rain-
bow trout Oncorhynchus mykiss, which encodes a protein sequence of 766 amino acids
that shows a 61% similarity to human and mouse HIF-1¢ (Soitamo et al., 2001). To date
~20 additional HIF-1/2/3/40 cDNAs have been reported in several fish species (Law,
2002; Powell and Hahn, 2002; Strausberg et al., 2002; Law et al., 2006), but HIF-1(-2, -3
or -4)a has not yet been characterized in crustacea and the mechanisms and conditions
by which HIF regulation occurs in hypoxic shrimp have not been elucidated. Here, we
present the sequence of HIF cDNA from the grass shrimp Palaemonetes pugio and its re-

sponse to moderate and severe hypoxia. This marsh-resident species is commonly found
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in habitats that are often hypoxic, and can adapt to very low oxygen levels found in their
immediate environment (Finley et al., 1998; Lee et al., 1998). In general, grass shrimp
has been shown to be uniquely physiologically adapted to stressful tidal marsh habitats
(Welsh, 1975). The use of a non-model, yet commonly occurring resident species in these
studies allows laboratory results to be more easily related and applied to field measure-

ments.

Materials and Methods
Extraction of Total RNA and Cloning of Full-Length cDNA

Total RNA was isolated from grass shrimp, Palaemonetes pugio, hepatopancreas
using Stat-60 (Tel-Test, Friendswood, TX, USA) according to the manufacturer’s pro-
tocol. After precipitation, RNA was stored in RNA Secure (Ambion). Single-stranded
cDNA was generated from mRNA by reverse transcription (RT) with Superscript II RNase
H™ Reverse Transcriptase (Invitrogen) and oligo dT primers (5’-TTTTTTTTTTTTTTVN-
3.

Block Maker (Henikoff et al., 1995) was used to find several highly conserved
blocks in a set of HIF protein sequences from different species (Danio rerio AAH46875,
Mus musculus AACS53455, Rattus norvegicus AAD24413, Xenopus laevis CAB96628,
Homo sapiens AAC50152, Drosophila melanogaster AAC47303, Caenorhabditis elegans
AAKG62778, Oncorhynchus mykiss AAK30364, and Gallus gallus BAA34234), where a
block is an aligned array of amino acid sequence segments without gaps that represents
a highly conserved region of homologous proteins. The resulting blocks in the Blocks
Database format were imported into the CODEHOP program (Rose et al., 1998) to de-
sign the forward and reverse primers for PCR amplification, HIFF1, HIFF2, HIFR 1, and
HIFR2 (Table 1).

PCR conditions for the primary PCR were 94°C for 2 min for 1 cycle, 35 cycles
of 94°C for 30 sec, 45°C for 30 sec, and 68°C for 2 min, followed by 68°C for 7 min.
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Secondary PCR cycle conditions were 94°C for 2 min for 1 cycle, 35 cycles of 94°C for
30 sec, 50°C for 30 sec, and 68°C for 1 min, followed by 68°C for 7 min. The PCR re-
actions using AccuPrime™ SuperMix I (Invitrogen) gave two amplification products,
~700 (hif700) and ~900bp (hif900). Bands were visualized by ethidium bromide on a
1% agarose gel, purified with QIAquick Gel Extraction Kit Protocol (Qiagen), and T/A
cloned using pGEM®-T Easy Vector System (Promega), and sequenced. The ~900 bp
and ~700 bp PCR products were identified as fragments of Trachealess and HIF-10 (see

Results).

Table 1: Primers designed for grass shrimp RT-PCR and RACE.

Primer Name Nucleotide Sequences

HIFF1 5’-GGG CGG AAG GAG AAG TCC MGN GAY GCN GC-3’
HIFF2 5’-ACA CAA CGT CAC CAC CCA CYT NGA YAA RGC-3
HIFR1 5’-GGT ACT GGC CGG TCGTCM CYT GNCCYTT-3’
HIFR2 5’-GGT CCG CAG CTG CAA ATC RTC RTC NAT-3’

900F1 5’-CAG AGG AAG GTC AAG CAG GGT CAC A-3

900F2 5’-GCT GCC ACT TCA AGA GTT CGG GAT ATA GAG-3’
900R1 5’-CCA TCG TCA TCC CGG ACA TCG TA-3’

900R2 5’-CGC GGT CTC ATG TTG CCT CCT TTA-3’

700F1 5’-GCT TGT GAA GGG CGA GGA CGA GT-3’

700F2 5’-GCC CTG GAC TCG GAA CTC ATC AAA G-¥

700R1 5’-AAT GAT GTC GCC TTC GGT AGA GAG CAC-3’
700R2 5’-GTT AGA CAA GCA TGG CAG AGG GC-3’

F1 5’-CCA GGA AGT AGC CCA GAA TAT GAC G-¥

F2 5’-ACG CAC ACC AGA GCC ACC TAA AGC-3’

F3 5’-GCG GTA AAG ATG GAG ATG ATG GAG-3’

F4 5’-GTA GCT CAC CTC TCC AAG ATC ACC A-3’

T1 5’-GAC TAC ACA CCA GAT GAA CTG CAA GG-3

T2 5’-GTC CCT CTA CCC CTT GTG TCA CG-3’

RACE was performed using the SMART-RACE kit (BD Bioscience) to gener-
ate the 3° and 5° ends of the Trachealess and HIF cDNA. Gene-specific primers were de-
signed based on the initial cDNA sequences of hif700 and hif900. Primary and secondary
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primers for 3’ and 5° ends of hif900 were 900F1 and 900F2, and 900R1 and 900R2, re-
spectively. For hif700, the primary and secondary primers for 3’ and 5’ ends were 700F1
and 700F2, and 700R1 and 700R2, respectively (Table 1). Touchdown PCR conditions for
the primary PCR were 5 cycles of 94°C for 30 sec and 72°C for 3 min, 5 cycles of 94°C
for 30 sec, 70°C for 30 sec, and 72°C for 3 min, 35 cycles of 94°C for 30 sec, 65°C for 30
sec, and 72°C for 3 min, followed by 72°C for 5 min. Secondary PCR cycle conditions
were 40 cycles of 94°C for 30 sec, 68°C for 30 sec, and 72°C for 3 min, followed by 72°C
for 5 min. The PCR products were purified and cloned and sequenced as described above.

Because the sequencing reactions gave ambiguous results for the 3> and 5’ ends,
additional sets of primary and nested primers were designed for trachealess and HIF, to
get the full-length cDNA sequences. For trachealess the primary and secondary primers
were T1 and T2. For HIF the first set of primary and secondary primers was F1 and F2,
and the second set of primers was F3 and F4 (Table 1). The PCR cycling parameters for
the primary and secondary PCR were the same as above. The product bands were isolated
from the gel, purified and sequenced.

All primers were synthesized by Invitrogen (Carlsbad, CA, USA). DNA sequences
were determined by the University of Maine Sequencing Center (Orono, ME, USA) and
in house using a Beckman CEQ 8000 Genetic Analysis System. Sequence analyses and
homology searches were performed using the online BLAST suite of programs (NCBI).
Conserved domains in the sequences were identified using the NCBI Conserved Domains
database and by alignment of grass shrimp HIF with HIF-1a from organisms with known

HIF domain structures.

Hypoxia Exposures

Grass shrimp were collected in the vicinity of Ocean Springs, Mississippi, in
Davis Bayou using dip nets. Adult females and males were segregated by sex and main-

tained in the laboratory at 15 psu and 27 £ 1°C for 7 to 30 days prior to experimentation.
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During acclimation and experimentation periods, grass shrimp were fed brine shrimp nau-
plii once daily and commercial flake food once daily. During all acclimation and experi-
mentation periods, shrimp were held in artificial seawater (Fritz Super Salt, Fritz Indus-
tries, Mesquite, TX, USA) diluted to 15 psu.

Exposures were conducted in an intermittent flow-through system described by
Manning et al. (1999). Normoxic (7.5 ppm DO) and hypoxic (2.5 ppm and 1.5 ppm DO)
conditions within the treatment aquaria were established and maintained as described be-
fore (Brouwer et al., 2004, 2005, 2007; Brown-Peterson et al., 2005). The flow-through
test system provided 1L every 20 minutes (resulting in 3 complete volume additions/day)
to each of the 35L test aquaria using a separate water delivery partitioner for each of the
normoxic and hypoxic treatments. Oxygen levels were controlled by bubbling nitrogen
into a holding tank which gravity fed to the partitioner used to deliver flow-through hy-
poxic seawater. A 24 hour timer was used to activate a solenoid valve which controlled
nitrogen introduction into the holding tank at intervals that maintained oxygen in the
holding tank at a level which resulted in the desired oxygen concentration when intro-
duced into the test aquaria. An additional partitioner provided flow-through normoxic sea-
water, and normoxic conditions were maintained by gently bubbling oxygen into the cells
of the water partitioner prior to delivery of water to the individual aquaria. Female grass
shrimp were housed individually in retention chambers constructed from 10 cm Petri dish
bottoms with a 15 cm high collar of 500 um nylon mesh placed into 35L flow-through
glass aquaria in a water bath held at 27 &+ 1°C. In all experiments, oxygen was monitored
continuously in one hypoxic flow-through aquaria, and DO, temperature and salinity were
measured in all flow-through aquaria once or twice daily using a YSI Model 600XLM
data sonde. After 3, 7 and 14 days of exposure, 10 shrimp per treatment were sacrificed
and weighed (40.2-41.7 mg). The thorax/hepatopancreas of the shrimp was stored in 1 ml

RNAlater at -20°C for nucleic acid extraction.
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Phylogenetic Analysis

A multiple alignment of 21 HIF-1/2/3/4c amino acid sequences was performed
with ClustalX 1.83 (Thompson et al., 1994, 1997; Jeanmougin et al., 1998). The aligned
sequences were then used to calculate distances between pairs of protein sequences. The
neighbor-joining method (Saitou and Nei, 1987) was applied to the distance matrix to
calculate a tree using 1000 bootstrap trials to derive confidence values for the groupings
in the tree. Corrections for multiple substitutions were made as described by Kimura
(1983). Alignment positions where any of the sequences had gaps were excluded from
the analysis. An additional tree was constructed using the maximum parsimony method
implemented by Felsenstein’s PHYLIP package v3.6 (Felsenstein, 1985). The aligned se-
quences in PHYLIP format were imported into the SEQBOOT algorithm to generate 500
data sets by bootstrap resampling (Felsenstein, 1989). The multiple data sets were used
to calculate most parsimonious trees with PROTPARS. The resulting tree output file was
used as input in the program CONSENSE that calculates a majority rule consensus tree

with confidence intervals. Caenorhabditis elegans HIF-10. was used as outgroup.

HIF Expression Analysis

HIF mRNA levels were determined using custom cDNA macroarrays printed with
c¢DNA from 78 clones from a hypoxia-responsive suppression subtractive hybridization
(SSH) cDNA library (Brouwer et al., 2005, 2007), and with cDNA from the ~700 bp
gsHIF clone. gsHIF PCR products with a final concentration of 100 ng/uL. were roboti-
cally spotted in duplicate onto neutral nylon membranes using 100 nL pins as described
by Larkin et al. (2003).

Total RNA was extracted from normoxic (7.5 ppm DO) and hypoxic (2.5 ppm
and 1.5 ppm DO) grass shrimp as described above. Five to eight individual shrimp, out
of ten sampled, in each treatment group gave sufficient amounts of RNA for reverse tran-

scription and labeling. Radiolabeled probes were generated by random primer labeling
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of DNase-treated (DNA-free, Ambion) total RNA with [a->3p]dATP (2’-deoxyadenosine
5’-triphosphate). Hybridization and wash steps were performed as previously described
(Larkin et al., 2003).

The membranes were exposed to a phosphor screen (Molecular Dynamics) at
room temperature for 48 hr. The blots were quantitatively evaluated using a Typhoon
8600 imaging system (Molecular Dynamics). For each cDNA clone the general back-
ground of each membrane was subtracted from the average value of the duplicate spots on
the membrane. Intensity values for all genes were transformed to the log base 2 and nor-
malized to the median array intensity. HIF expression data were analyzed by conducting a
one-way ANOVA across time for both DO regimens. Data were tested for homogeneity of
variance and normality of distribution using SigmaStat 3.11 (SYSTAT Software, Inc. San
Jose, CA, USA). Where normality test failed a Kruskal-Wallis one-way ANOVA on ranks

was performed.

Results
Cloning and Sequencing of Trachealess from Grass Shrimp

Using total RNA extracted from the hepatopancreas of grass shrimp and degen-
erate primers designed by CODEHOP, two initial PCR products of ~900bp and ~700bp
were obtained. Sequencing showed the ~900 bp product to be 870 bp long, with an open
reading frame of 290 amino acids without start and stop codons, with a 78% sequence
identity to trachealess protein from Tribolium castaneum (GenBank Accession no: XP_967112).
3’ and 5’ RACE were performed in an attempt to obtain the complete trachealess coding

sequence. 3’ RACE products formed one contiguous sequence with the 870 bp product

with a 327 bp overlap. All 3’ RACE products had a TGA stop codon in the same posi-
tion. All 5> RACE products had an identical 252 bp sequence at the 3’ end which formed
one contiguous sequence with the 870 bp product with a 120 bp overlap. The 5’ end se-

quences of the 5° RACE clones were ambiguous and there was no clear translation start.
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Hence we show only the 84 amino acids, corresponding to the conceptual translation of
the 252 bp that are identical in all 5° RACE products (Figure 1). The 501 amino acid se-
quence shown in this figure represents therefore a fragment of trachealess protein, with
part of the N-terminal sequence (~45 amino acids) missing. It should be noted that tra-
chealess proteins that show greatest homology with grass shrimp trachealess, Tribolium
castaneum (67%), and Bombyx mori (65%; GenBank Accession no. BAA22946) trachea-

less proteins (Matsunami et al., 1999) are 834 and 849 amino acids long, respectively.

Cloning and Sequencing of HIF from Grass Shrimp

Sequencing showed the ~700 bp PCR product to be 673 bp long. BLASTX search
revealed 49% identity with HIF-1 protein from Tribolium castaneum (GenBank Acces-
sion No. XP_967427). The complete HIF sequence was obtained using SMART 5’ and 3’
RACE. However, the first 3° RACE product did not give the full-length product. Use of
new primer sets (F1/F2 and F3/F4, Table 1) designed from the sequence of the previously
found 3’ RACE product resulted in the full-length 3’ sequence. The complete gsHIF se-
quence (GenBank Accession no. AY655698) was 3288 bp long, with an open reading
frame encoding a 1057 amino acid protein with the initiation methionine at position 135
bp and stop codon TAG at 3308 bp and a molecular weight of 114.67 kDa (Figure 2).
There is an overall 46% homology with Tribolium castaneum HIF-1 protein. The amino
acid sequence of grass shrimp HIF is the second longest in size compared to HIF-1a. of

most vertebrates (~800 AA) and Drosophila (1507 AA).

Molecular Phylogenetic Analyses

Neighbor joining and maximum parsimony analysis produced trees of the same
topology with similar high bootstrap scores. Both methods revealed 2 well-supported
clades. (1) Invertebrate (arthropod) HIFs (Palaemonetes, Drosophila and Tribolium) with

93% bootstrap support in the neighbor joining tree (Figure 3) and 87% in the maximum
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parsimony tree (data not shown), and (2) vertebrate HIF-1/2/3/40. with 87 (neighbor join-
ing) and 82% (maximum parsimony) bootstrap support. Two subclades comprised of
HIF-1/20. (96% bootstrap support) and HIF-3/40. (81% bootstrap support) were present

in the vertebrate HIF protein family (Figure 3).

100%

Caxp 2
100% Crass

$1% Crass Carp 4

100% Lgu 3

93% i_% Grass Shaimp

C. elegane

Bootstrap values on each branch indicate the percentage of trees (1000 replicates) in
which that branch is present. 1, 2, 3 and 4 represent HIF-1a, 2a, 3o and 4@, respectively.
GenBank accession numbers for each species from top (Grass Carp 1) to bottom (C.
elegans) are: AAR95697; AAK30364; AAW29027; BAA34234; AAF20149; NP_034561;
CAB96628; AAL95711; ABD33838; AAT76668; AAC51212; NP_034267; AAW29028;
AAQ94179; AAR9IS698; AAD22668; AACT2734; AAC4AT7303; AAT72404; XP 967427,
CAA19521.

Figure 3: Neighbor joining tree derived from 21 HIF amino acid sequences.
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In Vivo Expression and Response Pattern of HIF to Severe and Moderate Hypoxia

To study the expression of gsHIF under normoxic and hypoxic conditions, grass
shrimp were exposed to normoxic, moderate hypoxic (2.5 ppm), and severe hypoxic
(1.5ppm) conditions and shrimp were sampled on day 3, 7, and 14. The measured DO
values were 7.71 + 1.61 ppm and 2.47 £ 0.50 ppm for the moderate hypoxia exposure,
and 7.50 £ 0.53 ppm and 1.55 £ 0.23 ppm for the sever hypoxia exposure. The normal-
ized normoxic and hypoxic expression levels of gsHIF, in response to 2.5 ppm DO are
shown in Figure 4. One-way ANOVA across time showed no statistical difference be-
tween groups (p = 0.065). Similarly, using Kruskal-Wallis ANOVA on ranks, no differ-

ence between groups was observed in the 1.5 ppm DO exposure (p = 0.587).
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Figure 4: Changes in grass shrimp HIF expression in response to chronic hypoxia
exposure (2.5 ppm) at Day 3, 7, and 14.

Discussion

Like HIF-1q., the trachealess protein (TRH) is a member of the bHLH-PAS fam-

ily of transcription factors, which shows high identity with HIF-1a in the bHLH domain
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(Isaac and Andrew, 1996). TRH is required for tube formation and is a key regulator of
salivary gland and tracheal development in Drosophila. Growth of tracheal tubes, which
comprise the oxygen delivery system in insects, is stimulated by hypoxia and involves
the nitric oxide/cyclic GMP (NO/cGMP) signal transduction pathway (Wingrove and
O’Farrell, 1999). NO, hypoxia and HIF-1q are functionally linked. The gene of the in-
ducible form of nitric oxide synthase (iNOS) is upregulated by HIF and NO impairs nor-
moxic degradation of HIF-1a by inhibition of prolyl hydroxylases (Melillo et al., 1995;
Metzen et al., 2003). Drosophila larvae exhibit rapid NO/cGMP-mediated responses to
hypoxia including behavioral changes allowing larvae to escape local hypoxia (Wingrove
and O’Farrell, 1999). Grass shrimp show similar types of behavior by climbing out of
water during periods of oxygen deficiency (Anderson, 1985). It will be interesting to de-
termine whether hypoxia-induced behavioral responses in grass shrimp share a regulatory
mechanism with the HIF and NO/cGMP system as found in Drosophila.

The fragment of grass shrimp trachealess protein obtained in this study shows
a high level of conservation with other trachealess proteins in the bHLH/PAS regions.
Grass shrimp trachealess bHLH domain (20-72) shows 98% identity with bHLH from
Drosophila melanogaster (GenBank Accession no. AAA96754) and Bombyx mori (BAA22946)
trachealess. The PAS-A (116-177) domain is most similar to that of Drosophila (88%)
and the PAS-B (296-395) domain is most similar to that of the red flour beetle Tribolium
castaneum (GenBank Accession no: XP_967112) (78%). The transcriptional activation
domain in the C-terminal portion of the Drosophila/Bombyx/Tribolium molecule (Isaac
and Andrew, 1996) is not found in the 501 amino acid sequence of the grass shrimp tra-

chealess protein.

HIF protein of the grass shrimp shows a high level of conservation with other
HIF-1o proteins in the bBHLH/PAS regions, with amino acid sequences 23-76, 109-179,
and 234-321 corresponding to bHLH, PAS-A, and PAS-B domains respectively. In gen-
eral, the bHLH domain is involved in DNA binding and dimerization, and the PAS do-
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main in target gene specificity, transactivation, and dimerization. In addition to the bBHLH/PAS
domains, HIF-1a proteins contain domains and sequence motifs that are involved in nu-

clear translocation, transactivation and post-translational modifications, which control

HIF protein stability and transcriptional activity.

HIF-1a is rapidly degraded under normoxic conditions, mediated by post-translational
hydroxylation of conserved proline residues within a polypeptide segment known as the
oxygen-dependent degradation domain (ODD), which comprises residues 401-603 in hu-
man HIF-1o (Huang et al., 1998; Masson et al., 2001) and 692-863 in Drosophila Sima
(HIF-1) (Nambu et al., 1996; Lavista-Llanos et al., 2002). One of the proline residues
subjected to hydroxylation in vertebrate HIF-1a resides at the N-terminal end of the ODD
within a LXXLAP sequence motif (residues 397-402 in human HIF-1a), which is con-
served in grass shrimp (residues 459-464, LTHLAP). A second Pro residue (Pro-564)
resides in the C-terminal ODD (residues 561-567, MLAPYIP in human HIF-1o), with
corresponding sequences in Drosophila present in residues 847-853 (MRAPYIP) and
in grass shrimp in residues 634-640 (MRAPFIP). The hydroxylated proline residues in
ODD are recognized by pVHL, the product of the von Hippel-Lindau tumor suppressor
gene, which functions as an E3 ubiquitin ligase and targets HIF-1o for polyubiquitina-
tion and proteasome-dependent degradation (Semenza, 1998). The prolyl hydroxylase
enzymes that catalyze the hydroxylation of these critical proline residues use oxygen as a
substrate. Because oxygen is rate limiting for their activity, these enzymes appear to func-
tion as oxygen sensors and provide a direct link between oxygen concentration and the
HIF-mediated hypoxic response pathway (Bruick and McKnight, 2002; Bruick, 2003).
Accordingly, HIF- 1o protein increases exponentially in human HeLa cells exposed to
decreasing oxygen concentrations, with a half-maximal response between 1.5 and 2%

O3 and a maximal response at 0.5% (Jiang et al., 1996). In rainbow trout and chinook
salmon cells, maximum accumulation of HIF-1a occurs at much higher oxygen levels

(5% 0O3), a typical oxygen tension of venous blood in normoxic animals, suggesting a role
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for oxygen-dependent gene regulation not only during environmental hypoxia, but also
in the normal physiology of these fish (Soitamo et al., 2001). Whether this difference in
HIF-1a stabilization applies to terrestrial and aquatic organisms in general remains to be
determined.

Under hypoxic conditions proline residues are unmodified and HIF-1a accumu-
lates and translocates to the nucleus, a step which is mediated by a bipartite nuclear lo-
calization signal (NLS) in the C-terminus of the human protein (Luo and Shibuya, 2001).
Grass shrimp HIF does not have this signal sequence, but has two potential NLSs between
aa 4-20 and 25-41, which have the characteristic bipartite NLS structure consisting of two
adjacent basic domains separated by a 10 amino acid spacer sequence. Interestingly, hu-
man HIF-1a contains a similar bipartite NLS between aa 17-33, which mediates nuclear
import of a GFP-HIF-10/1-74 chimeric protein (Kallio et al., 1998).

