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ABSTRACT 

COINCIDENCE THEORY: SEEKING A PERCEPTUAL PREFERENCE FOR 

JUST INTONATION, EQUAL TEMPERAMENT, AND PYTHAGOREAN 

INTONATION IN EXCERPTS FOR WIND INSTRUMENTS 

by Derle Ray Long 

December 2008 

Coincidence theory states that when the components of harmony are in enhanced 

alignment the sound will be more consonant to the human auditory system. An 

objective method of examining the components of harmony is by investigating 

alignment of the mathematics of a particular sound or harmony. The study examined 

preference responses to excerpts tuned in just intonation, Pythagorean intonation, and 

equal temperament. Musical excerpts were presented in pairs and study subjects 

simply picked one version from the pair that they perceived as the most consonant. 

Results of the study revealed an overall preference for equal temperament in 

contradiction to coincidence theory. Several additional areas for research are 

suggested to further investigate the results of this study. 
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CHAPTER I 

INTRODUCTION 

Conductors of wind instrument ensembles must possess the ability to audibly 

detect intonation problems in harmony produced by an ensemble. This skill provides 

the initial effort in a four step intonation process that combines detection, analysis of the 

problem, selection of a remedy, and synthesis of the remedy into rehearsal procedures 

and performance practice. Conductors utilize this process to provide information and 

training for an ensemble with the goal of developing proficiency by each performer in 

each of the four steps. A combined effort by conductor and ensemble members is 

required to create and maintain consonant intonation in wind instrument ensembles. 

One problem that wind ensemble conductors and performers encounter in daily 

rehearsal is the juxtaposition of multiple intonation systems and the task of choosing 

one that will produce the most consonant sound. Brass instruments have the capacity 

to play in just intonation due to the fact that the valves derive notes from the natural 

overtone series. Remedies for intonation problems in brass instruments generally 

consist of small changes in the embouchure, changes in the length of slides, and 

alternate fingerings. Keyboards, melodic percussion, and woodwinds are constructed 

to produce a scale that primarily conforms to equal temperament. Remedies for 

intonation problems in woodwinds generally consist of small embouchure changes and 

alternate fingerings. All remedies are contingent upon correct embouchure formation, 

adequate air support, characteristic tone quality, and the ability to detect discordant 

beats that are aurally perceived when frequencies do not coincide. 

Norden (1936) wrote, "As soon as we sing sharp or flat of the true intervals, 



2 

beats arise..." (p. 219). Wilkinson (1988) offered an acoustic explanation of beats that 

described alternating reinforcing and canceling effects between vibrating frequencies as 

they move in and out of synchronism (p. 29). Benade (1990) stated that two 

simultaneously sounding frequencies which move out of synchronism five times each 

second will produce five beats of audible interference per second (p. 239). 

A psychoacoustic explanation of the beating phenomenon describes perception 

of beats as a product of neural processing in the cochlea. Plomp (1967) referred to this 

phenomenon as a nonlinear, or distorted, perceptual response by the human auditory 

system (p. 462). A large portion of the literature on the reception and processing of 

sounds by the human nervous system identified beats as nonlinear responses due to the 

fact that they are not components of the original stimulus tones. 

Beats have the potential to create distortion in a harmony from the moment they 

are detected to a point where the frequencies are separated sufficiently so that two 

distinct tones are perceived. The research indentifies the point at which the human 

auditory system is capable of detecting a change in pitch as the just noticeable 

difference Gnd). A review of the literature revealed that research on the jnd largely 

involved presentation of tones in a sequential, or melodic pattern, and not the 

simultaneous sounding of tones that comprise a harmony. 

Helmholtz (1877/1954) wrote that beats become unpleasant at a rate of six per 

second and reach maximum discord at around thirty-three per second (pp. 164-172). 

Wilkinson identified the point of separation where two distinct sounds are perceived as 

the "limit of discrimination" (p. 31). The literature did not establish a correlation 

between the limit of discrimination and the maximum discord beat rate established by 
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Helmholtz. It is the region of audible perception between frequency coincidence and 

the limit of discrimination where conductors of wind instrument ensembles are able to 

detect beats. It is this region that was a focus of the current study. 

Terhardt (1974) considered frequency distance as a decisive parameter of 

consonance between two tones (p. 1061). Frequency distance may be expressed by the 

formula f\-fi which is also identified as the beat frequency. This is also the formula 

used to calculate the psychoacoustic phenomenon identified as difference tones. The 

Oxford Companion to Music referred to beats as a type of difference tone (p. 9). 

Distinction between the two is that frequencies associated with the generation of beats 

have critical bands that overlap. 

The critical band is identified as a small range of frequencies that are processed 

along the same portion of the basilar membrane. Two sounds with perfectly 

synchronized frequencies reinforce each other along this area of the membrane and 

produce what Truax (1999) identified as an amplitude modulation (p. 1). Plomp and 

Levelt (1965) determined maximum consonance at the unison of identical frequencies, 

also referred to as a "perfect unison" in The Oxford Companion to Music (p. 9). This 

offered an argument, in opposition to an early theory by Rameau (1722/1971), for 

inclusion of the unison as an interval by which harmony consonance may be perceived 

(P- 8). 

As a unison moves away from synchronism, the alternating reinforcing and 

canceling effect is perceived as beats within the sound. Wilkinson identified these 

types of beats as "first order beats" and wrote that they are created when "the waves 

alternately reinforce each other and cancel each other out" (p. 29). As the frequency 
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separation approaches the limit of discrimination the beating sensation becomes 

increasingly unpleasant. At the limit of discrimination, the perception is no longer 

what the Oxford Companion to Music referred to as a "near unison" and instead is 

perceived as two separate tones (p. 114). Jourdain (1997) wrote that this is the area 

where critical bands of the tones no longer overlap (p. 101). 

Two non-coincidental frequencies whose critical bands overlap will produce a 

sound that is rough. As the frequencies separate to the point where their critical bands 

no longer overlap, the roughness caused by beating begins to diminish. Jourdain 

identified that point of separation as approximately the interval of a minor third (p. 

101). Truax identified the critical bandwidth in complex tones as the smallest 

frequency difference between two partials such that each can be heard as a separate tone 

(P- 1). 

Terhardt (1974) wrote that when beats occur rapidly, roughness is perceived in 

the sound that is strongly correlated with dissonance (p. 1061). Denckla (1997) added 

that "the rate of beating is proportional to the amount of dissonance" (p. 1). Terhardt 

and Denckla described dissonance on a broader scale than was required by the current 

study. They described dissonant sounds that are the product of overlap between critical 

bands. Their roughness theory explains why the interval of a minor second is 

perceived as more 

dissonant than a perfect fifth. The critical bands of frequencies that comprise a minor 

second overlap and beats generated by their difference add roughness to the composite 

sound. The critical bands of frequencies that comprise a perfect fifth do not overlap. 

Seashore (1967) wrote, "Consonance depends fundamentally on the degree of 
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coincidence of sound waves" (p. 126). Whitcomb (2005) discussed what is identified 

in the literature as Coincidence Theory and attributed the first use of that term to H. F. 

Cohen in 1984 (p. 69). He wrote, "The degree of consonance of a group of sounds is 

determined by, and is proportional to, the rate at which the wave patterns of those 

sounds coincide" (p. 70). Whitcomb (1999) had earlier traced coincidence theory back 

to the writings of Benedetti, Galileo, and Mersenne (pp. 12-16). 

The current study focused on the presence of beats within a narrow window, 

where one boundary was frequency coincidence and a second boundary, the limit of 

discrimination. This is the area where beats can be audibly detected by wind 

instrument ensemble conductors. To facilitate examination of this area, the study 

focused on similar frequencies among primary stimulus tones, partials of complex 

tones, and difference tones. The goal was to examine harmonies that are perceived as 

consonant to the human ear and provide information as to why those sounds are more 

agreeable than others. 

Need for Study 

A review of the available research pointed to areas where information is lacking. 

The available literature was deficient in studies that: 

1. Addressed perceptual preference for harmony consonance utilizing one intonation 

system or another. 

2. Examined harmony intonation within a musical context. 

3. Utilized complex tones as auditory stimuli in an investigation of intonation. 

4. Examined coincidence theory as an indicator of harmony consonance. 

Investigations by Johnson (1962) and Bisel (1987) addressed some of these 
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issues. These studies investigated perceptual preference for one intonation system over 

others. There is need for additional study in this area, particularly for a study that 

combined musical context and complex tones in an investigation of perceptual 

preference for harmony intonation consonance. 

Statement of the Problem 

The research problem was to apply an auditory perception test in which study 

participants chose a musical excerpt that they perceived as the most consonant for 

harmony intonation. 

Sub-problems 

1. Musical excerpts were chosen as examples of harmony intonation problems 

encountered by wind instrument ensemble conductors. 

2. The excerpts were converted to MUS and MIDI files using Finale 2008 music 

notation software. 

3. Excerpts were reproduced using a computer capable of synthesizing complex tones 

similar to those produced by wind instruments. This computer was equipped with 

Justonic Pitch Palette software which allows playback of the excerpts in selected 

intonation systems. The computer was also equipped with Roland Virtual Sound 

Canvas 3.2 software that enhanced the computer generated sounds. 

4. A compact disc was produced that contains the excerpts in a format that allowed 

collection of data. 

5. A data collection document was developed that allowed an expressed choice for 

excerpt tuning among study participants. 

6. The compact disc was distributed to study participants and a preference response 
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solicited from said group using the data collection document. 

7. The data was analyzed and reported. 

Purpose of the Study 

The purpose of this study was to investigate whether enhanced mathematical 

coincidence of harmony components would influence the expressed preference of study 

subjects for musical excerpts played in equal temperament, just intonation, or 

Pythagorean intonation. 

Scope and Delimitations 

The number of musical excerpts used in the study was limited to three. These 

excerpts were selected from the MLR Instrumental Score Reading Series published by 

G.I. A. Publications. Consideration of compositional style or technical difficulties in 

each excerpt did not serve as determining factors for inclusion in this study. 

Techniques utilized to create this music are considered to be representative of accepted 

compositional practice. The determination of excerpts used in this study was 

accomplished through a series of pre-tests among student musicians at the University of 

Louisiana at Monroe. 

The presentation of musical examples was arranged so that study subjects spent 

no more than thirty minutes receiving instructions, listening to the excerpts, and 

responding to the data collection document. The intonation systems utilized in this 

study were Pythagorean intonation, equal temperament, and just intonation, just 

intonation served as the system representative of maximum alignment of harmony 

components as described by coincidence theory. 

Definition of Terms 
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Beats are acoustical disturbances created when two or more frequencies do not 

vibrate coincidentally. 

Beat frequency refers to the rate of beating interference each second. 

Cents refers to a unit of tuning measurement equal to 1/100 of a semitone. 

Chord root refers to the note on which a harmony is structured. 

Commas are minute intervals encountered in intonation systems. The most 

common are the Pythagorean comma (also referred to as the Ditonic comma) with ratio 

531441/524228, the Syntonic comma (also called the Comma ofDidymus) with ratio 

81/80, and the Septimal comma with ratio 64/63. 

Consonance refers to a combination of sounds that are perceived by the listener 

as being at rest. Consonance has also been referred to as a sound that is agreeable. 

Difference tones are additional sounds created by the interaction of two 

frequencies. The frequency of a difference tone can be determined by the formula; 

fi -f\ = difference tone. Difference tones are optimally generated when pure intervals 

are utilized. Difference tones are useful in the determination of optimum frequency 

coincidence within a harmony. 

Dissonance refers to a combination of sounds that are not perceived by the 

listener as being at rest. Dissonance has also been referred to as a sound that is 

disagreeable. 

Equal temperament is an intonation system based on successive powers of the 

twelfth root of two. This irrational quantity may be expressed as n V .̂ 

Extended Reference is a term used by Boomsliter and Creel in 1961 to describe a 

system of intonation that identifies a tuning root for each harmony, which may or may 
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not be the chord root. 

Frequency is defined as the number of vibrations per second of a tone. It is 

commonly expressed in cycles-per-second, abbreviated cps. The acoustic term for 

frequency is hertz. 

Harmony is defined as a combination of sounds presented simultaneously. 

Tonal harmony incorporates one key at a time within its structure. A polytonal 

harmony incorporates more than one key in its structure. In terms of intonation, a 

polytonal harmony will have a tuning root for each key present, which may be 

identifiable as the chord root or key tonic, but is not limited to it. An atonal harmony 

has no discernible key within its structure. While a chord root may not be identifiable 

in an atonal structure, a tuning root is possible with the intended outcome of creating 

optimum frequency coincidence within the harmony structure. 

Just intonation is based on ratios of simple whole numbers found in the natural 

overtone series. 

Key Tonic refers to a tone on which the scale is based. For intonation systems 

other than extended reference, all intervals have a direct mathematical reference to the 

key tonic. 

Meantone Temperament is also referred to as one-quarter meantone. It is based 

on pure major thirds (5:4). The fifth in mean-tone intonation is not pure because each 

fifth is tempered by one-fourth of the syntonic comma. 

Pitchbend refers to the ability of some MIDI keyboards to bend the pitch of 

notes above or below a given pitch, commonly in relation to equal temperament. 

Pitchwheel refers to the capability of some computer notation programs to adjust 
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the pitch of individuals notes above or below a relative pitch, which is commonly in 

relation to equal temperament. 

Pure Harmony is comprised of pure intervals. 

Pure Interval refers to an interval prescribed by a pure ratio. 

Pure Ratio is one prescribed by simple, whole numbers such as found in the 

natural overtone series. 

Pythagorean intonation is based on a cycle of pure fifths. The concept of 

Pythagorean intonation is derived from the projection of twelve intervals of a fifth. 

