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ABSTRACT 

EXAMINATION OF AN ALOE VERA GALACTURONATE POLYSACCHARIDE 

CAPABLE OF IN SITU GELATION FOR THE CONTROLLED RELEASE OF 

PROTEIN THERAPEUTICS 

by Shawn David McConaughy 

December 2008 

A therapeutic delivery platform has been investigated with the ultimate goal of 

designing a sustained protein release matrix utilizing an in-situ gelling, acidic 

polysaccharide derived from the Aloe vera plant. The Aloe vera polysaccharide (AvP) has 

been examined in order to determine how chemical composition, structure, molecular 

weight and solution behavior affect gelation and protein/peptide delivery. Correlations 

are drawn between structural characteristics and solution behavior in order to determine 

the impact of polymer conformation and solvation on gel formation under conditions 

designed to simulate nasal applications. Steady state and dynamic rheology, classic and 

dynamic light scattering, zeta potential, pulse field gradient nuclear magnetic resonance 

and fluorescence spectroscopy have been employed to gain insight into the effects of 

galacturonic acid content, degree of methylation, entanglement and ionic strength on both 

solution behavior and the hydrogel state which ultimately governs protein/peptide 

release. 

11 



This dissertation is divided into two sections. In the first section, a series of Aloe 

vera polysaccharides (AvP), from the pectin family have been structurally characterized 

indicating high galacturonic acid (GalA) content, low degree of methylester substitution 

(DM), low numbers of rhamnose residues and high molecular weight with respect to 

pectins extracted from traditional sources. The behavior of AvP was examined utilizing 

dilute solution, low-shear rheological techniques for specific molecular weight samples at 

selected conditions of ionic strength. From these dilute aqueous solution studies, the 

Mark-Houwink-Sakurada (MHS) constants (K and a), persistence length (Lp) and 

inherent chain stiffness (B parameter) were determined, indicating an expanded random 

coil in aqueous salt solutions. The critical concentration for transition from dilute to 

concentrated solution, Ce, was determined by measuring both the zero shear viscosity and 

fluorescence emission of the probe molecule 1,8-anilino-l -naphthalene sulphonic acid 

(1,8-ANS) as a function of polymer concentration. Correlations are drawn between 

viscosity experiments and measurement of zeta potential. Increased degrees of 

intermolecular interactions are responsible for a shift of Ce to lower polymer 

concentrations with increasing ionic strength. Additionally, dynamic rheology data are 

presented highlighting the ability of AvP to form gels at low polymer and calcium ion 

concentrations, exemplifying the technological potential of this polysaccharide for in-situ 

drug delivery. 

In the second section, properties of Aloe vera galacturonate hydrogels formed via 

Ca + crosslinking have been studied in regard to key parameters influencing gel 

formation including molecular weight, ionic strength and molar ratio of Ca2+ to COO" 

functionality. Dynamic oscillatory rheology and pulsed field gradient NMR (PFG-NMR) 

iii 



studies have been conducted on hydrogels formed at specified Ca concentrations in the 

presence and absence of Na+ and K+ ions, in order to assess the feasibility of in situ 

gelation for controlled delivery of therapeutics. Aqueous Ca concentrations similar to 

those present in nasal and subcutaneous fluids induce the formation of elastic Aloe vera 

polysaccharide (AvP) hydrogel networks. By altering the ratio of Ca to COO" 

functionality, networks may be tailored to provide elastic modulus (G') values between 

20 and 20,000 Pa. The Aloe vera polysaccharide exhibits time dependent phase 

separation in the presence of monovalent electrolytes. Thus the relative rates of calcium 

induced gelation and phase separation become major considerations when designing a 

system for in situ delivery applications where both monovalent (Na+, K+) and divalent 

(Ca2+) ions are present. PFG-NMR and fluorescence microscopy confirm that distinctly 

different morphologies are present in gels formed in the presence and absence 0.15 M 

NaCl. Curve fitting of theoretical models to experimental release profiles of fluorescein 

labeled dextrans indicate diffusion rates are related to hydrogel morphology. These 

studies suggest that for efficient in situ release of therapeutic agents, polymer 

concentrations should be maintained above the critical entanglement concentration (Ce, 

0.60 wt%) when [Ca ]/[COO"] ratios are less than 1. Additionally, the monovalent 

electrolyte concentration in AvP solutions should not exceed 0.10 M prior to Ca2+ 

crosslinking. 
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1 

CHAPTER I 

INTRODUCTION 

Hydrogels 

The term hydrogel is generally used to describe three dimensional viscoelastic 

networks that retain large amounts of water. The network is often formed by a 

hydrophilic polymer which may be chemically or physically crosslinked. Networks of 

this nature are considered ideal candidates for drug delivery and have received vast 

interest.1 Stimuli responsive hydrogels undergo a reversible phase transition in the 

presence of stimuli such as pH, temperature, and ionic strength. Stimuli responsive 

systems can be tailored to provide in situ gelation and have been investigated for site 

specific drug delivery. Several excellent review articles on the subject hydrogels, 

microgels/nanogels, and in situ gelling systems are recommended.2"5 

Hydrogels can be formed from both synthetic and natural polymers. A recent 

review focusing on hydrogels formed from synthetic block copolymers including; 

poly(N-substituted acrylamides), poly(vinyl ethers), and polyethylene 

oxide/polypropylene oxide block copolymers is recommended.6 This dissertation focuses 

on a naturally derived galacturonate polysaccharide hydrogel system. As such the 

remainder of the introduction pertains to hydrogels formed via chemical and physical 

crosslinking of polysaccharides. 
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Polysaccharides 

Polysaccharides represent a broad class of biological macromolecules that are 

produced abundantly by both the algal and plant kingdoms and certain strains of 

microbial bacteria. Due to the diverse range of synthetic pathways present within 

different plant and bacterial species, polysaccharides display a variety of structural and 

behavioral characteristics. Over 100 simple sugars and sugar derivatives are included in 

the monomers available for synthesis. In addition perturbations in covalent linkage 

position on the sugar ring and chain branching provide added potential for diversity 

among naturally occurring polysaccharides.7 

Water soluble polysaccharides have been and continue to be used in many 

consumer products including application in both the food and personal care industries. 

Coming from renewable resources, polysaccharides frequently have an economic 

advantage over synthetic polymers. This results in a distinct advantage within consumer 

based markets. In other industries such as pharmaceutics, polysaccharides have received 

attention due to their non-toxic, biocompatible nature. 

Polysaccharides are commonly classified based upon plant or animal source and 

into groups of similar chemical structure. This introduction will focus on polysaccharides 

of interest to the pharmaceutical field and is organized in terms of natural source, with a 

separate section on cellulose derivatives. The order of discussion progresses according to 

the most common gelation mechanism employed for the individual polysaccharide. 

Polysaccharide systems which require chemical crosslinking are discussed first, 



progressing to those which gel through physical association and finally to those which gel 

upon exposure to divalent ions. 

Cellulose Derivatives 

Cellulose serves as the major structural component of plants and is abundant in 

nature. In order to confer water solubility, cellulose is commonly modified synthetically 

to produce cellulose ethers. Water soluble cellulose ethers can be prepared by 

nucleophilic substitution and ring opening mechanisms. Two of the most widely utilized 

cellulose derivatives are carboxymethylcellulose and hydroxyethylcellulose. 

OCH2CH2COO- N a 

Na1" 
OCH2CH2COCr 

Figure 1-1. Molecular Structure of carboxymethylcellulose. 

Carboxymethylcellulose. Carboxymethylcellulose (CMC) is usually prepared by 

the reaction of cellulose with chloroacetic acid in aqueous alkaline organic slurries. The 

extent of substitution at C-2, C-3, and C-6 is related to the effectiveness of hydrogen 

bond disruption, steric factors, and reactions conditions.7 The acid form of CMC behaves 

as a polyelectrolyte and exhibits a pKa of 4. Solutions of sodium CMC are pseudoplastic 



for degrees of substitution between 0.9-1.2. Solutions of high molecular weight sodium 

CMC with a low degree of substitution are thixotropic. 

CMC is considered biocompatible and is traditionally utilized as an excipient in 

pharmaceutical formulations involving oral delivery of tablets. CMC has been used to 

form interpolymer complexes with chitosan to produce "tablets-in-capsule" oral delivery 

systems. The approach of these systems is to form a combination of mini-matrices inside 

o 

a hard gelatin capsule to obtain different drug delivery systems. Anomalous diffusion of 

clarithromycin was observed from chitosan/CMC when complexes were formed at a 1:3 

ratio. Fickian diffusion was observed when a 3:1 ratio was employed. 

Typically CMC hydrogels are prepared by chemical crosslinking or gamma 

irradiation.9'10 Physically crosslinked hydrogels have been formed utilizing mixtures of 

CMC and polyvinyl alcohol (PVA).11 A solution containing the two polymers was 

repeatedly heated and cooled in a freeze-pump-thaw cycle. During the cooling cycle the 

PVA undergoes crystallization, these crystalline regions then act as junction zones in the 

resulting hydrogel. 

OCH2CH2OCH2CH2OH 

OCH2CH2OH 

Figure 1-2. Molecular Structure of hydroxyethylcellulose. 
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Hydoxyethylcellulose. Hydoxyethylcellulose (HEC) is prepared by ring opening 

of ethylene oxide by hydroxyl anions formed on the anhydroglucose ring of cellulose. 

HEC is a nonionic polymer with little surface activity in solution, making it stable under 

a wide range of ionic strengths. HEC/chitosan complexes have been studied with specific 

focus on their mucoadhesive properties. Mucoadhesion studies on HEC solutions alone 

and HEC/chitosan complexes determined that the presence of chitosan decreases 

mucoadhesion. However, the presence of chitosan provided improved retention on the 

mucosal wall. The increased retention time was attributed to an increase in yield stress 

provide by the HEC/chitosan complex. The yield stress inhibited flow of the sample from 

the mucosal wall, resulting in an overall higher percent delivery of the target antibacterial 

agent, metronidazole. 

Animal Extracts 

Chitin. Chitin is a water-insoluble high molecular weight polysaccharide that is 

abundant in the skeletal material of invertebrates such as clams, crabs, and lobsters. 

Chitin may be converted to chitosan (Figure 1-3) by partial or complete deacetylation.7 In 

the protonated form the cationic polysaccharide is water soluble. A large focus has been 

placed on the development of chitosan for nasal drug delivery and many excellent articles 

have been published by Lisbeth Ilium.13"18 A recent review article by M. Prabaharan19 

focuses solely on the application of chitosan and chitosan derivatives in controlled drug 

delivery. 



Figure 1-3. Molecular Structure of chitosan. 

Hyaluronic Acid. While hyaluronic acid is considered a glycosaminoglycan that is 

present in animal fluids, including human sinovial fluid, it is commercially produced 

from Streptococci bacteria. Hyaluronic acid is composed of a repeating disaccharide unit 

of D-glucuronic acid and N-acetylglucosamine units linked a-(l-4) and P-(l-3), 

respectively. 

MO' 

NM [ If 

Figure 1-4. Molecular structure of hyaluronic acid depicting N-acetylglucosamine and 
D-glucuronic acid. 

Hyaluronic acid is commonly used as a viscoelastic fluid in ophthalmologic 

surgery and as an injectable solution in joint rehabilitation. Hyaluronic acid hydrogels 

have received interest as biocompatible and biodegradable materials with applications in 

drug delivery and tissue engineering. Hyaluronic acid is not a natural gel former and must 

be chemically modified to produce hydrogels. Typical approaches have relied on 

chemically crosslinked networks through reactions with; divinylsulfone, glycidyl ether, 

and gluteraldehyde.20 Additionally, in most hyaluronic acid hydrogel delivery systems 
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drugs have been covalently attached to the hyaluronic acid backbone, typically via 

carbodiimide chemistry. An important problem with these techniques is that they 

involve small molecule reactants which are not biocompatible and must be removed prior 

to in vivo application. 

A more biocompatable crosslinked hyaluronic acid system has been developed. 

The system involved preparation of thiol-modified hyaluronic acid. Dithiobis(propanoic 

dihydrazide) and dithiobis(butyric dihyrdrazide) were coupled to hyaluronic acid via 

carbodiimide chemistry. The disulfide bonds of the initial gel were then reduced with 

dithiothreitol to yield the thiol modified derivatives. In the presence of air, the thiol 

groups oxidize to form disulfide linkages, yielding a reversible hydrogel system. The 

system was evaluated for modulated delivery of blue dextran and was shown to release 

dextran upon reduction of the dithiol linkage. 

Bacterial Polysaccharides 

Microorganisms produce polysaccharides of three distinct types: extracellular, 

structural, and storage. Extracellular polysaccharides include those that form a capsule 

which is integral to the bacteria cell wall and those that are exuded from the bacterial cell 

wall and diffuse constantly into the surrounding medium.23 Exuded extracellular 

polysaccharides have been widely exploited by industry because they can be recovered in 

large quantities from culture media. Extracellular polysaccharides function to both 

protect bacteria from the environment and provide a method of cell signaling. 
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Dextran. Dextrans are high molecular weight homopolysaccharides of a-l-6-D-

glucopyranose with varying proportions of a-1-2, a-1-3 and a-1-4 branched linkages. 

Dextran is produced from sucrose by a number of bacteria from the family 

Lactobacilleae. Fractionated commercial dextrans are often used as standards in 

molecular weight determination of other water soluble polymers via size exclusion 

chromatography. Dextran is utilized in commercial applications as a plasma substitute 

and anticoagulant. 

i 

Figure 1-5. Dextran molecular structure depicting the 1-6 glucopyranose linkage. 

Dextran is commonly modified synthetically; one of the first examples relevant to 

the pharmaceutical field was the introduction of reactive double bonds via 

functionalization with glycidyl acrylate.24 The acrylate moieties were polymerized 

utilizing gamma-irradiation, resulting in hydrogels which provide modulated release of 

drugs upon degradation by dextranase. The cumulative release of model proteins 

decreased with increasing protein size. Diffusion rates were found to be proportional to 

the square root of time, indicating that Fickian diffusion was dominant. 25'26 
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Hydroxyethyl methacrylate (HEMA) dextrans have been prepared that are 

degradable under physiological conditions due to the presence of carbonate esters in the 

final crosslinked hydrogel.27 The release profiles of interlukin-2, a known mediator of 

immune response, indicated that increasing crosslink density decreases the release rate. 

Microgels of HEMA modified dextrans were also investigated for delivery of DNA.28 

Further studies involved the encapsulation of Dextran-HEMA microgels with a water 

permeable lipid membrane. Swelling occurs upon degradation of the dextran-HEMA 

microgel which ultimately results in rupture of the lipid layer. Using this mechanism the 

composition of the dextran-HEMA microgel can be altered to modify the degradation rate 

and provide rupture of the lipid layer at a specific time interval. 

Pullulan. Pullulan is a linear bacterial polysaccharide derived from Auredasidium 

pullulans. The polymer backbone is composed of a-l-6-D-glucopyranose and a-l-4-D-

glucopyranose present at a 1:2 ratio. In aqueous solution pullulan appears to behave as 

an expanded random coil. 

Figure 1-6. Pullulan molecular structure depicting a-1-6 and a-1-4 glycosidic linkages. 
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Pullulan has been used in foods as filler and in pharmaceuticals as a coating agent. Films 

formed by drying pullulan solutions provide high oxygen permeability and excellent 

mechanical properties. Pullulan is not a naturally gelling polysaccharide, however as in 

the case of dextran, synthetic modifications have been show to provide a gelling 

mechanism suitable for drug delivery. 

Pullulan hydrogels have been examined for drug delivery in the form of micro- or 

nanogel particles. Hyrophobically modified pullulan has been shown to form nanogels 

through intramolecular interactions. °" 2 These interactions are particularly strong when 

the hydrophobic moiety employed is cholesterol. Cholesterol modified pullulan has been 

shown to bind both hydrophobic small molecules, such as anticancer drugs, and water 

soluble proteins. ' It has been reported that the size and effective crosslink density of 

the hydrogel nanoparticles can be altered by varying the degree of cholesterol 

substitution. It has been shown that upon addition of P-cyclodextrin the intramolecular 

hydrophobic interactions present in the pullulan nanogel are disrupted and the gels 

expand, leading to the conclusion that pullulan nanogels could be used to delivery 

therapeutics to hydrophobic environments.34 

Xanthan. Xanthan was one of the first commercially available bacterial 

polysaccharides, it was first put into pilot production by Kelco in I960.23 Xanthan gum is 

a heteropolysaccharide with a cellulosic backbone of 0-1-4 linked D-glucose. A side 

chain of P-D-mannose-(l,4)-P-D-guluronic acid-(l,2)-a-D-mannose is present on 

alternating glucose sugars along the polymer backbone. The internal mannose unit may 

be acetylated at C-6, and the terminal mannose unit can be substituted with pyruvate. 
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MO 

Figure 1-7. Xanthan molecular structure depicting P-D-mannose-(l,4)-P-D-guluronic 
acid-(l,2)-a-D-mannose side chains on the D-glucose backbone. 

Xanthan dissolves readily in either hot or cold water to give highly viscous 

solutions at low concentration. Solutions of xanthan are highly pseudoplastic with the 

viscosity being nearly independent of temperature and pH. At pH 9 or above, xanthan is 

gradually deaceylated , however there is a negligible effect on solution properties. 

Xanthan has been widely used as a tablet excipients to increase the rate of drug 

delivery, however there are not many studies that have examined xanthan as a drug 

delivery vehicle. Complexes of xanthan and chitosan form homogeneous hydrogels 

containing fibrillar structures. These fibrillar gels were used to form channels which 

permitted transport of polymeric substrates to regions where immobilized enzymes were 

present, upon exposure of the substrate to the enzyme the desired reaction was achieved 

and the product was recovered. 

Xanthan has been utilized in the preparation of sponge like in situ gelling nasal 

inserts with the goal of delivering proteins and peptides in the nasal cavity. Model drug 

release relies on the interplay between osmotic forces and electrostatic interactions 
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between the polymer system and the protein. Extended in vitro release was demonstrated 

over several hours making xanthan a potential candidate for bioadhesive nasal inserts. 

Gellan. Gellan is a linear exopolysaccharide commercially prepared by 

fermentation of Sphingomonas elodea. The tetrasaccharide repeat unit is composed of (-

4-L-rhamnopyranosyl -(a-l-3)-D-glucopyranosyl -(0-1-4) -D-glucuronopyranosyl-(p-l-). 

In nature the 1-3 linked glucose unit contains 0(2) L-glyceryl and 0(6) acetyl 

substituents. 

HO , ^ . . i HO 

Figure 1-8. Gellan molecular structure depicting the tetrasaccharide repeat unit. 

Gellan gum forms a 3-fold double helix in solution, with the acetate groups on the 

periphery, and glyceryl groups stabilizing interchain associations. In order to tailor the 

mechanical properties of hydrogels formed in the presence of monovalent and divalent 

counterions gellan gum is often de-esterified prior to use. In the acylated form gellan 

forms soft, elastic gels, while de-acylation results in transparent, brittle, non-elastic gels. 

Gellan hydrogels are thermoreversible transitioning from sol to gel as temperature 

is reduced below 50°C. The transition temperature is increased in the presence of cations 

that stabilize the gel. Gellan has been widely investigated in ophthalmic drug delivery 

formulations due to its ability to gel in the presence of cations contained within tear 

fluid. In vivo experiments determined that appreciable amounts of ocular bioavailability 
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were obtain only when the gel strength was within set limits. Gellan has been tested in 

vivo in rats for delivery of model fluorescein dextran compounds and was shown to 

exhibit retention times relevant to nasal delivery (1-2 hr). Parallel in vitro studies 

determined that strong gels were formed in the presence of 0.9% NaCl. The presence of 

divalent calcium ions further increased the gel strength. 

Algal Extracts 

Carrageenan. Carrageenan is a seaweed that was originally harvested along the 

south coast of Ireland by shore residents of the County Carragheen approximately 600 

years ago.23 It was brought to the coast of North America by Irish settlers and was 

recognized as a component of local flora of the coast of Massachusetts in the 1700's. 

