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TRAINING RBF NEURAL NETWORKS FOR THE SOLUTION
OF ELLIPTIC BOUNDARY VALUE PROBLEMS

ANDREAS KARAGEORGHIS AND C. S. CHEN

Abstract. We propose a radial basis function (RBF) neural network method for solving two- and
three–dimensional second and fourth order elliptic boundary value problems (BVPs). The neural
network in question is trained by minimizing a nonlinear least squares functional, thus determining
the optimal values of the various RBF parameters involved. The functional minimization is carried
out using standard MATLAB c⃝ software efficiently. Several numerical experiments are presented
to demonstrate the efficacy of the proposed method.

1. Introduction

In recent decades, various meshless methods have been developed for solving boundary value
problems (BVPs) in complicated geometries in two (2D) and three dimensions (3D). The main
attraction of meshless methods is the simplicity of the solution process as no tedious domain or
boundary discretization is required. Among all meshless methods, radial basis function collocation
methods (RBFCMs) [4,8,18,32] have become particularly popular. Traditionally, the radial basis
function (RBF) centres are placed inside the domain. In [5,25], however, the domain in which the
RBF centres were placed was extended outside the domain of the BVP in question resulting in
better performance of RBFCMs. In general, for elliptic partial differential equations (PDEs), in
the RBFCM solution process both the PDE and the boundary conditions (BCs) are collocated at
selected collocation points to form a linear system of equations Ax = b. Once the RBF weights
x are determined by a linear solver, the approximate solution can be calculated anywhere in the
domain. The above solution process seems simple and straightforward, but the determination of
an appropriate value of the RBF shape parameter (or appropriate values in case shape parameters
are varied), which greatly affects the accuracy of the approximation, is a challenge and needs to
be addressed prior the RBFCM solution process.

In an alternative approach, RBF neural networks have, in recent years, been used extensively for
function approximation and the solution of BVPs [1–3, 6, 7, 9, 10, 12, 13, 16, 17, 23, 26, 27, 30], see
also [31, Sections 4.2-4.3] and [14, Section 5.3].

It is the purpose of this paper to use an RBF neural network method for the solution of second
and fourth order BVPs in 2D and 3D. The formulation of the proposed method is motivated by
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the approach of Gorbachenko and his co-workers [1–3, 7, 10–12] and the training of the network
is achieved by minimizing a nonlinear cost functional. The minimization is carried out using the
MATLAB c⃝ optimization toolbox function lsqnonlin which is a nonlinear least–squares solver.
In contrast to traditional RBFCMs in which the (troublesome) appropriate shape parameter value
needs to be determined prior to the solution procedure, the proposed approach allows us to find
the optimal locations of the RBF centres, shape parameter(s) values, and RBF centre weights
simultaneously through the use of lsqnonlin. In the application of this function we provide the
Jacobian of the corresponding nonlinear system which leads to substantial computational time
savings enabling us to solve 3D problems in complex geometries efficiently and accurately.

The paper is organized as follows. In Section 2, we briefly describe how to use the nonlinear least-
squares solver lsqnonlin. In Section 3, the formulation of the proposed neural network method
for BVPs for second and fourth order PDEs is given. Four numerical examples in 2D and 3D
with irregular or non–smooth domains are studied in Section 4, illustrating the effectiveness of the
current approach. Finally, in Section 5, some conclusions and ideas for future work are provided.

2. Nonlinear minimization

As will be explained in the sequel, the satisfaction of the PDE and BCs of a second or fourth order
BVP in 2D and 3D at a given set of sampling points by an RBF approximation yields systems of
nonlinear equations

F(w) :=


F1(w)
F2(w)

...
FM(w)

 = 0 , (2.1)

in the N unknowns (w1, w2, . . . , wN)
T = w where, clearly, M ≥ N . The solution of system (2.1)

may be recast as a nonlinear least squares minimization problem for the functional

S(w) :=
M∑

m=1

F2m, (2.2)

which we shall solve using the MATLAB c⃝ [28] optimization toolbox function lsqnonlin. This uses
one of two algorithms, namely, a trust–region reflective algorithm or the Levenberg–Marquardt
method.
In lsqnonlin, the functions Fm, m = 1, . . . ,M, in (2.1) must be provided. Moreover, there is the
option of not providing the Jacobian of the system which is then calculated internally using finite
differences. Otherwise, the user may provide the exact Jacobian J = (Jm,n)

M,N
m=1,n=1 with

Jm,n =
∂Fm
∂wn

, m = 1, . . . ,M, n = 1, . . . , N.

When the exact Jacobian is not given by the user, the function options are defined via the call
options=optimoptions(@lsqnonlin,’Display’,’iter’,’MaxFunEvals’,2000000, ...
’MaxIter’,mm,’TolFun’,TOL1,’TolX’,TOL2,’SpecifyObjectiveGradient’,false)
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while the function is called as
[w,resnorm,residual,exitflag,output] = lsqnonlin(@f1,w0,lb,ub,options)
The vectors lb and ub are user–specified and define lower and upper bounds, respectively, for the
variables w while the user–specified vector w0 contains the initial values of w.
The solution process of lsqnonlin will stop if any of the following conditions is met:

(1) The number of iterations exceeds mm.
(2) The final change in the sum of squares relative to its initial values is less than the value of

the function tolerance TOL1.
(3) The relative size of the current step is less than the value of the step size tolerance TOL2.

The function f=f1(w) contains the definition of the functions Fm, m = 1, . . . ,M (f).
When the exact Jacobian is given by the user, the option ’SpecifyObjectiveGradient’ becomes
true and function [f,J]=f1(w) contains the definition of both Fm, m = 1, . . . ,M (f), and the
exact Jacobian Jm,n, m = 1, . . . ,M, n = 1, . . . , N (J).

3. RBF neural network method

3.1. Second order problems.

3.1.1. The problem. We first consider the BVP in R2 or R3 consisting of the PDE

Lu = f in Ω, (3.1a)

subject to the BC
Bu = g on ∂Ω, (3.1b)

where in (3.1a) L is a second order elliptic operator and the operator B describes the BC.