Modulation of transactivation domain function is a second major mechanism by
which HIF-1o activity is controlled. Vertebrate HIF-1a contains two transactivation do-
mains (TADs) responsible for recruitment of transcriptional coactivators essential for gene
expression: N-TAD, the amino-terminal transactivation domain, comprised of amino acid
residues ~540-580 in mammals, and C-TAD, the carboxyl-terminal transactivation do-
main, comprised of amino acid residues 786-826 in mammals (Jiang et al., 1997; Pugh
et al., 1997; Bruick and McKnight, 2002). N-TAD is highly conserved in vertebrate HIF-
la and contains the second proline hydroxylation motif in the C-ODD. Regulation of
its activity is likely to be a by-product of protein stability (Pugh et al., 1997; Bruick and
McKnight, 2002). Grass shrimp HIF appears to lack N-TAD. However, as discussed
above, the conserved proline hydroxylation motif still exists.

C-TAD operates independently of the ODD and is able to recruit coactivator com-
plexes such as CBP/p300 only under hypoxic conditions (Kallio et al., 1998; Kung et al.,
2000; Bruick, 2003). The molecular event that controls C-TAD activity involves the hy-

droxylation under normoxic conditions of a conserved Asn residue in aa 801-805 (EV-
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NAP) of human HIF-1a. This Asn hydroxylation motif is conserved in grass shrimp HIF
in aa 1034-1038. The hydroxylation of Asn blocks the interaction of C-TAD with the
p300/CBP transcriptional coactivators. Abrogation of Asn hydroxylation under hypoxic
conditions allows for the interaction of C-TAD with CBP/p300 (Lando et al., 2002a,b).
The asparaginyl hydroxylase enzyme that catalyzes the reaction belongs to the same fam-
ily of 2-oxoglutarate/Fe(II) dependent oxygenases as the prolyl hydroxylases (Lando
et al., 2002a; Masson and Ratcliffe, 2003). Both prolyl and asparaginyl hydroxylases
serve as direct oxygen sensors and must be turned on to fully induce HIF in mammals
(Lando et al., 2002a,b). HIF activity is thus subjected to multiple independent levels of
regulation responsible for graded responses to subtle changes in oxygen concentration.
Grass shrimp HIF mRNA levels are not noticeably affected by hypoxia. This ob-
servation, combined with the conservation of the ODD, suggests that gsHIF protein levels
may be controlled at the (post)translational level as found for vertebrate HIF-1a and -2c.
Recently 2 HIF isoforms have been identified whose induction appears to occur at the
transcriptional level; HIF-3a in mammals (Heidbreder et al., 2003) and HIF-4« in fish
(Law et al., 2006). Molecular phylogeny analysis, using neighbor joining and maximum
parsimony methods, shows that grass shrimp HIF clusters firmly with HIFs from other
invertebrates, which are distinct from the vertebrate HIF-1/2/3/4c family. The transcrip-
tionally controlled mammal HIF-3a and fish HIF-4. proteins form a distinct subclade
within the vertebrate HIF (1/2/3/40) clade. These results suggest that the gene duplication
giving rise to the invertebrate and vertebrate HIFs preceded the duplication resulting in
the post-translationally and transcriptionally controlled forms of vertebrate HIF. Whether

invertebrates also have HIFs that are under transcriptional control is unknown at present.

Conclusion

As a first step towards understanding the molecular mechanisms that underlie the

adaptation of hypoxia-tolerant crustacea to low dissolved 6xygen concentrations, we
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have cloned an HIF-10 homolog from the grass shrimp Palaemonetes pugio. The en-
coded amino acid sequence shows high level of conservation with vertebrate HIF-1o in
the bHLH, PAS-A, PAS-B, ODD (with the two proline hydroxylation motifs) and C-TAD
(with the asparagine hydroxylation motif) domains. Conservation of important structural
motifs suggests that the function, stability and transactivation of grass shrimp HIF are
controlled by similar molecular mechanisms as the vertebrate HIF-1q proteins. How-
ever, grass shrimp HIF contains a large polypeptide sequence (aa 790-1020) which has no
matching sequences in GenBank. Whether this region conveys unique functional proper-
ties to grass shrimp HIF remains to be determined. Similar to what is found for vertebrate
HIF-1a., grass shrimp HIF is constitutively expressed and not induced to an appreciable

extent by hypoxia.
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CHAPTER 1II

BIOINFORMATIC ANALYSIS OF EXPRESSED SEQUENCE TAGS FROM GRASS
SHRIMP PALAEMONETES PUGIO EXPOSED TO ENVIRONMENTAL STRESSORS

Abstract

Six libraries of expressed sequence tags (ESTs) were constructed by suppression
subtractive hybridization (SSH) from the grass shrimp, Palaemonetes pugio, exposed to
environmental stress: moderate (DO 2.5 mg/L) and severe (1.5 mg/L) hypoxia, cyclic
hypoxia (1.5—7 mg/L), contaminant-induced stress (pyrene and copper), and biological
stress (molt). A total of 1553 ESTs were clustered and assembled using Paracel Transcript
Assembler software. The resulting 661 potential transcripts included 181 contigs and 480
singlets. All assembled sequences were annotated by BLAST searches against the pub-
lic protein database. Gene Ontology (GO) terms for each sequence were provided using
GOblet software. A total of 312 assembled transcripts matched a protein with an E-value
less than 1E-5. 18% of the most similar matches were from different crustaceans. Large
proportions of sequences had no significant BLAST hits (52.8%) or GO terms (64%). GO
analysis by libraries showed several genes that were present in only one library suggest-
ing that their expression may be stressor specific. Up-regulation of muscle proteins and
GSH-peroxidase appeared specific for chronic (1.5 mg/L) and cyclic hypoxia exposures,
respectively. Several genes involved in sulfur redox and (homo)cysteine metabolism were
all down-regulated in response to cyclic hypoxia. Up-regulation of cytochrome ¢ oxidase
subunit I and down-regulation of vitellogenin was a common response to chronic (1.5
mg/L and 2.5 mg/L) and cyclic DO exposures. The molting process was accompanied by
changes in expression of many genes not found in the hypoxia/copper/pyrene libraries.
The cDNA clones and sequence information can be used for future functional analysis
and for construction of microarrays for monitoring of environmental stressors in coastal

waters using wild or caged grass shrimp.



38

Keywords - Palaemonetes pugio; grass shrimp; crustacean; copper, pyrene; hy-

poxia; gene expression; annotation.

Introduction

Grass shrimp, Palaemonetes pugio, are among the most widely distributed, abun-
dant, and conspicuous of the shallow water benthic macroinvertebrates and can be found
in the salt marshes along the shores of the Atlantic and Gulf of Mexico of the United
States (Anderson, 1985). Although grass shrimp have only limited value as fish bait or
food for cultured fish, their ecological importance is unquestioned. Grass shrimp have
been extensively documented as prey of fishes and other carnivores and they transport
energy and nutrients among various estuarine trophic levels (Griffitt et al., 2007).

P. pugio has also been recognized as a model species in bioassays for assessment
of water quality (American Public Health Association, 1975) and has been used in re-
productive studies in the laboratory (Oberdorster et al., 2000). Much information has
been published about mortality and sub-lethal effects of various toxic chemicals on grass
shrimp. In bioassay studies, anthropogenic contaminants found in estuaries, including
pesticides, polycyclic aromatic hydrocarbons (PAHs), and metals have been shown to
impact grass shrimp growth, size, reproductive capacity, molting, and survival (Burton
and Fisher, 1990; Key and Fulton, 1993; McKenney et al., 1998; Lee et al., 2000). Dis-
solved oxygen regulates the distribution and abundance of grass shrimp in estuarine habi-
tats (Harper and Reiber, 1999). They have a limited home range and are hypoxic tolerant,
and because of that, can respond to hypoxia found in their immediate environment (Finley
et al., 1998; Lee et al., 1998).

In recent years, genofnic approaches have been increasingly applied in the field of
toxicology. Such toxicogenomics studies can enhance our understanding of the mech-
anisms that underlie toxic effects of chemicals on living tissues of various organisms

and may help to identify gene expression profiles that may serve as biomarkers of ex-
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posure (Calzolai et al., 2007). However, this approach is hampered by the very limited
genomic information that is available for non-model organisms that play an important
role in ecosystem function. For example, despite the ecological and toxicological signifi-
cance of grass shrimp, little is known about its genome. Among nine grass shrimp mRNA
sequences submitted to GenBank, only two represent complete coding sequences, cad-
mium metallothionein 1 mRNA (348bp, AY935987), and hypoxia-inducible factor 1 al-
pha mRNA (3822bp, AY655698) (Brouwer et al., 2007; Li and Brouwer, 2007). Another
42 expressed sequence tags (ESTs) from suppressive subtractive hybridization (SSH) li-
braries prepared from grass shrimp exposed to three different xenobiotics have been de-
posited in GenBank (Griffitt et al., 2006).

Clearly an alternative approach is needed to obtain the transcriptome of an impor-
tant species without full knowledge of the organism’s genome. One method that can be
applied to acquire information on the transcriptome is sequencing of ESTs from cDNA
libraries. An expressed sequence tag (EST) is a short and partial sequence of a transcribed
nucleotide sequence produced by sequencing of a cloned mRNA from cDNA libraries.
The resulting ESTs represent portions of expressed genes, and the most highly expressed
genes will be represented many times by identical or nearly identical clones in the li-
braries. This form of analysis has been employed in analyzing invertebrate ESTs from
cDNA libraries from aquatic organisms, such as water flea Daphnia magna (Watanabe
et al., 2005), blue crab Callinectes sapidus (Coblentz et al., 2006), and copepod Calanus
finmarchicus (Hansen et al., 2007).

EST sequences can be clustered and assembled into overlapping contiguous se-
quences that represent unique transcripts. In this way, if the genome of the organism that
originated the EST has been sequenced one can align the EST sequence to that genome.
In this respect, ESTs become a tool to refine gene discovery, and the experimental condi-
tions in which those ESTs are obtained may provide information on the potential function

of the corresponding gene. Moreover, ESTs can be used to construct DNA microarrays
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that then can be employed to determine gene expression in specified conditions.

Previous studies of grass shrimp in our laboratory have used a gene-by-gene ap-
proach for the study of significantly expressed genes during hypoxic exposures. Several
hypoxia responsive genes were identified and characterized from grass shrimp. These
include cadmium metallothionein (AY935987), mitochondrial superoxide dismutase
(AY935986), HSP70 (AY935982), cytosolic manganese superoxide dismutase (AY211084),
hemocyanin (AY935988), and hypoxia inducible factor 1 & (AY655698) (Brouwer et al.,
2007; Li and Brouwer, 2007). This gene-by-gene approach proved to be successful and
necessary for early studies. However, the advent of various transcriptomic profiling tech-
niques provides new rapid and accurate means for discoveries of genes and patterns of
genes induction involved in responses to environmental stress.

This paper reports EST sequencing, computerized clustering, assembly, and anno-
tation of the sequences from six cDNA libraries from grass shrimp exposed to a variety of
natural and anthropogenic stressors: chronic hypoxia, cyclic hypoxia, molt, copper, and
pyrene. This project will improve our understanding of the Crustacean stress response,
may enhance the discoveries of new genes and novel functions or pathways, and provide

the foundation for future studies with microarrays constructed from these sequences.

Materials and Methods
Grass Shrimp

Grass shrimp were collected in the vicinity of Ocean Springs, Mississippi in Davis
Bayou using dip nets. Adult females and males were segregated by sex and maintained
in the laboratory at 15 psu and 27 + 1°C for 7 to 30 days prior to experimentation. Dur-
ing acclimation and experimentation periods, grass shrimp were fed brine shrimp nauplii
once daily and commercial flake food once daily. During all acclimation and experimen-
tation periods, shrimp were held in artificial seawater (Fritz Super Salt, Fritz Industries,

Mesquite, TX, USA) diluted to 15 psu.
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Laboratory Exposures

Exposures were conducted in an intermittent flow-through system described by
Manning et al. (1999). Normoxic (DO 7.5 mg/L) and hypoxic (DO 1.5 mg/L and 2.5
mg/L for chronic DO, and 1.5-7 mg/L for cyclic DO) conditions within the treatment
aquaria were established and maintained as described before (Brouwer et al., 2004, 2005,
2007; Brown-Peterson et al., 2005). The flow through test system provided 1L every 20
minutes (resulting in 3 complete volume additions/day) to each of the 35L test aquaria
using a separate water delivery partitioner for each of the normoxic and hypoxic treat-
ments. Oxygen levels were controlled by bubbling nitrogen into a holding tank which
gravity fed to the partitioner used to deliver flow-through hypoxic seawater. A 24 hour
timer was used to activate a solenoid valve which controlled nitrogen introduction into
the holding tank at intervals that maintained oxygen in the holding tank at a level which
resulted in the desired oxygen concentration when introduced into the test aquaria. An ad-
ditional partitioner provided flow-through normoxic seawater, and normoxic conditions
were maintained by gently bubbling oxygen into the cells of the water partitioner prior
to delivery of water to the individual aquaria. Grass shrimp were housed individually in
retention chambers constructed from 10 cm Petri dish bottoms with a 15 cm high collar
of 500 um nylon mesh placed into 35L flow-through glass aquaria in a water bath held
at 27 £ 1°C. A 16 hour-light and 8 hour-dark photoperiod was maintained. In all experi-
ments, oxygen was monitored continuously in one hypoxic flow-through aquaria, and DO,
temperature and salinity were measured in all flow-through aquaria once or twice daily
using a YSI Model 600XLM data sonde. After 3 and 5 days of exposure at 2.5 mg/L DO
the thorax/hepatopancreas of 10 shrimp per treatment was removed and stored in 1 mL
RNALater (Ambion Inc. Austin, TX, USA) at -20°C. Hepatopancreas from shrimp ex-
posed to 1.5 mg/L DO and cyclic DO was archived in RNALater for RNA extraction after
3 days, and 3 and 5 days, respectively.

Copper exposures consisted of a seawater control and three 96-hr copper treat-
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ments (800, 240 and 100 ug/L) in a flow through system described above. Copper treat-
ments were generated by injection of a copper stock solution (copper chloride dissolved
in distilled water) into dilution water. Appropriate volumes of copper stock solution were
delivered to the exposure system by precision syringe pumps and injected into a treatment
splitter box/mixing chamber. Immediately after injection of stock, 2 L of diluent water
from a water partitioner was delivered to each splitter box/mixing chambers to produce
the desired concentrations. Each treatment splitter box/mixing chamber delivered appro-
priately diluted copper to duplicate treatment aquaria through calibrated delivery lines.
Copper concentrations in the treatment aquaria were measured by atomic absorption spec-
troscopy at 24, 48, 72, and 96 hours. At the end of the 96 hour exposure hepatopancreas
from all surviving shrimp was removed and stored in 1 mL. RNALater.

Pyrene exposures consisted of a seawater control, a solvent control and three
pyrene treatments (50, 15 and 4.5 pg/L) in a flow through system described above. Pyrene
treatments were generated by injection of the compound dissolved in triethylene glycol
(TEG) into dilution water. Appropriate volumes of pyrene stock solution were delivered
to the exposure system by precision syringe pumps and injected into a treatment splitter
box/mixing chamber. Immediately after injection of stock, 2 L of diluent water from a
water partitioner was delivered to each splitter box/mixing chambers to produce the de-
sired concentrations. Each treatment splitter box/mixing chamber delivered appropriately
diluted pyrene to duplicate treatment aquaria through calibrated delivery lines. Pyrene
concentrations in the treatment aquaria were measured at 24, 48, 72, and 96 hours using
reverse phase HPLC with fluorescence detection (Oberdorster et al., 2000). At the end of
the 96 hour exposure hepatopancreas was dissected from all surviving shrimp and stored
in 1 mL RNALater.

To examine effects of molt cycle on gene expression, hepatopancreas tissues were
dissected from shrimp at 1, 3, and 5 days after molting and stored in 1 mL RNAlater at

-20°C.
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Suppression Subtractive Hybridization

Hepatopancreas tissues in RNAlater were shipped on dry ice to EcoArray Inc.
(Alachua, FL, USA) for suppression subtractive hybridizations (SSH). Subtractive hy-
bridizations were performed in both directions in order to obtain both up-regulated genes
(subtraction run in forward direction; transcripts expressed at higher level in exposed
specimen) and down-regulated genes (subtraction run in reverse direction; transcripts ex-
pressed at higher level in the untreated specimen). In the forward direction, the treated tis-
sue that contains up-regulated gene transcripts is referred to as the “tester”, while the un-
treated specimen is called the “driver”. For a reverse subtraction, the “tester” and “driver”
designation for the tissues is switched. Subtractive hybridizations were constructed using
the Clontech (Palo Alto, CA, USA) suppression subtractive hybridization kit following
the manufacturer’s recommendations as briefly outlined below (Figure 5).

Total RNA was extracted using phenol:chloroform STAT-60 (Tel-Test, Friendswood,
TX, USA) and homogenization. RNA from shrimp exposed for 3 and 5 days to hypoxia
(DO 2.5 mg/L and cyclic DO) and RNA from shrimp exposed to different copper and
pyrene concentrations was pooled. Poly-A™ mRNA was then isolated using the Oligo-
tex mRNA Midi Kit (Qiagen, Valencia, CA, USA) and converted to cDNA. The tester
and driver cDNAs were digested with Rsa I, a restriction enzyme that yields blunt-ended
cDNA fragments. The tester cDNA pool was then divided into two portions, each of
which was ligated with a different cDNA adapter sequence. Two sequential hybridizations
were then performed. For the first hybridization, an excess of driver was added to each of
the tester pools, the samples were heat denatured and then allowed to anneal to each other,
resulting in the generation of several different hybrid sequences of cDNA.

For the second hybridization, the two different tester pools are mixed together
in the presence of an excess of driver without denaturing, and new hybrids are formed.
The ends of the differentially expressed cDNA sequences are then filled in by DNA poly-

merase and two rounds of PCR are performed to enrich for these cDNA clones. During



Teler DM Wit Aaptor | Dmrﬂﬁlllln cmmal TesrrgONA D Adyplor 3R

|

—{__1

¥ bgirgategd

Soomil el rauy o sarpes, a3
freali duratum L AT, et anmdl

phate

H inifro ereds

A Pty
Arpity by FOR

& roanphh b

E:'::j [ ST A A

e drearavphloato

g e erlel wnEdcales

4 ¥ sataughttars b prorse W syginc an kb

ursd s al p:“quo vk s, T girete pand

J-F__d:-y ety st 1 e o010 praceci Rt ta
np;nkgim!’m;zmw chqﬁhﬁg‘?ﬂmmrdmﬁws

e the Apgpsaraie e e datatls oo xuppeesston PIA

44

Figure 5: Overview of Clonetech PCR-Select cDNA Subtraction Procedure.
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Figure 6: Pipeline of PTA modules.
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the PCR reaction, the non-differentially regulated, hybrid clones are either not amplified
or do not exhibit exponential amplification. Thus, only differentially regulated genes are
enriched by this process. The resultant pool of cDNA clones obtained from the PCR re-
action were then shotgun ligated into the pGEM-T Easy cloning vector (Promega, Madi-
son, W1, USA) and then transformed into DH5q cells and plated onto Luria-Bertani (LB)
agar plates containing ampicillin and oxacillin (100 ug/mL each). Recombinant colonies
were then picked from the plates and sequenced in a 96-well high throughput format us-

ing standard methods (ICBR Sequencing Core Facility, University of Florida).

Assembly

The resultant expressed sequence tags (ESTs) were assembled using Paracel Tran-
scriptAssembler package (PTA v 3.0.0) with Paracel-optimized version of CAP4 algo-
rithms (Huang and Madan, 1999) that have been extensively modified to account for the
peculiarities of EST datasets while retaining important information about possible al-
ternative splice forms (Paracel, 2002). PTA takes EST data as input and passes the data
through a series of custom steps to automatically clean, cluster, and assemble the se-
quences, group ESTs based on measured pairwise similarity, and reconstruct EST datasets
into virtual transcripts (Figure 6).

Libraries of EST sequences are seldom perfect. Often they contain contaminants
that don’t represent the source mRNA. The Cleanup stage in the PTA pipeline removes
contaminant sequences and selectively mask regions of ESTs to convert input ESTs into
high quality sequences. Sequences that matched with E. coli DNA and grass shrimp RNA
(mainly 16S mitochondrial rRNA sequences) were removed from further processing.
Clone vector contaminants, such as poly-A/T tails and vector, were replaced with a mask-
ing character (typically “X”). This process applies when only a section, not the whole
sequence, is judged to be useless for further analysis. Nine grass shrimp nucleotide se-

quences from GenBank (AY211084 [cytosolic MnSOD], AY655698 [HIF-1a], AY935982
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[HSP70], AY935983 [ribosomal protein S20], AY935984 [ribosomal protein S14], AY935986
[mitochondrial MnSOD], AY935987 [metallothionein 1], AY935988 [hemocyanin], and

AY 935989 [actin]) were used for seeded clustering of the EST sequences. Overlapping
sequences in highly similar clusters were grouped into a single contiguous transcript (con-
tigs). The output was a set of contigs and singlets (single sequence cluster) generated for

each cluster.

Annotation

All ESTs included in the assembly, whether singlets or contigs, were annotated
by sequence similarity comparison against the non-redundant protein database (nr), nu-
cleotide database (nt), and Swiss-Prot database with the BLAST algorithm (BLASTX and
BLASTN) (Altschul et al., 1997).

For each putative transcript, the five most similar entries in the databases were
recorded. Assignment of putative transcripts with the protein database entries required
maximal E-values of 1E-5. Any sequences failing to match the protein database entries
were successively searched with the nucleotide database with E-values less than 1E-10 as
recognized putative identities. The exact choice of most related sequences in each group
of alignments (clusters) depended not only on the best hit values but also on the detailed
information of matched sequences (Liu et al., 2006), such as having at least 50+ consec-
utive amino acids with 50%-+ similarity, position of sequence in the assembled consensus
sequence (contig), and analysis of potential protein conserved domains and functional
sites.

To identify the function of each sequence, the matched known genes of annotated
ESTs were classified into different functional categories according to Gene Ontology
(GO) (Ashburner et al., 2000). The sequence analysis in terms of GO annotation using the
GOblet software (http:/goblet.molgen.mpg.de/) was conducted on all of the assembled
sequences. The GOblet software (Hennig et al., 2003; Groth et al., 2004) took ESTs in


http://goblet.molgen.mpg.de/
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FASTA format and performed similarity searches against GO-annotated databases for var-
ious model organisms using BLAST. GO summary of trees and tables were constructed
based on all GO terms of the respective hits.

Pathway analysis was carried out according to KEGG mapping (Kanehisa et al.,
2006). EC numbers were assigned to sequences by BLASTX search against protein database
(nr) with a cut off value of 1E-5. The sequences were mapped to KEGG biochemical
pathways according to EC distribution in the pathway database.

The sequence analysis was carried out using EMBOSS (Rice et al., 2000). BLAST
report parsing, and features and annotations assignments were carried out using BioP-
erl (Stajich et al., 2002), and statistical analysis was performed using R (R Development
Core Team, 2008). A web site was developed (http://orca.st.usm.edu/"litd/gs/) where the
user may download the information of the grass shrimp ESTs, including singlets and con-
tigs, uncover which ESTs belong to which contigs, and obtain and search the BLAST

annotations against different databases.