Carrageenan is composed of a linear disaccharide repeat unit composed of {3-D-galactose 

and 3,6-anhydro-a-D-galactose. In general three different types of carrageenan exsist, 

which are classified based on the degree of sulfation (ranges from 15 to 45%). 

i-earrafifienan 

Figure 1-9. Molecular structures of kappa, iota, and lambda-carrageenan. 
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Kappa and iota carrageenans exist as right handed threefold helices that have been 

shown to form reversible double helices in solution.23 Physically crosslinked hydrogels 

are formed by kappa and iota carrageen upon exposure to monovalent ions, specifically 

potassium. Junctions in kappa-carrageenan hydrogels are thought to involve 

intermolecular association of double helix segments.39'40 The properties of hydrogels can 

vary from hard and brittle to soft and elastic. The properties of the gel are directly 

dependent on the chemical nature of the carrageenan, the type of counter ion present and 

the presence of other non-gelling polysaccharides. 

Carrageenans are often utilized to form interpenetrating hydrogel networks with 

agar and gelatin. Release of model compounds was found to rely heavily on the network 

structure of the original polysaccharide constituents. This suggests that the networks were 

not truly interpenetrating.41 

A comparison of gels formed from ^-carrageenan on crosslinking with mono, di 

and trivalent ions revealed that trivalent ions are less effective at forming hydrogels for 

drug delivery applications. Microscopy revealed that large channels were present within 

the network.42 

Alginates. Alginates are a class of polysaccharides which contribute to the 

structural components of marine algae.29 Alginates are known for their ability to retain 

water and for their gelling and viscosifying properties. Alginates are unique in that they 

exhibit an almost temperature-independent gelation behavior in the presence of 

multivalent cations, making them suitable materials for the immobilization of living cells. 



15 

Alginates are composed of (1-4) linked P-D-mannuronic acid and a-L-guluronic 

acid residues (Figure I-10) found in a wide variety of compositions and sequences. Haug 

and Smidsrod reported that alginate structure contains three primary regions; two of these 

regions contain almost homopoylmeric sequences of mannuronic and guluronic acid 

residues. The third region consists of alternating sequences of mannuronic and guluronic 

residues, as depicted in Figure 1-11. 43 

coo-

COO" 
OH OH 

HO 

OH 

Figure 1-10. P-o-Mannuronic Acid (left) and a-L-Guluronic Acid (right) 

tr ^o 

Figure 1-11. General structure of alginates depicting mannuronic and guluronic repeat 

units. 

Gelation of alginates requires dissolution followed by changes in pH and/or ion 

type and concentration with almost no dependence on temperature. Potentiometric 

measurements by Haug revealed that an abrupt decrease in pH below the pKa of the 
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alginate causes precipitation, whereas a metered addition of acid created an "alginic acid 

gel".43 The pH range of gelation was found to be dependent upon molecular weight and 

the chemical composition and sequence of the alginate; for example, alginates containing 

more alternating blocks of mannuronic and guluronic acid precipitate at lower pH values 

than those with more homogeneous block structures. Alginates with homogeneous block 

structures promote the growth of crystalline regions, enhancing the formation of a 

hydrogen bonded gel. 

Alginates exhibit specific ion binding characteristics; for example, equilibrium 

dialysis experiments have shown selective binding to alkaline earth metals such as 

calcium.44 The prevalence of specific ion binding was found to increase with increasing 

content of a-L-guluronate residues. This indicates that chelation is caused by some 

structural feature of the a-L-guluronate residues. A widely accepted theory by Grant et 

al.45 proposes "egg-box structures" (Figure 1-12), based on the linkage structures of the 

guluronate resides. NMR studies by Kvam and Steginsky have suggested similar binding 

sites for calcium ions.46 
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Mannuronate Region 
Non-ion Binding 

Figure 1-12. Alginate Egg Box Structure 

Plant Extracts 

Traditional Glacturonate Polysaccharides: Pectins. Pectins are a broad class of 

complex plant polysaccharides which are present in the primary cell walls and 

intercellular regions of plants. Pectins are commonly extracted from citrus sources such 

as grapes, apples, and oranges and have been heavily utilized in the food industry.23 

Pectins present in plant cell walls are responsible for the controlled permeation of water 

and structural integrity of the cell.29 This class of polysaccharides is characterized 

structurally by a heterogeneous composition of partially methyl-esterifed galacturonic 

acid, rhamnose, and neutral sugars. Pectins are primarily composed of an a-(l-4)-linked 

D-galacturonic acid polymer backbone, commonly referred to as "smooth" or linear 

homogalacturonic regions (Figure 1-1). Regions containing intermittent (l-2)-linked 
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rhamnopyranosyl units (Figure 1-2) are also present along the polymer backbone. These 

regions, referred to as "hairy" or branched rhamnogalacturonic regions, are branch sites 

for neutral sugars such as glucose, mannose, galactose, fucose, and xylose. 

0^. „OCH °*cxO'Na* 

Figure 1-13. Homogalacturonan region of pectin depicting galacturonic acid in the 
sodium salt form and in the methyl ester form. 

Figure 1-14. Rhamnogalacturonan region of pectin with rhamnose sugars incorporated 
into the polysaccharide backbone via a 1-2 linkage. 

Neutral Sugar Side Chains 

Homogalacturonan 

\ 

/ \ 

i Rhamnogalacturonan 

/ 

\ 

Neutral Sugar Side Chains 
/ 

Figure 1-15. Linear and branched regions of pectin polysaccharides 
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In nature the carboxylic acid located at C-6 of the galacturonic acid unit may be 

esterified with methanol. Pectins are further divided in classification based upon the 

percentage of methyl-esters naturally present on the galacturonic acid polymer backbone. 

Pectins with degrees of methylation higher than 50% are termed high-methoxy pectins47 

(HM) and those below 50% are low-methoxy pectins (LM). Natural pectins, such as 

those from apple, citrus, and grape are often highly methylated. ' 

LM pectins are generally obtained by controlled, acidic de-esterification, but may 

also be obtained using acidic microbial pectin methylesterases (PME).48 These 

procedures tend to lead to LM pectins with a random distribution of free carboxyl groups. 

Thibault and Rinaudo48 demonstrated that alkaline PME may be used to create pectins 

with blockwise arrangement of free carboxyl groups. In separate studies it was shown 

that the distribution of free carboxyl groups has a marked effect on the gelation properties 

of pectins.49'50 Measurements of the calcium transport parameter and calcium activity 

coefficient as a function of degree of methylation (DM) for a series of alkali, acid, fungal 

PME, and plant PME de-esterified pectins showed that a blockwise arrangement of free 

carboxyl groups leads to stronger calcium binding.49'51 Recent studies involving side 

chain modifying enzymes revealed that removal of neutral sugar side chains results in 

significantly lower solution viscosity. The reduction in viscosity was attributed to loss 

of neutral sugar-driven associations in solution and was shown to correlate to an order of 

magnitude reduction in hydrogel mechanical properties. These studies exemplify the 

large impact of chemical structure and solution behavior on the gelation of pectins. 

Gelation of pectins can occur under a variety of conditions, including changes in 

solution pH,53 ionic strength,54' 55 and temperature.56' 57 However, the primary 
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requirement for efficient gelation is that the pectin be initially soluble. Pectin solubility in 

aqueous media is favored by the dissociation of carboxyl groups, which creates 

Coulombic repulsion between polymer chains enhancing polymer-solvent interactions. 

Once the pectin is solubilized, it may gel through inter-chain associations. The hydroxyl 

groups at C-2 and C-3 on galacturonic acid units may readily elicit hydrogen bonding58'59 

with the free, methylated, or amidated carboxyl functions located at C-6. In addition, 

hydrophobic interactions between aliphatic regions of the polysaccharide may result in 

further polymer-polymer interactions. The combination of these conditions gives rise to 

rigid non-reversible gels. 

LM pectins also gel in the presence of divalent cations such as calcium, exhibiting 

an increased propensity towards gelation as the DM decreases. Furthermore, LM pectins 

with a blockwise arrangement of carboxyl groups exhibit high sensitivity to calcium 

ions.49'58'61 Many rheological studies have been conducted on pectin hydrogels formed in 

the presence of Ca2+ and cosolutes, such as sugars62"64 and polysaccharides,65"70 due to the 

vast number of applications in food and personal care products. The addition of calcium 

to LM pectins has been shown to create pectin dimers via physical crosslinking of 

carboxyl functional units. Physical crosslinking is shown to occur in the "smooth" 

homogalacturonic regions. The proposed structure of the pectin calcium ion physical 

crosslink is depicted in Figure 1-4 with crosslinked areas being referred to as junction 

58,71 

zones. ' 
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Figure 1-16 Proposed conformation of physical crosslinks formed by complexation of 
calcium ions with GalA regions from two pectin chains. 

The specific binding of Ca2+ to polysaccharides was first examined for alginates, 

a family of polysaccharides closely related to pectins. The general alginate structure is 

principally composed of (1-4) linked p-D-mannuronic acid and a-L-guluronic acid 

residues found in a wide variety of compositions and sequences.1 Where the guluronic 

acid units of alginate and the galacturonic acid units of pectin differ only in the position 

of C-3 hydroxyl group. The Ca2+ binding phenomena of alginates and pectins have been 

studied by techniques including activity coefficient measurements,48' 50 circular 

dichroism,59' 71"74 light scattering,50' 75 fast field cycling relaxometry,76 FT-IR,77 13C 

NMR,78 and 23Na NMR.79 The "egg box" model of binding was originally proposed for 

both alginates and pectins, and was postulated to occur through a two stage process, 

where the formation of strong dimer associations is followed by the formation of weaker 

interdimer aggregates.58 Recent isothermal calorimetry studies have confirmed a gradual 

two stage process for pectin Ca association. Additional studies involving theoretical 

modeling have recently questioned the applicability of the "egg box" model to both 

systems, suggesting instead a "shifted egg box" model for pectins.81 While the exact 
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nature of pectin junctions zones may still be under debate, some established relationships 

between pectin chemical composition and hydrogel properties have presented in several 

texts23'82'83 and a recent review article.84 

In an effort to build on current knowledge regarding traditional pectins, we 

initiated the study of a newly discovered Aloe vera polysaccharide (Figure 1-5). The Aloe 

vera polysaccharide (AvP) is readily isolated as a high molecular weight species (300-

500 kDa) composed of greater than 90% galacturonic acid. AvP molecular weight is 

approximately twice the average Mw of traditional pectins, and the fraction of GalA units 

in the acid form (as apposed to the methyl ester form) is extremely high. This provides a 

large number of carboxyl functional groups which provides unique solution behavior and 

hydrogel properties. In the first section of this thesis, the chemical composition of AvP 

has been elucidated and related to fundamental solution behavior. The second section 

focuses on Ca -induced hydrogel formation and matrix properties at conditions relevant 

to nasal and subcutaneous delivery. 

Figure 1-17. General structure of pectin including galacturonic acid units with methyl 
esters (•), galacturonic acid sodium salt form (•), rhamnose (A), and neutral sugar 
branches (R). 
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CHAPTER II 

OBJECTIVES AND NEED FOR RESEARCH 

The efficient, controlled delivery of protein therapeutics is a necessary feature in 

both current and future drug delivery formulations. Since synthetic insulin was 

introduced over 26 years ago, approximately 130 protein therapeutics designed to treat 

illnesses ranging from osteoporosis to chemotherapy-induced neutropenia have received 

approval; however, their role in treatment of illness is still limited.85 Clinical application 

of protein therapeutics remains challenging due to large molecular size, short circulatory 

half life, and moderate stability. Since the efficacy of protein drugs typically relies on a 

cascade of events, precise timing of delivery at specific concentrations is required. 

f\ HI Sif\ SIR Qft 

Hydrogel systems comprised of both synthetic ' and natural polymers ' " have been 

studied, with emphasis being placed on polysaccharide-based systems due to their natural 

abundance, biocompatibility, and, in some cases, stimuli-responsive behavior.86'91 

Galacturonates, commonly termed pectins, are naturally occurring 

polyelectrolytes with characteristics especially amenable to controlled delivery 

applications. To date limited research has been conducted on the Aloe vera 

polysaccharide. Initial studies indicate that the polysaccharide extracted from the Aloe 

vera plant possesses characteristics superior to other polysaccharides currently utilized in 

the pharmaceutical industry. Additionally, the GRAS (generally regarded as safe) status 

given to the Aloe vera polysaccharide presents an advantage from a regulatory point of 

view. In this research, a detailed examination of AvP chemical composition, solution 

behavior, and hydrogel characteristics has been conducted with the overall goal of 



structuring Ca crosslinked AvP matrices for use in nasal and subcutaneous protein 

delivery applications. Specific objectives are outlined below. 

• Determine AvP chemical composition including; GalA, rhamnose, neutral sugar 

content and the percentage of GalA units present in the methyl-ester form 

• Characterize the polymer molecular weight and polydispersity. 

• Examine steady state rheological properties in both the dilute and concentrated 

regimes as a function of controlled environmental conditions including the ionic 

strength of the medium 

• Elucidate polymer size, conformation, solvent/polymer, and polymer/polymer, 

interactions using dilute solution rheology and existing theories of polymer 

solution behavior 

• Synthesize AvP hydrogel matrices via Ca2+ crosslinking 

• Determine effects of solvent ionic strength, AvP molecular weight and 

concentration, and the ratio of Ca to COO" functionality in the system on the 

viscoelastic behavior of Ca2+ crosslinked hydrogels 

• Determine hydrogel morphology through the study of the viscoelastic behavior 

and diffusion of water within Ca2+ crosslinked hydrogels under specific 

conditions of ionic strength 

• Examine controlled release profiles of model macromolecular compounds from 

polysaccharide delivery platforms in physiologically simulated solutions 

• Recommend polysaccharide system conditions necessary for successful protein 

therapeutic delivery based on relationships between solution properties, hydrogel 

morphology, and release mechanisms 
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CHAPTER III 

EXPERIMENTAL 

Materials and Methods 

The Aloe vera polysaccharide (AvP) (Figure 1-5) trademarked as GelSite® 

polymer was kindly donated by DelSite Biotechnologies (Irving, TX). The pectin was 

isolated by extraction with EDTA from the rind of Aloe vera L., clarified by 0.2 urn 

filtration, and purified by difiltration. Deionized water (DI H2O) was obtained from a 

Barnstead NANO-Pure reverse osmosis/filtration unit (resistivity: 18 MQ). 

Chemical Composition 

The chemical composition of the Aloe vera Polysaccharide was determined 

utilizing established techniques for polysaccharide analysis. In a typically experiment the 

polysaccharide is degraded by either chemical or enzymatic methods and the tri, di, and 

monosaccharides obtained are analyzed by a combination of liquid chromatography and 

mass spectroscopy (LC-MS). The LC-MS work was conducted by collaborators at 

DelSite Biotechnologies. In order to validate data obtained by LC-MS techniques, !H 

NMR studies were conducted by researchers at The University of Southern Mississippi. 

Galacturonic Acid Analysis. Analysis of Galacturonic acid (GalA) was 

performed by digestion of AvP using commercially available pectinase (Sigma, EC 

3.2.1.15). In a 25 mL volumetric flask the following were combined: 20 mL of a 2 

mg/mL AvP solution in deionized (DI) water, 50 uL of glacial acetic acid and 40 uL of 
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pectinase. DI water was then added to bring the total volume to 25 mL. The sample was 

heated with stirring at 40 °C for 4 hrs. Analysis was performed on a Waters 2690 

Separations Module equipped with a Waters 2487 Dual Absorbance UV detector at 215 

nm and a Phenemonex Rezex RHM-Monosaccharide column (8um, 300 x 7.8 mm) at 55 

°C. The mobile phase was 6.4 mN H2SO4 maintained at a flow rate of 0.6 mL/min. The 

injection volume was 20 uL. Gal A was observed as a single peak at a retention time of 

9.2 min and quantitated by comparing against a commercially available GalA sodium salt 

standard (Fluka). 

Neutral Sugar Analysis. To 5 mL of a 5 mg/mL aqueous solution of AvP, 1 mL of 

12 M HC1 was added. The reaction mixture was heated to 80 °C for approximately 6 hr 

and then passed through a filter with a 0.2 urn pore size. To 200 uL of the hydrolyzed 

AvP, 800 uL of 0.5 M triethylamine in acetonitrile was added. Analysis was performed 

on an Agilent 1100 series LC/MSD using a Phenomenex Phenosphere Amino column 

(5um, 250 x 4.6 mm). The mobile phase was 20% water, 79% acetonitrile, and 1% 

chloroform (present for adduct formation) at 40 °C, with a flow rate of 1 mL/min and an 

injection volume of 50 uL. Detection was in atmospheric pressure chemical ionization 

negative mode with drying gas set to 300 °C, the vaporizer set to 350 °C, and fragmentor 

set to 20 V. Sugars were detected as chloride adducts (M+Cl") and quantitated by 

comparing against commercially available standards, rhamnose and arabinose from 

United States Biochemical Corporation, and glucose, mannose, galactose, fucose, xylose 

from Sigma-Aldrich. 
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Determination of Methylester Substitution. The determination of methyesters 

substitution (commonly referred to as degree of methylesterification or DM) present on 

C-6 of GalA by LC-MS techniques is known to be inaccurate when the DM value in 

question is less than 10%. Due to the inherently low DM of AvP both LC-MS and *H 

NMR were employed in the determination of DM. 

Utilizing LC-MS techniques the degree of methyesters was determined by the 

method of Wood & Siddiqui adapted to base-hydrolyzed pectin. Samples were prepared 

by dissolving 10 mg of AvP in 10 mL of 0.5 M LiOH followed by heating to 80 °C for 3 

h in a sealed vial. The sample (0.75 ml) was then neutralized by adding 0.25 mL of 5.5 N 

H2SO4. Solutions of commercially available methanol in 1 N H2SO4 were used as 

standards. Methanol oxidation to formaldehyde with KMnC>4 and further derivatization 

steps were performed as described by Wood & Siddqui. The final sample was passed 

through a syringe filter with a 0.45 \xm pore size and analyzed by LC/MS. The mobile 

phase consisted of solvent A (0.1% acetic acid in water and solvent B (0.1% acetic acid 

in methanol) with a gradient of 50% B to 100% B in 4 min. Detection of the M+1 ion of 

the methanol derivative 3,5-diacetyl-l,4-dihydro-2,6-dimethylpyridine was by ES 

positive mode with drying gas set to 200 °C and fragmentor set to 70 V. 

AvP samples utilized in H NMR techniques were stored under reduced pressure 

for 5 days prior to dissolution in D2O at a concentration of 0.20 wt%. In an effort to 

reduce the HOD signal the D2O was evaporated at 130°C. The sample was then re-

dissolved in D2O and centrifuged, with ]H NMR being run on the supernatant. All spectra 

were acquired on a Varian Unity Inova spectrometer operating at a frequency of 499.8 

MHz for protons and using a 5 mm three-channel HCN probe. The WET suppression 
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sequence was used to remove the H2O resonance.92 A 90° flip angle (7.2 ms) was applied 

after the selective pulses/gradients, and an acquisition time of 2 seconds was used. The 

spectral width was 8 kHz, the FID composed of 32k data points, and an exponential line 

broadening of 1 Hz was applied prior to Fourier transformation. The recycle time 

between scans was 10 seconds. Chemical shifts were determined using the chemical shift 

of the HOD peak as a reference which is known to be a function of temperature. 

Molecular Weight. The weight average molecular weight (Mw) and radius of 

gyration (Rg) were determined utilizing multiple-angle laser-light scattering coupled to 

size-exclusion chromatography (SEC). Samples of AvP were prepared in purified water 

at a concentration of 1 mg/ml and were allowed to shake at 250 rpm on an orbital shaker 

for 2 hours at room temperature. The AvP samples (50 ul injections) were separated by 

four SEC columns in series using a Shodex OHpak SB-G guard column (50 x 6 mm), 

Shodex OH pak SB-806HQ (300 x 8 mm) Shodex OHpak SB-805HQ (300 x 8 mm,) and 

Shodex OHpak SB-804HQ (300 x 8 mm), with 0.10 ammonium acetate (NH4OAc) and 

200 ppm sodium azide as the mobile phase with a flow rate of 0.50 mL/min. An inline 25 

mm Millipore filtration device (Millipore Corporation, Bedford, MA) was installed 

between the pump and injector equipped with a Millipore 0.10 um 25 mm Durapore® 

membrane filter. Data were collected by the Wyatt Technology Corporation Dawn 

Enhanced Optical System (DAWN-EOS) (Santa Barbara, CA) and the Waters 2410 

refractive index detector (Milford, MA) directly after the SEC column. The DAWN-EOS 

(A, = 690 nm) was calibrated by the manufacturer and normalized with bovine serum 

albumin monomer (Sigma #A1900, St. Louis, MO, A1900) in 0.10 M ammonium acetate 
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with 200 ppm sodium azide. The Waters RI detector was calibrated using the RICAL 

v.5.90 software package (Wyatt Technology Corporation) with known concentrations 

(0.10-1 mg/ml) of NaCl in water using the specific refractive index increment (dn/dc) 

value of 0.172 ml/g. Data collection and processing were performed by the Astra v.4.90 

software package (Wyatt Technology Corporation) utilizing the Zimm math fit analysis. 