3.1.2. The method. We shall now follow the approach of the key papers [7,12]. In this case learning
can be viewed as a regression problem and, more specifically, as an interpolation problem [14] which
can be solved in a supervised fashion. The solution u of BVP (3.1) is approximated by the RBF
network [18]

uN(x) =
N∑

n=1

anΦ(cn, rn), x ∈ Ω, (3.2)

where rn = |x− xn|. Note that x = (x, y) in R2, x = (x, y, z) in R3, and xn = (xn, yn) in R2 and
xn = (xn, yn, zn) in R3. Each RBF Φ(cn, rn) is dependent on a shape parameter cn. Thus, each
Φ(cn, rn) is linked to a point xn and a shape parameter value cn. The set of (distinct) points {xn}Nn=1

is the set of centers. Usually, the values of the shape parameters are taken to be equal a preassigned
value c, i.e. c1 = c2 = . . . = cN = c. The determination of the shape parameter optimal value is a
major issue in RBF approximation applications. In the current approach however, as in [15, 22],
we shall take distinct and unknown shape parameter values cn, n = 1, . . . ,N. A comparison of the
performance of the single shape parameter approach versus the variable shape parameter approach
for the solution on nonlinear second and fourth order BVPs can be found in [15].
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The interior centres {x0
n}

Nint
n=1, and the boundary centres {x0

n}
Nint+Nbry
n=Nint+1 comprise the initial set of

centres where N = Nint+Nbry. In the current approach we shall assume that the coordinates of the
centres {xn}Nn=1 are unknown. In addition to the centres, we need to provide the sampling or train-
ing (collocation) points {xm}Mm=1 ∈ Ω. The interior collocation points {xm}Mint

m=1 and the boundary
collocation points {xm}

Mint+Mbry
m=Mint+1 comprise the set of collocation points where M = Mint + Mbry.

The total set of network parameters consists of the coefficients {an}Nn=1 and the shape parameter
values {cn}Nn=1 in equation (3.2) as well as the coordinates of the centres {xn}Nn=1. These are
calculated by training the network to satisfy the following equations at the M sampling or training
(collocation) points

LuN(xm) = f(xm), m = 1, . . . ,Mint, (3.3a)
BuN(xm) = g(xm), m = Mint + 1, . . . ,Mint +Mbry. (3.3b)

System (3.3) yields M equations in 4N unknowns in 2D and 5N unknowns in 3D, namely, the
unknown coefficients a = [a1, a2, . . . , aN]

T , the shape parameters c = [c1, c2, . . . , cN]
T and the

centre coordinates x = [x1, x2, . . . , xN]
T , y = [y1, y2, . . . , yN]

T in 2D. In 3D we have the centre
coordinates x = [x1, x2, . . . , xN]

T , y = [y1, y2, . . . , yN]
T and z = [z1, z2, . . . , zN]

T .

In the sequel, we shall denote by X the vector
[
x
y

]
in 2D and

 x
y
z

 in 3D. (3.4)

For the number of equations to be at least as large as the number of unknowns, we take M ≥ 4N
in 2D and M ≥ 5N in 3D.

Because all the parameters except the RBF coefficients a appear nonlinearly, the M equations
(3.3a)–(3.3b) generate a nonlinear system (2.1) where

F(a, c,X) :=


F1
F2
...
FM

 =



LuN(x1)− f(x1)
...

LuN(xMint)− f(xMint)√
λ (BuN(xMint+1)− g(xMint+1))

...√
λ (BuN(xM)− g(xM))


= 0. (3.5)

In (3.5) λ is a fitted penalty factor accounting for the weight of the boundary conditions [12].

The MATLAB c⃝ function lsqnonlin will be used to minimize the functional [12] (the details are
given in Section 2),

S(a, c,X) :=

Mint∑
m=1

[LuN(xm)− f(xm)]
2 + λ

M∑
m=Mint+1

[BuN(xm)− g(xm)]
2 , (3.6)
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thus training the network effectively by gradient descent learning. Lower and upper bounds on the
elements of the vector of unknowns [a, c,X]T may be imposed in lsqnonlin. This option allows
the user to impose bounds on the shape parameter values which can be useful. For the Jacobian
analytical expression, in 2D we have,

J(a, c,X) := (Jm,n)
M,4N
m=1,n=1 , (3.7)

where

(Jm,n)
Mint,N
m=1,n=1 =

∂LuN(xm)

∂an
, (Jm,N+n)

Mint,N
m=1,n=1 =

∂LuN(xm)

∂cn
,

(Jm,2N+n)
Mint,N
m=1,n=1 =

∂LuN(xm)

∂xn
, (Jm,3N+n)

Mint,N
m=1,n=1 =

∂LuN(xm)

∂yn
,

(Jm,n)
M,N
m=Mint+1,n=1 =

√
λ
∂BuN(xm)

∂an
, (Jm,N+n)

M,N
m=Mint+1,n=1 =

√
λ
∂BuN(xm)

∂cn

(Jm,2N+n)
M,N
m=Mint+1,n=1 =

√
λ
∂BuN(xm)

∂xn
, (Jm,3N+N+n)

M,N
m=Mint+1,n=1 =

√
λ
∂BuN(xm)

∂yn
.

In 3D
J(a, c,X) := (Jm,n)

M,5N
m=1,n=1 ,

where, in addition to the definitions in (3.7), we have

(Jm,4N+n)
Mint,N
m=1,n=1 =

∂LuN(xm)

∂zn
, (Jm,4N+N+n)

M,N
m=Mint+1,n=1 =

√
λ
∂BuN(xm)

∂zn
.

The RBF network described above consists of two layers. In the first layer, we take the input
training points {xm}Mm=1 and calculate the RBFs at these points which is a nonlinear transfor-
mation. In the second layer we construct the weighted sum of these RBFs (which is a linear
transformation) yielding the output (3.2), see Figure 1, and also [12] and [14, Section 5.3].