The enharmonic note derived from this projection is not a mathematically correct 

frequency multiple of the primary tone. 

Ratio refers to the mathematical relationship that determines the size of an 

interval. It is a proportional quantity expressed in a common comparative format. For 

example, the ratio associated with a perfect fifth is expressed as 3:2. The higher tone 

of the perfect fifth has three units of frequency and the lower tone has two units. Other 

common ratios are 2:1 (octave), 4:3 (perfect fourth), 5:4 (major third), 6:5 (minor third), 

and 9:8 (whole tone). 

Sine Tone is a sound produced without upper harmonics. Only the fundamental 

frequency is present. This is in contrast to a complex tone in which many harmonics 

may be present above the fundamental tone. All wind and string instruments create 

complex tones to some degree. The presence and strength of various harmonics in the 

composite sounds comprise the unique tone quality of each instrument. Sine tones are 

also referred to in the literature as sinusoidal or pure tones. 

Tonic is the note on which a scale or harmony is based. In a direct reference 
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intonation system, all intervals have a direct relationship to the tonic. This is in 

contrast to extended reference in which a flexible tonal center may not be the tonic. 

Tuning Root refers to a note on which the harmony is tuned. The tuning root is 

not necessarily the chord root and allows the largest number of intervals within the 

harmony to be prescribed by simple whole number ratios. 

Statement of the Hypothesis 

Small numbers of beats among similar frequencies distort harmony consonance. 

Elimination of beats will increase the perception of consonance in the sound. The null 

hypothesis for this study may be expressed as Hu: f0 = fe. The alternate hypothesis 

may be expressed as Hu: f0 ± fe. 



12 

CHAPTER II 

REVIEW OF RELATED LITERATURE 

Simple Number Ratios 

Discovery of a connection between simple number ratios and consonant intervals 

is generally attributed to Greek philosopher and mathematician Pythagoras (c. 500 B.C.) 

In a discussion of the theories of Pythagoras, Isacoff (2001) offered: 

Pythagoras' discovery was that the most "agreeable" harmonies-those whose 

tones seem to be "in sync" with each other, like marchers lockstepped to the beat 

of the same drum-are formed by the simplest kind of mathematical relationships. 

If the vibrations of one tone are twice as fast as the vibrations of another's, for 

example, the two will blend so smoothly the result will sound almost like a 

single entity, (p. 34) 

The cornerstones of Pythagoras' contribution to consonance theory connect the interval 

of an octave to the numerical ratio 2:1, the interval of a pure fifth to the ratio 3:2, and 

the interval of a pure fourth to the ratio 5:4. 

Pythagoras believed that a mathematical series of twelve pure fifths would 

produce the same note as a series of seven octaves. In actuality, a series of twelve 

fifths is sharp of the series of seven octaves by the distance of the Pythagorean comma, 

which has the numerical ratio 531441:524228. Weyler and Gannon wrote, "This 

unwieldy fraction, which we now know as the Pythagorean comma, is about a quarter of 

a semitone, a little interval with huge implications" (p. 26). The Pythagorean comma is 

one of three commas identified in the review of literature for this study. The other 

commas are the Syntonic comma with ratio 81:80 and the Septimal comma with ratio 
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64:63. 

Archytas (c. 450 B.C.) was a member of a group of Pythagorean followers 

identified in the literature as the "Harmonists" (Weyler and Gannon, p. 30). The term 

Harmonists has also been used to describe a modern group of researchers, writers, and 

composers who advocate use of just intonation for harmony consonance. (Weyler and 

Gannon, pp. 87 - 98). Archytas is credited with discovering that singers intuitively 

sing a pure third with a numerical ratio of 5:4 rather than the sharp Pythagorean third 

with ratio 81:64. Weyler and Gannon described his as follows: 

Archytas himself must have had an extraordinary ear. He literally picked these 

pure harmonic tones out of the air without any tradition or aid to guide him, 

and some of his enharmonic tetrachords suggest a keen ear that was able to 

discriminate among a variety of tiny intervals, (p. 34) 

Archytas' discovery was verified in the thirteenth century by William Odington 

and in the sixteenth century by Gioseff Zarlino. According to Weyler and Gannon, 

Odington discovered "that singers in the fauxbourdon vocal tradition intuitively used 

the pure ratio intervals and not the Pythagorean intervals" (p. 55). Use of the term 

fauxbourdon to describe Odington's discovery is confusing due to the fact that the vocal 

technique associated with that term is generally associated with the fifteenth century 

Franco-Burgundian tradition. The Oxford Companion to Music acknowledges 

ambiguity between the terms fauxbourdon and faburden, the later used to describe "a 

type of improvised polyphony, chiefly in parallel motion, in 6-3 chords with 8-5 chords 

at the beginnings and ends of phrases, popular in England from the 15th century to the 

Reformation" (p. 439). Despite confusion regarding the vocal tradition Odington 
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utilized for his observations, the fact remains that he observed singers intuitively 

singing pure thirds. 

Weyler and Gannon described Zarlino as a "choir master with a keen ear, and 

although he investigated all the options, he clearly favored the pure harmonies that the 

voices intuitively and naturally found" (p. 63). An interesting aspect of this 

observation is that consonance was initially determined through innate sensitivity of the 

human ear for a pure major third. It was subsequently determined that this interval is 

prescribed by a simple number ratio. These types of simple ratio intervals are also 

referred to as pure intervals. 

Helmholtz (1877/1954) observed that intervals prescribed by simple number 

ratios were more consonant than others: 

The justly-intoned chords, in favorable positions, notwithstanding the rather 

piercing quality of the tone of the vibrators, possess a full and as it were 

saturated harmoniousness; they flow on, with a full stream, calm and smooth, 

without tremor or beat. Equally tempered or Pythagorean chords sound beside 

them rough, dull, trembling, restless. The difference is so marked that every 

one, whether he is musically cultivated or not, observes it at once. (p. 319) 

Helmholtz's statement is important for three reasons. First, his theory of consonance 

was based on frequency coincidence of partials above the primary tones. Pure intervals 

exhibit a high degree of coincidence among upper partials. Secondly, Helmholtz 

considered difference tones as integral to harmony consonance. The literature 

indicated that pure intervals exhibit high capacity for the generation of difference tones. 

Lastly, the statement reinforced the concept that the human auditory system possesses 
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innate sensitivity for pure intervals. 

Hindemith (1942) acknowledged innate sensitivity for pure intervals: 

The ear... is the one sense organ that is unerring in its sense of measurement and 

proportion. The eye is like a mirror that reports faithfully and disinterestedly on 

what is before it. But the ear is like a fabulous sieve, that not only sorts what it 

receives into large and small, but measures it exactly. It hears simple ratios as 

beautiful and correct sounds, and it recognizes perfectly that the purity of the 

octave, the fifth, or the fourth is clouded when the proportions of length or 

vibration frequency are not in the ratios of 1:2, 2:3, or 3:4. (p. 23) 

This concept was supported by Revesz (1954) who wrote, "The intonation does not 

follow from mathematico-physical speculations—that is, it is not based on any numerical 

calculation or on physical computations—but proceeds from the musical ear, which 

seems innately inclined to the intonation of pure intervals" (p. 22). 

Terhardt (1973) echoed Hindemith and Revesz's description of innate sensitivity 

for pure intervals: 

The kind of music which is called tonal appears to prove that the human 

auditory system possesses a sense for certain special frequency intervals of 

tones. These particular intervals usually are called musical or harmonic 

intervals. They are described by frequency ratios of small integers as 1:2 

(octave), 2:3 (fifth), 3:4 (fourth), (p. 1061) 

Terhardt's statement is important in that it describes sensitivity for pure intervals in 

regards to traditional tonal music, or what is referred to in the literature as common 

practice. The statement does not describe the use of pure intervals in non-traditional, 
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polytonal, or atonal music. 

Averitt (1973) added to the discussion: 

Hence, to be in tune would mean to play intervals with ratios corresponding to 

interval ratios found in the harmonic series and in particular the following ratios: 

octave 2:1, perfect fifth 3:2, perfect fourth 4:3, major third 5:4, minor third 6:5, 

twelfth 3:1, major tenth 5:2, major sixth 5:3, and minor sixth 8:5. (p. 3) 

Averitt's statement is interesting for two reasons. First, it includes more intervals in 

the consonant category than other writers on the subject. Secondly, inclusion of the 

twelfth and major tenth intervals in this group exhibits a strict adherence to ratios found 

in the natural overtone series. 

Lloyd (1943) believed that other factors, in addition to pure intervals, contributed 

to the consonance perception of intervals: 

As a measuring instrument the ear has its natural limits of accuracy, just like the 

various means for measuring a penny. The accuracy of the ear depends on 

circumstances, such as the time allowed for making the measurement or the 

nature of the interval to be measured, (as cited in Averitt, 1973) 

His belief that the time allowed for measuring an interval helped determine the accuracy 

of the ear was supported by Boomsliter and Creel (1961). 

Lloyd's statement pointed to an additional issue of debate evident in the 

literature. Some writers believed that prolonged exposure to equal temperament had 

negatively impacted perception for pure intervals. On this subject, Yasser (1932) 

offered: 

The human ear is such, however, -at least in its present state of development— 
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that it regards as "false" every intonation that is different from the one to which 

it is accustomed. It is a well-known fact that even the just intonation of the 

diatonic scale sounds partly "false" to an ear long accustomed to the tempered 

intonation and that special conditions are necessary for the ear to regain its 

natural ability to recognize the purity of just intonation and the acoustic 

inaccuracy of tempered intonation, (pp. 166-168) 

As stated in the Introduction to the current study, the juxtaposition of just 

intonation and equal temperament in daily rehearsals and performance creates the 

potential for beats. Stoddard (1993) wrote: 

With the exception of the octave, not one interval [in equal temperament] is in 

tune. Hang on a minute, I hear you say, when I play chords on my keyboard 

they sound fine to me. That's because your ears have become so accustomed to 

these intervals that you don't notice the errors, (p. 1) 

This phenomenon was discussed early by Rameau (1722) and in the twentieth century 

by Norden (1936) who complained that our ears had been "dulled by temperament" (p. 

219) 

Barbour (1953) disputed theories regarding perception of pure intervals. He 

wrote, "Scientific studies of intonation preferences show that the human ear has no 

predilection for just intervals, not even the pure major third" (p. 197). In contradiction 

to Barbour, Cazden (1972) wrote: 

The belief that the response of consonance is entirely due to an arbitrary choice 

or judgment of the "ear" cannot be sustained, since it turns out that those 

intervals whose special quality of agreement is noted by the "ear" are precisely 
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those which can be expressed in terms of low integer values" (p. 205). 

It was evident from a review of the literature that proponents of pure intervals for 

harmony intonation outnumber opponents. 

Boomsliter and Creel 

In 1963, a study was designed and conducted to collect data on the melodic 

intonation preferences of trained musicians. In that year, the Journal of Music Theory 

reported the results of a study in which Paul C. Boomsliter and Warren Creel presented 

theories regarding an intonation system they called extended reference. In that study, 

the term extended reference was used in contrast to direct reference: 

Modern hypotheses about musical scales drawn from the partial series have 

supported the same tendency to look for direct reference to the tonic. 

Consequently, investigators have tended to interpret variety in musical pitch as 

error in performance, or personal emotionalism, or some other type of unstable 

variation from direct reference, the assumed normal supplied by the formula, 

(p. 14) 

Boomsliter and Creel developed the theory of extended reference through a study 

that utilized equipment designed "to identify the notes chosen by 'the ear of the 

musician' in playing melodies" and through the observation "that musicians, even in 

standard melodies, consistently use many notes that are 'unbelievably off pitch' if 

measured by the yardstick of the conventional scale" (p. 4). The investigation 

discovered that melodic tuning preferences chosen by study subjects did not conform to 

a conventional system of intonation, requiring the development of extended reference 

theory as a means of explaining the data. 
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In the study, trained musicians were placed at a specially constructed keyboard 

called a Search Organ. Construction of this keyboard allowed the musicians to select a 

specific tuning that they determined sounded best for the individual tones of a specified 

melody. The researchers then compiled data regarding the tuning selected for each 

note of the melody. Boomsliter and Creel concluded that the problem was not with the 

musician, but rather the manner in which tuning is measured. 

A major component of extended reference theory explains that the human 

auditory system seeks out the simplest ratio prescribing an interval. The process of this 

study discovered that the simplest ratio is not necessarily related to the tonic. This 

would explain why some tones were produced that were off pitch when measured by a 

conventional intonation system: 

For example, in certain melodies subjects produce a sharp sixth, which we call 

Lay, rejecting the La of just intonation. Lay is 27/16 to Do. In the key of C it 

is A=445.5. Lay can be understood as produced by auditory organization in 

simple ratios. It stands a pure fifth, 3/2, above Re. If Re has become a 

temporary tonal center in the organization of the melody, and the ear is tuning in 

reference to Re, then the ear will call for the simple manageable 3/2 relationship 

to Re, producing Lay. (p. 10) 

This relationship lead to the second major component of extended reference 

theory. This component is explained by the authors when they wrote, "The 

experimental results on melody patterns suggest that simple ratios also operate in 

melodic combination, with the modification that the neural system is capable of using 

simple ratios in chains, or linkages, as well as in direct relationship" (p. 10). To 
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illustrate this concept, the authors offer more detail on the tone Lay: 

The complex ratio to Do, 27/16, is a mathematical convenience in a tuning 

formula, but musically irrelevant, because the note is not acting musically with 

Do. It acts as 3/2 over Re, and should be thought of as 3/2 over Re. La, 

A=440, is 5/3 to Do, but 40/27 to Re. (p. 10) 

The last major component of extended reference theory is explained by the 

authors, "A melody typically uses direct reference at the start to establish the tonic, then 

goes into extended reference and stays there until the extended organization is resolved 

at the end, which normally is on the tonic" (p. 14). 