The dn/dc value of purified AvP was measured with a Wyatt Technology 

Corporation Optilab DSP interferometric refractometer which was calibrated by the 

manufacturer. A series of AvP solutions (0.10-1 mg/ml) in 0.10 M ammonium acetate 

with 200 ppm sodium azide were passed through the Optilab DSP flow cell with a Razel 

Model A-99 syringe pump (Razel Scientific Instruments, Inc., Stamford, CT) at a flow 

rate of 0.5 ml/min. The DNDC software package v.5.90 (Wyatt Technology Corporation) 

was used to process the data and to determine a dn/dc value of 0.149 ± 0.001 ml/g. 

Solution Studies 

Dilute solution properties have been studied in order to determine the inherent 

stiffness of the polysaccharide chain under a range of aqueous salt conditions. 

Relationships between intrinsic viscosity, zeta potential, turbidity and salt conditions are 

used to determine the extent of intra- and intermolecular interactions in solution. 

Information concerning intermolecular interactions within concentrated solutions has 

been obtained by examining zero shear viscosity, steady state fluorescence and dynamic 

oscillatory rheology. 
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Dilute Solutions. AvP solutions were prepared for rheological studies by 

dissolving the polymer sample in DI water overnight to prepare stock aqueous solutions. 

Stock solutions for intrinsic viscosity studies were made in DI water at a concentration of 

1 mg/mL with dilutions ranging from 0.01 mg/mL to 0.80 mg/mL being tested. In the 

case of studies involving salts, stock polymer solutions were made at 2 mg/mL in DI 

water and adjusted to the final polymer and salt concentrations via dilution with stock salt 

solutions. Samples were placed on an orbital shaker at low rpm for at least 1 hr prior to 

measurement. A pKa value of 3.7 for AvP3 in aqueous solution was determined via 

potentiometric titration. The pH values of all test solutions were 6.4 to 7.0 resulting in a 

maximum degree of ionization for the polymers. 

Apparent viscosities were determined for dilute solutions (0.01 - 0.80 mg/mL) 

using a Contraves LS-30 low shear rheometer at a shear rate of 5.91 sec"1, fitted with bob 

and cup geometry. Reduced and inherent viscosities were calculated for each polymer 

concentration. Extrapolation to zero polymer concentration provided a value of intrinsic 

viscosity. 

Zeta potential was measured using Malvern Instruments Zetasizer Nano Series 

equipped with an autotitrator in zeta cells purchased from Malvern Instruments. Starting 

polymer concentrations were 1.0 mg/ml, which is within the dilute regime of the 

polymer. Stock salt solutions of 1.0 M were used as titrants in order to minimize the 

change in polymer concentration as a function of added titrant. Solution pH was 

maintained at approximately 6.4 throughout the tests. 

In order to determine the stability of AvP in aqueous solutions containing 

monovalent salts, turbidity was monitored via measurement of absorbance at 410 nm, and 



31 

phase diagrams were constructed. Stock polymer (4 mg/mL) and NaCl (0.40 M) solutions 

were dissolved overnight in deionized water containing 5 ppm sodium azide. Samples 

were prepared at appropriate polymer/ionic strength combinations in a 96 well plate using 

a Biomek FX liquid handler system. High throughput analysis was conducted using a 

Tecan Saphire dual fluorescence and UV-vis detector. Turbidity at 25 °C was measured at 

1 h time intervals. Phase diagrams were constructed from approximately 96 data points 

utilizing the mesh feature of DPlot software version 2.1.3.8. Results were confirmed via 

visual monitoring of separate solutions prepared in 15 mL scintillation vials. 

Concentrated Solutions. Steady state stress sweeps (0.01 - 100.0 Pa) were 

conducted using a Rheometrics SR-5000 controlled stress rheometer equipped with 40 

mm cone and plate geometry (cone angle 2.25°) with a 0.05 mm gap setting, on semi-

dilute and concentrated samples (1.0 - 20.0 mg/mL). 

Fluorescence emission (400-620 nm) of 1,8-Anilino-l-naphthalene sulphonic acid 

(1,8-ANS) was monitored at an excitation wavelength of 360 nm on a Photon 

Technology International spectrometer. A 20 mg/mL aqueous polymer solution was used 

to prepare samples ranging from 0.10 to 15 mg/mL. An 8 mM stock solution of 1,8-

Anilino-l-naphthalene sulphonic acid (1,8-ANS) was prepared in phosphate buffer (pH 

7.1) and added to the samples to provide a final 1,8-ANS concentration of 0.20 uM. The 

samples were placed on an orbital shaker 24 hrs prior to measurement. 
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Hydrogel Studies 

The nature of AvP gelation in the presence of calcium ions has been examined in 

order to determine relationships between hydrogel characteristics and the release of 

protein therapeutics. Experiments have been design to simulate in situ gelation of AvP 

upon contact with physiological solutions, which will be important to the delivery of 

proteins in nasal and subcutaneous environments. Dynamic rheology, pulse field gradient 

nuclear magnetic resonance and optical microscopy have utilized to probe the nature of 

both the polymer rich network and aqueous pores within the hydrogel. 

Mold Design & Gel Formation. Several mold designs were utilized to form 

hydrogels upon exposure to an external calcium ion source. The first mold utilized three 

stainless steel plates, containing four 45mm thru holes. Cellulose membranes (Mw cutoff 

6-8 kDa) were sandwiched between the first and second plates as well as the second and 

third plates; this created a cavity in which AvP solutions could be held and exposed to 

Ca via submersion in an aqueous CaC^ bath. While this mold provided formation of 

very uniform gels, due to the size of the mold it was necessary to utilize large volumes of 

CaCl2 solution making the examination of hydrogel properties at specified Ca2+ to COO' 

ratios difficult. 

A second iteration allowed for lower volumes of CaCl2 solution to be employed 

for gelation. The mold consisted of an upper and lower reservoir, in which 5 mL of AvP 

solution (1-8 mg/mL) was placed in the lower reservoir. This reservoir was then covered 

with 6-80 kDa Mw cutoff dialysis tubing (Spectra/Por), and 5 mL of the desired CaCk 

solution (3-50mM) was gently pipetted into the latter. Diffusion of Ca2+ from the upper to 
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lower reservoir initiated hydrogel formation. Experiments were conducted to determine 

the CaCk exposure time necessary to reach equilibrium gel strength and unless otherwise 

stated hydrogels presented within this dissertation were given 24 h to ensure that 

equilibrium conditions were reached. 

Dynamic Oscillatory Rheology. Oscillatory dynamic rheological experiments 

were conducted using an Ares-G2 stress controlled rheometer equipped with a 40 mm 

crosshatched parallel plate and a Rheometrics SR-5000 equipped with a 45 mm serrated 

parallel plate. Experiments utilized a stress of 0.50 Pa at a frequency of 1 Hz, which was 

determined to be within the linear viscoelastic regime of AvP hydrogels. All gels were 

tested at 25°C after compression to a normal force of 0.30 N and a 1 minute equilibrium 

time, during which stress relaxation occurred and the measured normal force was 

approximately zero. 

Pulse Field Gradient Nuclear Magnetic Resonance. AvP hydrogels were 

prepared directly in NMR tubes. 30 uL of AvP solution (0.20 or 0.60 wt%) was placed in 

a 5mm NMR tube, to which 30 uL of the appropriate CaC^ solution was added. Gels 

were given 24 h to reach equilibrium prior to NMR analysis. Sample volumes were kept 

at 60 uL in order to optimize signal to noise ratios during the pulsed field gradient (PFG) 

experiments. All spectra were obtained with a Varian Unity Inova 500 MHz spectrometer 

using a standard 5 mm 2 channel probe equipped with gradients. The standard Stejskal-

Tanner sequence (acquisition time of 0.5 s, a recycle delay of 5 s, and gradient pulses of 

0.8-1.0 ms) was utilized in the PFG-NMR experiments to determine the time-dependent 
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diffusion coefficient of water (Dapp). The self-diffusion coefficient of water was 

9 9 9 

determined from the negative slope of a log-attenuation plot (log v|/ versus y g 8 (A- 8/3)), 

where \|/ is the echo attenuation, y is the proton gyromagnetic ratio, 8 is the width of the 

gradient pulse, g is the magnitude of the applied field gradient, and A is the total diffusion 

time. The total diffusion time was varied from 20 to 500 ms and the gradient amplitude 

ranged from 20 to 80 G/cm to ensure the signal was attenuated -80%. The spectral width 

was 50 kHz and the number of scans for each spectrum ranged from 8-32. Exponential 

line broadening was applied prior to Fourier transformation of the FIDs. Gradient 

calibration was performed using a deionized water standard prior to data collection. 

Microscopy. Bright field and flouresence images were obtained on a Nikon 

Eclipse 80i microscope and images were processed utilizing NIS-elements / software. 

Thin hydrogel samples were prepared directly on cleaned glass slides in the following 

manner; 60uL of AvP solution was pipetted onto a slide and spread into a thin film (~ 15 

um) utilizing a doctor blade. The edge of the AvP film was exposed to CaC^ solution 

9+ 

and subsequent diffusion of Ca initiated gelation. Samples were stained with 0.10 wt% 

ruthenium red which has been shown to effectively stain pectins.65 

Release Studies. Fluorescein labeled 4 and 500 kDa Mw dextrans (Dex4, Dex500) 

were purchased from Sigma-Aldrich and utilized as model compounds in controlled 

release experiments. In order to minimize photo-bleaching, release experiments involving 

fluorescein labeled dextrans were performed in a dark room under red light. Stock AvP 

and FITC-dextran solutions were dissolved overnight and combined to yield 4 stock 
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solutions at AvP concentrations of 6 and 2 mg/mL and a FITC-dextran concentration of 

0.10 mg/mL (6AvP-Dex4, 6AvP-Dex500, 2AvP-Dex4, 2AvP-Dex500). All AvP/FITC-

dextran solutions included 0.05 M NaCl. All experiments were conducted in triplicate 

(standard deviations averaged 5% and were used to create error bars). Samples were 

prepared in 1.5 mL microcentrifuge tubes and contained 0.5 mL of AvP-Dex solution. In 

order to create a consistent interface between the AvP-dextran solution and the release 

medium, a Teflon® grid with a macroscopic grid opening (1 mm x 0.635mm) 

(McMaster-Carr) was placed on top of the AvP-Dex solution. Next, 1 mL of a simulated 

nasal fluid (SNF); 10 mM Tris, 0.15 M NaCl, 0.04 M KC1 and 5 mM CaCl2 was added. 

Subsequent diffusion of Ca2+ into the AvP/FITC-dextran solution initiated crosslinking, 

and release of the FITC-dextran into the SNF solution was monitored. 500 uL aliquots 

were taken at various time intervals and replaced with fresh SNF. 

The fluorescence emission (510-600 nm) of FITC-dextrans present in aliquots 

was measured at an excitation wavelength of 495 nm on a Photon Technology 

International spectrometer. After 4 days the release experiment was halted. In order to 

determine the amount of free dextran remaining in the gels, gels were suspended in fresh 

SNF within 1.5 mL microcentrifuge tubes and centrifuged for 2 min at 1000 rpm. The 

solutions were collected and fluorescence emission was measured. To determine if FITC-

dextran was permanently entrapped within the calcium hydrogels, the gels were dissolved 

in a 0.5 M EDTA solution overnight, and fluorescence of the resulting solutions was 

measured. Calibration curves were constructed for both FITC-dextran as well as FITC-

dextran/polymer solutions and separate experiments were conducted in order to ensure 
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that the concentration gradient present in the system maintained a sufficient driving force 

for diffusion into the release medium throughout the experiment. 

Curve fitting was performed using the non-linear curve fitting tool from Origin 

software (version 7.0383). Additional analysis of the squared sum of residuals (SSR) 

between experimental data and theoretical data was conducted in order to determine the 

goodness of fit for each diffusion model. SSR values were substituted into the Akaike 

Information Criterion (AIC) defined as; 

AIC = N(lnSSR) + 2p (1) 

where N accounts for the number of data points being compared and p represents the 

number of variables used in model fitting. The best fit is represented by the lowest value 



37 

CHAPTER IV 

RESULTS AND DISCUSSION 

STRUCTURAL CHARACTERIZATION AND SOLUTION PROPERTIES OF A 
GALACTURONATE POLSACCHARIDE DERIVED FROM ALOE VERA CAPABLE 

OF IN SITU GELATION 

Overview 

A growing understanding of human biochemistry along with the implementation 

of combinatorial methods has lead to an expanding library of peptides and proteins that 

possess therapeutic benefits. However, limitations including stability throughout storage, 

degradation upon administration in-vivo, and post administration efficacy have limited 

the application of protein therapeutics.15 These issues are not only related to the inherent 

stability and efficacy of the therapeutic agent but are also related to the delivery route and 

delivery system utilized for treatment. For instance, only 0.1% of orally dosed insulin 

reaches the bloodstream intact, making administration of the protein through injections a 

current necessity. Injections are often painful and lead to poor patient compliance.95 

Additionally, it has been found that effective intramuscular injection of a developmental 

H5N1 vaccine requires dose serum antibody levels 12 times that of seasonal flu vaccines, 

a level which would strain current antibody production.96 

Nasal administration routes offer many advantages, including ease of 

administration and activation of an additional mucosal immune response within the nasal 

cavity, which has been shown to increase the efficacy of antibodies.14 However, 

challenges must be addressed within nasal administration routes. Of primary concern is 
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adhesion to the mucosal lining within the nasal cavity. Current formulations involved in 

nasal delivery yield a clearance half life of only 15 minutes when administered onto 

human epithelium.97 Natural polysaccharides including hyaluronic acid98 and chitosan16 

have been incorporated into protein therapeutic formulations in order to improve the 

efficacy of delivery. In addition to the aforementioned biopolymers, pectins are receiving 

renewed attention in the drug delivery field. Discussed in this manuscript is a 

galacturonate polysaccharide derived from Aloe vera that possess the requisite properties 

amenable to nasal drug delivery. 

Pectins are a class of anionic polysaccharides that have been widely studied for 

use as food additives82'", and in pharmaceuticals as tablet binders for oral and colonic 

drug delivery.89 Pectins are comprised primarily of (1—> 4)a-D-galacturonic acid (GalA) 

repeat units with intermittently (1—>2) linked rhamnose residues acting as branch points 

for neutral sugar side chains (Figure IV-1). The GalA units may be present in the acid 

form or may exist as methylesters with the degree of methylester substitution (DM) 

affecting the extent of gel formation in the presence of multivalent ions such as 

calcium.57 

Figure IV-1. General structure of AvP including galacturonic acid units with methyl 
esters (•), galacturonic acid sodium salt form (•), rhamnose (A), and neutral sugar 
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branches (R) with proton designations H1,H4, H5me, and H5C00- used to label H1 NMR 
spectra. 

There are a variety of intrinsic and extrinsic parameters which have been reported 

to affect the solution properties and subsequent gelation of pectins with low DM values; 

from these studies many conclusions, some of them contradictory, have been drawn.66"70' 

100-109 j j o w e v e r j m e consensus is that key intrinsic parameters include molecular weight, 

the respective GalA, rhamnose and neutral sugar composition, as well as the DM. 

Pectins with a low DM value contain large numbers of "free" GalA carboxylate units 

which are responsible for gelation upon addition of divalent cations. Although it is still 

the subject of some debate,78'110 the gelation mechanism of low DM pectins has been 

shown to involve the formation of "egg box" junction zones between carboxylate GalA 

units and divalent cations.71'75 It has been further shown that formation of elastically 

active junction zones within pectin gels requires a minimum of ~ 7 adjacent GalA units 

and that the sensitivity of pectins to calcium ions increases as the DM decreases.59'm 

Considering the importance of fundamental understanding in the development of 

effective delivery systems and the potential incorporation of pectins into protein and 

vaccine delivery formulations we have undertaken a thorough examination of an Aloe 

vera pectin. In this study we report the chemical composition, solution properties in 

dilute and concentrated regimes, and calcium ion sensitivity of a newly discovered Aloe 

vera polysaccharide (AvP) extracted from the Aloe vera plant. The percent composition 

of GalA units, the DM, and rhamnose/neutral sugar content have been determined along 

with relevant molecular parameters such as molecular weight. Dilute solution properties 

have been studied in order to determine the inherent stiffness of the polysaccharide chain 

under a range of aqueous salt conditions. Information regarding intra and intermolecular 
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interactions has been obtained by examining zero shear viscosity and steady state 

fluorescence as a function of polymer concentration and determining the zeta potential at 

various salt concentrations. Finally, the dynamic moduli of gels formed at low polymer 

and calcium ion concentrations have been examined. The solution and rheological 

properties intrinsic to AvP, which have not been previously reported in the literature, 

indicate the potential utility of this polysaccharide in drug delivery applications. 

Chemical Composition 

The chemical compositions of five Aloe vera pectin (AvP) samples are shown in 

Table IV-1. Samples AvPl - AvP4 represent separate extractions and subsequent 

purifications from the rinds of the Aloe vera plant. AvP5 is a hydrolyzed version of 

AvP3. Samples are listed in order of descending molecular weight ranging from 523 kDa 

to 200kDa. 
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Figure IV-2. SEC-MALLS trace of AvPl including molecular weight (Mw) and radius 
of gyration (Rg) analysis. 

The molecular weight (Mw) and Rg were determined by aqueous SEC using multi-angled 

laser light scattering (MALLS) and refractive index detection. An example 

chromatogram (Figure IV-2) depicts the RI trace versus elution volume and the values of 

Mw and Rg that correspond to each slice of the chromatogram (Further Figures are 

included in Appendix A). For a series of alginates the profile of Mw and Rg vs. elution 

volume has been shown to be related to the state of aggregation within the sample where 

a non-linear profile was obtained when aggregation was evident.112 The Mw and Rg 

relationships for AvP are linear as a function of elution volume, indicating that the 

pectins chains are well dispersed under the SEC conditions employed. The SEC-MALLS 

data provides facile analysis of the Rg/Mw relationship (Equ. 1). 

Rg =kMp (1) 

Using the data shown in Figure IV-2 for AvPl plotted as Rg vs. Mw (Figure IV-3), 
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Figure IV-3. SEC-MALLS trace of AvPl depicting radius of gyration (Rg) as a function 
of molecular weight (Mw). 

the Rg/Mw relationship is linear and has been found to fit the following equation; 

Rg =0.079M056(2) 

Similar k and p values, 0.033 and 0.61 respectively, are calculated when the individual 

Mw and Rg values obtained for AvPl-AvP5 (Table IV-1) are used to examine the Mw/Rg 

relationship. The agreement between p values calculated via these two methods suggests 

that the polydispersity of the AvP samples does not significantly affect the analysis of Rg. 

It is important to note that the Mw values are 2 to 10 times higher than typical 

values reported in literature for LM pectins (low degrees of methyl esterification).57,106' 

In addition to being a high molecular weight pectin, AvP contains a very high 

percentage of GalA residues. On average 95% of the total carbohydrate content of AvP is 

galacturonic acid. LM pectins extracted from traditional plant sources (citrus, apple and 
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sunflower) have GalA contents ranging from 60 to 85%,14'57 with the remainder of the 

carbohydrate content being reported as short branches of neutral sugars such as 

arabinose, glactose, and mannose whose branch points originate at rhamnose. AvP has 

less than 1% rhamnose and a total of 5% neutral sugars suggesting a structure primarily 

composed of long GalA blocks with very few neutral sugar branches. Of the GalA units 

present in previously reported pectins, 30 to 40% typically exist as methylesters,53'66'106' 

i n 

with chemical de-esterification methods often resulting in undesired reductions in 

molecular weight.57 As determined through GPC-Mass spec techniques, 3 to 5% of the 

GalA units in AvP exist as methyl esters.59 

4.5 4.0 3.5 3.0 2.5 

ppm 

Figure IV-4. !H NMR spectrum of AvP3, obtained using HOD suppression techniques 
on a 500 MHz NMR spectrometer. 
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Utilizing !H NMR techniques, the ratio of protons at C5 adjacent to methyl esters (H5me) 

and those adjacent to carboxylic acids (H5C00-) may be determined.114"117 Integrating the 

spectrum obtained for each sample (Figure IV-4 and Appendix A) and utilizing Equation 

3 results in DM values ranging from 2-5.8%, which are in reasonable agreement with the 

results from GPC-Mass spectrometry. 