( c
1
 , r

1
 )

( c
2
 , r

2
 )

( c
N

 , r
N

 )

 x
1

 x
2

 x
M

 u
N

Figure 1. Structure of RBF network.
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3.1.3. Initial centre locations. Like the locations of the collocation points, the initial locations of
the centres are usually taken to be in Ω. However, it has been observed that taking the initial
locations of the centres in a magnification of Ω by a factor η > 1 (see e.g. [5, 22]) produced more
accurate results. For 2D star–shaped domains whose boundary ∂Ω is described parametrically by

x = r(ϑ) cosϑ, y = r(ϑ) sinϑ, 0 ≤ ϑ ≤ 2π,

the centres are taken as
x̃0
n = η x0

n, n = 1, . . . ,N. (3.8)
In a general domain Ω with centre xc, the centres are taken as

x̃0
n = η (x0

n − xc) + xc, n = 1, . . . ,N. (3.9)

3.2. Fourth order problems.

3.2.1. The problem. We also consider the BVP in R2 or R3 consisting of the PDE

Lu = f in Ω, (3.10a)

and the BCs
B1 u = g1 and B2 u = g2 on ∂Ω, (3.10b)

where in (3.10a) L is a fourth order elliptic operator and the operators B1,B2 in (3.10b) describe
the BCs.

3.2.2. The method. The solution u of BVP (3.10) is again approximated by (3.2). The selection of
the sampling points {xm}

Mint+Mbry
m=1 ∈ Ω is carried out as in second order problems, see Section 3.1.2,

with Mint interior and Mbry boundary points. In a similar fashion, we select the initial locations of
the interior centres {x0

n}
Nint
n=1 and the boundary centres {x0

n}
Nint+Nbry
n=Nint+1 . However, as in [22], we select

a second set of distinct initial boundary centres {x0
n}

Nint+Nbry
n=Nint+1 . This set is taken on a magnification

of ∂Ω about the centre of Ω. We therefore now we define N = Nint +2Nbry, i.e. N is different than
in the second order case.

The parameters now consist of the coefficients {an}Nn=1, the shape parameters {cn}Nn=1 and the
centre coordinates x = [x1, x2, . . . , xN]

T , y = [y1, y2, . . . , yN]
T in 2D and x = [x1, x2, . . . , xN]

T ,
y = [y1, y2, . . . , yN]

T , z = [z1, z2, . . . , zN]
T in 3D. We shall use the same notation as in (3.4) with X

denoting the centre coordinates. The parameters are found by solving the collocation equations
at the sampling points

LuN(xm) = f(xm), m = 1, . . . ,Mint, (3.11a)

B1uN(xm) = g1(xm), m = Mint + 1, . . . ,Mint +Mbry, (3.11b)

B2uN(xm) = g2(xm), m = Mint + 1, . . . ,Mint +Mbry. (3.11c)
To have sufficiently many equations we take Mint + 2Mbry ≥ 4 (Nint + 2 Nbry) in 2D and
Mint + 2Mbry ≥ 5 (Nint + 2 Nbry) in 3D.
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The Mint + 2Mbry equations (3.11a), (3.11b)–(3.11c) give rise the nonlinear system (2.1), namely,

F(a, c,X) :=


F1
F2
...

FMint+2Mbry



=



LuN(x1)− f(x1)
...

LuN(xMint)− f(xMint)√
λ1 (B1uN(xMint+1)− g1(xMint+1))

...√
λ1

(
B1uN(xMint+Mbry)− g1(xMint+Mbry)

)
√
λ2 (B2uN(xMint+1)− g2(xMint+1))

...√
λ2

(
B2uN(xMint+Mbry)− g2(xMint+Mbry)

)


= 0. (3.12)

In (3.12) λ1, λ2 are fitted penalty factors accounting for the weight of the boundary conditions [12].
As in the second order case, the network will be trained by using lsqnonlin to minimize the
functional

S(a, c,X :=

Mint∑
m=1

[LuN(xm)− f(xm)]
2 + λ1

Mint+Mbry∑
m=Mint+1

[B1uN(xm)− g1(xm)]
2

+λ2

Mint+Mbry∑
m=Mint+1

[B2uN(xm)− g2(xm)]
2 . (3.13)

Let M = Mint+Mbry , N = Nint +2Nbry and also M = Mint +2Mbry, the Jacobian in 2D is defined by

(Jm,n)
Mint,N
m=1,n=1 =

∂LuN(xm)

∂an
, (Jm,N+n)

Mint,N
m=1,n=1 =

∂LuN(xm)

∂cn
,

(Jm,2N+n)
Mint,N
m=1,n=1 =

∂LuN(xm)

∂xn
, (Jm,3N+n)

Mint,N
m=1,n=1 =

∂LuN(xm)

∂yn
,

(Jm,n)
M,N
m=Mint+1,n=1 =

√
λ1

∂B1uN(xm)

∂an
, (Jm,N+n)

M,N
m=Mint+1,n=1 =

√
λ1

∂B1uN(xm)

∂cn
,
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(Jm,2N+n)
M,N
m=Mint+1,n=1 =

√
λ1

∂B1uN(xm)

∂xn
, (Jm,3N+n)

M,N
m=Mint+1,n=1 =

√
λ1

∂B1uN(xm)

∂yn
,

(Jm,n)
M,N
m=M+1,n=1 =

√
λ2

∂B2uN(xm)

∂an
, (Jm,N+n)

M,N
m=M+1,n=1 =

√
λ2

∂B2uN(xm)

∂cn
,

(Jm,2N+n)
M,N
m=M+1,n=1 =

√
λ2

∂B2uN(xm)

∂xn
, (Jm,3N+n)

M,N
m=M+1,n=1 =

√
λ2

∂B2uN(xm)

∂yn
.

In 3D we need, in addition to the above,

(Jm,4N+n)
Mint,N
m=1,n=1 =

∂LuN(xm)

∂zn
, (Jm,4N+n)

M,N
m=M+1,n=1 =

√
λ2

∂B2uN(xm)

∂zn
.

3.2.3. Initial centre locations. As suggested in Section 3.1.3 (see (3.8)–(3.9)) taking the initial
locations of the centres in a magnification of Ω yields improved results. In this case, we place the
second set of boundary centres {x0

n}
Nint+2Nbry
n=Nint+Nbry+1 on a magnification ξ of the (already magnified)

first set of boundary centres {x0
n}

Nint+Nbry
n=Nint+1 . For star–shaped boundaries (cf. (3.8)) we take

x̃0
Nbry+n = ξ x̃0

n, n = Nint + 1, . . . ,Nint + Nbry, (3.14)

and for general domains with centre xc, we have (cf. (3.9))

x̃0
Nbry+n = ξ

(
x̃0
n − xc

)
+ xc, n = Nint + 1, . . . ,Nint + Nbry. (3.15)

With this choice we avoid singular square matrices, see [21].

