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ABSTRACT 

RAFT SYNTHESIS OF WATER-SOLUBLE, STIMULI-RESPONSIVE 

AB DIBLOCK COPOLYMERS 

by Ran Wang 

May 2008 

A series of water-soluble, stimuli-responsive AB diblock copolymers were 

synthesized via the reversible addition-fragmentation chain transfer (RAFT) 

polymerization technique employing 2-(2-

carboxyethylsulfanylthiocarbonylsulfanyl)propionic acid (CTA26) as the RAFT 

mediating agent. 

First, a series of diacid functional trithiocarbonate chain transfer agents (CTA's) 

were synthesized and examined for their effectiveness as mediating agents in controlling 

the polymerization of «-butyl acrylate (nBA). Overall, CTA26 demonstrated good 

control in the homopolymerization of nBA with respect to the molecular weight and the 

molecular weight distribution, as well as its ability to form block copolymers with high 

reinitiating efficiency, and thus was chosen as the CTA for the subsequent synthesis of 

polymers. 

The first series of AB diblock copolymers we synthesized were polyampholytes 

derived from phosphonium styrenic-based monomers (M63 and M106) and 4-

vinylbenzoic acid (VBZ, M62). The homopolymerization of the trimethyl/triphenyl 

phosphonium styrene derivatives proceeds in a controlled fashion as evidenced from the 

narrow molecular weight distributions and the excellent agreement between the 
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theoretical and experimentally determined molecular weights. We also demonstrate the 

controlled nature of the homopolymerization of M62 in DMSO. We subsequently 

prepared both statistical and block copolymers from the phosphonium/VBZ monomers to 

yield the first examples of polyampholytes in which the cationic functional group is a 

quaternary phosphonium species. We show that the kinetic characteristics of the 

statistical copolymerizations are different from the homopolymerizations and proceed, 

generally, at a significantly faster rate although there appears to be a composition 

dependence on the rate. Given the inherent problems in characterizing such 

polyampholytic copolymers via aqueous size exclusion chromatography we have 

qualitatively proved their successful formation via FTIR spectroscopy. Finally, we 

demonstrate the ability of such pH-responsive block copolymers to undergo 

supramolecular self-assembly characterized by 13C NMR spectroscopy. 

Following this, we synthesized styrenic-based block polyelectrolytes comprised 

of 4-vinylbenzyltrimethylphosphonium chloride (TMP, M63) and N,N-

dimethylbenzylvinylamine (DMBVA, M59) directly in aqueous media under 

homogeneous conditions. TMP was first homopolymerized and polyTMP was 

subsequently used as macro-CTA for the polymerization of the DMBVA under buffered 

conditions (pH 4). Copolymerizations were controlled as judged by the high blocking 

efficiency and the resulting narrow molecular weight distributions. The pH-dependent 

self-assembly properties of the AB diblock copolymers were examined using a 

combination of lH NMR spectroscopy, dynamic light scattering, and fluorescence 

spectroscopy. The size of the polymeric aggregates was demonstrated to be dependent 

upon the block copolymer composition/molar mass. Such pH-induced supramolecular 
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self-assembly was also demonstrated to be completely reversible, as predicted given the 

tunable hydrophilicity/hydrophobicity of the DMBVA block. Finally, we demonstrate the 

ability to effectively lock the AB diblock copolymers in the self-assembled state via a 

straightforward core crosslinking reaction between the tertiary amine residues of 

DMBVA and the difunctional benzylic bromide l,4-bis(bromomethyl)benzene. 

Finally, we made an AB diblock copolymer of iV-isopropylacrylamide (NIPAM, 

M75) and VBZ (M62) via RAFT mediated by CTA26 in DMF. NIP AM was 

homopolymerized first and polyNIPAM was treated as a macro-CTA in the subsequent 

polymerization of VBZ. By virtue of the temperature-responsive properties of the 

NIP AM block and the pH-responsive nature of VBZ block, this novel AB diblock 

copolymer was demonstrated to be able to form normal and inverse micelles in the same 

aqueous solution simply by controlling the temperature and solution pH. As judged by 

NMR spectroscopy and dynamic light scattering, raising the temperature to 40°C (above 

the lower critical solution temperature of the NIP AM block), while at pH 12 results in 

supramolecular self-assembly to yield nanosized species that, presumably, are composed 

of a hydrophobic NIP AM core stabilized by a hydrophilic VBZ corona. Conversely, 

lowering the solution pH to 2.0 at ambient temperature results in the formation of 

aggregates in which the VBZ block is now hydrophobic and in the core, stabilized by the 

hydrophilic NIP AM block. 
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1 

CHAPTER I 

INTRODUCTION 

1. Water-soluble Polymers 

Water-soluble polymers are among the most important families of polymers. They 

range from naturally occurring biopolymers such as proteins and nucleotides, to synthetic 

polymers such as viscosifiers and soaps. Water-soluble polymers, in general, can be 

divided into nonionic and ionic species. The majority are ionic materials. Ionic polymers 

can be further divided into two groups, polyelectrolytes and polyzwitterions, based on the 

type of ions present. Polyelectrolytes contain either cationic or anionic groups, while 

polyzwitterions contain both cationic and anionic groups. 

1.1 Nonionic water-soluble polymers 

A large number of nonionic water-soluble (co)polymers have been synthesized 

from monomers such as those shown in Figure 1-1. The water-solubility is a result of the 

polar or hydrogen-bonding functional groups on the repeat units. Some important water-
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soluble polymers are those derived from acrylamide (Ml), acrylic acid (M2), ethylene 

oxide (M3),3 vinyl alcohol (prepared by alcoholysis/hydrolysis of poly(vinyl acetate) 

(Mi)),4 methyl vinyl ether (M5),5 JV-vinylpyrrolidinone (M6),6 and N-(2-methyl-4-

oxopentan-2-yl)acrylamide (M7). Such hydrophilic polymers usually display inverse 

temperature water-solubility with a lower critical solution temperature (LCST).7 
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Figure 1-1. Examples of nonionic water-soluble monomers. 

1.2 Poly electrolytes 

Polyelectrolytes are polymers with charged functional groups along the polymer 

chain. These polymers can be categorized as either polycations (those containing 

positively charged groups) or polyanions (those containing negatively charged groups), 

such charged groups are associated with couterions.8'9 

Most of the cationic polyelectrolytes in the literature contain amine functional 

groups or quaternary ammonium groups (Figure 1-2). However, other heteroatoms are 

also capable of bearing a formal positive charge, and monomers with phosphonium, 

sulfonium, and onium cationic groups are also known.2>11"56 
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Figure 1-2. Chemical structures of common ammine/ammonium-containing monomers. 
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Typical monomers yielding anionic polyelectrolytes include those containing, for 

example, functional carboxylate, sulfonate, phosphate groups (Figure I-3).2'57"79 
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Figure 1-3. Chemical structures of common anionic monomers. 
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An interesting characteristic of polyelectrolytes is chain extension, resulting in 

large hydrodynamic volumes in deionized water. This is due to the Coulombic repulsions 

between charged groups along the polymer chains, forcing the polymer into an extended 

conformation. The addition of low molecular weight electrolytes, such as NaCl, leads to 

these repulsive electrostatic forces being largely screened and the polymer chain will 

contract, adopting an entropically more favored conformation. This is known as the 

polyelectrolyte effect (Figure 1-4).80 

1.3 Polyzwitterions 

Polyzwitterions can be divided into polyampholytes and polybetaines according 

to the number and location of the charged groups. Polybetaines possesses both cationic 

and anionic groups on the same monomer unit, and as such are charged balanced. 

Polyampholytes have the charges on different monomer units, and may or may not be 

charged balanced depending on the molar ratio of anionic to cationic monomers. 

The solution behavior of polyzwitterions is opposite to that of polyelectrolytes. The 

conformation of polyzwitterions is usually more compact due to the net attractive 



electrostatic forces between the charged groups along the polymer chains in deionized 

water. The addition of low molecular weight electrolytes can reduce such interactions and 

result in chain extension and hence promote/enhance solubility. This kind of behavior is 

Q 1 

known as the antipoly electrolyte effect (Figure 1-5). 

Figure 1-5. Schematic illustration of the anti-polyelectrolyte effect. 

1.3.1 Poly ampholytes 

Polyampholytes are of great interests because they are synthetic analogues of 

naturally occurring biopolymers such as proteins. Polyampholytes possess cationic and 

anionic residues on different repeating units. Therefore, polyampholytes can be either 

balanced or unbalanced in overall charge. There are four subclasses of polyampholytes 

based on their response to pH change in aqueous solution:81 a) polyampholytes contain 

both cationic and anionic groups that may be neutralized; b) the cationic group may be 

neutralized while the anionic groups are insensitive to any change of pH; c) the anionic 

group may be neutralized while the cationic groups are insensitive to change of the pH; d) 

both cationic and anionic groups are insensitive to pH changes. 



7 

r ]\ I 1 hydrolysis 
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Figure 1-6. First example of synthetic block polyampholytes. 

Statistical polyampholytes can be prepared by the direct copolymerization of 

cationic and anionic monomers, typically in aqueous media by conventional free radical 

polymerization. The first examples of such copolymers were reported in the 1950's. 

However, it was not until the 1970's that the first block polyampholytes were 

reported.90'91 An AB diblock copolymer of 2-vinylpyridine and trimethylsilyl 

methacrylate was prepared by living anionic polymerization. The protecting 

trimethylsilyl group was removed post-polymerization by hydrolysis (Figure 1-6). 

However, even today, nearly 40 years after this report there are still only a handful of 

papers describing the synthesis and solution properties of block polyampholytes with the 

majority of the syntheses requiring protecting group chemistries. Recently, the 

development of the controlled/living free radical polymerization techniques, such as 

stable free radical polymerization (SFRP), best exemplified by nitroxide-mediated 

polymerization (NMP),92'93 atom transfer radical polymerization (ATRP),94"98 and 

reversible addition-fragmentation chain transfer (RAFT) polymerization, ~101 have 

enabled the direct synthesis of such polyampholytes in aqueous media without the need 

for protecting group chemistry. For example, a block copolymer of sodium-

styrenesulfonate with 4-(dimethylamino)methyl styrene has been prepared via TEMPO-

mediated SFRP.102 
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The aqueous solution behavior of polyampholytes is dictated by Coulombic 

interactions between cationic and anionic groups on different monomer units and can be 

very complex. Polyampholytes can display both polyelectrolyte and antipolyelectrolyte 

behavior, depending on the solution pH, nature of the anionic and cationic groups, 

copolymer composition, and the presence/absence of low molecular weight electrolytes. 

One of the characteristics of polyampholytes that have both weak acid and base groups is 

the isoelectric point (IEP or pi). The pi is defined as the pH at which polyampholytes are 

electrically neutral.82 The solubility of polyampholytes at the pi depends on copolymer 

composition and architecture. For example, statistical polyampholytes tend to be soluble 

at the pi, while block polyampholytes tend to precipitate at/around the pi, but tend to be 

soluble below or above the pi.103 The pi can be determined by either titration or by 

measuring the reduced viscosity.104 The pi is the solution pH at which the 

polyampholytes have the most compact conformation, which is indicated by the 

minimum of the reduced viscosity. 

It is also possible to calculate the pi theoretically.105 Patrickios has shown: 

pi = pKb + log{(l/2)[(l - R) / R + [((1 - R) R)2 + (4/R) x 10pVpFC
b]

1/2]} Equation 1 

Where Kb is the equilibrium dissociation constant for basic residues, Ka is the 

equilibrium dissociation constant for acidic residues, pKb = - log Kb, pKa = - log Ka, and 

R is the ratio of acidic to basic residues. This equation is only valid for base-rich 

polyampholytes, when R < 1. For acid-rich polyampholytes when R > 1, the equation 

below needs to be used: 
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pi = pKa + log{(l/2)[(l - R) / R + [((1 - R) R)2 + (4/R) x 10pK
a
_pK

b]
1/2]} Equation 2 

These equations were first proposed by Ehrlich and Doty in 1954, and solved 

recently by Patrickios.105 For some specific compositional ratios, for example, when R = 

1, 1/2, and 2, the calculation of pi can be simplified. When R = 1 (equal number of acidic 

and basic residues), the pi can be calculated as: 

pi = (pKa + pKb) / 2 Equation 3 

In this case, the isoelectric point is simply the arithmetic average of the 

equilibrium constants of acidic and basic residues. At R = 2, where acidic residues are as 

twice as basic residues: 

pi = pKa Equation 4 

And at R = 1/2, where basic residues are as twice as acidic residues: 

pi = pKb Equation 5 

Experimental data has shown perfect agreement between the calculated and 

en 

observed values. 
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1.3.2 Polybetaines 

Polybetaines are materials in which the anionic and cationic groups are located on 

the same repeat unit. A general feature of the aqueous solution behavior of polybetaines 

is the general lack of solubility in pure water. The insolubility is caused by the intra- and 

interchain ionic attractions resulting in an ionically cross-linked network structure. 

-N+-fCH2)-SO"3 0 0 

N-f-CH2^C02^ 

—NtfcH2j-S03 

-fcH2 j-S03 

1) X-fCH2fC02C2H5 I 
n I +f 1 -

^ —N4CH2fC02 2) HO I 

X{CH2^C02 

—N^CH2]-C02 

X = CI or Br 

Scheme I-1-. General synthetic routes for sulfo/carboxybetaines. 

The typical cationic residue in polybetaines is a quaternary ammonium species, 

while the anionic species can be carboxylate, sulfonate, or a phosphate functional group. 

Scheme 1-1 shows the general synthetic routes available for synthesizing various 

sulfo/carboxybetaines from a starting monomer bearing a tertiary amine group. 
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Sulfobetaines can be obtained by reacting the tertiary amine residue with either 1,3-

propanesultone or 1,4-butanesultone at room temperature in common solvents such as 

THF or CH3CN.106 Alternatively the tertiary amine can be reacted with a 

haloalkylsulfonate species.107 Carboxybetaines may be prepared in the similar way by 

reacting tertiary amine with a suitable lactone,108 or with a haloalkylcarboxylate. Another 

method is through reaction with the corresponding haloalkylester to yield the quaternized 

species, followed by ester hydrolysis to yield the carboxybetaine.109'110 The most 

common phosphobetaine monomer is 2-(methacryloyloxy)ethyl phosphorylcholine 

(MPC), which can be prepared from the reaction of 2-hydroxyethyl methacrylate with 2-

chloro-2-oxo-l,3,2-dioxaphopholane, followed by ring opening with trimethylamine (see 

Scheme I-2).111 This general procedure can be applied to any alcohol functional monomer 

to prepare the corresponding phosphobetaine derivative. 

% " " 

0 ^ 0 

OH 

Ck ^O 
o ' N o w 

THF 
NEt3 

0 " " S D NMe3 
MeCN 
60°C 

o'Pxo 

* V 

0 ^ * 0 

v° 
1+ 

— N — 

Scheme 1-2. Synthesis of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC). 

Polybetaines are most readily prepared by the direct polymerization of the betaine 

monomers, usually in aqueous salt solution.112"115 The direct polymerization of betaines 
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in a controlled fashion has been reported by group transfer polymerization (GTP), 

ATRP,117"120 and RAFT polymerization.121"124 The latter is more versatile with respect to 

monomer choice with examples of styrenic, methacrylic and acrylamido sulfo- and 

phosphobetaines, having been reported. 

Polymeric betaines have applications similar to those of polyampholytes. 

Additionally, phosphobetaines have found special application in the biomedical area. For 

example, copolymers of MPC and alkyl methacrylate have been shown to display good 

biocompatibility and have found application as coatings for medical devices and for 

contact lenses. 

2. Living Polymerizations 

Conventional free radical polymerization is initiated by radicals derived from an 

initiator. These primary radicals will add to monomer and form propagating chains which 

are the active species. Polymer chains propagate by adding additional monomer, and 

terminate by radical combination or disproportionation. The current IUPAC definition of 

a living polymerization is "a chain growth process that proceeds in the complete absence 

of termination or chain transfer reactions". However, in reality, few, if any, 

polymerizations meet these criteria.126 

2.1 Evolution of classic living systems 

2.1.1 Living anionic polymerization 

For about 40 years living anioinic polymerization was the main technique to 

synthesize polymers with well-defined architectures and narrow molecular weight 
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distributions.127 This is mainly due to the relative stability of the propagating anionic 

species compared with free propagating radicals or cations. 

A variety of nucleophilic initiators have been used to initiate anionic 

polymerization. " For example, alkyllithium compounds are the most commonly 

employed initiators (Scheme 1-3): 

R' R' 

C4H9U + H2C=C »- C4H9-CH2-C:"(Li+) 
R" R" 

R' R' R< R' R' 

C4H94CH2-l4CH24" (Li+) + H2C=C *- C4H94CH2-H-CH2-:" 
R" R" R" R"n+1 R" 

(Li+) 

Scheme 1-3. Initiation and propagation in anionic polymerization with rc-butyl lithum as 
an initiator. 

Living anionic polymerizations are typically conducted at very low temperature, 

i.e. -78°C. In many cases, there is no effective termination reaction in a living anionic 

polymerization system and propagation continues to 100% conversion of monomer(s), 

forming living polymers which can later chain extend because the propagating anionic 

centers remain intact. This provides the possibility to synthesize block copolymers and 

even more complex architectures. However, propagating anions may be terminated by 

trace amount of moisture present (Scheme 1-4).134 
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R1 R-i 

^ H 2 C - C f + H20 • / ^HoC-CH + OH 

R2 R2 

Scheme 1-4. Anionic propagating species terminated by water. 

Therefore, a living anionic polymerization system requires all reagents/glassware 

to be cleaned thoroughly to avoid any water or impurity which has labile hydrogen. Such 

precautions make living anionic polymerizations synthetically challenging to execute. 

2.1.2 Living cationic polymerization 

In comparison with anionic polymerization, it is much more difficult to achieve 

living cationic polymerization (LCP) even in a well-purified system where there is no 

nucleophile present to terminate the cationic center. This is because of the built-in 

termination reaction - transfer of (3-protons to monomer, couterion or some other basic 

species in a cationic polymerization system. To achieve LCP, the components such as the 

initiator, coinitiator, solvents need to be carefully chosen so that there is no nucleophile 

present in the system which can irreversibly terminate the propagating cationic species. 

Also, basic components need to be avoided to minimize the P-proton transfer. However, 

most monomers themselves are basic. Therefore, it is necessary to find other ways to 

minimize undesirable P-proton transfer reactions. 

The basic approach to suppress such transfer reactions is to establish a reversible 

equilibrium in which the short-living, unstable cationic centers are converted to stable 

dormant species (Scheme 1-5). The equilibrium between dormant covalent species and 

active ion pairs is driven toward the dormant species by choice of appropriate initiating 
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systems. Also, the components of the systems are chosen so that there is a fast and 

frequent exchange between the active and dormant species. The overall result is much 

less chance of the transfer side reaction as well as extended lifetime of propagating 

cations. 

H i H I 50 80 , , 8© 8© 
H 2 C=CH ^ H-CH2-C-I 2-+ H-CH2-CH--I—12 H-tCH2-CHj-nCH2-CH- - I—1 2 

OR OR 0 R OR " OR 

Scheme 1-5. Example of living cationic polymerization of vinyl ethers using the HI/I2 
initiating system. 

Low temperature is also necessary to achieve LCP. Because the activation energy 

for P-proton transfer is greater than that for propagation, the exotherm caused by 

polymerization increases the transfer relative to propagation, resulting in shorter lifetime 

of the propagating cations and thus a lack of control. Therefore, most LCP's need to be 

carried out at low temperatures. 

Examples of living cationic polymerizations include the polymerization of 

isobutyl vinyl ether with HI/I2 as the initiator.135"137 Since vinyl ethers have a strong 

resonance stabilization of positive charge and thus can form stable carbocations with the 

propagating species, a relatively weak initiator is used. However, for isobutylene, which 

has a weaker capability to form carbocations than a vinyl ether, a stronger Lewis acid is 

required. But it should be noted that none of the living cationic polymerization systems 

are as long-lived as the anionic systems. The half-lives of the propagating species begin 

to decay as soon as the monomer is starved. And in the absence of monomer, the half-

lives of the cationic centers vary from hours to a day, depending on the temperature. 
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2.1.3 Group transfer polymerization 

Group transfer polymerization (GTP) was discovered by Webster et al. in the 

1980's under Dupont's exploratory research project. GTP can be viewed as a special 

form of living anionic polymerization, that is especially effective for (meth)acrylate 

monomers. However, it has the advantage of being readily conducted at room 

temperature. The common initiator is a silyl ketene acetal that can be synthesized from an 

ester enolate (Scheme 1-6). This initiator is now commercially available. 

i-Pr2NLi ? M e Me3SiCI ? M e 

Me2HC-COOMe »• Me2C=C-OI_i *• Me2C=C-OSiMe3 

Scheme 1-6. The synthesis of the common GTP initiator, (l-methoxy-2-methylprop-l-
enyloxy)trimethylsilane. 

GTP needs to be catalyzed by either a nucleophile or Lewis acid. The most 

common catalysts are [(CH3)2N3]SHF2 (TASHF2) and tetrabutyl ammonium bibenzoate 

(TBABB).139 

Nucleophilic GTP proceeds by a dissociative mechanism in the presence of 

anionic propagating centers (Scheme 1-7). The trimethylsilyl group of the initiator is 

displaced by the nucleophilic catalyst, forming an enolate, which will propagate by 

adding to (mefh)acrylate via consecutive Michael addition reactions. The overall result is 

that the anionic center 'transfers' to the end of the chain, which gives the polymerization 

140 

its name. 
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OCH3 H3CO^.O 
Me2C=C-0-SiMe3 »- J| + SiMe3 

j H3C CH3 Nu 

Nu9 O6 

H3CO^O CJ H3CO^O C J H3CO^O ^ 

Y-> S ^ O R — -
H 3 C ^ X H 3 " 

Scheme 1-7. Dissociative mechanism of nucleophilic GTP. 

2.2 Controlled/living free radical polymerization: An introduction 

In conventional free radical polymerizations, the steady state concentration of 

propagating radicals is ~10"7 M and each chain grows for about 1 -5 seconds before it is 

terminated either by combination or by disproportionation. In the whole system, chains 

are continuously generated, propagate and terminate. The molecular weight of polymer 

chain formed is higher at the early stage but reduces with the conversion because of the 

depletion of monomer(s). Thus, the molecular weight distribution is broad and the 

polydispersity index (PDI) is usually larger than 1.5.53 

The past few years have witnessed the development of the controlled/living free 

radical polymerizations, such as SFRP, best exemplified by nitroxide mediated 

polymerization (NMP),92'93 ATRP,94"98 and RAFT.99-101 All these techniques utilize a 

dormant species that can react with propagating radicals either by reversible termination 

(NMP and ATRP) or reversible chain transfer (RAFT), largely suppressing the undesired 

radical-radical termination reactions (Scheme 1-8). The rapid equilibration between the 

dormant species and the active propagating radicals ensures that all chains get an equal 

chance to grow. Such conditions allow for the control of molecular weight and typically 

result in materials with narrow molecular weight distributions. 
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Reversible termination Pm + X •» *"~ Pm-X 

monomer 

Reversible chain transfer Pm + Pn-X =^= Pn + Pm-X 

monomer monomer 

Scheme 1-8. General strategies for achieving living radical polymerization. 

3. Living Radical Polymerizations 

The synthesis of polymers with well-defined architectures and functionalities has 

always been of great interest in polymer chemistry. However, traditional free radical 

polymerization offers very limited control over either molecular weight or architecture 

due to the termination reactions between propagating radical chains. Until living radical 

polymerization was developed recently, ionic polymerizations were the only 'living' 

techniques available that could provide polymers of controlled molecular weight, low 

polydispersity, and defined chain ends, although such techniques are inapplicable to 

many functionalized vinylic monomers because of the incompatibility of the active center 

(anionic or cationic) with certain monomer families and/or functional groups. In addition, 

they require stringent conditions, such as ultrapure reagents and the complete exclusion 

of water. Therefore, it is important to develop techniques that can offer both versatility 

and controllability, which is the reason of the development of living radical 

polymerizations. 
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3.1 Iniferter polymerization 

The concept of a living radical polymerization (LRP) was first introduced by Otsu 

in the early 1980's through his investigation of iniferters.141' The term 'iniferter' was 

defined as compounds that can initiate, transfer, and terminate a radical polymerization 

(Scheme 1-9) by analogy to the 'inifers' used by Kennedy in cationic polymerization. 143 

R-R' + H2C=CH 

Y 

R-fCrVCHj-R' 
I ' n 

Y 

R-fCrVCHj-R' 

Y " 
R4CH2-Cr4-CH2-CH- + -R' 

L I n - l l 
Y Y 

Scheme 1-9. General mechanism of an iniferter system. 

For example, tetraethylthiuram disulfide was used as the iniferter to mediate the 

polymerization of methyl methacrylate (Scheme I-10).142 

C2H5 CoK 2n5 
N - C - S - S - C - N 

C2H5 S S C2H5 

CH3 

H2C=j 

C02CH3 
C2H5 S CH3 S CoH, 

•*• N-C-S4CH 2 -C^S-C-N 
/ i n N 

C2H5 C02CH3 C2H5 

C2H5 

2 SN-C-S 
/ n 

C2H5 S 

Scheme 1-10. Iniferter used to mediate polymerization of methyl methacrylate. 
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Using this method, the preparation of block polymers by the sequential addition 

of monomers becomes possible. Although not very efficient, this early work provided a 

model for the later development of living radical polymerization techniques. 

3.2 Nitroxide mediated polymerization (NMP) 

3.2.1 Introduction 

Nitroxides are well known for their ability to rapidly combine with carbon-

centered radicals to yield alkoxyamines. Therefore, such stable radicals are often used as 

a radical scavenger to detect or identify radical species in reactions. The idea of utilizing 

nitroxides as mediators instead of inhibitors in free radical polymerization systems was 

first reported by Rizzardo in the 1980's.92 They synthesized low molecular weight 

oligomers of acrylates at 80-100°C, in the presence of 2,2,6,6-tetramethyl-l-

piperidinyloxy (TEMPO). Although the polymerization was considered living, it was 

poorly controlled with respect to molecular weights and polydispersities. Later the 

Georges group at Xerox reported the successful synthesis of low polydispersity 

polystyrene (PDI = 1.20) using the same nitroxide but at 130 °C.144 The system consisted 

of benzoyl peroxide as the initiator and TEMPO at a molar ratio of 1.3:1 (Scheme 1-11). 

This work displays many fundamental characteristics of a living polymerization process, 

such as the linear growth of number average molecular weight (Mn) with conversion, as 

well as low PDI values (1.2), which is significantly lower than the theoretical lower limit 

for a conventional free radical process (1.5). 
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Scheme 1-11. Nitroxide-mediated polymerization of styrene at 130 °C. 

3.2.2 Basic mechanism 

The work reported by Georges et al. is a bimolecular system, in which an external 

radical source was used. However, such a system is poorly defined and the concentration 

of the initiating species is unknown. This prompted the development of unimolecular 

systems, based on the fact that the C-0 bond of the small molecule alkoxyamine is 

thermotically unstable and decomposes to yield an initiating radical (a-methyl benzyl in 

Scheme 1-12), as well as the mediating nitroxide radical, in the correct 1:1 

stoichiometry.145 The advantage of unimolecular system is that all polymer chains are 

terminated by nitroxide species, and thus the molecular weight can be accurately 

controlled, and the synthesis of more advanced architectures can be achieved. 
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Scheme 1-12. Mechanism of TEMPO-mediated NMP. 

The mechanism of NMP is known as reversible termination. During the 

polymerization, the propagating radicals, tends to combine with the nitroxide and be 

converted reversibly into the dormant, non-propagating species. The equilibrium favors 

the formation of dormant species by several orders of magnitude and the concentration of 

dormant species is about 6 orders of magnitude greater than that of propagating radicals. 

The overall result is that the instantaneous radical concentration in the system is low and 

thus the undesirable bimolecular termination reactions can be largely suppressed. The 

stable radical is often called the persistent radical, and its suppression effect is called the 

persistent radical effect. 

3.2.3 Suitable monomers 

The application of NMP mediated by TEMPO is limited, due to the high 

temperatures (125-145 °C) required, long polymerization time, and incompatibility with 

many monomer families.14 
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Figure 1-7. Examples of nitroxides employed inNMP. 