DMJjE_+"^-\"^r (3) 

Physical Characteristics in Dilute Solution 

Using the Huggins and Kraemer relationships, the intrinsic viscosity of each AvP 

sample was determined (Table IV-2). 

Table IV-2. Intrinsic viscosity (n) as a function of AvP sample and salt concentration 
with calculated values of intrinsic viscosity at infinite ionic strength (n ;nf), the flexibility 
parameter B and the persistence length (Lp) at 0.10 M NaCl and infinite ionic strength. 
Additional Lp values calculated using Bohdanecky method are provided for each Mw/ n 
relationship at the specified ionic strength. 

AvPl 

AvP2 

AvP3 

AvP4 

AvP5 

L p
b (nm) 

Intr 
speciJ 
0.05 

19.8 

16.9 

16.2 

13.1 

9.4 

14 

msic Vise 
led NaCl 

0.10 

18.0 

15.2 

15.0 

11.6 

9.0 

11 

sosity, n ( 
Concent 

0.15 

17.0 

14.5 

14.0 

11.4 

8.2 

12 

dL/g) at 
ration (M) 

0.2 

15.9 

14.0 

14.2 

11.2 

8.0 

8.8 

r|inf 
(dL/g) 

12.5 

11.1 

11.8 

9.1 
6.6 

Bo. 10 

0.043 

0.041 

0.032 

0.039 

0.040 

Lpo.io 
(nm) 

16 
15 
16 
15 
17 

T a 

(nm) 

11 
12 
12 
11 
12 

a) Obtained from Yamakawa-Fuji analysis 
b) Obtained from Bohdanecky analysis 
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A representative Huggins-Kraemer plot is illustrated in Figure IV-5, (plots for each 

sample are found in Appendix A) where the linear fits represent the well known Huggins 

and Kraemer equations respectively. It can be seen that there is no significant curvature 

in the plot, suggesting that AvP aggregation is not occurring as a function of polymer or 

salt concentration over the time scale of these measurements. Huggins constants (k') vary 

from 0.36 - 0.48 in 0.05 M NaCl to 0.54 - 0.74 in 0.20 M NaCl. 

o - | 1 1 1 1 1 1 1 1 1 1 

0.00 0.02 0.04 0.06 0.08 0.10 

Concentration (wt%) 

Figure IV-5. Determination of intrinsic viscosity from Huggins (•) and Kraemer (•) 
plots, illustrated for AvP3 in 0.10 M NaCl. 

It is worth noting that at NaCl concentrations of 0.20 M, AvP solutions are not stable 

indefinitely and coagulates begin forming within a 24 hr time period. Huggins-Kraemer 

plots of AvP solutions aged for 24 hr (Appendix A) exhibit significant curvature and 

result in Huggins constants ranging between 4.5 and 5.9. This behavior has been often 

reported for colloidal systems. " Our results are further supported by the zeta 

potential values reported later in Figure IV-8, which suggest the likelihood of coagulation 
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at extended times. From these experiments and observations of initial solubility, followed 

by coagulation, it may be hypothesized that AvP dissolved in 0.20 M NaCl solution is in 

a regime of phase separation controlled by spinodal decomposition, similar to that 

observed for the phase separation of thermo-associative polymers. 

Utilizing Equation 4, experimentally determined values of intrinsic viscosity may 

be plotted versus molecular weight obtained from SEC-MALLS (Figure IV-2), resulting 

in the Mark-Houwink-Sakurada (MHS) plot shown in Figure IV-6. 

t] = KM" (4) 

Determination of the MHS parameters K and a provides information regarding the 

conformation of the polysaccharide in solution. Pectins from various plant sources exhibit 

a wide range of a values including those that suggest rigid coils, worm-like chains and 

rod-like chains.57' 82' " ' 101"103' 109 The values of a determined for AvP at NaCl 

concentrations from 0.05 to 0.20 [M] range from 0.72 to 0.77 suggesting that AvP exists 

in solution as an expanded random coil. K values ranged from 1.0-1.15 further supporting 

the presence of an expanded conformation. 
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Figure IV-6. Determination of MHS parameters a and K from a double logarithmic plot 
of intrinsic viscosity and molecular weight at various NaCl concentrations 0.05 (•), 0.10 
(•), 0.15(A), 0.20 ( • ) . 

The values of p (0.56-0.61) and a (0.72-0..77), from the Rg/Mw and [n]/Mw 

relationships are related by the following equation; ' 

a =(3xp)-\ (5) 

Using this equation it can be seen that the a values determined by intrinsic viscosity are 

in good agreement with the p values obtained from SEC-MALLS. 

Additionally, the a values are consistent with those reported in literature for other 

high molecular weight polysaccharides, where it has been found that the [n]/Mw 

relationship is not linear over a broad range of molecular weights.104 This can be further 

understood by examining the calculated persistence lengths (Lp) of a wormlike pectin 

chain. Applying the Yamakawa-Fujii iterative method of calculating the Flory parameter 

(<D) and the persistence length (Eq. 6), the persistence length of AvP specimens were 

obtained 124 
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r i <D LV2 1 
[lh~ , (6) 

M l-Y,C,L-"2 

i=\ 

The coefficient C; is stated to be independent of the length of the monomeric repeat unit 

(10) and dependent on the diameter of the chain (d). Solutions for the four values of C, are 

determined by the method of least squares and are included in the original work of 

Yamakawa and Fujii. Values of d and 10 were taken from previous literature regarding 

pectins and used in our analysis. X-ray diffraction studies have revealed d values between 

6 and 8A and reported 4.35A for the value of 10.
118 Additionally, the molecular weight of 

the Gal A repeat unit without methyl esters in the sodium salt form (198 g/mol) was used. 

Obtaining results for the persistence length via the original Yamakawa-Fuji analysis, 

requires iteration of <b and Lp, the final values of the Flory parameter were approximately 

1.30xl023 and Lp values for each AvP sample are listed in Table IV-2. 

Values obtained via the original Yamakawa-Fuji analysis for AvP samples in 0.10 

M NaCl range from 15 to 17 nm. These values are slightly larger than those obtained in 

previous literature, for related polysaccharides (5.9-12.6 nm).102' m m' 125"130 The 

persistence lengths determined for AvP may be larger due to variations in the method of 

calculating Lp, various calculation methods may be applied and each has certain 

limitations as is discussed throughout literature.127"130 Specific limitations of the 

Yamakawa-Fuji approach include the assumption that excluded volume is negligible and 

the reliance on O which is molecular weight dependent. For comparison Lp was also 

calculated using the modified Yamakawa-Fuji method as proposed by Bohdanecky1 and 

outlined in the work of Mendichi et. al. . In the original work of Bohdanecky excluded 

volume is again neglected, however, it has been shown that an expansion factor a,, may 
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be utilized. Using a value of 0.71 cm /g for u for pectic acid in salt and setting ML = 

Mw/L where L is contour length, values of Lp, ML and a,, the expansion factor for 

intrinsic viscosity were determined for AvP at ionic strengths ranging from 0.05 to 0.20 

M (Table IV-2). As the ionic strength increases the calculated Lp values decrease from 14 

to 8.8 nm. Further details concerning the Mathcad programs written to perform Lp 

calculations are included in Appendix A. 

The large Lp values are most likely related to AvP's high percentage of non-

esterifed GalA units which provide an inherent high charge density, causing electrostatic 

repulsion and a rigid conformation. This is supported by the Lp values of 20-25 and 67A 

determined by Hourdet and Muller for pectins with low GalA content and 

homoglacturonan, respectively105, and the calculated value of 300+/-50A predicted by 

1 39 1 33 

Monte Carlo simulations for a fully charged polygalcturonic acid chain in water. ' 

The electrostatic contribution to persistence length may be estimated using a 

1 97 1 30 1 33 

variety of theoretical models " ' . Additionally, the electrostatic contribution may be 

taken into account by utilizing the intrinsic viscosity at infinite ionic strength ([r|inf]). In 

this method [r|inf] replaces [n] in Yamakawa-Fuji Lp calculations in order to arrive at the 

intrinsic persistence length, or the persistence length in the absence of electrostatic 

effects. When [njnf] is substituted into the Yamakawa-Fuji analysis the calculated values 

of Lp ranged from 11-13 nm (Table IV-2), which are in good agreement with the 

Bohdanecky values obtained at higher ionic strength (0.10- 0.20 M). 

The persistence length is determined by the inherent properties of a monomeric 

repeat unit and is defined as the end-to-end distance of a polymer segment (composed of 

n monomers) in which monomers Mn and Mn+i are located at related points in space, e.g. 
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the monomers in the segment possess persistence.134 Alternatively, Lp can be defined as 

the segment length at which the orientation of two successive polymer segments no 

longer exhibit correlation.123'135 With this definition, a wormlike chain may be assumed 

to behave as an ideal coil of a bond length 2LP.136 For example, AvP in 0.05 M NaCl has 

a persistence length of 15 nm and a Kuhn length (2LP) of 30 nm, equivalent to 

approximately 70 Gal A repeat units. While the polymer may be rigid at the length scale 

of the persistence length, if the number of repeat units in the AvPl chain is greater than 

70 (corresponding to an Mw of approximately 14,000 g/mol) the behavior of the chain in 

solution will resemble that of a random coil. This is observed upon examination of 

intrinsic viscosity behavior as a function of molecular weight; the number of repeat units 

in each of the AvP samples corresponds to a molar mass much greater than 14,000 g/mol, 

resulting in MHK a values indicative of expanded random coil behavior in solution. 

Physical Characteristics as a Function of External Stimuli. In order to further 

probe the effects of electrostatic repulsion on the conformation of AvP in solution, the 

intrinsic viscosity was studied as a function of salt concentration. Figure 6, depicts the 

respective intrinsic viscosity values obtained for AvP samples in NaCl solutions. The 

data show a clear reduction in viscosity as the ionic strength of the medium is increased, 

suggesting a reduction in hydrodynamic volume of the polymer as the electrostatic 

repulsions between GalA units are screened. The extent of polyelectrolyte contraction 

from an extended conformation, where charge repulsion is an important contributor, to 

the random coil conformation of an equivalent uncharged polymer is dependent upon the 

inherent stiffness of the polymer. The parameter B has been established by Smidsred and 
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Haug as a simple means of describing the relative stiffness of a polyelectrolyte based on 

the reduction in intrinsic viscosity as a function of ionic strength.137 

By constructing a plot wherein the intrinsic viscosity is extrapolated to infinite 

ionic strength ([tj]x), and utilizing the value of intrinsic viscosity at a given ionic strength 

(0.10 M, [77]010) a linear relationship (Eq. 7) can be found in which the slope of the line 

(S) relates to the inherent stiffness of the polymer (B). 

M / = [ 7 L + 5 [ / 7 ] 0 . / ( r ] / 2 ) ( 7 ) 

Polymers with greater flexibility exhibit a greater reduction in hydrodynamic volume; 

hence larger slopes are obtained. 

T > 1 ' i — ' — * 1 > 1 < 1 — 
2.0 2.5 3.0 3.5 4.0 4.5 

Ionic Strenght"1'2 

Figure IV-7. Plot of intrinsic viscosity (n) as a function of the inverse square root of 
ionic strength depicted for AvPl (•), AvP2 (•), AvP3 (A), AvP4 (T) and AvP5 (•) 
dissolved in various NaCl solutions. The vertical dashed line indicates [n]o.io the value 
used in determination of the flexibility parameter B. 
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Inserting the slopes (S) determined from Figure IV-7 and the intrinsic viscosity measured 

in 0.10 M NaCl concentration into Equation (8) yields the stiffness parameter B which is 

reported in Table IV-2 for each AvP sample. 

In the above relationships v is the slope from a double logarithmic plot of S vs 

[rj]010 for a series of polyelectrolytes with varying molecular weight. As shown by 

Smidsrad, Haug and others, the parameter v exhibits a small amount of variation as a 

function of polyelectrolyte species and a value of 1.3 is thus commonly employed when 

sufficient samples of various Mw are not available.68 However, since samples of various 

Mw were available and a value of v for pectins is not available from literature, v was 

determined experimentally. A value of 1.27 was obtained. The values of B listed in Table 

IV-2 were calculated using the experimentally determined value of 1.27 for v and are in 

agreement with the values obtained by Simdsrod and Haug for a series of pectins with 

various DM, indicating that AvP has an inherently stiff polymer backbone. 

Table IV-3. Values of B reported in literature137 representing polymers with inherently 

flexible (polyacrylate) and rigid (DNA) chain structures. 

Polymer 

Polyacrylate 
Dextran Sulfate 
Carboxymethylamylose 
Gum Arabic 
Hyaluronate 
Alginate 
Citrus Pectin 
Aloe vera Pectin 
DNA 

Stiffness Value (B) at 
O.IOMNaCI 

0.47 
0.23 
0.20 
0.10 

0.065 
0.04 
0.04 

0.032-0.043 
0.0055 
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In addition to monitoring the screening of charges on a polyelectrolyte by 

assessing viscosity, one may measure the zeta potential of a charged molecule in solution. 

The zeta potential is defined as the electrical potential which exists at the hydrodynamic 

plane of shear surrounding a charged particle, and is essentially the potential at the point 

in space where low molecular weight ions cease to move with the particle and remain 

within the surrounding solvent. In cases where steric stabilization is not sufficient, 

electrostatic forces may help prevent intermolecular interactions from occurring. It has 

been found that particles with zeta potential values of magnitude greater than 30 mV 

n o 

result in stable aqueous solutions. The relationship between zeta potential and salt 

concentration for AvP is depicted in Figure IV-8. 
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Figure IV-8. Zeta potential (mV) of AvP as a function of NaCl (•) and KC1 (•) 
concentration (M), illustrated for AvP3 at 0.10 wt%. 
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It can be seen that at low ionic strength, the magnitude of the zeta potential is high (-80 

mV) and as the ionic strength is increased, the magnitude of the potential decreases. At 

approximately 0.10 M salt concentration, the zeta potential reaches the point where 

intermolecular interactions may no longer be inhibited by electrostatic forces. This is 

further supported by observations of aggregation over time at ionic strengths greater than 

0.10 M, as is discussed further in section B of the results and discussion (Phase 

Diagrams, Figure IV-20). 

Transition from the Dilute to Concentrated Regime. In order to further investigate 

the transition from dilute solution, where intrapolymer interactions dominate, to the 

concentrated regime where interpolymer interactions occur, the zero shear viscosity was 

monitored as a function of AvP concentration in water and aqueous 0.10 M NaCl 

solutions (Figure IV-9). Zero shear viscosities were obtained from plots of specific 

viscosity as a function of shear rate and are included in Appendix A. 
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Figure IV-9. Determination of the critical entanglement concentration (Ce) for AvP3 in 
water (•), 0.60 wt% and 0.10 M NaCl (•), 0.37 wt% from a plot of zero shear viscosity 
vs. polymer concentration. Inset depicts zero shear specific viscosity vs. C[n], for the 
0.10 M NaCl series. 

The critical entanglement concentration (Ce) for AvP in water is -0.60 wt% while in salt 

it shifts to ~0.37 wt%. The shift in Ce agrees with the zeta potential measurements which 

suggest significant charge screening at a 0.10 M salt concentration, allowing the onset of 

intermolecular interactions. 

The exponent in the dilute regime (0.43) of AvP in water is consistent with the 

theoretically predicted value (0.5) for polyelectrolytes above the critical overlap 

concentration C* and below Ce. The exponent in the concentrated regime (8.6) is much 

higher than the value of 4.0 predicted by polyelectrolyte scaling theory. Scaling theory 

predicts polyelectrolyte behavior above Ce based on a model of electrostatic blob 

interactions in which the polymer behaves as a neutral, randomly coiled entity in the 
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entangled regime.139 It is further noted that the values obtained for AvP are higher than 

reported values determined for hydrophobically modified polyelectrolytes, ' although 

in some cases values as high as 9 have been observed.142 The inset depicts n 0,spvs. C[r|] 

for the 0.10 M NaCl series only, [n] for a polyelectrolyte in water may be determined via 

a Fuoss approximation, and has been calculated as 59 dL/g for AvP. It is seen that the Ce 

transition occurs when Cfn] is much greater than unity. 

In order to further investigate the nature of these abnormally high exponents, 

fluorescence emission of the fluorescent probe 1,8-ANS, which has been shown to be 

sensitive to hydrophobic microenvironments143"145, was monitored as a function of 

polymer concentration (Figure IV-10). 
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Figure IV-10. The maximum fluorescence emission of 1,8-ANS as a function of polymer 
concentration depicted for AvP3 in aqueous solution. Raw fluorescence data is depicted 
in the inset. A change in the slope is noted at 0.55 wt %, which corresponds to the Ce 

(0.60 wt%) of AvP3 in water shown in Figure IV-9. 
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A sharp rise in the fluorescence emission is noted at an AvP concentration of 0.55 wt% 

which corresponds to the Ce determined in aqueous solution. The high exponents noted in 

the concentrated regime and the increase in fluorescence intensity suggest that AvP may 

be involved in hydrophobic aggregation, possibly forming rod-like bundles or worm-like 

micelles at high concentrations in both water and salt solutions.1 

Hydrogel Studies 

Initial dynamic rheology experiments have shown that AvP can gel in the 

presence of Ca2+ ions at concentrations as low as 0.89 mM. With gelation occurring at 

Ca2+ concentrations this low, sufficient calcium exists in bodily fluids to allow for in-situ 

gelling, an important characteristic in potential pharmaceutical applications. Attempts to 

study the gelation of AvP following literature procedures146"149 for traditional pectins have 

been unsuccessful. In previous literature, the pectin solution and the Ca2+ solution are 

prepared separately, heated at 70°C, mixed on a heated rheometer plate and cooled below 

the sol-gel transition to the desired test temperature. However, the sol-gel transition for 

AvP is above 90°C for all calcium concentrations studied. Therefore, to measure the 

evolution of moduli, a method was developed in our labs wherein AvP solutions are 

placed in the confines of the rheometer geometry and a small volume of CaCl2 solution is 

introduced to a reservoir surrounding the sample while rheological measurements are 

made (see experimental section). A plot of the elastic modulus (G') measured in this 

manner is shown in Figure IV-11. 
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Figure IV-11. Evolution of elastic modulus (Pa) as a function of time for various calcium 
ion concentrations 0.87 (•), 1.75 (•), 2.79(A), 5.59 (•) and 8.38 (T) mM and viscous 
modulus (Pa) for 0.87 (•) mM Ca2+. Illustrated for AvP2 at 0.20 wt%. 