Overtone Series 

Discovery of the simple ratios of the overtone series is generally attributed to 

Rene Descartes in the middle of the 17th century, although his work detailing this 

discovery was not published until after his death. Also in the 17th century, Marin 

Mersenne connected the ratios of the overtone series with a major triad and a dominant 

seventh harmony. Joseph Sauveur published some of the first experimental evidence 

of the overtone series in the early 18th century. 

Discovery of the overtone series occurred at a critical time in the history of 

tuning and temperament. Weyler and Gannon (1997) wrote, "And here, at the dawn of 

the 18 century, our historical irony is in full flower as precise equal temperament and 

the laws of harmonics were being simultaneously discovered and understood at exactly 

the same time" (p. 68). This unique time in music history created an issue for 

consonance debate that continues in present day conversations on tuning and 

temperament. 
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Difference Tones 

The discovery of difference tones is generally attributed to eighteenth-century 

Italian composer and music theorist Guiseppe Tartini, with subsequent investigation by 

Sorge and Helmholtz. Leopold Mozart (1948/1988) wrote of using difference tones for 

proper intonation in violin performance: 

For if two notes, as I will indicate below, be so to speak drawn well and right out 

of the violin, one will be able at the same moment to hear a lower voice quite 

clearly, but as a muffled and droning sound. If on the contrary the notes be 

played out of tune, and one or the other be stopped even in the slightest degree 

too high or too low, then will be lower voice be false, (p. 164) 

Mozart's statement establishes two conditions for the generation of difference tones. 

First, the primary tones must be played with sufficient volume. Secondly, the tones 

must comprise a pure interval. A third condition for the generation of difference tones 

is established by Helmholtz when he wrote, "They are most easily heard when the two 

generating tones are less than an octave apart, because in that case the differential is 

deeper than either of the two generating tones" (p. 153). 

Leuba (1962) investigated the mathematical alignment of harmony comprised of 

pure intervals and the impact of resultant [difference] tones. He wrote, "It is the 

contention of the writer that unless resultant tones coincide exactly with the others 

present or implied in the harmonic structure of the music, the resultants will produce 

'beats' with the other tones being played, and hence discord" (p. 4). Leuba's 

investigation primarily addressed difference tones generated by these types of 

harmonies and not the total matrix of primary tones, partials, and difference tones. His 
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discussion presented information as a means of calculating difference tone frequencies 

generated by the triad. Figure 1 details the generation of difference tones by a major 

triad built on a C having a frequency of 264 cycles per second. 

Partials 
Primary 

Tone 2 3 4 5 6 7 8 

Note Name C C G C E G B b C 

Frequency 264 528 792 1056 1320 1584 1848 2112 

(/I) 

Difference C C G C E G Bb C 
Tones 

/2-/1 66 132 198 264 330 396 462 528 

Primary 
Tone 

Note Name E E B E G # B D E 

Frequency 330 660 990 1320 1650 1980 2310 2640 

Difference C C G C E G Bb C 
Tones 

fi-fi 66 132 198 264 330 396 462 528 

Primary 
Tone 

Note Name G G D G B D F G 

Frequency 396 792 118 1^84 1980 2376 2772 3168 

Difference C C G C E G Bb C 
Tones 

/ 3 - / 1 132 264 3 9 6 5 2 8 660 792 924 1 0 5 6 

Figure 1. Fundamentals, Overtones, and Simple Difference Tones for a C Major Triad 
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Coincidence Theory 

Whitcomb (1999) traced the origin of coincidence theory back to the writings of 

Galileo, Mersenne, and Descartes. Whitcomb (2005) attributed the first use of the term 

coincidence theory to H. F. Cohen in 1984. He wrote, "The degree of consonance of a 

group of sounds is determined by, and is proportional to, the rate at which the wave 

patterns of those sounds coincide" (p. 70). 

The coincidence theory of consonance is complicated considering the number and 

variety of instruments in a wind ensemble, the complex tones produced by those 

instruments, and the number and variety of tones produced by these types of ensembles 

during rehearsals and performances. The possibility of beating exists between all of 

the primary frequencies, partials, and difference tones. This potential for beating 

delineated a need to utilize complex tones as auditory stimuli in an investigation of 

auditory perception of harmony intonation consonance. 

Figure 1 further details the entire matrix of frequencies associated with a C major 

triad. A frequency of 264 cps was selected for the root of the triad due to the fact that a 

just diatonic scale built from this C allows an A of 440 cps. A pure major third above 

this C was calculated (264 x 5/4 = 330 cps) and a pure fifth was also calculated (264 x 

3/2 = 396 cps). These primary tones are detailed in the first box of each row. Each 

primary tone is a fundamental and the frequency of seven overtones was calculated 

above the fundamental. The note name associated with that frequency is given. The 

frequency of simple difference tones between each primary tone was calculated using 

the formula: fi — f2 = difference tone. This is not intended to prove that the difference 

tone and overtone frequencies are audible, rather to simply illustrate additional areas of 



mathematical alignment in the overall matrix. 

The areas of frequency coincidence within this matrix are evident by examining 

similar note names. One interesting aspect of this frequency matrix is revealed by 

examining areas where frequency coincidence appears to be a problem. For example, 

partial six of the overtone series on C would logically seem to create a conflict with the 

fifth component of the series on E. Specifically, this is a G of 1584 cps against a G# of 

1650 cps. While this conflict seems obvious, the fact that the frequency difference 

between the two is 66 cps, which is a C two octaves below the C at 264 cps, tends to 

reinforce the mathematical framework of the entire matrix. 

To identify the frequencies that cause beats in intervals other than the unison, a 

theory of Hermann von Helmholtz (1877/1954) is utilized. Helmholtz believed that 

beats were created by the non-coincidental frequencies of upper partials. Plomp (1967) 

offered a simple illustration of this phenomenon utilizing a mis-tuned fifth with 

frequency ratio 301:200 cps. The second harmonic of the higher tone is 602 cps. The 

third harmonic of the lower tone is 600 cps. The beating frequency between these 

partials is 2 cps (p. 462). 

Previous Studies 

Johnson (1962) used "vocally trained persons who had ensemble singing 

experience" in his study (p. 6). In contrast to Boomsliter and Creel, Johnson did not 

attempt to map the intonation system study subjects utilized in performance situations. 

He selected a common chord progression (I-V-I) as the harmony example for his study. 

A traditional chord structure was used, meaning that the root was doubled and present 

in the bass voice, and each chord had a third and a fifth. Johnson varied the position 



25 

of the chords in order to determine if any differences of preference would be caused by 

this variation. He used four different chord positions, two open and two closed, and 

utilized two different keys, the tonic and dominant. 

Johnson used Pythagorean intonation, just intonation, and equal temperament in 

the study. He tested the preference of study subjects by playing the chord progressions 

in pairs. These pairings were explained as follows: 

The test items in Experiment I consisted of two playings [sic] of a chord 

progression, once in equal temperament and once in just intonation. Experiments 

II and III were similarly constructed, using Pythagorean tuning and just intonation, 

and equal temperament and Pythagorean tuning, respectively, (p. 17) 

Johnson was also concerned about the concentration requirements placed on study 

subjects. He wrote: 

In order to keep to a minimum the problems of memory time span, the 

progressions had to be as short as possible. The chords of each progression had 

to be of sufficient duration that the listener could hear and absorb the timbre of 

their tuning, but the progression had to be brief enough that the timbre of the first 

progression of each pair was not forgotten while the second progression of the 

pair was being played. A three-chord progression with each chord having a 

duration of one second was found to be the optimum time span. (pp. 17-18) 

Johnson separated the two tuning versions of the chord progression by a one 

second delay. The test items were separated by a three second silence during which the 

subject was asked to indicate a preference for one of the progressions. The subject 

entered a lor 2 in the appropriate place on the answer sheet. Each test item was played 



a total of twenty times, ten times in one order of tuning systems and ten times in the 

reverse order. This combination of tuning versions and repetitions of the test items 

were spread out over three experiments. This resulted in 480 test items that were then 

"mixed in random order and recorded on four tapes, each twenty minutes in length" (p. 

22). 

The data in Johnson's study indicated that the subjects preferred equal 

temperament over just intonation and Pythagorean intonation over just intonation by 

decisive margins. In only one instance, on one chord progression, in comparison of 

just intonation to Pythagorean intonation, did study subjects express a preference for 

just intonation. 

Bisel (1987) investigated a perceptual preference among Pythagorean intonation, 

just intonation, one-quarter meantone intonation, and equal temperament. The tonal 

music examples in Bisel's study were in the form of chorale harmonizations and 

unharmonized melodic material. In contrast to more contemporary compositions in 

which tonal relationships may be more nebulous, Bisel writes, "In types of music which 

do not have a single most stable pitch, slight deviations in pitch may not be as 

noticeable as they are in tonal music" (p. 7). 

Bisel went to great lengths to document that intonation preference does not 

indicate a most suitable system in every situation. He wrote: 

The more obvious point is that there is no consensus on the superiority of any 

single system of tuning or temperament. In addition to the fact that different 

theorists disagree on which system is best, various theorists advocate two separate 

systems, or have held different viewpoints at various times in their lives, (p. 55) 
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Along this same line, Loosen (1995) investigated the effect of subjective musical 

preference on the perception of intonation. The investigation examined subjects with 

performance experience on the violin, piano, and a group of individuals with no 

performance experience. Loosen utilized a scale pattern tuned to Pythagorean 

intonation, just intonation, and equal temperament. He found that violin performers 

preferred Pythagorean intonation and attributed this finding to the fact that violin strings 

are tuned in perfect fifth intervals. He also found that piano players preferred equal 

temperament and attributed this to the fact that modern keyboard instruments are 

commonly tuned to this system. The group of individuals with no performance 

experience did not express a preference for any intonation system which clearly 

indicated that performance experience is an important determining factor in intonation 

preference. 

The introduction to the current study does not offer a clear explanation for the 

presence of beats in intervals other than unisons that comprise the harmony produced by 

wind instrument ensembles. That explanation can be found in the work of Herman von 

Helmholtz (1877/1954) whose theory of consonance is based on frequency coincidence 

between partials of the primary interval tones and difference tones: 

Collecting the results of our investigations upon beats, we find that when two or 

more simple tones are sounded at the same time, they cannot go on sounding 

without mutual disturbance, unless they form with each other certain perfectly 

definite intervals. Such an undisturbed flow of simultaneous tones is called a 

consonance. When these intervals do not exist, beats arise, that is, the whole 

compound tones, or individual partial and combination tones contained in them 



28 

or resulting from them, alternately reinforce and infeeble each other, (p. 204) 

It is important to note that Helmholtz referred to simple tones, which are tones in 

which only one frequency is present. Hall and Kent (1957) referred to these types of 

sounds as pure tones, sinusoids, or sinusoidal waves (p. 4). The problem is that wind 

instruments generate complex tones that are often rich in partials above the fundamental 

frequency. 

Plomp (1967) hinted at a solution to this dilemma: 

This phenomenon is incompatible with Ohm's acoustical law, which says, as 

formulated by von Helmholtz (1863), that the human ear is able to analyze a 

complex of tones into its sinusoidal components. Such an analysis implies that 

the two tones are perceived individually but fails to explain why beats are heard, 

(p. 462) 

This concept was supported by Terhardt (1974) when he suggested the consideration of 

a complex tone as an array of sinus tones that represent the fundamental and subsequent 

partials (p. 1062). This solution facilitates objective examination for frequency 

coincidence among harmony components including primary tones, partials, and 

difference tones. 

Helmholtz's theory establishes three concepts that are important to the current 

study. First, a logical explanation is presented as to why some harmonies contain beats 

and sound distorted when produced by a wind instrument ensemble. Second, as stated 

earlier in this introduction, any harmony containing minimal or zero beats should be 

perceived as more consonant than a harmony with beats. Last, Helmholtz's theory 

points to a need to utilize complex tones as stimuli in an investigation of harmony 



intonation consonance produced by a wind instrument ensemble. 

Aural perception of harmony consonance has been a subject of debate for 

centuries. One long-standing theory maintains that harmony constructed of intervals 

prescribed by simple whole number ratios is aurally perceived as more consonant than 

harmony constructed of intervals prescribed by large or irrational number ratios. 

Cazden (1972) identified this concept as the "natural law theory of consonance" and 

wrote that "the expression of this natural law consists in the determination of musical 

consonance by relations which may be briefly stated in the form of simple number 

ratios" (p. 98). Terhardt (1973) argued that frequency distance, rather than simple 

ratio, is the determinant factor in consonant quality of an interval (p. 1061). 

Seashore (1938/1967) wrote that "Consonance depends fundamentally on the 

degree of coincidence of sound waves" (p. 126). Helmholtz's theory of consonance 

was based on frequency coincidence of partials of the primary tones. Harmonies 

comprised of pure intervals exhibit a high degree of coincidence among components 

and should produce a low, if any, beat frequency. 

Just Intonation 

The system of just intonation utilizes pure intervals derived from the natural 

overtone series. The perception of intervals tuned to this system was discussed by 

Seashore (1938/1967), Hindemith (1945), Leuba (1962), Wilkinson (1988), and Monzo 

(1999). These discussions offered support to the concept that intervals tuned to simple 

ratios exhibit a high degree of coincidence among partials and other harmonic 

components and create minimal discordant beats. This degree of coincidence can be 

objectively examined through a graphic that details the frequencies of primary tones and 
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partials. Figure 2 details frequency coincidence among primary tones and seven 

overtones for a C major triad tuned to intervals of just intonation. A frequency of 264 

cps was selected for the root C since this would allow an A of 440 cps if a diatonic scale 

were based on this note. 