Results
Water Quality Parameters

The average DO levels during chronic DO exposures were 1.55 + 0.23, and 2.47
+ 0.50 (mg/L), respectively. The measured copper and pyrene concentrations were 122 +
7,237 £ 6, and 719 + 22 (ug/L), and 4.14 £+ 1.26, 13.69 £ 3.56 and 44.15 £ 9.08 (ug/L),
respectively. Over the 96 hour exposure, temperature, DO, pH, and salinity recorded as
follows: 26.51 + 0.76 (°C), 7.30 & 0.21 (mg/L DO), 8.39 + 0.04 (pH), and 15.41 + 0.30

(%o) for copper, and 27.00 % 0.22 (°C), 6.96 + 0.23 (mg/L DO), 8.41 + 0.03 (pH), and
15.36 £ 0.28 (%o) for pyrene.


http://orca.st.usm.edu/~litd/gs/
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Libraries and Sequencing

In order to generate a diverse set of sequences from grass shrimp, six independent
cDNA libraries were constructed from mRNA extracted from grass shrimp exposed to
chronic DO (1.5 and 2.5 mg/L), cyclic DO (1.5-7 mg/L), copper and pyrene, and from
post molt shrimp. A total of 1553 clones, ranging from 51 base pairs (bp) to 834 bp, were
sequenced. The average length of the sequenced ESTs was 490 bp with a median of 513
bp and a mode of 480 bp. The average insert size for the six libraries was 561, 579, 512,
450, 478, and 409 bp for the chronic DO (1.5 and 2.5 mg/L), cyclic DO, post molt, copper

exposure, and pyrene exposure, respectively (Table 2).

Assembly

The first phase of assembly was performed by the seeded clustering module (Fig-
ure 6), which compared the input 1553 ESTs data against 9 well-characterized seed se-
quences in GenBank. 17 sequences matched one of three mRNA sequences (AY 655698
[HIF-1a], AY935983 [ribosomal protein S20], and AY935988 [hemocyanin]), and they
were grouped into a cluster with that mRNA sequence and were removed from further
consideration in the pipeline. Of these 17, 14 sequences matched AY935988 (Palaemon-
etes pugio hemocyanin mRNA). Further analysis of these 14 sequences extended 173
amino acids of AY935988 to 311 amino acids long (Figure 7). The amino acid sequence
represented a fragment of hemocyanin protein, with parts of hemocyanin_C domain (Ig-
like domain), and hemocyanin_M domain (copper containing domain). BLASTX search
against non-redundant protein database (nr) revealed 76% identity with hemocyanin sub-

unit L from Marsupenaeus japonicus (ABR14693).
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1-194 Hemocyanin M. copper containing domain
200-321 Hemocyanin ' lg-like domain

Figure 7: Amino acid sequence of grass shrimp hemocyanin.

The second phase of assembly (Figure 6), clustering module, sorted the remaining
ESTs into clusters, or groups of closely related sequences, based on local similarity score.
Initially each EST was placed in its own cluster and each sequence was compared against
all other sequences in both 3’ and 5’ orientations for pairwise comparison. A greedy clus-
tering algorithm combined with pairwise comparison results iterated through all pairwise
comparison hits, and joined the two sequences that generated the hits into a single cluster.
It produced 444 singlets and 165 clusters.

The third phase of assembly operated on the clusters created during the first two
phases (Figure 6). The sequences in each cluster were assembled into a single contiguous
sequence (contigs), and there were often multiple contigs generated per cluster. Singlets,
representing transcripts sequenced only once, are ESTs that don’t fit into clusters, or if
in clusters, don’t form any part of contigs. Simple clusters are those that assemble into a
single contig. Complex clusters assemble into some combination of contigs and/or sin-
glets and so contain ESTs probably representing more than one closely related transcript
(Coblentz et al., 2006). Of the 165 clusters, 28 were considered as complex clusters be-

cause they contained more than one putative transcript (contigs or singlets). There were

81 singlets in clusters. Based on the criteria listed in Materials and Methods, the total
number of putative transcripts selected for further annotations was 661, of which, the ma-
jority (399+81, 72.6%) were singlets, which probably represented the rarer transcripts,

and the others (181) were contigs. The number of ESTs per contig ranged from 2 to 67,
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with a mean of 7, and a median of 4. The length of the contigs ranged from 124 to 1138
bp, with an average length of 492 bp (see http://orca.st.usm.edu/litd/gs/ for further de-
tail). The number of putative transcripts (singlets and contigs) among the six libraries was
52, 82,118, 157, 147, and 105 for chronic DO (1.5 and 2.5 mg/L)), cyclic DO, post molt,
copper exposure, and pyrene exposure, respectively. Of the 480 singlets, 34, 59, 90, 111,

108, and 78 sequences came from the above six libraries, respectively.

Annotation

Each of 661 putative transcripts was compared against NCBI non-redundant pro-
tein database (nr) using BLASTX. Of those 513 (77.6%) matched with at least one sig-
nificantly similar sequence. Of these, 376 were singlets and 139 were contigs. Of the
assembled transcripts, 5.1% (26/513), 28.3% (145/513), and 27.5% (141/513) matched
a protein with an E-value less than 1E-75, between 1E-75 and 1E-25, and between 1E-
25 and 1E-5, respectively. The most similar matches for each of the grass shrimp tran-
scripts were also sorted by organism. Similarities to Arthropoda and chordate genes were
identified in a large proportion of the annotations because the public protein database in-
cludes a number of completely or nearly completely sequenced genomes of species in
these phyla. 17% (87/512) of the most similar matches with chordate sequences were
identified in the model organisms Homo, Mus, and Rattus. 43% (220/513) of the most
similar matches were from the phylum Arthropoda, with insects (121: Tribolium, Apis,
Aedes, and Drosophila,) and crustaceans (94: Litopenaeus, Macrobrachium, Marsupe-
naeus, Pacifastacus, Pandalus, and Penaeus) being by far the most common arthropod
classes.

The BLAST results for grass shrimp transcripts provide some insight into the na-
ture of the most abundant, differentially expressed, mRNAs. The three contigs that are
made up of about 10 ESTs did not match any proteins in the NCBI database. Another

six most commonly sequenced transcripts (16, 31, 10, 10, 10, and 12 ESTs respectively)


http://orca.st.usm.edu/~litd/gs/

Table 3: Distribution of putative transcripts into different GO categories.
Only 3 hierarchical levels are shown.

Name Count
molecular function 226
antioxidant activity 2
binding 105
catalytic activity 108
motor activity 3
signal transducer activity 2
structural molecule activity 37
transcription regulator activity 2
translation regulator activity 7
transporter activity 62
cellular component 113
ATPase complex 15
extracellular space 13
intercellular bridge 12
intracellular 78
intracellular organelle 67
membrane 31
membrane-bound organelle 33
non-membrane-bound organelle 42
organelle envelope 18
ribonucleoprotein 29
biological process 192
cellular physiological process 183
development 8
localization 68
metabolism 156

regulation of cellular process
regulation of physiological process
reproduction

response to abiotic stimulus
response to stress

oo L W 00
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showed an E-value between 0 and 2 against proteins that are predicted from genome
sequencing without assigned function. Six of the most commonly sequenced contigs
showed highly significant similarity to cytochrome ¢ oxidase subunit I (E=1E-116), alpha-
amylase (E=1E-111), cathepsin (E=1E-106), hemocyanin 2 (E=1E-103), vitellogenin
(E=1E-91), and phosphoenolpyruvate carboxykinase (E=4E-91). Five of them came from
Litopenaeus vannamei, Macrobrachium rosenbergii, and Pandalus borealis.

GOblet software (Hennig et al., 2003; Groth et al., 2004) was used to assign prob-
able GO terms to all assembled sequences (661) by similarity searching against GO-
annotated invertebrate protein database with an E-value cutoff of less that 1E-10. A total
of 226, 113, and 192 sequences were assigned to the three main groups in GO: molecular
function, cellular components, and biological process. Table 3 shows the more detailed
assignment of sequences to the first and second hierarchical levels of the GO functional
categories. According to molecular functions, the majority of expressed genes were in-
volved in catalytic activity, binding, transporter activity, and structural molecule activity.
As far as cellular components are concerned, 78, 67, and 29 putative proteins were listed
as intracellular, intracellular organelle, and ribonucleoprotein complex, respectively. For
biological processes 183, 156, and 68 genes were assigned to cellular physiological pro-
cesses, metabolism, and localization, respectively.

Venn diagrams were used to identify the number of genes that were up- (Figure 8)
or down-regulated (Figure 9) in chronic (1.5 mg/L and 2.5 mg/L) and cyclic DO expo-
sures. Several differentially expressed ESTs usually seem to be unique to a particular ex-
posure, however, there was some overlap. For up-regulated transcripts, cytochrome ¢ oxi-
dase subunit I is the only gene in all three DO treatments, and hence might be an indicator
of hypoxia, be it severe, moderate or cyclic. Cytochrome ¢ oxidase subunit IIT was up-
regulated in both chronic (1.5 mg/L) and cyclic exposure, whereas translation elongation
factor 2 (TEF-2) was up-regulated in both cyclic and chronic hypoxia (2.5 mg/L). Phos-

phoenolpyruvate carboxykinase and hemocyanin are the common genes between chronic
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(2.5 mg/L) and cyclic exposures (Figure 8). For down-regulated putative transcripts, vitel-
logenin was identified among all three exposures. Cathepsin L, hemocyanin 2, heat shock
protein 70, and crustapain were down-regulated in both chronic hypoxia (2.5 mg/L) and

cyclic hypoxia (Figure 9).

Discussion

With increasing urban, industrial and agricultural development along the south-
eastern coast of the United States and Gulf of Mexico, estuarine organism such as grass
shrimp are likely to be affected by anthropogenic and natural stressors. To explore effects
of deteriorating water quality conditions we generated 6 EST libraries from grass shrimp
exposed to conditions that represent broad categories of natural (chronic and cyclic hy-
poxia and molting) and anthropogenic (copper-metal and PAH-pyrene) stressors. This
approach may as a first step provide an indication of how single stressors affect gene ex-
pression without considerations of interaction effects among different stressors. The ESTs
from six libraries were coded by specific letters to indicate the laboratory exposure types,
and forward or reverse directions. The identity of their origins wasn’t lost after all ESTs
were assembled together. This allows inferences regarding the differences in gene expres-
sion among exposures (Table 2). 96 out of 167 ESTs in the up-regulated cyclic DO library
were 16S mitochondrial RNA sequences. The down-regulated cyclic DO library had 8
16S and 19 28S rRNA sequences. These sequences were excluded from the assembly and

annotation process.



Chronic DO (1.5 mg/L)

Chronic DO (2.5 mg/L) Cyclic DO

Figure 8: Venn diagram of up-regulated transcripts in three DO treatments.
a=cytochrome ¢ oxidase subunit I. b=translation elongation factor 2. c=cytochrome ¢
oxidase subunit 3. d=hemocyanin and phosphoenolpyruvate carboxykinase.

Chronic DO (1.5 mg/L)

Chronic DO (2.5 mg/L) Cyclic DO

Figure 9: Venn diagram of down-regulated transcripts in three DO treatments.
a=vitellogenin. b=cathepsin L; heat shock protein 70; hemocyanin 2 and crustapain.
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Most of the crustacean EST sequences deposited in GenBank are limited to those
obtained from commercially important shrimp species: Litopenaeus setiferus (1042),
Litopenaeus vannamei (7506), Marsupenaeus japonicus (3156), Fenneropenaeus chi-
nensis (10446), and Penaeus monodon (7800). A total of 8821 ESTs from a normalized
cDNA library made for grass shrimp has been uploaded to the Marine Genomics Project
web site at the University of South Carolina (http://www.marinegenomics.org/index.php).
Hansen et al. (2007) described a SSH-based library of the copepod Calanus finmarchicus
exposed to sublethal environmental stressors. A total of 887 clones were sequenced, and
189 unigenes were annotated based on similarity search against arthropod sequences in
the NCBI protein database. Finally, sequences of 1503 and 1192 cDNA clones obtained
from an early blastemal and late proecdysial limb bud cDNA library of the fiddler crab
(Celuca pugilator) have been determined in the lab of David Durica from the University
of Oklahoma (http://www.genome.ou.edu/crab.html).

In this study a collection of 1553 ESTs from grass shrimp was generated from six
cDNA subtraction libraries. After clustering and assembly, the results represent 661 puta-
tive transcripts. Of these, 480 ESTs were singlets and 181 were contigs. An average of 7
ESTs per contig accounted for the larger fraction of ESTs, 85 out of 165 clusters contain
2 sequences, and 4 clusters were composed of more than 20 ESTs. The cDNA libraries
constructed here reduced the number of highly abundant transcripts, and increased the
efficiency of random sequencing which is essential for rare gene discovery.

Of the 661 putative transcripts 312 (47%) have at least one significant BLASTX
hit against the NCBI non-redundant protein database (nr) with an E-value less than 1E-
5. Six of the most commonly sequenced contigs with highly significant similarity came
from Litopenaeus vannarmei (phosphoenolpyruvate carboxykinase and alpha-amylase),
Macrobrachium rosenbergii (cytochrome ¢ oxidase subunit I and vitellogenin), Pacifas-
tacus leniusculus (hemocyanin 2), and Pandalus borealis (cathepsin L). A total of 238

genes were linked to GO terms using GOblet. Large proportions of sequences have no


http://www.marinegenomics.org/index.php
http://www.genome.ou.edu/crab.html
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significant BLAST hits (53%) or GO terms (64%). This implies, not surprisingly, that

the genome/transcriptome of grass shrimp as a non-model organism is poorly explored at
present. On the other hand, identification of ESTs with no database matches may facilitate
the discovery of proteins with novel functions or biochemical pathways relative to model
organisms.

The use of gene expression profiles as bioindicators of exposure to environmen-
tal stressors has led to increased attention on house-keeping genes which are assumed to
be expressed relatively consistently regardless of experimental conditions, and are there-
fore often used as internal standards for quantifying the relative expression levels of target
genes., Examples of such genes among the sequenced ESTs were beta-actin, cyclophilin,
elongation factor 1 alpha, and beta-tubulin. Cyclophilin was found to be down-regulated
in chronic hypoxia exposure (2.5 mg/L DO), and tubulin was found to be down-regulated
in chronic hypoxia exposure (2.5 mg/L DO), copper exposure and post molt. Actin ex-
pression was altered after molting, copper, and pyrene exposures. Since their expression
levels varied under experimental conditions, relying on one or few housekeeping genes
can result in skewed data in future gene expression studies using qQPCR and microarrays.

Few genes were found in 1 particular library and not in the other 5. These genes
might therefore be specific for the particular stressor, although it is still possible that, after
more extensive sequencing of additional clones, these genes might be found in the other
libraries as well (Table 4). Two muscle proteins (myosin S1 heavy chain and troponin I)
appear to be specifically up-regulated in response to chronic hypoxia (1.5 mg/L DO) ex-
posure, whereas the heterotrimeric guanine nucleotide-binding protein (G protein) gamma
subunit and glutathione peroxidase are up-regulated in response to cyclic exposure. It is
rather striking that several genes involved in sulfur redox and (homo)cysteine metabolism
(thioredoxin, sulfide:quinone oxidoreductase, glutathione-S-transferase, cystathionine
beta-synthase) are all down-regulated in response to cyclic hypoxia. Not surprisingly, the

molting process is accompanied by changes in expression of many genes, none of which
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are found in the hypoxia/copper/pyrene libraries.

More detailed GOblet analysis of GO annotation from the individual SSH ¢cDNA
libraries showed almost 33% of sequences putatively coded for enzymes that are respon-
sible for catalytic activity. The majority of those (50%) represent proteolytic enzymes
(hydrolases: cathepsin C and L) which are abundant in the down-regulated chronic (2.5
mg/L) and cyclic hypoxia libraries, and the post molt libraries in both directions. An-
other 32% of the ESTs are mapped to the GO “binding” term, which includes nucleotide
binding, protein binding, and ion binding. These genes are more prevalent in the down-
regulated chronic hypoxia library (1.5 mg/L), relative to the up-regulated library. Approx-
imately 25% of the ESTs represent genes involved in transporter activity, including lipid,
oxygen and ion transport. These genes are found in all libraries with the exception of the
cyclic hypoxia up-regulated SSH library. However, 11 transporter proteins, including 6
involved in lipid transport, were identified in the down-regulated cyclic library. Finally, 23
ESTs were mapped to cytochrome c oxidase activity (GO Level 5).

KEGG has been widely used for pathway mapping (Kanehisa et al., 2006), and
enzyme commission (EC) numbers were used to identify which sequences related to a
specific pathway. A total of 208 out of 1553 sequences matched enzymes with an EC
number. 32, 21, 16, and 12 sequences had a match in KEGG map for oxidative phos-
phorylation, antigen processing and presentation, pyruvate metabolism, and glycoly-
sis/gluconeogenesis, respectively. Genes putatively involved in oxidative phosphorylation,
such as cytochrome c oxidase subunit I and III, were exclusively found in up-regulated
cyclic and chronic (1.5 mg/L) libraries. Eight ESTs that mapped to the TCA cycle were
present in chronic (DO 2.5 mg/L, up-regulated), cyclic (up-regulated), and post molt and
copper (down-regulated) libraries. Phosphoenolpyruvate carboxykinase, which is part of
the PPAR (peroxisome proliferator-activated receptor) signaling pathway, and plays a cru-
cial role in gluconeogenesis, was found only in up-regulated chronic (DO 2.5 mg/L) and

cyclic hypoxia libraries, and in the down-regulated post molt library. 21 sequences were
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matched to antigen processing and presentation, such as cathepsin L, cysteine proteinase,
and disulfide-isomerase. 19 of these ESTs were present in down-regulated cyclic DO and
up-regulated post molt libraries, while two sequences were identified in down-regulated
copper library.

SSH PCR-based libraries described here only qualitatively represent transcripts
that may be affected by the exposures, while microarrays can quantitatively indicate how
much transcript is affected by the exposures. The 661 putative sequences from cDNA
libraries, along with several mRNA sequences identified and characterized in our labora-
tory before this project were applied to design a cDNA microarray. PCR-amplified cDNA
arrays have been printed, and hybridization experiments will analyze changes in gene
expression in response to chronic and cyclic hypoxic exposures. Together with the se-
quence information and annotation given here, the results may increase our understanding
of adaptation to hypoxic conditions at the molecular level, and may identify gene expres-

sion profiles that can be used to assess hypoxia exposure in the field.
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CHAPTER IV

CHRONIC HYPOXIA

Abstract

DNA microarrays have become an important tool to measure the global gene ex-
pression changes and genetic pathways involved in response to environmental stressors
and toxicants. In this study a cDNA microarray was designed and constructed from six
libraries of expressed sequence tags generated by suppression subtractive hybridization
from the grass shrimp, Palaemonetes pugio, exposed to a variety of natural and anthro-
pogenic stressors: chronic hypoxia, cyclic hypoxia, molt, copper, and pyrene. The mi-
croarrays were used to examine differentially expressed genes in hypoxic vs. normoxic
groups at 6 (H6), 12 (H12), 24 (H24), 48 (H48), 120 (H120), and 240 (H240) hours expo-
sure to chronic hypoxia. The initial response to hypoxia is an up-regulation of 29 genes.
Only 6 hours later, a dramatic down-regulation of 47 genes was observed. After 24 hours
there is another reversal with 19 genes being up-regulated and none down-regulated.

34 and 22 genes are up-regulated after 2 and 5 days, respectively. 24 genes are down-
regulated and 6 up-regulated by day 10. Cluster analysis confirmed two response patterns,
one composed of an up-regulated dominated cluster, including H6, H24, and H120, the
other composed of a down-regulated dominated cluster, including H12, H48, and H240.
Venn diagrams of differentially expressed genes showed there is no gene up- or down-
regulated common to all six groups. Hemocyanin transcription is up-regulated after 24,
48, and 120 hours, but down-regulated after 12 hours. Some genes appear unique for
specific time points. Phosphoenolpyruvate carboxykinase is up-regulated in the H120
and H240 groups. Cytochrome c oxidase subunit I and C-type lectin are uniquely up-
regulated in H12, whereas vitellogenin and trachealess are uniquely down-regulated in
H48. org.Dm.eg.db and GOstats packages from R were used to assign GO terms to sig-

nificantly expressed genes. A total of 291, 129, and 219 genes were assigned to biological
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process, cellular components, and molecular function, respectively. The most abundant
groups of genes were associated with transport, metabolic process, defense response, and
proteolysis. Pathways were analyzed using Drosophila metabolic pathways in KEGG
database. Oxidative phosphorylation/Citrate cycle and Ribosome were the most abun-
dant categories for chronic DO exposure. Of 19 selected genes that showed differential
expression on the microarrays, 17 showed similar up- or down-regulated patterns in both
microarray and qPCR.

The custom cDNA microarray is a valid and useful tool to investigate the changes
in gene expression of grass shrimp during chronic hypoxia exposure, and show the gene
expression profiles affected by hypoxia. Some genes, such as hemocyanin genes, ATP
synthase, phosphoenolpyruvate carboxykinase, vitellogenin, cytochrome ¢ oxidase sub-
unit I, Lysosomal thiol reductase, and C-type lectin, may be used as molecular indicators
at certain time points of chronic hypoxia treatment in grass shrimp. However, changes
of significant genes are too dynamic to serve as biomarkers of hypoxia stress in grass
shrimp.

Keywords - Palaemonetes pugio; grass shrimp; crustacean; microarray; hypoxia;

gene expression; annotation,

Introduction

The recent sequencing of whole genomes of model species has accelerated the
development of various transcriptomic profiling techniques, including microarray-based
gene expression profiling, that allows scientists to reveal the expression of all the genes
simultaneously in an organism. The application of these techniques to toxicology, toxi-
cogenomics, enables biologists to measure the global gene expression changes and ge-
netic pathways involved in stress response (Currie et al., 2005). Toxicogenomics is the
evolving science which includes genomic-scale mRNA expression (transcriptomics), cell

and tissue-wide protein expression (proteomics), metabolite profiling (metabonomics),
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and bioinformatics (Marchant, 2002). Combined with toxicogenomics, DNA microar-
rays have become most popular and important method to allow biologists to monitor the
activities of thousands of genes simultaneously, and characterize biological functions of
genomes in response to environmental stressors and toxicants (Ju et al., 2007b). There-
fore, microarrays can possibly provide more sensitive, immediate, comprehensive markers
of toxicity than traditional toxicological methods, such as morphological changes, car-
cinogenicity, and reproductive toxicity (Marchant, 2002).

The majority of toxicogenomic research has been focused on the gene-environment
interactions of model organisms, such as human (Waters et al., 2003; Kronick, 2004),
mouse (Carter et al., 2005), zebrafish (van der Ven et al., 2005), and nematode (Reichert
and Menzel, 2005). This limitation has been recognized and more non-model species, es-
pecially ecologically relevant ones, have been sequenced recently. Most of the crustacean
sequences deposited in GenBank are from commercially important organisms (Chapter
3).