The position of the main equilibrium (K = kd / kc) is mainly determined by the 

type of nitroxide used. Therefore, it is important to explore new effective nitroxides to 

improve the technique. Figure 1-7 shows a few types of nitroxides that have been reported 

in the literature.147"152 Of them the most important breakthrough is the design of acyclic, 

nonquaternary nitroxides, best exemplified by N5147 and N6148 in Figure 1-7, introduced 

by Gnanou et al. and Hawker et al. respectively. These nitroxides have been shown to 

permit the controlled polymerization of a wide variety of monomer families, such as 

acrylates, acrylamides, 1,3-dienes, and acrylonitriles. 
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3.3 Atom transfer radical polymerization (ATRP) 

3.3.1 Introduction 

In the mid-1990 's atom transfer radical polymerization (ATRP) was 

simultaneously reported by Matyjaszewski and co-workers, ' 5 and Sawamoto and co

workers 96-98 

termination 
kt • 

k ' 
Kact 

R-X + Mt
n-Y/Ligand ~ — ^ — R + X-Mt

n+,-Y/Ligand 
kdeact ( V 

kp-^monomer 

^act 

termination 
k t / 

Pra-X + Mt
n-Y/Ligand •> — ^ — P^ + X-Mt

n+1-Y/Ligand 
kdeact ( V 

kp^monomer 

Scheme 1-13. Mechanism of transition metal catalyzed ATRP. 

The general mechanism of ATRP is shown in Scheme 1-13. The radicals are 

generated through a reversible redox reaction catalyzed by a transition metal catalyst Mt
n-

Y, where Y may be the couterion or another ligand. The catalyst undergoes a one electron 

oxidation and abstracts a (pseudo)halogen atom, X, from R-X, which is the dormant 

species in the system. This process has a rate constant of activation, kact, and deactivation, 

kdeact- Typically, kact is far less than kdeact, and thus the equilibrium favors the reverse 

reaction much more than the forward reaction. Polymer chain grows when the 

intermediate radical R- or Pm* is released in the manner similar to conventional radical 

polymerization, with the rate constant of kp. Termination reactions also occur in ATRP, 
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mainly through combination or disproportionation, forming dead polymers. However, in 

successful ATRP polymerizations, the amount of terminated dead polymer is very small, 

no more than 5% of the total propagating chains. The process of ATRP also operates 

based on the so-called 'persistent radical' effect, which refers to the oxidized metal 

complex, X-Mt
n+1, which will combine with the propagating radicals and thus minimize 

the concentration of radicals as well as the chance of termination reactions between 

them.153 By such fast and frequent activation and deactivation, all polymer chains get an 

equal chance to grow, and the side reactions involving radicals are largely suppressed. 

The ability of each monomer to polymerize by ATRP under certain conditions can 

be determined from the equilibrium constant Keq = kact / kdeact, which describes how the 

equilibrium favors the reverse reaction over the forward reaction.154 ATRP 

polymerization will not occur, or occur very slowly, if the equilibrium constant is too 

small. In contrast, if Keq is too large, it will lead to large number of radicals in the system, 

and thus a large chance of termination reactions, i.e. a non-controlled polymerization. 

ATRP is commonly initiated by alkyl halides, R-X. If the termination and chain 

transfer reactions are negligible, the number of polymer chains will be equal to the 

number of R-X molecules. Therefore, the number-average molecular weight (Mn) of 

polymers prepared by ATRP can be calculated as: 

Mn,theo = m m onomer x [M]o / [Initiator] o x conversion Equation 6 
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Where [M]o is the initial concentration of monomer, [Initiator^ is the initial 

concentration of initiator, and mmonmer is the molecular weight of monomer. This equation 

indicates that the molecular weight grows linearly with conversion.155 

In order to get good control of a polymerization and a narrow molecular weight 

distribution, the initiator should be consumed fast. This depends on the choice of the R 

and X groups. A good X group should be able to migrate between the propagating radical 

and the transition metal complex frequently and rapidly. The literature shows that 

chlorine and bromine are good choices for X,155 while fluorine is never used because the 

C-F bond is too strong to be cleaved homolytically. Iodine can work with acrylate 

polymerization under copper-mediated ATRP 56 and styrene polymerizations under 

ruthenium-/rhenium-based ATRP.157'158 An alkyl group with activating substituents on 

the a-carbon, such as aryl, carbonyl, or allyl groups, is favored because it facilitates the 

formation of the R radical. Some compounds with a weak R-X bond, such as N-X, S-X 

and O-X, can also be used. 

The most important component in an ATRP is the transition metal catalyst. It is 

the key that determines the position of the equilibrium and the dynamics of exchange 

between the dormant and active species. Some general prerequisites for an efficient 

ATRP catalyst are: a) the metal center should have at least two oxidation states differing 

by one electron; b) the metal center should have reasonable affinity towards halogen; c) 

the co-ordination sphere around the metal center should be expandable to accommodate 

the halogen. The main task is to find/design a transition metal catalyst system that has an 

appropriate equilibrium position and dynamics which fit specific monomer and 

polymerization conditions. A variety of transition metal complexes with various ligands 
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have been studied as ATRP catalysts, and include molybdenum,187 rhenium,157 

ruthenium,97 iron,174 rhodium,186 nickel,186 palladium,176 and copper94'160'166 (Figure 1-8). 

Copper catalysts are superior in ATRP in terms of versatility and cost, and it has proven 

to be effective in polymerizations of styrenes, (meth)acrylate esters and amides, and 

acrylonitrile. Iron catalysts have been used for the polymerization of styrenes and 

methacrylates. The majority of ligands used for iron-mediated ATRP are nitrogen or 

phosphine based ligands. A mixed ligand system is often used in the iron-mediated ATRP 

polymerization of styrene, allowing for improved polymerization rates and lower PDI's. 

Ruthenium catalysts have been used for the polymerization of styrenes and 

(meth)acrylates. Ruthenium-based catalysts usually contain RuCb complexed to suitable 

ligand(s), such as a phosphorous ligand. Some ruthenium-based catalysts can directly 

catalyze ring-opening metathesis polymerization (ROMP) (C9 in Figure 1-8), which 

provides a convenient way to combine ATRP with ROMP.419 

ATRP can be conducted either in bulk, in solution, or in a heterogeneous system 

such as emulsion or suspension. The choice of solvents may be determined by several 

factors: a) chain transfer to solvent; b) interaction between solvent and catalyst; c) 

catalyst poisoning by solvent and d) solvent-assisted side-reactions. 

3.3.2 Suitable monomers 

A variety of monomers have been successfully polymerized by ATRP, including 

styrenes,157"165 (meth)acrylates,167"177 (meth)acrylamides,178"183 and acrylonitrile.184'185 
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Figure 1-8. Examples of ATRP catalysts. 

3.4 Reversible addition-fragmentation chain transfer (RAFT)polymerization 

The basic concept of RAFT/MADIX (Macromolecular Design via the inter

change of xanthates) was first introduced by two groups in the late 1980's. In 1986, the 

Industrial Research Organization (CSIRO) group reported the use of poly(methyl 

methacrylate) (PMMA) macromonomers as chain transfer agent in radical polymerization 

(Scheme 1-14). The process was first called addition fragmentation chain transfer 

(AFCT) and the agent was called the addition fragmentation chain transfer agent 

(AFCTA). In the system, the propagating radicals can add to the PMMA macromonomer 
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and form a new propagating radical and a new alkene-ended macromonomer by chain 

transfer. A variety of AFCT agents with similar structures were reported later, including 

allyl sulfides, allyl bromides, allyl peroxides, vinyl esters and thionoesters. However, in 

most cases, the molecular weight distributions are broad. In 1998, the CSIRO group 

reported the use of a thiocarbonylthio compound, that can be used to prepare polymers 

with predetermined molecular weight, narrow molecular weight distributions, and the 

functional end group was retained after the polymerization, which is an essential feature 

of a living polymerization system." 

Scheme 1-14. Early-studied addition fragmentation chain transfer (AFCT) process. 

At about the same time, Zard's group reported the degenerative transfer of 

radicals to xanthates (Scheme I-15).188 The photo-induced benzyl radical can either add 

directly to the xanthate to form a symmetric intermediate radical or add to the monomer, 

forming a new radical which would also add to the xanthate. The intermediate radical can 

fragment to form a radical and a xanthate, and the overall reaction is degenerative. This 

technique was first used to synthesize organic compounds189'190 and later was adapted for 
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polymer synthesis. The research team termed the process "Macromolecular Design via 

the Inter-change of Xanthates" (MADIX) 192 
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Scheme 1-15. Proposed mechanism of degenerative transfer in the presence of xanthate. 

3.4.1 Introduction 

Reversible addition-fragmentation chain transfer (RAFT) polymerization was first 

reported in the open literature in 1998 by CSIRO in Australia. It is a relatively new living 

radical polymerization method mediated by thiocarbonylthio compounds (ZC(=S)SR). 

RAFT has proven to be one of the most versatile techniques to prepare various polymers 

with well-defined architectures, including homo-, gradient, diblock, triblock, star 

polymers, microgels and polymer brushes. 

RAFT polymerization, as one of the living/controlled radical polymerization 

techniques, has both merits of radical polymerization and living/controlled 

polymerizations. As a radical polymerization, RAFT can be used with a large variety of 
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monomers including styrenics, (meth)acrylates, (meth)acrylamides, and vinyl esters. It is 

also tolerant to various functional groups (e.g. COOH, NR2, CONR2, OH) and reaction 

conditions (bulk, solution, emulsion, miniemulsion, suspension and impurities). However, 

unlike conventional free radical polymerization, RAFT can provide polymers with 

control of the molecular weight, molecular weight distribution, composition, and 

architectures. 

3.4.2 RAFT mechanism 

Although RAFT is one of the common controlled/living radical polymerization 

(CLRP) techniques, its mechanism differs greatly from that of NMP or ATRP. RAFT is 

based on the concept of reversible chain transfer between propagating chains, while NMP 

and ATRP are based on the concept of reversible termination. 

(I) Initiator —^-*- |-

monomer 
-*- P ki m 

(ii) pm-+ V R r̂̂  Pm Y R - = - p
m" Y + R' 

' k-add Z k.p J. 

1 2 3 
, , „ monomer monomer 
(HI) R ^ R . M . ^ pn. 

^re-in Kp 

c o kadd . S . . . S v
 kP . S ^ ^ S 

(IV) Pn-+
 S « Y S > m - = = PnT Y P n ^ = = P,f Y + Pm" 

J, k-add Z k.p Z • 

3 4 5 

(V) Pm- + Pn- ^ Pm+n 
ktd 

Pm + Pn-H 

Scheme 1-16. Mechanism of RAFT polymerization. 
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Scheme 1-16 shows the generally accepted mechanism of a RAFT polymerization. 

The controlled features observed in RAFT are achieved by a sequence of addition-

fragmentation equilibria. As with conventional radical polymerization, RAFT requires 

the generation of primary radicals at the very start of polymerization to trigger the 

degenerative chain transfer reactions that dominate the whole polymerization process. 

Generally, radicals in a RAFT system can be generated by decomposition of an 

appropriate initiator such as an azo compound, external sources can be used such as UV 

or y-ray radiation, or by simple thermal initiation in the case of styrene. After generation, 

these primary radicals will add to a few monomers and form propagating chains. The 

propagating chains, due to the high transfer constant of the RAFT chain transfer agents, 

will add across the C=S double bond of the CTA and form the intermediate C-centered 

radical. The intermediate radicals are not stable, and thus may either fragment back to the 

original propagating radical and CTA, or fragment 'forward' to form a new macro 

thiocarbonylthio compound and a new released radical, R% as shown in step II (Scheme 

16). Which direction the fragmentation of the intermediate radicals choose is determined 

by the relative stability between the new released radical (R-) and the original 

propagating radical derived from the monomer. 

The newly released radical R% if capable, will add to a few monomers to reinitiate 

the polymerization. After all CTA is consumed (preferably fast), the polymerization will 

proceed into the main equilibrium (step IV), in which only macro-CTA is present. In the 

main equilibrium, different propagating chains, through rapid and frequent addition to 

CTA and fragmentation of new propagating chains, get an equal chance to propagate, 

leading to a narrow molecular weight distribution. And because RAFT polymerizations 
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are usually conducted at a high ratio of [CTA]:[Initiator], the dormant species in the 

system is the thiocarbonylthio end-capped polymer chain, while only a small amount of 

propagating chains are active. This strategy effectively eliminates the chances of side 

reactions such as termination or chain transfer reactions. 

However, since RAFT is a radical polymerization, the side reactions involving 

radicals, although largely suppressed, cannot be completely avoided. Common side 

reactions include chain transfer from propagating radicals or intermediate radicals to 

monomers, polymer chains (both propagating and dead chains), or solvent (if used), and 

termination reactions between propagating radicals and intermediate radicals by 

combination or disproportionation, resulting in dead chains. 

From the mechanism above, the following remarks can be made: 

1) RAFT polymerization is naturally a free radical polymerization. The polymerization 

needs to be triggered by a radical source. An increase in the radical concentration will 

increase the rate of polymerization, but may also increase the chance of radical side 

reactions, resulting in broader molecular weight distributions and overall reduced 

control. 

2) The majority of the polymer chains are initiated by the R group of the CTA and not 

by primary initiator-derived radicals. 

3) Polymers are end-capped by the thiocarbonylthio functional group, which facilitate 

the synthesis of more complex architectures. 

4) The molecular weight of the polymer can be predicted/tuned based on the ratio of 

CTA to monomer. 
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3.4.3 Chain transfer agents (CTA) 

The living characteristics of RAFT polymerizations are achieved simply by the 

addition of a small amount of RAFT CTA to an otherwise conventional free radical 

polymerization system. Since RAFT was first introduced in 1998, a wide range of CTA's 

have been reported. All CTA's have the general structure ZC(=S)SR. Based on the nature 

of the Z-group, CTA's can be divided into four general families, which are dithioesters," 

trithiocarbonates,201 dithiocarbamates,200 and xanthates192 (Figure 1-9). 

sYs^R
 S Y S V R S Y S V R S Y S V R 

X 

dithioester trithiocarbonate dithiocarbamate xanthate 

Figure 1-9. General families of RAFT chain transfer agents. 

From the mechanism, we can see that RAFT is comprised of a series of equilibria. 

Actually, RAFT can be viewed as a complicated balance of many factors, including the 

rate of initiation (kj), reinitiation (kre-in) and propagation (kp), the equilibrium position of 

addition (Kadd = kacjd / k.add) and fragmentation (Kp = kp / k.p) in both step II and IV. Of 

these factors the most important one(s) may be the equilibrium of CTA initiation (step II) 

and exchanges between polymer chains (step IV), which can be tuned by the choice of 

CTA. In fact, the most important key to successful RAFT polymerization is the choice 

/design of an appropriate CTA based on monomer and polymerization conditions. 

Generally, a good CTA should a) have a reactive C=S double bond (high kadd); b) 

fragment rapidly and favor the new released radical R- (kp > k.add); c) the newly released 
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radical R* should efficiently re-initiate polymerization. Since all CTA's have the general 

structure ZC(=S)SR, specifically, it becomes the choice of Z and R group of the CTA the 

determines its overall effectiveness. 

Z is the activating group of the CTA. It is the main factor that determines the 

reactivity of the C=S bond toward attack from radicals, and it also strongly influences the 

stability of the intermediate radicals. Generally, strong stabilizing groups enhance the 

stability of the intermediate radical and thus enhance the reactivity of the C=S bond 

towards radical attack. However, if the intermediate radical is too stable, the 

fragmentation step will not be favored and thus the chance of chain transfer or 

termination reaction with intermediate radicals will be greatly increased. Therefore, the 

choice of Z group needs to be tuned in order to find a balance between rates of addition 

and fragmentation. 

Several groups have examined the effect of different Z groups on a variety of 

monomers.193"199 Among them, a phenyl group is believed to be a good choice for most 

monomers as it balances the rate of addition and fragmentation. For dithioester CTA's, 

for example, the phenyl group has a better stabilizing effect than a benzyl group. 

Therefore, the fragmentation step of the latter occurs more easily. This may explain that 

there is almost no retardation in polymerization of styrene when utilizing benzyl as the Z 

group (this will be discussed later in kinetics). But it may lead to poor control of bulkier 

monomers such as methyl methacrylate.198 

In the case of dithiocarbamates and xanthates, the Z group is OR or NRR', 

respectively. The nonbonded electron pairs on these heteroatoms are delocalized with the 

C=S double bond. This reduces the double bond character of the C=S bond (Scheme I-
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17), making it less susceptible to radical addition, leading to poor control of the growing 

polymer chains. But this type of CTA is especially effective with some fast 

propagating monomers with less stable corresponding propagating radicals, such as vinyl 

acetate. This is because the formed intermediate radical is relatively stable and thus 

facilitate the addition to C=S double bond. 

•Sy S e 

© 

:S s 0 

© I 

Scheme 1-17. Some canonical forms of xanthates and dithiocarbamates. 

On the other hand, if the nonbonded pair of electrons is conjugated with other 

electron-withdrawing substituent, or the heteroatom is part of an aromatic ring, the 

stability of the intermediate radical will be increased and the reactivity of the C=S double 

bond towards radical species will be enhanced.195'197 For example, styrene,194'195'197'199 

methyl acrylate,194'195'197 ethyl acrylate,197 methyl methacrylate,195'197 and N-isopropyl 

acrylamide ° have all been polymerized in a controlled manner mediated by such CTA's. 

A specific case of Z group is associated with the trithiocarbonates, where Z is -SR. 

In this case, the C=S double bond is reactive enough towards attack from propagating 

radicals to favor addition, and the intermediate radical is not as stable as that of a typical 

dithiobenzoate, which ensures rapid fragmentation without any rate retardation. 

Trithiocarbonates also offer other advantages: a) the synthesis of trithiocarbonates is 
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usually much easier than that of dithioesters. Many of them can be prepared by a 

straightforward one-step reaction; b) trithiocarbonates usually have a yellow color, which 

will not affect the color of the final product as greatly as dithiobenzoates; c) the Z group 

can be utilized to prepare a variety of complex architectures in a much more convenient 

manner (see section on polymer architectures). A variety of monomers have been 

successfully polymerized by RAFT mediated by trithiocarbonates, including styrenic 

monomers,199-201"205 acrylates (including acrylic acid),201"203'205"207 

acrylamides,208'205'209'202'210 methacrylates,201'202'205 dibutyl itaconate, and dicyclohexyl 

itaconate.211 

Ph » SCH3 ~ CH3~ | /~3 » N~) > 0 P h > 0 E t ~ N ( P h ) ( C H 3) > N(Et)2 

Figure 1-10. Guidelines for selection of Z group of CTA. Addition rates decrease and 
fragmentation rates increase from left to right. 

In conclusion, a general order of Z groups decreasing in the versatility is as 

follows: dithiobenzoates > trithiocarbonates ~ dithioalkaneoates > dithiocarbamates 

(where the nonbonded pair of electron on N atom is conjugated by electron-withdrawing 

group) > xanthates > dithiocarbamates (Figure 1-10).193'194'195"199'212 However, xanthates 

are especially effective for the RAFT polymerization of vinyl acetate and other non-

activated substrates. 

The R group is the free radical leaving and reinitiating group. From the 

mechanism of RAFT polymerization, we can see that in order for the intermediate radical 

to proceed forward to release the R group and a new macro-CTA, R must be a 
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comparative or better homolytic leaving group in comparison with the propagating 

radicals. The leaving ability can be interpreted as the stability of corresponding R* radical. 

Generally, a tertiary R group has a better leaving ability than a secondary R group, which 

is better than a primary R group. It can also be affected by the electron-

withdrawing/electron-donating substituents of R since the electron-donating substituent 

tends to stabilize the formed radical. R is also required to be a good re-initiating species. 

Therefore, there are suggestions that the R group be designed to mimic the propagating 

polymeric radical. But this may not be true when R is a tertiary group when the 

penultimate unit effect cannot be neglected. For example, this idea does not work with 

methacrylate derivatives, as the polymethacrylate radicals are more stable than the single 

methacrylate unit, and thus the fragmentation of polymethacrylate radicals will be 

favored. ' Previous studies suggest that the cumyl and cyanoisopropyl groups seem to 

be the most efficient R groups. A general guideline for the selections of the R group 

for a CTA is shown in Figure 1-11: 

K°N - t\}> K 3 ~ KD> fc°;E' - F 
CH3 

-CN 

CH3 CH CO CN 

CH3 

CONEt2 

CH3 

> 

CH3 / = \ CH3 CH3 H /= \ ^ 
— ^ y > |-co2Et > |~CH3 ~ |—^ y > |-co2Et 

H H CH3 H ' H 

Figure 1-11. General guideline for the selection of R group for CTA with decreasing 
stability. 



39 

Unfortunately, very few effective CTA's are commercially available at this time. 

There are, however, several synthetic methods available for preparing CTA's in moderate 

to high yield: 

1) Preparation via alkylation 

One of the most widely used synthetic methods to prepare CTA's is alkylation of 

a thiocarbonylthio salt with an alkyl halide (Scheme 1-18). For trithiocarbonates,216 

dithiocarbamates,197 and xanthates,192 thiolate salts, amines, and alkoxides are used 

respectively. For dithioesters, Grignard reagents are usually reacted with carbon disulfide 

to form a thiocarbonylthio salt and then reacted with an appropriate alkyl halide.217 

CTA's prepared by this method can be obtained with high yields. 

z - s 9
+ cs j -^e— S Y R 

z's 

Z - 0 G + CS2
 X ' R > S ^ R 

z-f + cs2
 X~R > s y R 

Z2 ^ N v 

z ^ v z 2 

Grignard agent 1)CS2 S ^ . R 
z _ x —° ° - > Z-MgX 7 

2) X-R z 

Scheme 1-18. Alkylation of thiocarbonylthio groups. 

The drawback of this approach is that CTA's with tertiary R groups cannot be 

synthesized due to the steric hindrance and competing elimination. 
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2) Addition of a dithioacid to an olefinic double bond - Markovnikof addition. This is 

the method of choice for the synthesis of cumyl dithiobenzoate (Scheme I-19).218 

S' Z 

Scheme 1-19. Synthesis of cumyl dithiobenzoate from a-methyl styrene via Markovnikof 
addition. 

3) Sulphuration of a thioester or a carboxylic acid by cyclic tetrathiophosphates. 

S - P - S 
S=P S"P=S 

I T I 

S-P-S 

o 

OH SH 

Scheme 1-20. Thionation of benzoic acid by using P4S 10-

Dureault et al. first reported the use of cyclic tetrathiophosphates to sulphurate the 

carboxylic acid or thioesters.218 Scheme 1-20 shows the reaction of P4S10 with benzoic 

acid to form dithiobenzoic acid. This approach is very useful to prepare precursors to a 

variety of dithioesters. 
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Scheme 1-21. Thionation of benzoic acid by Davy reagents. 

The same group also reported the use of the Davy reagent in reactions with 

benzoic acid to prepare the dithioester CTA with R group from the Davy reagent 

(Scheme 1-21).218'219 

4) Preparation from a bis(thiocarbonyl) disulfide via radical addition-fragmentation 

reactions. 
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Scheme 1-22. Proposed mechanism for synthesis of CTA's via addition-fragmentation 
reaction between bi(thiocarbonyl) disulfide and azo compound. 
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A bis(thiocarbonyl) disulfide is first prepared by oxidation of a thiocarbonylthio salt. 

These compounds can be further reacted with a free radical source, usually a symmetric 

azo compound,210'211 via a series of radical addition-fragmentation reactions, leading to 

the formation of the RAFT CTA. The mechanism (Scheme 1-22) is similar to that of a 

RAFT polymerization, except that the newly released radical is the thiocarbonylthio 

radical, which combines with the primary radical from the initiator to form the target 

molecule. The yields obtained with this method are moderate to good. This method can 

also be used to generate CTA in situ. 

A modification of this method is to add a free radical source to an already formed 

CTA to 'exchange' the R group. To obtain a good yield, the R group of the precursor 

CTA should be a better leaving group with respect to that of the targeted CTA product. In 

other words, the free radical added must be less stable than the R group of the precursor 

CTA. 

5) Michael Addition 

Michael addition is one of the most popular reactions to add alkenes onto 

carbonyl groups. It can also be applied to the synthesis of CTA's by reacting a 

dithiocarboxylic acid with a (meth)acrylate-type compound (Scheme 1-23). It is 

noteworthy to mention that the Markovnikof addition synthetic approach cannot be 

applied to prepare such CTA's with methacrylate radicals as the leaving groups. 
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Scheme 1-23. Mechanism of preparation of CTA's via Michael addition. 

3.4.4 Kinetics of RAFT polymerization 

The kinetics of RAFT polymerization is the same as that of conventional free 

radical polymerization, under steady-state conditions. A linear relationship between 

ln([M]o/[M]t) and polymerization time could be drawn. The fact that the straight line 

passes through the origin indicates that there is no inhibition or induction time. 

rp = - d [M] /d t = kp[R-] [M] Equation 7 

where rp is the rate of polymerization, [M] is the monomer concentration, kp is the rate 

coefficient, and [R-] is the radical concentration. Therefore, 

- [M] / d [M] = 1 / (kp[R-] d t) Equation 8 

In ([M]t / [M]0) = kp [R-] t Equation 9 

Under the steady-state assumption of radical polymerization,223 [R-] is constant 

during the polymerization. kp is the propagating rate constant of the monomer, which can 

also be treated as constant under certain polymerization condition. Therefore, the term 

kp[R'] can be replaced by Kp, which is called apparent rate constant. 
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In ([M]t / [M]0) = Kp t, where Kp = kp[R«] Equation 10 

The equation above clearly shows a linear relationship between ln([M]o/[M]t) and 

polymerization time, with the value of slope equal to Kp (Figure 1-12). 

Although it is possible to calculate the amount of radicals decomposed from the 

initiator knowing the amount of initiator added, the half life of the initiator, and the 

initiating efficiency, there are always side reactions such as terminations reactions that 

occur in RAFT polymerization, and therefore the precise concentration of radicals in 

polymerization system is undetectable, and thus the calculation of kp in RAFT is difficult 

even though the value of apparent rate constant can be calculated. 

- f — . — | — i — | — , — | — , — | — i — | — , — | — , — | — i — , — 
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Figure 1-12. Example of ideal kinetics of RAFT polymerization. 

Deviations from the ideal linear relationship between ln([M]o/[M]t) and 

polymerization are often observed experimentally. For example, the red line in Figure I-
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13 with small slope at the beginning indicates slow initiation, while the blue line with 

decreasing slope starting from the mid-term of polymerization indicates radical-radical 

termination. This is because the value of the slope is equal to the apparent constant Kp, 

which is kp[R*]. If we assume that kp doesn't change during the polymerization, a 

decreasing in Kp indicates the decreasing in the concentration of radicals in the 

polymerization system. 

Figure 1-13. Ideal and possible deviations in RAFT kinetic plots. 

RAFT operates on the principle of degenerative addition-fragmentation chain 

transfer. For each radical consumed by addition to the C=S double bond, a new radical is 

generated through fragmentation. If the addition-fragmentation process is fast enough, the 

degenerative chain transfer process should have no effect on the overall polymerization 

rate. Therefore, the kinetics of a RAFT polymerization should follow that of a 

conventional free radical polymerization, which is half-order with respect to the 

concentration of initiator and be independent of the concentration of CTA. However, it is 
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surprising to find slower kinetics of RAFT polymerization, compared with conventional 

free radical polymerization under similar conditions. Furthermore, it is also observed that 

the rate of RAFT polymerization may be decreased when the concentration of CTA is 

increased. These kinds of retardation effects are more commonly observed with the use of 

dithiobenzoates,225"228 as opposed to aliphatic dithioesters,196'198 trithiocarbonates,201 or 

xanthates.192 To date, the cause of the retardation effect is still under debate. There are 

994 

generally two representative justifications: 

1) Side reactions involving the intermediate radicals 

The intermediate radicals may be involved in a variety of side reactions during 

polymerization. Monteiro et al. first proposed the possibility of intermediate radical 

99Q 

coupling with a propagating radical to form a three-armed star structure. Later, 

Fukuda's group confirmed Monteiro's idea by isolating and characterizing three-armed 
996 9^0 9^9 

stars by a variety of analytical techniques. ' " Venkatesh et al. reported the 

observation of both three-armed and four-armed star structures, the latter of which are 

formed by the combination of two intermediate radicals.233 On the other hand, the Center 

for Advanced Macromolecular Design (CAMD) team could not isolate any three-arm or 

four-arm stars by combination of size exclusion chromatography and ESI mass 

spectrometry techniques. 

It is noteworthy that most experiments in which the three-armed and four armed 

star structures were observed were set up as model systems, in which a high 

concentration of radicals are present. To date, there is no direct evidence of such 

reactions in ordinary RAFT polymerization systems. 
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Other possible side reactions involving intermediate radicals include reactions 

with residual oxygen, or other impurities, and chain transfer to monomers or polymer 

chains. 