264 

C 

330 

E 

396 
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660 

E 

792 

G 

792 
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990 
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1188 
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1056 

C 

1320 

E 

1584 

G 

1320 

E 

1650 

G# 

1980 

B 

1584 

G 

1980 

B 

2376 

D 

1848 

Bb 

2310 

D 

2772 

F 

2112 

C 

2640 

E 

3168 

G 

Figure 2. Fundamental frequencies and overtones for a C major triad tuned in just 
intonation 

Equal Temperament 

In contrast, the numerical ratios of equal temperament are not simple. Gannon, 

Weyler, and Coulombe (1997) described equal temperament as a compromise tuning 

system created to facilitate a simple piano keyboard and modulation between all keys. 

The numerical ratios of this system are determined by calculating the twelfth root of the 

number two, which represents the octave. The formula used to calculate the intervals 

of equal temperament may be expressed as 12V^n. This divides the octave into twelve 

equal intervals. 
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The literature does not dispute the idea that equal temperament opened up 

additional harmony possibilities. Equal temperament was primarily a theoretical 

concept prior to the invention of devices that allow precise measurement of the 

complicated ratios of that system. Until that time, tuning to equal temperament was 

accomplished by the human ear using beats as the determining factor. This is an 

interesting issue in that electronic tuners of the twentieth and twenty-first centuries 

subvert innate sensitivity for pure intervals in order to tune to equal temperament. 

The juxtaposition of equal temperament and just intonation in music rehearsals and 

performance practice is a cause for concern among conductors of wind instrument 

ensembles. A portion of Helmholtz's earlier statement is recalled, "Justly-intoned 

chords, possess a full and saturated harmoniousness; they flow on, with a full stream, 

calm and smooth, without tremor or beat. Equally-tempered or Pythagorean chords 

sound beside them rough, dull, trembling, restless" (p. 319). In the same manner as 

Terhardt and Denckla, Helmholtz's reference to a rough quality describes a broader 

perception of consonance or dissonance and not just the distortion caused by 

frequencies that do not vibrate synchronously. His theory can be used to explain why 

harmony tuned to just intonation sounds different, if not perceptually better, to the 

human auditory system than harmony tuned to equal temperament. 

Two reasons are evident as to why Helmholtz advocated the use of justly intoned 

chords, which is interpreted as descriptive of chords constructed using pure intervals. 

The first has already been discussed, that being frequency coincidence among upper 

partials of the primary tones. Helmholtz also believed that harmony comprised of pure 

intervals is more consonant because the frequencies of difference tones exhibit 
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enhanced alignment and contribute to the overall coincidence. 

By contrast, intervals tuned to equal temperament exhibit a high degree of 

non-coincidence among partials and additional harmonic components and have the 

potential to create many discordant beats. This degree of non-coincidence can be 

objectively examined through a graphic that details the frequencies of primary tones, 

partials, and additional harmonic components. Figure 3 details frequencies of primary 

tones and seven overtones for a C major triad tuned to intervals of equal temperament. 

The C with 264 cps was utilized for these calculations. 
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Figure 3. Fundamental frequencies and overtones for a C major triad tuned in equal 
temperament 

It can be illustrated that the intervals of equal temperament contain beats. For 

example, the G at 792 cps and the G at 771.10 cps are separated by 20.9 cps. There are 

also Ds at 2328.34 cps and 2313.30 cps, a difference of 15.04 cps. These differences 

are within the beating region that Helmholtz said would be objectionable. These 

differences also support the widely accepted tuning rule-of-thumb that requires fifths be 

raised in pitch by two cents and major thirds lowered by almost fourteen cents in order 

to achieve the most consonant harmony sound. (Fabrizo, 1994, p. 23) 
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Pythagorean Intonation 

The Pythagorean scale is developed by projecting a series of pure fifths and then 

reducing the tones the number of octaves necessary to construct a one octave scale. 

This results in pure fifths, major thirds and seconds that are large, and minor seconds 

and thirds that are small. Johnson (1963) discovered specific musical examples in 

which Pythagorean intonation was preferred, particularly over just intonation. Figure 4 

details frequencies of primary tones and seven overtones for a C major triad tuned to 

intervals of Pythagorean intonation. 
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Figure 4. Fundamental frequencies and overtones for a C major triad tuned in 
Pythagorean intonation 

Context 

Lloyd (1943) recognized that consonance judgment depends on the conditions, 

or context, in which intonation is perceived by the ear: 

As a measuring instrument the ear has its natural limits of accuracy, just like the 

various means for measuring a penny. The accuracy of the ear depends on 

circumstances, such as the time allowed for making the measurement or the 
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nature of the interval to be measured, (p. 366) 

Context should include the harmonies, orchestrations, and compositional devices used 

in creating music. Jourdain (1997) wrote, "Every chord swims in an undulating sea of 

harmonic context. There is no considering the effects of a chord, or of a change of 

chord, apart from what has preceded it" (p. 104). 

In this same area, Gann (1997) wrote, "Because it determines what sounds good, 

tuning has a pervasive influence on compositional tendencies. Every piece of pitched 

music is the expression of a tuning" flf 19). This statement delineates the importance 

of musical context in an investigation of harmonic intonation consonance. An accurate 

representation of musical context should approximate the conditions under which 

conductors encounter intonation problems in daily rehearsals and performances. 
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CHAPTER III 

RESEARCH METHODOLOGY, PROCEDURES, AND TREATMENT OF DATA 

The current study proposed that an investigation of the acceptability of 

intonation can be accomplished through a simple perceptual choice that addresses 

perception for harmonic intonation. Roberts and Mathews (1984) proposed a simple 

method by which a judgment of acceptability could be solicited from listeners when 

they wrote, "The operational test for intonation sensitivity is some form of judgment 

test in which listeners say, for example, which chord of a pair they prefer" (p. 952). 

Data collected in this manner was analyzed by chi square procedures. 

The current study was divided into six phases. While the collection of data 

occurred in the fifth phase of the study, each preceding phase had the goal of facilitating 

the collection process among study subjects. The excerpts for this study were selected 

from the MLR Instrumental Score Reading Series published by G.I.A.Publications. 

Appendix A of this study details correspondence from G.I.A. Publications granting 

permission to use excerpts from this anthology in the study. In instances where the 

copyright was owned by someone other that G.I.A. Publications, permission was sought 

from that entity as well. 

Three excerpts were selected based on information gathered from pre-study 

trials. The study was limited to three excerpts to fit within a 30 minute timeframe 

established in the scope and delimitations guidelines for the investigation. The first 

excerpt is for a brass quintet consisting of two trumpets, horn in F, and two trombones. 

The second is a duet for flute and bassoon. The third excerpt is a brass quintet for two 

trumpets, horn in F, trombone, and tuba. 



The excerpts were converted to MUS and MIDI files using Finale 2008 software. 

The computer used in this process was a Compaq Presario C502US Notebook PC 

manufactured by Hewlett-Packard. The processor is an Intel® Celeron® M chip that 

operated at 1.86 gigahertz. The computer had 2038 mb of RAM and had Windows 

Vista Basic software installed. The installed sound device was a Conexant High 

Definition Audio card. 

Justonic Pitch Palette 2.0 and Roland Virtual Sound Canvas 3.2 software were 

installed. Pitch Palette allowed the playback of MIDI files in various intonation 

systems including equal temperament, Pythagorean intonation, and just intonation. 

Pitch Palette added micro-tuning capability to the sound card installed in the computer. 

Virtual Sound Canvas enhanced the computer sound card and made it easier to prepare 

the audio compact disc for data collection 

The final version of the compact disc utilized for data collection was created on a 

Superscope PSD340 compact disc recorder. The Compaq computer was connected 

directly to the auxiliary analog input on the recorder using an RCA stereo patch cord. 

This input has a signal-to-noise ratio of 85 decibels, total harmonic distortion of 0.01%, 

and an input sensitivity of 500mV/23K. 

There were three tuning versions of each excerpt, these being equal 

temperament, 

Pythagorean intonation, and just intonation. The tuning versions provided six pairings 

of the excerpts. The interval ratios used in the tunings are detailed in Figure 5. A 

comparison of the size of semitones in cents in contained in Figure 6. The pairs of 

excerpts were randomly mixed before being recorded onto the audio compact disc. 
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Just Intonation 

Do Re Mi Fa Sol La Tj 

16 6 7 8 7 

15 5 5 5 4 

1 9 5 4 3 5 15 

" 1 8 4 3 2 3 8~ 

Pythagorean Intonation 

Do Re Mi Fa Sol La Ti 

256 32 729 128 16 

243 27 512 ~~81 9 

1 9 81 4 3 27 243 

_ _ _ _ _ _ _ _ _ _ 

Equal Temperament (due to the irrational quantities created by multiples of V̂  
these 
numbers have been converted to their decimal equivalents in the following table.) 

Do Re Mi Fa Sd La Ti 

1 1.06 1.19 1.41 1.59 1.78 

1 1.22 1.26 1.33 1.50 1.68 1.89 

Figure 5. Tables detailing ratios used for intonation systems in this investigation 
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Distance in 
semitones 

1 
Semitone 

2 
Whole tone 

3 
Minor third 

4 
Major third 

5 
Fourth 

6 
Tritone 

7 
Fifth 

8 
Minor sixth 

9 
Major sixth 

10 
Minor seventh 

11 
Major seventh 

12 
Octave 

Equal 
Temperament 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

1100 

1200 

Just 
Intonation 

111.8 

203.91 

315.64 

386.31 

498.05 

582.51 

701.96 

813.69 

884.36 

968.83 

1088.27 

1200 

Pythagorean 
Intonation 

90.3 

203.91 

294.14 

407.82 

498.05 

611.73 

701.96 

792.18 

905.87 

996.09 

1109.78 

1200 

Figure 6. Comparison of semitones in cents 
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Several settings were made to the Pitch Palette software prior to playback and 

recording of the excerpts. The MIDI output in the setup menu was set to Roland VSC. 

The output settings were set to ALL Synthesizers Pitch Bend. The key of each excerpt 

was set on the controls of the MicroTuner. In regards to the Tcherepnin quintet, the 

key was set to C since this was the first tonal center discerned in the music. The 

MicroTuner was set to Auto root which allowed the software to select a tuning root for 

each harmony detected. The Hangar was toggled to the on position which allowed the 

notes being played to be re-tuned instantaneously when a tuning message was received. 

Pitch Palette software communicates with the computer through System 

Exclusive messages (SysEx). The tuning resolution of the sound card with the Roland 

Virtual Sound Canvas software installed was estimated at 1/4000 of a semitone. The 

author considered this resolution sufficient for purposes of the current study. 

First Data Collection 

The study group for data collection was comprised of wind and percussion 

instrument students at the University of Southern Mississippi. A copy of the Human 

Subjects Review Form is included as Appendix E to this study. More specifically, 

study subjects were members of the Wind Ensemble at the University of Southern 

Mississippi. 

The Wind Ensemble is comprised of highly skilled undergraduate and graduate wind 

and percussion instrument performers. 

The author traveled to the School of Music at the University of Southern 

Mississippi on March 26, 2008. The compact disc was played for the study subjects 

using the Compaq computer and a Phillips portable sound system hooked up to the 
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computer. Study subjects were given verbal instructions and a copy of the data 

collection document. They were asked to listen to the compact disc and respond on the 

data collection document. A copy of the document is included as Appendix G to the 

study. Study subjects completed the document and returned it in the author. This 

process was completed within the thirty minute time limit established in the scope and 

delimitations for this investigation. 

Nominal data collected in this study conformed to chi square (jr2) analysis. The 

decision to use chi square was based on the simple choice format used for data 

collection which yielded nominal data and made it necessary to determine whether or 

not the preference choices occurred by chance. Chi square is also ideal for this study 

since no population assumptions were required. The formula for calculation of chi 

square used in this study is defined by: X2 = X (f0 -fc)
21 f e. 

The author was not satisfied, however, with the quality of the instrumental 

sounds recorded onto the compact disc. The primary reason the author selected Finale 

2008 notation software for use in the study was that Garritan Personal Orchestra (GPO) 

sounds came as part of the package. However, it was discovered that the Justonic Pitch 

Palette software is not compatible with GPO. The timbre of the instrumental sounds 

were 

therefore standard MIDI quality and not the enhanced sounds of GPO. This was 

considered by the author as a detriment to the authentic context sought in the current 

study. 

A possible solution to this dilemma was detailed in an article by Roger 

Wibberley posted on Music Theory Online in February 2004. The article details a 
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procedure for programming alternate tunings using the Pitchwheel function of Finale 

software. The author of the current study considered this a solution to improving the 

instrument sounds used for the excerpts in the study. The procedures for programming 

pitchwheel changes in Finale 2008 are slightly different than those detailed in the 

referenced article. However, the author was able to utilize the information to 

determine a method of programming alternate tunings of the excerpts utilized in the 

current study. 

The procedure is time intensive, but allows precise pitch control of each note of 

the excerpt. The pitchwheel function is accessed through the Expression tool (mf) of 

Finale 2008. The procedure is to activate the expression tool by clicking on it and then 

clicking on the note that is to be adjusted. 

Finale 2008 has two options available with the expression tool. One option 

creates an expression for the entire measure and is signified by an outlined arrow when 

the cursor is placed in a measure or near a note. The other option creates an expression 

for a single note and is signified by a solid black arrow, with a small note attached in 

the lower right hand corner, when the cursor is placed on the note that will be adjusted. 