One alternative method to work around this limited genomic information is se-
quencing cDNA libraries and designing cDNA microarrays by spotting genes identified
by various techniques (Chapter 3). Expressed sequence tag (EST) libraries have been suc-
cessfully utilized in partial sequencing of various aquatic invertebrates, such as water flea
Daphnia magna (Watanabe et al., 2005), blue crab Callinectes sapidus (Coblentz et al.,
2006), and copepod Calanus finmarchicus (Hansen et al., 2007). ESTs contain enough
sequence information to design and construct DNA microarrays for determining gene
expression patterns. EST-microarray approach is limited to only a few aquatic species, in-
cluding Fundulus (Oleksiak et al., 2001), channel catfish (Ictalurus punctatus) (Ju et al.,
2002), European flounder (Platichthys flesus) (Williams et al., 2003), fathead minnow
(Pimephales promelas) (Miracle et al., 2003), common carp (Cyprinus carpio) (Gracey
et al., 2004), salmon (Rise et al., 2004), rainbow trout (Oncorhynchus mykiss) (Krasnov

et al., 2005), zebrafish (Danio rerio) (van der Ven et al., 2005), goldfish (Carassius aura-
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tus) (Martyniuk et al., 2006), and Japanese medaka (Oryzias latipes) (Kimura et al., 2004,
Ju et al., 2007a).

Grass shrimp, Palaemonetes pugio, is an ecologically important crustacean, which
can be found from Maine to Texas. Little is known about the toxicogenomic information
of grass shrimp exposed to environmental stressors. Nine grass shrimp sequences from
previous studies in our laboratory were submitted to GenBank (Brouwer et al., 2007; Li
and Brouwer, 2007). Additional 42 expressed sequence tags (ESTs) from SSH libraries
prepared from grass shrimp exposed to three different xenobiotics have been deposited
in GenBank (Griffitt et al., 2006). A total of 8821 ESTs from a normalized cDNA library
made for grass shrimp have been uploaded to the Marine Genomics Project web site at
the University of South Carolina. Griffitt et al. (2007) employed serial analysis of gene
expression (SAGE) to study gene expression profiles of adult male grass shrimp exposed
to three environmental stressors, fipronil, endosulfan, and cadmium.

Here six libraries of ESTs were constructed by SSH from the grass shrimp ex-
posed to environmental stress: moderate (DO 2.5 mg/L) and severe (1.5 mg/L) hypoxia,
cyclic hypoxia (1.5—7 mg/L), contaminant-induced stress (pyrene and copper), and bio-
logical stress (molt) (Chapter 3). A total of 661 annotated transcripts were selected based
on certain criteria described in Chapter 3.

The purpose of the present study was to demonstrate the utility of purpose-designed
DNA microarray as a useful tool to monitor gene expression changes in hepatopancreas
of grass shrimp during the chronic hypoxia exposure, and identify potential biomarkers

and validate them using qPCR.
Materials and Methods

Laboratory Exposures

Collection and maintenance of grass shrimp prior to exposure experiments were

conducted as described in Chapter 3.
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Exposures were conducted in an intermittent flow-through system described by
Manning et al. (1999). Normoxic (DO 7.5 mg/L) and chronic hypoxic (DO 1.5 mg/L)
conditions within the treatment aquaria were established and maintained as described be-
fore (Brouwer et al., 2004, 2005, 2007; Brown-Peterson et al., 2005, Chapter 3). In all
experiments, oxygen was monitored continuously in one hypoxic flow-through aquarium,
and DO, temperature and salinity were measured in all flow-through aquaria once or twice
daily using a YSI Model 600XLM data sonde. All exposures were conducted in triplicate
for both controls and treatments. The thorax/hepatopancreas of 20 shrimp per treatment
was removed after 0, 6, 12, 24, 48, 120, and 240 hours of exposure and stored in 1 mL

RNALater (Ambion Inc. Austin, TX, USA) at -20°C.

Isolation and Quantification of Total RNA

Total RNA was isolated from grass shrimp hepatopancreas using Stat-60 (Tel-
Test, Friendswood, TX, USA) according to the manufacturer’s protocol. Three or four
hepatopancreas tissues were pooled from each treatment, and then total RNA was ex-
tracted. These pools were used for microarray analysis as well as quantitative real-time
PCR (gPCR). After precipitation, RNA was DNase-treated and stored in RNA Storage
Solution (Ambion). RNA was quantified using a NanoDrop Spectrophotometer (ND-
1000, NanoDrop Technologies, Wilmington, DE, USA), and quality was assessed on a
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). All samples used had ra-
tios of 260/280 and 260/230 greater than 1.8. RNA was non-degraded as confirmed using

the Bioanalyzer.

SSH Libraries and cDNA Clones

Suppression subtractive hybridization (SSH) was performed as described in Chap-
ter 3 to generate six libraries of DNA fragments from grass shrimp. A total of 661 unique

cDNA fragments, including 480 singlets and 181 contigs, were PCR-amplified in a 100l
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reaction containing 10uM nested PCR primer 1 and 2R (Table 5), 10uM each deoxynu-
cleotide triphosphate, 10 x ThermoPol Reaction Buffer, and 2.5 units Tag DNA Poly-
merase (New England Biolabs, Ipswich, MA, USA). The PCR reaction conditions were
1 cycle of 94°C for 1 min; 35 cycles of 94°C for 30 sec, 68°C for 30 sec, and 72°C for 1
min; 1 cycle of 72°C for 5 min, and then hold at 4°C.

Several potentially hypoxia-responsive genes, identified and characterized in our
laboratory from previous studies with grass shrimp, were also amplified. These genes
include beta-actin (AY935989), cadmium metallothionein (CdMT, AY935987), mitochon-
drial superoxide dismutase (mSOD, AY935986), cytosolic manganese superoxide dis-
mutase (cSOD, AY211084), trachealess, and hypoxia-inducible factor 1 alpha (HIF-1a.,
AY655698) (Brouwer et al., 2007; Li and Brouwer, 2007).

For beta-actin, CAMT, mSOD, and cSOD, single-stranded cDNA was generated
from total RNA by reverse transcription (RT) with Superscript II RNase H™ Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA) and oligo dT primers (5’-TTT TTT TTT
TTT TTV N-3’). For trachealess and hypoxia-inducible factor 1 alpha, templates were
the glycerol stocks of previously preserved clones. The forward and reverse primers for
PCR amplification were designed using Primer3, and the summary of primers is listed
in Table 5 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). PCR conditions
were 94°C for 2 min for 1 cycle, 35 cycles of 94°C for 30 sec, 55°C for 30 sec, and 68°C
for 30 sec, followed by 68°C for 7 min, and then hold at 4°C. The PCR reactions using
AccuPrime™ SuperMix I (Invitrogen) gave only a single product. Bands were visual-
ized by ethidium bromide on a 1% agarose gel, purified with a QIAquick Gel Extraction
Kit (Qiagen, Valencia, CA, USA), and T/A cloned using pGEM®-T Easy Vector Sys-
tem (Promega, Madison, WI, USA), and sequenced using a Beckman CEQ 8000 Ge-
netic Analysis System (Beckman Coulter, Fullerton, CA, USA). To confirm identity of
PCR products sequence analyses and homology searches were performed using the online

BLAST suite of programs (NCBI).


http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
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After completion of the PCR, the PCR products were purified using a Millipore
Montage Plasmid Miniprep Kit (Billerica, MA, USA). Aliquots of products were run on a
1.5% agarose gel containing ethidium bromide to confirm the correct insert size of ampli-
con as well as to ascertain minimal primer dimer content. Concentrations were measured
using a NanoDrop Spectrophotometer (ND-1000). 1500ng of DNA was speed vacuum
dried using an Eppendorf Vacufuge (Westbury, NY, USA), and resuspended in 10ul 50%
DMSO to get a final concentration of 150ng/ul for each clone. Samples were stored in
96-well polypropylene plates to be spotted on microarrays.

Table S: Primers used for grass shrimp PCR. 11, 47, 52, 59, 124, 173, and 197 are
clone names for trachealess and hypoxia-inducible factor 1 alpha.

Primer Name Nucleotide Sequences

Primer 1 5’-TCG AGC GGC CGC CCG GGC AGG T-3’
Primer 2R 5’-AGC GTG GTC GCG GCC GAG GT-¥
ActinF 5’-GCC TCC TCC TCT TCC CTA GA-3’
ActinR 5’-GTG TTG GCG TAC AGG TCC TT-3’
CdMTF 5’-GAA ACT GAC TGC TCC AAG G-3’
CdMTR 5’-ATG ACT TAC AAA CGC GCA CA-3’
mSODF 5’-GAC TTC GGA ACC ATC AAC AAA-¥
mSODR2 5’-CCA ACC AGC CCC AGC C-3
c¢SODF 5’-CAG CTT ATG TTG CCG GTA T-3°
c¢SODR3 5’-ACA AAT GTG AGG TTC CAG-3’

11F 5°-TCG CAT TCC TCA AGA CCA-3’

11R 5’-ATG AGT TCC GAG TCC AG-3’

47F 5°-GAG GTC GTG AAC AAC AAG CA-%
47R 5’-GACTTC TCT TTC CGC TTT-3’

52F 5’-CAG ACG GAA GCA TCT TAG-3’
52R 5’-CCG GAA TGG TGA TCT CG-3’

59F 5°’-TTC AAC CTC CTA CCC CAG-3’

S9R 5’-GAT TGG GAT CTG GGT AA-3

124F 5’-TCT CCC CAA AGA AGT CC-3’

124R 5’-CGA TAT TGG CAG GAG CAT TT-3’
173F 5’-GGC TGC CAC TTC AAG AGT TC-3’
173R 5’-CGC AAT TTG TCA ACA TCC TG-3’
197F 5’-AGG CTA CAC ATG GAT GCA A-3’

197R 5’-TAG GGG CGT TGA TAT CTG-3’
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Array Printing

For microarray analysis, each array was printed with various sets of controls pro-
vided by the Lucidea Universal ScoreCard system (GE Healthcare, Piscataway, NJ, USA)
which include ten calibration, eight ratio, and two negative controls designed to validate
and normalize experimental data in microarrays and to compare data across experiments
using pre-determined fold changes. The negative controls were used to assess the degree
of non-specific hybridization and to estimate background. Any spot on the array whose
signal was not significantly stronger than that of the negative controls was removed from
further analysis. An MSP, multiple sample pool, was also constructed from the grass
shrimp clone library by combining cDNA samples together in equal quantities to make
a heterogeneous pool. As an unbiased control, MSP won’t differentially change and usu-
ally have the maximum signals. The sample and control DNAs were prepared by the same
methods and printed in an identical fashion.

The PCR products and control DNAs were robotically spotted in duplicate ar-
rays on UltraGAPS (Corning, Corning, NY, USA) coated glass slides using the Bio-Rad
ChipWriter system (Bio-Rad, Hercules, CA, USA) equipped with 4 Stealth SMP3 pins
(Telechem, Sunnyvale, CA, USA). Each DNA clone was printed side by side in quadru-
plicate. After printing, slides were kept overnight at room temperature to dry, and were
ultraviolet cross-linked at 300 mJoules using the UV Stratalinker 1800 (Stratagene, La
Jolla, CA, USA). Slides were stored in desiccator and used within six months of fabrica-
tion.

Prior to large-scale printing, a few of slides were printed following the method
described above to check the quality and consistency of the microarrays using SYBR 555

nucleic acid stain (Invitrogen).
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Preparation of Labeled cDNA for Hybridization

For a single reaction, 15ug of DNase-treated (DNA-free, Ambion) RNA was
mixed with 2ul. of 50uM Oligo(dT);g primer (5’-TTT TTT TTT TTT TTT TTT-3’, IDT)
and spiked with 0.5uL of Lucidea Universal ScoreCard control mRNA spike mix, which
complemented the Lucidea DNA spotting samples. The mRNA spike mix contained ten
individual controls at pre-determined concentrations that span 4.5 orders of magnitude
for both the Cy3 and CyS5 channels, and eight ratio controls with target ratios of 1:3, 3:1,
1:10, and 10:1 at both high and low expression levels. The reaction mixture was incu-
bated at 75°C for 7 minutes and then kept at room temperature. The remaining compo-
nents of the reverse transcription reaction were added as follows: 2ul. of 10 x RT Buffer,
1L of RNase Inhibitor (40U/ul.), 1ul. of dNTP mix without dTTP (containing 10 mM
each of dATP, dCTP, and dGTP), 1uL of dTTP and aminoallyl dUTP mix (containing 10
mM each of dTTP and aminoallyl-dUTP, and Tris, pH 8.0), and 2ul. of ArrayScript Re-
verse Transcriptase (Ambion). Aminoallyl cDNA was synthesized at 42°C for 2 hours.
The template RNA was removed by heating at 65°C for 15 min with the addition of 4ul.
of 1M NaOH, and the reaction was neutralized by adding 10ul. of 1M HEPES (pH 7.0).
cDNA was purified by ethanol precipitation overnight at -20°C.

The precipitated cDNA was resuspended in 4.5ul. Coupling Buffer (0.1M sodium
bicarbonate, pH 9.0, stored at -20°C for up to 3 months), and then mixed with 3uL of 40
nmol of either Cy3 or Cy5 dye (GE Healthcare) in DMSO. The dye coupling reaction
was incubated at room temperature for 60 min in the dark and briefly mixed every 15
min. The coupling reaction was terminated by the addition of 6uL. of 4M hydroxylamine
and the reaction was allowed to proceed for 15 min at room temperature in the dark. The
aminoallyl labeled cDNA was purified using the QIAquick PCR purification kit (Qiagen)
according to the manufacturer’s protocol. The cDNA was concentrated by ethanol pre-
cipitation overnight at -20°C. The purified cDNA was resuspended in nuclease-free water

and stored in the dark at -20°C. Exposure of the labeled cDNA to ambient light during
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this and all subsequent steps was kept at a minimum to avoid photobleaching. Concen-
trations of labeled cDNA were measured using the NanoDrop Spectrophotometer (ND-
1000). FOI, frequency of incorporation, was calculated as the number of cyanine-labeled
nucleotides incorporated per 1000 nucleotides of cDNA to assess the sensitivity of the

assay.

Array Hybridization and Washing

Prehybridization was done immediately preceding the application of the target
cDNA onto the arrays. The preparation of the hybridization solutions was completed dur-
ing the time arrays were prehybridized. Each time prehybridization buffer containing 50%
formamide (Amresco, Solon, Ohio, USA), 5 x SSC, 0.1% SDS, and 0.1 mg/mL BSA
was freshly made from stock and pre-warmed to 42°C. Arrays were immersed in prehy-
bridization buffer and incubated at 42°C for 45 to 60 minutes. Prehybridized arrays were
transferred to 0.1 x SSC and incubated at room temperature (22 to 25°C) for 5 minutes
(twice). Next, arrays were incubated in DEPC-treated water at room temperature for 30
seconds, and then dried by centrifuging at 1,000 rpm for 3 minutes at room temperature
and blowing compressed gas over the array. Arrays were kept in a dust-free environment
while completing the preparation of the hybridization solution. Slides were used immedi-
ately following prehybridization to ensure optimal hybridization efficiency.

A loop design with direct and indirect comparisons was used for chronic exposure
(Table 6). Each individual sample was hybridized to each of two different samples in two
different dye orientations, and some direct sample-to-sample comparisons were used for
comparing important samples.

The Cy3 and Cy5 labeled cDNAs were mixed in equal amounts measured as the
number of pmoles/mixture (about 25 pmoles). The mixture was dried in the dark by using
a Vacufuge (Eppendorf) for 1-2 hr, dissolved in 6 ul of nuclease-free water, denatured

by heating at 95°C for 2 min, and then cooled on ice for 30 sec. The cDNA was mixed
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Table 6: Loop design for comparison of normoxic (N) and chronic hypoxic (H)
samples (0, 5, and 10 days; 6, 12, 24, and 48 hours). There were 3 pooled samples for
each time point (n=3), for a total of 39 arrays.

Array Cy3 Cy5 Armay Cy3 CySs

1 NO NS5 1 H6 N6
2 NS HS 2 N6 NI12
3 H5 HIO 3 N12 HI2
4 HI10 N10 4 H12 H24
5 N10 NO 5 H24 N24
6 N24 N48
7 N48 H48
8 H48 H6

with 1.5 ul of oligonucleotide dAgy (1ug/ul, GE Healthcare), incubated at 75°C for 45
min, and then added to pre-warmed (42°C) 7.5 ul of Microarray Hybridization Buffer (GE
Healthcare) and 15 ul of 100% (v/v) formamide (Amresco).

Hybridization was carried out in a-Hyb Hybridization Station (Miltenyi Biotec,
Auburn, CA, USA) equipped with four sealed chambers to hold four slides. After seal-
ing, the hybridization chambers were individually programmed for the selected protocols.
Hybridization buffer containing about 25 pmoles of the Cy3 and Cy5 labeled cDNAs was
pipetted into sample reservoir, and slides were hybridized at 42°C for 16 hours in a humid
hybridization chamber. After hybridization, the slides were rinsed in 2 x SSC and 0.1%
SDS at 42°C for 5 minutes (twice). The slides were washed at room temperature in 0.1 x
SSC with 0.1% SDS for 10 minutes, followed by five washes at room temperature in 0.1
x SSC for 1 minute, rinsed in 0.01 x SSC for 10 seconds at room temperature, and dried
by centrifuging at 1000 xg for 3 minutes at room temperature and blowing compressed
gas over the array. Slides were protected from light during hybridization and subsequent

steps until ready to scan.
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Image Analysis

Microarray slides were scanned using a Bio-Rad VersArray ChipReader (Bio-
Rad). The excitation setting was at 635 nm (Cy5) and 532 nm (Cy3) and the images were
scanned at 10um pixel resolution using a simultaneous dual-laser scanning system and
captured in 16 bit TIFF (Tagged Image File Format) format.

The tab-delimited plate files containing the individual plate information about
the samples in each well were generated using the BioRad VersArray ChipWriter. These
files were converted to a standard GAL (GenePix Array List) file which includes the po-
sition and identity for each sample (Block, Column, Row, ID, and Name), the printing
pattern, and the size of the spots. Initial Spot finding and quantification was carried out
with GenePix Pro 6.1 microarray image analysis software (Molecular Devices, Sunny-
vale, CA, USA) using an automatic method in which each spot was checked for proper
alignment within the grid. Finally, spot quantification was performed to obtain the expres-
sion level of each gene on the array and the results were saved as GPR (GenePix Results)
files. Foreground intensities were background corrected using the morphological opening
method in GenePix Pro 6.1. Ratio images were displayed at standard 24-bit Composite

RGB overlay images using the GenePix square root transformation method.

Data and Statistical Analyses

The data analysis was carried out using Acuity 4.0 microarray informatics system
(Molecular Devices). Spots flagged as Bad, Not Found, or Absent were excluded from
the analysis. For each spot, signal-to-noise ratio (SNR) was calculated using the follow-
ing formula: (F635Mean - B635Mean)/B635SD, where F635Mean is the mean of all the
feature pixel intensities at 635nm, B635Mean is the mean of all the background pixel in-
tensities at 635nm, and B635SD is the standard deviation of the background pixel intensi-
ties at 635nm. A SNR threshold of 3 is established as a measure of detectability for each

channel, and any spots which were less than 3 were marked as bad and excluded from
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downstream analysis. Several quality control conditions, such as spots with only a small
percentage of saturated pixels, spots with relatively uniform intensity and background, in-
tensities larger than the negative controls on the array, ‘were established to select spots for
further analysis. The data were then imported into R (R Development Core Team, 2008)
and normalized using weighted LOWESS in LIMMA (version 2.7) (Oshlack et al., 2007)
and controls before calculating the gene expression log2 ratios.

To make full use of the within-array spots, the residual maximum likelihood model
(REML) from LIMMA (Smyth et al., 2005) was used to estimate the spatial correlation
between the adjacent four spots. This approach calculated a separate linear model to the
expression data of each gene and a common correlation for all the genes for between
within-array replicates.

Given the normalized data, the significance of differential expression between
time points was determined using the empirical Bayes (Smyth, 2004) method to shrink
the gene-wise sample variances towards a common value. Resulting statistics were cor-
rected for multiple hypothesis testing using Benjamini and Hochberg false discovery rates
(Benjamini and Hochberg, 1995) and significant changes in gene expression were iden-
tified at p <0.05. Significance test was performed with hypoxia vs. normoxia samples at
the same time point.

Hierarchical clustering was performed on the most differentially expressed genes
(p < 0.05) using two-way hierarchical cluster analysis in R. The uncertainty in the hierar-
chical clustering analysis was assessed using the pvclust package. The significant clusters
were calculated using multiscale bootstrap resampling (alpha=0.95).

To identify the biological process and functions changed by exposures, the dif-
ferentially expressed genes were classified into three Gene Ontology (GO) categories
(Ashburner et al., 2000) using GOstats package from R, and annotated by genome-wide
Drosophila melanogaster annotation package available from org.Dm.eg.db. This organism-

specific package provided detailed information and mappings among different identifiers



84

that they are directly associated with.

Pathway analysis was carried out according to KEGG mapping (Kanehisa et al.,
2006). Custom scripts were used to create pathway categories of Drosophila from
http://www.genome.jp/kegg/KGML/KGML _v0.6/dme/ and map Drosophila identifiers to
KEGG pathways.

Several genes from the arrays were selected for gene quantification using quantita-
tive real-time PCR to check for consistency in gene expression patterns observed with the

microarrays.

Quantitative Real-Time PCR (qPCR) and Statistical Analysis

Quantitative real-time PCR was performed on cDNA generated from 1ug of RNA
obtained from the same pooled RNA samples used in the microarray study. cDNA was
generated by reverse transcription using Superscript II RNase H™ Reverse Transcriptase
(Invitrogen) and random hexamers (50ng/uL.). Primers (Table 7) were designed to amplify
a short fragment (100-150 bp) using Beacon Designer (PREMIER Biosoft, Palo Alto, CA,
USA), and synthesized by IDT (Coralville, IA, USA). Real-time PCR was performed us-
ing the iCycler 1Q Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). 50
1l qPCR reactions using Bio-Rad iQ SYBR Green Supermix (Bio-Rad) containing 10uM
forward and reverse primers, and cDNA template. To generate a standard curve and de-
termine PCR efficiency, cDNA was pooled and 1:1, 1:5, 1:25, 1:125, 1:625, and 1:3125
dilutions were made. Individual samples were diluted (1:25) and amplification performed
in triplicate in a 96 well PCR plate (Bio-Rad). Relative quantities of each transcript were
determined using grass shrimp 18s rRNA as the internal standard. Gene expression data
for each time point are expressed as fold change relative to the mean of the same-day con-
trols. The following PCR program was used for gene amplification: 95°C for 2 min; 95°C
for 15 sec and 58°C for 15 sec (50 cycles); 72°C for 20 sec, followed by a melt curve.

Melt curve analysis was performed to ensure single products by using a temperature step


http://www.genome.Jp/kegg/KGML/KGML_v0.6/dme/
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gradient from 55°C to 80°C in 0.5°C increments with fluorescence measured after a 10
sec incubation at each temperature. The threshold cycle values (C;) for each sample was
calculated using the iCycler iQ Real Time Detection software (Bio-Rad). For each stan-
dard curve, the correlation coefficient ranged from 0.995 to 0.999 indicating a high degree
of confidence for the measurement of the copy number of molecules in the samples. The
relative starting concentration was calculated using a standard curve for each primer set
and then normalized to the internal control 18S rRNA (Bio-Rad).