2) Slow fragmentation of the intermediate radicals 

The CAMD group has developed a computer simulation system which calculated 

the lifetime of the intermediate radicals in the polymerization of styrene mediated by 

cumyl dithiobenzoate. The result shows that the intermediate radical is very stable and 

has a lifetime of more than 10" seconds. ' ' " They suggested that the retardation 

of polymerization rate in RAFT, especially mediated by cumyl dithiobenzoate, can be 

caused by the slow fragmentation of the intermediate radicals. But such a result suggests 

a very high concentration of intermediate radicals (10"4 M), which is in direct 

contradiction to the experimental ESR data, which suggested the concentration of 

intermediate radical was lower than 10"7
 M.225,239"243 

Recent use of ab initio molecular orbital calculations has shown that 

dithiobenzoate derived intermediate radicals are more stable than that of aliphatic 

dithioesters and trithiocarbonates, 5>244>245 suggesting that the retardation of methyl 

acrylate and styrene mediated by cumyl dithiobenzoate may be attributed to the slow 

fragmentation of the intermediate radical. 

In many RAFT polymerizations, a certain degree of inhibition/induction period is 

observed. This behavior also occurs more with dithiobenzoates than with 

trithiocarbonates or aliphatic dithioesters, and inhibition period increases with the 

concentration of CTA. This effect may also caused by the slow fragmentation of the 
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intermediate radical 2 in Scheme 1-15. ' ' Another explanation may be the slow 

reinitiation of the released leaving group R._200>246"249 Finally, it can also be attributed to 

the impurities in the system, such as residual oxygen which kills the radicals. 

3.4.5 Molecular weight control 

From the mechanism of RAFT polymerization, we can see that all polymer chains 

are either initiated by primary radical I* or by the released group R\ Therefore, the 

number-averaged molecular weight (Mn) can be calculated according to Equation 11: 

M n , t h e o = [ M ] o m 

monomer p / ([CTA]0 + 2/[I]0(l - e-kdt)) + mCTA Equation 11 

Where mmonomer is the molecular weight of the monomer, mcTA is the 

molecular weight of the CTA, [M]o is the initial concentration of the monomer, 

[CTAJo is the initial concentration of CTA, [I]o is the initial concentration of initiator, 

p is the fractional conversion of monomer, k<j is the initiator decomposition rate 

constant, and/is the initiator efficiency. 

Because RAFT polymerization is usually conducted at a high ratio of 

[CTA]: [I], the small number of chains initiated by primary radicals can be neglected. 

Thus, Equation 11 can be simplified to: 

Mn ;theo= [M]o mmonomer P / [ C T A ] 0 + mCTA Equation 12 
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This is the most often used equation to calculate the Mn of polymers prepared 

by RAFT. However, some deviations from the ideal molecular weight may occur. 

For example, the green line in Figure 1-14 shows slow initiation of the CTA while 

the blue line indicates the occurrence of normal, undesirable chain transfer reactions. 

slow initiation 

\ ^ / ideal 

I. 

transfer 

Monomer conversion 

Figure 1-14. Example of ideal MW evolution and diagnostics of slow initiation and 
conventional chain transfer in RAFT. 

3.4.6 Conditions 

Since RAFT polymerization only requires the introduction of a small amount of 

CTA to an otherwise conventional free radical polymerization system, theoretically, it is 

possible to perform RAFT polymerization under the same conditions as those for 

conventional free radical polymerization. To date, RAFT polymerization has been 

performed under a variety of conditions, including bulk, solution, emulsion, 

miniemulsion, in ionic liquids, in supercritical carbon dioxide, and at high pressure. 
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1) Bulk polymerization 

Bulk polymerization is the simplest process for conducting RAFT 

polymerizations. However, the increase in viscosity may cause side reactions when 

polymerization proceeds to high conversion. Polymerization in bulk is generally faster 

than in solution. For example, Zhu et al. showed that the polymerization of glycidyl 

methacrylate at 60°C reached 96.7% conversion in bulk and 64.3% in benzene (50 vol%) 

after the same reaction time.251 However, they do not necessarily lead to higher PDI's. 

For example, the polymerization of 4-acetoxystyrene and isobutyl methacrylate in bulk 

gives polymers with lower PDI's than those obtained from solution under the same 

polymerization conditions.252 

2) Solution 

Solution polymerization is adopted when the viscosity produced during the 

polymerization becomes a problem. The solubility of monomer(s), initiator(s), the 

resulting (co)polymer(s), and CTA need to be considered when choosing an appropriate 

solvent. Possible side reactions between radicals and solvents, i.e. transfer reactions, also 

need to be considered. 

Of particular importance is direct homogeneous aqueous RAFT polymerization. 

Such polymerizations have been investigated extensively by the McCormick group and 

en ioo 

the Lowe group. ' A variety of monomers have been successfully (co)polymerized via 

aqueous RAFT, including acrylamides,58'59,122"124,208'210'253 methacrylamides,255 styrenic 

derivatives,61 vinyl pryridines,42 glycomonomers,257 acrylic acid,254'258 and 2-

(dimethylamino)ethyl methacrylate. Ideally, a water-soluble CTA should be used in 
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such polymerizations. However, CTA's that are not fully water-soluble but soluble in 

water-monomer mixtures can also be used. A recent study by Thomas et al. shows that 

dithioesters may undergo hydrolysis and/or aminolysis at high pH in aqueous media. 

They evaluated cyanopentanoic acid dithiobenzoate (CTP) and its corresponding macro-

CTA and concluded that the rates of hydrolysis and aminolysis both increase with 

increasing pH and decrease with increasing molecular weight of the dithioester. This 

could result in higher than predicted molecular weights, or even complete loss of control. 

3) Emulsion 

Emulsion polymerization is widely used in industry because it provides good heat 

transfer as the viscosity of the system remains low. RAFT emulsion polymerization was 

first reported by the CSIRO group with the polymerization of butyl methacrylate 

(BMA).99 Subsequently it was applied to the polymerization of styrene and methyl 

methacrylate. Various other research groups have also examined the polymerization of 

styrene,261"268 styrenic derivatives,269 MMA,260 butyl acrylate,261'270 and vinyl acetate.271 A 

general problem occurring during the polymerization is the difficulty in controlling the 

molecular weight growth or the colloidal stability. This may be attributed to a number of 

issues such as the occurrence of two phases in the reaction mixture leading to phase 

partitioning of the CTA, rate retardation, water sensitivity of some CTA's, transport of 

the CTA between phases, surface activity of some CTA's, and particle 

nucleation.264'269'271-274 
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4) Ionic liquids 

Perrier et al. demonstrated the use of an ionic liquid (butylmethylimidazolium 

hexafluorophosphate) at room temperature as an alternative to traditional organic solvents, 

in the RAFT polymerization of methyl methacrylate (MMA) and methyl acrylate 

(MA).275 Both control of molecular weight and narrow molecular weight distributions 

were achieved. 

5) Supercritical CO2 

Supercritical CO2 is another environmentally friendly alternative to organic 

9 "7f\ 

solvents. Arita et al. first reported the RAFT polymerization of styrene and methyl 

acrylate277 in supercritical CO2. The polymers were made with well controlled molecular 

weights, but the polymerization rates seemed to be slower than that in solution. 

6) High pressure 

Several RAFT polymerizations at high pressure have been reported.278"280 The use 

of high pressure (1.8 kBar) resulted in higher polymerization rates and a reduced number 

of dead chains compared to those observed at atmospheric pressure in the RAFT 

polymerization of styrene. A higher pressure (5 kBar) was applied to the solution 

polymerization of MMA, resulting in extremely high molecular weight (Mn > 106 g/mol), 

and PDI's as low as 1.03.27 Another example, reported by Arita et al, is the bulk 

polymerization of styrene at pressure up to 2.5 kBar.280 The overall rate of 

polymerization was found to increase by a factor of three, and the PDI was reduced from 

1.35 to 1.1. 
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3.4.7 Monomers 

Since RAFT was first introduced in 1998, it has proved to be arguably most 

versatile CLRP technique with regard to monomer choice. A variety of styrenics, 

(meth)acrylics, (meth)acrylamido, vinyl acetate, vinyl formamide, and their derivatives 

have been successfully polymerized by RAFT. 

1) Styrene and styrenic derivatives 

Styrenic monomers are the most studied monomers in RAFT polymerization. The 

relative stability of the propagating radicals, however, makes styrenic monomers one of 

the slowest monomers to polymerize. This allows the RAFT polymerization of styrenic 

monomers to be controlled by most CTA's (dithioesters, trithiocarbonates and 

dithiocarbamates). 

A variety of polymers have been prepared from styrenic derivatives via RAFT 

(Figure 1-15), including styrene fM51),99'193'24U55'259'26Vchlorostvrene (M52),281 

divinylbenzene (M53),282'284 g>-methvlstvrene (M54).281 p-methoxystvrene (M55),281 p-

acetoxystyrene (M56), />-vinylbenzoate (M57) and/>-fe/Y-butoxycarbonyloxystyrene 

(M58). A variety of water-soluble styrenic polymers have also been prepared via 

RAFT, including polymers containing A^iV-dimethylvinylbenzylamine (M59),61'286 y-

(vinylbenzyl) trimethylammonium chloride (M60),61'259 sodium (4-styrenesulfonate) 

(Mil),61 the anionic form of 4-vinylbenzoic acid (M62),287'289 trimethyl 4-

vinylbenzylphosphonium chloride (M63),287'288 and 3-((4-

vinylbenzyl)dimethylammonio)propane-l -sulfonate (M64).124 
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Figure 1-15. Styrenes and styrenic derivatives polymerized by RAFT. 

2) Acrylates and acrylamides 

Acrylates and acrylamides are very fast propagating species due to their reactive 

propagating radicals and general low steric bulk. Their polymerizations via RAFT have 

been widely studied, and they typically yield polymers with very well controlled 
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molecular weights and narrow molecular weight distributions. The RAFT polymerization 

of acrylates and acrylamides are usually mediated by dithioesters and trithiocarbonates, 

while the use of xanthates or dithiocarbamates leads to broader molecular weight 

distributions. 

A variety of functional acrylate and acrylamide derivatives have been 

polymerized by RAFT (Figure 1-16). Acrylates reported successfully by RAFT include: 

acrylic acid (M65),206,207,258,266,270 methyl a c r y l a t e ^ * " 1 7 * ™ 9 - 2 7 5 ethyl acrylate,290 

«-butyl acrylate,203'213'233'240'263'270 tert-butyl acrylate,291 octyl acrylate,292 octadecyl 

acrylate (M66),293 p-nitrophenyl acrylate (M67),294 1,1,2,2,-tetrahydroperfluorodecyl 

acrylate (M68),295 2-(JV-butyl perfluorooctanefluorosulfonamido) ethyl acrylate,20912-

acryloyloxydodecanoic acid (M70),296 poly(ethylene oxide) methyl ether acrylate 

(M71), and 2-acryloyloxyethyl phosphorylcholine (M72). Acrylamides polymerized 

via RAFT include acrylamide (M73),208'258'299 iV,yV-dimethylacrylamide 

(M74),205'209'246'253 JV-isopropylacrylamide (M75),200'210'289 N-tert-bu\y\ acrylamide 

(M76),300 /V-octadecyl acrylamide (M77),296'300 A^-diphenylmethylacrylamide (M78),300 

diacetone acrylamide (M79),301 A^-acryloylmorpholine (M80),302"304 3-[2-(iV-

methylacrylamido)-ethyldimethylammonio] propane sulfonate (M81),122'124 2-

acrylamido-2-methylpropane-l-sulfonate (M82), sodium 2-acrylamido-2-

methylpropanesulfonate (M83),58'59 11-acrylamidoundecanoic acid (M84),296 and sodium 

6-acrylamidohexanoate (M85).305 It is also noteworthy that controlled polymerization of 

acrylic acid, although successfully achieved by RAFT, is difficult by ATRP because the 

carboxylic acid functionality tends to deactivate the catalyst used in ATRP system.155 



56 

HO 
0 

R 

R = CH3 

= C2H5 

= K-C4H9 
= /-C4H9 
= «-C8H17 

= «-C18H37 

0 

(CF2)7 

N ° 2 F3C 

O 

N-C4H9 

0 = S = 0 
1 

CnF2n+1 

M65 M66 M67 M68 M69 

O 
O 

C11H 22 
HOOC 

O 
O 

0 
•7—n 

O 
0 

0K 0 

X 
. 0 O 

I 
.N: 
+ 

H,N —N 
O =0 

HN 

M70 M71 M72 M73 M74 M75 

O 
HN / 

O 
HN 

I 
C18H37 

O 
HN /— N 

N — 
+ 

M76 M77 M78 M79 M80 

S03 

M81 

O 
HN 

S03 

M82 

O 
HN 

COO 

M83 

O 
HN 

HOOC 
/C10H2o 

O 
HN 

C*H 5n10 
HOOC 

M84 M85 

Figure 1-16. Various acrylates and acrylamides derivatives polymerized via RAFT. 
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3) Methacrylates and methacrylamides 

Steric hindrance of the propagating radicals generated from methacrylates and 

methacrylamides makes them difficult to add to the C=S double bond of the CTA. In 

order to favor the addition and thus the formation of the intermediate radicals, a strong 

stabilizing Z group is required. Therefore, methacrylates and methacrylamides are best 

polymerized via RAFT mediated by dithiobenzoates, although some aliphatic dithioesters, 

trithiocarbonates and dithiocarbamates are also effective. 5' Xanthates usually offer 

very poor control. The choice of R group also needs to be carefully considered in this 

case. An R group is required to be of comparable or greater stability with respect to the 

propagating radicals in order for the intermediate radical to favor the fragmentation 

forward to release the R group. But the stability should also be balanced with its ability to 

reinitiate the polymerization. The idea that R group mimics the methacylic propagating 

species does not work in this case due to the penultimate unit effect.213 To date, cumyl 

dithiobenzoate and cyanoisopropyl dithiobenzoate have proved to be the best CTA's for 

conducting RAFT polymerizations of such monomers.306 It is also noteworthy that 

methoxycarbonylphenylmethyl dithiobenzoate and a-cyanobenzyl dithioester, 

although the R groups of which are secondary, still offers good control over the 

polymerization of methacrylic monomers. 
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A variety of functional methacrylate and methacrylamide derivatives have been 

reported successfully polymerized via RAFT (Figure 1-17), including: methyl 

methacrylate (MMA),195'198'201'205'213'217'231'271'279 n-buty\ methacrylate,225'292 isobutyl 

methacrylate (M86),252 2-(dimethylamino)ethyl methacrylate (M87),259 hydroxyethyl 

methacrylate (M88),308 2-(2-bromoisobutyryloxy) ethyl methacrylate (M89),309 methyl 6-

O-methacryloyl-a-D-glucoside (M90),310 2-methacryloxyethyl glucoside (M91),257 

glycidyl methacrylate (M92), poly(ethylene glycol) methyl ether methacrylate 

(M93),309'311 6-[4-(4'-methyoxyphenyl)phenoxy]hexyl methacrylate (M94),312'313 

poly(dimethylsiloxane) methacrylate (M95),314'315 3-[tris(trimethylsilyloxy) silyl] propyl 

methacrylate (M96),316 2-acetoacetoxyethyl methacrylate (M97),317'318 dibutyl itaconate 

(M98) and dicyclohexyl itaconate (M99), y-methacryloxypropyltrimethoxysilane 

(M100),319 2-methacryloyloxyethyl phosphorylcholine (M101),320 3-[iV-(3-

methacrylamidopropy^-A'.A^-dimethy^ammoniopropane sulfonate (M102),121 Â -

methylmethacrylamide (M103),124 A^-methyl methacrylate (M104),321 A^-[3-

(dimethylamino)propyl methacrylamide] (M105).255 

4) Vinyl acetate 

The controlled polymerization of vinyl acetate has been a challenge by CLRP 

because of the very high reactivity and low steric bulk of the propagating radicals. To 

date, RAFT is the only technique that can mediate the polymerization of vinyl acetate in a 

controlled manner by utilizing xanthates or dithiocarbamates as the 

C T A _ 192,197,250,271,306,322,334,358 H o w e v e r ; t h e intermediate formed by dithioesters or 

trithiocarbonates are relatively stable and the rate of fragmentation is slow relative to the 
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rate of propagation, resulting in poor control of the polymerization. Therefore, while 

xanthates and dithiocarbamates do not confer control with most types of monomers due 

to the poor stability of the intermediate radicals, they perform extremely well with vinyl 

acetate and other non-conjugated substrates. Poly(vinyl acetate) with PDI below 1.2 can 

be produced using a xanthate with Z = OEt, OCH3, OCH2CH3, OCH(CH3)2, or 

OC6H4OCH3.
323 Dithiocarbamates where Z = N(Ph)(CH3) and R = CH2CN can yield 

poly(vinyl acetate) with PDI as low as 1.24 306 

5) Miscellaneous monomers 

RAFT has also been used to control the polymerization of a range of less common 

vinyl monomers. For example, iV-acryloxysuccinimide has been copolymerized with N-

acryloylmorpholine, AfjV-dimethylacrylamide, butyl methacrylate, and N-iso-

propylacrylamide,327 in some instances, resulting PDI's below 1.1 when tert-butyl 

dithiobenzoate or cyanoisopropyl dithiobenzoate were employed as the CTA. 

2-Vinyl-4,4-dimethyl-5-oxazolone and jV-methacryloxysuccinimide have been 

successfully homopolymerized via RAFT with cyanoisopropyl dithiobenzoate as the 

RAFT CTA. The resulting PDI's were around l.l.301 

2-Vinylpyridine and 4-vinylpyridine have both been homopolymerized and block 

copolymerized by RAFT with cumyl dithiobenzoate as CTA to yield polymers with 

PDI's ranging from 1.1 to 1.25.42 4-Vinylpyridine has also been homopolymerized with 

dibenzyl trithiocarbonate, and ABA triblock copolymers with styrene with PDI below 

1.25 were also reported.328 
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The polymerization of acrylonitrile mediated by cyanoethyl dithiobenzoate in 

ethylene carbonate yielded polymers with PDFs below 1.3. The resulting homopolymer 

"59Q 

was successfully blocked with rc-butyl acrylate. 

The copolymerizations of 1-hexene, 1-octene, and 1-decene with methyl acrylate 

mediated by benzyl 1-pyrrolcarbodithioate, and 1-octene with methyl acrylate mediated 

by S,S'-bis(a,a'-dimethyl-a"-acetic acid) have also been reported. The molecular 
weights were close to theoretical values and PDFs ranged from 1.1 to 1.5 330,331 

3.4.8 Polymer Architectures 

The tolerance to a wide range of functional groups and the retention of 

thiocarbonylthio functionality makes RAFT an efficient technique for the preparation of a 

variety of polymer architectures, including statistical, block, gradient, branched, star, and 

network (co)polymers (Figure 1-18). 

Block copolymer 

ooootooostoosttottt* 
Gradient copolymer 

OOOOOOMMMMOOOGOO 
ABA triblock copolymer 

09O9O909O909O9D90&D9 
Alternating copolymer 

Graft copolymer 

Star polymer 

Figure 1-18. Structual representation of polymer architectures. 
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1) Block copolymers 

Block copolymers are the simplest and most widely studied materials with 

advanced architectures prepared by RAFT and other living radical polymerization 

techniques. 

a) AB diblock copolymers 

Since the majority of polymers prepared by RAFT retain the thiocarbonylthio 

functionality as an end-group, these polymers, after purification, can be treated as a so-

called macro-CTA to mediate the subsequent polymerization of a second monomer, 

resulting in AB diblock copolymers (Scheme 1-24). 

S S-R monomer A^ S ^ S - P A - R purifr^ monomer B> s s _ p B _ p A _ R 

I Initiator 7 Initiator | 

z z z 

purify monomer C S.^-S—P C -P B -P A -R »^ 

Initiator ^ 

Scheme 1-24. Synthetic strategy for block copolymers by sequential addition of 
monomers. 

The sequence of monomer addition (blocking order) needs to be carefully 

considered. After the propagating radical PB# adds across the C=S double bond and forms 

an polymeric intermediate radical, in order for macro-CTA to be effective, the 'R' group, 

which is PAR* in this case, must be a comparable, or better leaving group than 

Bn* (Scheme 1-25). Thus, when synthesizing AB diblock copolymers via RAFT, the 

monomer whose corresponding propagating chain has a better leaving ability should be 



63 

polymerized first in order to achieve high blocking efficiency. The general order of 

monomer addition should be acrylonitrile > methacrylate > styrenes ~ acrylates if 

switching between different classes of monomers. 

+ SYS-PA.R _ ^ pB-^s S-|-PA-R ^ P. -Sy. + , ^ _ R 

z z z 

Scheme 1-25. Competitive fragmentation of intermediate radical in the second step of AB 
diblock copolymer synthesis. 

Theoretically, the (co)polymer chain prepared via RAFT can be continually 

extended as long as the thiocarbonylthio end group functionalities are retained. Thus, 

multiblock copolymers can be prepared by the sequential addition of monomers. 

b) ABA block copolymers 

Of particular interest is the synthesis of ABA triblock copolymers using a 

difunctional CTA (Figure 1-19). Difunctional CTA's facilitate the synthesis of ABA 

triblocks in a two-step process as opposed to the three required if a mono functional CTA 

is used. There are generally two types of difunctional CTA. One has difunctional R group 

and the other difunctional Z group. Difunctional R CTA has the general structure of 

ZC(=S)SRSC(=S)Z, where the polymer chains grow inward to the core and the 

thiocarbonylthio functionality groups are retained at the chain ends. By sequential 

addition of monomer A and B, BAB triblock copolymer can be obtained. 
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Figure 1-19. Difunctional CTA's for the production of ABA triblock copolymers. 

Difunctional Z CTA's have a general structure of RSC(=S)ZC(=S)SR. By 

sequentional addition of monomer A and B, ABA triblock copolymers can be formed. 

For example, Dureault et al. used dibenzyl naphthalene-2,6-bis(carbodithioate) (CTA7) 

to synthesize poly(tert-butyl acrylate-WocA>styrene-6/0cA>tert-butyl acrylate). One 

particular type of this difunctional Z CTA are symmetric trithiocarbonates, that have a 

general structure of RSC(=S)SR, where the polymer chains grow outward on both ends 

of the trithiocarbonate. For example, Mayadaune et al. reported the synthesis of 

poly(styrene-&/oc&-n-butyl acrylate-Woc&-styrene) by use of dibenzyl trithiocarbonate 

(CJA5) as the CTA.201 Yuan et al. used the same CTA to prepare poly(styrene-Z>/oc£-4-

vinyl pyridine-6/oc^-styrene) and poly(4-vinylpyridine-Woc&-styrene-6/ocA:-4-
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vinylpyridine) with PDFs below 1.25. A drawback of this technique is the location of 

the thiocarbonylthio functional group in the center of the formed polymer, which makes it 

difficult for propagating radicals to attack the C=S double bond due to the steric 

hindrance when the molecular weight gets too high. 

2) Gradient copolymers 

Conventional free radical polymerization of two or more monomers, due to the 

slow rate of initiation relative to propagation and chain breaking reactions, results in a 

mixture of copolymers with very different compositions. However, in RAFT 

polymerization, all the polymer chains are initiated early and grow throughout the 

polymerization, and thus all chains have similar composition, leading to the formation of 

gradient copolymers. Examples of gradient copolymers prepared via RAFT include 

copolymerization of MA and VAc (TMA~9, rVAc~0.1) mediated by O-ethyl S-cyanomethyl 

xanthate, and copolymerization of styrene with JV-phenylmaleimide (NPMI) (rs~0.02, 

I"NPMI~0.04) with an excess of styrene, resulting in the formation of poly(NPMI-afr-

styrene)-6/oc&-polystyrene. 

3) Star polymers 

Star polymers can be prepared via RAFT by utilizing multifunctional CTA's. 

Basically, there are two types of strategies to make star polymers via RAFT. If the core of 

the multifunctional CTA functions as the R group and polymer chains grow away from 

the core, it is called the R-approach or attach-to approach. Alternatively, if the core of the 
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multifunctional CTA acts as the Z group, it is called the Z-approach or away-from 

approach. The latter is a unique feature of RAFT for synthesis of star polymers. 

The R-approach is similar to ATRP or NMP. A variety of molecules have been modified 

into multifunctional CTA's (Figure 1-20). Examples are hexakis(thiobenzoylthiomethyl) 

benzene (CTA8) to mediate the polymerization of styrene (six arms), 2,4,5-

tris( {[methylsulfanyl] -carbonothioyl] sulfanyl} methyl)benzylmethyl trithiocarbonate 

(CTA9) to mediate the polymerization of styrene and methyl acrylate (four arms).333 The 

synthesis of depentaerythritholhexakis(phenyl-S-methyltrithiocarbonyl methanoate) (six 

arms) and its three-, four- and eight-arm equivalents were also reported, but they were not 

used in the polymerization.216 Pentaerythritol and l,l,l-tris(hydroxymethyl)propane were 

modified with xanthate groups and used to mediate the polymerization of vinyl acetate 

(four- and three arms, respectively).334 The main side reaction by this approach is the 

star-star coupling since the propagating radicals are attached to the cores. To avoid such 

side reactions, both radical concentration and conversion of monomers should be kept 

low. 
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Figure 1-20. Functional CTA's for the synthesis of star polymers: the R approach. 

In the Z-approach, the polymer chains are detached from the core while they grow, 

and react back to the core via addition-fragmentation chain transfer. In this case, the 

coupling reactions occur only between polymer arms. Therefore, star polymers prepared 
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in this way usually have very narrow molecular weight distributions, with PDI's reported 

as low as 1.1. The polymerization, unlike the R-approach, can be taken to a higher 

conversion, but steric hindrance may affect the ability of the arms to attack back to the 

core when the molecular weight is high. Examples of this approach (Figure 1-21) include 

the use of pentaerythritoltetrakis[3-(5'-benzyltrithiocarbonyl)propionate] (CTA12) to 

mediate the polymerization of methyl acrylate, styrene and their block copolymers,216'333 

and depentaerythritolhexakis[3-(5-benzyltrithiocarbonyl) propionate] (CTA11) was also 

synthesized, although it was not used in the polymerization.216 P-Cyclodextrin was 

modified into a trithiocarbonate heptafunctional (3-cyclodextrin (CTA17) to mediate the 

polymerization of styrene.335 Xanthates tetrakis(benzyl-sulfanyl-thiocarbonyl-

oxymethyl)methane (CTA19), [l-(phenyl-ethyl)-sulfanyl-thiocarbonyl-

oxymethyl]methane (CTA20), and tetrakis[(2-phenyl-ethyl)-sulfanyl-

thiocarbonyloxymethyljmethane (CTA21) were all used to mediate the polymerization of 

vinyl acetate and vinyl propionate.200 
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4) Polymer brushes/Surface-grafted polymers 

Polymer brushes/surface grafted polymers are attracting more and more interest. 

The most common CLFR polymerization technique used to produce polymer brushes is 

ATRP. However, RAFT has recently been successfully employed. °'421 

As with the preparation of star (co)polymers via RAFT, the preparation of 

polymer brushes initiated from surface also has two general approaches: the 'grafting-to' 

approach and the 'grafting-from' approach. Scheme 1-26 shows an example of the 

preparation of highly functional polymer brushes via the 'grafting-to' mechanism. 
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Scheme 1-26. Examples of preparation of polymer brushes via RAFT. 
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Boyes et al. recently reported the synthesis of a variety of well-defined diblock 

copolymer brushes, including poly(methyl methacrylate) (PMMA)-Z>-poly(2-

(dimethylamino)ethyl methacrylate) (PDMAEMA), PMMA-6-poly(styrene) (PSty), and 

PSty-/>poly(methyl acrylate), achieved via surface immobilized RAFT polymerization 

(Scheme 1-26). Initially, silicon surfaces were modified with CTA's by utilizing a 

modified atom transfer addition reaction involving a silicon wafer modified with (11-(2-

bromo-2-methyl)propionyloxy)undecyltrichlorosilane and dithiobenzoyl disulfide. 

Diblock copolymer brushes were then prepared via sequential surface initiated RAFT 

polymerization from the immobilized CTA. 

5) Modification of gold surfaces 

Lowe et al. reported the first example of colloidal stabilization by polymers 

prepared via RAFT (Figure I-22).337 A series of water-soluble polymers prepared via 

RAFT were evaluated, including poly(sodium 2-acrylamido-2-methyl propane sulfonate) 

(PAMPS), poly((ar-vinylbenzyl)- trimethylammonium chloride) (PVBTAC), poly(JV,JV-

dimethylacrylamide) (PDMA), and poly(3-[2-A^-methylacrylamido)-ethyl dimethyl 

ammonio propane sulfonate-WocAr-JV^-dimethylacrylamide) (PMAEDAPS-6-PDMA), 

representing anionic, cationic, neutral and zwitterionic families, respectively. 

(Co)polymer-stabilized nanoparticles based on transition metal complex (Au (HAuCU 

sol), Ag (AgN03), Pt (Na2PtCl6-6H20), and Rh (Na3RhCl6)) were prepared using NaBH4 

as the reducing agent. The NaBFL; simultaneously reduced both dithioester end group of 

the (co)polymer and metal complex. The reduced polymer with thiol end group 

immediately adopted to the metal, resulting in a polymer-metal complex, which provided 
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steric and electrostatic stabilization to prevent aggregation of insoluble metal 

nanoparticles. The simultaneous reduction of thiocarbonylthio end-capped (co)-polymer 

chains and metal salts affords a facile process for the preparation of (co)polymer-

stabilized metal nanoparticles. 