For all Ca concentrations studied, the viscous modulus (G") is much less than the 

elastic modulus (G'), indicating that strong gels are formed. In order to confirm the in-

situ results, additional experiments have been conducted on gels formed within a mold 

under 24 hr exposure to 0.80 and 8.0 mM CaCl2 which display linear G' values as a 

function of frequency, G' equaled 300 and 1000 Pa, respectively. It is interesting to note 

that the elastic modulus values obtained for AvP (0.20 wt%, 2000 Pa) are approximately 

the same as those obtained for citrus pectins (G'~3000 Pa) tested at higher polymer (2.0 

wt%) and calcium concentrations (10 mM).56'67'150'151 
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TAILORING THE NETWORK PROPERTIES OF Ca2+ CROSSLINKED ALOE VERA 
POLYSACCHARIDE HYDROGELS FOR IN SITU RELEASE OF THERAPEUTIC 

AGENTS 

Overview 

Galacturonates, commonly termed pectins, are naturally occurring 

polyelectrolytes with characteristics especially amenable to controlled release 

applications.84 These polysaccharides have also been widely used in the food industry62'M 

and are composed primarily of (1—> 4)a-D-galacturonic acid (GalA) repeat units and 

contain regions that include (1—>2) linked rhamnose residues which act as branch points 

for neutral sugars. The carboxyl units along the backbone provide salt responsiveness and 

allow formation of hydrogel networks when divalent ions such as Ca are introduced 

(Figure IV-1). ' ' ' The oral delivery of small molecules including colon-specific 

drugs153' 54 from pectin hydrogels formed by Ca2+ crosslinking have been extensively 

studied and excellent reviews of the subject are available in the literature.53'84'89' I49 

However, effective methods by which networks may be tailored for controlled delivery of 

macromolecular species such as protein therapeutics remain undeveloped.85' 86' 91 For 

example, oral delivery of proteins requires efficient transportation across the 

gastrointestinal (GI) tract membrane and limiting enzymatic and hydrolytic protein 

degradation.89 

Alternative routes that circumvent some of the aforementioned issues involve 

protein delivery via subcutaneous injection or introduction through the nasal cavity by 

adsorption of proteins at the epithelial surface. " The latter route results in direct entry 

of the therapeutic agent into systemic circulation.13'86 The presence of Ca2+ in mucosal 
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and subcutaneous fluids provides a natural source for in situ gelation of carboxylated 

polymers. Given the low concentrations (3-5 mM) of Ca2+ present in mucosal155 and 

subcutaneous fluids156, suitable macromolecules must have a large number of carboxyl 

1 S7 

functional groups available for crosslinking. Previous research in our laboratories has 

shown that a polysaccharide extracted from the Aloe vera plant has a high galacturonic 

acid content and low degree of methyl ester substitution that allows for facile gel 
9+ 

formation in the presence of Ca at relatively low concentrations. Interestingly, the Aloe 

vera polysaccharide exhibits phase separation over time at ionic strengths similar to those 

of biological fluids. Thus, the relative rates of calcium induced gelation and phase 

separation become major considerations when designing a system for in situ delivery 

applications where both monovalent (Na+, K+) and divalent (Ca2+) ions are present. 
9-1-

In this research we report the gelation behavior and matrix characteristics of Ca 

crosslinked AvP hydrogels. Additionally, we investigate the effects of inducing phase 

separation by addition of monovalent electrolytes prior to Ca -induced gelation. The 

matrix characteristics of AvP hydrogels formed in solutions at the ionic strengths and 

molar [Ca2+]/[COO"] ratios of physiological fluids have been determined based on 

viscoelastic behavior and PFG-NMR studies of water diffusion. In order to establish 

relationships between AvP network properties and the diffusion behavior of 

macromolecules through the gel, the release profiles of fluorescein labeled dextrans have 

been measured as a model for therapeutic proteins. The results of this study serve as a 

basis for establishing guidelines for monovalent salt and polymer concentrations, as well 

as [Ca ]/[COO"] ratios, appropriate for in situ AvP crosslinking and the controlled 

release of therapeutic agents in nasal or subcutaneous environments. 
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Hydrogel Preparation and Characterization 

In order to determine network characteristics, hydrogels were prepared as detailed 

in the experimental section by introducing calcium chloride solutions of desired 

concentration into a reservoir containing AvP solutions. A membrane was placed on top 

of the AvP solution to ensure uniform diffusion as Ca -induced gelation occurred. This 

procedure not only allows experimental control of reaction parameters including polymer 

concentration, ionic strength, and [Ca ]/[COO"] ratios but also mimics in a practical 

manner in situ gelation for therapeutic delivery applications. Dynamic oscillatory 

rheology was conducted, and the viscoelastic behavior of AvP networks were 

* 94-

characterized in terms of Ca crosslinking conditions as discussed in subsequent 

sections. 

Molecular Weight and Chemical Composition. AvP samples with molecular 

weights of 200, 435, and 500 kDa were dissolved at 0.10 wt% and crosslinked via 

introduction of 5 mM CaC^. After allowing a 24 h reaction time, AvP solutions formed 

clear hydrogels that were easily transferred from the mold and studied by dynamic 

rheometry. As shown in Figure IV-12, the elastic moduli (G') of all samples were much 

greater than the viscous moduli (G") and were essentially linear as a function of 

frequency. 
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Figure IV-12. Elastic modulus (closed symbols) and viscous modulus (open symbols) 
data as a function of frequency a series of 0.10 wt% AvP hydrogels formed from AvP 
samples of molecular weights 523 (•), 435 (•), 200 (A) kDa 24 h after introduction of 5 
mM CaCl2. 

The variation in chemical composition between AvP samples (Table IV-1) is 

small and does not significantly affect G' values after Ca2+ crosslinking. Additionally, G' 

appears to be independent of AvP molecular weight over the 200-500 kDa range studied 

here. It should be noted that this is not the case for low molecular weight pectins. In 

studies utilizing 6, 22, and 66 kDa pectins Durand et. al.15 have shown that low 

molecular weight species are less effective at forming elastically active networks. 

Apparently, their existence as rigid rods in solution hinders the formation of elastically 

active junctions in the hydrogels. Since the molecular weights of all AvP samples studied 

in our work are well above the rod limit,157 no variation in hydrogel elastic modulus is 

evident. Given the structural regularity of the AvP polymers and molecular weight 

independence of gel properties, AvP2 was chosen for the remainder of the studies 

reported here. 
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Rate ofCa2+ Crosslinking. Dynamic oscillatory measurements conducted over a 

0.5-200 1/rad frequency range illustrate the expected increase in values of G' and G" 

with increasing gelation time for AvP2 at concentrations of 0.20 and 0.60 wt% in 5 mM 

CaCb. G' is much greater than G" and both are linear as a function of frequency, as 

illustrated for 0.20 wt% hydrogels in Figure IV-13. 
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Figure IV-13. Elastic (closed symbols) and viscous moduli (open symbols) as a function 
of frequency for 0.20 wt% AvP2 hydrogels after introduction of 5 mM CaCl2 for 0.5 (•), 
1 (•), 2 (A), 6 ( • ) , and 24 (•) hours. In the interest of clarity the 12 and 18 hr samples 
are omitted. 

Examination of the values of G' and G" as a function of time reveals that under these 

conditions, most gelation occurs within the first six hours after which asymptotic values 

of G' and G" are reached (Figure IV-14). These results are in agreement with studies 

conducted by Silva et. al. In order to ensure the degree of crosslinking had reached 

equilibrium oscillatory rheology studies were conducted on gels 24 h after introduction of 

Ca 2+ 
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Figure IV-14. Hydrogel viscoelastic behavior as indicated by the elastic (filled symbols) 
and viscous (open symbols) moduli of 0.20 (•) and 0.60 (•) wt% AvP2 at specific time 
intervals after introduction of 5 mM CaCb. 

Polymer Concentration. The network characteristics of biopolymer gels are often 

heavily dependent on the concentration of polymer present in the system.159"161 In the 

case of pectin hydrogels, polymer concentration has been shown to be a key factor 

affecting the final pectin network characteristics.162'163 AvP2 solutions at concentrations 

ranging from 0.10 to 0.80 wt% were crosslinked with 3, 5, 15, 35 and 50 mM CaCb. 

Oscillatory rheology conducted as a function of frequency provides values of G', G" and 

tan 8 (Table IV-4) that can be utilized as a diagnostic of gel rigidity.164 
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Table IV-4. Experimentally determined elastic (G') and viscous (G") moduli reported at 
a frequency of 6.2 rad/sec for AvP hydrogels crosslinked by Ca +. 

[Ca2+] 
(mM) 

3 

5 

15 

25 

35 

50 

0.10 wt% AvP 

TCa2+l 
[COO] 

0.62 

1.03 

3.08 

5.14 

7.19 

10.27 

G' 
(Pa) 

29 

189 

461 

541 

488 

550 

G" 
(Pa) 

24 

22 

45 

58 

57 

64 

Tan 6 

1.09 

0.11 

0.10 

0.11 

0.12 

0.12 

G7G" 
Crossover 
(rad/sec) 

2.1 

NA* 

NA 

NA 

NA 

NA 

0.20 wt% AvP 

fCa2+l 
[COO] 

0.31 

0.52 

1.54 

2.35 

3.60 

5.14 

G' 
(Pa) 

17 

496 

1516 

1478 

1579 

1747 

G" 
(Pa) 

11 

54 

192 

197 

209 

239 

Tan 5 

0.80 

0.11 

0.13 

0.13 

0.13 

0.14 

G7G" 
Crossover 
(rad/sec) 

3.9 

1.1 

NA 

NA 

NA 

NA 

[Ca2t] 
(mM) 

3 

5 

15 

25 

35 

50 

*NA-> 

0.60 wt% AvP 

rCa2+l 
[COO] 

0.10 

0.17 

0.34 

0.52 

0.86 

1.71 

»fot applica 

G' 
(Pa) 

123 

562 

2460 

8534 

9783 

12260 

3le, G ' a 

G" 
(Pa) 

21 

88 

371 

1290 

1328 

1626 

nd G " v 

Tan 5 

0.17 

0.16 

0.15 

0.15 

0.14 

0.13 

rere line< 

G'/G" 
Crossover 
(rad/sec) 

NA 

NA 

NA 

NA 

NA 

NA 

ir as a funct 

0.80 wt% AvP 

rCa2+l 
[COO] 

0.08 

0.13 

0.39 

0.64 

0.90 

1.28 

l ono f f r equ 

G' 
(Pa) 

1254 

2361 

5237 

15690 

24150 

26370 

ency anc 

G" 
(Pa) 

439 

572 

1334 

2815 

4091 

3529 

Tan 6 

0.34 

0.28 

0.24 

0.18 

0.17 

0.13 

G'/G" 
Crossover 
(rad/sec) 

NA 

NA 

NA 

NA 

NA 

NA 

no crossover was observed. 

AvP hydrogels exhibit strong gel behavior (tan 8 <1, G' & G" independent of 

frequency) at all polymer concentrations studied when crosslinked with 15, 35, and 50 

mM Ca2+, see for example Figure IV-15a. Dilute AvP2 samples (<0.20 wt%) crosslinked 

at 3 mM Ca exhibit frequency-dependent elastic and viscous moduli (Figure IV-15b) 

indicative of weak gel behavior.65'164 
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Figure IV-15. Elastic (open symbols) and viscous (closed symbols) moduli as a function 
of frequency for AvP2 gels at equilibrium conditions (a) 50 and (b) 3 mM CaC^. 
Polymer concentrations of 0.10 (•), 0.20 (•), 0.40 (A), 0.60 (T) , and 0.80 (•) wt% were 
utilized for gel formation. 

For a given series of hydrogels crosslinked at a specific Ca2+ concentration, a 

marked increase in G' is observed as the polymer concentration is increased from 0.10 

wt% to 0.80 wt%. The data can be fitted to power law relationships when AvP solutions 

J2.+ are crosslinked at Ca concentrations above 35 mM (Figure IV-16). Power law behavior 
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has been previously reported for biopolymer gels and is typically observed when pectins 

are crosslinked in the presence of excess calcium ions.67'165 Hydrogels prepared at lower 

Ca2+ levels show little increase in G' up to a critical AvP concentration of 0.60 wt%, 

beyond which a dramatic increase in G' occurs (Figure IV-16 Inset). This polymer 

concentration corresponds to the entanglement concentration of AvP in aqueous 

solutions and likely indicates the onset of intermolecular crosslinking. Similar studies 

on synthetic polyacrylamide hydrogel systems have also found that dramatic increases in 

mechanical properties occur when gels are formed in the concentrated solution regime.166 

Polymer Concentration (wt%) 

Figure IV-16. Elastic modulus plotted against AvP2 concentration of hydrogels formed 
at CaCl2 concentrations of 3 (•), 15 (•), 35 (A) and 50 (T) raM, The y-axis of the inset 
is scaled to depict the 3 mM CaCl2 series only and draw attention to the dramatic increase 
in G' evident for hydrogels formed from concentrated solutions (>0.60 wt%). 
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Elastic modulus data, such as that presented in Figure IV-16 can be plotted 

according to rubber elasticity theory1 " 6 in order to provide an approximate value of the 

molecular weight between crosslinks (Mc). While the application of rubber elasticity 

theory to physically crosslinked polysaccharide networks has many limitations, it is often 

utilized as the foundation of current theory159'163'165'170 and may be easily applied in 

order to obtain a first approximation of Mc.
171 From the elastic modulus values of AvP 

hydrogels crosslinked with 5 mM CaC^, an Mc value of 10,000 g/mol can be calculated. 

Utilizing the Mw of the monomer unit (174 g/mol) and the reported length of a Gal A unit 

as determined by x-ray diffraction (4.35 A)57, a crosslink spacing of approximately 25 nm 

is obtained. As will be shown later, this value correlates well with data from diffusion 

studies. 

Ca /COO' Ratio. The stoichiometric ratio of Ca cations to carboxylate anions 

present in the system affects pectin hydrogel formation.48' m As previously described, 

AvP2 solutions (0.10 to 0.80 wt%) were crosslinked via introduction of CaCb (3.0-50 

mM). The profiles of G' and G" as a function of frequency are depicted for 0.20 and 0.60 

wt% hydrogels in the Figures IV-17a and 17b) and indicate that G ' » G " for all samples 

except the 0.20 wt% hydrogel crosslinked by 3 mM CaC^. 
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Figure IV-17. Elastic (filled symbols) and viscous (open symbols) moduli as a function 
of frequency for gels composed of (a) 0.20 and (b) 0.60 wt% AvP2 at CaCk 
concentrations of 3 (•), 5 (•), 15 (A), 25 (T) , 35 (•), 50(<«) mM. 

In binding studies involving a traditional citrus pectin and Mn2+ conducted by 

Williams et. al, G' exhibited a maximum at a stoichiometric ratio of 0.40.151 In contrast, 

for a series of AvP hydrogels prepared at a fixed polymer concentration, elastic moduli 
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increase dramatically as experimental values of [Ca2+]/[COO_] increase (Figure IV-18). 

As the ratio of [Ca ]/[COO~] becomes greater than 1, G' reaches an asymptotic value for 

each polymer concentration. 
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Figure IV-18. Elastic modulus (Pa) plotted as a function of the molar ratio [Ca2+]/[COO"] 
for AvP2 calcium gels formed at concentrations of 0.10 (•), 0.20 (•), 0.40 (A), 0.60 
(T) , 0.80 (•) wt% polymer. Shaded area corresponds to Ca2+ concentrations found in 
nasal fluids. The boxed area indicates the region from which hydrogels were evaluated in 
release studies described in section 3.3 of the discussion. 

The extensive rheological data presented above clearly indicate the facility by 

which calcium ions diffusing into AvP2 solutions elicit hydrogel network formation and 

the fact that crosslink density (indicated by G' values) can be tailored by adjusting the 

fundamental parameters of polymer concentration and [Ca2+]/[COO] ratios. However, \n 

situ gelation, yielding hydrogel matrix characteristics necessary for efficient delivery of 

therapeutics directly in the nasal cavity, requires consideration of additional key issues 

such as the limited calcium concentration available in physiological fluids and the effects 

of low molecular weight electrolytes on polymer conformation and solubility. 
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In Figure IV-18, the domain of theoretically accessible networks (shown in the 

shaded area) is limited by the Ca content in nasal and subcutaneous fluids, which is 

approximately 5 mM. Two samples (highlighted data points in Figure IV-18) having 

sufficiently high moduli for hydrogel integrity were chosen for the diffusion and 

controlled release studies addressed in subsequent sections of this manuscript. It is 

important to note that, although prepared at substantially different polymer 

concentrations (0.20 vs. 0.60 wt%), the experimentally measured values of G' are similar 

(-500 Pa) for [Ca2+]/[COO~] ratios of 0.5 and 0.2, respectively. 

Addition of Simple Electrolytes. Electrolyte addition to anionic polysaccharides 

lowers hydrodynamic volume in aqueous solution by effective charge screening and by 

reduction of polymer solvent interactions. Although the conformationally stiff AvP is less 

prone to viscosity loss when compared to flexible polyelectrolytes such as poly(sodium 

acrylate), addition of electrolytes such as NaCl reduces hydrodynamic volume. For AvP2, 

a 17% decrease in intrinsic viscosity was observed as NaCl concentration was increased 

1 ^7 

from 0.05 M to 0.20 M. These experimentally determined effects on conformation and 

solvation are expected to be manifested in properties of the crosslinked gel matrices as 

well. 

Another critical issue arising from changes in solvation from added electrolytes is 

the possibility of phase separation and aggregation. While conducting previous intrinsic 

viscosity studies on AvPs, we observed phase separation in dilute solutions at ionic 
1 S7 

strengths above 0.15 M. A closer examination reveals gradual association of AvP 

chains that becomes noticeable at extended time. For example, initially linear 
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Huggins/Kraemer plots (2 h) become non-linear after 24 hours (Figure IV-19). Further 

evidence was obtained from zeta potential and dynamic light scattering studies. At low 

ionic strength, the zeta potential is -80 mV and the solutions are stable, however as the 

ionic strength is increased to 0.10 M, the zeta potential approaches -30 mV 157 
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Figure IV-19. Example of a non-linear Huggins (•) Kraemer (•) plots obtained for AvP2 
after dissolution in 0.20 M NaCl for 2 and 24 hours, respectively. 

Turbidimetric experiments were conducted on AvP2 solutions for a wide range of 

polymer concentrations and ionic strengths as detailed in the experimental section. 

Polymer concentrations were chosen between 0 and 0.20 wt% and the ionic strength was 

assumed to be that of the NaCl solution. Turbidity measurements, specifically the three 

dimensional plots shown in Figures IV-20a and 20b, confirm that the extent of phase 

separation is time-dependent and related to polymer concentration and ionic strength. 

After two hours, the extent of phase separation observed in solutions containing greater 

than 0.10 wt% AvP at ionic strengths greater than 0.15 M is moderate. However, Figure 

20b shows that phase separation is more prevalent after 24 hours. It should be pointed out 

that, though phase separation can occur in the presence of NaCl, the time dependency for 

this process is slow relative to the rate of Ca -induced gelation (Figure IV-14). 
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Figure IV-20. Turbidity of AvP2 solutions as functions of NaCl (M) and polymer (wt%) 
concentration at 2 (a) and 24 (b) hours. Select combinations of salt and polymer 
concentration (©) were used in Ca2+ induced gel formation studies in order to determine 
the effect of phase behavior on hydrogel elastic modulus (Figure IV-22). 
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Based on our studies and previous reports regarding the kinetic competition 

between phase separation and gelation,54'57'm we anticipated that sample history would 

affect network properties and therefore prepared hydrogels from two series of 0.20 wt% 

AvP2 solutions with 0, 0.05, 0.10, 0.15, and 0.20 M NaCl aged for 2 and 24 hours, 

respectively. These compositions are indicated by the open circles in Figures IV-20a and 

20b and include; homogeneous solutions (lowest turbidity), microphase separated 

solutions (moderate turbidity) and phase separated colloidal dispersions (highest 

turbidity). Elastic and viscous modulus profiles as a function of frequency are recorded in 

Figure IV-21. 
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Figure IV-21. Elastic (filled symbols) and viscous (open symbols) moduli as a function 
of frequency for hydrogels formed from 0.20 wt% AvP2 solutions dissolved in 0.05 (•), 
0.10 (•), 0.15 (A), 0.20 ( • ) NaCl for (a) 2 and (b) 24 hours prior to introduction of 
35mM CaCl2. 