The sequence analysis was carried out using EMBOSS (Rice et al., 2000), and
statistical analysis was performed using R (R Development Core Team, 2008). The data
are shown as mean + S.E.M. For qPCR, statistical differences in data sets between the
control and treated groups were determined using a one sample Student’s t-test (n=3 inde-
pendent samples) against the baseline value of 1 (equal gene expression in both samples).
Data was log-transformed for homogeneity of variance where necessary. Significance

level was set at p <0.05.

Results
Water Quality Parameters and Grass Shrimp

The average DO concentration during chronic hypoxia was 1.59 + 0.24 (mg/L).
The average length and weight (without eggs) of control grass shrimp and shrimp exposed
to chronic hypoxia were 36.30 4 2.39 (mm) and 378.00 (mg), and 36.85 + 2.50 (mm)
and 380.35 (mg), respectively. At the end of the exposure hepatopancreas tissues were
dissected from grass shrimp, weighed, and stored in 1 mL RNALater at -20°C. The mean
hepatopancreas weight of control shrimp and shrimp exposed to chronic hypoxia was 8.82

and 8.41 (mg), respectively.



86

£-DL OVD 1OV IOV LOL IO DLL-.S
€00 LIV DJOL DOV D09 LLD LVV-.§

£-D VLD DDD VVI IVV ODI 10D €

£-DV ILOD IDL D1 VVD DLD VLV VIV-.§
£-DV LOL OOL HVI 1OD LLO DVO-.§
£-OVIL VOL VDD 1LOL ODL VVL ILOL LOL-§
£°OVD LID OLO IVO OVY IVD OVD-§

£-DV DIV OVD IvD VIO VOD VVO VIV-.6
£-DVD VVDO 1OL HVDI VOV OLL DOL-.S
€O LLD LID VVD LHV DOLOLL H1D-S§
£-0 101 OID DVD IVV DLO LIOL IIV-S
£ D DLV LIV IVD VIV DD 19D LOV-.§
£-OLV 191 091 VVD LOL VVL LOL 19D-.S
£-DV LIV DLO DOL DOV VOI DLL-.S

3'909-9dst
3cog-dsv
11v-95¥
3'LOv-dst
3'109-VSy
8'600-01¥
380H-VIt

1 oseunIyo

oseuagAxoIp

urede)snio

ENcY |

UIXOPRLIS]

uraeAo0uway

wojoId oYI[-9 [PUUEYD JR[N[[20RTUT SPUO[YD

£-D VOV DIO LOV VOV 1OV OVO OLD-§  £OLIVV VOO LLL VOO VOO LIV OIV-§ I TOH-V8I [ JIUNqus SSBPIXO O SUIOIYO0JAD
£-0VV VDL VOL LLV LOV OVD OVD VOV-.§ £-OVD HVD DI DLLOLL OVLOVV-S  3'801-991 ¢ uraeAooway
£-D0V 10O IVV IOV OOD VOV OVD-§  £-DVVO VYV IID VIO LIO VVV IIL-§ 3'900-991 aseunyAxoqeos gjeantAdjousoydsoyd

£-0 IOL IVL DOV I990 DOV VOIS £-OV DOV DOL VVL OLL DOD OVD-§  FS0H-VII 1 wsdogped

£-DVV DLD LD DOL VOLIOD-§  .£-D0L VVL VLD LLD VLLIOLOIOHILD-S  STIa-V9l (RUERIVICHEN

£-0 LLD D09 199 1LOO LD LIV-.§ £-00L IVL 19D 19D 290 LIV VIO-.§ VN S81

ISIPAY piemIOq oaoﬁv oﬂomu

‘szowtid Db jo Arewung :/ 9[qel,



87

Array Construction

The maximum volume of total RNA allowed in the reverse transcription is 11uL.
15ug of total RNA was needed in a single reaction, so the concentrations of samples must
be 1.5ug/ul or higher. Ethanol precipitated RNA samples were measured using a Nan-
oDrop Spectrophotometer (ND-1000). The RNA concentration was 2.37 & 0.34 ug/ul.
The ratios of 260/280 and 260/230 were 2.13 £ 0.01 and 2.27 + 0.03, respectively. No
RNA degradation was observed as evidenced by running diluted samples on RNA Nano
Chips (Agilent Bioanalyzer 2100). The same RNA samples were used for microarray and
gPCR. After synthesis and purification, the absorbance of labeled cDNA was measured
at 260, 550, and 650 nm, and used to calculate the frequency of incorporation (FOI, the
number of cyanine-labeled nucleotides incorporated per 1000 nucleotides of cDNA). The
average FOI for Cy3 and Cy5 was 22.93 and 16.91, respectively.

The array was constructed from cDNA fragments generated from grass shrimp
exposed to environmental stress: moderate (DO 2.5 mg/L) and severe (1.5 mg/L) hy-
poxia, cyclic hypoxia (1.5—7 mg/L), contaminant-induced stress (pyrene and copper),
and biological stress (molt). The average length of the cDNA was 476 base pairs (bp), and
these sequences were annotated by BLAST searches against the public protein databases.
The genes chosen for the array were broadly categorized into functional groups includ-
ing binding, catalytic activity, metabolism, transporter activity, and structural molecule

activity (See Chapter 3).

Self Hybridization

The same pooled RNA samples were reversed transcribed separately in the pres-
ence of aminoallyl-UTP. Each cDNA was independently labeled with Cy3 and Cy5. 25
pmoles of cyanine labeled cDNAs were mixed and hybridized to three replicate arrays.
The self-self hybridization was performed to calculate the ratio between raw intensi-

ties of red and green channels among different slides (Figure 10). Ratios of background
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subtracted red (Figure 10A) or green (Figure 10B) mean intensities from different slides
are roughly equal to one (slope=0.98 and R?=0.87 for red channels, and slope=1.06 and
R2=0.88 for green channels). Large portion of spots are located at the low part of inten-
sities, whereas the spots were spread out at the high end of intensities. The intensities
from different slides generally have the same intensity range for each channel. If con-
sidering the batch effects of slides, printing, and dye labeling, the method of microarray
data collection in this study does accurately maintain the original microarray (intensity)
information, and high reproducibility of intensities across slides were consistent during
the experiment. Further analysis with normalized data showed no differentially expressed

genes from self-self hybridization.

Control Hybridization

Additional hybridizations were set up to quantitatively assess the correlation be-
tween different amounts of the labeled sample and signal intensity. Two pooled RNA
samples were reverse-transcribed separately in the presence of aminoallyl-UTP, and each
cDNA was labeled with Cy3 and Cy5, respectively. Different amount of labeled samples,
0.5 pmole, 2.5 pmole, 5 pmole, and 25 pmole, were mixed and hybridized on microar-
rays. For 0.5 pmole dyes, the maximum intensities were less than 600 and 100 for red
and green channels, respectively. More meaningful data were generated starting from 5
pmoles. Figure 11 shows individual selected spots with high raw intensities at 25pmole
and their corresponding intensities at other concentrations in the red channel (Figure 11A)
and green channel (Figure 11B). No individual intensity was saturated at the above con-
centrations. Since signal intensities measured from arrays hybridized with low pmole
samples appear to be unreliable, hybridizations were performed with 25 pmole Cy3/CyS-
labeled samples which provided a better data quality and a clear visual picture in this

study.



A: Red Intensity

(=}
8 - slope=0.98
- R?=0.87 o
o © fo
o
8 o) % o
g -
- ° (o}
p o °°o
% ° o oH® °
?® o
o, o 0% o d
Q ° o o ow o ©
3 | o o o
S o Og °
[Ts] o [o)
@ [} o o o
[+ Q@ O o o
o ?
[+] [+]
8 2P a:£° &%
o @
Oo
o -
T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Slide 1
B: Green Intensity
o
o
§ - slope=1.06
R’=0.88
[«
&
5]
N
Q
g g
? R
o
o
Q
o
T
0 1000 2000 3000 4000
Slide 1

89

Figure 10: Ratios of background subtracted red (A) or green (B) mean intensities

from different slides for self hybridization.
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Figure 11: Individual intensities of red (A) and green (B) channel at different hy-
bridization concentrations.
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Chronic Hypoxia Exposures

This study determined differentially expressed genes at a p value of less than 0.05
that occurred in hypoxic vs. normoxic groups at the same time point (Table 8). All se-
quences on the arrays were annotated (see Chapter 3) by similarity search against the
non-redundant protein database (nr) and Swiss-Prot database using BLAST algorithm
(Altschul et al., 1997). Combined with the annotation tables, Table 9 shows the differ-
entially expressed genes with BLAST E value less than 1E-5 in hypoxic vs. normoxic
groups at the same time point.

Observed changes in gene expression revealed a rather dynamic pattern (Table 8).
The initial response to hypoxia is an up-regulation of gene expression. A total of 29 genes
were up-regulated after 6 hours of hypoxic exposure, whereas none were down-regulated.
Only 6 hours later, a dramatic down-regulation of 47 genes, including several hemocyanin
genes, was observed, whereas only 2 genes were up-regulated. After 24 hours there is an-
other reversal with 19 genes, including several hemocyanin genes, being up-regulated and
none down-regulated. 34 and 22 genes are up-regulated after 2 and 5 days, respectively.
After 10 days exposed to chronic hypoxia treatment, 24 genes are down-regulated and 6
up-regulated.

Table 8: Differentially expressed genes during chronic hypoxia exposures at the
same time points.

Chronic Hypoxia vs. Normoxia

Time (Hours) 6 12 24 48 120 240
Up-regulated 29 2 19 34 22 6
Down-regulated 0 47 0 17 1 24

Cluster analysis of the 100 most differentially expressed genes (p <0.035) with
BLAST E value less than 1E-5 confirmed the patterns described above. The heat map

shown in Figure 12 represents the chronic hypoxia-regulated genes, clustered by the cor-
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relation coefficient according to their similarity in expression pattern by gene and by
treatments (time exposed to chronic hypoxia). The response to chronic hypoxia appears
to have two patterns, one composed of an up-regulated dominated cluster, including H6,
H24, and H120, the other composed of a down-regulated dominated cluster, including
H12, H48, and H240. Within the two “overall” clusters H24 was most similar to H120
and H48 to H240. Multiscale bootstrap resampling shows that none of the genes clusters
significantly (alpha=0.95).

Venn diagrams were used to display the differentially expressed genes that were
up- or down-regulated during chronic hypoxic exposure (Figure 13). There is no gene
up- or down-regulated common to all six groups. However, there are some genes whose
expression is commonly changed in two or three groups. Lysosomal thiol reductase [Am-
blyomma americanum] and hemocyanin [Litopenaeus vannamei) are the common down-
regulated genes in H12 and H240. A total of 12 genes, including vitellogenin [Macro-
brachium rosenbergii] and serine protease SP24D precursor [ Drosophila pseudoobscural
are shared between H12 and H48. Vitellogenin [Macrobrachium rosenbergii] and trachea-
less [Tribolium castaneum] are unique genes in H48 (Figure 13A).

In contrast to 12 hours hypoxia exposure, hemocyanin transcription is up-regulated
after 24, 48, and 120 hours. Specifically, hemocyanin 2 [Pacifastacus leniusculus] is
up-regulated in the H24, H48, and H120 groups, whereas two other hemocyanin genes,
closely related to Litopenaeus vannamei and Penaeus monodon hemocyanin, are up-
regulated in H24 and H48 (Figure 13B). In addition, phosphoenolpyruvate carboxyki-
nase [Litopenaeus vannamei] is up-regulated after long-term hypoxia exposure (H120
and H240 groups). Cytochrome c oxidase subunit I [Metapenaeopsis barbata] and C-
type lectin [Liropenaeus vannamei] are unique genes in H12 and H240, respectively (Fig-

ure 13B).
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Gene Ontology and KEGG

The differentially expressed genes identified at all time points during chronic
DO exposure were annotated by sequence similarity comparison against the genomic
Drosophila melanogaster RefSeq databases with BLAST algorithm (BLASTX and BLASTN)
(Altschul et al., 1997). The matched RefSeq identifiers were mapped to the corresponding
Entrez Gene identifiers and GO terms assigned in org.Dm.eg.db package. GOstats pack-
age from R was employed to assign probable GO terms to all annotated genes. A total of
291, 129, and 219 genes were assigned to the three main groups in GO: biological pro-
cess, cellular components, and molecular function. Table 10 lists the detailed assignment
of genes to GO functional categories. Only GO terms that have at least 2 genes assigned
to them are shown.

Table 10: Distribution of differentially expressed genes into different GO categories. Only

GO terms with at least two genes assigned to are shown.

GO Terms GO IDs Counts

Biological Process

transport GO0:0006810 20
metabolic process GO0:0008152 15
defense response G0:0006952 14
proteolysis GO0:0006508 9
mitotic spindle organization and biogenesis GO0:0007052 6
protein catabolic process GO0:0030163 5
salivary gland cell autophagic cell death G0:0035071 5
autophagic cell death G0:0048102 5
translation GO0:0006412 4
lipid transport G0O:0006869 4

continued on next page
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GO Terms GO IDs Counts
mitotic spindle elongation G0:0000022 3
cytokinesis GO0:0000910 3
mitochondrial electron transport, cytochrome c to oxygen G0:0006123 3
regulation of transcription, DNA-dependent GO:0006355 3
phagocytosis, engulfment GO0:0006911 3
mitosis GO0:0007067 3
aerobic respiration GO0:0009060 3
ATP synthesis coupled proton transport GO0:0015986 3
proton transport G0:0015992 3
sleep GO0:0030431 3
ribosome biogenesis and assembly GO0:0042254 3
meiotic spindle organization and biogenesis GO0:0000212 2
nuclear mRNA splicing, via spliceosome GO0:0000398 2
pscudouridine synthesis G0:0001522 2
chitin metabolic process GO:0006030 2
chitin catabolic process GO0:0006032 2
gluconeogenesis GO0:0006094 2
regulation of transcription from RNA polymerase Il promoter GO0:0006357 2
rRNA processing GO0:0006364 2
protein amino acid phosphorylation GO0:0006468 2
iron ion transport GO:0006826 2
cellular iron ion homeostasis GO:0006879 2
cytoskeleton organization and biogenesis GO:0007010 2
actin filament organization GO:0007015 2
male meiosis G0:0007140 2
cell adhesion GO0:0007155 2

continued on next page
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GO Terms GO IDs Counts
germ cell development GO0:0007281 2
germarium-derived egg chamber formation GO0:0007293 2
germarium-derived oocyte fate determination GO0:0007294 2
axon guidance GO0:0007411 2
open tracheal system development GO0:0007424 2
visual perception GO0:0007601 2
visual behavior GO0:0007632 2
protein localization GO:0008104 2
tRNA pseudouridine synthesis G0:0031119 2
olfactory behavior G0:0042048 2
phototaxis GO0O:0042331 2
apical protein localization GO0:0045176 2
male courtship behavior, veined wing generated song production G0:0045433 2
neuron development GO0:0048666 2
dendrite morphogenesis GO:0048813 2
asymmetric neuroblast division GO0:0055059 2
Cellular Component

extracellular region GO:0005576 10
nucleus GO0:0005634 9
lipid particle GO:0005811 9
mitochondrion G0:0005739 7
larval serum protein complex GO:0005616 5
cytoplasm GO0:0005737 5
lysosome GO:0005764 5

continued on next page
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GO Terms GO IDs Counts
membrane G0:0016020 5
integral to membrane GO0:0016021 5
mitochondrial respiratory chain complex IV GO0:0005751 4
extracellular space GO0:0005615 3
intracellular G0:0005622 3
nucleolus GO0:0005730
mitochondrial inner membrane GO0:0005743 3
plasma membrane GO:0005886 3
integral to plasma membrane GO:0005887 3
cytosolic large ribosomal subunit GO0:0022625 3
kinetochore GO:0000776 2
spliceosome G0:0005681 2
mitochondrial proton-transporting ATP synthase, central stalk GO0:0005756 2
ferritin complex GO:0008043 2
Molecular Function

oXygen transporter activity GO:0005344 33
protein binding GO0:0005515 7
zinc ion binding GO:0008270 6
oxidoreductase activity G0:0016491 6
nucleotide binding GO:0000166 5
cathepsin L activity GO:0004217 5
nutrient reservoir activity GO0:0045735 5
nucleic acid binding GO:0003676 4
transcription factor activity GO:0003700 4

continued on next page
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GO Terms GO IDs Counts
RNA binding GO0:0003723 4
mRNA binding GO0:0003729 4
cytochrome-c oxidase activity GO0:0004129 4
lipid transporter activity G0:0005319 4
iron ion binding GO0:0005506 4
calcium ion binding GO:0005509 4
ATP binding G0:0005524 4
chitin binding G0:0008061 4
heme binding G0:0020037 4
structural constituent of ribosome GO0:0003735 3
actin binding GO0:0003779 3
binding GO0:0005488 3
lipid binding GO0O:0008289 3
hydrogen-exporting ATPase activity, phosphorylative mechanism GO0:0008553 3
cation binding GO0:0043169 3
hydrogen ion transporting ATP synthase activity, rotational mechanism GO:0046933 3
hydrogen ion transporting ATPase activity, rotational mechanism G0:0046961 3
RNA polymerase II transcription factor activity GO0:0003702 2
mRNA 3’-UTR binding GO0:0003730 2
catalytic activity G0:0003824 2
endonuclease activity GO:0004519 2
chitinase activity GO:0004568 2
phosphoenolpyruvate carboxykinase (GTP) activity GO0:0004613 2
protein kinase activity GO0:0004672 2
protein serine/threonine kinase activity GO:0004674 2
pseudouridylate synthase activity G0:0004730 2

continued on next page
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GO Terms GO IDs Counts
GTP binding GO:0005525 2
poly-pyrimidine tract binding GO:0008187 2
ferrous iron binding G0:0008198 2
ferric iron binding G0:0008199 2
electron carrier activity GO:0009055 2
tRNA-pseudouridine synthase activity G0:0016439 2
protein homodimerization activity GO0:0042803 2
sequence-specific DNA binding GO0:0043565 2

Chronic DO regulated the expression of genes associated with a broad range of

biological processes. The most abundant groups of genes were associated with transport,

metabolic process, defense response, and proteolysis. Some genes were involved in lipid

transport, aerobic respiration, iron ion transport and homeostasis, and mitochondrial elec-

tron transport (Cytochrome c to oxygen). Chronic DO also altered the expression of genes

in a variety of cellular component locations, with extracellular region, nucleus, lipid par-

ticle, and mitochondrion genes being the top four groups. Additional genes were listed as

mitochondrial respiratory chain complex IV, mitochondrial inner membrane, and ferritin

complex. According to molecular functions, 33 genes were assigned to oxygen transport

activity. Additional genes were mapped to GO binding terms, such as nucleotide binding,

protein binding, DNA binding, ATP binding, and various ion bindings.

The Entrez Gene identifiers assigned in org.Dm.eg.db package were used to map

the corresponding computed gene (CG) accession numbers in FlyBase. Custom scripts

were used to retrieve pathway ID and descriptions associated with CG numbers. The dif-

ferentially expressed genes were mapped to KEGG metabolic and regulatory pathways

according to the gene distribution in Drosophila pathway database. Oxidative phospho-

rylation/Citrate cycle and Ribosome were the most abundant categories for chronic DO
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Chronic Hypoxia vs. Normoxia

H24h
H120h
H12h
H48h
H240h

Figure 12: Hierarchical clustering using the differentially expressed genes (p
<0.05) in hypoxia vs. normoxia at the same time points.
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Chronic Hypoxia vs. Normoxia, Down-regulated

H24

Figure 13: Venn diagram of chronic hypoxia vs. normoxia at the same time points,
down-regulated (A) and up-regulated genes (B) genes.
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exposure (Figure 14).

gPCR

Gene expression levels of selected genes that were significantly up- or down-
regulated (p <0.05) after 12 and 48 hours of chronic hypoxia exposure according to mi-
croarray analysis were also measured using qPCR. Grass shrimp 18S rRNA was used as
internal standard and gene expression data for each time point are shown in Table 11. Of
the 19 genes examined, the change in expression of 17 genes corresponded in direction
(up or down) to the change observed on the microarrays, the expression of 1 was unal-
tered whereas another was down on microarrays but up according to PCR. However none

of the changes measured by qPCR was statistically significant (p=0.05).

Discussion

The first aim of this study was to determine whether HIF 1¢t expression can be
used as biomarker to monitor the oxygen stress in aquatic organism. However, four HIF
1o clones don’t show differentially expression during chronic hypoxia exposures. Simi-
larly, early studies using custom cDNA macroarray also showed there was no significant
difference among the expression levels of HIF 1o under normoxic, moderate (2.5 ppm

DO), and severe (1.5 ppm DO) chronic hypoxia (Li and Brouwer, 2007, Chapter 3).
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Beta-actin and trachealess characterized from previous studies are the only genes
that are significantly down-regulated at H12 and H48, respectively. BLASTX search
against non-redundant protein database (nr) revealed 74% identity with protein trachea-
less from Tribolium castaneum (red flour beetle, XP_967112). The fragment of grass
shrimp trachealess on the microarray encoded 291 amino acids without start and stop
codons. It shows a high level of conservation with other trachealess proteins in PAS do-
mains (Li and Brouwer, 2007). The PAS-A (64-116 AA) shows 86% identity with PAS-A
from Drosophila melanogaster trachealess (AAA96754), and PAS-B (235-291 AA) do-
main is most similar to that of Tribolium castaneum (78%, XP_967112).

Like HIF 1a, trachealess protein is also a member of bHLH-PAS family (Isaac
and Andrew, 1996). PAS domains are recognized as the signaling domains widely dis-
tributed in proteins from archaea, eubacteria, fungi, plants, insects, and vertebrates. PAS
proteins are always located intracellularly, and can monitor the external and internal en-
vironments simultaneously, including changes in oxygen, light, redox potential, other
stimuli, and overall energy level of a cell (Glagolev, 1980; Baryshev et al., 1981; Tay-
lor, 1983). However, the mechanism of PAS regulation has not been determined. Oxygen
is both a terminal acceptor for oxidative phosphorylation with high ATP yield, and a toxic
agent that forms harmful reactive free radicals when partially reduced. It will be interest-
ing to determine whether the down-regulated trachealess gene at 48 hours is caused by
PAS domains, which may serve as an early warning system for any reduction in cellular
energy levels by detecting changes in the electron transport system.

It is rather remarkable that grass shrimp appear to respond so differently over-
time to chronic hypoxia. Different softwares were used to analyze microarray data, and
comparison of chronic hypoxia induced transcription profiles across the six different time
points by unsupervised hierarchical clustering showed similar patterns as illustrated in
Figure 12; one up-regulated dominated cluster, including H6, H24, and H120, and one

down-regulated dominated cluster, including H12, H48, and H240. Additional analysis
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indicated that the response to chronic hypoxia was pronounced and transient at the above
experimental time points; grass shrimp don’t respond gradually to chronic exposure. Ad-
ditional cluster analyses performed on three replicate samples at each time point reveal
the similarity in transcription profiling among the replicate shrimp at each time point, il-
lustrating the high reproducibility of gene response among individual sample exposed to
chronic hypoxia. Interestingly, Brouwer et al. (2007) also observed that the up-regulation
of both mitochondrial and Fe-metabolism genes at day 7 was completely reversed by day
14.