The adjustment is initiated by placing the cursor on a note and double clicking on the 

mouse or keypad. The Expression Selection menu then appears with all of the 

expressions that 

are available. In the lower left hand corner of this window, the user should ensure that 

the Note Expression box is selected. 

The user clicks on Create which brings up the Text Expression Designer 

window. The window that appears gives the user an option of creating a label for the 
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pitch wheel adjustment being created. The author of the current study used the 

numerical value of the pitch wheel adjustment as the label. For example, if the pitch 

wheel adjustment required a value of minus 320, the label was entered as -320. 

The next step is to create the actual pitchwheel setting. The user clicks on the 

Playback tab in the window and then drops down the menu under Type and clicks on 

Pitchwheel. A numerical value is entered into the Set to value box, that value being 

the quantity required for pitch bend of the specified note. That quantity ranges from 

-8192 to +8192 and includes 0 which is the default value for equal temperament. 

Each semitone can be divided into 8192 parts either above or below the default 

pitch in Equal Temperament. This means that each cent of tuning difference has a 

value of 81.92 on the pitch wheel. The pitch wheel setting is determined by 

multiplying 81.92 by the difference in cents between the desired pitch and the default 

pitch in equal temperament. For example, the difference between an equal 

temperament major third and a just intonation major third is 13.69 cents, with the just 

intonation third smaller by that amount. To obtain the pitchwheel value for lowering 

this third, 13.80 is multiplied by 81.92, which results in the quantity 1121.48. Finale 

does not allow decimals in the pitchwheel settings so the value entered would be 

rounded to -1121. 

The pitchbend function of the MIDI keyboard needed to be set to a numerical 

value of 1. This setting allows each semitone to be divided into the 8192 parts that 

Finale pitchwheel settings allow. The procedures for setting keyboard pitchbend 

functions are contained in the user manual for that keyboard. 

The final calculations to be considered are actual pitch wheel values 
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corresponding to the intonation system desired for excerpt playback. As stated earlier, 

the pitch wheel values are determined by multiplying the interval difference in cents by 

81.92. The value in cents of any interval can be obtained by using the formula: Cents 

= log (i) x (1200/log (2)). In this formula, "i" represents the interval ratio, which is 

readily pluged into the formula after conversion to a decimal equivalent. Once the 

pitchwheel value has been obtained, it must be determined whether the pitch wheel 

adjustment needs to be above or below the equal temperament value. The user enters a 

negative quantity to lower the pitch or a positive quantity to raise the pitch. 

Figures 7 through 12 detail pitch wheel settings that were used in the second data 

collection effort. Due to the fact that each semitone can be divided into 8192 parts 

above or below the equal temperament default, a variety of pitch variants can be 

devised. The settings presented in these tables were calculated using the most common 

interval ratios of the intonation systems. 

Some variations in the pitchwheel settings were allowed on this excerpt for 

listening purposes. In Figure 10, the pitchwheel setting for F was set to the equal 

temperament default to avoid a negative reaction by study subjects to the sharpness of 

that pitch if the calculated setting of+561 was utilized. In Figure 11, the pitch wheel 

settings were used to follow the harmonic rhythm of the excerpt. Also, the Trumpet in 

Bb 1 part was adjusted for the entire excerpt. The remaining parts were adjusted to the 

pitch wheel settings on beat one in measures 1, 3, 9, 11 and all notes in the last measure. 

Excerpts in equal temperament required no pitch wheel settings. For this 

second set of recordings, the Compaq Presario notebook computer was connected to a 

Yamaha YPG-225 portable grand piano through a USB port. The pitchbend setting on 
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the YPG-225 was set to 1. The MIDI settings in Finale were adjusted to accept the 

new setup. The MIDI setup menu in Finale 2008 was used to set the YPG-225 as the 

MIDI in and MIDI out device. The Superscope PSD340 compact disc recorder was 

connected to the YPG-225 through an RCA stereo patch cord. Several test recordings 

were made in order to set volume levels and ensure everything was working correctly. 

Note 
Name 

Bb 

B 

C 

Pitchwheel 
Value 

0 

-400 

160 

C#/Db -240 

D 320 

D#/Eb 

E 

F 

F#/Gb 

G 

G#/Ab 

A. 

-80 

480 

80 

655 

240 

-160 

400 

Figure 7. Pitch Bend Settings for Excerpt One using Pythagorean Intonation 
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Note 
Name 

Bb 

B 

C 

Pitchwheel 
Value 

0 

481 

160 

C#/Db 641 

D -561 

D#/Eb -80 

E 

F 

F#/Gb 

G 

G#/Ab 

A 

123 

80 

561 

-641 

721 

-481 

Figure 8. Pitch Bend Settings for Excerpt One using Just Intonation 
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Note Pitchwheel 
Name Value 

A 0 

A#/Bb -400 

B 160 

C -240 

C#/Db 320 

D -80 

D#/Eb 480 

E 80 

F 655 

F#/Gb 240 

G -160 

G#/Ab 400 

Figure 9. Pitch Bend Settings for Excerpt Two using Pythagorean Intonation 
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Note Pitchwheel 
Name Value 

A#/Bb 481 

B 160 

c 

C#/Db 

D 

D#/Eb 

E 

F 

F#/Gb 

G 

G#/Ab 

641 

-561 

-80 

123 

80 

561 

-641 

721 

-481 

Figure 10. Pitch Bend Settings for Excerpt Two using Just Intonation 
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Note Pitchwheel 
Name Value 

C 0 

C#/Db -400 

D 160 

D#/Eb -240 

E 320 

F 

F#/Gb 

G 

G#/Ab 

A 

A#/Bb 

B 

-80 

480 

80 

655 

240 

-160 

400 

Figure 11. Pitch Bend Settings for Excerpt Three using Pythagorean Intonation 



Note Pitchwheel 
Name Value 

C 0 

C#/Db 481 

D 160 

D#/Eb 641 

E -561 

F -80 

F#/Gb 123 

G 

G#/Ab 

A 

A#/Bb 

B 

80 

561 

-641 

721 

-481 

Figure 12. Pitch Bend Settings for Excerpt Three using Just Intonation 

It was at this point that an additional problem with program 

incompatibility was uncovered during recording of the compact disc. This problem 

affected the sound quality of the recorded excerpts. The author desired to use the 



Garritan Personal Orchestra (GPO) sounds in the recordings. This was the plan during 

the first data collection effort as well. In order to use the GPO sounds, the user has to 

select Play Finale through VST from the MIDI/Audio menu in Finale 2008. The user 

then clicks on VST Setup in that same menu which will bring up the Native Instruments 

VST Setup window. Under VST Instrument, the user drops down the menu and selects 

KontactPlayer2. The edit menu is then clicked and the KontactPlayer window 

appeared that allowed assignment of GPO sounds to each channel in the Finale file. 

GPO sounds were selected for each channel in each excerpt. For example, in 

the Ascendit Deus excerpt, Trumpet Plrl was assigned to channel 1, Trumpet Plr2 to 

channel 2, French horn Plrl to channel 3, Trombone Plrl to channel 4, and Trombone 

Plr2 to channel 5. However, when the file containing the pitch wheel changes was 

played using this setup, the sounds were distorted. Several trials were attempted and 

each file containing pitch wheel changes produced distorted sounds. 

When the MIDI/Audio settings were changed to Play Finale through MIDI the 

pitch wheel settings are realized and the excerpts were recognizable. However, the 

instrumental timbres in the playback were not the desired GPO sounds but were instead 

generic midi sounds. These were the sounds that the author found troublesome in the 

first data collection effort. 

A thorough examination of the Finale user manual and online help websites did 

not provide a solution to the problem. The author contacted Finale technical services 

by telephone and talked to a technical support representative. Following an 

explanation of the problem, and several minutes on hold, the representative advised the 

author to contact Native Instruments for technical support with the GPO sounds. The 
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author contacted Native Instruments though their technical support website. An email 

describing the problem was sent using the contact form at that website. The response 

was prompt, but referred all technical questions regarding GPO sounds in Finale 2008 

to the Finale technical support services. 

With the aforementioned issues unresolved, the author made a decision to 

proceed with a second data collection effort. Part of this decision was based on an 

offer by the dissertation committee chairman to allow a second data collection using 

participants in a summer conducting workshop as study subjects. A second compact 

disc was prepared that used the MIDI instrument sounds rather than the desired GPO 

sounds. This was actually considered a strength of the second data collection effort 

since the sounds that the second study group would hear would be similar to the sounds 

used for the first study 

group. The differences would be the pitchwheel adjustments that had been added to 

the Finale files and the MIDI sounds of the YPG-225. 

Second Data Collection 

The author traveled to Hattiesburg on June 16, 2008 for a second data collection 

effort. The study subjects for this session were participants in a summer conducting 

workshop at the University of Southern Mississippi. The subjects included music 

educators and graduate students working on a masters or doctoral degree at the 

University of Southern Mississippi. 

The playback system used in the second data collection effort was a Sony 

MHC-GX99 Hi-Fi Component System. Following the delivery of instructions, study 

subjects responded to each excerpt pair in the same manner as the first data collection 
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effort. The entire process was completed within the 30 minute time limit delineated in 

the scope and limitations established for this investigation. Analysis of the data 

collected in the second collection effort is detailed in Chapter Four of this study. 
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CHAPTER IV 

ANALYSIS OF DATA 

The purpose of this study was to investigate perceived preference for harmony 

consonance in musical excerpts tuned to equal temperament, just intonation, or 

Pythagorean intonation. The hypothesis stated that enhanced mathematical coincidence 

of harmony components would positively influence the expressed preference of study 

subjects. The null hypothesis stated that there would be no difference in expressed 

preference among the intonation systems utilized in the study. 

Based on the results of pre-study trials, three excerpts were chosen that 

presented diverse patterns of preference responses and that allowed the collection of 

data to be accomplished within a 30 minute timeline. The first excerpt was a tonal 

brass quintet in the key of Bb major. The second excerpt was an imitative duet for flute 

and bassoon in A minor. The third excerpt was a brass quintet in a very polytonal, 

homophonic and chromatic style. The arrangement of excerpts on the compact disc is 

detailed in Figure 6. 

The original number of study subjects in the first data collection effort was fifty-

one (N=51). Three data collection documents were excluded from the statistical 

analysis due to the fact that those study subjects did not respond to all excerpt pairs. 

This provided the study with forty-eight data collection documents for analysis (N=48). 

Subjects were asked to respond to eighteen pairs of excerpts, choosing the version in 

each pair that they perceived as the most consonant for harmony. There were 864 

(48x18) total responses in this study. 

There were 288 (48x6) individual responses to each excerpt. Of the responses to 
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Excerpt One, 180 (62.5%) expressed a preference for equal temperament, 101 (35.07%) 

Description CD Track 

Excerpt #1 

1 

2 

3 

4 

5 

6 

Version 
A 

equal temperament 

just intonation 

Pythagorean intonation 

just intonation 

Pythagorean intonation 

equal temperament 

Version 
B 

Pythagorean intonation 

Pythagorean intonation 

equal temperament 

equal temperament 

just intonation 

just intonation 

Excerpt #2 

7 Pythagorean intonation 

8 equal temperament 

9 equal temperament 

10 just intonation 

11 just intonation 

12 Pythagorean intonation 

just intonation 

just intonation 

Pythagorean intonation 

Pythagorean intonation 

equal temperament 

equal temperament 

Excerpt #3 

13 just intonation 

14 Pythagorean intonation 

15 Pythagorean intonation 

16 just intonation 

17 equal temperament 

18 equal temperament 

equal temperament 

equal temperament 

just intonation 

Pythagorean intonation 

Pythagorean intonation 

just intonation 

Figure 13. Arrangement of excerpts on compact disc 

for Pythagorean intonation, and 7 (2.43%) for just intonation. Of the responses to 

Excerpt Two, 181 (62.85%) expressed a preference for equal temperament, 9 (3.12%) 

for Pythagorean intonation, and 98 (34.03%>) for just intonation. Of the responses to 

Excerpt 3, 146 (50.7%>) expressed a preference for equal temperament, 52 (18.05%) for 

Pythagorean intonation, and 90 (31.25%) for just intonation. 
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Description 

Excerpt #1 

Excerpt #2 

Excerpt #3 

CD 
Track 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Version 
A 

equal temperament 

just intonation 

Pythagorean 

just intonation 

Pythagorean 

equal temperament 

Pythagorean 

equal temperament 

equal temperament 

just intonation 

just intonation 

Pythagorean 

just intonation 

Pythagorean 

Pythagorean 

just intonation 

equal temperament 

equal temperament 

47 

2 

10 

1 

44 

48 

5 

45 

47 

47 

5 

2 

16 

8 

23 

40 

35 

39 

Version 
B 

Pythagorean 

Pythagorean 

equal temperament 

equal temperament 

just intonation 

just intonation 

just intonation 

just intonation 

Pythagorean 

Pythagorean 

equal temperament 

equal temperament 

equal temperament 

equal temperament 

just intonation 

Pythagorean 

Pythagorean 

just intonation 

1 

46 

38 

47 

4 

0 

43 

3 

1 

1 

43 

46 

32 

40 

25 

8 

13 

9 

Figure 14. Number of responses for each intonation system (N=48) 

Figures 15, 16, and 17 illustrate the excerpts utilized in the study. Permission to use 

these excerpts was granted by G.I.A. Publications and C. F. Peters Corporation. 

Documentation for this permission is contained in the appendixes to the current study. 

Tables 1 through 18 detail chi square analyses performed on the responses to these 

excerpts. The chi square values for these calculations were obtained from the appendix 

in Basic Statistical Analysis (p. 452). Separate analyses were performed for each pair of 

excerpts on the compact disc. There were eighteen tracks on the compact disc. 