Transition 
metal 

complex 

Figure 1-22. Stabilization of gold nanoparticles by polymers prepared via RAFT. 

3.5 TERP/OTRP 

Some other new living radical polymerization techniques recently disclosed 

include tellurium-mediated radical polymerization (TERP) and quinone transfer radical 

polymerization (QTRP). 

3.5.1 Tellurium-mediated radical polymerization (TERP) 

In 2002, Yamago et al. reported another form of controlled/living radical 

polymerization system.338 Based on the fact that organotellurium compounds can undergo 

reversible carbon-tellurium cleavage upon thermolysis and photolysis, a similar process 
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to NMP was developed utilizing the organotellurium compounds as unimolecular 

initiators to achieve living polymerizations (Scheme 1-27). 
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Scheme 1-27. Mechanism of tellurium-mediated radical polymerization (TERP) and 
tellurium mediators. 

A variety of monomers have been polymerized by TERP in a controlled manner, 

such as styrene, butyl acrylate, acrylonitrile, N, iV-dimethyl acrylamide, and N-

isopropylacylamide.339 One big advantage of TERP over other CLRP techniques is the 

tolerance of the order of monomer addition when synthesizing block copolymers. For 

example, the AB diblock copolymer of styrene and MMA can be prepared from either the 

polystyrene homopolymer or the PMMA homopolymer as the macro-mediator.340 

3.5.2 Quinone transfer radical polymerization (QTRP) 

In 2004 Caille et al. reported a new process for the controlled/living radical 

polymerization of styrene based on a complex of ortho-quinone and a catalytic cobalt(II) 



74 

acetylacetonate system.341 The organometallic species Co(II)(acac)2 is oxidized by ortho-

quinone, forming a oxygen-centered radical, which functions as a persistent radical to 

combine with a propagating radical (Scheme 1-28). 

Scheme 1-28. Mechanism of quinone transfer radical polymerization (QTRP). 

Since the majority of polymer chains are end-capped by the ortho-quinone, the 

targeted molecular weight of polymer is determined by the amount of ortho-quinone 

added. This process is more like ATRP, but the amount of metallic catalyst required is 

small, usually with a ratio of [Co(II)(acac)2]:[PhQ] of 0.01 or even less. Efforts are now 

being made to extend to other ortho-quinones and metallic catalysts to evaluate the 

potential and limitations of this technique. 



75 

4. Block Copolymer Self-assembly 

4.1 Polymeric micelles 

4.1.1 Micelles formed by AB diblock copolymers 

Amphiphilic block copolymers comprised of one block which is permanently 

hydrophilic and the second block which is tunably hydrophilic/hydrophobic can exhibit 

reversible self-assembly behavior under the application or removal of certain stimulus. 

Such stimuli include, but not limited to, including pH, temperature, salt concentration, 

light, and shear stress etc. 
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Figure 1-23. pH-Responsive reversible micellization of block copolymers comprised of 
2-acrylamido-2-methylpropanesulfonate (AMPS) and 3-acrylamido-3-

methylpropanebutanonate (AMBA) in aqueous solutions. 

For example, Sumerlin et al. reported the synthesis of AB diblock copolymers of 

sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) and sodium 3-acrylamido-3-
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methylbutanoate (AMBA) (Figure 1-23) via aqueous RAFT.59 At high pH, both AMPS 

and AMBA blocks are ionized (hydrophilic) and the block copolymer exists as unimers 

in water. As the pH is decreased, the AMBA block becomes protonated (below its pKa) 

and becomes hydrophobic while the AMPS block remains hydrophilic. As such, the 

unimers self-assemble to form polymeric micelles with the insoluble AMBA block in the 

core and the soluble AMPS block as the stabilizing corona. This behavior is completely 

reversible, and raising the pH results in micelle-breakup and unimeric dissolution. 

It is important to point out that such reversible micellization behavior can only 

occur above the so-called critical micellization concentration (cmc). 

4.1.2 Micelles formed by 'schizophrenic' block copolymers 

'Schizophrenic' block copolymers are also referred to as doubly 'smart' 

copolymers, and are polymers in which both blocks are tunably hydrophilic/hydrophobic. 

At present, this represents the least studied of the amphiphilic block copolymers. 
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Figure 1-24. Example of'schizophrenic' AB diblock copolymer. 
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One example of such a schizophrenic AB diblock copolymer is shown in Figure I-

24, which consists of 2-(iV-morpholino)ethyl methacrylate (MEMA) and a 

polysulfobetaine derived from 2-(dimethylamino)ethyl methacrylate (DMAEMA). At 

temperatures between 30 - 40 °C, both blocks are hydrophilic and thus the block 

copolymer exists as molecularly dissolved unimeric chains. If the temperature is raised 

above the cloud point of the MEMA block, the copolymer self-assembles to form 

polymeric micelles with the hydrophobic MEMA block residing in the core and the 

sulfobetaine block in the corona. However, if the temperature is lowered to below 20 °C, 

the sulfobetaine block begins to phase separate as it reaches its upper critical solution 

temperature (UCST) and thus the polymeric micelles are formed with the now 

hydrophobic sulfobetaine block in the core and hydrophilic MEMA block in the corona. 

4.1.3 Core and shell cross-linking micelles 

Polymeric micelles formed by block copolymers described above are usually 

dynamic in the sense that there exists an equilibrium between polymeric micelles and 

unimers in the aqueous solution. Upon the application of appropriate stimuli, the 

polymeric micelles are formed; after the removal of the stimuli, the polymeric micelles 

will be dissociated into unimers. Under some circumstances, the structure of the 

polymeric micelles, once formed, need to be 'locked' even after the stimuli were 

removed. One method to achieve this is via cross-linking either the core or the corona of 

the polymeric micelles. 

Shell cross-linked micelles, also called knedel or SCK micelles, were first 

reported in 1997 by Wooley et al.343'344 Subsequently, Armes et al. reported the 



78 

preparation of so-called Type I and Type II zwitterionic SCK micelles from block 

copolymers of 2-(dimethylamino)ethyl methacrylate (DMAEMA) with 2-

tetrahydropyranyl methacrylate (THPMA) (Figure I-25).66'67'345 When dissolved in a 

water/THF mixture, micellization occurs with the hydrophilic DMAEMA blocks as the 

corona. Addition of the cross-linking agent bis-(2-iodoethyoxy)ethane linked the tertiary 

amine residues via a quaternization reaction. Subsequent hydrolysis of the THPMA 

residues in the locked micelles leads to the formation of the Type I SCK species, with the 

hydrophilic PMMA in the core. Alternatively, the block copolymer can be initially 

hydrolyzed, followed by heating a solution of the resulting polymer above the cloud point 

of DMAEMA, which results in the formation of inverse polymeric micelles with the 

hydrophobic DMAEMA block in the core and hydrophilic PMAA in the corona. 

Addition of bis-(2-iodoethyoxy)ethane results in the formation of Type II SCK micelles 

via esterification reaction, of the MAA residues. 
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Figure 1-25. Reaction scheme for the synthesis of Type I and Type II zwitterionic SCK 
micelles. 
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It is noteworthy that such cross-linking needs to be performed in relatively dilute 

solution, or inter-micelle cross-linking would occur. Such a drawback can be avoided in 

the situation of polymeric micelles formed by ABC triblock copolymers, with the C block 

in the core, the A block as the outer corona, and B block as the inner corona, so that the 

outer A corona could act as steric barrier to protect the inner cross-linking in B 

block.346'347 

Example of core cross-linking was reported with pH-responsive AB diblock 

copolymer of permanently hydrophilic DMA and tunably hydrophilic/hydrophobic 

DMVBA. At high pH, polymeric micelles are formed with the DMBVA block in the core. 

The hydrophobic 1,4-bis-bromomethylbenzene, after being added, is sequestered in the 

core where it can react with tertiary amine residues via a Menshutkin reaction, resulting 

in core cross-linking micelles.288 

4.2 Methods for studying self-assembly 

Some of the important parameters to characterize polymeric micelles are:348 

K - the equilibrium constant of unimers <->• micelles 

CMC or CMT - the critical micelle concentration or the critical micelle temperature. 

Nagg - The aggregation number (association number), which is the average number of 

polymeric chains in a micelle. 

Rg - The radius of gyration of a polymeric micelle. 

Rh - The hydrodynamic radius of a polymeric micelle. 

Rc - The radius of the micelle core (insoluble block). 

L - The thickness of the micelle shell (soluble block). 
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Not these parameters alone, but also a combination of them, can be utilized to 

characterize the polymeric micelles. For examples, the ratio of Rg/Rh can give us 

information about the shape of the micelles. 

Figure 1-26. Schematic representation of polymeric micelles formed by AB diblock 
copolymers. 

Table 1-1. Experimental techniques for micelle characterization 348 

Techniques 
NMR 

Dynamic light scattering (DLS) 
Fluorescence spectroscopy 

Transmission electron microscopy (TEM) 
Viscometry 

Size exclusion chromatography (SEC) 

Static light scattering (SLS) 

Small angle neutron scattering (SANS) and small 
angle X-ray scattering (SAXS) 

Ultracentrifugation 

Stop flow technique 

Micelles characteristics 
Chain dynamics 

Rh 

Chain dynamics, CMC 
Shape, size of micelles 
Rh, intrinsic viscosity 

Rh, dynamics of micellar 
equilibrium, MW of micelles 
Weight-averaged molecular 

weight, Rg 

Weight-averaged molecular 
weight, Rg, Rc 

Micelle density, molecular weight 
(Z average) 

Kinetics of micelle formation and 
dissociation 



81 

4.2.1 Nuclear magnetic resonance (NMR) spectroscopy 

NMR spectroscopy is a quick and convenient method for monitoring the relative 

solvation of AB diblock copolymers in water (D2O) and can be used as a qualitative 

indicator of self-assembly. Figure 1-27 shows an example of the block copolymer of N,N-

dimethyl(4-vinylbenzyl)amine (DMVBA) and JV, JV-dimethyl acrylamide (DMA).50 As the 

PDMBVA block undergoes its hydrophilic-hydrophobic phase transition then the signals 

in the NMR spectrum associated with this species will both reduce in intensity and 

broaden as a result of drastically reduced chain mobility (i.e. desolvation). Provided no 

macroscopic precipitate is observed then such observations indicate supramolecular self-

assembly in a fashion such that the hydrophobic portion is "shielded" from the aqueous 

environment. From this we infer micelle formation. The reversibility of micelle formation 

can likewise be conveniently monitored by simply adjusting conditions back to those in 

which the block copolymer is expected to be unimeric i.e. doubly hydrophilic. 
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Figure 1-27. Example of *H spectra of unimers, micelles and cross-linked micelles under 
'unimer' condition. 

Likewise, NMR spectroscopy can be employed to confirm successful core 

crosslinking. Employing the same protocol as above we find that if, after crosslinking, the 

aqueous conditions are adjusted to favor unimer formation that we do observe changes in 

the NMR spectrum. However the polymeric micelles cannot break apart due to the 

crosslinking. As such, while the core becomes hydrophilic, and certainly solvated to a 

certain extent, the chain mobility is still drastically reduced. As such we expect to observe 

an increase in intensity and narrowing of the signals associated with the core but not to 

the extent of the free unimer chains, see Figure 1-27 as an example. 
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4.2.2 Dynamic light scattering (DLS) 

DLS is employed as the primary tool to examine the aggregation and dissociation 

behavior of the block copolymers. In DLS we measure the time dependence of the 

intensity of scattered light from a small region of the solution. The fluctuations in the 

intensity of scattered light are related to the rate of diffusion of species in and out of the 

region being studied and data can be analyzed directly to give the diffusion coefficient of 

these species. Since the rate of diffusion is related to size, the diffusion coefficient in 

typically converted to the hydrodynamic radius (or Stoke radius) using the Stoke-Einstein 

equation: 

Rh = kT/67rnDo Equation 13 

Where k is the Boltzmann constant, T is the absolute temperature, r\ is the 

viscosity of the solvent, and D is the diffusion coefficient. 

When block copolymers exist as unimers in the solution, they will possess small 

hydrodynamic radii. A large increase in the hydrodynamic radius will be observed upon 

self-assembly. Likewise DLS can be used as an indicator for successful cross-linking. 

Since the block copolymers can no longer exist in the unimeric state, large hydrodynamic 

radii should still be observed even under conditions where unimer formation would be 

favored. 

4.2.3 Fluorescence spectroscopy 

The formation and dissociation of polymeric micelles can also be examined via 
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fluorescence spectroscopy employing probe molecules such as pyrene. In the pyrene 

fluorescence spectrum there are five distinct peaks labeled I1-+I5. The intensity of the Ii 

peak is sensitive to the polarity of its environment whereas I3 is environmentally 

insensitive. As such, the ratio of I1/I3 is often used as an indicator of the polarity of the 

environment in which the pyrene is residing. A decrease in I1/I3 indicates movement from 

a high to a low polarity environment. The addition of pyrene to an aqueous solution of a 

block copolymer in its unimeric state will result in an I1/I3 valve typical of pyrene alone 

in water. Upon micellization it is predicted that the pyrene will preferentially partition to 

the hydrophobic micellar core which will be verified by a drop in the I1/I3 ratio. 
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CHAPTER II 

OBJECTIVES OF RESEARCH 

The ability to synthesis (co)polymers in a controlled manner, i.e. with 

predetermined molecular weights, narrow molecular mass distributions, and with 

controllable topologies and architectures is becoming increasingly important as the 

demand for highly functional materials in specialty applications continues to grow. 

Classic living polymerization techniques, such as living anionic polymerization and 

group transfer polymerization, are limited in application due to either the restricted 

choice of monomer, or the exigent polymerization conditions. However, the recent 

discovery and development of the controlled/living free radical polymerization (CRP) 

methodologies including nitroxide mediated polymerization (NMP), atom transfer radical 

polymerization (ATRP), and reversible addition-fragmentation chain transfer (RAFT) 

polymerization, now facilitate the preparation of advanced materials from a wide range of 

functional monomers. Of these CRP processes, RAFT has proven itself to be, arguably, 

the technique of choice for the synthesis of well-defined water-soluble (co)polymers in 

either organic or aqueous media, due to its applicability to the widest range of monomers, 

its superior functional group tolerance, and its ease of execution. 

An important family of water-soluble polymers are those which contain 

"triggerable" functional groups. Such polymers can be responsive to one or a 

combination of stimuli, including but not limited to, solution pH, temperature, salt 

concentration, shear stress, etc. They are termed "smart" polymers because they can 

undergo either conformational changes or phase transitions in response to the application 

of specific external stimulus. Of particular interest are AB diblock copolymers in which 
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at least one block is tunably hydrophilic/hydrophobic. Such materials, upon the 

application of a stimulus, can self-assemble to form polymeric micelles with the 

hydrophobic blocks in the core, stabilized by the hydrophilic blocks in the corona. Such 

processes are typically completely reversible, i.e. the polymeric micelles will dissociate 

into unimers upon the removal of the applied stimulus. Such materials have found a wide 

range of applications such as drug delivery and enhanced oil recovery. 

The overall objective of this research project is to utilize RAFT as a synthetic 

method to prepare a variety of novel "smart" water-soluble AB diblock copolymers 

which would exhibit stimuli-responsive aqueous solution properties. In specific, the goals 

of this research include: 

1) Design and synthesize novel trithiocarbonate CTA's that are water-soluble, and 

effective in mediating RAFT polymerization of acrylate, acrylamido, and styrenic-

based monomers. 

2) Design and synthesis of novel stimuli-responsive AB diblock polyelectrolytes. 

3) Design and synthesis of novel stimuli-responsive AB diblock polyzwitterions. 

4) Design and synthesis of novel doubly responsive AB diblock copolymers which can 

form both normal and inverse polymeric micelles. 

CTA design and synthesis 

The key to accomplishing successful RAFT polymerizations is appropriate choice 

of chain transfer agent (RAFT agent or CTA). Dithioesters are probably the most widely 

employed/versatile CTA's, however, the trithiocarbonates (TTC's) have been attracting 

an increasing amount of attention recently, partly due to their ease of synthesis and 
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purification, which is a distinct advantage compared to the synthesis of many other RAFT 

agents. And TTC's have proven to be especially useful for the controlled polymerization 

of styrenic, acrylate, and acrylamido monomer derivatives, and in some instances under 

extremely facile conditions. As such we designed and synthesized a series of functional 

TTC's, in which the substitution about the TTC functionality was systematically varied. 

The effectiveness of these TTC's was evaluated and compared in the polymerization of 

the model acrylic monomer n-butyl acrylate (nBA). Whether the overall degree of 

control is affected by CTA structure, i.e. the nature of the Z and R groups, was addressed. 

Synthesis of polyampholytes 

A special and complex family of water-soluble polymers are polyampholytes 

(PAMs), which contain both cationic and anionic residues located on different repeat 

units. The direct synthesis of polyampholytes, i.e. without resorting to either protecting 

group chemistry or post-polymerization modification, is known to be challenging and has 

only been successfully achieved on several occasions. We have attempted to make 

polyampholytes comprised of styrenic-based cationic phosphonium monomers (M63 and 

M106) and 4-vinylbenzoic acid (VBZ, M62) via RAFT mediated by CTA26 directly in 

aqueous media. First, the controlled nature of the homopolymerizations of the monomers 

was examined from both the kinetics and the experimentally determined molecular 

weights and PDI's. Statistical PAMs were prepared, with the molar ratio of M63/M106 

and M62 varied. Block PAMs were prepared by employing polvM63/M106 as the 

macro-CTA for the block copolymerization with M62. The successful synthesis of 
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polyampholytes was verified by FT-IR spectroscopy. The pH-responsive behavior of the 

block copolymer was studied by 13C NMR spectroscopy. 

Synthesis of polycations 

Cationic polymers are useful materials with a lot of commercial application, such 

as cosmetics, antimicrobial formulations, water treatment, and paper processing. A series 

of new styrenic-based pH-responsive AB diblock copolymers comprised of a 

permanently positively charged, hydrophilic, 4-vinylbenzyltrimethylphosphonium 

chloride (M63) block and a tunably hydrophilic/hydrophobic N,N-

dimethylbenzylvinylamine (M59) block were synthesized via RAFT directly in aqueous 

media under homogeneous conditions. The molar compositions of two blocks were 

varied. Since such materials were expected to undergo pH-induced supramolecular self-

assembly in water, solution behavior was investigated by a combination of techniques, 

including 'H NMR spectroscopy, dynamic light scattering (DLS), and fluorescence 

spectroscopy. The presence of reactive tertiary amine functionality of M59 in the 

aggregate cores also facilitated a core cross-linking reaction by use of difunctional cross-

linking agent that could effectively "lock" the copolymers in the self-assembled state, 

which can be confirmed by 'H NMR spectroscopy and DLS analysis. 

Synthesis of schizophrenic polymer 

A less studied family of stimuli-responsive materials are AB diblock copolymers 

in which both building blocks are sensitive towards an applied stimulus - such materials 

have been termed "schizophrenic" by some researchers. A doubly responsive AB diblock 
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copolymer comprised of JV-isopropylacrylamide (M75) with 4-vinylbenzoic acid (M62) 

was synthesized via RAFT by using CTA26 as the mediating agent in DMF. The solution 

properties of this copolymer were studied by a combination of 'H NMR and DLS by 

controlling the aqueous solution pH and temperature. Both normal and inverse micelles 

were expected to be formed in aqueous media. 
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CHAPTER III 

THE SYNTHESIS AND EVALUATION OF NEW DICARBOXYLIC 
ACID FUNCTIONAL TRITHIOCARBONATES: THE RAFT 

SYNTHESIS OF 
TELECHELIC POLY(iV-BUTYL ACRYLATE)S 

Introduction 

The ability to synthesize functional (co)polymers in a controlled manner, i.e. with 

predetermined molecular weights, composition, and chain end functionality, has become 

increasingly important in recent years as the demand for materials in specialty 

applications grows. Fortunately, today the polymer chemist has many tools available to 

achieve these goals. Of particular note is the discovery and development of the 

controlled/living free radical polymerization techniques. For example, stable free radical 

polymerization (SFRP), best exemplified by nitroxide-mediated systems (NMP),92'9 

atom transfer radical polymerization (ATRP), " reversible addition-fragmentation chain 

transfer (RAFT) polymerization,9 ~101 tellurium-mediated radical polymerization 

(TERP), and quinone transfer radical polymerization (QTRP) are all versatile 

techniques for the preparation of well-defined polymers in a controlled fashion, although 

both TERP and QTRP have not yet been widely evaluated. Of these techniques, RAFT is 

arguably the most versatile, at least with respect to monomer choice. For example, 

monomers that have historically proven difficult to control via SFRP or ATRP can be 

readily polymerized in a controlled fashion via RAFT. Pertinent examples include the 

facile polymerization of both charged57"59'124 and neutral57'210'246'299 (meth)acrylamido 

monomers as well as 'problematic' species such as vinyl esters.349 
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Key to accomplishing successful RAFT polymerizations is appropriate choice of 

RAFT mediating agent, commonly referred to as the RAFT chain transfer agent (CTA) or 

more simply, RAFT agent. An advantage of RAFT is the wide range of CTAs that can be 

readily prepared thus facilitating the fine-tuning of a given polymerization system. 

Indeed, many research groups have, and continue to, report the preparation and 

evaluation of new RAFT agents. All RAFT agents are thiocarbonylthio compounds 

derived from dithioesters," dithiocarbamates,200 xanthates,192 or trithiocarbonates.201 

While the acronym RAFT encompasses all systems in which the above thiocarbonylthio 

compounds are employed as mediating agents, the acronym MADIX (Macromolecular 

Design by Interchange of Xanthate) is also used for those polymerizations which 

specifically employ xanthates. These thiocarbonylthio compounds differ only in the 

nature of the so-called Z and R groups. As a result of these structural differences not all 

RAFT agents are effective mediators for all monomers. However, some general classes 

are more 'universally' applicable than others. For example, the dithioesters are probably 

the most widely employed/versatile RAFT agents, whereas the xanthates do not typically 

work well for 'common' monomer families but have, for example, proven to be 

particularly effective for the vinyl ester family including vinyl acetate and the sugar 

derivative 6-O-vinyladipoyl-D-glucopyranose.349 The trithiocarbonates (TTCs) represent 

one of the least studied of the RAFT agent family, but have been attracting an increasing 

amount of attention recently. This is due, in part, to their ease of synthesis and 

purification. This is a distinct advantage when compared to the synthesis of many other 

RAFT agents. TTCs have proven to be especially useful for the controlled 

polymerization of styrenic, acrylate, and acrylamido monomer derivatives, and in some 
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instances under extremely facile conditions. For example, Lima and co-workers recently 

reported the use of trithiocarbonates RAFT agents for the synthesis of a range of 

telechelic poly(«-butyl acrylates) employing previously reported RAFT agents. 

As part of our continuing studies on RAFT polymerization we have synthesized a 

series of new functional TTCs for the polymerization of acrylic monomers. We report in 

this chapter the design and synthesis of three new dicarboxylic acid functional TTCs in 

which we have systematically varied the substitution about the TTC functionality. We 

have evaluated these new TTCs alongside previously reported literature examples in the 

polymerization of the model acrylic monomer 72-butyl acrylate (nBA). We show that 

some of these species are indeed highly effective for this particular monomer although, as 

expected, the overall degree of control is affected subtly by CTA structure, i.e. the nature 

of the Z and R groups. 

Experimental part 

Reagents were purchased from Aldrich Chemical Company at the highest 

available purity and used as received unless stated otherwise. n-Butyl acrylate (nBA) was 

passed over a column of basic alumina to remove inhibitor and stored in a refrigerator at 

O °C until needed. 2,2'-Azobis(isobutyronitrile) was recrystallized from methanol and 

stored in a refrigerator prior to use. 2-(l-Carboxy-l-methylethylsulfanyl 

thiocarbonylsulfanyl)-2-methylpropionic acid (CTA22) and 3-benzylsulfanyl 

thiocarbonylsulfanylpropionic acid (CTA24) were prepared according to literature 

procedures. 202,335 
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Synthesis of3-(2-carboxyethylsulfanylthiocarbonylsulfanyl)propionic acid (CTA25) 

3-Mercaptopropionic acid (10.6 g, 0.1 mol), distilled/deionized water (100 mL) 

and 50 wt % NaOH solution (16.0 g, 0.2 mol) was added to a 250 mL round bottomed 

flask equipped with magnetic stir bar. This mixture was stirred for 30 min prior to the 

dropwise addition of carbon disulfide (6.0 mL, 0.1 mol). The resulting yellow solution 

was stirred overnight. 3-Bromopropionic acid (15.3 g, 0.1 mol) was added dropwise to 

the yellow solution and the mixture stirred overnight. The reaction mixture was acidified 

by the addition of concentrated hydrochloric acid and the resulting precipitate was 

collected using a Bucher funnel and flask. The product was washed with deionized water 

and then dried in vacuo overnight. Yield: ca. 90 % lU NMR (d6-DMSO) 5 (ppm): 2.65 (t, 

-CH2-COOH), 3.51 (t, -S-CH2), 12.5 (s, -COOH). 13C NMR (d6-DMSO) 5 (ppm): 32.3 (-

CH2-COOH), 33.0 (-S-CH2-), 173.0 (C=0), 224.9 (C=S). CHSO elemental 

microanalysis. Theoretical: C, 33.06 %; H, 3.96 %; O, 25.16 %; S, 37.82 %. Found: C, 

33.16 %; H, 3.67%; O, 25.68 %; S, 37.49 %. Mp: 110.2 °C. 

Synthesis of2-(2-carboxyethylsulfanylthiocarbonylsulfanyl)propionic acid (CTA26) 

The target compound was prepared in the same manner as CTA25 except 2-

bromopropionic acid was used in place of 3-bromopropionic acid. Yield: ca. 90 %. !H 

NMR (d6-DMSO) 5 (ppm): 1.55 (d, CH3-CH), 2.74 (t, -CH2-COOH), 3.59 (t, -CH2-S-), 

4.77 (quar, -S-CH-CH3(COOH)). 13C NMR (d6-DMSO) 5 (ppm): 17.4 (CH3-CH), 32.5 

(CH2-COOH), 32.9 (-CH2-S-), 48.9 (-CH-COOH), 172.2 (COOH-CH-), 173.1 (COOH-

CH2-), 222.9 (C=S). CHSO elemental microanalysis. Theoretical: C, 33.06 %; H, 3.96 
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%; O, 25.16 %; S, 37.82 %. Found: C, 33.18 %; H, 3.75 %; O, 25.72 %; S, 37.35 %. Mp: 

126.0 °C. 

Synthesis of2-(2-carboxyethylsulfanylthiocarbonylsulfanyl)-2-methylpropionicacid 

(CTA27) 

3-Mercaptopropionic acid (10.6 g, 0.1 mol), distilled/deionized water (100 mL) 

and 50 wt % NaOH solution (16.0 g, 0.2 mol) was added to a round bottom flask 

equipped with a magnetic stir bar. The solution was stirred for 30 min prior to the 

dropwise addition of carbon disulfide (6.0 mL, 0.1 mol). The resulting yellow solution 

was stirred at room temperature overnight. Chloroform (29.9 g, 0.25 mol) and acetone 

(16.8 g, 0.3 mol) were then added followed by the dropwise addition of 50 wt % NaOH 

solution (60.0 g, 0.75 mol). Also a small 'pinch' of tetrabutylammonium hydrogen sulfate 

(TBAHS) was added to aid in phase transfer. The mixture was stirred at room 

temperature overnight. The mixture was acidified with concentrated hydrochloric acid 

and the resulting precipitate isolated by filtration with a Buchner funnel and flask. The 

precipitated was washed with distilled/deionized water. The product was then dried in 

vacuo overnight. Yield: ca. 40 %. *H NMR (d6-DMSO) 5 (ppm): 1.59 (s, C(CH3)2), 2.62 

(t, -CH2-COOH), 3.43 (t, -CH2-S), 12.7 (s, -COOH). I3C NMR (d6-DMSO) 5 (ppm): 25.5 

(-C(CH3)2, 32.0 (-CH2-S-), 35.0 (COOH-CH2-), 57.1 (-S-C(CH3)2COOH), 173.0 (C=0), 

173.6 (C=0), 222.1 (C=S). CHSO elemental microanalysis. Theoretical: C, 35.80 %; H, 

4.51 %; O, 23.85 %; S, 35.84 %. Found: C, 36.52 %; H, 4.54 %; O, 25.82 %; S, 33.12 %. 