Since large portions of potential transcripts generated from subtractive libraries
don’t have significant hits against different databases, more differentially expressed se-
quence tags show up in Venn diagrams than annotated tables. The maximum number of
regulated genes occurs at 12 and 48 hours with 47 being down-regulated at 12 hours and
34 up-regulated at 48 hours. Both H12 and H48 are in the down-regulated cluster with 12
genes shared between them. Hemocyanin genes, ATP synthase beta chain [Caenorhab-
ditis briggsae], phosphoenolpyruvate carboxykinase [ Nephrops norvegicus], vitellogenin
[Macrobrachium rosenbergii), cytochrome c oxidase subunit I [Macrobrachium rosen-
bergii], and glucoamylase GLU1 (Glucan 1,4-alpha-glucosidase) are the unique down-
regulated genes in H12. Generally, more genes are down-regulated than up-regulated at
the above experimental time points, and few genes were altered after 120 hours. Thus,
hemocyanin genes, ATP synthase, phosphoenolpyruvate carboxykinase, vitellogenin, cy-
tochrome c oxidase subunit I, Lysosomal thiol reductase, and C-type lectin may be used
as molecular indicators at certain time points of chronic hypoxia treatment in grass shrimp
(Brouwer et al., 2007). However, changes of significant genes are too dynamic to serve as
biomarkers of hypoxia stress in grass shrimp.

All putative transcripts on microarrays were selected by the E values of sequence
similarity search against protein databases, however, few clones also show a high nu-

cleotide similarity with 18S and 28S subunit ribosomal RNA genes related to Palaemon-
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etes vulgaris, Palaemonetes paludosus, and Palaemon serenus. Since these clones were
derived from SSH libraries, prepared from mRNA purified from total RNA by 2 bind-
ing steps on oligo(dT) columns, this suggest that grass shrimp 28S and 18S rRNA may
have poly-A tails just as mRNA. In this study, the RNA used for microarray was reverse-
transcribed with Oligo(dT),g primer, while the same RNA was amplified in the presence
of random hexamers for gPCR. For microarray, 18S and 28S rRNA appears to be up-
regulated after 6, 24, and 120 hours, and down-regulated after 12 and 24 hours. None of
them show up after 10 days. Similar up- and down-regulated 16S mitochondrial rRNA
was observed after 7- and 14-day exposure to chronic hypoxia (Brouwer et al., 2007). For
gPCR, grass shrimp 18S rRNA was constantly expressed as evidenced by highly repro-
ducible constant C; value. Eukaryotic mRNA is transcribed and then polyadenylated at
the 3’ end by poly-A polymerase upon termination of transcription of the primary mRNA
transcript. The exact role of poly-A tails is still unclear but it seems to play a key role

in translation initiation, stability, and nuclear export (Proudfoot and O’Sullivan, 2002;
Slomovic et al., 2006). Recent studies demonstrated that polyadenylated 28S TRNA un-
dergoes extensive post-transcriptional processing, and the degree of rRNA polyadenyla-
tion can vary between different strains and life stages in Leishmania (Decuypere et al.,
2005). The purpose and mechanism of polyadenylation in crustacean is not clear. We
tentatively conclude that the degree of polyadenylation of 18S and 28S rRNA is oxygen
dependent, and that the increased levels of 18S and 28S rRNA on the arrays are due to
increased polyadenylation, but not to increased 18/28S rRNA gene transcription.

The information on individual genes obtained from microarray experiments needs
to be translated into knowledge of the biological processes and molecular pathways af-
fected. The Gene Ontology (GO) Consortium (Ashburner et al., 2000) has developed a
controlled vocabulary that describes the biological processes, molecular functions, and
cellular components associated with a particular gene product, and so acts as a repository

of the known functional biological information on each gene. Several software packages
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are created to visualize metabolic and signaling pathways, such as Gene Map Annotator
and Pathway Profiler (GenMAPP) (Dahlquist et al., 2002; Doniger et al., 2003; Salomo-
nis et al., 2007), PANTHER of Applied Biosystems, and Ingenuity Pathways Analysis

of Ingenuity. Recently released org.Dm.eg.db package can determine which GO terms

or biological pathways of genome-wide Drosophila are associated with differentially ex-
pressed genes from a microarray experiment, hereinafter referred to as GO and pathway
mapping. It provides another valuable way to gain an understanding of the molecular pro-
cesses affected by hypoxia exposures.

Detailed GO analysis of individual significant genes up-regulated at 6 hours showed
the genes are associated with biological processes, such as mitochondrial electron trans-
port, cytochrome ¢ to oxygen, aerobic respiration, iron ion transport, and cellular iron ion
homeostasis. At 12 hours, the largest groups of down-regulated biological processes are
transport and proton transport, defense response, metabolic process and chitin metabolic
process, protein amino acid phosphorylation, ATP synthesis, gluconeogenesis, proteoly-
sis, and autophagic cell death. Protein amino acid phosphorylation and proteolysis are the
common processes in down-regulated H12 and H48. This rather simplistic GO analysis
merely quantifies the numbers of clones associated with a particular annotation, and it re-
flects the distribution of annotations related with genes expressed in response to chronic
hypoxia.

Additional pathway mapping can facilitate the interpretation of significant gene
data derived from complex biological processes and systems, especially characterize dif-
ferentially expressed genes related to environmental toxicants or stressors (Heinloth et al.,
2004; Moggs et al., 2004; Currie et al., 2005). 28% of significantly expressed genes have
a match in KEGG pathway targeted by chronic hypoxia. The most abundant categories
were associated with ribosome, citrate cycle (TCA cycle), oxidative phosphorylation, and
pyruvate metabolism. As discussed in Chapter 3, genes putatively involved in ribosome

were exclusively found in cyclic DO libraries in both directions (Chapter 3). Phospho-
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enolpyruvate carboxykinase mapped to TCA and pyruvate metabolism pathways was also
presented in up-regulated chronic (DO 2.5 mg/L) and down-regulated post molt libraries
(Chapter 3).

According to GO-based molecular function, tyrosinase is a copper-dependent phe-
nol oxidase widely occurring in plants and animals, which can oxidize the phenols such
as tyrosine and catechol using oxygen (Sussman, 1949). Hydrogens from catechol can
combine with oxygen to form water. Tyrosinases are also key components of the primary
immune response in arthropods (Johansson and Soderhall, 1996; Soderhall and Cerenius,
1998), and the highly reactive quinones produced by tyrosinase serve to sclerotize the
protein matrix of the arthropod cuticle after molting (Sugumaran, 1998; Decker et al.,
2007). Since tyrosinase and hemocyanin belong to the same protein superfamily of type
3 copper proteins, all significantly expressed hemocyanin genes of grass shrimp exposed
to hypoxia were found in tyrosine metabolism category. Jaenicke and Decker (2003) de-
scribed the purification of tyrosinases from two crustacean species, Palinurus elephas
(European spiny lobster) and Astacus leptodactylus (freshwater crayfish). The tyrosinase
hexamers appear to be similar to the hemocyanins, based on electron microscopy. Be-
cause of the structural similarities of tyrosinase and hemocyanin on the level of tertiary
and quaternary structure, the tyrosinase proteins appear to have been the ideal predeces-
sors from which to develop the oxygen-carrier protein hemocyanin.

In Chapter 3, a partial cDNA sequence of hemocyanin was identified and charac-
terized by suppression subtractive hybridization (SSH). Hemocyanin is a multi-subunit
protein complex, which is conserved in arthropods and mollusks. An arthropod hemo-

cyanin complex is composed of hexamers formed by similar or identical subunits. 38

hemocyanin clones annotated using SwissProt database were amplified and printed on
microarray. 17 of these hemocyanin genes are significantly expressed during chronic
hypoxia. Two hemocyanin 2 genes [Pacifastacus leniusculus] which are up-regulated

at H24, H48, and H120 come from up-regulated chronic and cyclic libraries. Generally
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chronic hypoxia can force crustaceans to increase the ventilatory flow of water to acceler-
ate the diffusion of oxygen into the blood for the first five days (deFur and Pease, 1988).
For long term adaptation, active shrimp favor the most primitive subunits of hemocyanin,
such as hemocyanin 2, to increase oxygen affinity (Mangum, 1997). During chronic ex-
posure, hemocyanin doesn’t change at 6 hours, however 12 hemocyanin genes are down-
regulated at 12 hours, including the only down-regulated hemocyanin from the severe
chronic hypoxia SSH library (1.2 ppm DO). Upon longer exposure hemocyanin gene
remains up-regulated at 24, 48, and 120 hours. The range of logFC values is 0.63-0.92,
0.86-0.95, and 0.66-1.59 at the above hours, respectively. After 10 days, hemocyanin is
down-regulated again.

Quantification of gene expression levels by qPCR confirmed the microarray pat-
terns and ensured the microarray analysis provides a generally accurate picture of gene
expression response to chronic hypoxia. Of all the genes validated by qPCR, the expres-
sion levels correlated well between qPCR and microarray, however no of the changes
measured by qPCR was found to be significant (p <0.05).

This research represents the first grass shrimp cDNA microarray constructed to
detect global gene expression changes from normoxic and chronic hypoxic exposed grass
shrimp. Hypoxia affected a wide range of cellular processes, and microarray data anal-
ysis identified the significantly expressed genes at different time points. GO-based and
pathway-based mapping of hypoxia-responsive genes to biological pathways and pro-
cesses represents a key step in microarray data mining to illustrate why and how genes
respond to hypoxia. The utility of shrimp microarray was confirmed in this study. In the
future, more genetic information and studies focusing on selected genes and pathways

found here will provide further molecular understanding regarding the genetic response to

hypoxia.
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CHAPTER V

CYCLIC HYPOXIA

Abstract

Laboratory exposures were performed to examine the genomic responses of grass
shrimp, Palaemonetes pugio, exposed to cyclic hypoxia. Differentially expressed genes
were determined in hypoxic vs. normoxic groups after 1, 2, 5 and 10 days exposure to
cyclic hypoxia. Sampling on each day was conducted at two different time series, one in
the morning (representing low DO, CA) and one in the afternoon (representing high DO,
CP). There are distinct differences between the number and identity of specific genes that
are significantly down- or up-regulated in shrimp collected at the low DO and high DO
points of the cyclic DO cycle. However, cluster analysis showed that the overall response
patterns of high (CP) and low DO (CA) exposures were in the same cluster at 24 hrs, 48
hrs, and 120 hrs. In contrast, the response patterns at different time points were in dif-
ferent clusters. After 10 days of exposure to cyclic DO the high DO samples show a dra-
matic gene up-regulation and do not cluster with any of the other treatment groups. There
is no gene shared by any of the eight exposure groups. For genes differentially expressed
in samples collected in the momning, 9 of 11 down-regulated genes in day 1 corresponded
to hemocyanin. Vitellogenin, cathepsin L, cytochrome c oxidase subunit III, and fatty acid
binding protein 10 are the signature down-regulated genes at day 10. For cyclic (low) DO
exposure, a total of 127, 44, and 101 genes were assigned to the three main groups in GO:
biological process, cellular components, and molecular function. For biological processes,
18, 12, and 11 genes were associated with transport, defense response, and metabolic pro-
cess. The most abundant group of genes was associated with oxygen transport activity.
For cyclic (high) DO exposure, a total of 276, 122, and 229 genes were assigned to the
three main groups in GO. Cyclic (high) DO regulated the expression of genes associated

with a more broad range of functional categories. The most abundant groups of genes
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were associated with transport, defense response, and metabolic process. For molecular
functions, 33 and 8 genes were assigned to oxygen transport activity and ATP binding,
respectively. The differentially expressed genes were mapped to KEGG metabolic and
regulatory pathways according to the gene distribution in Drosophila pathway database.
Cyclic (high) DO affected a broad range of pathways compared to cyclic (low) DO.
Keywords - Palaemonetes pugio; grass shrimp; crustacean; microarray; hypoxia;

gene expression; annotation.

Introduction

Hypoxia refers to a state of oxygen deficiency, which is observed frequently in es-
tuarine waters of Gulf of Mexico. Over the last few decades, there have been increases in
the frequency, duration, and spatial extent of hypoxic events, which are regarded as one
of the major factors responsible for declines in habitat quality and harvestable resources
in estuarine ecosystems (Rabalais et al., 1999, Chapter 1). Hypoxia can profoundly affect
aquatic ecosystem and have a variety of impacts on associated species. The responses of
estuarine fishes and crustaceans to hypoxia can lead to behavioral, physiological, and cel-
lular and molecular changes depending on the duration and severity of hypoxia (Chapter
1).

Chronic and cyclic (intermittent) hypoxia occurs naturally in shallow estuarine
ecosystem. Adaptations to chronic hypoxia include avoidance or escape for some mobile
species (Wannamaker and Rice, 2000; Wu et al., 2002; Bell and Eggleston, 2005; Craig
et al., 2005), respiratory regulations via physiological mechanisms (Johnson et al., 1984;
Hagerman, 1986; deFur and Pease, 1988; Mangum and Rainer, 1988; Mangum, 1997),
and molecular responses of differentially expressed genes in fishes (Gracey et al., 2001;
Ton et al., 2002, 2003; van der Meer et al., 2005) and invertebrates (Brouwer et al., 2005,
2007; Brown-Peterson et al., 2005; David et al., 2005).

In addition to chronic hypoxia, oxygen concentrations may vary throughout the
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day. The daily cyclical pattern of hypoxia and normoxia caused by biotic and abiotic fac-
tors occurs naturally, but are exacerbated by eutrophication, in microtidal estuaries of
Gulf of Mexico, especially in the summer. Thus, estuarine organisms face increases in
amplitude and frequency of hypoxia/normoxia cycles (Gupta et al., 1996). Cyclic hypoxia
can cause severe organ damage in mammalian species through the generation of reac-

tive oxygen species (ROS), however, little is known about the effects of cyclic hypoxia

on aquatic species. Compared to severe hypoxia or anoxia that cause mortality instantly,
sublethal levels of cyclic hypoxia in aquatic ecosystem are commonly less severe, longer-
lasting, and more widespread.

A comparitive study was conducted by Coiro et al. (2000) to evaluate the effects
of diurnal, semidiurnal, and constant hypoxia on the growth of first stage larval marsh
grass shrimp, Palaemonetes vulgaris. Compared to normoxia, any hypoxia can cause
growth impairment. Moreover, there is a significant difference in growth impairment be-
tween chronic and cyclic exposures, and cyclic exposure results in less growth impair-
ment than chronic exposure. Stierhoff et al. (2006) measured the growth and feeding rates
of two estuary-dependent juvenile flounders exposed to sublethal hypoxia over a range
of temperatures. Generally growth rates of both fishes were reduced as DO decreased,
and also as temperature increased. Growth was significantly reduced by 90% or 100% at
2.0 mg/L. DO. Cyclic hypoxia also caused significant growth limitation. Growths of both
fishes were significantly reduced (35-60%) in cyclic hypoxia (2.0-11.0 mg/L. DO). Tyler
and Targett (2007) reported the ecological impacts of short-term cyclic hypoxia (<2 to
20 mg/L. DO) on juvenile weakfish, Cynoscion regalis. The distribution and abundance
of weakfish demonstrate fish can frequently abandon the preferred habitats whenever DO
was <2 mg/L, and return within 2 hours of DO exceeding 2 mg/L.. More recently, Brown-
Peterson et al. (2008) described a 77-day laboratory experiment demonstrating the effects
of cyclic hypoxia on gene expression and reproduction in grass shrimp using a custom

cDNA macroarray.
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Grass shrimp, Palaemonetes pugio, is a hypoxia-tolerant species that is abundant
in estuaries along the Gulf of Mexico, and it is an excellent model for investigating the
molecular responses to hypoxia (Chapter 1). In the present study we used grass shrimp
to examine the effects of cyclic hypoxia on gene expression in laboratory exposures us-
ing DNA microarray. We hypothesize grass shrimp exposed to cyclic hypoxia will show
different and more complicated changes in gene expression than those exposed to chronic
hypoxia. The differences in gene expression profiles between chronic vs. cyclic hypoxia
may provide potential biomarkers which can be used to assess and monitor the impacts of
cyclic and chronic hypoxia on estuarine resident organisms. Further, the results of labo-
ratory cyclic hypoxia will be compared with those of field cyclic hypoxia, as described in

Chapter 6.

Materials and Methods

If not described below, please see Chapter 4.

Laboratory Exposures

Collection and maintenance of grass shrimp prior to exposure experiments were
conducted as described in Chapter 3.

Exposures were conducted in an intermittent flow-through system described by
Manning et al. (1999). Normoxic (DO 7.5 mg/L) and cyclic hypoxic (DO 1.5-8 mg/L)
conditions within the treatment aquaria were established and maintained as described be-
fore (Brouwer et al., 2004, 2005, 2007; Brown-Peterson et al., 2005, Chapter 3). In all
experiments, oxygen was monitored continuously in one hypoxic flow-through aquarium,

and DO, temperature and salinity were measured in all flow-through aquaria once or twice
daily using a YSI Model 600XLM data sonde. All exposures were conducted in triplicate
for both controls and treatments. The thorax/hepatopancreas of 20 shrimp per treatment

was removed after 0, 1, 2, 5, and 10 days of exposure and stored in 1 mL RNALater (Am-
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bion Inc. Austin, TX, USA) at -20°C. Sampling on each day was conducted in two differ-
ent fixed time points, one in the morning (representing low DO) and one in the afternoon

(representing high DO).

Experimental Design

A loop design with direct and indirect comparisons was used for cyclic DO expo-
sures (Table 12). Each individual sample was hybridized to each of two different samples
in two different dye orientations, and some direct sample-to-sample comparisons were

used for comparing important samples.

Table 12: Loop design for comparison of normoxic (N) and cyclic hypoxic (H)
samples (0, 1, 2, 5 and 10 days). There were 3 pooled samples for each time point (n=3).
This design was used twice. Once for samples collected at low DO and once for samples
collected at high DO, for a total of 54 arrays.

Array Cy3 CyS
1 NO NIt
2 NI Hil
3 HiI H2
4 H2 N2
5 N2 N5
6 N5 H5
7 HS5 HIO
8 HI10 NI10
9 N10 NO

Results

Water Quality Parameters and Grass Shrimp

The range of DO concentration during cyclic hypoxia was 1.0-8.6 (mg/L) (Fig-
ure 15). Shrimp were exposed on average to DO <2 mg/L and DO 2-3 mg/L for 11 and
2 hours for every 24 hours cycle. The average length and weight (without eggs) of con-

trol grass shrimp and grass shrimp exposed to cyclic hypoxia over the entire exposure
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period were 35.28 £ 2.09 (mm) and 354.59 (mg), and 35.20 & 2.09 (mm) and 346.42
(mg), respectively. At the end of the exposure hepatopancreas tissues were dissected from
grass shrimp, weighed, and stored in 1 mL RNALater at -20°C. The mean hepatopancreas
weight of control shrimp and shrimp exposed to cyclic hypoxia was 9.15 and 8.88 (mg),

respectively.

RNA Extraction and Labeling

RNA was extracted and concentrations were determined using a NanoDrop Spec-
trophotometer (ND-1000, see Chapter 4). The RNA concentration was 2.47 + 0.33 ug/pl.
The ratios of 260/280 and 260/230 were 2.11 + 0.01 and 2.25 + 0.07, respectively. No
RNA degradation was shown by running diluted samples on RNA Nano Chips (Agilent
Bioanalyzer 2100). After labeling and purification, the absorbance of labeled cDNA was
measured at 260, 550, and 650 nm, and the absorbance readings were used to calculate
the frequency of incorporation (FOI). The average FOI for Cy3 and Cy5 was 24.38 and
17.82 per 1000 nucleotides, respectively.

Gene Expression During Cyclic Hypoxia Exposures

This study determined differentially expressed genes at a p value of less than 0.05
that occurred in hypoxic vs. normoxic groups at the same time point (Table 14). Com-
bined with the annotation tables (see Chapter 3) generated by sequence similarity search
against the protein databases using BLAST algorithm (Altschul et al., 1997), Table 13
shows the differentially expressed genes with BLAST E value less than 1E-5 in hypoxic
vs. normoxic groups at the same time point. The genes identified here were derived from
two different time series, one in the morning (representing low DO, indicated as CA) and

one in the afternoon (representing high DO, indicated as CP).
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There are distinct differences between the number and identity of genes that are
significantly down- or up-regulated in shrimp collected at the low DO (morning) and high
DO (afternoon) points of the cyclic DO cycle (Table 14). For the H24 and H48 samples
19 and 6 genes are up-regulated in the morning and only 4 and 0 in the afternoon. 11
and 10 genes are down-regulated in the H24 and H48 “morning” samples and none are
down-regulated in the afternoon. After 5 days of cyclic DO the major response is down-
regulation of 40 genes in the “afternoon” samples, followed by a dramatic up-regulation
of 85 genes in the “afternoon” samples after 10 days.

Table 14: Differentially expressed genes during cyclic hypoxia exposures at the
same time points (p < 0.05).

Cyclic Low Hypoxia (CA) vs. Normoxia

Time (Hours) 24 48 120 240
Up-regulated 19 6 0 0
Down-regulated 11 10 1 7
Cyclic High Hypoxia (CP) vs. Normoxia

Up-regulated 4 0 0 85
Down-regulated 0 0 40 1

Even through there are differences in expression of specific genes between CA
and CP, cluster analysis of the 100 most differentially expressed genes (p <0.05) in each
exposure group with BLAST E value less than 1E-5 shows overall gene response patterns
to be similar (Figure 16). The heat map represents the cyclic hypoxia-regulated genes,
clustered by the correlation coefficient according to their similarity in expression pattern
by gene and by treatments (time exposed to cyclic hypoxia). For hypoxia vs. normoxia
at 24 hrs, 48 hrs, and 120 hrs, the response patterns of high (CP) and low DO (CA) ex-
posures were in the same cluster, but not significantly, whereas the response patterns at
different time points were in different clusters. This indicates that the overall gene expres-
sion patterns of cyclic low and high DO on the same day are similar to each other, but the

gene expression patterns on different days are dissimilar. After 10 days of exposure to
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cyclic DO the low DO samples cluster with the 5 day samples, whereas the 10 day high
DO samples show a dramatic gene up-regulation and do not cluster with any of the other
treatment groups. There are no genes that cluster significantly using multiscale bootstrap
resampling (alpha=0.95).

Cyclic Hypoxia vs. Normoxia

CP240h
CA48h
CP48h
CA24h
CP24h

CA240h

CA120h

CP120h

Figure 16: Hierarchical clustering using the differentially expressed genes (p
<0.05) in hypoxia vs. normoxia at the same time points.

Gene Expression Changes in Cyclic Low DO Hypoxia Exposures (CA)
Venn diagrams were used to display the differentially expressed genes that were

up- or down-regulated during cyclic DO exposures (Figure 17). There is no gene shared
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by any of the eight exposure groups. For genes differentially expressed in samples col-
lected in the morning, 9 of 11 down-regulated genes in H24 corresponded to hemocyanin.
Hemocyanin 2 [Pacifastacus leniusculus], guanine nucleotide-binding protein gamma
subunit [Sitobion avenae], and crustapain [Pandalus borealis] are up-regulated in H48.
Vitellogenin [Macrobrachium rosenbergii), cathepsin L [Pandalus borealis], cytochrome
¢ oxidase subunit III [Farfantepenaeus notialis], and fatty acid binding protein 10 [Litope-
naeus vannamei) are the signature down-regulated genes in H240.