56 

Excerpt from Ascendit Deus 

(•alius 
Trans . by Wiskirchen 

Trumpet in B\> 1 

Trumpet in B!> 2 

Horn in F 

Trombone 1 

Trombone 2 

i 
• a s 
* 

^m 

^ 

sa 

^ 

E : 

S 
to 

^ 

f 
EESJ i 

@ Copyright 1977 by G.I.A. Publications 
Used by permission of G.l.A. Publications 

Figure 15. Excerpt One, from Ascendit Deus 



Table 1 

Chi square analysis of responses to compact disc track One 

fo 

/ « 

/ o - / e 

r/o-/e)
2 

(fo-fe)
2 If, 

Equal 
Temperament 

47 

24 

23 

529 

22.04 

Pythagorean 
Intonation 

1 

24 

-23 

529 

22.04 

Null hypothesis H0 :f0 =fe 

Calculated chi 
square value £ ( / 0 - / c ) 2 / / e 44.08 

Degrees of 
freedom <i/= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 2 

Chi square analysis of responses to compact disc track Two 

fo 

/ e 

fo-fc 

(fo-fc)2 

(fo-fe)
2 If, 

Just 
Intonation 

2 

24 

-22 

484 

20.17 

Pythagorean 
Intonation 

46 

24 

22 

484 

20.17 

Null hypothesis H0 :f0 =fe 

Calculated chi 
square value I ( / 0 - / e ) 2 / / 0 40.34 

Degrees of 
freedom <̂ f = 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 3 

Chi square analysis of responses to compact disc track Three 

/ o 

A 

fo-fc 

(fo-f,)2 

(fo-f,)2 If, 

Pythagorean 
Intonation 

10 

24 

-14 

196 

8.17 

Equal 
Temperament 

38 

24 

14 

196 

8.17 

Null hypothesis H0 :f0 =fe 

Calculated chi 
square value 16.34 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 4 

Chi square analysis of responses to compact disc track Four 

/ o 

/ e 

/ o - / c 

r/o-/e)2 

f / o - / e ) 2 
/ / e 

Just 
Intonation 

1 

24 

-23 

529 

22.04 

Equal 
Temperament 

47 

24 

23 

529 

22.04 

Null hypothesis H0: f0=fe 

Calculated chi 
square value £ ( / 0 - / e ) 2 / / 0 44.08 

Degrees of 
freedom <i/"= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 5 

Chi square analysis of responses to compact disc track Five 

Pythagorean Just 
Intonation Intonation 

/ o 44 4 

fe 24 24 

/ o - / e 20 -20 

r / o - / e ) 2 400 400 

(fo-fe)2/fe 1^67 16.67 

Null hypothesis H0:f0 = fe 

Calculated chi 
square value Z(f0-fe)

2/fo 33.34 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 6 

Chi square analysis of responses to compact disc track Six 

/ o 

/ e 

/ o - / e 

r/o-/e)2 

(fo-fc)2 If, 

Equal 
Temperament 

48 

24 

24 

576 

24 

Just 
Intonation 

0 

24 

-24 

576 

24 

Null hypothesis H0:f0=fe 

Calculated chi 
square value £ ( / 0 - / e ) 2 / / 0 48 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Excerpt from Bouree 

Johann Kreiger, 1651-1735 
Edited by Fritz Rikko 

Flute 

Bassoon 

(l&r r 

>):<u > 
/ \J }. 

i- j r r i 
r J r i 

> r f r , ^ ' L f r r 

- f — f r m—r i* 

-»—i:f—ttf—»— r r i r j 

Fl. 

Bsn. 

3 <tr 

4® * - * i J « — « -

/ » 

J- [J 

f 1 Hf\ 
* L , J 

ir rrr Sl\ * m 

H—^—' 

* ffm f :!r-—Ef—=-

1, r r r i l l 

i c;J L.Ti 

jfc_ 
Fl. 

^ 

j-r f Bsn. 

© Copyright 1970 by Canyon Press, Inc. 
Used by permission of G.I. A. Publications 

Figure 16. Excerpt Two, from Bouree 



Table 7 

Chi square analysis of responses to compact disc track Seven 

Pythagorean Just 
Intonation Intonation 

/o 5 43 

/ c 

fo-fc 

(fo-fe)2 

(fo-f,)2 If, 

24 

-19 

361 

15.04 

24 

19 

361 

15.04 

Null hypothesis H0:f0-fc 

Calculated chi 
square value £ (f0 -fe)

 2 / / 0 30.08 

Degrees of 
freedom df= 1 

Chi square 
value from table X2

 0i(i) 6.64 

Conclusion based on this chi square analysis; 

Reject H0: significant at P < .01 



Table 8 

Chi square analysis of responses to compact disc track Eight 

Equal 
Temperament 

45 

Just 
Intonation 

3 / o 

/ e 24 24 

/ o - / e 21 -21 

(fo-fc)2 441 441 

(fo-fe)2/fe 1838 1838_ 

Null hypothesis H0 :f0 =fe 

Calculated chi 
square value 36.76 

Degrees of 
freedom df= 1 

Chi square 
value 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 9 

Chi square analysis of responses to compact disc track Nine 

Equal 
Temperament 

47 

Pythagorean 
Intonation 

1 / o 

/ e 24 24 

/ o - / e 23 -23 

r / o - / e ) 2 529 529 

r / o - / e ) 2 / / e 2JL04 2 2 . 0 4 

Null hypothesis H0:f0=fe 

Calculated chi 
square value £ ( / 0 -fe)

2 / / 0 44.08 

Degrees of 
freedom df= 

Chi square 
value from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 10 

Chi square analysis of responses to compact disc track Ten 

Just Pythagorean 
Intonation Intonation 

/ o 47 1 

/ e 24 24 

/ o - / e 23 -23 

r / o - / e ) 2 529 529 

(fo-fe)2/fs 2Z04 22.04 

Null hypothesis H0:f0=~-fs 

Calculated chi 
square value £ ( / 0 - / e ) 2 / / „ 44.08 

Degrees of 
freedom df= 1 

Chi square 
value from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 11 

Chi square analysis of responses to compact disc track Eleven 

Just 
Intonation 

5 

Equal 
Temperament 

43 / o 

/ e 24 24 

/ o - / e -19 19 

r / o - / e ) 2 361 361 

r / o - / e ) 2 / / e 1 5 ^ 15X)4_ 

Null hypothesis H0:f0=fe 

Calculated chi 
square value £ ( / 0 - / e ) 2 / / 0 30.08 

Degrees of 
freedom df= 1 

Chi square -^2.oi(i) 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 12 

Chi square analysis of responses to compact disc track Twelve 

fo 

/ c 

/ o - / c 

(fo-f,)2 

(fo-fe)
2 If, 

Pythagorean 
Intonation 

2 

24 

-22 

484 

20.17 

Equal 
Temperament 

46 

24 

22 

484 

20.17 

Null hypothesis H0 :f0 =fe 

Calculated chi 
square value £ ( / 0 - / e ) 2 / / 0 40.34 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Excerpt from Brass Quintet 
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Figure 17. Excerpt Three, from Brass Quintet 
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Table 13 

Chi square analysis of responses to compact disc track Thirteen 

/ o 

/ e 

fo-fc 

(fo-fz)2 

(fo-fe)2/fc 

Just 
Intonation 

16 

24 

-8 

64 

2.67 

Equal 
Temperament 

32 

24 

8 

64 

2.67 

Null hypothesis H0:f0=fe 

Calculated chi 
square value X ( / 0 - / e ) 2 / / 0 5.34 

Degrees of 
freedom df=\ 

Chi square 
value from table 6.64 

Conclusion based on this chi square analysis: 

Accept H0 



Table 14 

Chi square analysis of responses to compact disc track Fourteen 

fo 

/ e 

/ o - / e 

f / o - / e ) 2 

(fo-fe)
2 If, 

Pythagorean 
Intonation 

8 

24 

-16 

256 

10.67 

Equal 
Temperament 

40 

24 

16 

256 

10.67 

Null hypothesis H0 :f0 = /e 

Calculated chi 
square value Z ( / o - / e ) 2 / / o 21.34 

Degrees of 
freedom df= 1 

Chi square 
value from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 15 

Chi square analysis of responses to compact disc track Fifteen 

Pythagorean Just 
Intonation Intonation 

/o 23 25 

/e 24 24 

/o-/e "I 1 

(fo-fe)2 1 1 

r/o-/e)2//e -04 .04 

Null hypothesis H0:f0=fe 

Calculated chi 

square value X ( / 0 - / e ) 2 / / 0 .08 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Accept H0 
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Table 16 

Chi square analysis of responses to compact disc track Sixteen 

Just Pythagorean 
Intonation Intonation 

/ o 40 8 

/ e 24 24 

/ o . / e 16 -16 

r / o - / e ) 2 256 256 

(fo-f,)2lf, 1^67 10-67 

Null hypothesis H0 :f0 -fs 

Calculated chi 

square value £ ( / 0 - / e ) 2 / / 0 21.34 

Degrees of 
freedom df= 1 

Chi square 
value from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 17 

Chi square analysis of responses to compact disc track Seventeen 

Equal Pythagorean 
Temperament Intonation 

/ o 35 13 

/ e 24 24 

/ o - / e 11 -11 

r / o - / e ) 2 121 121 

r / o - / e ) 2 / / e 5 ^ 5.04 

Null hypothesis H0 :f0 = fe 

Calculated chi 

square value I ( / 0 - / e ) 2 / / 0 10.08 

Degrees of 
freedom df= 1 

Chi square 
value from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 18 

Chi square analysis of responses to compact disc track Eighteen 

Equal Just 
Temperament Intonation 

/ o 39 

/e 

Ufe 

(fo-fe)
2 

r /o - / e ) 2 / / e 

24 

15 

225 

9.38 

24 

-15 

225 

9.38 

Null hypothesis H0 :f0 =fe 

Calculated chi 
square value Z ( / o - / e ) 2 / / o l 8 - 7 6 

Degrees of 
freedom df= 1 

Chi square 
value from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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In summation of the first data collection effort, in sixteen of the chi square 

analyses the null hypothesis was rejected. In the remaining two analyses, the null 

hypothesis was accepted. Study subjects exhibited an overall preference for equal 

temperament, followed by just intonation, and then Pythagorean intonation. The total 

body of chi square analyses leads to rejection of the null hypothesis. 

In the two excerpts pairings where the null hypothesis was accepted, the excerpt 

utilized was the Tcherepnin brass quintet. The excerpt is polytonal, homophonic, and 

chromatic. In the responses to compact disc track 13, 32 subjects preferred equal 

temperament and 16 preferred just intonation. This was the strongest preference 

expressed for any intonation system when paired against equal temperament. It is 

interesting to note that in the responses to compact disc track 18, 39 subjects preferred 

Equal Temperament which in that case was the first intonation system heard. The null 

hypothesis was rejected for compact disc track 18. 

In the responses to compact disc track 15, the preference responses exhibited the 

most even split of the study. Twenty-three study subjects preferred Pythagorean 

intonation and twenty-five preferred just intonation. However, in compact disc track 16, 

using the same excerpt, just intonation was presented first and was preferred by 40 study 

subjects while Pythagorean intonation was preferred by eight. 

The order of presentation had an apparent effect on the preference responses in 

compact disc tracks seven through eighteen. For example, in track seven Pythagorean 

intonation was presented first and received five preference responses. In track ten, 

Pythagorean intonation was presented second and received one preference response. 

The number of study subjects in the second data collection effort was 26 (N=26). 
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Similar to the first data collection effort, subjects were asked to respond to 18 pairs of 

excerpts, choosing the version in each pair that they perceived as the most consonant for 

harmony. There were 468 (26x18) total responses in this part of the study. 

Description CD Track 

Excerpt #1 

1 

2 

3 

4 

5 

6 

Version 
A 

equal temperament 

just intonation 

Pythagorean intonation 

just intonation 

Pythagorean intonation 

equal temperament 

Version 
B 

Pythagorean intonation 

Pythagorean intonation 

equal temperament 

equal temperament 

just intonation 

just intonation 

Excerpt #2 

7 Pythagorean intonation 

8 equal temperament 

9 equal temperament 

10 just intonation 

11 just intonation 

12 Pythagorean intonation 

just intonation 

just intonation 

Pythagorean intonation 

Pythagorean intonation 

equal temperament 

equal temperament 

Excerpt #3 

13 just intonation 

14 Pythagorean intonation 

15 Pythagorean intonation 

16 just intonation 

17 equal temperament 

18 equal temperament 

equal temperament 

equal temperament 

just intonation 

Pythagorean intonation 

Pythagorean intonation 

just intonation 

Figure 18. Arrangement of excerpts on compact disc 

There were 156 (26x6) individual responses to each excerpt. Of the responses to 

Excerpt One, 88 (56.41%) expressed a preference for equal temperament, 67 (42.95%) 
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for Pythagorean intonation, and 1 (0.64%) for just intonation. Of the responses to 

Excerpt Two, 104 (66.67%) expressed a preference for equal temperament, 14 (8.97%) 

for Pythagorean intonation, and 38 (24.36%) for just intonation. Of the responses to 

Excerpt Three, 86 (55.13%) expressed a preference for equal temperament, 28 (17.95%) 

for Pythagorean intonation, and 42 (26.92%)) for just intonation. 