Mp: 179.5 °C. 
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Homopolymerization ofn-butyl acrylate under bulk conditions 

Below is a typical procedure for the homopolymerization of n-butyl acrylate 

under bulk conditions at 70°C employing CTA26 as the RAFT agent: 

w-Butyl acrylate (12.8 g, 0.1 mol), CTA26 (108 mg, 0.427 mmol) and AIBN 

(-4.0 mg, 2.1 xlO"2 mmol) was added to a 50 mL round bottom flask equipped with a 

magnetic stir bar. The mixture was stirred for at least 30 min to ensure complete 

dissolution of CTA26 and AIBN in the monomer. Aliquots (2.0 mL) were transferred to 

10 different vials (10.0 mL capacity) which were then sealed with rubber septa. Each vial 

was purged with nitrogen for 15 min. The vials were then immersed in a pre-heated oil 

bath at 70 °C. Vials were removed at various time intervals and polymerization halted by 

immediate exposure to air and cooling with liquid nitrogen. The samples were analyzed 

using a combination of size exclusion chromatography (SEC) and NMR spectroscopy. 

Block copolymerization 

Below is a typical procedure for the block copolymerization of /?BA under bulk 

conditions at 70 °C employing a poly(rc-butyl acrylate) macro CTA derived from CTA26: 

tt-Butyl acrylate (6.4 g, 0.05 mol), macro-CTA (1.85 g, 7.12 x 10"2 mmol), and 

AIBN (~1.0 mg) was added to a 50.0 mL round-bottomed flask equipped with a magnetic 

stir bar. The mixture was purged with dry N2 for approximately 20 min prior to being 

immersed in a pre-heated oil bath at 70 °C. The copolymerization was allowed to proceed 

for ~1 h prior to being terminated by exposure to air and quenching in liquid nitrogen. 
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Analysis tools 

lU (300 MHz) and 13C (75 MHz) NMR spectra were recorded on a Bruker 300 53 

mm spectrometer in either deuterated chloroform (CDCI3) or deuterated 

dimethylsulfoxide (d6-DMSO). CHSO elemental microanalyses were performed by 

Quantitative Technologies Inc. Polymer molecular weights, molecular weight 

distributions, and polydispersity indices were determined by SEC in N,N-

dimethylformamide (DMF)/NEt3 at a flow rate of 1.0 mL min"1 and 40 °C. The SEC 

system was comprised of a Waters 515 HPLC pump, Waters 2410 RI detector, column 

oven, and a PolymerLabs PLgel 5^m MIXED-C 300 x 7.5 mm column (linear molecular 

weight range: 200 - 2,000,000 g/mol). The column was calibrated with a series of narrow 

molecular weight distribution poly(methyl methacrylate) standards (PolymerLabs). Data 

were analyzed with the Waters Empower software package. 

Results and Discussion 

Trithiocarbonates (TTC's) are a family of compounds that are effective mediating 

agents for the controlled RAFT polymerization of certain monomer classes. In particular, 

TTC's are especially applicable to the controlled polymerization of styrenic, acrylic, and 

acrylamido derivatives. ' ' " Recently, for example, we have been examining 

TTC's as RAFT agents for the controlled polymerization of acrylamide, N-

isopropylacrylamide, and other structurally similar monomers. As part of our 

continuing studies, we decided to extend our monomer pool and examine the RAFT 

polymerization of commercially important functional acrylic species. Several efficient 

TTC's, such as CTA22-CTA24 (Figure III-l) have been reported in the literature.202'352 
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However, to date there are no reports of the systematic evaluation of TTCs in which the 

nature of the substituents (Z and R groups) is varied. In these preliminary studies we 

designed and synthesized three new TTCs, namely CTA25, CTA26, and CTA27 (Figure 

III-l) and compared them to the previously reported species CTA22 and CTA24. This 

was motivated by the desire to i) conduct a fundamental study examining the systematic 

change in trithiocarbonate R-group structure, i.e. primary vs. secondary vs. tertiary alkyl 

species, ii) to prepare novel dicarboxylic acid functional TTCs capable of yielding a,co-

functional polymers, and iii) to prepare novel water-soluble RAFT agents (although this 

initial screening describes their effectiveness in polymerizations of a model hydrophobic 

acrylic monomer under bulk conditions). 

H°2cA,JL/kc°2H 

n-C12H26. I A C ° 2 H 

S 

CTA22 

S 

1 

CTA23 

CTA24 

H O j C . ^ 

H O z C ^ 

^ V g A g / ^ C O j H 

CTA25 

s 1 

^ S " ^ S C02H 

CTA26 

H O a C ^ ^ g A g J ^ 0 0 ^ 

CTA27 

Figure III-l. Chemical structures of the trithiocarbonates evaluated for the RAFT 
polymerization of rc-butyl acrylate. 

Design Rationale 

While CTA22 and CTA24 have proven to be effective RAFT agents, there are 

some drawbacks to each of these species, at least with respect to the research aims as 

outlined above. CTA22, while readily water-soluble, is symmetrically substituted about 
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the TTC core (i.e. the Z and R groups are identical), and therefore acts as a difunctional 

RAFT agent with chain propagation occurring in both directions from the central TTC 

functional group. As such it offers a very convenient route to ABA triblock copolymers 

but is of limited use for the preparation of AB diblock copolymers unless one cleaves the 

trithiocarbonate functionality post-polymerization, i.e. includes an additional synthetic 

step. CTA24 was designed to facilitate chain growth in only one direction. This is by 

virtue of the unsymmetrical nature of the substitution about the TTC core. In this instance 

we can consider the CO2HCH2CH2S- species as the Z-group and the benzylic 

functionality as the R group. Fragmentation of CTA24 is clearly favored in the direction 

that yields the more stable benzylic radical. While CTA24 is an effective RAFT 

agent ' and is further highlighted here (vide infra), it does suffer from reduced 

aqueous solubility by virtue of the hydrophobic benzylic fragment. Additionally, it does 

not yield a,co-dicarboxylic acid functional materials. These apparent 'drawbacks' for 

CTA22 and CTA24 do not make these ineffective RAFT agents; on the contrary, they 

merely do not meet the design criteria of being highly water-soluble and capable of 

yielding dicarboxylic acid telechelic AB diblock copolymers directly. CTA25-CTA27 

were designed specifically to address the issue of preparing such telechelic materials 

while simultaneously evaluating the effect of the nature of the 'R' group. In all instances 

the Z group can be considered to be the CO2HCH2CH2-S- species, while the R group is 

varied from a primary (CTA25) to a secondary (CTA26) to a tertiary (CTA27) 

functional group. Since one important factor determining the overall effectiveness of 

RAFT agents is the ease of fragmentation of the R-group, we anticipate that, all other 
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things being equal, the effectiveness of CTA25-CTA27 should increase in the order 

CTA25 < CTA26 < CTA27. 

Trithiocarbonate synthesis. 

CTA22 and CTA24 were prepared according to literature procedures. ' 

CTA25, CTA26, and CTA27 were synthesized according to Scheme III-1. Initially, the 

disodium salt of 3-dithiocarboxysulfanylpropionic acid was prepared from the reaction of 

the disodium salt of 3-mercaptopropionic acid with carbon disulfide. CTA25, CTA26, 

and CTA27 were then obtained from the reaction of the disodium salt of 3-

dithiocarboxysulfanylpropionic acid with 3-bromopropionic acid, 2-bromopropionic acid 

and 2,2-dichloro-3,3-dimethyloxirane respectively. The use of the disodium salt of 3-

dithiocarboxysulfanylpropionic acid as a nucleophilic reagent is particularly 

advantageous since it can be prepared on a large scale and is readily isolated and stored 

for extended periods. The structures of these novel TTCs were confirmed by a 

combination of NMR spectroscopy and elemental microanalysis. 
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H 0 2 C 
,SH + S=C=S H 0 2 C 
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X 0 2 H 

S^ ^ S ^ ^CO?H 

CTA27 

Scheme III-l. The synthetic outline for the preparation of CTA25, CTA26, and CTA27. 

Evaluation of trithiocarbonates in the polymerization of n-butyl acrylate. 

Having prepared CTA22, CTA24, and CTA25-CTA27 their effectiveness as 

RAFT agents was compared using the model acrylic monomer n-butyl acrylate (nBA). In 

particular we were concerned with the effect of TTC structure, and the ratio of the initial 

TTC concentration to the initiator concentration ([TTC]o:[AIBN]o), on both the kinetic 

and number-average molecular weight (Mn) profiles. Table III-l summarizes the 

experimental variables in this series of experiments. 
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In the initial series of experiments, the five TTCs were evaluated at 70 °C and a 

[TTC]o:[AIBN]o of 20:1. In all instances the target molecular weight at quantitative 

conversion was 30,000 g/mol ([nBA]:[TTC] = 234). Polymerizations were conducted 

under bulk conditions, although in the case of CTA22 and CTA27 a small amount (~5 

vol %) of DMF was required to aid in the dissolution of the TTC. Figure III-2 shows the 

pseudo first order kinetic plots for the nBA homopolymerizations employing CTA22 and 

CTA24 (A), CTA25-CTA27 (B), as well as the corresponding Mn and Mw/Mn vs. 

conversion plots (C and D). 

For CTA22 and CTA24 the kinetic profiles are very similar with the slopes (i.e. 

the apparent rate constant, Kapp) being essentially identical. For CTA24 the linear fit 

passes through the origin whereas there appears to be a small induction period of ca. 5 

min in the case of CTA22. Such induction periods are not uncommon in dithioester-

mediated RAFT systems.42'58'124'236'246'253 In contrast, such induction periods are not 

typical of TTC-mediated systems and we ascribe the observed small induction period 

here to a small amount of residual oxygen. Regardless of the cause, given the close 

similarity of the kinetic profiles it is apparent that the main RAFT equilibrium is rapidly 

established. In the case of CTA25-CTA27, the kinetic profiles are also near-identical 

with all fits passing through the origin. Indeed, the kinetic profiles of the new TTCs as 

well as CTA22 and CTA24 are all similar indicating that from a purely kinetic 

standpoint all the RAFT agents perform equally well, at least under the initially screened 

conditions. The experimentally determined apparent first order dependence on monomer 

concentration is interesting since alkyl acrylates, under normal stationary free radical 

polymerization conditions, are well-known to deviate from this first-order dependence 
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with [M] exponents in the range 1.4-1.8. Such deviations have been rationalized in terms 

of intramolecular chain transfer to polymer as recently discussed by Nikitin and 

Hutchinson.354 However, the kinetic plot is not expected to be sensitive to the occurrence 

of such chain transfer reactions. 
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Figure III-2. The pseudo first order kinetics plots for CTA22, CTA24 (A) and CTA25-
CTA27 (B) for w-butyl acrylate at 70 °C under bulk conditions with [TTC]0:[AIBN]0 = 

20:1, and the corresponding Mn and Mw/Mn vs. conversion plots (C and D). 

This near-uniformity in the kinetic profiles is not, however, equally manifest with 

respect to the molecular weight control in these polymerizations. In the case of CTA22 



excellent agreement is observed between the theoretical and observed Mn up to ca. 30% 

conversion after which a significant deviation to lower Mn values is observed. This 

negative deviation occurs simultaneously with the appearance of a much higher 

molecular weight species which is clearly visualized in the SEC traces, see Figure III-3, 

this higher molecular weight species has a poly(methyl methacrylate) equivalent Mn of > 

200,000 g/mol. 

Retention Time (min) 

Figure III-3. SEC traces (RI signal) for the bulk homopolymerization of nBA at 70 °C 
with CTA22 with [CTA22]0:[AIBN]0 = 20. 

Most previous studies involving the use of CTA22 in acrylate polymerizations 

have typically targeted very low molecular weights. For example, in their report of the 

use of CTA22 and CTA23 as mediators in acrylic polymerizations, Lai and coworkers 

reported experimentally determined molecular weights in the range of ~ 1,100 - 6,800 

g/mol for monomers such as ethyl and butyl acrylates.202 In the single example where a 

higher molecular weight ethyl acrylate homopolymer was targeted, molecular weight 
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control was lost and the resulting polydispersity index was 1.43. The lower than 

predicted molecular weights observed here for the main population of propagating chains 

can clearly be attributed to the presence of the higher molecular weight species. One 

possible explanation is that, upon reaching a critical degree of polymerization, the central 

trithiocarbonate core becomes so sterically hindered that the addition of a polymeric 

propagating chain across the C=S bond becomes difficult. Figure III-4 shows a 

schematic representation as well as a space-filling model of a polynBA 22-mer (M„ ~ 

2,800 g/mol). The accessibility to the S atom of the central C=S bond apparently becomes 

somewhat reduced as the DPn increases. However, the actual degree of hindrance is 

anticipated to be a function of adopted chain conformation which in turn is expected to be 

a function of monomer structure and polymerization conditions, i.e. bulk vs. solution. As 

such the critical chain length at which addition to the C=S bond by a polymeric 

macroradical starts to become difficult may well be highly system dependent. However, 

further studies in which a closer examination of the effect of targeted DPn and the 

resulting overall control of molecular weight will be necessary to confirm this hypothesis. 

However, as the accessibility to the TTC core drops, especially for higher 

molecular weight polymer chains, the free propagating chains have the ability to grow in 

an uncontrolled fashion to much higher-than-predicted molecular weights. Since the 

radical concentration (propagating chains in this case) is dictated by [AIBN] and since 

[CTA22]o:[AIBN]o = 20 only a very small number of these high molecular weight 

species are present. Even so, only a few chains need propagate to high molecular weight 

to effect the observed molecular weight deviation for the main population of lower 

molecular weight chains. The CTA24-mediated polymerization did proceed with good 
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control over the molecular weight with the experimentally determined values being close 

to the theoretically expected values based on the fractional conversion. The evolution of 

Mn with conversion was linear with little/no deviation from the expected Mn values until 

higher conversions were attained. The minor deviations at theses higher conversions may 

be due to the fact that the experimentally determined molecular weights are not absolute 

but are relative to poly(methyl methacrylate) standards. However, we cannot dismiss the 

possible occurrence of undesirable chain transfer reactions (either to monomer or 

polymer) as a possible cause for the observed deviation. " Indeed, it is now well 

established that alkyl acrylates readily undergo both inter- and intramolecular chain 

transfer to polymer even at sub-ambient temperatures. The occurrence of such side-

reactions is expected to manifest itself in the Mn vs. conversion plot as a negative 

deviation (lower apparent molecular weight).356 However, the generally good kinetic and 

molecular weight profiles observed for CTA24 are consistent with previous reports 

detailing the use of this TTC in RAFT polymerizations. For both CTA22 and CTA24, 

the polydispersities decrease with increasing conversion to final values in the range of ~ 

1.10-1.20, well below the theoretical lower limit of 1.50 for a normal free radical 

polymerization and in the range typical for RAFT-prepared (co)polymers. 
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Figure III-4. Schematic representation and space filling model demonstrating the 
proposed steric shielding of the TTC core in CTA22-mediated polymerizations. 
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Figure III-2D shows the Mn and Mw/Mn vs. conversion profiles for CTA26 and 

CTA27. The molecular weight data for CTA25 is not included since no control was 

observed. Figure III-5 shows the SEC traces (RI signal) for the CTA25-mediated 

polymerization of nBA. The behavior of the nBA polymerization in the presence of 

CTA25 is clearly much more complicated than in the case of the other TTCs. The 

resulting molecular weight distribution is complex with, at the very least, a trimodal 

distribution being observed. Additionally, we note that the retention times for all the 

species in the molecular weight distribution remain essentially constant with their 

concentration simply increasing with increasing conversion. This is a feature more 

closely associated with conventional free radical polymerization behavior. 

Retention Time (min) 

Figure III-5. SEC traces (RI signals) for the bulk homopolymerization of nBA at 70 °C 
with CTA25 with [CTA25]0:[AIBN]0 = 20. 

The inability of CTA25 to effectively mediate the polymerization of nBA is not 

surprising when one considers the nature of the intermediate radical formed from the 
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addition of either a primary (AIBN-derived) radical or oligomeric nBA radical to the 

C=S, see Scheme III-2. 
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fragmentation 
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CN 

S " "S ' 

CIP-CTA25 

,C02H 

CN 

.SAS + .C02H 

Scheme III-2. Possible addition-fragmentation pathways for the CTA25-mediated 
polymerization of nBA using AIBN as the source of primary radicals. 

The addition of a cyanoisopropyl (CIP) radical to CTA25 will yield the 

intermediate radical labeled CIP-CTA25, Scheme III-2. As with any RAFT agent these 

addition steps are reversible. However, to function as effective mediating agents, 

fragmentation of the CIP-CTA25 intermediate radical must be favored in the direction of 

the R group - indeed this is obviously a prerequisite for effective molecular weight 

control, i.e. there must be a fine balance between the forward and reverse rates of 

addition and fragmentation and the rates of reinitiation and propagation for effective 

control. However, in the case of CTA25, the desired 'forward' fragmentation will yield a 

primary alkyl radical, i.e. the CC^HCHaCHa* radical species. A much lower energy 

fragmentation pathway exists, namely the 'reverse' fragmentation of CIP-CTA25 to 

regenerate the tertiary CIP radical and CTA25. Clearly, of these two possible 
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fragmentation pathways, the undesirable 'reverse' fragmentation will be favored. As 

such, the cyanoisopropyl radical is most likely the species primarily responsible for chain 

initiation. While Scheme III-2 depicts an extreme case in which there is no forward 

fragmentation, given the complex resulting molecular weight distribution observed in 

Figure III-5, it seems likely that some chains are initiated as a result of the fragmentation 

in the preferred forward direction. A recent ab initio study by Coote and Radom359 

describing the effect of alkyl substituents (Z' in CH3SC(OZ')S-CH2OCOCH3) in the 

xanthate-mediated polymerization of vinyl acetate clearly demonstrated that 

fragmentation of intermediate radicals (at least for the series of xanthates evaluated) is 

not only a function of resulting radical stability but also of reactant/product stabilities and 

can, in certain instances, lead to an unexpected fragmentation pathway as a result of this 

balance. However, it still seems likely that the majority of chains are initiated by AIBN-

derived primary radicals. Since the [AIBN] is much lower than the rCTA251, molecular 

weight control is also lost, Table III-1. This non-ideal RAFT behavior may be 

compounded by the fact that even after formation of nBA oligomers, addition of these 

radical species to CTA25 yields a radical intermediate with x2 primary R groups and a 

secondary oligomeric nBA species, thus still favoring 'reverse' fragmentation, although 

not, most likely, to the same extent as in the case of an AIBN-derived primary radical. 

Indeed the degree of R-group fragmentation might be expected to increase as more 

primary radicals are converted to nBA oligomeric species. While the kinetic plot (Figure 

III-2B) for the CTA25-mediated homopolymerizations indicated pseudo-first order 

kinetics (a feature often cited as being indicative of a controlled/living polymerization ) 

this alone clearly does not confirm controlled polymerization, as is evident in the 
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molecular weight vs. conversion profile, but merely indicates a constant number of active 

species. Indeed, such pseudo-first order kinetic behavior is also expected in a 

conventional free radical polymerization under steady state conditions. All things 

considered, therefore, we would advise against the use of CTA25 in conjunction with 

AIBN as an effective CTA/initiator combination for the polymerization of nBA. 

In contrast to CTA25, both CTA26 and CTA27 are very effective mediating 

agents (Figure III-2D) yielding homopolymers with both good molecular weight control 

and low polydispersities. Indeed, the ability of these two new TTCs to control the 

molecular weight is comparable, if not superior to that of CTA24. As with CTA24 the 

Mn vs. conversion plots are linear and show only small deviations from the theoretical Mn 

at > 90% conversion. Again, these small deviations could be due to the occurrence of 

undesirable inter or intramolecular chain transfer reactions to polymer as discussed 

above. The enhanced control observed in the case of CTA26 and CTA27 vs CTA25 is 

clearly related to the now favored 'forward' fragmentation of intermediate radicals, i.e. 

TTC activation, which is a direct result of the secondary and tertiary nature, and 

(meth)acrylate like structure, of the R groups in CTA26 and CTA27 respectively. 

Effect of [TTC]0:[AIBN]0 

Having demonstrated that both CTA26 and CTA27 have the ability to mediate 

nBA homopolymerizations at least as effectively as other previously reported TTCs we 

decided to examine the effect of [TTC] o: [AIBN] o on the polymerization kinetics for these 

two species, see Table III-l. This ratio can often be a critical factor in determining the 

overall success of a RAFT polymerization at least with respect to control over the 
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molecular weight and molecular weight distribution. In the case of dithioesters a typical 

[CTA]o:[I]o ratio is 5:1. Lower ratios, while often resulting in faster polymerizations may 

be less controlled, whereas higher ratios may afford better overall control but often at the 

expense of polymerization time.246 

Figure III-6 shows the pseudo-first order kinetic plots for the homopolymerization 

of nBA at 70 °C and ratios of 10:1, and 5:1 for both CTA26 (A) and CTA27 (B). The 

plots in all instances are essentially linear with the best fits passing through the origin. As 

expected, in both instances the polymerizations proceed more quickly at lower 

[TTC]o:[AIBN]o ratios. This is consistent with previous reports on the effect of 

[TTC]o:[I]o for TTC-mediated polymerizations. For example, Convertine et al. recently 

described the room temperature polymerization of ./V-isopropylacrylamide employing 

CTA23 in DMF and clearly demonstrated the kinetic effect of changing the ratio of 

CTA23 to the azo initiator with lower ratios resulting in faster polymerizations. 
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Figure III-6. Pseudo first order kinetic plots for the bulk homopolymerization of nBA at 
70 °C employing CTA26 and CTA27 at [TTC]0:[AIBN]0 = 5 and 10. 
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Figure IH-7. SEC traces (RI signals) for a poly(«-butyl acrylate) homopolymer (Mn -
25,900 g/mol, Mw/Mn = 1.09) prepared with CTA26 and the resulting nBA-nBA 'block' 

copolymer (Mn - 150,100 g/mol, Mw/Mn =1.11). 

Perhaps the most telling indicator of a controlled/"living" polymerization is the 

ability to prepare block copolymers by sequential monomer addition or by isolating the 

first block, purifying it, and then employing it as a macro-initiating species (or 

macroRAFT agent in this case) for the subsequent block copolymerization. As such, and 

to demonstrate the full utility of these new TTCs, we have conducted a self-blocking 

experiment, i.e. polymerized nBA from a polynBA homopolymer, employing a 

homopolymer derived from CTA26 as the macroRAFT agent. Figure III-7 shows the 

SEC traces (RI signal) for the macro-RAFT agent as well as the resulting 'block' 

copolymer. The macro-RAFT agent has a Mn of-26,000 g/mol and polydispersity index 
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of 1.09 with the resulting block copolymer having an experimentally determined Mn of 

-150,000 g/mol and polydispersity index of 1.11. The SEC traces indicate extremely 

high reinitiation efficiency with the resulting block copolymer possessing an essentially 

symmetrical unimodal molecular weight distribution. There is some detectable presence 

of lower molecular weight species (small hump on the right of the main block copolymer 

peak) which we ascribe to macro-RAFT agent impurity, and there is likewise a small 

higher molecular weight impurity which is most likely a result of undesirable termination 

reactions. However, both are present in very small quantities relative to the main block 

copolymer species and thus we conclude that the overall blocking efficiency is very high. 

Summary/Conclusions 

Here we have reported the synthesis of three new trithiocarbonates (CTA25-

CTA27) in which the nature of the substitution about the TTC functional group has been 

systematically varied. We have subsequently evaluated their effectiveness as mediating 

agents in the RAFT homo- and block polymerization of «-butyl acrylate. Both CTA26 

and CTA27, TTCs with potential secondary and tertiary alkyl leaving (R) groups, 

perform as well as previously reported TTCs and yield poly(«-butyl acrylate) 

homopolymers with good molecular weight control and low polydispersities. CTA25 was 

shown to be ineffective by virtue of the proposed favored "reverse" fragmentation 

pathway as opposed to the required "forward" pathway required for effective molecular 

weight control. The use of CTA22 as a mediating agent for the homopolymerization led 

to bimodal molecular weight distributions with a significantly high molecular weight 

impurity. We speculate that this arises due to a steric crowding effect of the central C=S 
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bond making the addition reaction difficult and resulting in some degree of uncontrolled 

polymerization. However, further experiments are required to prove/disprove this. The 

effect of [TTC]o:[AIBN]0 was determined for CTA26 and CTA27 and it was shown that 

the polymerizations were faster at the lower [TTC]o:[AIBN]o ratios. Finally, we 

demonstrated the ability to form AB 'diblock' copolymers with nBA with high re

initiation efficiency employing a poly(n-butyl acrylate) macroRAFT agent. The synthesis 

of these new trithiocarbonates now allows the facile preparation of dicarboxylic acid 

telechelic poly(alkyl acrylates) under straightforward conditions. We are currently 

extending our studies to the preparation of more highly functional materials. 
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CHAPTER IV 

RAFT POLYMERIZATION OF STYRENIC-BASED 
PHOSPHONIUM MONOMERS, AND A NEW FAMILY OF WELL-

DEFINED STATISTICAL AND BLOCK POLYAMPHOLYTES 

Introduction 

The ability to prepare polymeric materials with controllable molecular 

characteristics has undergone significant advances in the past decade. For example, 

since its disclosure in the open-literature in 1998 by researchers at CSIRO,99'223 reversible 

addition-fragmentation chain transfer (RAFT) radical polymerization, Scheme IV-1, has 

proven itself to be an extremely versatile synthetic technique that facilitates the controlled 

polymerization of a wide range of functional monomers under a broad range of 

experimental conditions.362"366 One particularly useful feature of RAFT relates to its 

application for the synthesis of water-soluble/dispersible (co)polymers (WSPs) under 

homogeneous conditions in either organic or directly in aqueous media. ' ' For 

example, RAFT has been successfully employed for the synthesis of (co)polymers based 

on the (meth)acrylamido,208'210'367-372 (meth)acrylic,257'370 and styrenic families50'61'370'373 

of monomers containing neutrai550,208,2io,246,253,257,368,374-377 anionic?58-6.,372 

cationic,61'255'373'378'379 and zwitterionic (betaine)122'124'298'370 hydrophilic functionality. 

Aside from the choice of monomeric substrate, a wide range of RAFT mediating 

agents199'213 (RAFT CTAs) have likewise been evaluated for the preparation of WSPs.362 

All of the major families of RAFT CTAs have been employed including derivatives of 

trithiocarbonates, dithioesters, xanthates, and dithiocarbamates. 
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Scheme IV-1. A simplified RAFT mechanism. 

Within the family of WSPs cationic, or potentially cationic, materials are 

particularly interesting due to their varied aqueous solution properties and potential 

applications.38 To date, a wide range of cationic/amine-containing substrates from 

various monomer families have been polymerized via RAFT in both aqueous and non

aqueous media. For example, one of the earliest reports outlining the controlled 

polymerization of amine/ammonium-containing substrates was by Mitsukami et al.61 who 

described the synthesis of AB diblock copolymers of A^iV-dimethylbenzylvinylamine 

(DMBVA, M59) and the permanently cationic species (ar-vinylbenzyl)trimethyl-

ammonium chloride (VBZ, M62). More recently, Mitsukami and coworkers373 reported 

the synthesis of a series of the same styrenic-based amine/ammonium block copolymers61 

and conducted detailed aqueous solution studies of these materials as a function of 

solution pH and clearly demonstrated the effect of copolymer composition and 

architecture (block vs. statistical structures) on the size of the pH-induced nano-sized 

supramolecular assemblies. Sumerlin et al.50 reported the synthesis and aqueous solution 



properties of pH-responsive copolymers comprised of JV,iV-dimethylacrylamide (M74) 

with DMBVA (M59) and likewise demonstrated the ability of such copolymers to 

undergo reversible pH-induced supramolecular self-assembly as well as the ability to 

form novel core-crosslinked polymer aggregates. Styrenic derivatives are not the only 

types of amine/ammonium monomers that have successfully polymerized in a controlled 

manner under RAFT conditions. (Meth)acrylamido and (meth)acrylate substrates, such as 

2-(dimethylamino)ethyl methacrylate (DMAEMA, M87)379 and JV-[3-

(dimethylamino)propyl]-methacrylamide (M105) have also been successfully homo- and 

copolymerized in both aqueous and non-aqueous media. What is clear, however, is that 

all cationic monomers that have so far been polymerized via RAFT have contained 

tertiary amine and/or quaternary ammonium functional group(s). 