Gene Expression Changes in Cyclic High DO Hypoxia Exposures (CP)

For differentially expressed genes found in samples collected in the afternoon,
hemocyanin 2 [Pacifastacus leniusculus] and vitellogenin [Macrobrachium rosenbergii]
are among the up-regulated genes found in H24. Beta-carotene dioxygenase 2 [Apis mel-
lifera], heme-binding protein 2 [Balanus amphitrite], and crustapain [Pandalus borealis]
are among the down-regulated genes in H120. Vitellogenin [Macrobrachium rosenbergii]
is the only down-regulated gene found in H240. A pronounced down-regulation of 40
genes as observed at H120, and 120 hours later there is a striking reversal with 85 genes
being up-regulated (Figure 17). Combined with annotation table with BLAST E value
less than 1E-5 (Table 13), there are 10 and 43 differentially expressed genes shown in
H120 and H240, respectively. Of 43 genes up-regulated in H240, 15, 6, 4, 3, and 2 an-
notated genes are hemocyanine, cathepsin C or L, cytochrome c oxidase subunit I or III,
PmAV [Penaeus monodon], and ATP synthase coupling factor 6 [Anopheles gambiae],

respectively.

Gene Ontology and KEGG

The differentially expressed genes identified during cyclic DO exposures were an-
notated by sequence similarity comparison against the genomic Drosophila melanogaster
RefSeq database with BLAST algorithm (BLASTX and BLASTN) (Altschul et al., 1997).

The matched RefSeq identifiers were mapped to the corresponding Entrez Gene identi-
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Cyclic (Low) Hypoxia vs. Normoxia, Down-regulated

A
H48 H120

H24 0 ’ H240

o

Cyclic (Low) Hypoxia vs. Normoxia, Up-regulated

H48 H120

H24 0 ‘ H240
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Cyclic (High) Hypoxia vs. Normoxia, Down-regulated

c
H48 H120

Ho4 0 ‘ H240

g

Cyclic (High) Hypoxia vs. Normoxia, Up-regulated

H48 H120

H24 0 ’ H240

e

Figure 17: Distribution of differentially expressed genes during cyclic (low) expo-
sure into different GO categories. Only GO terms with at least two genes assigned to are
shown.
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fiers and GO terms assigned in org.Dm.eg.db package. GOstats package from R was em-
ployed to assign probable GO terms to all annotated genes. Table 15 and Table 16 show
the detailed assignment of genes to GO functional categories of cyclic low and high DO
exposures, respectively, Only GO terms that have at least 2 genes assigned to them are
shown.

For cyclic (low) DO exposure (Table 15), a total of 127, 44, and 101 genes were
assigned to the three main groups in GO: biological process, cellular components, and
molecular function. For biological processes, 18, 12, and 11 genes were associated with
transport, defense response, and metabolic process. According to cellular components,
the largest group of genes encoded proteins that are located in the extracellular region.
Cyclic (low) DO regulated the expression of genes in various molecular functions. The
most abundant group of genes was associated with oxygen transport activity, with addi-
tional genes being listed in binding terms, such as DNA binding, ATP binding, protein
binding, nucleic acid binding, and various ion binding.

For cyclic (high) DO exposure (Table 16), a total of 276, 122, and 229 genes were
assigned to the three main groups in GO: biological process, cellular components, and
molecular function. Cyclic (high) DO regulated the expression of genes associated with
a more broad range of functional categories. The most abundant groups of genes were
associated with transport (19), defense response (16), and metabolic process (16). Addi-
tional genes encode proteins involved in proteolysis, protein amino acid phosphorylation,
aerobic respiration, iron ion transport and homeostasis, and mitochondrial electron trans-
port (cytochrome c to oxygen). As far as cellular components are concerned, 11 and 8
genes were listed as encoding proteins located in mitochondrion and extracellular region.
Additional genes were associated with mitochondrial respiratory chain complex 1V, mi-
tochondrial inner membrane, mitochondrial matrix, and ferritin complex. For molecular
functions, 33 and 8 genes were assigned to oxygen transport activity and ATP binding, re-

spectively. Various genes were involved in oxidoreductase activity, cytochrome c oxidase



activity, heme binding, cathepsin L/B/K activities, and various ion bindings.
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The Entrez Gene identifiers assigned in org.Dm.eg.db package were used to map

the corresponding computed gene (CG) accession numbers in FlyBase. Custom scripts

were used to retrieve pathway ID and descriptions associated with CG numbers. The dif-

ferentially expressed genes were mapped to KEGG metabolic and regulatory pathways

according to the gene distribution in Drosophila pathway database. Cyclic (high) DO reg-

ulated a broad range of pathways compared to cyclic (low) DO. Alkaloid biosynthesis I,

Riboflavin metabolism, Oxygen transport, and Ribosome were the most abundant cate-

gories for cyclic DO exposures (Figure 18).

Table 15: Distribution of differentially expressed genes during cyclic (low) expo-

sure into different GO categories. Only GO terms with at least two genes assigned to are

shown.

GO Terms GO IDs Counts
Biological Process

transport GO:0006810 18
defense response GO:0006952 12
metabolic process GO:0008152 11
protein amino acid phosphorylation GO:0006468 3
proteolysis GO:0006508 3
mitotic spindle organization and biogenesis GO:0007052 3
pseudouridine synthesis GO:0001522 2
DNA metabolic process GO:0006259 2
rRNA processing GO:0006364 2

continued on next page




Table 15 — continued from previous page

GO Terms GO IDs Counts
lipid transport GO:0006869 2
sister chromatid cohesion GO:0007062 2
mitotic chromosome condensation GO:0007076 2
cell adhesion GO:0007155 2
germ cell development GO:0007281 2
open tracheal system development GO0:0007424 2
protein catabolic process GO0:0030163 2
tRNA pseudouridine synthesis GO:0031119 2
salivary gland cell autophagic cell death GO:0035071 2
ribosome biogenesis and assembly GO:0042254 2
autophagic cell death GO:0048102 2
Cellular Component

extracellular region GO:0005576 5
lipid particle GO:0005811 5
larval serum protein complex GO:0005616 4
nucleus GO:0005634 4
extracellular space GO:0005615 3
mitochondrion GO:0005739 3
condensin complex GO:0000796 2
intracellular GO:0005622 2
nucleolus GO:0005730 2
lysosome GO:0005764 2

continued on next page
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Table 15 — continued from previous page

GO Terms GO IDs Counts
cohesin complex GO:0008278 2
membrane GO:0016020 2
Molecular Function

oxygen transporter activity GO:0005344 26
ATP binding GO:0005524 6
protein binding GO:0005515 4
nutrient reservoir activity G0:0045735 4
RNA binding GO:0003723 3
transporter activity GO:0005215 3
zinc ion binding GO:0008270 3
nucleic acid binding GO:0003676 2
DNA binding GO:0003677 2
cathepsin L activity GO:0004217 2
protein serine/threonine kinase activity GO:0004674 2
pseudouridylate synthase activity GO:0004730 2
lipid transporter activity GO:0005319 2
lipid binding GO:0008289 2
tRNA-pseudouridine synthase activity GO:0016439 2
ATPase activity G0:0016887 2
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Table 16: Distribution of differentially expressed genes during cyclic (high) exposure into

different GO categories. Only GO terms with at least two genes assigned to are shown.

GO Terms GO IDs Counts
Biological Process

transport GO:0006810 19
defense response GO:0006952 16
metabolic process GO:0008152 16
proteolysis GO:0006508 7
mitotic spindle organization and biogenesis G0:0007052 6
translation GO:0006412 5
protein catabolic process G0:0030163 5
salivary gland cell autophagic cell death G0:0035071 5
autophagic cell death GO:0048102 5
protein amino acid phosphorylation GO:0006468 4
mitotic spindle elongation GO0:0000022 3
nuclear mRNA splicing, via spliceosome G0:0000398 3
carbohydrate metabolic process GO:0005975 3
chitin catabolic process GO:0006032 3
mitochondrial electron transport, cytochrome c to oxygen G0:0006123 3
actin filament organization GO0:0007015 3
aerobic respiration GO:0009060 3
proton transport GO0:0015992 3
sleep GO:0030431 3
cytokinesis GO0:0000910 2
chitin metabolic process G0:0006030 2
regulation of transcription, DNA-dependent G0:0006355 2

continued on next page
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GO Terms GO IDs Counts
iron ion transport GO:0006826 2
lipid transport GO:0006869 2
cellular iron ion homeostasis GO:0006879 2
phagocytosis, engulfment GO:0006911 2
cytoskeleton organization and biogenesis GO0:0007010 2
mitosis GO:0007067 2
male meiosis GO:0007140 2
cell adhesion GO:0007155 2
germ cell development GO:0007281 2
germarium-derived egg chamber formation G0:0007293 2
axon guidance GO:0007411 2
visual perception GO:0007601 2
visual behavior GO:0007632 2
determination of adult life span GO:0008340 2
ATP synthesis coupled proton transport GO0:0015986 2
chondroitin sulfate biosynthetic process GO0:0030206 2
olfactory behavior G0:0042048 2
ribosome biogenesis and assembly G0:0042254 2
phototaxis GO0:0042331 2
male courtship behavior, veined wing generated song production G0:0045433 2
Cellular Component

mitochondrion GO0:0005739 11
extracellular region GO:0005576 8
nucleus G0:0005634 8

continued on next page
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GO Terms GO IDs Counts
cytoplasm GO0:0005737 8
lipid particle GO0:0005811 8
mitochondrial respiratory chain complex IV GO0:0005751 5
lysosome GO0:0005764 5
membrane GO0O:0016020 5
integral to membrane GO:0016021 4
larval serum protein complex GO:0005616 3
mitochondrial inner membrane GO:0005743 3
mitochondrial matrix GO:0005759 3
integral to plasma membrane GO:0005887 3
cytosolic large ribosomal subunit GO:0022625 3
kinetochore GO:0000776 2
extracellular space GO:0005615 2
intracellular GO:0005622 2
spliceosome GO:0005681 2
nucleolus GO:0005730 2
mitochondrial proton-transporting ATP synthase, central stalk G0:0005756 2
plasma membrane GO:0005886 2
ferritin complex G0:0008043 2
Molecular Function

oxygen transporter activity GO:0005344 33
ATP binding GO:0005524 8
protein binding GO:0005515 7
zinc ion binding GO:0008270 6

continued on next page
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GO Terms GO 1Ds Counts
oxidoreductase activity G0:0016491 6
nucleotide binding GO0:0000166 5
nucleic acid binding GO0:0003676 5
cytochrome-c oxidase activity GO:0004129 5
cathepsin L activity GO:0004217 5
calcium ion binding GO:0005509

chitin binding GO0:0008061 5
cation binding G0:0043169 5
mRNA binding GO0:0003729 4
protein serine/threonine kinase activity GO:0004674 4
binding GO0:0005488 4
iron ion binding GO0:0005506 4
heme binding G0:0020037 4
RNA binding GO0:0003723 3
structural constituent of ribosome GO0:0003735 3
actin binding G0:0003779 3
catalytic activity G0:0003824 3
chitinase activity GO:0004568 3
hydrogen-exporting ATPase activity, phosphorylative mechanism GO0:0008553 3
nutrient reservoir activity GO0:0045735 3
DNA binding GO0:0003677 2
transcription factor activity GO:0003700 2
mRNA 3°-UTR binding GO:0003730 2
GTPase activity GO0:0003924 2
endonuclease activity GO0:0004519 2
alpha-amylase activity GO0:0004556 2

continued on next page
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GO Terms GO IDs Counts
protein kinase activity GO:0004672 2
lipid transporter activity GO0:0005319 2
GTP binding G0:0005525 2
poly-pyrimidine tract binding GO:0008187 2
ferrous iron binding GO:0008198 2
ferric iron binding G0:0008199 2
lipid binding GO:0008289 2
glucuronosyltransferase activity GO:0015020 2
hydrogen ion transporting ATP synthase activity, rotational mechanism GO:0046933 2
hydrogen ion transporting ATPase activity, rotational mechanism GO0:0046961 2

Discussion

Several potentially hypoxia-responsive genes, including CAMT, mSOD, c¢SOD,

HIF, and trachealess, were cloned and sequenced from previous studies using gene-by-

gene method, and amplified and printed on microarrays. None of these genes are statisti-

cally significantly differentially expressed according to cDNA microarray during cyclic

hypoxia exposures. HIF 1a expression, which also doesn’t change during chronic hy-

poxia (Chapter 4), can thus not be used as biomarker of chronic and cyclic exposures.

However, HIF 1a expression levels do change considerably during hypoxic exposures,

which suggests the changes may be biologically significant. For example, HIF 1o expres-

sion levels increase in cyclic (high) DO, with a 2.83- (p=0.053) and 2.15-fold (p=0.25)

upregulation observed after 5- and 10-day, respectively. Additionally, HIF 1o is consis-

tently down-regulated at all time points during chronic hypoxia (p > 0.05).
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Since hemocyanin is the oxygen carrier which is abundantly expressed in grass
shrimp, arrays include 38 hemocyanin clones. For the first 24 hours, all of the down-
regulated genes in low DO are hemocyanin genes. However hemocyanin genes are up-
regulated after 10 days in high DO.

In general, cycles of hypoxia and reoxygenation can lead to increased production
of reactive oxygen species and tissue injury, and down-regulated cellular antioxidant de-
fense systems (Li and Jackson, 2002), which include ¢cSOD, mSOD, glutathione (GSH)
peroxidase and GSH reductase. In cyclic (high) DO exposure, mSOD is 1.74-fold (p=0.3)
up-regulated after 24 and 48 hours, and cSOD is 2.3-fold up-regulated after 24 hour ex-
posure. For chronic hypoxia, mSOD is 2.6- and 1.6-fold up-regulated at 120 and 240
hours (p=0.23), respectively (Chapter 4). In previous studies of grass shrimp exposed to
hypoxia, cSOD was 19-fold down-regulated after 14-day exposure to chronic hypoxia
(Brouwer et al., 2007, 2.5 mg/L) using more sensitive P33 cDNA labeling, and mSOD was
60-fold up-regulated after only 3-day exposure to cyclic hypoxia (Brown-Peterson et al.,
2008). However, similar significant expression level changes were not observed at any
time points during chronic and cyclic exposures in this study, suggesting Cy3/CyS5 label-
ing may not be sensitive enough to detect these changes.

Glutathione (GSH) peroxidase is a selenium-dependent enzyme that catalyzes
breakdown of H»O» and various peroxides and can be found in cytoplasm and mitochon-
dria. In this study, glutathione peroxidase was identified in the up-regulated in the cyclic
library (Chapter 3). However, no statistically significant upregulation was revealed using
microarrays. Nevertheless, glutathione peroxidase is consistently up-regulated at 24, 48,
and 120 hours, with a peak 2.11-fold change at 48 hours (p=0.19, CA), which may be bi-
ological revelant. In contrast to cyclic hypoxia, glutathione peroxidase is down-regulated
for the initial 48 hours, then up-regulated at 5- and 10-day chronic exposures, with a peak
1.9-fold change (p=0.19) at day 5 (Chapter 4).

Several genes involved in sulfur redox and (homo)cysteine metabolism (thiore-
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doxin, sulfide:quinone oxidoreductase, glutathione-S-transferase, cystathionine beta-
synthase) are found in down-regulated libraries in response to cyclic hypoxia (Chapter 3).
Glutathione-S-transferase is barely changed during the first 48 hours, then down-regulated
at day 5 (1.56-fold, p=0.15) and 10 (1.4-fold change, p=0.06) in cyclic (high) hypoxia.
According to microarray data, sulfide:quinone oxidoreductase is slightly up-regulated in
both cyclic hypoxia at all time points, and a similar up-regulation also occurs in response
to chronic hypoxia at all time points (p=0.14). Thioredoxin is about 1.6-fold up-regulated
in cyclic (low) hypoxia (p=0.28).

Metallothionein belongs to a family of small, cysteine-rich, and heat stable pro-
teins involved in the cellular regulation of essential metals (Zn, Cu, Se, etc.), and in detox-
ification of heavy metals (Cd, Hg, Ag, etc.). Studies relate metallothionein proteins with
diverse physiological functions including protection against oxidative stress (Suzuki and
Cherian, 2000, Chapter 1). English and Storey (2003) identified a 100 amino acid pro-
tein belonging to the metallothionein family using differential cDNA libraries constructed
from the foot muscle of marine snails Littorina littorea. Metallothionein was up-regulated
in both foot muscle and hepatopancreas in response to anoxia stress. After 24 h recovery
from anoxia stress, transcript levels were reduced but remained elevated in hepatopan-
creas from anoxia-treated snails. CAMT obtained from previous study (Brouwer et al.,
2007) was included in microarray. In this study, expression levels of metallothionein
in cyclic (high) hypoxia are 1.4-fold up-regulated. In chronic DO, it is 1.74-fold down-
regulated for the first 48 hours. Since metallothionein can be induced by multiple envi-
ronmental stressors including hypoxia and heavy metals, and since its expression levels
change minimally in response to cyclic and chronic hypoxia, metallothionein isn’t a can-
didate biomarker to monitor biological impacts of long or short time oxygen changes in
aquatic ecosystem.

Like other invertebrates, crustaceans lack specific immunity, and their innate im-

mune system must rely on non-self-recognition molecules to ensure efficient defense re-
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sponses against infectious pathogens, and environmental toxicants and stressors (Rowley
and Powell, 2007). So crustacea are regarded as an appropriate species for studying the
innate immune system, which plays an important role in host defense system,

Lectins were first discovered in plants, and now are found throughout nature.
These sugar-binding proteins typically bind to a carbohydrate molecule which is a part
of a glycoprotein or glycolipid, and also agglutinate certain animal cells and/or precipitate
glycoconjugates. Lectins serve many different biological functions, including regulation
of cell adhesion during infection, glycoprotein synthesis, and the control of protein levels
in the blood. Lectins from the hemolymph of invertebrates, including crustaceans, have
also been regarded as molecules involved in immune recognition. Several lectin clones
were identified from down-regulated copper and pyrene exposures, and up-regulated
cyclic library (Chapter 3). In this study, lectin is up-regulated in response to cyclic (low)
DO at day 1 (2.85-fold, p=0.01) and 2 (2.03-fold, p=0.19), to cyclic (high) DO at day 10
(3.23-fold, p <0.01), and to chronic DO at day 10 (2.68-fold, p < 0.01).

PmAY, a novel gene involved in virus resistance of shrimp Penaeus monodon,
is highly expressed in the hepatopancreas and up-regulated on day 2 in response to vi-
ral infection (Luo et al., 2003, 2007). PmAYV is closely related to C-type lectin. Earlier
studies suggest PmAYV, obtained from a chronic hypoxia SSH library, is also a hypoxia-
responsive gene, which is down-regulated in grass shrimp after 14-day chronic exposure
(Brouwer et al., 2007, 1.5 mg/L). Here we find expression of this PmAV is barely changed
during cyclic hypoxia, with the only exception of day 10 in cyclic (high) DO (1.8-fold
up-regulation, p < 0.05). About 4-fold upregulation is observed for several additional
PmAV clones which were originally identified in the down-regulated cyclic DO SSH li-
brary, and in the up- and down-regulated copper SSH library (Chapter 3). In this study,
a 2.1- and 1.8-fold up-regulation of PmAV occurs at 12 hours and day 10 in chronic hy-
poxia (p=0.098), respectively (Chapter 4). It is interesting that both lectin and PmAV

genes which are supposed to be immunity-related in crustaceans, are also significantly
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up-regulated in response to cyclic (high) hypoxia (p < 0.01).

Phosphoenolpyruvate (PEP) is an important metabolite which has the highest en-
ergy phosphate bond found in living organisms, and is involved in glycolysis and glu-
coneogenesis. In gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) con-
verts oxaloacetate into phosphoenolpyruvate and carbon dioxide. This reaction is a rate-
limiting step in gluconeogenesis. However, PEPCK levels alone were found to be not
highly correlated with gluconeogenesis in the mouse liver (Burgess et al., 2007). There-
fore, the role of PEPCK in gluconeogenesis may be more complex and more factors may
be involved than was previously believed.

The response of PEPCK to chronic and cyclic hypoxia exposure is rather com-
plex. In this study, PEPCK is 1.5-fold up-regulated (p=0.3) after 2 days exposure to cyclic
(low) DO, followed by 2.0-fold down-regulation on day 10 (p=0.26). PEPCK appears 1.8-
fold upregulated on day 10 (p=0.02) during cyclic (high) hypoxia. Similar up-regulation
of PEPCK was also observed after 7 day cyclic exposure of grass shrimp (Brown-Peterson
et al., 2008). In response to chronic hypoxia, a 2.05-fold up-regulation of PEPCK is ob-
served for the initial 6 hours (p=0.13). For the next 6 hours, PEPCK expression is com-
pletely reversed to significant downregulation (2.6-fold, p=0.01), then followed by up-
regulation at day 5 (2.5-fold, p=0.01) and day 10 (1.9-fold, p=0.2).

Cluster analysis indicated the response patterns of high (CP) and low DO (CA)
exposures were in the same cluster at 24 hrs, 48 hrs, and 120 hrs, however the correlation
isn’t statistically significant (p < 0.05). At the above 3 time points, more up- and down-
regulated genes are found in low DO than high DO (Figure 16 and Table 14). For low
DO, few genes are significantly expressed after 5 days, while for high DO few genes are
differentially expressed during the first 5 days.

In this study a poor correlation was observed between results from microarray
and qPCR data. Generally microarray results underestimate the actual gene expression

changes, and qPCR is more accurate and sensitive than microarray. However, data gen-
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erated by microarray and gPCR often result in disagreement (Morey et al., 2006). Which
of the two methods is more accurate is debatable (Allison et al., 2006). It suggests that
certain microarray platforms don’t need any further validation because they perform very
accurate (Epstein et al., 2002). Several factors can contribute to the lack of correlation
between array and qPCR, such as up- vs. down-regulation, spot intensity, fold change, cy-
cle threshold (C;), array averaging, and tissue type and preparation (Morey et al., 2000).
Sometimes it is reverse transcription PCR, not microarray data, results in the disagree-
ment between microarray and qPCR. In this study, the RNA used for microarray was
reverse-transcribed with Oligo(dT) ;g primer, while the same RNA was amplified in the
presence of random hexamers for gPCR (Chapter 4). Random hexamer gives full length
transcripts on average, while Oligo(dT) generates first strand cDNA from the 3’ end of the
transcripts. Better validation may be achieved if more primers designed from 3’ end of the
transcripts.