4. Numerical examples

We calculated the approximation uN at L test data points {xℓ}Lℓ=1 in Ω from which we computed
the maximum relative error

E =
||u− uN||∞,Ω

||u||∞,Ω

(4.1)

and the root mean square error E

E =

(
1

L

L∑
ℓ=1

[u(xℓ)− uN(xℓ)]
2

)1/2

. (4.2)

We used the 2D and 3D Gaussian RBFs

Φ(cn, rn) = e−cn r2n , (4.3)

the derivatives of which required in the implementation of method are given in the Appendix.
The initial values of the shape parameters were uniformly distributed on an interval [dmin, dmax]
using the formula (see [29])

c0(ℓ) = dmin + (dmax − dmin)
(ℓ− 1)

(N− 1)
, ℓ = 1, . . . ,N. (4.4)
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The selection of the initial shape parameter values is crucial to the accuracy and efficiency of the
method. We have conducted intensive tests and obtained good results for 2 < dmax < 3 (the range
in which the initial shape parameter values are distributed) and 2 < η < 3 (the magnification
factor of the enlarged domain in which the centres are initially placed) in 2D cases. For 3D cases,
due to the complexity of the solids, the initial location of the sources and η were selected differently
to 2D cases. We will further explain this in Examples 3 and 4. In [1,7,12], random numbers were
assigned for the initial values of the RBF weights. In this work, the initial values of the RBF
weights were all taken to be equal to zero. We also experimented with assigning random initial
weight values and found it made little difference to our results.

As mentioned in Section 2, we need to set the maximum number of iterations MaxIter and the
tolerances TolFun and TolX to prevent the solution process to run indefinitely. In the numerical
tests presented in this section, we set MaxIter = 500 for 2D cases and 50 for 3D cases and the
tolerances TolFun = TolX = Tol. In all our numerical tests, we noticed that the pre–assigned
value of the tolerance in lsqnonlin has little impact on the accuracy but could affect the efficiency
(number of iterations) if not chosen properly. In general, we would suggest taking tolerance values
between 1.0(-6) to 1.0(-12).

The numerical computations in this section were carried out using MATLAB c⃝ R2020b on x64-
based processor, Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz, 64 GB memory.

4.1. Example 1. Consider the 2D BVP

∆u = f(x, y) in Ω, (4.5a)

u = g(x, y) on ∂Ω, (4.5b)

where f and g are derived from the exact solution

u(x, y) = − 1

2π2
sin(πx) sin(πy), (x, y) ∈ Ω. (4.6)

This BVP was considered in [1, 7, 12] when Ω is the unit square (and clearly g = 0). We thus
first consider the unit square domain and then the five–star domain shown in Figure 3. The polar
coordinates equation of the five–star boundary ∂Ω is

r(ϑ) = 1 + cos2(5ϑ/2), 0 ≤ ϑ ≤ 2π.

In both cases, the interior collocation points are taken to be a distribution of Halton points and
the boundary collocation points are distributed uniformly. The initial coordinates of the centres
are constructed in a similar way and we take a Halton distribution of L=101 and 300 interior test
data points for the square and five–star domains, respectively.
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4.1.1. Implementation details. The vector F (3.5) and Jacobian J (3.7) are

Fi =
N∑

n=1

an∆Φ(cn, ri,n)−∆u(xi), i = 1, . . . ,Mint,

Fi =
√
λ

(
N∑

n=1

anΦ(cn, ri,n)− u(xi)

)
, i = Mint + 1, . . . ,M,

For i = 1, . . . ,Mint, j = 1, . . . ,N,

Ji,j = ∆Φ(cj, ri,j), Ji,N+j=aj
∂∆Φ(cj, ri,j)

∂cj
,

Ji,2N+j=aj
∂∆Φ(cj, ri,j)

∂xj
, Ji,3N+j=aj

∂∆Φ(cj, ri,j)

∂yj
,

For i = Mint + 1, . . . ,M, j = 1, . . . ,N,

Ji,j =
√
λ Φ(cj, ri,j), Ji,N+j =

√
λ aj

∂Φ(cj, ri,j)

∂cj
,

Ji,2N+j =
√
λ aj

∂Φ(cj, ri,j)

∂xj
, Ji,3N+j =

√
λ aj

∂Φ(cj, ri,j)

∂yj
.

4.1.2. Results. We first present the results for the square domain. For training, we chose 275
collocation points of which 200 Halton points were placed in the interior and 76 uniformly dis-
tributed points on the boundary. In a similar way, we chose 61 centres of which 45 were placed
in the interior and 16 on the boundary. We also took a magnification factor η = 2.2. The initial
shape parameter values were evenly distributed in the interval [dmin, dmax] = [0.5, 2.5]. In Figure
2 we show the initial distribution of sources and collocation points. In Table 1 we present some
results using various values of Tol and λ from which we observe that for larger values of λ, the
accuracy improves slightly. Little difference in accuracy is observed for various Tol values, but
smaller values can lead to a large number of iterations (and high CPU times).

Note that lsqnonlin offers the option of not providing the Jacobian. In Table 2, we present the
results obtained with the same parameters as those in Table 1 without providing the Jacobian.
Comparing the results with and without the Jacobian, we notice that the accuracy of these two
approaches is similar except the CPU time is much higher when the Jacobian is not given. For
3D problems, the difference is even more pronounced. For the rest of this section, we will only
present results obtained when providing the Jacobian. Comparing our results with those obtained
in [12] for the square domain, we found that our approach is far more accurate. As no CPU times
were reported in [12] we cannot compare the two approaches in terms of efficiency.

Next, we present the results for the five–star domain. In Figure 3 we present the initial locations
of the sources and collocation points for Mint = 400, Mbry = 160, Nint = 50, Nbry = 40. Some
results for various values of Tol and λ with η = 2.8, [dmin, dmax] = [0.5, 2.9] are depicted in Table 3
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Figure 2. Example 1: Initial positions of sources (•) and collocation points (•).