A more specialized, and complex, family of ionic materials are polyampholytes 

(PAMs),67'81'103'381 which are polyzwitterions that contain, or potentially contain, both 

cationic and anionic residues located on different repeat units, in contrast to the other 

major family of polyzwitterions-the polybetaines. ' ' ' A review of the literature 

indicates that the cationic building block in all reported synthetic polyampholytes has, 

likewise, been either an amine or ammonium species while the anionic building block 

may be a carboxylate or sulfonate species for example. Synthetic examples of such 

materials have been known since thel950's,81but even today there are relatively few 

examples of controlled-structure statistical or block PAMs, and many of these are 

attainable only after recourse to either functional group protection/deprotection protocols 

0 1 TOT 

or the post-polymerization modification of suitably functional precursor materials. ' 
l o r 

The direct synthesis of polyampholytes, i.e. without resorting to either protecting 
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group chemistry or post-polymerization modification, has only been reported several 

times previously. Armes and co-workers71 described the nitroxide-mediated 

polymerization of sodium styrenesulfonate (M61) in an ethylene glycol/water mixture in 

which the resulting homopolymer was employed as a macroinitiator for the block 

copolymerization with various comonomers including 2-vinylpyridine (2VP, M23) and 

M59 to yield the corresponding block PAMs. Polymerization yields were very low for 

the M23 copolymerization but significantly better in the case of M59 comonomer. More 

recently, Xin et al.386 reported the RAFT synthesis of AB diblock copolymers of M87 

with sodium acrylate (NaA). M87 was polymerized first in the presence of cumyl 

dithiobenzoate with AIBN in anisole to yield homopolymers with well-controlled 

molecular masses and narrow molecular mass distributions. The polyM87 homopolymers 

were then employed as macro RAFT agents for the block copolymerization with NaA 

directly in water. Block copolymer formation was confirmed via a combination of 

aqueous size exclusion chromatography, and NMR and FTIR spectroscopies. The 

aqueous solution properties of the resulting block polyampholytes were also briefly 

examined. 

In light of these limited reports, especially with PAMs prepared in a direct fashion 

via CRP methods, we decided to examine the feasibility of employing RAFT as a 

synthetic technique for the direct synthesis of new examples of controlled-structure 

statistical and block PAMs. We report in this chapter our preliminary results concerning 

the homopolymerization of styrenic-based cationic phosphonium monomers (M63 and 

M106 in Figure IV-1) and 4-vinylbenzoic acid (VBZ, M62 in Figure IV-1) in aqueous 

and non-aqueous media using an acid-functional, water-soluble trithiocarbonate CTA 
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whose synthesis were described in Chapter III.387 We demonstrate the controlled nature 

of the homopolymerizations of the monomeric substrates as evidenced from the 

experimentally determined molecular characteristics. Subsequently we show the ability 

to prepare statistical PAMs with kinetic characteristics different to those of the 

homopolymerizations of the cationic or M62 monomers. Finally, we employ 

phosphonium macroCTAs for the block copolymerization with M62 to yield the first 

examples of PAMs with a cationic phosphonium building block, and only the second 

example describing the direct synthesis of such materials via RAFT. 

Experimental Part 

All reagents were purchased from the Aldrich Chemical Company at the highest 

purity available and used as received unless stated otherwise. 2-(2-Carboxyethylsulfanyl 

thiocarbonylsulfanyl) propionic acid (CTA26) was prepared according to the method 

outlined in Chapter III. 2,2'-Azobis(2-methylpropionitrile) (AIBN) was recrystallized 

from methanol and stored in a freezer until needed. 4,4'-Azobis(4-cyanovaleric acid) (V-

501) was purchased from Wako Chemicals, recrystallized from methanol and stored in a 

freezer until needed. 

Synthesis of4-Vinylbenzyl(trimethylphosphonium) chloride (M63) 

To a 500 mL conical flask equipped with a magnetic stir bar was added 4-

vinylbenzyl chloride (15.25 g, 0.1 mol) and 100 mL of trimethylphosphine solution (1.0 

M in THF). The mixture was then stirred at room temperature for 3 days yielding a white 
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precipitate. The precipitate was collected by Buchner filtration, washed with THF and 

dried in vacuo overnight at room temperature. Yield: ca. 85 %. 

Synthesis of4-Vinylbenzyl(triphenylphosphonium) chloride (Ml06) 

To a 500 mL conical flask equipped with a magnetic stir bar was added 4-

vinylbenzyl chloride (15.25 g, 0.1 mol), triphenylphosphine (26.20 g, 0.1 mol) and 

benzene (100 mL). The mixture was then stirred at room temperature for 3 days yielding 

a white precipitate. The precipitate was collected by Buchner filtration, washed with 

acetone and dried in vacuo overnight at 40°C. Yield: ca. 80 %. 

Synthesis of 4-vinylbenzoic acid (M62) 

To a 500 mL round-bottomed flask equipped with a magnetic stir bar was added 

a-bromo-p-toluic acid (19.0 g, 0.088 mol), triphenylphosphine (26.2 g, 0.10 mol), and 

acetone (200 mL). The flask was then immersed in a preheated oil bath at 60°C and left to 

stir overnight. Subsequently, the resulting precipitate was isolated by Buchner filtration. 

To a 1L round-bottomed flask equipped with a magnetic stir bar was added the isolated 

solid along with formaldehyde (360 mL of a 37 wt% aqueous solution), distilled water 

(170 mL) and sodium hydroxide (28.0 g, 0.70 mol) dissolved in 170.0 mL of deionized 

water. The mixture was stirred vigorously for ca. 3 h after which the solution was filtered 

to remove the precipitated triphenylphosphine oxide. The filtrate was subsequently 

acidified with cone. HC1 and the resulting precipitate isolated as the crude product by 

Buchner filtration. The crude product was washed with distilled water and subsequently 

dried in vacuo at room temperature overnight. Yield: 80 %. 
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Homopolymerization of4-vinylbenzyl(trimethylphosphonium) chloride (M63) 

To a 20.0 mL round bottomed flask equipped with a magnetic stir bar was added 

M63 (4.0 g, 1.751 x 10"2 mol), CTA26 (34.0 mg, 1.339 x 10"4 mol), V-501 (4.0 mg, 

1.429 x 10"5 mol) (target Mn = 30,000, [CTA]:[I] = 10) and D20 (8.0 g). The flask was 

immersed in an ice-bath and left to stir for ~ 1 h to ensure complete dissolution of all 

components. Subsequently the contents were split equally between eight small vials that 

were sealed with rubber septa. Each vial was then purged with N2 for ca. 30 min while 

immersed in an ice-bath. After purging, all vials were immersed in a preheated oil bath at 

80°C. Vials were removed from the oil-bath at regular time intervals and polymerization 

terminated via immediate exposure to air and quenching with liquid nitrogen. 

Homopolymerization of4-vinylbenzyl(triphenylphosphonium) chloride (Ml 06) 

4-Vinylbenzyl(triphenylphosphonium) chloride was homopolymerized according 

to the procedure described above for M63. 

Homopolymerization of 4-vinylbenzoic acid (M62) 

To a 20 mL round-bottomed flask equipped with a magnetic stir bar was added 

M62 (4.0 g, 2.70 x 10'2 mol), CTA26 (34.0 mg, 1.34 x 10"4 mol), AIBN (4.0 mg, 1.43 x 

10"5 mol) (Target Mn = 30,000, [CTA]:[I] = 10, 50 wt %), and d6-DMSO (8.0 g, 0.103 

mmol). The flask was immersed in an ice-bath and left to stir for ~ 1 h to ensure complete 

dissolution of all species. Subsequently, the contents were split equally between eight 

small vials which were sealed with rubber septa. Each vial was then purged with N2 for 

ca. 30 min while immersed in an ice-bath. After purging all vials were immersed in a 
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preheated oil bath at 80°C. Vials were removed at predetermined time intervals and 

terminated via immediate exposure to air and quenching with liquid nitrogen. 

Statistical copolymerization ofM62 andM63 

To a 20.0 mL round-bottomed flask equipped with a magnetic stir bar was added 

M63 (0.607 g, 2.06 x 10"3 mol), M62 (0.393 g, 2.67 x 10"3 mol), CTA26 (8.0 mg, 3.15 x 

10"5 mol), V-501 (1.0 mg, 3.57 x 10"6 mmol) (Target Mn = 30,000, [CTA]:[I] = 10, at 10 

wt %), sodium carbonate (0.28 g, 2.67 x 10"3 mol), and D20 (10.0 g, 0.50 mol). The flask 

was immersed in an ice-bath and left to stir for ~ 1 h to ensure complete dissolution. 

Subsequently the contents were split equally between eight small vials that were sealed 

with rubber septa. Each vial was then purged with N2 for ca. 30 min while immersed in 

an ice-bath. After purging all vials were immersed in a preheated oil bath at 80°C. Vials 

were removed at predetermined time intervals and terminated via immediate exposure to 

air and quenching with liquid nitrogen. 

Block copolymerization ofM63 and M62 

To a 50.0 mL round bottomed flask equipped with a magnetic stir-bar was added 

M63 (2.0 g, 8.76 x 10"3 mol), CTA26 (17.0 mg, 6.70 x 10"5 mol), V-501 (4.0 mg, 1.43 x 

10'5 mol) (target Mn = 30,000, [CTA]:[I] = 5, at 50 wt %), and distilled water (4.0 g). The 

mixture was stirred while being purged with nitrogen for ca. 1 h after which it was 

immersed in a pre-heated oil bath at 80 °C. After 40 min the polymerization was stopped 

by immediate exposure to air and quenching in liquid nitrogen. The mixture was 

subsequently dialyzed against distilled water for 2 days with daily changes of water. 
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Following this, the macro CTA was isolated via lyophilization. To a 100 mL round-

bottomed flask equipped with a magnetic stir-bar were added the macro CTA (1.2 g, 5.25 

x 10"3 mol), M62 (0.39 g, 2.63 x 10"3 mol), sodium carbonate (0.279 g, 2.63 x 10"3 mol), 

V-501 (2.0 mg, 7.14 x 10"6 mol), and D20 (4.0 g, 0.2 mol). The mixture was then stirred 

for 1 h while submersed in an ice-bath to ensure complete dissolution. Following this, the 

solution was transferred to five separate vials; each vial was capped with a rubber septum 

and then purged with nitrogen for ca. 30 min while immersed in an ice-bath. All vials 

were then immersed in a pre-heated oil bath at 80 °C. Vials were removed from the oil 

bath at various time intervals and the polymerization terminated via immediate exposure 

to air and immersion in liquid nitrogen. The copolymer solution was then dialyzed 

against deionized water for 2 days prior to being isolated by lyophilization. 

Block copolymerization ofM62 and Ml06 

Block copolymers of M62 and M106 was prepared in an identical fashion to that 

described above for the M62/M63 block copolymer. 

Methylation ofpolyM62 homopolymers 

To a 250 mL round bottomed flask equipped with a magnetic stir bar was added 

polyM62 (0.5 g, 3.38 x 10"3 mol), sodium carbonate (0.5 g, 4.72 x 10"3 mol), methyl 

iodide (0.973 g, 1.00 x 10"2 mol), and DMF (30.0 mL). The mixture was subsequently 

stirred overnight at 50°C. After cooling to room temperature distilled water (200 mL) was 

added to the reaction flask and the resulting precipitate isolated by Buchner filtration. The 

precipitate was washed with additional distilled water and then dried in vacuo. 
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Characterization techniques 

!H (300 MHz) and 13C (75 MHz) NMR spectra were recorded on a Bruker 300 53 

mm spectrometer in appropriate deuterated solvents or solvent mixtures. FTIR spectra 

were recorded on a Thermo Nicolet Nexus 470 FTIR spectrometer equipped with a Smart 

Orbit. Polymer molecular masses, molecular mass distributions, and polydispersity 

indices were determined by aqueous size exclusion chromatography (ASEC) in 0.1 M 

NaiSCVl vol % acetic acid flow rate of 0.20 mL min" at ambient temperature. The 

system was comprised of a Viscotek VE1122 pump, Viscotek VE3580 RI detector, 

Viscotek T60 dual viscosity/right angle laser light scattering detector, a CATSEC 1000 

7jJ (50 x 4.6 mm) guard column followed by a series of two CATSEC columns 

(CATSEC 1000 7u. 250 x 4.6 mm + 100 5\a 250 x 4.6 mm) with a theoretical linear 

molecular mass range of 200 - 2,000,000 g/mol. The d«/dc for the homopolymers 

derived from M63 was determined to be 0.150. Data were analyzed with the Omnisec 

Interactive GPC software package. Organic SEC was conducted on a Waters system 

comprised of a Waters 515 HPLC pump, Waters 2487 Dual X absorbance detector, 

Waters 2410 RI detector with a PolymerLabs PLgel 5 um MIXED-C column, in THF 

stablized with BHT at a flow rate of 0.5 ml/min. The column was calibrated with a series 

of narrow molecular mass distribution poly(methyl methacrylate) standards. 

Results and Discussion 

One of the most remarkable features of RAFT is its broad applicability with 

respect to the general monomer classes that are capable of being polymerized in a 

controlled manner coupled with its tolerance to a wide range of functional groups. 
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Indeed, the controlled polymerization of monomers bearing anionic, cationic, 

zwitterionic, and neutral functionality from various monomer families can, and has, been 

readily achieved in both organic and aqueous environments under both homogeneous and 

heterogeneous conditions. Interestingly, of all the functional materials which have so far 

been prepared via RAFT, little attention has been paid to the preparation of zwitterionic 

0 1 

materials, and especially to PAMs. Indeed, while synthetic examples of PAMs have 

been known for over 50 years there are, even today, few reports describing the 

preparation of well-defined, controlled structure PAMs with, for example, block 

architectures prepared by any polymerization technique. Given the high 

monomer/functional group tolerance of RAFT, one might expect it to be the ideal 

technique to facilitate the direct synthesis of PAMs without recourse to 

protection/deprotection protocols or post-polymerization modification reactions. 

Currently there is only one report in the open literature detailing the direct synthesis of 
-JO/ ' 

PAMs via RAFT. In light of the sparse literature detailing the RAFT synthesis of 

PAMs we decided to explore the possibility of preparing a wholly new family of such 

materials, namely PAMs in which the cationic building block is a permanently charged 

phosphonium species. Currently, phosphonium-based PAMs are unknown, and, to the 

best of our knowledge, an evaluation of the polymerization of phosphonium monomers, 

by any controlled radical polymerization technique has not been conducted. Given this, 

we decided to prepare two examples of styrenic-based phosphonium monomers and 

evaluate their homopolymerization characteristics under RAFT conditions with the 

carboxylic acid-functional trithiocarbonate chain transfer agent (CTA26) directly in 

aqueous media. 
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4-Vinylbenzyl(trimethylphosphonium) chloride (M63) and 4-

vinylbenzyl(triphenyl-phosphonium) chloride (M106), Figure IV-1, were prepared from 

the reaction of 4-vinylbenzyl chloride and trimethylphosphine or triphenylphosphine 

respectively in high yields. 4-Vinylbenzoic acid (M62) was prepared via a Wittig 

reaction as detailed above. We reported the synthesis of CTA26 in Chapter III. 388 
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Figure IV-1. Chemical structures of monomers and RAFT chain transfer agent used in 
these studies. 

Given that the RAFT polymerization of phosphonium substrates has not been 

previously reported, we first examined the homopolymerization characteristics of both 

M63 and M106 with CTA26 under homogeneous conditions in aqueous media to ensure 

the substrates could be polymerized in a controlled fashion. 

Figure IV-2 shows the pseudo-first order rate plots for the homopolymerization of 

M63 and M106 conducted in D2O at 50 wt% monomer, 80°C, and at two different values 

of [CTA26]:[V-501] (the monomer conversion were determined using 'H NMR 

spectroscopy). It is evident that in both cases the plots are essentially linear. It should be 

noted that in the case of RAFT polymerizations this only indicates that the 

polymerization is operating under steady-state conditions. However, the fact that the 
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linearity is observed up to high conversions does indicate the effective suppression of the 

Trommsdorff effect. In the case of M63 (Figure IV-2A) the homopolymerizations 

proceed rapidly with, for example, 83 % conversion being reached in 60 min for 

rCTA26"|:rV-50n = 5. There is no evidence of an induction period, which can be 

observed for certain RAFT CTA/monomer combinations, and is particularly apparent in 

certain dithioester-mediated RAFT polymerizations,224 but which is less common/absent 

in the case of trithiocarbonate-mediated systems. From the kinetic plots we can readily 

determined the apparent rate constant of propagation, kapp= kp[R*], where kp is the rate 

constant of propagation and [R»] is the radical concentration. For these 

homopolymerizations, km is equal to 1.8 and 1.1 h"1 in the case of M63 for [CTA26]:[V-

501] = 5 and 10 respectively. Additionally, the effect of [CTA26]:[V-501] is as expected 

with the higher ratio of reagents resulting in slower overall rate of polymerization which 

is consistent with previous reports on the effect of [CTA]:[I].223 

M63 homopolymers were analyzed by aqueous size exclusion chromatography 

(ASEC) to determine their molecular masses (MMs) and molecular mass distributions 

(MMDs). As a representative example, Figure IV-3 shows the ASEC traces (RI signal) 

for aliquots withdrawn from an M63 homopolymerization conducted at 80°C, 50 wt% 

monomer, and with [CTA26]:[V-501] = 10. In all instances the experimentally 

determined chromatograms are unimodal, symmetric, and narrow (Mw/Mn < 1.10) with 

no visible evidence of either high or low molecular mass impurities. Additionally, the 

systematic shift to lower retention times with increasing conversion is consistent with a 

controlled polymerization. 
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Figure IV-2. Pseudo first-order kinetic plots for the homopolymerization of M63 and 
M106 at 50 wt% monomer in aqueous media with CTA26 at two different ratios of 

[CTA26]:[V-501]. 
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Figure IV-3. Aqueous size exclusion chromatographic traces (RI signal) for the 
homopolymerization of M63 in aqueous media at 10 wt% monomer demonstrating the 

evolution of molecular mass as a function of conversion. 

While both the kinetic and ASEC results suggest a controlled polymerization, 

perhaps a better indicator is the plot of number-average molecular mass (Mn) vs. 

conversion. Figure IV-4 shows a composite M„ vs. conversion plot for two 

homopolymerizations of M63 at [CTA26]:[V-501] = 5 and 10 along with the evolution 

of Mw/Mn for target molecular masses at quantitative conversion of 30,000. In both 

instances the evolution of MM is linear, passes through the origin, and is in extremely 

close agreement with the theoretical value at all given fractional conversions. Such 

linearity is entirely consistent with a controlled polymerization. Additionally, in both 
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instances the resulting polydispersities (Mw/Mn) are very low with measured values < 

1.10. 
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Figure IV-4. Plots of MnASEC and Mw/Mn vs. conversion for a homopolymerization of 
M63 at [CTA26]:[V-501] = 5:1 and 10:1. 

Having established that the homopolymerization of M63 proceeds in a controlled 

fashion we next conducted similar experiments for M106. Figure IV-2B shows the 

pseudo-first order kinetic plots for the homopolymerization of M106 under identical 

conditions to those reported above for M63. A direct comparison of M63 with M106 

indicates that M63 polymerizes faster than M106 under identical conditions at both 

[CTA26]:[V-501] ratios. For example, M63 reaches ca. 84% conversion after 100 min 
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whereas M106 reaches ca. 55 % conversion after the same period of time for 

[CTA26]:[V-501] = 10. While M106 polymerizes at a slower rate than M63, presumably 

due to its enhanced steric bulk, the kinetic plots are, however, linear to high conversion 

and exhibit the same general trends as M63. Unfortunately, the subsequent determination 

of the molecular mass and molecular mass distribution could not be accomplished for the 

M106 homopolymers due to the very limited solubility of the materials in the ASEC 

eluent at room temperature. 

While M62 has been both homo- and co-polymerized previously via RAFT61'370 it 

has not been polymerized under conditions mediated by a trithiocarbonate-based RAFT 

CTA, and as such we felt it prudent to additionally examine the homopolymerization of 

M62 as described above for M63 and M106. Kinetic evaluations for the 

homopolymerization of M62 were conducted in DMSO since an initial polymerization in 

water yielded a homopolymer with an experimentally determined Mn significantly higher 

than the theoretical (Mn,exPt = 93,300 and Mw/Mn = 1.36, whereas M ĥeory = 21,000). The 

only difference between the M63/M106 and M62 homopolymerizations in water was the 

need for added base to aid in the dissolution of M62. While a weak base was employed in 

a stoichiometric amount based on M62 we cannot dismiss the possible occurrence of loss 

of CTA26 via base hydrolysis. Indeed, dithioesters have been demonstrated to be 

susceptible to base hydrolysis and are, in fact, more stable under acidic conditions. 

Figure IV-5 shows the pseudo-first order rate plots for the homopolymerization of M62 

with [CTA26]:[V-501] = 5 and 10, at 50 wt% monomer and 80°C. Consistent with the 

use of CTA26 as a mediating agent in the M63 and M106 homopolymerizations, M62 

exhibits linear pseudo-first order kinetics. In the case of M62, km at the two different 
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ratios of CTA26/V-501 are 1.3 and 0.75 h"1 respectively. As such, M62 also appears to 

polymerize at a slower rate than M63, although polymerizes faster than M106. However, 

direct apparent rate comparisons are difficult given the different solvent conditions. 
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Figure IV-5. Pseudo first-order kinetic plot for the homopolymerization of M62 at 50 
wt% monomer in DMSO with CTA26 at two different ratios of [CTA26]:[V-501]. 

The determination of the molecular mass and molecular mass distribution for 

M62 homopolymers also could not be achieved directly via ASEC since our instrument 

was configured specifically for the analysis of cationic polymers. Under such ASEC 

eluent conditions the M62 homopolymers are protonated and thus hydrophobic and as 

such cannot be analyzed. However, in contrast to the M106 homopolymers, M62 

homopolymers can be chemically modified to facilitate their analysis via organic SEC. 

PolyM62 can be readily methylated using CH3I in DMF to yield the methyl carboxylic 

ester derivative that is readily soluble in THF. While not ideal, since post-polymerization 
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chemical modification of a (co)polymer rarely results in quantitative derivatization, it can 

be accomplished to an extent that facilitates analysis via SEC in THF. For example, 

Figure IV-6 shows the experimentally measured SEC traces (RI signal) for methylated 

polyM62 samples from the previously described homopolymerization. Gratifyingly, the 

chromatograms are unimodal and symmetric indicating a high level of esterification as 

well as demonstrating the controlled nature of the original M62 homopolymerization. 
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Figure IV-6. Size exclusion chromatographic traces (RI signal) for the 
homopolymerization of M62, after methylation with CH3I, recorded in THF. 
With the molecular mass and molecular mass distribution values readily available. 

With the MM and MMD values readily available it is possible to examine the 

evolution of Mn and MMD as a function of conversion. Figure IV-7 shows the plot of Mn, 

as determined by SEC with THF as the eluent, vs. conversion with the theoretical Mn line 

adjusted to take account of the increase in MM assuming quantitative methylation. We 

see that the evolution of MM is linear and agrees almost perfectly with the theoretical 
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value at a given fractional conversion. Additionally, the polydispersity index decreases 

with increasing conversion with Mw/Mn falling from 1.24 to 1.15. Given these 

observations we can conclude that the homopolymerization of M62 under these 

conditions with CTA26 is likewise controlled. 
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Figure IV-7. Plots of MnSEC and Mw/Mn vs. conversion for a homopolymerization of 
M62 as determined in THF after methylation of the precursor M62 polymer. 

HIK 

Having established that M63, M106 and M62 polymerize in a controlled fashion 

with CTA26 directly in water or DMSO we next examined the ability to prepare 

statistical and block copolymers of M63/M106 with M62 with the aim of directly 

synthesizing a new family of well-defined polyampholytic materials. Initially we focused 

on the statistical copolymerization of M63 with M62 at molar ratios of 1:1, 1:3, and 3:1. 

Copolymerizations were conducted directly in aqueous media at 10 wt% monomer, 80°C 
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and with [CTA26]:[V-501] = 5 and 10 in the presence of an equimolar concentration of 

sodium carbonate, based on M62, to aid in its dissolution. Copolymerizations were 

conducted at 10 rather than 50 wt% due to solubility issues - the M63/M62 combination 

for example was not homogeneous at 50 wt% monomer. An evaluation of the pseudo 

first order kinetic plots shows that in the case of the 1:1 copolymerization of M63 and 

M62, Figure IV-8A, the general trends are the same as those observed for the 

homopolymerizations, namely linear plots which pass through the origin with a clear, and 

expected, effect of [CTA26]:[V-501]. However, the statistical copolymerization is 

significantly faster than any of the homopolymerizations even though the [M] was only 

10 wt% compared to the 50 wt% in the case of the homopolymerization experiments. For 

example, in the case of the copolymerization at [CTA26]:[V-501] = 5, 82 % conversion 

is achieved in 30 min compared with M63 and M62 homopolymerizations which reached 

60 and 48 % conversion respectively after a similar time period even though the [M] was 

five times greater. The calculated km values for the M63/M62 copolymerizations are 3.4 

and 1.8 h"1 for the [CTA2_6]:[V-501] = 5 and 10 respectively. One possible cause for this 

difference between the M63, M106, M62 homo- and M63/M62 copolymerizations can 

be attributed to the possible occurrence of ion-pairing. Even though each monomer has an 

associated counterion it is possible that there exists, in solution, M63/M62 ion-pairs. 

Indeed, such species are well known and there is often, but not always, a tendency 

towards alternation in the resulting structure since the ion-pair may polymerize as a 

discrete "dimeric" species. Such monomer pairing, or dimerization, and the 

corresponding enhancement in polymerization rate is well documented for monomers 
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capable of forming, for example, hydrogen-bonded monomer pairs such as those that 

exist between (meth)acrylic acid, or 2-(hydroxyethyl) (meth)acrylate. 

To further demonstrate this kinetic difference, Figure IV-8B shows the pseudo 

first order rate plots of an M63 homopolymerization and an M63/M62 (3:1 molar ratio) 

statistical copolymerization performed under identical conditions, i.e. at 10 wt% 

monomer with [CTA26]:[V-501] = 10. The copolymerization proceeds at approximately 

twice the rate of the analogous homopolymerization of M63 with kapp ~ 0.5 h" for the 

copolymerization and 0.25 h"1 for the M63 homopolymerization. Interestingly however, 

the 3:1 statistical copolymerization proceeds at a significantly slower rate than the 

analogous 1:1 statistical copolymerization (kapp - 1.8 h"1 and 0.5 h" respectively). 

Assuming monomer pairing is responsible for the enhanced rate of polymerization this is 

not surprising since in the 3:1 copolymerization there will exist a combination of 

monomer pairs and free M63. As a consequence the overall rate of polymerization would 

be predicted to be intermediate the M63 homopolymerization and the equimolar, i.e. 1:1, 

M63/M62 copolymerization that is the case. 

Having successfully prepared novel phosphonium-based statistical PAMs we next 

evaluated the possibility of preparing the corresponding block PAMs. Block copolymers 

were prepared using either M63 or M106 homopolymers as macro CTAs for the 

subsequent polymerization of M62. In the same manner as described above, the kinetic 

profiles for the block copolymerizations were evaluated. Figure IV-9 shows the pseudo 

first order rate plots for two separate block polymerizations. Figure IV-9A shows the 

kinetic profile for the block PAM prepared using an M106 macro CTA at 10 wt%, and 

80°C. The plot is clearly linear with a kapp of 0.5 h"1. Similarly, Figure IV-9B shows the 
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rate plot for the block copolymerization of M62 employing an M63 macro CTA which 

has a measured km of 0.6 h" . The near identical kapp values is not surprising since in the 

case of the block copolymerizations, employing either M63 or M106 macro CTAs under 

the same conditions, still leads to what amounts to a simple M62 'homopolymerization'. 