Both the effects of ionic strength (NaCl concentration) of the AvP2 solutions and 

aging time prior to crosslinking can be ascertained by examination of Figure IV-22. The 

single reference point on the left side of the plot represents the hydrogel modulus value of 

1500 Pa after Ca2+ (35mM) crosslinking of a 0.20 wt% solution of AvP2 in the absence of 



76 

NaCl (0.00 M). Increases in experimentally measured G' values are observed reaching 

2300 Pa at 0.15 M NaCl before falling abruptly at higher ionic strength to -600 Pa in the 

samples aged for 2 hours prior to crosslinking. Smaller but discernable increases in G' 

are observed for AvP2 samples aged for 24 hours prior to crosslinking that contained 

0.05 and 0.10 M NaCl. Since the modulus (Figure IV-22) and turbidity (Figures IV-20a 

and 20b, data points indicated by circles) measurements are on the same samples, it 

appears that low concentrations of NaCl induce associations which are helpful to network 

formation. Higher levels of association which occur with increased aging and/or NaCl 

concentration result in total phase separation and incomplete gelation. 
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Figure IV-22. Elastic modulus of 0.20 wt% AvP2 hydrogels formed by crosslinking with 
35 mM CaCl2. Aqueous AvP2 solutions at the specified NaCl concentration shown along 
the abscissa were aged for 2 (•) and 24 (•) hours prior to addition of CaCl2 solutions. 
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In order to simulate Ca crosslinking at the ionic strength of a nasal fluid, 

homogeneous aqueous solutions of 0.20 wt% AvP were crosslinked via introduction of a 

solution containing 5 mM CaCl2, 0.15 M NaCl and 0.04 M KC1.155 When crosslinked 

under these conditions, aqueous AvP solutions form hydrogels with an elastic modulus 

value of 1200 Pa, representing a significant increase over the 500 Pa value obtained when 

AvP solutions are crosslinked by 5 mM CaCb alone (Figure IV-23). The formation of a 

strong hydrogel is consistent with the absence of large scale phase separation, further 

supporting the conclusion that the rate of Ca crosslinking is fast relative to the rate of 

phase separation. However, when simulated nasal fluids (SNF) are employed in the 

crosslinking reaction, an increase in G' occurs (Figure IV-23) which is similar to that 

observed for moderate NaCl concentrations (Figure IV-22). 
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Figure IV-23. Elastic modulus of 0.20 wt% AvP2 hydrogels formed by crosslinking with 
5 mM CaCb and a simulated nasal fluid (SNF) containing 5 mM CaCb, 0.15 M NaCl and 
0.04 M KC1. 
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Diffusion Studies via PFG-NMR. Information regarding pores within the 

viscoelastic hydrogel matrix can be gained from diffusion studies utilizing pulsed field 

gradient NMR (PFG-NMR). In PFG-NMR experiments, the apparent diffusion 

coefficient of water (Dapp) is monitored as a function of total diffusion time (A). In 

restricted geometries (such as hydrogel matrixes) Dapp is unhindered at short diffusion 

times and equals the diffusion coefficient of bulk water (Dfree). However, as A increases, 

an increasing fraction of the water molecules encounter network boundaries, thereby 

restricting diffusion and lowering Dapp to values less than Dfree. At long A, all water 

molecules experience boundaries, resulting in a limiting value of Dapp that may be 

correlated to the root mean square (RMS) end-to-end distance of the pore space in the 

hydrogel matrix via Equation 2, in which r is the RMS end-to-end distance and t<t is the 

value of A which approaches the limiting value of Dapp.
173 

Dapp=(V6)td-V (2) 

Additional information can be obtained through further examination of the Dapp vs 

A profile. The slope of the initial decay in Dapp yields information concerning the surface 

area to pore volume ratio (S/Vp), and the magnitude of Dapp at the long time plateau is 

indicative of the tortuosity of the medium in which diffusion is occurring. A rapid decay 

of Dapp in the short time regime indicates a larger S/Vp and lower values of Dapp at long 

times indicate greater tortuosity.174 For example, PFG-NMR experiments conducted on 

idealized systems containing hard spheres provide quantitative values of S/Vp in 

agreement with the known values for the beads.175'176 Although quantitative analysis of 

S/Vp for fractal geometries including hydrogel matrices is currently debated,177 

qualitative comparisons have been made for hydrogel systems.178 
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PFG-NMR experiments were first conducted on hydrogels prepared by 

crosslinking 0.20 and 0.60 wt% AvP solutions with 5 mM CaCb, resulting in the 

diffusion profiles shown in Figure IV-24a. RMS values of 14 and Hum were calculated 

utilizing the individual Dapp and Rvalues of the 0.20 and 0.60 wt% crosslinked systems, 

respectively. While the calculated pore sizes of the two systems are similar, the diffusion 

profiles suggest subtle differences in hydrogel morphology. In comparison to 0.20 wt% 

hydrogels, the 0.60 wt% systems exhibit a sharper transition as a function of A and lower 

values of Dapp at long A, indicating greater surface area and tortuosity. 

Additional PFG-NMR experiments (Figure IV-24b) conducted on hydrogels 

prepared from solutions of moderate ionic strength (0.20 wt% AvP aged in 0.15 M NaCl 

solutions for 2 and 24 h prior to Ca2+ crosslinking) indicate pores with RMS values of 8 

um. A rapid decay in Dapp as a function of A is observed for both samples, suggesting that 

high S/Vp ratios are present. Similar magnitudes of Dapp are obtained at long A, 

suggesting that tortuosity remains relatively constant in the two systems. Interestingly, 

the 24 h sample exhibits a second Dapp plateau at long A, suggesting the presence of 

additional heterogeneities within the hydrogel network. 

Large differences in PFG-NMR diffusion profiles between hydrogels formed 

from homogeneous aqueous solutions and solutions containing 0.15 M NaCl are 

experimentally observed (Figures IV-24a and 24b). Changes in both polymer 

conformation and solubility may account for the 40% reduction in RMS pore size noted 

for hydrogels formed in the latter case. The PFG-NMR diffusion profiles also suggest 

that hydrogels formed in the presence of NaCl contain greater surface-to-volume ratios 
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(sharper transition in Dapp) and higher levels of tortuosity (lower value of Dapp at long A) 

in comparison to the corresponding aqueous systems. 

a) 

c 
d) 

'" " 
**— (0 
O °fc O § 
c 
o 
O) 
13 
it 

b 

2.54 

2.0-

1.5J 

1.0-

0.5-

0.0-
100 200 300 

A(ms) 

400 500 600 

c 
0) 

o " 
1= <D 

o O 

b 

2.5 

2.0 H 

1-5W 

1.0-J 

0.5 4 

0.0-
100 200 300 

A(ms) 

400 
— i — 

500 
— i 

600 

b) 

Figure IV-24. a) The apparent diffusion coefficient (Dapp) of water plotted against 
observation time for 0.20 (•) and 0.60 (•) wt% AvP2 gels crosslinked by introduction of 
5 mM CaCb. b) Profile of Dapp for 0.20 wt% hydrogels formed from solutions containing 
0.15 M NaCl equilibrated for 2 (A) and 24 (T) h prior to introduction of 5 mM CaCl2. 
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Hydrogel Morphology. A model of AvP2 hydrogel morphology consistent with 

both elastic modulus data and the PFG-NMR studies is depicted in Figure IV-25. The 

model contains microscopic aqueous voids surrounded by a polymer rich gel network. 

9+ 

Clear aqueous AvP solutions crosslinked by Ca form homogeneous hydrogel networks 

with a large amount of connectivity between pores. Na+ and K+ ions present in nasal fluid 

have an additional effect on hydrogel morphology. Experimental evidence has shown that 

monovalent ions increase AvP association in solution, which at incrementally higher 

concentration, eventually cause phase separation. Upon crosslinking, AvP solutions 

containing moderate NaCl concentration (<0.15) result in AvP hydrogels with increased 

elastic modulus, suggesting that interchain associations are present in the hydrogel 

network. The sharp transition and magnitude of Dapp observed in PFG-NMR studies 

suggest that polymer associations increase surface area-to-pore volume ratios and 

tortuosity within hydrogels. 

Figure IV-25. Proposed hydrogel morphology of Ca2+ crosslinked AvP matrices formed 
from homogeneous aqueous solutions (left) and solutions containing low concentrations 
of monovalent ions (right) depicting microscopic pores as defined by the AvP network. 
Smaller pore sizes and increased tortuosity in the presence of moderate concentration of 
NaCl are responsible for slower release rates of fluorescently modeled dextran according 
to the proposed model. 
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Release Profiles of Macromolecular Model Compounds 

The major objective of this study is to control the diffusion characteristics of 

crosslinked AvP in order to elicit sustained release of therapeutic agents. In previous 

sections we have shown that controlling AvP concentration, [Ca ]/[COO"] ratio, and 

ionic strength prior to or during the cross-linking process results in dramatic changes in 

physical properties, in particular viscoelastic behavior and water diffusion. In this section 

we compare the relative rates and extents of release of fluorescein labeled 4 kDa 

(dh=3nm) and 500 kDa (dh=27nm) dextran model compounds from Ca2+ crosslinked gels 

prepared at low (0.20 wt%) or high (0.60 wt%) concentrations of AvP2. The Ca2+ 

concentration for crosslinking was maintained at 5 mM in each case, a value near that in 

physiological fluids. It should be noted that the labeled model compounds Dex4 and 

Dex500 (Figures IV-26a and 26b) were chosen as macromolecular model compounds 

because of their stability in solution, comparable size to proteins, known effect on pectin 

70 
gelation, and successful use in similar studies. 179, 180 

a) 
Size (nm) 

b) 

A 
/ \ 

Size (nm) 

Figure IV-26. Size distribution of 4 and 500 kDa FITC-Dextrans as determined by 
dynamic light scattering, a) 4 kDa dextran (•) and b) 500 kDa dextran (») dissolved in 
SNF containing 5 mM CaCl2. 
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Figure IV-27 illustrates the release profiles of the labeled dextrans from AvP 

hydrogel matrices as compared to the freely diffusing controls, CI and C2. Curves 1 and 

2 demonstrate the rapid release of Dex4 and Dex500 respectively in matrices formed 

from 0.20 wt% (dilute) AvP in the presence of Ca2+ only. Cumulative release approaches 

100% in 30 hours. For curves 3 and 4, again from 0.20 wt% AvP hydrogels, but 

crosslinked in a solution with the Ca2+, Na+, and K+ content of simulated nasal fluid 

(SNF), release is slower and only reaches 75-80% after 96 h, with Dex4 showing only a 

slightly greater rate and extent of release than the larger Dex500. The effects of 

increasing AvP2 concentration to (0.60 wt%) and size of the dextran on release are seen 

in the final two profiles 5 and 6, again crosslinked under SNF conditions. Here the larger 

dextran, Dex500, exhibits a significantly reduced rate and extent of release as compared 

to Dex4. 
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• e 

• — i • 1 • 1 ' 1 1 1 — 

0 24 48 72 96 
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Figure IV-27. Cumulative release (%) of 4 kDa (squares) and 500 kDa (circles) dextran 
as a function of time (h) from 0.20 wt% (black & red symbols) and 0.60 wt% (blue and 
green symbols) hydrogels. In the presence of Na and K only, no gel forms and free 
diffusion is observed (Curves CI & C2), while a Ca2+-induced AvP matrix reduces the 
diffusion rate (Curves 1 & 2). When gelled by SNF, diffusion rates are further reduced 
and dependent on dextran size and AvP concentration (Curves 3-6). 
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In an additional experiment we determined the amount of retained dextran that 

could be released by treating the respective hydrogel networks with EDTA, and then 

further disrupting the remaining network utilizing mechanical force and mild hydrolysis 

(Figure IV-28). For example, 5-8% of the dextran is entrapped within crosslinked 

domains that are disrupted by extraction of Ca2+ with EDTA, in both 0.20 (Curves 3 and 

4) and 0.60 (Curves 5 and 6) wt% hydrogels. However, in curves 5 and 6, an additional 

3% of Dex4 and 5% of Dex500 is entrapped within domains which remain intact after 

EDTA exposure. 

Figure IV-28. Population depicted in black represents dextran available for release. 
Percent of dextran released during the initial study (black line), after EDTA exposure 
(green Crosshatch), and after disruption of phase separated polymer regions (blue 
Crosshatch). 

Theoretical Diffusion Models. In order to elucidate the diffusion mechanism 

occurring in AvP hydrogels, the experimental release profiles have been fitted to 3 

existing models. " These models have been previously applied to similar hydrogel 

systems including alginates and pectins 154,184 Agreement between our experimental data 
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and the 3 diffusion models outlined below provides a diagnostic measure of the relative 

contributions of Fickian diffusion and Case II diffusion occurring in Ca2+ crosslinked 

AvP hydrogels. 

The first model describes Fickian diffusion based on the Higuchi equation (Eq 

3).185 

M> -kt1'2 (3) 

where Mt I Mx represents the fraction of release, t is the release time, and kn is the rate 

coefficient. A fit of experimental data to the Higuchi model indicates diffusion driven 

release in the absence of matrix relaxation effects. The characteristic shape of the 

experimental Mt I Mx vs. tin curve is related to the dominant release mechanism, where 

a sigmoidal departure from linearity is indicative of Case II diffusion. 

The second model considered was the Ritger-Peppas equation (Eq. 4) where the 

exponent n is related to the drug transport mechanism and the shape of the object from 

which diffusion occurs. In the case of diffusion from a slab, when w=0.5 equations 3 

and 4 are equal and Fickian diffusion dominates. When n=\, equation 4 leads to a 

description of zero-order release, termed Case II diffusion. Case II diffusion is prevalent 

when macromolecular chain relaxations within the hydrogel matrix alter the diffusion 

rate of the analyte.94 When n is between 0.5 and 1, anomalous or heterogeneous diffusion 

is suggested. 

M 
' =kf (4) 

M x 

The third model, the Peppas-Sahlin equation (Eq. 5) employs a 3 parameter fit 

which is utilized to describe anomalous release, wherein release profiles are coupled to 
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contributions from both Fickian and Case II diffusion. In Eq. 5, ki and fo represent the 

contribution of Fickian diffusion and Case II transport, respectively. In practicality, this 

model is difficult to analyze due to the implicit co-dependence of ki and k2, however 

reliable solutions for n can be obtained.154 

^ = ttn+k2t
2" (5) 

To simplify the model, the case where n=0.5 has been be examined from which ki and £2 

can be easily determined.94 

^L = k/,2+k2t (6) 

Application of Theoretical Models. Evaluation of experimental data relative to 

the above release models suggests that an increase in dextran size results in a change in 

diffusion mechanism. Of the three models examined, the Higuchi equation provides the 

best fit to the release profile for curves 1 & 2, suggesting pure Fickian diffusion within 

hydrogel systems crosslinked by Ca only. When hydrogels crosslinked under SNF 

conditions are examined (Table IV-5), it is found that the Higuchi equation still provides 

the best fit for the release of Dex4 from 0.20 wt% hydrogels (Curve 3). With the larger 

dextran sample curve 4, diffusion is best described by the Ritger-Peppas equation. For 

this system n=0.63, suggesting that both Fickian and Case II diffusion mechanisms are 

present. Additionally, the Higuchi plot of curve 4 displays sigmoidal curvature, 

supporting the conclusion that matrix interactions are involved in the diffusion 

mechanism (Figure IV-29). Analysis of 0.60 wt% samples in terms of theoretical models 

reveals that the release profiles for both Dex4 and Dex500 (Curves 5 & 6) are best 
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described by the Ritger-Peppas model (Table IV-5). The values of n suggest that 

anomalous diffusion is present in both systems, with the contribution of matrix 

relaxations becoming more significant as the size of the dextran species increases. 
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Figure IV-29. Cumulative release of dextran 4Dex (•) and 500Dex (•) plotted against 
the square root of time for a) 0.20 wt% b) 0.60 wt% AvP hydrogels. Sigmoidal departure 
from linearity indicates that matrix relaxations affect diffusion. 
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Release Mechanisms in View ofHydrogel Characteristics. The observed release 

mechanisms may be explained by consideration of both the microscopic aqueous pores 

and the free pore volume within the segmental structure of the AvP2 network. In both the 

0.20 and 0.60 wt% systems, aqueous pores with RMS radii between 8 and 13 um have 

been experimentally observed by PFG-NMR. Within these pores the diffusion of 3 and 

27 nm dextrans will be unhindered and thus Fickian in nature. Fickian diffusion is the 

dominant component within each of the AvP hydrogel systems studied, even those that fit 

anomalous release models, suggesting that a large portion of dextran diffusion occurs 

within these micron scale pores. 

Calculations of the molecular weight between crosslinks (Mc) based on elastic 

modulus relationships suggest that nanometer scale pores exist within the AvP network, 

which may hinder the diffusion of dextran through segmental interactions. Examination 

of release profiles in terms of theoretical models reveals that a significant Case II 

component is involved in the diffusion of Dex4 and Dex500 (DH, 3 and 27 nm) from 0.60 

wt% hydrogels (Table IV-5), suggesting that segmental (matrix) interactions are present. 

The elastic modulus-Mc relationship predicts a distance of 25 nm between crosslinks, 

consistent with the increase in Case II diffusion observed between 3 and 27 nm dextrans 

for 0.60 wt% hydrogels (Table IV-5). 

The reduction in dextran release rate observed between the control systems gelled 

by Ca only and the same 2AvP-Dex4 system gelled upon crosslinking with SNF 

containing Ca+2, Na+ and K+ ions suggests that changes in morphology occur when 

monovalent salts are present. Experimental evidence collected for 0.60 wt% AvP 

hydrogels shows that approximately 5% of the dextran population is entrapped within 
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9+ 

crosslinked domains that cannot be disrupted by extraction of Ca by EDTA, suggesting 

that microphase separated domains contribute to the elastic nature of the hydrogel and 

affect the release of dextran. The [Ca2+]/[COO"] ratio in 0.60 wt% systems is low at 
9+ 

physiological concentrations of Ca , resulting in a large number of free carboxylate 

functional groups, and presumably a significant number of uncrosslinked chain segments. 

Solid state NMR experiments conducted by Jarvis et. al. have shown that free pectin 

chain segments within Ca2+ crosslinked hydrogels exhibit mobility similar to that in 

solution. 

In view of the experimental evidence including phase behavior, elastic moduli and 

PFG-NMR, it may be concluded that monovalent electrolyte addition results in chain 

constriction and poorer solvation creating dense AvP2 regions which limit diffusion by 

increasing tortuosity. Further support for this conclusion is drawn from the micrographs 

shown in Figure IV-30. AvP hydrogels were stained with ruthenium red in order to obtain 

a visual diagnostic of polymer homogeneity in the hydrogels. Similarly the fluorescence 

emission of FITC-dextran was used to determine the dispersion of dextran throughout the 

hydrogel matrix. Figure IV-30a depicts a 0.20 wt% AvP hydrogel containing FITC-

dextran that was formed on crosslinking with Ca . The bright field and fluorescence 

images indicate that the dispersion of AvP and dextran are both homogeneous throughout 

the hydrogel. In contrast, micrographs taken of AvP hydrogels formed in the presence of 

0.15 M NaCl contain polymer rich domains which contain locally high concentrations of 

dextran (Figure IV-30b). 
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fflM 

a)l 

Figure IV-30. Bright field (left image) and fluorescence (right image) of a) 0.20 wt% 
AvP2 hydrogels containing FITC-dextran formed by crosslinking with 5 mM CaCk and 
b) 0.20 wt% hydrogels formed after 2 h of exposure to 0.15 M NaCl. The line seen in 
image a is the sample edge, with the sample lying to the left. 
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CHAPTER V 

CONCLUSIONS 

An anionic polysaccharide AvP isolated from the Aloe vera plant and belonging 

to the class of pectins has been studied in order to relate the chemical composition and 

structure to solution properties. It has been shown that this high molecular weight pectin 

with polysaccharide composition of 95% galacturonic acid with a 3.0% degree of 

methylation exhibits properties including high chain stiffness, and calcium 

responsiveness of significant potential in in situ gelation. Solution studies in 0.10 M NaCl 

have revealed intrinsic viscosities ranging from 19.8 to 8.0 dL/g depending on MW. 

Subsequent calculations of persistence length yield values between 153 and 170 A and 

the Mark-Houwink a value is found to range from 0.71 to 0.76, indicating an extended 

coil conformation in solution. Viscosity studies as a function of salt concentration 

allowed calculation of a stiffness parameter B of ~0.04, indicating an inflexible polymer 

backbone. Zeta potential measurements indicate that at salt concentrations of 0.10 M, 

significant shielding of the polyion charge occurs, allowing for a greater degree of intra 

and intermolecular association. Examination of the zero shear viscosity of AvP in water 

and in 0.10 M NaCl reveals that intermolecular interactions are more prevalent in the 

latter case, as is indicated by a shift in the critical entanglement concentration (Ce). 

Finally, the ability of AvP to form strong gels at low polymer (0.20 wt%) and Ca2+ (<10 

mM) concentrations has been demonstrated, indicating the potential for AvP to impart in-

situ gelling functionality in drug delivery systems. 

The Aloe vera polysaccharide has been shown to form hydrogels that can be 

easily tailored for delivery of therapeutic agents when crosslinked by calcium ions. 
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Hydrogel elastic modulus is independent of AvP molecular weight over the range of 200-

500 kDa. However, viscoelastic properties are dependent upon the concentration of AvP2 

and Ca2+ in solution, and are also affected by monovalent electrolyte concentrations in 

AvP2 solutions prior to Ca gelation. Values of G' ranging from 20-20,000 Pa can be 

obtained by varying the polymer concentration, the ratio of Ca to COO" and ionic 

strength. 