Tol E E niter CPU (secs)
λ = 10000

1.0(-8) 5.971(-6) 1.463(-7) 6 0.06
1.0(-10) 3.057(-6) 5.624(-8) 61 0.31
1.0(-12) 2.123(-6) 4.286(-8) 500 2.36

λ = 1000
1.0(-8) 7.044(-6) 9.542(-8) 5 0.06
1.0(-10) 7.197(-6) 9.669(-8) 6 0.06
1.0(-12) 5.709(-6) 9.082(-8) 500 2.37

λ = 100
1.0(-8) 7.826(-5) 8.261(-7) 11 0.09
1.0(-10) 3.149(-5) 4.415(-7) 71 0.34
1.0(-12) 1.883(-5) 2.716(-7) 500 2.37

Table 1. Example 1: Results for the square domain with various Tol and λ values
when providing the Jacobian.

from which we observe the solution process converges rapidly (in few iterations) with little change
for various decreasing values of Tol. For larger values of λ, higher accuracy was obtained. This
means that we get better results when putting more weight on the BC in the solution process.

Next, we examine how the accuracy is affected as we increase the number of collocation points and
centres. We consider the star–shaped domain with λ = 10000 with the same initial parameters
as before, i.e. with η = 2.8, [dmin, dmax] = [0.5, 2.9]. The obtained accuracy employing different
numbers of training points and centres is depicted in Table 4. We observe that the accuracy
improves rapidly, proportionally to the number of training points and centres until it reaches
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Tol E E niter CPU (secs)
λ = 10000

1.0(-8) 6.553(-6) 1.962(-7) 9 1.21
1.0(-10) 3.089(-6) 6.520(-8) 48 5.57
1.0(-12) 2.291(-6) 4.423(-8) 500 63.99

λ = 1000
1.0(-8) 1.631(-5) 3.050(-7) 9 1.15
1.0(-10) 7.147(-6) 1.190(-7) 34 3.98
1.0(-12) 5.751(-6) 8.739(-8) 500 64.07

λ = 100
1.0(-8) 1.985(-5) 3.582(-7) 5 0.76
1.0(-10) 2.036(-5) 3.557(-7) 12 1.51
1.0(-12) 1.650(-5) 2.289(-7) 500 63.96

Table 2. Example 1: Results for the square domain with various Tol and λ values
without providing the Jacobian.

-2 0 2
X

-2

-1

0

1

2

Y

Figure 3. Example 1: Initial positions of sources (•) and collocation points (•).

a certain limit, which is consistent with the standard accuracy of RBFCMs indicated in the
literature. Furthermore, in this table we also compare the results obtained with the proposed
method and the traditional Kansa method [18]. Overall, we notice that, for this example, the
proposed method performs better than the Kansa method in terms of accuracy. However, we
would like to emphasize that the primary goal of the current approach is to render the solution
procedure as simple as possible by letting the weighting coefficients, shape parameters, and centres
be determined simultaneously.
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Tol E E niter CPU (secs)
λ = 10000

1.0(-8) 6.249(-8) 8.854(-10) 4 0.15
1.0(-10) 6.538(-8) 8.940(-10) 5 0.19
1.0(-12) 6.538(-8) 8.940(-10) 5 0.18

λ = 1000
1.0(-8) 4.509(-7) 3.528(-9) 4 0.17
1.0(-10) 3.892(-7) 3.408(-9) 5 0.16
1.0(-12) 3.892(-7) 3.408(-9) 5 0.19

λ = 100
1.0(-8) 2.655(-6) 3.077(-8) 6 0.20
1.0(-10) 2.655(-6) 3.077(-8) 6 0.19
1.0(-12) 1.186(-6) 1.236(-8) 21 0.59

Table 3. Example 1: Results for various Tol and λ values for the five–star domain.

Mint Mbry Nint Nbry
current method Kansa method
E E E E

200 120 40 40 5.512(-5) 9.011(-7) 6.185(-5) 4.940(-7)
300 160 50 40 1.322(-5) 3.017(-7) 8.795(-6) 6.113(-8)
400 160 90 40 6.244(-8) 9.175(-10) 3.291(-6) 2.771(-8)
500 250 80 50 5.334(-8) 1.120(-9) 3.946(-6) 4.484(-8)
600 250 90 40 5.765(-8) 8.892(-10) 2.102(-6) 2.923(-8)

Table 4. Example 1: Results for various numbers of training points and centres
for the current method and the Kansa method.

4.2. Example 2. We next consider the 2D fourth order PDE

Lu = ∆2u = f(x, y) = −2π2 sin(πx) sin(πy) in Ω, (4.7)

subject to BCs for u and its normal derivative ∂u/∂n, calculated from the exact solution (4.6).
The domain Ω is the L–shaped domain shown in Figure 4. The coordinates of the six vertices
of the L-shaped domain are {(−0.2,−0.2), (0.8,−0.2), (0.8, 0.3), (0.3, 0.3), (0.3, 0.8), (−0.2, 0.8)}.
The interior collocation points are taken to be a distribution of Halton points and the boundary
collocation points are distributed uniformly. The boundary and interior centres are distributed in
a similar fashion and a set of L = 300 interior Halton points composes the set of test points.
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4.2.1. Implementation details. The vector F (3.12) and corresponding Jacobian J are

Fi =
N∑

n=1

an∆
2Φ(cn, ri,n)−∆2u(xi), i = 1, . . . ,Mint,

Fi =
√

λ1

(
N∑

n=1

anΦ(cn, ri,n)− u(xi)

)
, i = Mint + 1, . . . ,M,

Fi =
√

λ2

(
N∑

n=1

an
∂Φ

∂n
(cn, ri,n)−

∂u

∂n
(xi)

)
, i = M+ 1, . . . ,M+Mbry.

For i = 1, . . . ,Mint, j = 1, . . . ,N,

Ji,j = ∆2Φ(cj, ri,j), Ji,N+j = aj
∂∆2Φ(cj, ri,j)

∂cj
,

Ji,2N+j = aj
∂∆2Φ(cj, ri,j)

∂xj
, Ji,3N+j = aj

∂∆2Φ(cj, ri,j)

∂yj
.

For i = Mint + 1, . . . ,M, j = 1, . . . ,N,

Ji,j =
√
λ1 Φ(cj, ri,j), Ji,N+j =

√
λ1 aj

∂Φ(cj, ri,j)

∂cj
,

Ji,2N+j =
√
λ1 aj

∂Φ(cj, ri,j)

∂xj
, Ji,3N+j =

√
λ1 aj

∂Φ(cj, ri,j)

∂yj
.