Unfortunately, determining the molecular masses and molecular mass 

distributions for polyampholytic copolymers, with either statistical or block architectures, 

via SEC, is extremely problematic especially for materials such as these where one 

building block has a pH-dependent aqueous solubility. The insolubility of M62 residues 

at low pH does not facilitate analyses under those conditions used for the permanently 

cationic M63 or M106 homopolymers. Similarly, it is not possible to easily modify M63 

or M106 residues to facilitate analysis by organic SEC. 
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Figure IV-8. Pseudo first-order kinetic plots for (A) the statistical copolymerization of 
M63 with M62 at a molar ratio of 1:1 at 10 wt% monomer in water and two different 
[CTA26]:[V-501] ratios, (B) the statistical copolymerization of M63 with M62 at a 
molar ratio of 3:1 at 10 wt% monomer in water at [CTA26]:[V-501] = 10 and the 

corresponding homopolymerization of M63 under identical conditions. 
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Figure IV-9. Pseudo first-order kinetic plots for (A) the block copolymerization of M62 
employing a polyM106 macro CTA at a target molar ratio of 1:1 at 10 wt% in water with 

[CTA26]:[V-501] = 10, and (B) the block copolymerization of M62 employing a 
polyM63 macro CTA at a target molar ratio of 1:1 at 10 wt% in water with 

[CTA26]:[V-501] = 10. 
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Given the inherent difficulty in analyzing the polyampholytic materials via either 

organic or aqueous SEC, FTIR spectra were recorded for the M63, M106, and M62 

homopolymers as well as examples of statistical and block copolymers to demonstrate, 

qualitatively, the successful formation of these new polyampholytic materials. Figure IV-

10 shows the FTIR spectra of an M63 and M62 homopolymer (A and B) as well as 

examples of the statistical (C) and block (D) PAMs. Consider first IV-10A - a polyM63 

homopolymer. The key absorptions here are those centered at ca. 3350, 3000-2900, 1700, 

1450-1350, and 950 cm"1, which can be attributed to -OH, aromatic C-H, aromatic 

combination and overtones bands, PCH2- and -PCH3 (1450-1350 cm"1), and -PCH3 (950 

cm"1), although the PCH2- and PCH3 (1450-1350 cm"1) overlap with various absorptions 

associated with carboxylic acid dimers/carboxylate anions which may also be present as 

end-groups. The key absorption for diagnostic purposes is the strong -PCH3 absorption at 

950 cm"1 that will clearly be associated only with the M63 residues. Figure IV-10B 

shows the spectrum for a polyM62 homopolymer. Similarly, key absorptions include the 

broad -OH band centered at ca. 3400 cm"1, with a weak aromatic C-H next to it at -3000 

cm" , and the triplet of strong bands at ca. 1650-1400 cm"1 which are attributed to the 

symmetric and asymmetric bands associated with the carboxylate functionality and also 

the C-O-H in-plane bend. It is this grouping of three bands which will serve as the key 

diagnostic feature associated with the M62 residues. Figures C and D represent examples 

of M63-M62 statistical and block polyampholytes respectively. Since we are unable to 

distinguish architecture from the spectra we would anticipate that the FTIR spectra of 

these two materials be essentially identical, which appears to be the case. Gratifyingly, in 

both instances we can clearly identify those 'unique' absorptions associated with the 
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individual M63 and M62 species such as the distinctive -PCH3 band at ca. 950 cm"1 

confirming the presence of M63 and the triplet of bands from ca. 1650-1400 cm"1 

associated with M62. The presence of absorption bands associated with the M63 and 

M62 residues in IV-10C/D thus qualitatively confirms successful synthesis of both the 

novel statistical and block PAMs. 

It should be noted that the presence of the thiocarbonyl end-groups is difficult to 

confirm via FTIR spectroscopy since the characteristic C-S and C=S absorptions are both 

weak and can be variable (C-S), occur in the fingerprint region, and overlap with other 

more intense absorptions including the C-0 stretch for example. 
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Figure IV-10. FTIR spectra of (A) a polyM63 homopolymer, (B) a polyM62 
homopolymer, (C) a poly(M63-M62) statistical copolymer, and (D) a poly(M63-M62) 

block copolymer. 

While M63 and M106 are permanently charged, M62 has a readily accessible pKa 

and is thus easily reversibly ionized. Also, M62 is an example of a "smart" building 

block in the sense that in the free acid form it is hydrophobic whereas in the ionized state 

it is hydrophilic. Such readily tunable hydrophilicity/hydrophobicity can be exploited in 
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the preparation of stimulus-induced nanosized self-assemblies in aqueous media. Indeed, 

M62 has been previously employed in such a capacity.62'72 While we have not, at this 

time, conducted a thorough evaluation of the aqueous solution properties of these new 

PAMs we have performed some preliminary NMR spectroscopic experiments. NMR 

spectroscopy, and especially lH NMR spectroscopy, has proven to be a very powerful 

and useful tool for evaluating the relative solvation of component building blocks of 

"smart" copolymers in aqueous solution as a function of applied stimulus, including (but 

not limited to) changes in pH, temperature, and salt concentration. Unfortunately, ]H 

NMR spectroscopy proved to be of little use for these styrenic-based copolymers since 

there are no distinct resonances associated with the M62 block which can be 

1 T 

conveniently monitored with changes in the solution pH. As such we examined the C 

NMR spectra. However, this is also problematic given its lower sensitivity and problems 

associated with being able to prepare an aqueous solution of a copolymer at a sufficiently 

high concentration to facilitate straightforward analysis. Figure IV-11 shows the 13C 

NMR spectra of an M62/M63 block copolymer (molar ratio 1:1) recorded at pH 10.0 (A) 

and pH 2.0 (B) plotted between 5 = 200 and 100 ppm. Two points are worth noting. 

Firstly, the C=0 resonance associated with the carboxylate is clearly evident in spectrum 

A at ca. 8 175 ppm under conditions of high pH when we would expect the M62 residues 

to be ionized and hence hydrophilic and solvated. In contrast, at pH 2.0 (B), when the 

M62 residues are fully protonated, the resonance associated with the C=0 are completely 

absent. Additionally, changing the solution pH from 10.0 to 2.0 results in a broadening of 

the resonances associated with the aromatic carbons. Both of these features are entirely 

consistent with a hydrophilic-to-hydrophobic phase transition association with the M62 
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residues, and given the block structure it is reasonable to assume that this results in self-

assembly yielding nanosized polymer aggregates such as micelles. 
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13, Figure IV-11. C NMR spectrum of a 1:1 molar ratio AB diblock copolymer of M63 
with M62 recorded in water at pH = 10.0 (A) and pH = 2.0 (B). 

Summary and Conclusions 

Herein we have described the first example of the controlled, aqueous radical 

polymerization of phosphonium, styrenic-based monomers by RAFT, indeed by any 

controlled-radical technique, employing a water-soluble trithiocarbonate that we 

described in Chapter III. We have shown that the characteristics of the M63 and M106 

homopolymerizations are entirely consistent with them proceeding in a controlled fashion 
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as judged from the experimentally determined molecular characteristics of the resulting 

homopolymers. Additionally, M62 was also shown to polymerize in a controlled fashion 

in DMSO. Statistical copolymerization of M63 with M62 was readily achieved in water 

at 10 wt% monomer yielding the first examples of statistical P AMs with a cationic 

phosphonium building block. Also, the use of either polyM63 or polyM106 macro CTAs 

allowed for the subsequent block copolymerization of M62 to yield the first examples of 

block PAMs with a phosphonium building block and only the second example in which 

block PAMs have been prepared directly by RAFT and one of only a handful of 

examples in which materials have been prepared without the need for either 

protection/deprotection chemistries or post-polymerization modification. The successful 

formation of the statistical and block PAMs was proven qualitatively by FTIR 

spectroscopy. Finally, we demonstrated the pH-responsive nature of one of the AB 

diblock PAMs using 13C NMR spectroscopy. 
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CHAPTER V 

RAFT SYNTHESIS AND AQUEOUS SOLUTION PROPERTIES OF 
PH-RESPONSIVE AB DIBLOCK STYRENIC-BASED 

COPOLYMERS OF 
4-VINYLBENZYLTRIMETHYLPHOSPHONIUM CHLORIDE WITH 

AVV-DIMETHYLBENZYLVINYLAMINE 

Introduction 

The ability to synthesize (co)polymers in a controlled manner, i.e. with 

predetermined molecular characteristics such as the molecular mass (MM), narrow 

molecular mass distributions (MMD), and with controllable topologies and architectures 

is becoming increasingly important as the demand for highly functional materials in 

specialty applications continues to grow. Of the currently available approaches, the 

controlled/living free radical polymerization (CRP) methodologies including atom 

transfer radical polymerization (ATRP), stable free radical polymerization, best 

exemplified by nitroxide-mediated polymerization (NMP), and reversible addition-

fragmentation chain transfer (RAFT) radical polymerization,99'100'223'389'390 have 

developed into a powerful set of synthetic techniques that now facilitate the preparation 

of advanced materials, many of which, were unattainable only a decade ago. Of these 

three CRP processes, RAFT has proven itself to be, arguably, the technique of choice for 

the synthesis of well-defined water-soluble (co)polymers in either organic390 or aqueous 

media. ' ' This is due to its applicability to the widest range of monomers, its 

superior functional group tolerance, and its ease of execution. These characteristics alone 

make RAFT an extremely versatile synthetic tool for the preparation of materials with, 

for example, predictable stimuli-responsive aqueous solution properties. A recent review 

clearly highlights many of these features.362 Indeed, in recent years many research groups 
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have been exploring the synthesis and properties of new stimuli-responsive, or "smart", 

copolymers prepared via a variety of polymerization techniques. Examples of applied 

stimuli to which (co)polymers may respond include, changes in aqueous solution pH, 

temperature, electrolyte concentration, and light.391 The physical manifestation of the 

response to an applied stimulus can be varied and may include a simple conformational 

change (chain expansion or contraction for example), a macroscopic phase transition 

(precipitation or dissolution), or self-assembly to form, for example, micelles or higher 

ordered structures. 

Cationic polymers are interesting materials for various reasons and have found 

commercial application in cosmetics, antimicrobial formulations, water treatment, and 

paper processing to name but a few. RAFT has been successfully employed for the 

preparation of both amine50'61'99'259'379'392 and ammonium-based61'392'393 copolymers 

utilizing substrates from all the major, common monomer families including 

(meth)acrylic, (meth)acrylamido, and styrenic derivatives. Many of these monomers have 

been polymerized as one specific building block in 'smart' materials that are capable of 

101 "5/̂ 0 IQ/I 

undergoing stimulus-induced self-assembly. ' ' Amine/ammonium functional 

groups are not the only species capable of bearing a formal positive charge, with other 

cationic groups including sulfonium, phosphonium, and oxonium species. Of these, the 

phosphonium substrates are of comparable stability to ammonium substrates and can be 

readily prepared via straightforward SN reactions between appropriate phosphines and 

alkyl halides, as described in Chapter IV. While AB diblock copolymers with two 

cationic/potentially cationic building blocks have been previously prepared, they have to 

date been composed of monomers with amine/ammonium functional groups.61'392 For 
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example, the research group of Armes has reported extensively on the synthesis and 

aqueous solution properties of such materials prepared via group transfer and atom 

transfer radical polymerization methodologies.12'19'346'395"397 To the best of our knowledge 

bis-cationic block copolymers built from inherently different cationic/potentially cationic 

functional groups have never before been reported. 

In this chapter we describe the RAFT synthesis and aqueous solution properties of 

new styrenic-based, pH-responsive, "smart" AB diblock copolymers comprised of a 

permanently positively charged, hydrophilic block of 4-

vinylbenzyltrimethylphosphonium chloride (TMP, M63) with a tunably 

hydrophilic/hydrophobic 7V,iV-dimethylbenzylvinylamine (DMBVA, M59) block. These 

represent the first examples of "mixed" cationic copolymers prepared by any technique. 

We demonstrate that these materials can be conveniently synthesized via 

trithiocarbonate-mediated RAFT polymerization directly in aqueous media under 

homogeneous conditions. Such materials are shown to undergo pH-induced self-assembly 

in water yielding nano-sized aggregates consistent with the well-documented 

hydrophilic-to-hydrophobic phase transition behavior associated with the DMBVA 

building block. Finally, we show that the presence of reactive tertiary amine functionality 

in the aggregate cores facilitates a core cross-linking reaction that effectively "locks" the 

copolymers in the aggregated state. 

Experimental Part 

All reagents were purchased from the Aldrich Chemical Company at the highest 

available purity and used as received unless stated otherwise. 4-
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Vinylbenzyltrimethylphosphonium chloride (M63) was prepared from the reaction 

between 4-vinylbenzyl chloride and trimethylphosphine as described in Chapter IV. 

4,4'-Azobis(4-cyanovaleric acid) (V-501) was purchased from Wako Chemicals, 

recrystallized from methanol and stored in a freezer until needed. 3-((l-

Carboxyethylthio)carbonothioylthio)propanoic acid (CTA26) was prepared as outlined in 

Chapter III.387 (2-[4-(2-Hydroxyethyl)-l-piperazine]ethanesulfonic acid) (HEPES) was 

purchased from Fisher Scientific. 

Homopolymerization ofM63 

Below is a typical procedure for the homopolymerization of M63: 

To a 20 mL vial equipped with a magnetic stir-bar was added M63 (3.0 g, 1.32 x 

10"2 mol), CTA26 (25.0 mg, 1 x 10"4 mol), V-501 (6.0 mg, 2.14 x 10"5 mol), and 6.0 g 

distilled water (Target Mn = 30,000 g/mol, [CTA]:[i]=5:l, at 50 wt%). The mixture was 

subsequently purged with nitrogen, with stirring, for ca. 1 h after which it was immersed 

in a pre-heated oil bath at 80°C. After 40 min the polymerization was stopped by 

immediate exposure to air and quenching in liquid nitrogen. The polymerization mixture 

was subsequently dialyzed against distilled water for 2 days with change of water twice 

per day. Following this, the macro CTA was isolated via lyophilization using a Labconco 

Freeze Dry System/Freezone 4.5. 

Block copolymerization ofM63 with DMVBA(M59) 

Below is a typical procedure for the preparation of a poly(M63-6/ocA:-M59) 

copolymer with a molar ratio of M63:M59 =1:1. 
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To a 25 mL round-bottomed flask equipped with a magnetic stir-bar were added 

the polyM63 homopolymer (0.5 g, 2.19 x 10"3 mol), M59 (0.35 g, 2.20 x 10"3 mol), 10 

mL pH 4 buffer solution (sodium acetate/acetic acid, 6.0 M, prepared in advance), and V-

501 (2.0 mg, 7.14 x 10"6 mol). The mixture was stirred while being purged with dry 

nitrogen for ca. 1 h before it was immersed in a pre-heated oil bath at 80 °C. After 1 h the 

polymerization was stopped by immediate exposure to air and quenching in liquid 

nitrogen. The mixture was dialyzed against slightly acidic distilled water for 2 days with 

change of water twice daily. Following this, the copolymer was isolated via 

lyophilization using a Labconco Freeze Dry System/Freezone 4.5. 

Micelle core cross-linking reaction 

Polymeric micelles with a hydrophilic M63 corona and a hydrophobic M59 core 

were core-cross-linked with 1,4-bis(bromomethyl)benzene as follows: 1,4-

bis(bromomethyl)benzene (7.0 mg, 2.57 x 10"5 mol, 10 mol % based on M59 residues) 

was added to a polvfM63-6/ocfc-M59) (M63:M59=1:1) solution (0.1 g copolymer in 10 

mL deionized water). The pH of the solution was then adjusted to ca. 12.0 to facilitate 

self-assembly. The solution was subsequently stirred overnight at 50 °C. Following this, 

the solution was cooled to room temperature and dialyzed against slightly acidic distilled 

water for 2 days with the water being changed twice daily. The core-cross-linked 

aggregates were isolated by lyophilization using a Labconco Freeze Dry 

System/Freezone 4.5. 
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General characterization techniques 

]H (300 MHz) and 13C (75 MHz) NMR spectra were recorded on a Bruker 300 53 

mm spectrometer in appropriate deuterated solvents or deuterated solvent mixtures. 

Polymer molecular masses (MM), molecular mass distributions (MMD), and 

polydispersity indices (Mw/Mn) were determined by aqueous size exclusion 

chromatography (ASEC) in 0.1 M Na2SCVl vol % acetic acid at a flow rate of 0.20 

ml/min at ambient temperature. The system was comprised of a Viscotek VE1122 pump, 

Viscotek VE3580 RI detector, a CATSEC 1000 7u. (50 x 4.6 mm) guard column 

followed by a series of two CATSEC ASEC columns (CATSEC 1000 l\i 250 x 4.6 mm + 

100 5\i 250 x 4.6 mm) with a theoretical linear MM range of 200 - 2,000,000 g/mol. The 

system was calibrated with a series of narrow MMD poly(ethylene oxide) standards (Mn 

range of standards 620 - 460,000). Data were analyzed with the Omnisec Interactive SEC 

software package. 

Fluorescence spectroscopy 

Pyrene sequestration experiments were performed in 2.0 ml of 10 mM HEPES 

buffer with 100 uM pyrene and 0.5 (ig/ml polymer. The pH was adjusted from 4 to 13.5 

via the addition of 1.0 M NaOH or HC1 solution. Fluorescence was measured with an ISS 

K2 fluorometer (Champaign, IL) equipped with a xenon lamp and microprocessor-

controlled photomultiplier. Measurements were made in 1 cm x 1 cm quartz cuvettes, 

with 1 mm slits on both excitation and emission monochromators. The excitation 

wavelength was 345 nm; the monomer fluorescence was read at 396 nm and that of 

excimer at 475 nm. 
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Dynamic light scattering 

Dynamic light scattering (DLS) studies of the copolymers at concentrations of 1 

wt% in an aqueous 0.1 M NaCl solution were conducted using a Malvern Instruments 

Zetasizer Nano ZS instrument equipped with a 4 mW He-Ne laser operating at X = 633 

nm, an avalanche photodiode detector with high quantum efficiency, and an ALV/LSE-

5003 multiple tau digital correlator electronics system. The data were collected and 

processed using the Dispersion Technology Software V4.20. 

Results and Discussion 

Copolymer synthesis 

The target M63-M59 AB diblock copolymers were prepared from functional 

styrenic monomers via RAFT directly in aqueous media at 80°C with the water-soluble 

azo initiator, V-501, and a trithiocarbonate chain transfer agent (CTA26), Figure V-l, 

whose synthesis we described in Chapter III.387 

HOOC. 

S | 

COOH 

e P(CH3)3 ^N' 
CI ® 

CTA26 

M63 M59 

Figure V-l. Chemical structures of monomers and RAFT CTA used in these studies. 

Ml06 was chosen as a building block given its permanently hydrophilic nature 

coupled with the fact that we demonstrated in Chapter IV that it polymerizes in a 
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controlled fashion via RAFT in water with CTA26.287 M59 was chosen as the 

comonomer due to its well-documented stimuli-responsive properties.50'61'392 Specifically, 

M59 is a pH-responsive species which is hydrophilic when protonated but hydrophobic 

when deprotonated. For block copolymer syntheses a M63 macroCTA was used in all 

instances. We did not evaluate the reverse sequence, i.e. employing a M59 macroCTA 

for the polymerization of M63, although such an approach is not expected to be 

problematic given that both monomers are styrenic derivatives. The molecular 

characteristics of the polyM63 macroCTA employed for the copolymer syntheses 

described herein are summarized in Table V-l (first entry). 
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The experimentally determined Mn is significantly lower than the theoretical Mn 

(M„,theory = 20,800 vs Mniexpt = 11,480). Such a discrepancy is almost certainly due to the 

fact that the aqueous size exclusion chromatography (ASEC) system was calibrated with 

linear, narrow molecular mass distribution poly(ethylene oxide) standards which are 

clearly poor equivalents for the cationic, styrenic-based M63 homopolymer. However, 

the measured polydispersity index is low with an experimentally determined Mw/Mn = 

1.17, which is entirely consistent with (co)polymers prepared via RAFT in aqueous 

media. 6 Kinetic studies for the homopolymerization of M63 and M59 were not 

conducted since we reported in Chapter IV a detailed description of the kinetic features 

for the homopolymerization of TMP in water with CTA26.287 Likewise, as noted above, 

the RAFT (co)polymerization characteristics of M59 are well documented.50'61'392 

• PTMP macroCTA 
P(TMP-Woc/c-DMBVA) 79:21 
P(TMP-Woc/c-DMBVA) 63:37 
P(TMP-btoc/c-DMBVA) 55:45 

i— 
3.0 3.5 4.0 4.5 5.0 

Retention Volume (mL) 

5.5 6.0 

Figure V-2. ASEC traces for a M63 (TMP) homopolymer employed as a RAFT macro
CTA along with the M63-M59 (TMP-DMBVA) AB diblock copolymers. 
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Figure V-2 shows the ASEC traces (RI signal) of the polyM63 homopolymer 

employed as the macroCTA along with the chromatograms for the three AB diblock 

copolymers with M59. The clear shift to lower retention volume, relative to the M63 

homopolymer, coupled with the unimodal, near-symmetric nature of the copolymer traces 

indicates a high blocking efficiency and the successful formation of well-defined AB 

diblock copolymers. The molecular masses and molecular mass distributions for the AB 

diblock copolymers are listed in Table V-l. The experimentally determined Mn values do 

not agree with the theoretical values for the same reason noted above for the M63 

homopolymer. However, and as expected, the Mn values fall as we move from the 55:45 

to the 63:37 to the 79:21 M63:M59 copolymers. Since the same M63 macroCTA was 

employed in all block syntheses, the theoretical Mn will fall moving from the equimolar 

to the M63-rich copolymers. The measured polydispersity indices increase in all 

instances for the block copolymers relative to the M63 macroCTA, with Mw/Mn values 

for the AB diblock copolymers between 1.32-1.40. Such values are also consistent for 

AB diblock copolymers prepared by RAFT. The block copolymer compositions were 

determined using lH NMR spectroscopy, Table V-l, and are close to the targeted values. 

Having successfully prepared the target AB diblock copolymers we proceeded to 

evaluate their aqueous solution properties with an emphasis on the anticipated reversible, 

pH-induced self-assembly. 

Aqueous solution properties 

The M63-M59 AB diblock copolymers were hypothesized to exhibit interesting 

aqueous solution properties by virtue of the fact that while the M63 residues are 
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permanently hydrophilic, the solubility of the M59 residues is sensitive to the aqueous 

solution pH.50,392 The presence of such a "smart" component in AB diblock copolymers 

offers a convenient route for preparing nanosized aggregates such as polymeric micelles 

and higher ordered structures.398'399 Additionally, since the solubility properties of such 

"smart" building blocks are reversible, the formation of nanosized assemblies is likewise 

expected to be reversible. 

The self-assembly properties of the M63-M59 copolymers were examined as a 

function of solution pH employing NMR and fluorescence spectroscopies and dynamic 

light scattering. Figure V-3 shows a series of *H NMR spectra, recorded in D2O, at two 

different pH's for the 55:45 M63-M59 diblock copolymer along with the *H NMR 

spectrum of the M63 homopolymer used as a macro CTA. In the case of the M63 

homopolymer, A', we clearly see the resonances associated with the key functional 

groups. The signals associated with the three methyl groups are evident at 8 ~ 1.5 ppm 

(labeled A) while the benzylic hydrogen's and aromatic hydrogen's are clearly visible at 

8 ~ 3.4 and ca. 6.1-7.0 ppm respectively. B' shows the 'H NMR spectrum of the M63-

M59 block copolymer at pH 2 - solution conditions in which both blocks are hydrophilic 

and thus the copolymer is expected to exist as single molecularly dissolved chains or 

unimers.399 Indeed, under these conditions we clearly observe the resonances associated 

with both the M63 and M59 building blocks. Specifically, in addition to those resonances 

observed in A' associated with M63 we see signals at ca. 8 2.5 ppm (D) and ca. 4.1 ppm 

(E) which are associated with the dimethylamino hydrogen's and the methylene 

hydrogen's bound directly to the dimethylamino group respectively. C shows the *H 

NMR spectrum of the same copolymer solution with the pH adjusted to 10.0 via the 
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addition of NaOD. Under these conditions the tertiary amine residues of M59 are 

deprotonated and the M59 block becomes hydrophobic. 

Consistent with the anticipated hydrophilic-to-hydrophobic phase transition, the 

resonances associated with the M59 residues completely disappear. This indicates 

dehydration and significantly reduced mobility of the M59 block. Interestingly, we also 

observe some decrease in the intensity of the resonances associated with the M63 

residues, which likewise suggests some degree of dehydration under these conditions, 

although no macroscopic precipitate is observed. This indicates that the M63 block is still 

sufficiently solvated/hydrophilic to facilitate the self-assembly process. While such NMR 

experiments do not prove the formation of polymeric self-assemblies such as spherical 

micelles, such nanosized structures can be reasonably expected given the block-nature of 

the materials being investigated, and the documented 'smart' properties of the M59 

component. 
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Figure V-3. H NMR spectra, recorded in D2O of a polyM63 homopolymers (A'), a 
po\y(M63-block-M59) copolymer at pH 2 (B') and the same AB diblock copolymer at 

pH 10 (C). 

A more quantitative picture of self-assembly can be obtained from DLS 

experiments. DLS is a fast and convenient technique facilitating the determination of the 

hydrodynamic properties of (co)polymers in both the unimeric and self-assembled states. 

Each of the M63-M59 block copolymers were analyzed by DLS as 1 wt% solutions (in 

0.1 M NaCl) at both high and low pH. At low pH, i.e. under those conditions where the 

block copolymers are anticipated to exist as unimers, the experimentally determined 

hydrodynamic diameters (Dh) ranged from 3.0-6.0 nm, Table V-l. Such Dh values are 

entirely consistent with single, molecularly dissolved polymer chains with similar 

molecular masses.59 Likewise, we see that as the average degree of polymerization for the 

M63-M59 diblock copolymers falls the Dh value of the unimers also falls. Upon raising 
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the pH to 12, DLS indicates that the AB diblock copolymers do undergo a self-assembly 

process yielding aggregates with measured Dh values in the range 20-30 nm, Table V-l. 

In all instances these larger species are the only species present. Since the three AB 

diblock copolymers have a constant M63 block length these observed differences in Dh 

values in the self-assembled state are a clear indication of the effect of the M59 block 

length. What is clear is that as the molecular masses of the AB diblock copolymers fall, 

i.e. moving from the 55:45 -» 63:37 -» 79:21 copolymers, the Dh values increase. These 

differences in Dh are therefore most likely due to differences in the aggregation number 

(Nagg), or the average number of copolymer chains per aggregate. 

The tunably hydrophilic/hydrophobic nature of the M59 building block suggests 

that the formation of such nanosized self-assemblies should be completely reversible. 

Figure V-4 shows the vol% distributions, determined via DLS, for the 63:37 M63-M59 

block copolymer at pH 2, pH 12, and then back to pH 2. It is clear that the self-assembly 

process is completely reversible with initial Dh sizes consistent with unimers (ca. 4.0 nm) 

whereas the Dh value at pH 12 is ca. 20 nm. Reducing the solution pH back to 2 results in 

the complete disassembly of the aggregates and a return to the unimeric state. Indeed 

there is no discernible difference between the unimer size distributions after the cycling 

of the solution pH. 
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Figure V-4. Experimentally determined hydrodynamic size distributions for a M63-M59 
block copolymer of molar composition 2:1 at high and low pH values. 

A complementary technique to both NMR spectroscopy and DLS is fluorescence 

spectroscopy (FS). As a technique it is useful for monitoring the sequestration abilities of 

polymeric self-assemblies, and in the case of these pH responsive copolymers it can be 

used to determine the critical pH at which the self-assembly process occurs. FS 

experiments were conducted using pyrene as a probe molecule. When the hydrophobic 

polymeric blocks collapse into micelles pyrene is sequestered and concentrated in their 

interior which leads to an increased rate of excimer formation.400 Indeed, we see in Figure 

V-5 that when the solution pH is gradually increased from 4.0 to 13.5 the excimer 

fluorescence at around 475 nm dramatically increases. Additionally, such behavior is 

completely reversible: when the pH of the sample was brought back down to 1 (the 

dotted line in Figure V-5), the spectrum closely resembled the initial one, taken at pH 4. 
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These results are entirely consistent with those obtained by both NMR spectroscopy and 

DLS and the proposed self-assembly process in which aggregates with a hydrophobic 

M59 core are formed. 
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Figure V-5. Fluorescence spectra of pyrene in the presence of the M63-M59 2:1 block 
copolymer at various pH values. The pH was raised from 4 to 13.5 in the same cuvette. 

The spectrum labeled pH 1 (dotted line) was obtained with the same sample after 
lowering pH from 13. 5 to 1. The increased noise in the spectra at high pH is caused by 

increased light scattering from the formed micelles. 

Synthesis of core cross-linked micelles 

Many polymeric-based micelles are dynamic structures in the sense that there is 

continual exchange between unimers and those copolymer chains forming part of the 

micellar assembly, especially for those species in which the core-forming block has a low 

Tg. Additionally, complete disassembly occurs at concentrations below the critical 
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aggregation concentration (CAC). For certain applications, such as drug delivery for 

example, it might be desirable to maintain the self-assembled state even at concentrations 

below the CAC to prevent "burst" (uncontrolled) release of a therapeutic payload. Such 

"locked" structures can be obtained in several ways including covalent cross-linking of 

the core or the coronal shell,401 and by electrostatic complexation.378'402 Covalent cross-

linking, either in the core or corona, requires the presence of appropriate reactive 

functional groups capable of undergoing reactions post-self-assembly. Of these two 

approaches shell cross-linking has been evaluated widely, especially by Wooley and 

coworkers,343'403"407 who pioneered the approach, as well as by Armes et ai_
346>395>397 

Covalent crosslinking of the aggregate core has been less widely evaluated.50 In the case 

of the M63-M59 diblock copolymers, the core-shell aggregates formed at high pH 

contain the M59 residues in the core with tertiary amine functional groups that are 

available for post-assembly modification. 
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Figure V-6. Core-crosslinking via the reaction of the hydrophobic M59 residues with 
1,4-bis(bromomethyl)benzene. 