As evidenced by changes in the value of the Huggins constant with monovalent 

electrolyte addition, segmental association of AvP occurs in both a concentration and 

time dependent manner. Above concentrations of 0.15 M NaCl, phase separation occurs 

in both dilute and concentrated (near C*) AvP solutions. The observed increase in 

modulus values for gels formed in the presence of monovalent electrolytes is attributed to 

changes in chain stiffness and solvation, as well as local segmental associations formed 

prior to Ca induced gelation. A simplistic model (depicted in Figure IV-25 2) has been 

proposed describing these matrix changes based on viscoelastic behavior, PFG-NMR 

studies of water diffusion, and controlled release of fluorescein labeled dextrans of 

known hydrodynamic volume. The increased surface to volume ratio and tortuosity in the 

segmentally dense regions of the crosslinked matrices appear to be the factors 

contributing to the experimentally observed release behavior. 

Factors such as polymer stability and hydrogel morphology are important when 

considering the design of protein delivery systems. Experimental evidence suggests that 

addition of monovalent salts to AvP formulations prior to gelation may be beneficial, 

increasing elastic modulus and tortuosity while reducing release rates. However, 

concentrations must be relatively low since high ionic strengths cause phase separation 
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and inhibit Ca induced gelation. Considering these results, it is clear that salt and 

polymer concentrations must be judiciously chosen when formulating an in situ gelling 

therapeutic delivery system. It is recommended that an ionic strength less than 0.10 M is 

maintained when AvP concentrations are above 0.10 wt% in order to prevent large scale 

phase separation and inhibition of Ca crosslinking. In addition to providing stability and 

long shelf life, a delivery formulation must also release a precise quantity of protein over 

a given time interval. Optimal conditions for AvP mediated release involve polymer 

concentrations above Ce (0.60 wt%), [Ca2+]/[COO"] ratios that are less than 1, and 

solutions at moderate ionic strength. 



95 

CHAPTER VI 

RECOMMENDATIONS FOR FUTURE RESEARCH 

The study of AvP structure, solution behavior and hydrogel properties reported in 

this thesis provides a foundation upon which drug delivery systems may be designed and 

future studies can be based. The viscoelastic nature of AvP hydrogels, observed diffusion 

profiles and optical micrographs have been utilized to gain insight into the network 

characteristics of AvP hydrogels. However, supporting techniques such as cryogenic-

TEM and small angle neutron scattering could be utilized to further elucidate the detailed 

structure of AvP networks. Additionally, studies regarding the release of model 

therapeutic compounds were limited the work thus far and should be expanded to include 

proteins of clinical interest. Examining the release of proteins will require consideration 

of additional factors including electrostatic interactions, and, as such, it may be beneficial 

to examine the release of charged model nanoparticles. For example, sulfonated 

polystyrene nanospheres of various diameter and surface charge ratio could be readily 

purchased and used to diagnose wither hydrodynamic or electrostatic effects dominate 

diffusion from AvP matrixes. 

Studies presented in this thesis also point to potential issues concerning the 

stability of AvP in aqueous media at an ionic strength greater than 0.10 M. While this 

may not prove to be detrimental to the performance of AvP in drug delivery systems, it 

may be beneficial to investigate hydrophilic modification of AvP. Hydrophilic 

modification will certainly alleviate solubility issues and may reduce release rates by 

increasing the local viscosity within aqueous hydrogel domains. Recently, Banthia et. 

a\}%1 have shown that pectins may be hydrophilically modified using a grafting from 
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approach. Utilizing controlled radical polymerization techniques particularly, reversible 

addition fragmentation chain transfer (RAFT) it may be possible to easily synthesize 

hydrophilically modified AvP containing side chains with end group functionality 

amenable to bioconjugation. 
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APPENDIX A 

SUPPLEMENTAL INFORMATION CHAPTER IV 

STRUCTURAL CHARACTERIZATION AND SOLUTION PROPERTIES OF A 
GALACTURONATE POLSACCHARIDE DERIVED FROM ALOE VERA CAPABLE 

OF IN SITU GELATION 

Size exclusion chromatography with multi angle laser light scattering. 

a 

1 
a. 

i • i • i i • i > i ' i 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Elution Volume (mL) 

Figure A-l. SEC-MALLS trace of AvP4 including molecular weight (Mw) and radius of 
gyration (Rg) analysis. 
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Figure A-2. SEC-MALLS trace of AvP4 depicting radius of gyration (Rg) as a function 
of molecular weight (Mw). 

1H NMR. The degree of methylation (DM) along the galacturonic acid backbone 

is closely related to the sensitivity of the pectin towards gelation in the presence of 

divalent cations.114 Various methods have been applied in the determination of the DM 

including; titration, capillary electrophoresis, liquid chromatography coupled with mass 

spectrometry (LC-MS), and proton NMR. *H NMR represents a quantitative, non

destructive technique for analyzing the DM of pectins. !H NMR is particularly 

advantageous in the case where the DM of the pectin species is low and the accuracy of 

LC-MS techniques can be questioned. 

H1 NMR spectroscopy has proven to be a valuable tool in the complete structural 

determination and conformational assignment oligosaccharides derived from pectins. 

Grasdalen et. alns'ni utilized !H NMR to analyze the sequence of free galacturonic acid 

and methyl ester content in tri- and tetrameric pectin fragments. Additionally, *H NMR 

may be utilized to determine the macroscopic or average DM of a pectin sample. 
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One of the primary methods for the determination of DM by H1 NMR involves 

analysis the H-l and H-5 protons. The H-5 proton peak is shifted downfield when the 

carboxylic acid on carbon 5 is converted to a methyl ester. This results in two separate 

peaks for H-5 protons, the one located adjacent to a carboxylic acid (COO") and that 

adjacent to a methyl ester (COOMe). Unfortunately direct resolution of the H-5 

(COOMe) is not achievable because the peak location corresponds with that of the H-l 

proton.114 However, this is dealt with utilizing the fact the number of H-l protons equals 

the sum of H-5 protons adjacent to both ester and carboxylic acid groups. 

Where the DM is defined by the following equation; 

DM= J co°-
\ H5coo- + j H5™ 

Following algebraic manipulation and substitution; 

DM \ ( m + H5~)-!H5coor 
~)(H\ + H5me)+\H5C00„ 

In a study involving a series of systematically de-esterified pectins, *H NMR has been 

found to agree with DM values determined via standard titration methods, exhibiting a 

correlation of 0.95 as determined by a least squares fit.114 All experiments were 

conducted at 80°C, in order to shift the HOD signal upfield and provide resolution of the 

H5 peak; chemical shifts were determined using the HOD peak as a reference which is 

known to be a function of temperature (3.385 ppm at 80°C).93 Peak analysis and 

integration were conducted using MestReC 4.7.0 software. Fourier transform was 

performed on the raw data; the data was then subjected to a polynomial baseline 
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correction. Peaks were fit using lorentzian curves and integration widths were defined 

manually for each spectrum according to appearance. The spectra for each of AvP sample 

are provided below, and the results are summarized in Table A-l. 

Table A-l. Integrals of lH NMR peaks and calculated values of degree of methylation 
(DM). 

Peak 

Sample 

AvP1 

AvP2 

AvP3 
AvP4 

AvP5 

Mw (kDa) 

523 
435 
405 
330 
200 

H1 + H5 

1.00 

1.00 

1.00 

1.00 

1.00 

H5 
0.90 

0.90 

0.97 

0.96 

0.88 

DM 
5.3% 

5.3% 

1.5% 
2.0% 
6.4% 

5.0 4.5 4.0 3.5 3.0 2.5 2.0 

ppm 

Figure A-3. H NMR spectrum of AvP 1, obtained using HOD suppression techniques on 
a 500 MHz NMR spectrometer. 



101 

H5„ 

H1 

H5 

H4 

i V W v M ^ 1 " 

H3 H2 

" w 

I 1 1 1 1 1 1 1 1 — 

5.0 4.5 4.0 3.5 3.0 

ppm 

2.5 

Figure A-4. lH NMR spectrum of AvP2, obtained using HOD suppression techniques on 
a 500 MHz NMR spectrometer. 

i • 1 < 1 < 1 < 1 • 1 ' 1 

5.0 4.5 4.0 3.5 3.0 2.5 2.0 

ppm 

Figure A-5. *H NMR spectrum of AvP4, obtained using HOD suppression techniques on 
a 500 MHz NMR spectrometer. 
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Figure A-6. !H NMR spectrum of AvP5, obtained using HOD suppression techniques on 
a 500 MHz NMR spectrometer. 
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Determination of intrinsic viscosity. 

The following figures were constructed to determine the intrinsic viscosity values shown 
in Table IV-2. 
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Figure A-7. Huggins (•) and Kraemer (•) plots, illustrated for a) AvPl, b) AvP2, c) 
AvP3, d) AvP4, e) AvP5 in 0.05 M NaCl. 
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Figure A-8. Huggins (•) and Kraemer (•) plots, illustrated for a) AvPl, b) AvP2, c) 
AvP3, d) AvP4, e) AvP5 in 0.10 M NaCl. 
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Figure A-9. Huggins (•) and Kraemer (•) plots, illustrated for a) AvPl, b) AvP2, c) 
AvP3, d) AvP4, e) AvP5 in 0.15 M NaCl. 
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Figure A-10. Huggins (•) and Kraemer (•) plots, illustrated for a) AvPl, b) AvP2, c) 
AvP3, d) AvP4, e) AvP5 in 0.20 M NaCl. 
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Persistence length calculations. The persistence length (Lp) of AvP was 

calculated utilizing both the Yamakawa-Fuji124 and Bohandecky129 methods, as outlined 

in Chapter IV Section A. In order to calculate Lp, simultaneous equations must be solved 

in an iterative manner. Yamakawa-Fuji analysis was conducted utilizing a Mathcad 

program written by Dr. Roger Hester. Bohandecky analysis was conducted utilizing a 

Mathcad program written by Shawn McConaughy and Adam Smith. Transcripts of each 

program are provided on the following pages. 

One interesting observation that came from the Bohandecky analysis is that the 

electrostatic expansion factor (a) passes through a minimum when examined as a 

function of the Mark-Houwink coefficient (a). The minimum a value (~1.03) corresponds 

to an a value of approximately 0.63, suggesting that electrostatic expansion is negligible 

when an expanded coil conformation is present. 

10000 

Mooo 

h6000 
T3 
a> 
3 

4000 a. 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 

Mark Houwink parameter "a" 

1.75 2.00 

Figure AI-11. Determination of electrostatic expansion factor (a) and persistence length 
as a function of the Mark Houwink parameter "a". 



Lp calculation based on the Yamakawa-Fuji Mathcad program: 

Mathcad file name: YamakawaFloryConstantCorrection2001 Mathcad 

See H. Yamakawa & M. Fujii, Macromolecules, 7, (1), 128-35 (1974) 

For0.10<d< 1.0andL>2.278 RDH 9/25/03 

<P o := 2.87 • -
10 

23 

mole 
Ang := 10 ' i n dL := 100 • mL 

Cl(d) := (o.l20367 + 0.220714 • d + 4.36037 • d2 - 6.99899 . d3 + 7.94714 • d4) . 

+ (2.16769 - 12.5326 • d2 - 0.293796 • d4) • ln(d) 

C2(d) := U.30917 + 129.550 • d + 96.9912 • d" - 435.952 • d3) := U.30917 + 129.550 • d + 96.9912 • d2 

+ 126.457 . d4 - 13.92040 - 413.189 • d2 - 4.94474 • d4j . ln(d) 

C3(d): 

C4(d) 

(l61.109 - 4926.443 • d - 43988.8 • d2 + 78765.85 . d3 - 29296. 

+ (40.1861 - 31548.53 • d 2 - 38.3938 • d4) • ln(d) 

73427. 

• d 4 ) . 

(-582.038 + 16873.42 • d + 159994.7 • d 2 - 273427.7 • d 3 + 85028. 

+ (-1) • \102.876 - 113150.70 • d" - 88.8684 

For d<0.1 and L > 2.278 

I.43 • d4/ ... 

34 • d4) . 

ln(d) 

<= Changed 4398.88 
to 43988.8 
to get closer 
to Table values 
in Yamakawa-Fuji paper. 

cl(d) .= 3.230981 - 143.7458 • d - 1906.263 • d 2 + (2.463404 - 1422.067 • d2j • ln(d) 

c2(d) := -22.46149 + 1347.079 • d + 19387.400 • d2 + (-5.318869 + 13868.57 • d2j • ln(d) 

c3(d) := 54.81690 - 3235.401 • d - 49357.06 • d 2 + (l5.41744 - 34447.63 • d2) • ln(d) 

c4(d) := -32.91952 + 2306.793 • d + 36732.64 • d2 + (-8.516339 + 25198.11 » d2) • ln(d) 

Correction^ d, L ) : 
cl(d) c2(d) c3(d) c4(d) 

< = For d<0.1 and L > 2.278 

Correctionl(d, L) := 
1 

Cl(d) C2(d) C3(d) C4(d) 

< = For0.10 <d< 1.0andL >2.278 

file:///102.876


<B(d,L) := ©o • if(d >0.1,Correction{d,L),Correctioitfd,L)) 

<= table values 

OU,104) = i 

3.01 

o(o.8,106) = i 

2.88 

o(o.6,106) = i 

2.88 

olo.4,106) = i 

2.87 

O(O.15 ,10 6 ) = I 

2.86 

o(o.l ,104) = i 

2.76 

<= table values 

o(o.06,104) = i 

2.70 

o(o.03,104) = i 

2.67 

0(0.01,4000) = i 

2.47 

<D(O.OOI,IO6) = I 

2.82 

O\l,103) = i 

3.25 

* (0.8,4000) = • 

3.02 

0(0.6,4000) = i 

2.97 

O(0.4,1000) = i 

2.88 

O(0.15,4000) = i 

2.75 

0(0.1,1000) = ! 

2.57 

o(o.06,103) = i 

2.45 

0(0.03,100) = ! 

1.78 

0(0.01,100) = ! 

1.57 

0(0.001,1000) = ! 

1.96 

0(1,200) = i 

3.86 

0(0.8,200) = i 

3.42 

O(0.6,100) = i 

3.23 

O(0.4,100) = i 

2.73 

O(0.15,50) = i 

2.08 

O(0.1,20) = i 

1.63 

0(0.06,100) = ! 

1.95 

O(0.03,10) = i 

0.95 

O(0.01,10) = i 

0.765 

0(0.001,100) = ! 

1.26 
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i := 0.. 100 j :=0.. 100 
0.9 

dd := 0.1 + • 1 100 

MM 
o(dd,LL.) 

'.J 
10 

23 

Lcontour = polymer contour length 

^polymer= P°lymer cn^in diameter 

q = persistence length 

^contour 

2 • q 

495 
LL. := 5 + • j 

J 100 

d = 
dpolyr 

2 • q 

max(MM) = 3.35 mol 

dd^ = 0.784 

LLj 5 = 178.3 

M M 76 ,35 = 3 - 3 5 m o 1 

1 

max(LL) = 500 JA.WJ JI.JJJU H 

greater 
polymer 
length 

Contours are Flory Constant x 10A-23 

i r̂ i jr i—TT 

L = 
^contour L# 

2 • q 

min(LL) = 5 

MM 

smaller persistance length=> 

min(dd) = 0.10 
d = 

dpolymer 

2 • q 

max(dd) = 1.00 

q is the persistance length 
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FloryO(,T| >Mpolymer>Mmonomer!Lmonomer.Dpolymer): ^contour 

<p<p 
0 

V 

Mpolymer 
TT * Lmonomer 
Mmonomer 

mole 

2 

Mmonomer 

2 • Lmonomer 

GG 4- <t><t> • mole 

3 ^ 
( " M O 'Mpolymer" 

0 

GG 

0 

q0 
0 

for 

1 Ang 

i e O . 1 0 0 

Lcontour 
J'l< 2 . q . 

d. < -

<Dd> 

Dpolymer 

2 • q. 
l 

„ <-*(d.,L.1 
-1 \ i 1/ 

GG „ _ «- * * .. • mole 
i+1,0 i+1 

GG , „ <- 0 if d. > 1.0 
i+1,0 i 

GG „ „ <- 0 if L. < 2 .28 
i+1,0 i 

l+ l 

GG. 

2 
3 Mmonomer 

2 • Lmonomer 

3 1 

f l ^ i + l l 'Mpolymer' 

Vl 
"i+1,1 Ang 

0 if d. > 1.0 
i+1,1 1 

. „ , 0 ifL. < 2 . 2 8 
i+1,1 i 

break if d. > 1.0 
l 

0 0 1 , 1 

break if L. < 2.28 

break if • 

(J)$ - 0 0 . I 
i+1 i| 

<S<t>. 
1 

< 0.001 

GG 

Note that the final elements in the GG maxtrix are zero if d becomes greater than 1 or if L 
becomes less than 2.28 



AvP1 -inO.IOMNaCI 

( dL m m V̂  
q„ e w := Flory* 18.0 • , 5.23 • 105 • -^™- , 198 • -^™- , 4.35 • Ang, 7 • Ang • Ang 

V. gm mole mole J 

O n e w : = F I o r j ^ 
r j , , \<o> , 
I dL 5 cm gm i 1 

18.0 • , 5.23 • 10 • —— , 198 • —— , 4.35 • Ang, 7 • Ang -v gm mole mole J mole 

q„ew = • A n 8 
®new 

AvP2- inO.IOMNaCI 

dL 5 gm gm ^ 
q„ e w := FloryO| 15.2 • , 4.35 • 10 • —— , 198 • —— , 4.35 • Ang, 7 • Ang ] • Ang 

gm mole mole 

dL s \^ 1 
<Dnew := Flory<D| 15.2 • , 4.35 • 10 • - ^ L , 198 • -^™- , 4.35 • Ang, 7 • Ang ) • 

gm mole mole J mole 

q„e w = iAng <1)new 
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AvP3-in0.10MNaCI 

<1> 
q„ew := FloryOI 15.0 • , 4.05 • 105 • -^™- , 198 • - ^ - , 4.35 • Ang, 7 • Ang I • 

gm mole mole 
Ang 

* n e w : = F , o r y ® 
dL 

'Inew 

15.0 • , 4.05 • 10 • 
V g m 

( 92.64 ^ 

137.54 

152.68 
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159.09 

159.21 

V 159.25 j 

Ang 

5 - - P ? - , 1 9 8 . - f i ! L , « 5 . A n g , 7 . A n g • -
mole 

<D new 

10 
23 

mole 

f 2.87 A 

1.59 

1.36 

1.30 

1.28 

1.28 

1.27 

V1.27y 

mol 

mole 

AvP4 - in 0.10 M NaCI 

q„e w := FloryOI 11.6 • , 3.30 • 105 • -^™- , 198 • -^- , 4.35 • Ang, 7 • Ang I • Ang 
gm mole mole 

<1> 

dL 
<Dnew := Florj4>| 11.6 • ,3.30 • 10 • 

gm 

,5 gm gm 

<lnew 

( 83.57 ^ 

124.45 

138.69 

143.19 

144.57 

144.99 

145.12 

V 145.16 J 

Ang 

, 198 • —— , 4.35 • Ang, 7 • Ang • 
mole mole J mole 

<0> 

^2.87 *̂ 

1.58 

1.34 

Onew 1.28 

23 1.26 

1.26 

1.25 

V1.25y 

10 
mol 



AvP5-in0.10MNaCI 

( dL _ 5 em gm 
> 9.0 • " " - *n - 6 *"° - B qnew := Florj^) 9.0 • ,2.0 • 10 • —— , 198 • —— ,4.35 • Ang,7 • Ang 
V gm mole mole 

<1> 

®new := Flory<I>| 9.0 • , 2.0 • 105 • - ^ - , 198 • -^™- , 4.35 • Ang, 7 • Ang 
V gm mole mole 

( 83.38 ^ 

<0> 

<Jnew 

134.27 

156.39 

165.25 

168.71 

170.05 

170.57 

170.77 

V 170.84 J 

Ang <J>, 

10 23 

^2.87 "N 

1.40 

1.12 

1.03 

1.00 

0.99 

0.98 

0.98 

Vo.9s; 

mol 



Lp calculations based on the Bohandecky calculations. 

Using equations 6 -11 Biomacromolecules, vol 4, no 6, 1805 (Mendichi et. a/.), which is the 
Bohandecky method utlizing the Tsaki approximation for d (hydrodynamic diameter), additionally 
considering the expansion factor a which accounts for excluded volume. 