For i = M+ 1, . . . ,M+Mbry, j = 1, . . . ,N,

Ji,j =
√

λ2
∂Φ

∂n
(cj, ri,j) =

√
λ2

(
nx

∂Φ

∂x
+ ny

∂Φ

∂y

)
(cj, ri,j),

Ji,N+j =
√
λ2 aj

∂

∂cj

(
∂Φ

∂n
(cj, ri,j)

)
=
√

λ2 aj
∂

∂cj

((
nx

∂Φ

∂x
+ ny

∂Φ

∂y

)
(cj, ri,j)

)
,

Ji,2N+j =
√

λ2 aj
∂

∂xj

(
∂Φ

∂n
(cj, ri,j)

)
=
√
λ2 aj

∂

∂xj

((
nx

∂Φ

∂x
+ ny

∂Φ

∂y

)
(cj, ri,j)

)
,

Ji,3N+j =
√

λ2 aj
∂

∂yj

(
∂Φ

∂n
(cj, ri,j)

)
=
√
λ2 aj

∂

∂yj

((
nx

∂Φ

∂x
+ ny

∂Φ

∂y

)
(cj, ri,j)

)
.

4.2.2. Results. Some results for various values of Tol and λ1 = λ2 are depicted in Table 5. In
Figure 4 we present the initial locations of the sources and collocation points for λ1 = λ2 using
Mint = 300, Mbry = 240, Nint = 50, Nbry = 40, η = 2.2, ξ = 1.2, dmin = 0.1, dmax = 2.8.
As in Example 1 the accuracy of the method is not sensitive to the decreasing values of Tol.

4.3. Example 3. We examine the 3D second order BVP consisting of the PDE

Lu = ∆u = sin(πx) sin(πy) sin(πz) in Ω, (4.8)



RBF NEURAL NETWORKS 15

0 1 2
X

-0.5

0

0.5

1

1.5

2

Y

Figure 4. Example 2: Initial positions of sources (•) and collocation points (•).

Tol E E niter CPU (secs)
λ1 = λ2 = 10000

1.0(-8) 5.691(-6) 6.624(-8) 38 2.05
1.0(-10) 1.740(-6) 2.055(-8) 114 7.87
1.0(-12) 8.954(-7) 1.095(-8) 385 36.05

λ1 = λ2 = 1000
1.0(-8) 7.776(-4) 1.331(-5) 11 0.52
1.0(-10) 7.756(-4) 1.325(-5) 13 0.57
1.0(-12) 7.622(-4) 1.300(-5) 500 20.28

λ1 = λ2 = 100
1.0(-8) 1.940(-5) 3.602(-7) 18 1.00
1.0(-10) 7.979(-6) 1.218(-7) 55 2.54
1.0(-12) 4.121(-6) 4.920(-8) 145 7.02

Table 5. Example 2: Results for various values of Tol for the L-shaped domain.

and a Dirichlet BC calculated from the exact solution

u(x, y, z) = − 1

3π2
sin(πx) sin(πy) sin(πz). (4.9)

The computational domain Ω is the double–sphere shown in Figure 5(a). A typical distribution
of collocation points and initial centre points (red dots) is shown in Figure 5(b). The parametric
equation of the double–sphere is given as follows:

Ω = {(x, y, z) ∈ R3 : H(x, y, z) ≤ 1/3}
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where

H(x, y, z) = min

{(
x− 1

4

)2

,

(
x+

1

4

)2
}

+ y2 + z2.

(a) (b)

Figure 5. Example 3: The profiles of (a) the double-sphere and (b) initial positions
of sources (•), boundary collocation points (•), and interior collocation points (•).

The boundary and interior collocation points are distributed approximately uniformly. In this
example, centres were chosen differently than in the 2D cases due to the complexity of the 3D
domain. More specifically, they were all located in an ellipsoid with a three axes ratio 1:0.7:0.7
centred at the origin and the magnification factor was taken as η = 1.3. In the numerical imple-
mentation, we chose Mint = 900, Mbry = 600, Nint + Nbry = 220, dmin = 0.5, dmax = 2.8. We
also took a set of L = 201 interior Halton test points.

4.3.1. Implementation details. The vector F (3.5) and Jacobian J (3.7) are

Fi =
N∑

n=1

an ∆Φ(cn, ri,n)−∆u(xi), i = 1, . . . ,Mint,

Fi =
√
λ (

N∑
n=1

anΦ(cn, ri,n)− u(xi)), i = Mint + 1, . . . ,M.

For i = 1, . . . ,Mint, j = 1, . . . ,N,

Ji,j = ∆Φ(cj, ri,j), Ji,N+j = aj
∂∆Φ(cj, ri,j)

∂cj
, Ji,2N+j = aj

∂∆Φ(cj, ri,j)

∂xj
,

Ji,3N+j = aj
∂∆Φ(cj, ri,j)

∂yj
, Ji,4N+j = aj

∂∆Φ(cj, ri,j)

∂zj
.
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For i = Mint + 1, . . . ,M, j = 1, . . . ,N,

Ji,j =
√
λ Φ(cj, ri,j), Ji,N+j =

√
λ aj

∂Φ(cj, ri,j)

∂cj
, Ji,2N+j =

√
λ aj

∂Φ(cj, ri,j)

∂xj
,

Ji,3N+j =
√
λ aj

∂Φ(cj, ri,j)

∂yj
, Ji,4N+j =

√
λ aj

∂Φ(cj, ri,j)

∂zj
.

4.3.2. Results. Some results for various values of Tol and λ with η = 1.3 are depicted in Table 6.
The accuracy is unaffected by reducing the value of Tol and increases with increasing λ.

Tol E E niter CPU (secs)
λ = 10000

1.0(-6) 7.482(-5) 2.178(-7) 12 2.14
1.0(-8) 7.482(-5) 2.178(-7) 12 2.14

λ = 1000
1.0(-6) 1.028(-3) 4.377(-6) 12 2.12
1.0(-8) 1.028(-3) 4.377(-6) 12 2.14

λ = 100
1.0(-6) 2.687(-4) 7.498(-7) 12 2.09
1.0(-8) 2.687(-4) 7.498(-7) 12 2.11

Table 6. Example 3: Results for various values of Tol and λ for the double-sphere domain.