Given the availability of the tertiary amine residues in the core we examined the 

ability to prepare such core-crosslinked aggregates by reaction with 1,4-

bis(bromomethyl)benzene (BBMB), Figure V-6. The hydrophobic nature of BBMB 

suggests it would preferentially partition into the hydrophobic core of the polymeric 

assemblies when added to an aqueous solution of such nanosized aggregates. Once in the 

core it was anticipated that BBMB would react with the tertiary amine functional groups 

via a simple quaternization reaction. Given the dual functionality in BBMB such 

reactions, which can occur both inter- and intramolecularly, would result in core cross-

linking. As such, BBMB was added to a micellar solution of the M63-M59 block 

copolymers and allowed to react for 12 h at 70 °C. After core crosslinking, the micelle 

solutions were examined by {H NMR spectroscopy and DLS. Figure V-7 shows a series 
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of *H NMR spectra for the 55:45 M63-M59 AB diblock copolymer at pH 2 (B) prior to 

core cross-linking, and pH 12 (A) and pH 2 (C) after core crosslinking. 

A 

B 

C 

i ' 1 • 1 ' 1 • 1 • 1 ' 1 

12 10 8 6 4 2 0 

Chemical Shift (ppm) 

Figure V-7. *H NMR spectra, recorded in D20, of the 55:45 M63:M59 AB diblock 
copolymer at pH 12 after core crosslinking (A), at pH prior to core crosslinking (B), and 

at pH 2 after core crosslinking (C). 

Figure V-7B shows the M63-M59 block copolymer at pH 2. Consistent with 

Figure V-3, resonance bands associated with both blocks are clearly visible and, indeed, 

the block copolymer is expected to exist as unimers under such aqueous solution 

conditions. The core crosslinking reaction must be performed at elevated pH to ensure 

that the M63-M59 block copolymer exists in the self-assembled state. The NMR 

spectrum of the 55:45 M63-M59 block copolymer at pH 12 after core crosslinking is 

shown in Figure V-7A. As expected, the spectrum looks identical to a non-core 

crosslinked system with those resonance bands associated with the M63 block being the 

poly(M63-Woc/r-M59) 55:45 
core crosslined 

POlv(M63-ft/oc/c-M59) 55:45 

poly(M63-Woc/c-M59) 55:45 

core crosslinked y~^~ 
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only ones visible. The spectrum of the core-crosslinked aggregates at pH 2.0 is shown in 

V-7C. At this pH the non-core-crosslinkod aggregates disassemble to the unimeric state, 

and a spectrum identical to that in B would be expected. However, after core-crosslinking 

the aggregates are effectively locked and cannot disassemble. As such, while the core is 

now effectively hydrophilic there is still a significant reduced mobility associated with 

the M59 block. While resonance bands associated with the M59 residues are visible (the 

core is now hydrated to a certain extent) we see that the intensity of the M59 bands, most 

clearly evident from the resonance associated with the dimethylamino protons at 5 ~ 2.4 

ppm, is significantly reduced relative to the bands associated with M106-M109 unimers 

in 52B. 

Further verification of successful core crosslinking can be obtained from DLS. 

Figure V-8 shows the experimentally determined aggregate size distributions, measured 

at pH 2 and pH 12, for the same M63-block-M59 copolymer after core crosslinking. At 

both pH values the aggregate size distribution is narrow and unimodal. At pH 12 

aggregate sizes of ca. 29.1 nm were observed. This value is higher than the non-core 

cross-linked species at the same pH and may be due to a partial hydration of the core due 

to the presence of hydrophilic, permanently cationic residues. However, and in contrast to 

the non-core crosslinked aggregates, lowering the solution pH to 2.0 results in a further 

increase in the aggregate size to ca. 33.9 nm. Since core crosslinking effectively locks the 

aggregate structure lowering of the solution pH does not result in the disassembly of the 

polymeric aggregate back to unimers as discussed above. However, under such 

conditions the non-quaternized tertiary amine residues in the aggregate core can become 

protonated and thus hydrophilic and therefore solvated. Therefore this increase in size 
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can be attributed to the influx of water into the cross-linked aggregate core, resulting in 

core swelling and therefore an increase in aggregate size. 

pH = 12 
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Figure V-8. Aggregate size distributions for the 55:45 M63-M59 AB diblock copolymer 
after core crosslinking at pH 12 and pH 2. 

Summary/Conclusions 

We have described herein the RAFT synthesis and aqueous solution properties of 

AB diblock copolymers of 4-vinylbenzyltrimethylphosphonium chloride (M63) with 

Af,Af-dimethylbenzylvinylamine (M59). The block copolymers were prepared directly in 

aqueous media using a water-soluble trithiocarbonate and the water-soluble azo initiator 

V-501. The pH-dependent aqueous solution properties of the M63-M59 block 

copolymers were evaluated using a combination of NMR and fluorescence 

spectroscopies, and dynamic light scattering. The AB diblock copolymers were shown to 

undergo pH-induced self-assembly, presumably forming core-shell polymeric micelle-
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like structures, with the M59 block forming the hydrophobic aggregate core at high pH, 

stabilized by the hydrophilic M63 corona. Such aggregation was also shown to be 

completely reversible as judged by both DLS and fluorescence spectroscopy. Finally, we 

demonstrated, via NMR spectroscopy and DLS, the ability to effectively lock the 

aggregate structures via the reaction of the tertiary amine residues of the M59 block in 

the core with a difunctional quaternizing agent bis(bromomethyl)benzene. 
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CHAPTER VI 

A DOUBLY RESPONSIVE AB DIBLOCK COPOLYMER: RAFT 
SYNTHESIS AND AQUEOUS SOLUTION PROPERTIES OF 

POLY(iV-ISOPROPYLACRYLAMIDE-£Z0CX-
4-VINYLBENZOIC ACID) 

Introduction 

Since its open disclosure on the literature," reversible addition-fragmentation 

chain transfer (RAFT) radical polymerization has developed into a powerful synthetic 

tool, enabling the synthesis of hitherto unattainable (co)polymers under a broad range of 

experimental conditions, in a controlled manner, i.e. with predetermined molecular 

characteristics such as molecular mass.224'362'364,365'408 One of the benefits of RAFT as a 

synthetic tool has, undoubtly, been the fact that it readily facilitates the preparation of 

new stimuli-responsive water-soluble polymers directly in either aqueous or organic 

media. ' Indeed, there are now many examples of such (co)polymers, prepared via 

RAFT, including materials responsive towards changes in solution pH, ' ' electrolyte 

concentration,122 and temperature.368'378'409'410 Such materials, including AB diblock and 

ABC triblock copolymers, are capable of undergoing supramolecular self-assembly in 

response to such stimuli to yield nanosized aggregates including multimeric micelles and 

higher order structures such as vesicles.399'411 

The majority of studies regarding stimuli-responsive copolymers have focused on 

AB diblock copolymers in which one block is permanently hydrophilic while the second 

is tunably hydrophilic/hydrophobic. For example, Amies et al. have reported extensively 

on such materials prepared by group transfer polymerization, living cationic 

polymerization, and atom transfer radical polymerization.7'12'412'413 A less studied family 
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of stimuli-responsive materials are AB diblock copolymers in which both building blocks 

are sensitive towards an applied stimulus - such materials have been termed 

"schizophrenic" by some researchers.342'396'414"416 While such materials are beginning to 

attract increasing interest,417'418 to date, very few examples of such materials have been 

191 

prepared via RAFT. 

In this chapter we describe the synthesis and solution properties of a doubly 

responsive AB diblock copolymer of N-isopropylacrylamide (NIPAM, 3VI75) with 4-

vinylbenzoic acid (M62). We demonstrate that such materials can be readily prepared in 

a controlled fashion via trithiocarbonate-mediated RAFT and that both normal and 

inverse micelles can be formed directly, and reversibly, in aqueous media simply by 

controlling the aqueous solution pH and temperature. 

Experimental Part 

All chemicals were purchased from the Aldrich Chemical Company at the highest 

available purity and used as received unless stated otherwise. 7V-Isopropylacrylamide 

(M75) was recrystallized from methanol. 4-Vinylbenzoic acid (M62) was prepared via a 

Wittig reaction as described in Chapter IV.287 2-(2-Carboxyethylsulfanyl 

thiocarbonysulfanyl) propionic acid (CTA26) was prepared as outlined in Chapter III.387 

2,2'-Azobis(2-methylpropionitrile) (AIBN, Wako Chemicals) was recrystallized from 

methanol and stored in a freezer until needed. 
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Homopolymerization of NIP AM (M75) 

Note: the experimental prep below refers to the synthesis of a polyM75 

macroCTA. In the case of the kinetic studies, separate vials containing monomer, solvent, 

CTA, and initiator were prepared, purged with nitrogen, and immersed in a pre-heated oil 

bath at 60°C. Vials were removed at predetermined time intervals and analyzed using a 

combination of H NMR spectroscopy and size exclusion chromatography. 

To a scintillation vial (20.0 mL capacity) equipped with a magnetic stirbar was 

added M75 (2.0 g, 1.77 x 10"2 mol), CTA26 (16.9 mg, 6.65 x 10"2 mmol), AIBN (1.09 

mg, 6.67 x 10" mmol) and DMF (4.0 g). The vial was sealed with a rubber septum and 

then stirred for 30 min to facilitate complete dissolution of all components. The solution 

was subsequently purged with nitrogen for 20 min. The vial was then immersed in a 

preheated oil bath set at 80°C. The polymerization was left for 60 min after which it was 

quenched by exposure to air and immediate immersion in liquid nitrogen. The resulting 

polyM75 homopolymer was purified by dialysis for 2 days with water change twice per 

day. The purified homopolymer was subsequently isolated by lyophilization. 

Block copolymerization ofPolyM75 with M62 

To a scintillation vial (20.0 mL) capacity was added the polvM75 macroCTA (0.5 

g, 4.42 x 10-3 mol), M62 (0.654 g, 4.42 x 10"3 mol), AIBN (1.0 mg, 6 x 10"3 mmol) and 

DMF (2.3 g). The vial was sealed with a rubber septum and then stirred for 30 min to 

facilitate complete dissolution of all components. The solution was subsequently purged 

with nitrogen for 20 min. The vial was then immersed in a preheated oil bath set at 60°C. 

The polymerization was left for 60 min after which it was quenched by exposure to air 
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and immediate immersion in liquid nitrogen. The resulting polv(M75-fr/ocA:-M62) 

copolymer was purified by dialysis in slightly basic water for 2 days with water change 

twice per day. The purified block copolymer was subsequently isolated by 

lyophilization. 

Methylation ofM62 residues 

The carboxylic acid functional groups on the M62 residues were methylated using 

CH3I according to the procedure as described in Chapter IV. 

General characterization techniques 

!H NMR spectra were recorded on a Bruker 300 53 mm spectrometer in 

appropriate deuterated solvents. Size exclusion chromatography (SEC) was performed on 

a Waters system comprised of a Waters 515 HPLC pump, Waters 2487 Dual X 

absorbance detector, Waters 2410 RI detector equipped with a PolymerLabs PLgel 5 îm 

MIXED-C column in DMF/LiBr (0.1 M) at flow rate of 1.0 ml/min. The column was 

calibrated with a series of narrow molecular mass distribution poly(methyl methacrylate) 

standards. 

Dynamic light scattering (DLS) experiments were conducted at concentrations of 

1 wt% in aqueous 0.1 M NaCl solution using a Malvern Instruments Zetasizer Nano ZS 

instrument equipped with a 4 mW He-Ne laser operating at A = 633 nm, an avalanche 

photodiode detector with high quantum efficiency, and an ALV/LSE-5003 multiple tau 

digital correlator electronics system. The data were collected and processed using the 

Dispersion Technology Software V4.20. 
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Results and Discussion 

As a technique, RAFT facilitates the synthesis of a broad range of materials with 

advanced properties including those that are sensitive to environmental changes. Indeed 

there are now many literature examples of such copolymers with the majority 

representing species in which one block is permanently hydrophilic while the second is 

tunably hydrophilic/hydrophobic. A generally less well-studied group of materials are 

those in which both blocks, in an AB diblock copolymer, are sensitive to an applied 

stimulus. While examples of such doubly-responsive copolymers have been previously 

prepared via RAFT the full scope of the technique has not been bought to bear in 

synthesizing such materials. Given this we decided to examine the feasibility of preparing 

an example of a new doubly responsive AB diblock copolymer composed of N-

isopropylacrylamide (M75) and 4-vinylbenzoic acid (M62), Figure VI-1. 
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Figure VI-1. Chemical structures of monomers and RAFT chain transfer agent used in 
these studies. 

M75 was chosen because of its well known and readily accessible lower critical 

solution temperature (LCST) of ca. 32°C, whereas M62 was selected given its well-
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documented pH-dependent aqueous solubility - it is readily water soluble when in the 

carboxylate form but completely hydrophobic when in the free acid form (as shown). 

The RAFT homopolymerization of M75 was conducted in DMF with AIBN as 

the source of primary radicals in the presence of CTA26. This is a RAFT agent that we 

demonstrated in Chapters III-V to be effective for the polymerization of both hydrophilic 

and hydrophobic substrates. ' M75 was polymerized first since we have previously 

shown that when preparing block copolymers of an acrylamido substrate with a styrenic 

comonomer that better control is observed, in terms of block efficiency, when an 

acrylamido macroCTA is employed.50 While M75 has been polymerized by RAFT with a 

wide range of RAFT agents, including trithiocarbonates,362 it has not been polymerized 

previously with CTA26. As such, and to verify control, we first conducted a series of 

experiments to demonstrate the controlled nature of the M75 homopolymerization. 
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Figure VI-2. Pseudo first order kinetic plot for the homopolymerization of M75 at 
50wt% in DMF, 60°C, [CTA]:[I] = 10:1, for a target Mn of 30,000. 

Figure VI-2 shows a representative example of a pseudo first-order kinetic plot 

for the homopolymerization of M75 with CTA26 in DMF at 60°C. Consistent with the 

majority of RAFT polymerizations, the homopolymerization of M75 exhibits a first order 

dependence in monomer with no evidence of an induction period - a feature that may be 

observed for certain dithioester/monomer combinations but that is commonly absent from 

trithiocarbonate-mediated systems.387 Figure VI-3 shows representative SEC traces (RI 

signal) for aliquots withdrawn from the homopolymerization of M75. 

Homopolymerization of M75 
Temp=60°C 
Target Mn=30,000 
[CTA26]:[AIBN]=10:1 
GPC calibrated by PMMA in DMF 

Mn = 35,400 

PDI = 1.09 
60% conversion 

Mn = 15,600 

PDI = 1.11 
30% conversion 

Mn = 40,200 

PDI = 1.16 
70% conversion 

Retention Time (min) 

Figure VI-3. Size exclusion chromatographic traces (RI signal), measured in DMF/LiBr 
for aliquots withdrawn from the M75 homopolymerization. 
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Consistent with a controlled polymerization we observe a systematic shift to 

lower retention time with increasing conversion with the chromatographic traces being 

unimodal and narrow with the measured polydispersity indices lying in the range Mw/Mn 

= 1.09-1.16. A better indicator, however, of the controlled nature is the Mn vs. conversion 

plot that should, ideally, be linear and pass through the origin. Figure VI-4 shows the 

evolution of Mn with conversion for the M75 homopolymerization. We see that the plot 

is linear and does pass through the origin. However, the experimentally determined Mn 

values do not agree with the theoretical values. This discrepancy is almost certainly due 

to the fact that the SEC instrument was calibrated with narrow molecular mass 

poly(methyl methacrylate) standards which may be poor equivalents for polyM75. 

i — • — i 
90 100 

% Conversion 

Figure VI-4. The Mn vs. conversion plot for the homopolymerization of M75 with 
CTA26 at 50 wt% in DMF with [CTA]:[I] = 10. 
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Having demonstrated that M75 polymerizes in an apparently controlled manner in 

the presence of CTA26 we next proceeded to prepare a block copolymer with M62. A 

new M75 macroCTA was prepared which was used in the subsequent polymerization 

with M62. The block copolymerization was conducted in DMF at 60°C. A block 

copolymer with a 50:50 molar composition was targeted. The actual composition, as 

determined by *H NMR spectroscopy, was shown to be 52:48. The symmetric 

composition was intentionally targeted since such molar ratios are best suited for 

materials with the anticipated doubly responsive properties. The most convenient method 

for verifying successful block formation is SEC analysis. Even though the synthesis of 

the M75-M62 block copolymer was conducted in DMF, the same solvent as employed as 

eluent for SEC analysis, we decided to methylate the acid residues on M62 to minimize 

any unfavorable interactions between these polar residues and the non-polar column 

packing material. Methylation was accomplished by treating the M75-M62 block 

copolymer with CH3I according to the method outlined in Chapter IV. Figure VI-5 

shows the SEC traces (RI signal) of the polyM75 macroCTA and the resulting 

methylated M75-M62-CHU AB diblock copolymer. A clear shift of the entire distribution 

to lower retention time is consistent with a high blocking efficiency and therefore 

successful block copolymer formation. Additionally, the polydispersity index of the 

resulting block copolymer is low, with Mw/Mn = 1.07. 

Having successfully prepared a M75-M62 AB diblock copolymer we next 

proceeded to evaluate its aqueous solution properties. M75 is a well documented stimuli-

responsive building block that is sensitive to changes in the temperature of aqueous 

solutions of the (co)polymer. Indeed, polyM75 has a well-established lower critical 
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solution temperature (LCST) of 32°C.368 In a similar manner, M62 is also an established 

"smart" building block, but rather then being sensitive to changes in temperature it is 

tunably hydrophilic/hydrophobic as a function of solution pH.6''2 Specifically, at low 

pH, when the acid residues are protonated, M62 is hydrophobic, whereas at pH values 

where the acid residues are ionized M62 is hydrophilic. As such, it was anticipated that 

the M75-M62 AB diblock copolymer would be capable of forming both normal and 

inverse nanosized multimeric aggregates in the same aqueous media simply by 

controlling the solution pH and temperature. 

H3COOC 
y

S Y S ^ ^ c o o c H 3 

s 

COOCH3 

Poly(M75-<Woc/c-M62-CH3) 

PolyM75 macro-CTA 

Mn = 35,410 

PDI=1.08 

Mn = 43,800 

PDN1.07 

Retention Time (min) 

Figure VI-5. Size exclusion chromatographic traces (RI signals) for a M75 macroCTA 
(solid line) and a methylated M75-M62 AB diblock copolymer (dashed line) coupled 

with the measured Mn and PDI values. 
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Figure VI-6. H NMR spectra of the polv(M75-fr/ocfc-M62) copolymer at pH 11.3 and 
RT (A), and the same AB diblock copolymer at pH 1.1 and RT (B). 



183 

Figure VI-6 shows the *H NMR spectra of the M75-M62 AB diblock copolymer 

at pH values of 11.3 (A) and 1.1 (B) at room temperature. At pH 11.3, both building 

blocks are hydrophilic - the M75 being pH insensitive and the M62 block being fully 

ionized. As such, both building blocks are expected to be fully solvated. This is 

confirmed in Figure VI-6A where the signals associated with both monomers are clearly 

evident. In contrast, lowering the solution pH to 1.1 yields a very different spectrum, 

Figure VI-6B. The most striking difference is the complete disappearance of the signals 

labeled e and f associated with the aromatic hydrogens of the M62 building block. Under 

these conditions these signals are completely absent. Additionally, the resonances labeled 

a, b, and c vary in their relative intensities given the hydrophilic-to-hydrophobic 

transition of the M62 block. The essentially complete disappearance of the e, f signals 

indicates complete dehydration of these residues. Such changes are consistent with the 

formation of polymeric self-assemblies such as micelles, in which the non-solvated M62 

block forms a hydrophobic core stabilized by the hydrophilic M75 block. While these 

NMR experiments do not prove the formation of such aggregates, it is not unreasonable 

to assume their formation given the block nature of the copolymer. Figure VI-7 shows the 

same block copolymer at elevated pH, conditions in which the M62 block is ionized and 

thus hydrophilic, but at 40°C, a temperature above the LCST of the M75 block and 

conditions under which the M75 species should be significantly dehydrated. Such a 

scenario appears to be consistent with the spectrum in Figure VI-7. Those resonances 

associated with the M62 block, and especially e and f, are clearly visible. On the other 

hand, the signals associated with M75, while not completely absent, are significantly 

reduced in intensity relative to the M62 signals (Figure VI-6A). For example, the signal 
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labeled d at 8 ~ 3.9 ppm, associated with the methine H of the isopropyl group in M75 is 

drastically reduced relative to e and f. 

10 

Chemical Shift (ppm) 

Figure VI-7. H NMR spectrum of the poly(W75-block-M62) copolymer at pH 11.1 and 
40°C. 

The results presented in Figures VI-6 and VI-7 are consistent with the ability of 

the M75-M62 AB diblock copolymer being able to form both normal and inverse 

micelles in the same aqueous solution simply by adjusting either the solution pH or 

temperature. This process is represented schematically in Scheme VI-1. 
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Scheme VI-1. Proposed formation of normal and inverse micelles in aqueous media for a 
M75-M62 AB diblock copolymer. 

A more quantitative picture of this self-assembly process can be obtained from 

dynamic light scattering (DLS) experiments. Figures VI-8 and VI-9 show the 

hydrodynamic size distributions for the M75-M62 block copolymer at constant 

temperature but high and low pH, Figure VI-8, and at constant pH, but variable 

temperature, Figure VI-9. At 25°C and pH 12, Figures VI-8 and VI-9, the M75-M62 

block copolymer is anticipated to exist as single molecularly dissolved copolymer chains, 

or unimers. Indeed, under these conditions average sizes in the range 14.8-15.8 nm are 

observed. Clearly these values should be identical since it is the same copolymer under 

the same conditions, however, the difference of only 1.0 nm is not significant. Lowering 

the solution pH to 2.0 results in the formation of aggregates with a measured Dh of 66.7 

nm. There exists only a single population of aggregates with no evidence of larger, or 

smaller, including unimer, species. Under these conditions, the M75 block becomes 

hydrophobic and thus aggregates with the M62 block in the core, stabilized by the 

hydrophilic M75 block are expected. Moving from the unimeric state to the self-

assembled state by raising the solution temperature while at elevated pH results in the 

formation of species with a measured Dh of 51.0 nm, Figure VI-9. 
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Figure VI-8. Hydrodynamic size distributions for the pory(M75-6/ocfc-M62) AB diblock 
copolymer at ambient temperature and pH values of 12 and 2. 
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Summary and Conclusions 

We have described herein the synthesis and aqueous solution properties of a near 

equimolar composition poly(Ar-isopropylacrylamide-6/ocA:-4-vinylbenzoic acid) 

(poly(M75-Woc&-M62)) copolymer. M75 was homopolymerized in a controlled manner 

in DMF with a trithiocarbonate RAFT chain transfer agent (CTA26) to yield a well-

defined macro-CTA that was subsequently employed for the block copolymer synthesis. 

Based on size exclusion chromatographic analysis, blocking efficiency was quantitative. 

The ability of such M75-M62 block copolymers to undergo supramolecular self 

assembly to yield both normal and inverse nanosized micelles in the same aqueous 

environment was demonstrated using a combination of NMR spectroscopy and dynamic 

light scattering. 



188 

CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

Three new trithiocarbonates (CTA25-CTA27), along with three literature 

reported trithiocarbonates (CTA22-CTA24), were synthesized, in which the nature of the 

substitution about the TTC functional group has been systematically varied. Their 

effectiveness as mediating agents has been compared in the RAFT homo- and block 

polymerization of rc-butyl acrylate (nBA). Both CTA26 and CTA27 perform as well as 

previously reported TTCs and yield poly(n-butyl acrylate) homopolymers with good 

molecular weight control and low polydispersities. CTA25 was shown to be ineffective 

as expected because of the proposed favored "reverse" fragmentation pathway as 

opposed to the required "forward" pathway for effective molecular weight control. The 

effect of [CTA]0:[AIBN]0 was determined for CTA26 and CTA27 and it was shown that 

the polymerizations were faster at the lower [CTA]o:[AIBN]o ratios. Finally, we 

demonstrated the ability to form AB 'diblock' copolymers with nBA with high re

initiation efficiency employing CTA26 derived poly(nBA) as the macro-CTA. 

CTA26 has been utilized in the subsequent synthesis of homo and copolymers via RAFT. 

The polymerizations of M63 and M106 represent the first example of the controlled, 

aqueous radical polymerization of phosphonium, styrenic-based monomers by RAFT, or 

by any controlled-radical technique. Additionally, M62 was also shown to polymerize in 

a controlled fashion in DMSO. Statistical copolymerization of M63 with M62 was 

readily achieved in water at 10 wt% monomer yielding the first examples of statistical 

polyampholytes with a cationic phosphonium building block. Also, the use of either 

polyM63 or polyM106 macro CTAs allowed for the subsequent block copolymerization 
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of M62 to yield the first examples of block polyampholytes with a phosphonium building 

block and only the second example of block polyampholytes prepared directly by RAFT, 

without the need for either protection/deprotection chemistries or post-polymerization 

modification. The successful formation of the statistical and block PAMs was proven 

qualitatively by FTIR spectroscopy. The pH-responsive nature of poly(M63-Mocfc-M62) 

was confirmed by using 13C NMR spectroscopy. 

PolyM63 was also used as macro-CTA in the polymerization of N,N-

dimethylbenzylvinylamine (M59). A series of block copolymers with varied molar 

compositions were prepared directly in aqueous media. The pH-dependent aqueous 

solution properties of the M63-M59 block copolymers were evaluated using a 

combination of NMR and fluorescence spectroscopies, and dynamic light scattering. The 

AB diblock copolymers were shown to undergo pH-induced self-assembly with the M59 

block forming the hydrophobic aggregate core at high pH, stabilized by the hydrophilic 

M63 corona. Such aggregation was also shown to be completely reversible as judged by 

both DLS and fluorescence spectroscopy. Finally, we demonstrated the ability to 

effectively lock the aggregate structures via the reaction of the tertiary amine residues of 

the M59 block in the core with a difunctional quaternizing agent 

bis(bromomethyl)benzene. 

Finally, a doubly responsive block copolymer comprised of M75 and M62 with 

nearly equimolar composition was synthesized. M75 was homopolymerized in a 

controlled manner in DMF mediated by CTA26 to yield a well-defined macro-CTA that 

was subsequently employed for the block copolymer synthesis with M62. The blocking 

efficiency was quantitative based on size exclusion chromatography (SEC) analysis. The 
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ability of such M75-M62 block copolymers to undergo supramolecular self-assembly to 

yield both normal and inverse nanosized micelles in the same aqueous environment was 

demonstrated using a combination of NMR spectroscopy and dynamic light scattering. 

Future work 

CTA synthesis and evaluation 

The key to successful RAFT polymerization is the appropriate choice of CTA 

according to specific type of monomer. Most of the effective CTA's are still not 

commercially available today and the synthesis and purification of CTA sometimes can 

be time-consuming. In our research, we utilized CTA26 for most polymerizations and it 

proved to be effective in controlling the polymerization of a variety of monomers. 

However, it may be less effective for methacrylate or methacrylamido monomers 

considering that the leaving group of CTA26 is secondary in contrast to the tertiary 

methacrylate/methacrylamido derived propagating radicals. Another novel diacid 

trithiocarbonate we synthesized, CTA27, may be a good candidate CTA when 

methacrylate/methacrylamido based polymers need to be prepared. However, further 

proof/evaluation will be needed. 

Synthesis of polybetaines by polymerizing betaine monomers directly in aqueous 

solution 

Polybetaines represents another important family of polyzwitterions. They have a 

wide range of applications such as sewage treatment, flocculation, coagulation, drilling 

fluids, enhanced oil recovery, frictional drag reduction, and pharmaceutics etc. For 



191 

example, phosphobetaines exhibit good bio/hemocompatability and have found 

applications as coatings for medical devices such as catheters or arterial stents as well as 

materials for contact lens application. This is attributed to their biomimetric 

characteristics, i.e. their structural and chemical similarity to naturally occurring 

phospholipids. 

Direct synthesis of well-defined polybetaines has always been challenging due to 

the unique solution properties of polybetaines, such as poor solubility in water due to the 

intra- and inter-chain interactions between cationic and anionic functional groups. 

Polybetaines are typically prepared by the direct polymerization of the betaine monomers 

in aqueous salt solution. Most living polymerization methods are not suitable for 

synthesis of polybetaines as they are not well suited for homogeneous media. In contrast, 

RAFT offers great potential for the controlled polymerization of betaine monomers. For 

example, DMBVA (M59) can be reacted with suitable sultones or lactones to yield the 

corresponding sulfo- or carboxybetaine monomers. These betaine monomers can be 

polymerized via RAFT in salt solution utilizing CTA26 as the mediating agent. And they 

can also be copolymerized with permanently hydrophilic monomers such as TMP (M63) 

to get AB diblock copolymers, which would exhibit salt-responsive solution properties by 

virtue of the betaine block. 
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