Description 

Excerpt #1 

Excerpt #2 

Excerpt #3 

CD 
Track 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Version 
A 

equal temperament 

just intonation 

Pythagorean 

just intonation 

Pythagorean 

equal temperament 

Pythagorean 

equal temperament 

equal temperament 

just intonation 

just intonation 

Pythagorean 

just intonation 

Pythagorean 

Pythagorean 

just intonation 

equal temperament 

equal temperament 

19 

0 

8 

1 

26 

26 

5 

26 

26 

17 

0 

0 

6 

4 

7 

16 

19 

25 

Version 
B 

Pythagorean 

Pythagorean 

equal temperament 

equal temperament 

just intonation 

just intonation 

just intonation 

just intonation 

Pythagorean 

Pythagorean 

equal temperament 

equal temperament 

equal temperament 

equal temperament 

just intonation 

Pythagorean 

Pythagorean 

just intonation 

7 

26 

18 

25 

0 

0 

21 

0 

0 

9 

26 

26 

20 

22 

19 

10 

7 

1 

Figure 19. Number of responses for each intonation system (N=26) 
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The following pages detail chi square analyses performed on responses to the excerpts. 

The chi square values for these calculations were obtained from the appendix in Basic 

Statistical Analysis, (p 452) Separate analyses were performed for each pair of excerpts 

on a compact disc track. There were eighteen tracks on the compact disc. 

Table 19 

Chi square analysis of responses to compact disc track One 

/ o 

/ e 

J o-J e 

(fo-f.)2 

(fo-fS)2 If, 

Equal 
Temperament 

19 

13 

6 

36 

2.77 

Pythagorean 
Intonation 

7 

13 

-6 

36 

2.77 

Null hypothesis H0 :f0 =fe 

Calculated chi 
square value 5.54 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Accept H0 
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Table 20 

Chi square analysis of responses to compact disc track Two 

/ o 

/ e 

/ o - / e 

r/o-/e)2 

r / o - / e ) 2 / / " e 

Just 
Intonation 

0 

13 

-13 

169 

13 

Pythagorean 
Intonation 

26 

13 

13 

169 

13 

Null hypothesis H0:f0=fe 

Calculated chi 
square value 26 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 21 

Chi square analysis of responses to compact disc track Three 

/ o 

/ e 

/ o - / e 

r / o - / e ) 2 

r / o . / e ) 2 
/ / e 

Pythagorean 
Intonation 

8 

13 

-5 

25 

1.92 

Equal 
Temperament 

18 

13 

5 

25 

1.92 

Nul 1 hypothesi s H0:f0=fe 

Calculated chi 
square value 

3.85 

Degrees of 
freedom # = 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Accept H0: 
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Table 22 

Chi square analysis of responses to compact disc track Four 

/ o 

/ e 

fo-fe 

(fo-fe)
2 

(fo-f,)2 If, 

Just 
Intonation 

1 

13 

-12 

144 

11.08 

Equal 
Temperament 

25 

13 

12 

144 

11.08 

Null hypothesis H0:f0=fe 

Calculated chi 
square value 22.16 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 23 

Chi square analysis of responses to compact disc track Five 

/ o 

/ e 

/ o - / e 

r/o-/e)
2 

(fo-fe)
2/fc 

Pythagorean 
Intonation 

26 

13 

13 

169 

13 

Just 
Intonation 

0 

13 

-13 

169 

13 

Null hypothesis H0:f0=fa 

Calculated chi 26 
square value 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 24 

Chi square analysis of responses to compact disc track Six 

/ o 

/ e 

Ufc 

(fo-fe)2 

(fo-f*)2 'If. 

Equal 
Temperament 

26 

13 

13 

169 

13 

Just 
Intonation 

0 

13 

-13 

169 

13 

Null hypothesis H0 :f0 =fe 

Calculated chi 26 
square value 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 25 

Chi square analysis of responses to compact disc track Seven 

/ o 

fe 

/ o - / e 

(fojy 

(fo-fc)2 if. 

Pythagorean 
Intonation 

5 

13 

-8 

64 

4.92 

Just 
Intonation 

21 

13 

8 

64 

4.92 

Null hypothesis H0:f0 =fe 

Calculated chi 
square value 

9.85 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 26 

Chi square analysis of responses to compact disc track Eight 

fo 

ft 

fo-fe 

(fo-fz)2 

f./V/e)2 If, 

Equal 
Temperament 

26 

13 

13 

169 

13 

Just 
Intonation 

0 

13 

-13 

169 

13 

Null hypothesis H0: f0 =fc 

Calculated chi 
square value 26 

Degrees of 
freedom df = 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 27 

Chi square analysis of responses to compact disc track Nine 

/ o 

/ e 

/ o - / e 

r/o-/e)2 

r/o./e)2 
/ / e 

Equal 
Temperament 

26 

13 

13 

169 

13 

Pythagorean 
Intonation 

0 

13 

-13 

169 

13 

Null hypothesis H0:f0=fe 

Calculated chi 
square value 

26 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 28 

Chi square analysis of responses to compact disc track Ten 

/ o 

/ e 

/ o - / e 

(fo-fz)2 

(fo-fe)
2 If, 

Just 
Intonation 

17 

13 

4 

16 

1.23 

Pythagorean 
Intonation 

9 

13 

-4 

16 

1.23 

Null hypothesis H0 :f0 =fs 

Calculated chi 
square value 

2.46 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Accept H0 



Table 29 

Chi square analysis of responses to compact disc track Eleven 

fo 

/ e 

/ o - / e 

(fo-fe)
2 

r / o . / e ) 2 
/ / e 

Just 
Intonation 

0 

13 

-13 

169 

13 

Equal 
Temperament 

26 

13 

13 

169 

13 

Null hypothesis H0 :f0 =fe 

Calculated chi 
square value 

26 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 30 

Chi square analysis of responses to compact disc track Twelve 

/ o 

/ e 

/ o - / e 

(fo-f,)2 

(fo-f,)2lfe 

Pythagorean 
Intonation 

0 

13 

-13 

169 

13 

Equal 
Temperament 

26 

13 

13 

169 

13 

Null hypothesis H0:f0=fe 

Calculated chi 
square value 

26 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 31 

Chi square analysis of responses to compact disc track Thirteen 

/ o 

/ c 

/ o - / e 

r / o - / e ) 2 

f / o - / ' e ) 2 '//e 

Just 
Intonation 

6 

13 

-7 

49 

3.77 

Equal 
Temperament 

20 

13 

7 

49 

3.77 

Null hypothesis H0:f0=fe 

Calculated chi 
square value 

7.54 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 



Table 32 

Chi square analysis of responses to compact disc track Fourteen 

/ o 

/ e 

/ o - / e 

f / o - / e ) 2 

r / o - / e ) 2 / /e 

Pythagorean 
Intonation 

4 

13 

-9 

81 

6.23 

Equal 
Temperament 

22 

13 

9 

81 

6.23 

Null hypothesis HQ :f0 =fe 

Calculated chi 12.46 
square value 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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Table 33 

Chi square analysis of responses to compact disc track Fifteen 

fo 

/ e 

fo-fe 

(fo-fz)2 

(foJ\V If, 

Pythagorean 
intonation 

7 

13 

-6 

36 

2.77 

Equal 
Temperament 

19 

13 

6 

36 

2.77 

Null hypothesis H0 :f0 =fe 

Calculated chi 5.54 
square value 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Accept H0 
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Table 34 

Chi square analysis of responses to compact disc track Sixteen 

fo 

/ e 

fo-fc 

r/o-/e)2 

(fo-fe)
2 If, 

Just 
Intonation 

16 

13 

3 

9 

.69 

Pythagorean 
Intonation 

10 

13 

-3 

9 

.69 

Null hypothesis H0: f0 =fe 

Calculated chi 
square value 

1.38 

Degrees of 
freedom df=\ 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Accept H0 



Table 35 

Chi square analysis of responses to compact disc track Seventeen 

/ o 

/ e 

/ o - / e 

r/o-/e)2 

(fo-fe)7 
'If, 

Equal 
Temperament 

19 

13 

6 

36 

2.77 

Pythagorean 
Intonation 

7 

13 

-6 

36 

2.77 

Null hypothesis HQ: f0 -fe 

Calculated chi 5.54 
square value 

Degrees of 
freedom df= 1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Accept H0 



Table 36 

Chi square analysis of responses to compact disc track Eighteen 

fo 

/ c 

fo-fc 

(fo-fe)
2 

(fo-fz)2 If, 

Equal 
Temperament 

25 

13 

12 

144 

11.08 

Just 
Intonation 

1 

13 

-12 

144 

11.08 

Null hypothesis H0:f0=fe 

Calculated chi 22.16 
square value 

Degrees of 
freedom df-1 

Chi square value 
from table 6.64 

Conclusion based on this chi square analysis: 

Reject H0: significant at P < .01 
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In summation of the second data collection effort, the results were similar to the 

first set of data. Equal temperament was preferred over just intonation and Pythagorean 

intonation. However, this set of data accepted the null hypothesis six times whereas the 

first set of data accepted the null only two times. In the first set of data, the null 

hypothesis was accepted twice on Excerpt 3, which was the Tcherepnin quintet. In the 

second set of data, the null hypothesis was accepted three times on Excerpt 3, with one 

of those being compact disc track 17 which paired equal temperament with Pythagorean 

intonation. This is an interesting development considering the fact that the null 

hypothesis was accepted on compact disc track one also, which also paired equal 

temperament and Pythagorean intonation. 

The conclusion that can be drawn from both sets of data is that polytonal 

harmony is more difficult to perceive for consonance. Both sets of data indicate a 

preference for equal temperament in the Excerpt 1, followed by Pythagorean intonation, 

and then just intonation. Both sets of data indicate a preference for equal temperament 

in Excerpt 2, followed by just intonation, the Pythagorean intonation. 

The overall preference for equal temperament is viewed by the author as a 

comfort zone for study subjects. It can also be concluded that Pythagorean intonation 

fares better than just intonation in the tonal excerpt due to the fact that the Pythagorean 

intonation major third is much closer to an equal temperament third than a just third. 

Additional research in these areas is recommended, particularly when an investigation 

can be designed that utilizes instrumental sounds that are more authentic than those used 

in the current study. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

A stated purpose of this study was to investigate perceived preference for 

harmony consonance in musical excerpts tuned to equal temperament, just intonation, 

or Pythagorean intonation. The study accomplished this purpose by asking study 

participants to simply choose one from a pair of excerpts that they perceived as the most 

consonant. Coincidence theory stated that the more consonant sound would be one in 

which the mathematical components are in enhanced alignment. The null hypothesis 

stated that there would be no difference in expressed preference among intonation 

systems utilized in the study. 

Two sets of data were collected in the course of the study. In the first data set, 

the null hypothesis was rejected in 16 of 18 chi square analyses. In the remaining two 

analyses, the null hypothesis was accepted. In the second data set, the null hypothesis 

was rejected 12 times and accepted 6 times. The chi square analyses for both sets of 

data indicate that the choice of one intonation system over another did not occur by 

chance. Summarily, the null hypothesis for the study was rejected. 

Both sets of data follow the same pattern of expressed preference. The results 

do not support coincidence theory. The results of this study also do not agree with 

Bisel's conclusion that no intonation system is preferred over another. Equal 

temperament was preferred when paired with any other intonation system. In Excerpt 

1, a simple tonal quintet, Pythagorean intonation was preferred over just intonation 

when the two systems were paired. In Excerpt 2, an imitative duet, just intonation was 

preferred over Pythagorean intonation when the two systems were paired. The results 
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of the study do not support coincidence theory due to the fact that the mathematics of 

equal temperament is more complex than any other intonation system. 

One of the most interesting discoveries of the study occurred using Excerpt 3, 

which was a Tcherepnin brass quintet. That excerpt is polytonal, homophonic, and 

chromatic. In data set one, the null hypothesis was accepted two times. In data set two, 

the null hypothesis was accepted three times on that excerpt. Although the study 

subjects expressed preference for equal temperament over the other intonation systems, 

the numbers were not as one-sided with the Tcherepnin quintet as with the other two 

excerpts. The conclusion drawn from these findings indicated that consonance 

perception in polytonal harmony is more difficult than in simpler, tonal music. 

In data set one of the current study, the responses to compact disc track thirteen 

detailed 32 subjects who preferred equal temperament and 16 preferred just intonation. 

This was the strongest preference expressed for any intonation system when paired 

against equal temperament in either of the sets of data. In data set two, the intonation 

system that fared best against equal temperament was Pythagorean intonation. At no 

point in the second data collection effort did just intonation fare as well as in the first 

data set. A possible explanation for the overall closer connection between equal 

temperament and Pythagorean intonation lies in the distance between the major thirds in 

those systems. The Pythagorean third is higher than the equal temperament third, which 

in turn is over 13 cents sharper than a just intonation third. This would possibly explain 

why Pythagorean intonation was preferred over just intonation in Excerpt 1 which was 

more tonal than the other excerpts. Additional study in this area is recommended. 

In the responses to compact disc track 15 of data set one, the preference 
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responses exhibited one of the most even split of the study. Twenty-three study 

subjects preferred Pythagorean intonation and twenty-five preferred just intonation. 

However, in compact disc track 16, utilizing the same excerpt, just intonation was 

presented first and was preferred by 40 study subjects while Pythagorean intonation was 

preferred by 8. This led the author to conclude that the order of presentation has an 

influence on preference response. This is an area recommended for further study. 

In the first data collection effort, the author was not satisfied with the quality of 

sounds on the playback compact disc, although the collection of data was accomplished. 

It was discovered during the course of the study that the Justonic Pitch Palette software 

and Garritan Personal Orchestra (GPO) sounds, that are packaged with Finale 2008 

notation software, are not compatible. Additional research in this area is recommended 

with programs that are compatible and more closely approximate the complex tones 

created by wind instruments. 

The second troublesome part of the sounds utilized in the first data collection 

effort centered on the fact that the scales utilized for the excerpts were all adjusted to an 

A of 440 cycles-per-second. This had the unfortunate result of creating tonic notes that 

were sometimes noticeably different pitches. Depending on the excerpt pairing, study 

subjects on occasion were asked to listen to the same excerpt starting on different 

tunings of the tonic pitch. This also created inconsistencies in some of the unisons and 

octaves during excerpt playback. For some of the study subjects, this was a distraction. 