4.4. Example 4. We next consider the 3D fourth order PDE

Lu = ∆2u = −3π2 sin(πx) sin(πy) sin(πz) in Ω, (4.10)

subject to BCs for u and its normal derivative ∂u/∂n, calculated from the exact solution (4.9).
The domain Ω is the Stanford Bunny shown in Figure 6(a). The boundary collocation points
of the Bunny are obtained from [33]. A typical distribution of the boundary points is shown in
Figure 6(b). The interior collocation points are distributed uniformly inside the domain We took
all the centres in a unit sphere centred at the geometric centre of the Bunny which is (-0.0836,
0.5456, 0) and the magnification factor η to be 1.4.

4.4.1. Implementation details. The vector F (3.12) and Jacobian J are

Fi =
N∑

n=1

an ∆
2Φ(cn, ri,n)−∆2u(xi), i = 1, . . . ,Mint,

Fi =
√
λ1 (

N∑
n=1

anΦ(cn, ri,n)− u(xi)), i = Mint + 1, . . . ,M,

Fi =
√
λ2 (

N∑
n=1

an
∂Φ

∂n
(cn, ri,n)−

∂u

∂n
(xi)), i = M+ 1, . . . ,M+Mbry.



18 ANDREAS KARAGEORGHIS AND C. S. CHEN

(a) (b)

Figure 6. Example 4: The profile of (a) Bunny domain (b) typical boundary points.

For i = 1, . . . ,Mint, j = 1, . . . ,N,

Ji,j = ∆2Φ(cj, ri,j), Ji,N+j = aj
∂∆2Φ(cj, ri,j)

∂cj
, Ji,2N+j = aj

∂∆2Φ(cj, ri,j)

∂xj
,

Ji,3N+j = aj
∂∆2Φ(cj, ri,j)

∂yj
, Ji,4N+j = aj

∂∆2Φ(cj, ri,j)

∂zj
.

For i = Mint + 1, . . . ,M, j = 1, . . . ,N,

Ji,j =
√
λ1 Φ(cj, ri,j), Ji,N+j =

√
λ1 aj

∂Φ(cj, ri,j)

∂cj
, Ji,2N+j =

√
λ1 aj

∂Φ(cj, ri,j)

∂xj
,

Ji,3N+j =
√
λ1 aj

∂Φ(cj, ri,j)

∂yj
, Ji,4N+j =

√
λ1 aj

∂Φ(cj, ri,j)

∂zj
.

For i = M+ 1, . . . ,M+Mbry, j = 1, . . . ,N,

Ji,j =
√
λ2

∂Φ

∂n
(cj, ri,j) =

√
λ1

(
nx

∂Φ

∂x
+ ny

∂Φ

∂y
+ nz

∂Φ

∂z

)
(cj, ri,j),

Ji,N+j =
√

λ2 aj
∂

∂cj

(
∂Φ

∂n
(cj, ri,j)

)
=
√
λ2 aj

∂

∂cj

((
nx

∂Φ

∂x
+ ny

∂Φ

∂y
+ nz

∂Φ

∂z

)
(cj, ri,j)

)
,

Ji,2N+j =
√
λ2 aj

∂

∂xj

(
∂Φ

∂n
(cj, ri,j)

)
=
√
λ2 aj

∂

∂xj

((
nx

∂Φ

∂x
+ ny

∂Φ

∂y
+ nz

∂Φ

∂z

)
(cj, ri,j)

)
,

Ji,3N+j =
√
λ2 aj

∂

∂yj

(
∂Φ

∂n
(cj, ri,j)

)
=
√
λ2 aj

∂

∂yj

((
nx

∂Φ

∂x
+ ny

∂Φ

∂y
+ nz

∂Φ

∂z

)
(cj, ri,j)

)
,

Ji,4N+j =
√
λ2 aj

∂

∂zj

(
∂Φ

∂n
(cj, ri,j)

)
=
√

λ2 aj
∂

∂zj

((
nx

∂Φ

∂x
+ ny

∂Φ

∂y
+ nz

∂Φ

∂z

)
(cj, ri,j)

)
.
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4.4.2. Results. In the numerical implementation, we chose Mint = 900, Mbry = 700, Nint + Nbry
= 240, dmin = 0.1, dmax = 2.5, and also took L = 400 interior test points. Some results for
various values of Tol, λ1, λ2, are depicted in Table 7.

Tol E E niter CPU (secs)
λ1 = λ2 = 10000

1.0(-6) 1.546(-4) 9.245(-7) 2 1.09
1.0(-8) 1.546(-4) 9.245(-7) 2 1.40
1.0(-10) 1.546(-4) 9.245(-7) 2 1.40

λ1 = λ2 = 1000
1.0(-6) 3.626(-4) 2.260(-6) 8 2.67
1.0(-8) 3.626(-4) 2.260(-6) 8 2.70
1.0(-10) 3.626(-4) 2.260(-6) 8 2.72

λ1 = λ2 = 100
1.0(-6) 9.205(-4) 4.909(-6) 8 2.71
1.0(-8) 6.749(-4) 3.754(-6) 50 18.52
1.0(-10) 6.749(-4) 3.754(-6) 50 18.76

Table 7. Example 4: Results for various values of Tol and λ for the Bunny domain.

4.5. Example 5. In this final example, we consider the following BVP for the Poisson equation
in the unit square Ω = (0, 1)2

∆u = ex+y in Ω, (4.11a)

u = 0 on ∂Ω. (4.11b)

Note that in this case, no exact solution is available and we compare the obtained solution with
those computed with the traditional Kansa method and the finite element method (FEM). For
the Kansa method, we used the normalized multiquadric (MQ) as the RBF with L = 300 interior
points and 160 boundary points whilst, for the selection of the shape parameter, we employed
the modified Franke formula [24]. The FEM calculations were carried out using the MATLAB c⃝

PDE Toolbox with 2705 linear elements. For our proposed method, we chose λ = 1000, and
the parameters initial [dmin, dmax] = [1.1, 3], η = 3. The profile of the approximate solution of
BVP (4.11) obtained with the FEM is shown in Figure 7, while in Table 8 we present the errors E
of our approximations for various numbers of collocation points and centres, with respect to those
obtained using the traditional Kansa method and the FEM. From this table we observe that our
results are slightly closer to the results obtained with the Kansa method than those obtained with
the FEM.
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Figure 7. Example 4: The profile of the approximate solution using FEM with
2705 linear elements.