Solving for q and a based on n and M data for AvP in 0.15 M NaCI 

nm := 10 m N , 
6.02-10' 

mol 

23 

a := 1.073 as determined by seperate analysis where M L is known 

v :=.71-cm 

M := 

'100000A 

200000 

300000 

400000 

gm 

u for pectic acid (food hydrocolloids 1998, 12, 167) 

gm 

mol TI (M) := 0.074-

500000,/ 

/• AA V 7 6 3 

' M \ cm 
gm gm 

V. mol j 

Mark-Houwink relationship for AvP in 0.15 M NaCI 

Provided with; 

X = 2 q 
< ! , = • 

Substituting into equation (9) from Mendichi 

dr(q>ML):= 

"(4.vML)' 

7t-N/ 

2-q 

Equations for A 0 and B 0 are from reference #28 (Bohdanecky) eqs 8 & 9 

A 0 (q ,M L ) := .46 - .531og(dr(q,ML)) 

B 0 (q ,ML ) := 1.00 - .03671og(dr(q,ML)) 

A A = • 

B 0 = . 
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Substituting A0 and B 0 into equations (7) and (8) 

- 1 

A 1 1 (q ,M L ) := 

f 23 "̂  
2.8610 

mol 
• A 0 ( q , M L ) . M •IVly (7) A^ = function 

/ 

B. ̂ ( q , M L ) : = 

„23 
2.8610 

y mol j 
•B0(q,ML) . 

MT (8) B = function 

Provided with; 

*! = ^VaT\ (1Q) a n = a s 
2.43 

Molecular 
Weight 
(g/mol) 

523000 
435000 
405000 
330000 
200000 

Intrinsic 
Viscosity (ml/g) 

1591.47 

1399.62 

1416.23 

1119.99 

820.23 

(11) 

x y 

(MA2/h)A(l/3 
MA(l/2) 

723.19 

659.55 

636.40 

574.46 

447.21 

) 

555.99 

513.24 

487.44 

459.84 

365.35 

600.00 

jn 500.00 

£ 400.00 

CM 

< 

y = 0.6816X + 61.854 

R 2 = 0.9944 

S 300.00 
CM 

*- 200.00 

100.00 

0.00 

* * 

0.00 200.00 400.00 600.00 800.00 

MA(l/2) 

where the slope = 

(Br|)/(a2-43/3) 
and the intercept: 

(Ari)/(a2-43/3) 

int:= 

sip := 

^81.33N 

69.95 

80.47 

V61.85y 

( 0.606^ 

0.648 

0.645 

V0.682y 

gm 

mol cm 

1 

2 
gm 

1 

mol -cm 



Substituting the combination of (11) and (10) into equation (6) 

guess 

gm 
ML :=400 

nm-mol 
q := 8nm i := 0.. 3 

Given 

2.8610' .23 

int. = 
mol J 

.46-.53-lod 

'(4-v.ML)" 

7I-N, 

2-q 
K) 

.81 

Sip. : 

( 23^1 
2.8610 

^ mol / 

- 1 

3 

1.00-.03671od 

(4-vML)' 

Tt-N A 

2-q 

- 1 

2 

' M T
 >^ 

\ q i J 

:= Findf M^, q] 

M L: 

446.051 
397.834 

451.344 

362.224 

gm 
nm-mol 

13.924 

10.797 

12.391 

8.833 
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Solution viscosity as a function of shear rate. The solution viscosity of AvP3 was 

determined as a function of shear rate and used in combination with the viscosities 

determined in the dilute concentration regime to create a plot of zero shear viscosity vs. 

polymer concentration (Figure IV-9). Shown below are the viscosity vs. shear rate 

profiles of AvP3 dissolved in aqueous solution and 0.10 M NaCl. 

10000-J 

8 1000 
* 
a. 

to o o w 
> 
o 
o 
CD 
Q. 
W 

100-J 

10 J 

U 

0.1 J 

0.01 +-™ 

nr""'—nun ^ T 

mj—i-inun)—i i 111ni|—i i i MI I I |—i" i i urn)—r i rirrn|—i i 11 iui|—i i M I I I I |—r i Mini] 

1E-5 1E-4 1E-3 0.01 0.1 1 10 100 1000 10000 

Shear Rate (rad/sec) 

Figure A-12. Specific viscosity (Pa*sec) as a function of shear rate (rad/sec) for 0.25 (•), 
0.50 (•), 0.75 (A), 1.0 ( • ) , 1.25 (•), 1.5 {<), 1.8 ( ) wt% AvP3 samples dissolved in 
aqueous solutions. 
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> 
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a. 
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Figure A-13. Specific viscosity (Pa*sec) as a function of shear rate (rad/sec) for 0.15 (•), 
0.25 (•), 0.30 (A), 0.40 ( • ) , 0.50 (•), 0.75 (<), 0.90 ( ) wt% AvP3 samples dissolved 
inO.lOMNaCl. 

In addition, dynamic oscillatory rheology was conducted on concentrated AvP aqueous 

solutions. 

100-

10-

to 
Q. 

XI 

o 

H 
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Figure A-14. Elastic and viscous modulus (Pa) as a function of frequency for aqueous 
AvP solutions. Dynamic oscillatory rheology was conducted at an applied stress of 5 Pa. 
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Fluorescence emission ofl,8-ANS. 
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— I — 
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— i — 
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Figure A-15. Fluorescence emission of 1,8-ANS as seen in the inset of Figure IV-10. 
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APPENDIX B 

SUPPLEMENTAL INFORMATION CHAPTER IV 

,2+ , 
TAILORING THE NETWORK PROPERTIES OF CaZT CROSSLINKED ALOE VERA 
POLYSACCHARIDE HYDROGELS FOR IN SITU RELEASE OF THERAPEUTIC 

AGENTS 

Oscillatory Rheology. The following figures were constructed to show the data used to 
create Figure IV-16. 

a) 

b) 

10000 

1000' 
CD 
0. 

en 
3 100-

•D 
O 

5 

10J 

• ; ; : 

Q O D a D D D D G D D [ ] D D D a D n D D n l ] D 

1 10 100 

Frequency (rad/sec) 

10000-J 

CO 

a. 

o 
5 

.• •••••••• • • • • • • • • • 

100 

Frequency (rad/sec) 

Figure B-l. Elastic (open symbols) and viscous (closed symbols) moduli as a function of 
frequency for AvP2 gels at equilibrium conditions (a) 35 and (b) 15 mM CaCl2. Polymer 
concentrations of 0.10 (•), 0.20 (•), 0.40 (A), 0.60 ( • ) , and 0.80 (•) wt% were utilized 
for gel formation. 
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Rubber Elasticity Theory. The characterization of crosslinked networks has long 

been a subject of interest. Pioneering work conducted by Flory,167 Treloar,169 and Ferry168 

sought to describe the relationship between macroscopic mechanical properties and the 

fundamental physics of lightly crosslinked elastomeric materials, specifically vulcanized 

rubbers. However, as suggested by Treloar,169 the swelling phenomenon of rubbers 

markedly differs from that of biopolymer systems where the enthalpic interactions 

between water and polymer are significant. Recognizing the limitations of rubber 

elasticity theory, Ross-Murphy, Clark, and others sought to develop a model that would 

more accurately describe the gelation of hydrophilic systems.164'165 

The resulting theory for biopolymer network formation, termed cascade theory, 

provides a relationship between gel shear modulus (G) and factors such as polymer 

concentration, molecular weight, degree of crosslinking, and temperature, based on the 

assumption that the binding energy of all crosslink sites is equivalent. Gel shear modulus 

can be calculated by Eq B-l. 

c , ^ 0 - v ) ' Q - / » a g r m ) 

N is the number of moles of polymer per unit volume initially present (equal to C/Mw, 

where C is concentration), / is the functionality of the individual polymer molecule in 

terms of total number of potential crosslinking sites, a is the fraction of these sites which 

have reacted at any stage in gel formation and is equal to the product of NfK, where K is 

the equilibrium constant for crosslinking and is defined by single values of entropy and 

enthalpy, v is a function created to account for the probability of a functional site 

becoming extinct through a reaction that does not contribute to the elastically active 
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network, and ft is a function which has been formulated to make the numerator of Equ. 

B-l equal the average number of elastically active junctions per polymer molecule, when 

divided by N. The remaining aRT term in Equ. B-l is the average contribution per mole 

of elastically active chains to the free energy increase exhibited upon strain and is based 

upon rubber elasticity theory. 

The a term represents the mobility and functionality of the crosslinks and is not 

included in traditional equations for rubber elasticity because it is often assumed to be 

unity for elastomeric rubbers which have tetra-functional crosslinks (4 branches originate 

1 g o 

from 1 crosslink). However, evidence suggests that this assumption is not accurate for 

biopolymer systems, as a may be a function of polymer concentration.16 

Cascade theory has been shown to work well for biopolymer systems such as 

gelatin and galactomannan160 where large enthalpic interactions are responsible for 

gelation. However, its application to pectins has been limited based on a number of 

restraints, specifically the high correlation between the adjustable parameters/and a, the 

apparent low enthalpy of crosslinking present in pectin systems and the possibility that 

pectins do not contain a well defined number of equivalent crosslink sites.170 Thus, 

researchers have sought to develop alternative models that describe pectin gelation. Rao 

et. al. determine a structure development factor (dG'/d/) by monitoring the evolution of 

G' as a function of temperature. Using information from the structure development factor 

and rubber elasticity theory, kinetic descriptions of network formation were proposed.171 

In contradiction to the cascade theory, Durand et. al.150'170 developed a model for low 

methoxy pectin (LMP) gelation based upon the assumption that the concentration of 

binding sites (Nc) decreases exponentially with bond energy as described by: 
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Nc = Ae~BT (B-2) 

At the gel temperature (Tg) the value of Nc is given by Nc* = Ae~ g . Following the 

rational of the Durand et. al., v the molar concentration of elastically active network 

chains (from rubber elasticity theory, written with the formalism G = avRT ) is a universal 

function of Nc / Nc and is defined by: 

v = 2Nc-~ (B-3) 
M„ 

C is polymer concentration and Mn is number average molar mass of the pectin chain. 

Utilizing rubber elasticity theory the following expression which relates G to v is 

obtained: 

G ^—e^-^iaRT) (B-4) 
Mn 

Both the cascade theory and the theory presented by Durand et. al. seek to provide a 

comprehensive model for Ca2+ mediated pectin gelation, which is certainly desirable. 

However, both theories are ultimately based on rubber elasticity, with separate pre-

factors being applied to account for non-linearity in empirical modulus data. As such, the 

elastic modulus data presented herein will be discussed in terms of traditional rubber 

elasticity theory. 

Theories derived for rubber elastomers are based upon changes in polymer 

entropy induced during strain, and hence require that the elastic constant G be purely 

entropic in origin. Based upon this reasoning and a number of other assumptions the 

following expression for G and Mc the average molecular weight between crosslinks is 

derived.167"169 
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In Eq. B-5, p is the material density, R the gas constant, and T the absolute temperature. 

Numerous corrections to this expression have been made in attempt to account for 

network imperfections such as loose chain ends, intramolecular loop formation, and 

entrapment of entanglements. Additionally, the case of a solvent swollen rubber was 

examined, for which it has been determined that the process of swelling is largely 

entropic in nature.169 The amount of entropy gained by the system can be related directly 

to solvent volume fraction vl and applied to Equ. B-5 in terms of polymer volume 

fraction v2. 

pRT 1/3 
G = —— v2 (B-6) 

Mc 

Considering the limitations discussed above, the application of rubber elasticity 

theory is limited. However, equation B-6 is of fundamental importance and is often used 

in attempts to describe crosslinked hydrogel networks. The application of theory can still 

be useful for determining the relative molecular weight between crosslinks (Mc) and 

gaining insight into the functionality of the crosslinks (a). 
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Figure B-2. Elastic modulus (Pa) of AvP hydrogels formed at calcium concentrations of 
5.0 (•), 15 (•), 35 (A), 50 ( • ) mM with corresponding fits based on rubber elasticity 
theory. Inset is scaled to focus on the series of hydrogels crosslinked by 5.0 (•). 

In Figure B-2, data is plotted according to Equ. B-6 where the slope of the 

regression line equals a/Mc. The data will first be discussed assuming that the crosslinks 

are tetrafunctional and a=\. 

The slope of the regression line was used to calculate Mc values of 10000, 6000, 

2000 and 1200 g/mol. As CaCk concentration was increased from 5 to 50 mM the value 

of Mc decreased. Qualitatively these numbers are reasonable; they depict an increase in 

the number of intermolecular crosslinks as the Ca2+ concentration in the system increases. 

An approximate distance between crosslinks can be calculated from these Mc values, the 

Mw of the monomer unit (174 g/mol) and the reported length of a Gal A unit as 

determined by x-ray diffraction (4.35 A).57 Mc values of 10,000 and 1200 g/mol yield a 

crosslink spacing of approximately 25 and 3 nm, respectively. 
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However, as seen in Figure B-l, the data obtained at high crosslink density 

([Ca2+]>15mM) is non-linear suggesting that Mc is not constant as a function of polymer 

concentration. Non-linearity is particularly evident for the series of data taken at 35 and 

50 mM CaCl2, where an increase in slope is observed as polymer concentration increases. 

An increase in slope suggests the formation of a greater number of intermolecular 

crosslinks and a decrease in Mc. The observed decrease in Mc as polymer concentration 

increases is reasonable when one considers that the probability of forming intermolecular 

junctions increases as the volume fraction of polymer in the system increases. 

One must also consider that the slope of the regression line is dependent upon a, 

and that the functionality of a crosslink in pectin hydrogel systems is not necessarily well 

defined. Clark et. al.m have suggested that a may be a function of polymer 

concentration, where a becomes larger at higher polymer concentrations due to an 

increase in crosslink functionality. Recent simulations by Perez et. alV suggest that this 

may be the case. Using interaction energy calculations and chain pairing procedures, it 

was shown that pectins do not undergo "egg box" dimerization in the same manner as 

alginates; instead, undergoing a two stage process where strong dimer associations are 

first formed, followed by weaker inter-dimer associations. If this is indeed occurring, an 

increase in a can be expected as the junctions within a macroscopic gel would no longer 

be tetravalent. 
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APPENDIX C 

UNPUBLISHED RESULTS 

Specific viscosity ofAvP solutions containing NaCl. AvP displays typical 

polyelectrolyte behavior, exhibiting a decrease in specific viscosity as the solution ionic 

strength is increased from 0 to 0.20 M. Of note is the shear thinning behavior observed 

for the sample dissolved in water, which dissipates as the ionic strength of the system is 

increased. 

0.16 
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0.12 

g 0.08 
o 
> 
o 
S 006 
Q. 

w 

0.04 

A • 

• • • • • • • • • • • • 
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I I I I I I 11 

Shear Rate (rad/sec) 

Figure C-l. Specific viscosity (Pa*S) of AvP3 (0.25 wt%) dissolved in water (•), 0.05 
(•), 0.10 (A), 0.15 (T) and 0.20 (•) mM NaCl as a function of shear rate. 

Scattering intensity as a function of time for specific ionic strength/temperature 

combinations. Due to the screening of electrostatic repulsions at ionic strengths above 

0.10 M, AvP undergoes phase separation over time as discussed in Chapter IV Section B, 

forming colloidal dispersions at appropriate ionic strengths and polymer concentrations. 

Observations of AvP solution behavior indicated that these dispersions have the ability to 
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form either reversible gels or irreversible crystal like structures. While extensive studies 

were not conducted on the subject, this unique solution behavior is of importance and has 

potential applicability to commercial applications involving refrigeration of AvP-

containing drug delivery systems. 

Colloidal association processes have been shown to be regulated by the energetics 

of the system. The solution conditions necessary to form either gels or crystals from 

colloidal systems remains poorly understood.189 Equilibrium thermodynamics can be 

used to describe the occurrence of crystals,190 while gelation is a kinetic transition which 

has been described in terms of a percolation threshold,191'192 and more recently through a 

mode coupling approach. As discussed by Zukoski and Dixit,189 the competition between 

crystal and gel formation is controlled by relative rates of particle aggregation and 

dissociation. These two processes are influenced by the strength of attraction between 

particles and the thermal energy of the system. 

Solution studies on hard-sphere colloidal systems comprised of surface modified 

silica particles have demonstrated that depleting or increasing attraction between particles 

results in formation of either gels or crystals.193, m Recent studies on globular protein 

suspensions revealed that crystals formed at high strengths of attraction while gels were 

observed at low strengths of attraction.195 Herein, we have examined the phase behavior 

of a soft-colloid system, comprised of the Aloe vera polysaccharide (AvP), in which the 

interparticle strength of attraction is directly tunable via changes in solution ionic 

strength. 

In Figure C-2, an increase in scattering intensity is noted for the AvP sample (0.05 

wt%) dissolved in 0.20 M NaCl held at 25°C. However, upon increasing the temperature 
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to 50°C or decreasing the ionic strength to 0.10 M, the scattering intensity remains 

constant over time. The increase in scattering intensity at a combination of 25°C/0.20 M 

is directly correlated to a moderate increase in turbidity and formation of microphase 

separated domains as discussed in Chapter IV Section B. As seen in Figure C-2, 

microphase separation can be prevented by increasing the energy present in the system 

(increasing temperature to 50 °C) or by deceasing the attractive nature of AvP (decreasing 

electrostatic screening by lowering ionic strength). 
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Figure C-2. Time dependent scattering intensity (Kcps) of AvP3 (0.50 wt%) dissolved at 
specified temperature/ionic strength combination 25°C/0.20 M (A), 25°C/0.10 M (T) 
andl5°C/0.20M(*)NaCl. 
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When 0.20 M AvP solutions are held at lower temperatures (15-10°C), large 

increases in scattering intensities are observed (Figure C-3). Interestingly, the observed 

increase in scattering intensity occurs over a very discrete time interval (12-14 h) for 

samples held at 15°C. When held at 10°C immediate transitions are noted. Increases in 

scattering intensity correspond to large decreases in the diffusion coefficients as 

determined by dynamic light scattering and indicate gel formation. Observations of 

colloidal suspensions at a fixed volume fraction have revealed that a small increase in 

particle attraction results in a dramatic drop in long-time self diffusivity.196 This is similar 

to the increased association present in AvP solutions at high ionic strengths. In the case of 

0.50 wt% AvP dissolved in 0.20 M, a reduction in temperature from 15° to 10°C results in 

a system where the strength of particle association is not overcome by the A S T 

thermodynamic component. 

20000 -i 

18000 

16000-

"S- 14000 
Q. 

^, 12000 

•55 10000 
c 
CO 
2| 8000• 
oi 
c 6000• 

K 4000-

o 
W 2000• 

<H 

I 
/ 
i 

* 
f 

•I 

-2000 i | i | i | i | i | i | i | i | i | i ! i | i | i ! i | i | i | i | i | 

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 

Time (hrs) 

Figure C-3. Time dependent scattering intensity (Kcps) of AvP3 (0.50 wt%) dissolved at 
specified temperature/ionic strength conditions 10°C/0.20 M (•), 15°C/0.20 M (•), 
25°C/0.20 M (A), 25°C/0.10 M ( • ) and 15°C/0.20 M (•) NaCl. 
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In order to further study the nature of AvP networks formed at combinations of 

low temperature and high ionic strength, dynamic oscillatory rheology was conducted. 

Due to the weak nature of the networks, dynamic rheology could not be conducted at the 

low polymer concentrations utilized in the light scattering experiments. Experiments 

were conducted at 0.20 wt% with the Rheometrics SR5000 utilizing a 45 mm cone and 

plate geometry (Figure C-4). This experiment had undesirable signal to noise ratios and 

may be more successful utilizing the ARES-G2 rheometer and more sensitive geometries. 

Nonetheless, a clear increase in G' is noted as temperature decreases when AvP is 

dissolved in 0.15 M NaCl. The increase in G' is more evident when higher concentrations 

of AvP are employed (Figure C-5). 
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Figure C-4. Dynamic oscillatory rheology of AvP3 (0.20wt%) conducted as a function of 
temperature (°C) at a frequency of 6.2 rad/sec and a stress of 0.5 Pa. 
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Figure C-5. Dynamic oscillatory rheology of AvP3 (0.50wt%) conducted as a function of 
temperature (°C) at a frequency of 6.2 rad/sec and a stress of 0.5 Pa. 

Further studies over a larger set of temperature/ionic strength combinations and at 

additional polymer concentrations are recommended to gain further insight into the 

formation of soft, colloidal AvP gels. 
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