The unsatisfactory sounds of the playback disc prompted the author to explore 

options for improving the quality of the excerpt playback. A member of the dissertation 

committee suggested an article by Wibberley (2004) that detailed the process of 
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adjusting pitchwheel values in Finale software to accommodate alternate tunings. This 

was considered a possible method of utilizing the GPO sounds. The methods and 

procedures used to produce new versions of the excerpts are detailed in Chapter III of 

the current study. 

However, this new approach to recording the excerpts did not meet with the 

desired result. The author was not able to use the pitchwheel settings in Finale 2008 

with the GPO sounds. The sounds that were used in a second data collection effort 

were the same generic MIDI sounds that were problematic in the first data collection. 

However, use of the pitchwheel function did allow control of pitch adjustments, 

particularly of the tonic, octaves, and unisons which were questionable in the first 

recordings. 

An additional goal of the study was to provide information that could be used by 

conductors and performers to create and maintain consonant intonation in wind 

instrument ensembles. This goal was to be facilitated by using authentic wind 

instrument sounds in an authentic musical context. The MIDI sounds that were utilized 

in the study were not sounds that replicate the complex tones of wind instruments to the 

degree desired by the author. While the collection of data was accomplished, it became 

apparent during the course of the study that the technology to micro-tune the most 

authentic instrumental sounds does not exist. 

The results of this study show an overall preference for equal temperament. This 

was the most surprising discovery of the investigation. The author expected just 

intonation to fare better in the results. The fact that the results of this study do not 

support coincidence theory points to the need for further investigation in this area. 
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The utilization of equal temperament in rehearsal and performance is readily 

accomplished due to the fact that woodwind instruments and melodic percussion 

instruments play primarily in equal temperament. It is also easy to compare the 

intonation of all instruments to an equal temperament standard since most electronic 

tuning devices are programmed with equal temperament as the default intonation 

system. 

However, the fact that just intonation and Pythagorean intonation were preferred 

in some areas of the study indicates that those intonation systems also have a place in 

rehearsal and performance. One determining factor would appear to be context, in 

particular the style of composition. Another determining factor could be conditioning 

of the human auditory system over a period of time to a particular intonation system. 

The centuries spent listening to equal temperament as the preferred intonation system 

could have conditioned the human auditory system to accept that as the most consonant 

sound. 

The author does not refute the fact that just intonation is an ideal system to use 

for tonal harmonies that sound sufficiently long for a consonance judgment to be 

accomplished by the listener. The author believes that highly trained instrumentalists 

and singers adjust harmony to just intonation ratios instinctively in order to eliminate 

beats and create the most consonant sound. Additional research could uncover musical 

contexts in which Pythagorean intonation would illicit the preferred consonance 

response. The current study encourages research in this area. 

In the author's opinion, the primary ingredient that was lacking in the current 

study was the flexibility to create the most accurate intonation using complex tones that 



approximate the sounds of wind instruments. The combination of hardware and 

software did not possess the flexibility necessary to produce recorded versions of the 

excerpts in the context desired. It is an interesting parallel that flexibility is one of the 

most important skills that wind instrument performers can possess. Through a 

combination of embouchure, air support, slide length, alternate fingerings, and listening 

skills, a performer can adjust any pitch to conform to any intonation system. The 

ultimate objective is to eliminate the beats that add roughness to the sound. 

A stated goal of the project was to examine harmonies that are perceived as 

consonant to the human ear and provide information as to why those sounds are 

preferred over others. The first part of this goal was accomplished. Study subjects 

picked an excerpt from each pair that they perceived as most consonant. The sounds 

that study subjects picked, however, do not support the basic tenets of coincidence 

theory. In fact, study subjects overwhelmingly picked the intonation system that is 

derived from complicated mathematics. The null hypothesis for the study was rejected, 

but not based on any evidence derived from coincidence theory. 

Finally, results of the current study constitute one small step in a direction full of 

possibilities for further research. The investigation created more questions than it 

answered. This is deemed a beneficial by-product, both in terms of additional areas of 

study directly related to the study topic in additional areas of inquiry that more 

resourceful investigators might be able to design. Additional research in the following 

areas is recommended: 

1. Comparison of perceptual responses to intonation systems utilizing instrumental 

sounds that more closely approximate the timbres of actual wind instruments. 
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2. The use of Finale pitchwheel settings to explore alternate tunings if GPO sounds can 

be used with pitchwheel settings in the investigation. 

3. Use of Justonic Pitch Palette software to explore alternate tunings if GPO sounds can 

be used in the investigation. 

4. A study that explores the order of presentation of intonation systems as a way of 

investigating if that order influences perceptual preference for one system over another. 

5. A study that explores the amount of time it takes to make a consonance judgment. 

This interval of time is identified as the attack transient in the literature. 

6. A modern version of Boomsliter and Creel's extended reference study could be 

designed to investigate the tuning of individual lines of a larger work and then 

recombine the lines to determine the correlation between melodic and harmony 

intonation. 

7. A study could be designed that separates instrumentalists in groups of string, 

woodwinds, brass, and keyboard performers. It would be interesting to determine if the 

type of intonation the performer is most accustomed to influences their tuning 

preference. 
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Music Learning Research Division of G.I. A. Publications 
7404 S. Mason Ave. 
Chicago, IL 60638 

Dear Sirs, 

My name is Derle R. Long and I am Director of Bands at the University of Louisiana at Monroe. 
I am also a candidate for the degree Doctor of Philosophy in Music Education from the 
University of Southern Mississippi. Dr. Thomas V. Fraschillo is my dissertation committee 
chairman. I am A.B.D. in my pursuit of this degree. 

My dissertation title is "An investigation of tuning preferences of a selected group of 
instrumentalists with reference to Just Intonation, Equal Temperament, and Pythagorean 
Intonation." My study had its genesis in a study by Hugh Bailey Johnson, Jr., at the Indiana 
University in 1963 in which he investigated the tuning preferences of a select group of singers. 

The study will present short musical excerpts to selected listeners. The excerpts will be notated 
using Finale music notation software. The excerpts will be reproduced using Cakewalk 
Dimension Pro virtual synthesizer, Justonic Pitch Palette, and a yet-to-be-determined sound 
system. The Justonic software allows the excerpt to be tuned and played back in an infinite 
variety of intonation systems. The three systems selected for this study are Just Intonation, Equal 
Temperament, and Pythagorean Intonation, in the same manner as Hugh Johnson. 

This is where G.I.A. Publications comes into the picture. For several years I have used the MLR 
Instrumental Score Reading Program in my conducting classes here at ULM. One of the things I 
like best is the sequential nature of the excerpts, from Level One to Level Three. I believe this 
sequential approach would work well in my study. 

I am seeking permission to utilize no more than eight musical examples from the MLR program 
as the excerpts for my study. I propose to use two excerpts from Levels One and Two and three 
excerpts from Level Three. I realize that G.I.A. does not own all of the copyrights to the music in 
the MLR. However, since the excerpts are contained in an anthology that is copyrighted by 
G.I.A., I am seeking your permission first. Should that be granted and an excerpt be selected in 
which the copyright is owned by someone other than G.LA., I will seek permission to use that 
excerpt from the copyright owner. 

I will, of course, provide full disclosure and gratitude to G.I.A. Publications in text of the study 
should you find it possible to grant this permission. I will also make the data and conclusions 
available to you as soon as the study is accepted by my committee and the U.S.M. Graduate 
School. Should you need more information on this request, please do not hesitate to call me at 
318.342.1594 or communicate by email at long@ulm.edu. 

Sincerely, 

Derle R. Long 
Director of Bands 
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APPENDIX F 

Consent Sample (Short Form) 

THE UNIVERSITY OF SOUTHERN MISSISSIPPI 

AUTHOftlZATiON TO PARTICIPATE IN RESEARCH PROJECT 
{Short Form - to be used with oral presentation) 

Particpanfs Name 

Consent is hereby given to participate in the research project entitled 
Seeking a p e r c e p t u a l p r e f e r e n c e , Ail procedures andfor 

investigations to b© followed and their purpose, including any experimental procedures, were 
explained by D e r l e R. Long , information was given about aii benefits, risks, 
inconveniences, or discomforts that might be expected. 

The opportunity to ask questions regarding the research and procedures was given. Participation 
in the project is completely voluntary, and participants may withdraw at any time without penalty, 
prejudice, or toss of benefits. All personal information is strictly confidential, and no names will be 
disclosed- Any new information that develops during the project will be provided if that information 
may affect the willingness to continue participation in the project. 

Questions concerning the research, at any time during or after the project, should be directed to 
researcherts) name(s) at telephone numberfs). This project and this consent form have been 
reviewed by the Human Subjects Protection Review Committee, which ensures that research 
projects involving human subjects follow federal regulations. Any questions or concerns about 
rights as a research participant should be directed to the Chair of She institutional Review Board, 
The University of Southern Mississippi, 118 College Drive #5147, Hattiesburg, MS 39406-0001, 
(601)266-6820. 

Us& the following only if applicable: The University of Southern Mississippi has no mechanism to 
provide compensation for participants who may incur injuries as a result of participation in research 
projects. However, efforts will be made to make available the facilities and professional skills at 
me University. Information regarding treatment or the absence of treatment has been given. In 
the event of injury in this project, contact treatment provider's namefs) at telephone number(s). 

A copy of this form will be given to the participant. 

Signature of participant Date 
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Data Collection Document Number 

This project has been reviewed by the Human. Subjects Review Committee, which ensures that 
research projects involving human subjects follow federal regulations. Any questions or 
concerns about rights as a research subject should be directed to the chair of the Institutional 
Review Board, The University of Southern Mississippi, 118 College Drive, #5147, Hattiesburg, 
MS 394064001, (601)266*6820. 

Instructions - On each CD track you will hear pairs of each excerpt, identified on this document 
as "A" or "B". Choose the version that you think sounds best for harmony consonance. Place an 
"X** in the box for the version you choose, You may make comments about the versions in the 
space provided. 

Description 

Excerpt #1 

Excerpt # 2 

Excerpt # 3 

Excerpt § 4 

CD Track 
1 
2 

rr^3 4 
5 
6 

7 
]~ 8 

9 
10 

r ~ ~ ~ l l 
12 

13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

A B Comments 
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APPENDIX H 

Scale and frequencies utilized for Bouree 

Just Equal Pythagorean 
Intonation Temperament Intonation 

Do 220 220 220 

Re 

Mi 

Fa 

So 

La 

Ti 

Do 

234.67 

247.5 

264 

275 

293.33 

308 

330 

352 

366.67 

385 

412.5 

440 

233.08 

246.94 

261.63 

277.18 

293.66 

311.13 

329.63 

344.23 

369.99 

392 

415.30 

440 

231.77 

247.5 

260.74 

278.44 

293.33 

313.24 

330 

347.65 

371.25 

391.11 

417.66 

440 
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Scale and frequencies utilized for Ascendit Deus 

Just Equal Pythagorean 
Intonation Temperament Intonation 

Do 234.67 233.08 231.77 

250.31 246.94 244.17 

Re 264 261.63 260.74 

281.60 277.18 274.69 

Mi 

Fa 

So 

La 

Ti 

Do 

293.33 

312.89 

328.53 

352 

375.47 

391.11 

410.67 

440 

469.34 

293.66 

311.13 

329.63 

344.23 

369.99 

392 

415.30 

440 

466.16 

293.33 

309.03 

330 

347.65 

366.25 

391.11 

412.03 

440 

463.54 
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APPENDIX J 

Scale and frequencies utilized for Brass Quintet 

Just Equal Pythagorean 
Intonation Temperament Intonation 

Do 264 261.63 260.74 

Re 

Mi 

Fa 

So 

281.6 

297 

316.80 

330 

352 

369.60 

396 

277.18 

293.66 

311.13 

329.63 

349.23 

369.99 

392 

274.69 

293.33 

309.03 

330 

347.65 

371.25 

391.11 

422.4 415.30 412.03 

La 

Ti 

Do 

440 

462 

495 

528 

440 

466.16 

493.88 

523.26 

440 

463.54 

495.00 

521.48 
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APPENDIX K 

Finale 2008 Pitchwheel Settings for Ascendit Deus 

Note Pythagorean Just 
Name Intonation Intonation 

Bb 0 0 

B 

C 

C#/Db 

D 

D#/Eb 

E 

F 

F#/Gb 

G 

G#/Ab 

A 

-400 

160 

-240 

320 

-80 

480 

80 

655 

240 

-160 

400 

481 

160 

641 

-561 

-80 

123 

80 

561 

-641 

721 

-481 



117 

APPENDIX L 

Finale 2008 Pitchwheel Settings for Bouree 

Note Pythagorean Just 
Name Intonation Intonation 

A 0 0 

A#/Bb -400 481 

B 160 160 

C -240 641 

C#/Db 

D 

D#/Eb 

E 

F 

F#/Gb 

G 

G#/Ab 

320 

-80 

480 

80 

655 

240 

-160 

400 

-561 

-80 

123 

80 

561 

-641 

721 

-481 
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APPENDIX M 

Finale 2008 Pitchwheel Settings for Tcherepnin Quintet 

Note Pythagorean Just 
Name Intonation Intonation 

C O O 

C#/Db -400 481 

D 160 160 

D#/Eb -240 641 

E 320 -561 

F 

F#/Gb 

G 

G#/Ab 

A 

A#/Bb 

B 

-80 

480 

80 

655 

240 

-160 

400 

-80 

123 

80 

561 

-641 

721 

-481 
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