The results reported in this study provide a preliminary basis for a better under-
standing of gene expression changes of grass shrimp in response to cyclic hypoxia condi-
tions. It illustrates a general picture of the molecular response to hypoxia exposures under
laboratory conditions, and of the regulation pathways affected by hypoxia exposures. The
observation that gene expression patterns are not only dependent on the duration of expo-
sure but also on the time of day makes interpretation of the data generated by this study a

very challenging undertaking.
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CHAPTER VI

FIELD EXPOSURES

Abstract

Grass shrimp, Palaemonetes pugio, offer many advantages for ecological and tox-
icological research. A cDNA microarray was utilized to investigate the changes in gene
expression in grass shrimp collected from two areas in Weeks Bay (Mobile, Alabama).
One is a traditionally normoxic location (WBM), and the other is a traditionally cyclic hy-
poxic location (WC). There were no significant differences in egg counts between grass
shrimp at WBM and WC, although the WBM shrimp had more eggs than WC shrimp.
Shrimp from WC had a significant higher number of parasites than those from WBM. Six
genes were significantly down-regulated in WC shrimp relative to WBM. All of those
genes were also found in the SSH down-regulated cyclic DO library. A putative vitel-
logenin was the most significantly up-regulated gene in WC shrimp. Hemocyanin was
found in both up- and down-regulated genes. It appears that grass shrimp hemocyanin
has at least two distinct subunits. The up-regulated hemocyanin subunit showed high se-
quence similarity to the WSSV-inducible hemocyanin gene of Marsupenaeus japonicus
and may function in pathogen defense. Hypoxia conditions in field locations were less se-
vere than those in laboratory exposures, which may account for the observation that few
significant genes were identified in field studies.

Keywords - Palaemonetes pugio; grass shrimp; crustacean; microarray; hypoxia;

gene expression; annotation.

Introduction

In addition to chronic hypoxia in stratified deeper water, less severe episodic and

often cyclic hypoxic conditions can occur during the summer time in shallow waters in
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coastal estuaries. Smith and Able (2003) recorded DO concentrations in marsh salt pools
to characterize the responses of fishes to rapid changes of DO. The greatest DO range of
0-20 mg/L occurred in mid-July, and from mid- to late August, DO remained < 1.0 mg/L
for a long period. The effect of cyclic hypoxia is limited to a few aquatic species, such as
marsh grass shrimp Palaemonetes vulgaris (Coiro et al., 2000), flounders (Stierhoff et al.,
2006), weakfish Cynoscion regalis (Tyler and Targett, 2007), and grass shrimp (Brown-
Peterson et al., 2008).

Many crustacean species are frequently exposed to chronic and cyclic hypoxia
in their natural habitats. To evaluate the sublethal effects of cyclic hypoxia exposure on
aquatic organisms in the laboratory, research should ideally mimic cyclic conditions that
occur in the field. However, laboratory cyclic hypoxia with its rigid 24 hours DO cycle
can at best only approach the actual field exposure. The significantly expressed genes
identified during laboratory exposures must therefore be validated using field exposure to
determine if potential biomarkers identified in laboratory exposures can be used in field
studies as well.

In this study, DNA microarrays were used to measure differentially expressed
genes in grass shrimp collected from normoxic and cyclic hypoxic field sites. Since grass
shrimp are well adapted to hypoxia, and most of the shrimp caught for field study came
from the surface, there may be fewer genes changed in shrimp from cyclic hypoxic field

sites compared to laboratory cyclic hypoxia.

Materials and Methods

If not described below, please see Chapter 4.

Field Exposures

Grass shrimp were collected on September 11, 2006 from two areas (Figure 19)

in Weeks Bay (Mobile, Alabama, USA). One is a traditionally normoxic location, Weeks
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Bay Mouth (WBM, 30°22°66"N, 87°50°25”W), and the other is a traditionally cyclic hy-
poxic location, Weeks Creek (WC, 30°22°25”N, 87°49°95”W). Twenty grass shrimp were
collected by hand-held dip net from each location and the thorax/hepatopancreas was re-
moved and immediately fixed in the field in 1 mL. RNALater for subsequent RNA extrac-
tion and microarray analysis. DO, temperature and salinity were measured continuously
for 7 days (September 6-13) in both areas using a YSI Model 600XLM data sonde prior
to collection of animals.

Shrimp were collected again on September 13, 2006 from the same locations in
Weeks Bay. Twenty grass shrimp were collected by hand-held dip net from each loca-
tion and placed into buckets with aerated water and transported to the laboratory for egg

counts and dissection, following standard protocols.

Experimental Design

A simple reference design with dye swap was employed for field studies. A series
of replicates were hybridized with the grass shrimp collected from normoxic (WBM) and

hypoxic (WC) locations. Each sample was hybridized equally with Cy3 or Cy5 dye.

Results
Water Quality Parameters and Grass Shrimp

The average length of grass shrimp collected on September 11, 2006 in WBM

and WC were 28.6 & 3.30 (mm) and 25.6 £ 2.96 (mm), respectively. Shrimp collected at
WBM were longer than those at WC (p < 0.01). The measured DO and salinity for 5 days
prior to field collection was 6.34 &= 1.84 (mg/L) and 15.85 % 2.15 (%0) for WBM (Fig-
ure 20), and 1.05-8.87 (mg/L) and 16.85 £ 2.15 (%o) for WC (Figure 21), respectively.
During the collection (10-11 AM), the temperature, pH, DO, and salinity were 27.77 (°C),
7.46 (pH), 7.76 (mg/L DO), and 13.36 (%0) for WBM, 26.32 (°C), 6.95 (pH), 3.32 (mg/L
DO), and 12.89 (%o) for WC, respectively. The time periods during which measured DO
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Figure 19: Map of collection sites. Top: Weeks Bay located near Mobile Bay’s
eastern shore. Center: Weeks Creek, cyclic hypoxic site. Bottom: Weeks Bay Mouth,
normoxic location.
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was in the ranges of < 2 (mg/L DO) and between 2-3 (mg/L DO) over the 5 days record-
ing time were 0 and 255 min for WBM, and 285 and 1005 min for WC, respectively.

The average length and weight of grass shrimp collected on September 13, 2006
were 28.5 + 3.63 (mm) and 202.51 (mg) for WBM, and 25.9 &+ 4.95 (mm) and 157.45
(mg) for WC, respectively. Shrimp collected at WBM were slightly longer and heav-
ier than those at WC (p=0.04). During the collection (8-9 AM), the temperature, pH,
DO, and salinity recorded as 27.70 (°C), 7.85 (pH), 5.21 (mg/L DO), and 16.33 (%.) for
WBM, 27.98 (°C), 7.17 (pH), 2.38 (mg/L DO), and 20.38 (%0) for WC, respectively. Total
number of eggs and parasites were 2691 (134.55 4 10.95) and 42 (2.1 4 0.8) for WBM,
and 2381 (119.05 £ 14.00) and 138 (6.9 & 1.9) for WC, respectively.

RNA Extraction

RNA concentrations were determined using a NanoDrop Spectrophotometer (ND-
1000, see Chapter 4). The RNA concentration was 2.04 £ 0.77 ug/ul. The ratios of 260/280
and 260/230 were 2.06 &= 0.04 and 2.22 + 0.04, respectively. No RNA degradation was

shown by running diluted samples on RNA Nano Chips (Agilent Bioanalyzer 2100).

Microarray Hybridization and Analysis

Dye swaps were performed for replicate arrays using the RNA samples from
WBM and WC. A model was established using the spatial correlation estimated between
within-array duplicates (Smyth et al., 2005, Chapter 4). The fold changes and significant
tests reported in Table 17 were corrected by any probe-specific dye effects. The signif-
icant genes were selected at p = 0.05. It is rather striking that most significantly down-
regulated genes in WC grass shrimp were also in the SSH down-regulated cyclic DO 1i-

brary. A putative vitellogenin was the most significantly up-regulated gene in WC shrimp.
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Figure 20: Dissolved Oxygen and Salinity at WBM from September 6 to 13, 2006.
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Dissolved Oxygen and Salinity of WC from September 6-11, 2006
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Figure 21: Dissolved Oxygen and Salinity at WC from September 6 to 11, 2006.
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Discussion

The role of oxygén in development, physiology, and pathology is an area of long-
standing biological interest. Most of our understanding about the role of oxygen in mech-
anisms and gene expression patterns comes from studies on mammals or well-characterized
mode] organisms, such as human (Gao et al., 2002), Caenorhabditis elegans (Jiang et al.,
2001), Drosophila melanogaster (Bacon et al., 1998; Lavista-Llanos et al., 2002), and
Danio rerio (Ton et al., 2003). In contrast, the effect of changing oxygen tension in aquatic
environment has been little studied, especially for crustaceans. Oxygen enters the water
body by photosynthesis of aquatic biota or by the physical transfer across the air-water
interface. The maximum oxygen concentration in estuarine water (~35 ppt salinity) is
about 7 mg/L at 20°C and 1 atmosphere pressure. The critical oxygen concentration at
which grass shrimp can’t uptake sufficient amount of oxygen from water to sustain aer-
obic metabolism, so they must turn to anaerobic metabolism, is 30-35 torr, or 1.8 mg/L.
(Cochran and Burnett, 1996b).

Oxygen concentrations in estuarine waters often change in a diel pattern and can
drop periodically below 1.8 mg/L.. In previous laboratory studies we have measured the
effects of DO cycles on gene expression. However, these artificial cycles can only ap-
proach but not reproduce DO cycles as they occur in the field. For example, in this field
study, DO, temperature, and salinity were recorded continuously using a multi-parameter
YSI sonde, every 15 min for 5 days. For WBM, the minimal DO is 2.08 mg/L. During
this period, 2.6% of measured DO is in the range of 2-3 (mg/L DO). For WC, the minimal
DO is 1.05 mg/L. 2.2%, 2.0%, and 14.7% of DO concentrations measured in WC are in
the ranges of < 1.5, 1.5-2, and 2-3 (mg/L. DO), respectively. For cyclic laboratory expo-
sures in Chapter 5, 21.2%, 11.1%, and 14.9% of DO are in the ranges of < 1.5, 1.5-2, and
2-3 (mg/L DO), respectively. Clearly, grass shrimp exposed to cyclic DO in the laboratory
experienced more severe hypoxia than those collected from cyclic DO field site.

In addition, the grass shrimp from normoxic and hypoxic locations were usually



161

collected from the water surface, whereas DO was measured at the bottom using a Y SI
sonde. Finally, grass shrimp can climb out of water during periods of oxygen deficiency
(Welsh, 1975; Anderson, 1985). In view of all this, we would expect fewer genes to be
changed in grass shrimp from our field cyclic hypoxia site relative to laboratory cyclic
hypoxia.

For grass shrimp collected on September 13, 2006, there were no significant dif-
ferences in egg counts between grass shrimp at WBM and WC, although the WBM shrimp
had more eggs than WC shrimp (134.55 & 10.95 vs. 119.05 £ 14.00 eggs). A similar re-
sult was also observed in laboratory cyclic exposure. There is no significant difference
in the number of eggs of shrimp in hypoxic and normoxic conditions. However, it takes
shrimp in cyclic hypoxia longer to produce the second brood (Brown-Peterson et al.,
2008). Furthermore, shrimp from WC had a significant higher number of parasites than
those from WBM (6.9 £ 1.0 vs. 2.1 £ 0.8 parasites per shrimp, p = 0.015). This suggests
shrimp located in the cyclic DO area may be more stressed and susceptible to parasite
infestation than shrimp from the normoxic site.

One family of genes that shows significant changes in crustaceans in response
to hypoxia is the hemocyanin gene family (Brown and Terwilliger, 1999; Terwilliger
et al., 1999, 2006; Brown-Peterson et al., 2008). Hemocyanins are multisubunit oxygen-
transporting proteins in arthropods and mollusks. Tﬁe hemocyanin subunits of arthropods
can self-assemble into hexamers or multi-hexamer complexes. In addition to its role as an
oxygen carrier, hemocyanin has been found to function in the innate immune response.
Phenoloxidase, a related copper protein, catalyzes the hydroxylation of monophenols such
as tyrosine to diphenols and further oxidizes them to highly reactive quinones (Johansson
and Soderhall, 1996; Soderhall and Cerenius, 1998). These quinones are compounds with
antimicrobial and antifungal properties that are critical in the arthropod immune response.
Terwilliger et al. (2006) cloned and sequenced the complete cDNA of six hemocyanin

subunits, two cryptocyanins, and one prophenoloxidase of Cancer magister. Alignment
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of all nine amino acid sequences shows high similarity and high degree of conservation in
this family. Hemocyanin transports oxygen used by phenoloxidase, and even functions as
a phenoloxidase under certain conditions (Zlateva et al., 1996; Decker and Rimke, 1998;
Decker and Tuczek, 2000). Moreover, hemocyanin subunits have recently been found to
contribute to the immune function. Crayfish hemocyanin without domain I becomes an
active phenoloxidase (Lee et al., 2004), and some antimicrobial peptides are derived from
the C-terminal hemocyanin domain (Decker and Jaenicke, 2004).

Finally, a specific hemocyanin subunit is up-regulated in shrimp infected with
WSSV virus (Lei et al., 2008). In this study, one hemocyanin gene (37A-F04, most sim-
ilar to Gammarus hemocyanin subunit 1) is down-regulated in shrimp exposed to cyclic
hypoxia, while a second distinct hemocyanin gene (41C-B09, most similar to Litopenaeus
hemocyanin) is up-regulated. It appears that grass shrimp hemocyanin has at least two
distinct subunits. Considering grass shrimp from the cyclic DO location are heavily in-
fected with parasites, we speculate the up-regulated hemocyanin subunit, which shows
high sequence identity (75%, E=4E-77) with WSSV-inducible hemocyanin gene of Mar-
supenaeus japonicus, may function in pathogen defense.

In conclusion, only a few genes are differentially expressed in grass shrimp ex-
posed to cyclic hypoxia in the field study relative to those collected from a normoxia ref-
erence site. Compared with laboratory chronic and cyclic exposures, gene expression of
grass shrimp was not as much affected by cyclic hypoxia probably because field DO con-

ditions at our study site were less severe than those used in our laboratory studies.
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CHAPTER VII

SUMMARY

Occurrence and severity of hypoxia is increasing in coastal and estuarine environ-
ments, and recovery of impacted habitats and living resources is slow. Detection of early
effects of hypoxia is needed for timely remedial action to be taken. The overall objec-
tives of this research was to develop molecular indicators of dissolved oxygen stress to as-
sess the biological impact of hypoxia in coastal estuaries and validate their use through a
combination of laboratory and field studies. In order to assess if the molecular indicators
can be used widely along coastal ecosystems, the hypoxia responsive biomarkers must be
identified from an oxygen-sensitive and hypoxia-tolerant species that has a wide range of
geographical distribution. Grass shrimp, Palaemonetes pugio, is one of the most inten-
sively studied crustaceans in eco-toxicology, and dissolved oxygen regulates its distribu-
tion and abundance along the shores of the Atlantic and Gulf of Mexico. It has been rec-
ognized as an excellent model for the search of molecular biomarkers of oxygen stress in
estuarine systems. Therefore, this study determined which genes are significantly up- or
down-regulated in grass shrimp exposed to chronic and cyclic hypoxia in the laboratory,
and evaluated if these hypoxia-responsive genes can be used as indicators of DO stress in
the aquatic environment. To achieve these goals, this study addressed the following spe-

cific research objectives.

Objective 1: Clone and sequence grass shrimp HIF.

All organisms possess mechanisms to maintain oxygen homeostasis, which are
essential for survival. In aquatic ecosystem, hypoxia is a state of oxygen deficiency in
which the concentration of dissolved oxygen in the water column decreases from nor-

moxic 7 mg/L to below 2 mg/L (NSTC, 2003). The hypoxia inducible factor (HIF), con-

served during evolution from nematodes to flies to vertebrates, is a key transcription fac-
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tor that controls a variety of cellular and systemic homeostatic responses to hypoxic stress
(Semenza, 1998). The existence of HIF-1a has not been characterized in crustaceans,
which experience wide fluctuations of oxygen tensions in their aquatic environment.
HIF-10 homolog in grass shrimp was cloned and sequenced using RT-PCR and
RACE thus demonstrating the existence of HIF-1a gene in crustaceans. The 3822 bp
full-length HIF-10, cDNA encodes a protein sequence of 1057 amino acids that shows
a 46% similarity to Tribolium castaneum HIF-1 protein. Grass shrimp HIF-1¢ protein
also shows a high level of conservation with other HIF-1a proteins in the bHLH domain,
two PAS domains, an ODD domain with two proline hydroxylation motifs (LTHLAP and
MRAPFIP), and a C-TAD with an asparagine hydroxylation motif (EVNAP). However,
grass shrimp HIF-1a protein lacks N-TAD, and has a unique 230 amino acid sequence
that isn’t found in any vertebrate HIF proteins. Similar conserved domains and motifs
suggest that grass shrimp HIF-1a protein is regulated by similar molecular mechanism
as other HIF- 10 proteins. Successful cloning of grass shrimp HIF-1a gene is only the
first step to fully understanding the response mechanisms in crustaceans exposed to hy-
poxia. More studies are needed to determine whether HIF expression at the mRNA (see
Objective 3) and/or protein levels can be used as a potential molecular indicator of hy-

poxic stress in laboratory and field studies.

Objective 2: Perform sequence and bioinformatic analysis of ESTs from SSH libraries.

Genomics and related approaches have increasingly enhanced our understanding

of the mechanisms that underlie toxic effects of chemicals on living tissues of various or

ganisms and may help to identify gene expression profiles that may serve as biomarkers
of exposure (Calzolai et al., 2007). Six libraries of expressed sequence tags (ESTs) were
constructed by suppression subtractive hybridization (SSH) from the grass shrimp ex-
posed to environmental (moderate, severe, and cyclic hypoxia, copper, and pyrene) and

biological (molt) stress. An in-house pipeline of cleaning, clustering, and assembling was
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built for sequence analysis, and the ESTs were annotated by similarity searches against
different public databases. GO and pathway analysis of the resulting potential transcripts
revealed that stressor specific genes were present in different libraries. Several genes in-
volved in sulfur redox and (homo)cysteine metabolism were all down-regulated in re-
sponse to cyclic hypoxia. Up-regulation of cytochrome ¢ oxidase subunit I and down-
regulation of vitellogenin was a common response to chronic (1.5 mg/L and 2.5 mg/L)
and cyclic DO exposures. The molting process was accompanied by changes in expres-
sion of many genes not found in the hypoxia/copper/pyrene libraries. The cDNA clones
and sequence information can be used for future functional analysis and microarray de-

sign to monitor the environmental stressors using grass shrimp in coastal ecosystems.

Objective 3: Determine if HIF can be used as an indicator of chronic and cyclic hypoxia

exposure by analyzing HIF expression levels using microarrays.

Potential putative genes selected from SSH libraries and HIF-1o were used to
construct a cDNA microarray to measure gene expression changes and genetic pathways
involved in response to hypoxia. Four HIF 1o clones didn’t show differentially expression
during chronic hypoxia exposures. Similarly, none of the HIF clones showed significant
changes in expression during cyclic hypoxia exposures and field studies. Thus HIF can’t

be used as biomarker of chronic and cyclic exposures in both laboratory and field studies.

Objective 4: Determine if expression of hypoxia responsive genes can be used as an in-
dicator of chronic and cyclic hypoxia exposure in the laboratory and field using microar-

rays.

The microarrays were used to examine differentially expressed genes in hypoxic
vs. normoxic groups at 6 (H6), 12 (H12), 24 (H24), 48 (H48), 120 (H120), and 240 (H240)
hours exposure to chronic hypoxia. Cluster analysis showed two response patterns, com-

posed of an up- (including H6, H24, and H120) and down-regulated (including H12, H48,
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and H240) dominated cluster. Venn diagrams of differentially expressed genes showed
there is no gene up- or down-regulated common to all six groups. Changes of significant
genes are too dynamic to serve as biomarkers of hypoxia stress in grass shrimp. However,
some genes appear unique for specific time points. Most selected differentially expressed
genes on the microarrays also showed similar up- or down-regulated patterns in qPCR.

Differentially expressed genes were determined in hypoxic vs. normoxic groups
after 1, 2, 5 and 10 days exposure to cyclic hypoxia. Sampling on each day was con-
ducted at two different time series, one in the morning (representing low DO, CA) and
one in the afternoon (representing high DO, CP). There are distinct differences between
the number and identity of specific genes that are significantly down- or up-regulated in
shrimp collected at the low DO and high DO points of the cyclic DO cycle. However,
cluster analysis showed that the overall response patterns of high (CP) and low DO (CA)
exposures were in the same cluster at 24 hrs, 48 hrs, and 120 hrs. In contrast, the response
patterns at different time points were in different clusters. There is no gene shared by any
of the eight exposure groups. None of significant differentially expressed genes can serve
as biomarkers of cyclic hypoxia stress in grass shrimp. Cyclic (high) DO regulated the ex-
pression of genes associated with a broader range of functional categories and pathways
compared to cyclic (low) DO.

During cyclic hypoxia, microarray results had poor agreement with gPCR data.
One possible explanation is that different modes of reverse transcription PCR results in
the disagreement between microarray and gPCR. RNA used for microarray was reverse-
transcribed with Oligo(dT);g primer, while the same RNA was amplified in the presence
of random hexamers for gPCR. Random hexamer gives full length transcripts on aver-
age, and Oligo(dT) generates first strand cDNA from 3’ end of the transcripts. Better val-
idation may be achieved if primers designed from 3’ end of the transcripts are used for
gPCR.

In addition to genes obtained from the SSH libraries, several potentially hypoxia-
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responsive genes, including CAMT, mSOD, cSOD, and trachealess, were cloned using a
gene-by-gene method, and showed significant differences in expression at certain time
points under chronic and cyclic hypoxia exposures. However, none of the genes are sig-
nificantly differentially expressed at all time points according to the cDNA microarray.

Only a few genes are differentially expressed in grass shrimp exposed to cyclic
hypoxia in the field study relative to those collected from a normoxic reference site. Com-
pared with laboratory chronic and cyclic exposures, gene expression of grass shrimp was
not as much affected by cyclic hypoxia probably because field DO conditions at our study
site were less severe than those used in our laboratory studies. Hemocyanin was found in
both up- and down-regulated genes. It appears that grass shrimp hemocyanin has at least
two distinct subunits. Since hemocyanin has been shown to play a role in immune defense
we suggest that up-regulation of hemocyanin may have been due to the presence of high
levels of parasite infestation at the cyclic DO field site.

Studies presented here demonstrated that while a HIF-1a homolog was success-
fully cloned from the grass shrimp, grass shrimp HIF is constitutively expressed and not
induced by chronic and cyclic hypoxia exposures in both laboratory and field studies.
While several potentially hypoxia-responsive genes were cloned and sequenced, none
of genes are consistently and significantly differentially expressed according to cDNA
microarray during chronic and cyclic hypoxia exposures. Some differentially expressed
genes were identified at certain time points during laboratory and field exposures, how-
ever, the lack of consistency limits their use as sensitive biomarkers of hypoxia stress in
aquatic ecosystem.

This study presents the first grass shrimp cDNA microarray constructed from a
limited number of cDNA clones to detect gene expression changes in response to hy-
poxia. The utility of shrimp microarray was confirmed in this study. GO-based and pathway-
based mapping of hypoxia-responsive genes to biological pathways and processes repre-

sents a key step in microarray data mining to illustrate why and how genes response to



168

hypoxia. Microarray provides a general picture of the molecular respond to hypoxia ex-
posures under laboratory and field conditions, and of the regulation pathways affected by
hypoxia exposures. Data analysis revealed that the response to chronic hypoxia was pro-
nounced and transient at the experimental time points, and grass shrimp don’t respond
gradually to chronic exposure. Gene expression changes of grass shrimp in response to
cyclic hypoxia conditions were even more dynamic at different time points. The expres-
sion levels are not only dependent on the duration of exposure but also on the time of day.
The dynamic nature of the response to hypoxia precludes a biologically meaningful inter-

pretation of the limited data generated by this study.
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