Mint Mbry Nint Nbry Kansa method FEM
250 80 45 40 2.464(-4) 5.832(-4)
300 160 50 60 2.413(-4) 6.768(-4)
400 180 80 60 3.214(-4) 1.066(-3)

Table 8. Example 5: Errors E with respect to the Kansa method and FEM ap-
proximations using various numbers of collocation points and centres.

5. Conclusions

In this paper we approximate the solution of Poisson and biharmonic BVPs using an RBF neural
network approach. We train the RBF neural network by minimizing a nonlinear cost functional,
and this is carried out using the MATLAB c⃝ optimization toolbox function lsqnonlin. In exten-
sive preliminary tests, we found that the Gaussian RBF is far superior to the multiquadric RBF
(MQ) in terms of both accuracy and efficiency. As a result, we only present the results obtained
using the Gaussian RBF. In Example 1 we showed that providing the exact Jacobian in lsqnonlin
yields substantial savings in computational time and this enabled us to solve 3D BVPs in complex
domains efficiently. With the help of symbolic computational tools, the (tedious) derivation of
the exact Jacobian can be achieved relatively easily. To improve the accuracy of our approach, we
extend the domain, in which the initial positions of the centres are placed, to a domain outside
the physical boundary of the problem [5, 25]. Moreover, we found that relatively few iterations
are required to reach high accuracy. One of the advantages of the proposed approach is that we
can obtain the RBF parameters and weights simultaneously through the sophisticated nonlinear
least squares solver lsqnonlin which greatly simplifies of the solution process. As a result, the
challenge of pre–selecting the RBF shape parameter values, which is often problem dependent, is
alleviated. Overall, if we choose the initial values of the shape parameters and the source locations
properly, we can obtain fairly accurate results efficiently. In view of the fact that we are using
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nonlinear minimization anyway, the proposed approach would lend itself naturally to the solution
of nonlinear BVPs [19] and inverse geometric BVPs [20]. This will be the subject of a future
study.
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Appendix

For the 2D Gaussian RBF
Φ(cn, rn) = e−cnr2n

we need the derivatives
∂Φ

∂x
(cn, rn, x− xn) = −2cn(x− xn) e

−cnr2n ,
∂Φ

∂y
(cn, rn, y − yn) = −2cn(y − yn) e

−cnr2n ,

∂2Φ

∂x2
(cn, rn, y−yn) = 2cn

(
2cn(x− xn)

2 − 1
)
e−cnr2n ,

∂2Φ

∂y2
(cn, rn, x−xn) = 2cn

(
2cn(y − yn)

2 − 1
)
e−cnr2n ,

∆Φ(cn, rn) = 4cn
(
cn r

2
n − 1

)
e−cnr2n ,

∂∆Φ

∂x
(cn, rn, x− xn) = 8c2n (x− xn)

(
2− cn r

2
n

)
e−cnr2n ,

∂∆Φ

∂y
(cn, rn, y − yn) = 8c2n (y − yn)

(
2− cn r

2
n

)
e−cnr2n ,

∆2Φ(cn, rn) = 16c2n
(
2− 4cn r

2
n + c2n r

4
n

)
e−cnr2n .

In addition, we require the following derivatives with respect to the shape parameters cn

∂Φ(cn, rn)

∂cn
= −r2ne

−cnr2n ,

∂

∂cn

(
∂Φ(cn, rn)

∂x

)
= 2(x− xn)

(
cn r

2
n − 1

)
e−cnr2n ,

∂

∂cn

(
∂Φ(cn, rn)

∂y

)
= 2(y − yn)

(
cn r

2
n − 1

)
e−cnr2n ,

∂∆Φ(cn, rn)

∂cn
= −4

(
c2nr

4
n − 4cnr

2
n + 1

)
e−cnr2n ,

∂∆2Φ(cn, rn)

∂cn
= −16cn

(
c3nr

6
n − 8c2nr

4
n + 14cnr

2
n − 4

)
e−cnr2n .

We shall also need the following derivatives with respect to the centre coordinates xn and yn
∂Φ

∂xn
(cn, rn, x− xn) = 2cn(x− xn) e

−cnr2n ,
∂Φ

∂yn
(cn, rn, y − yn) = 2cn(y − yn) e

−cnr2n ,
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∂

∂xn

(
∂Φ(cn, rn)

∂x

)
= 2cn

(
1− 2cn(x− xn)

2
)
e−cnr2n ,

∂

∂yn

(
∂Φ(cn, rn)

∂y

)
= 2cn

(
1− 2cn(y − yn)

2
)
e−cnr2n ,

∂

∂xn

(
∂Φ(cn, rn)

∂y

)
=

∂

∂yn

(
∂Φ(cn, rn)

∂x

)
= −4c2n(x− xn)(y − yn) e

−cnr2n ,

∂∆Φ

∂xn
(cn, rn, x− xn) = 8c2n(x− xn)

(
cnr

2
n − 2

)
e−cnr2n ,

∂∆Φ

∂yn
(cn, rn, y − yn) = 8c2n(y − yn)

(
cnr

2
n − 2

)
e−cnr2n ,

∂∆2Φ

∂xn
(cn, rn, x− xn) = 32c3n(x− xn)

(
c2nr

4
n − 6cnr

2
n + 6

)
e−cnr2n ,

∂∆2Φ

∂yn
(cn, rn, y − yn) = 32c3n(y − yn)

(
c2nr

4
n − 6cnr

2
n + 6

)
e−cnr2n .

For the 3D Gaussian RBF
Φ(cn, rn) = e−cnr2n

we need the following derivatives
∂Φ

∂x
(cn, rn, x− xn) = −2cn(x− xn) e

−cnr2n ,
∂Φ

∂y
(cn, rn, y − yn) = −2cn(y − yn) e

−cnr2n ,

∂Φ

∂z
(cn, rn, z − zn) = −2cn(z − zn) e

−cnr2n ,

∂2Φ

∂x2
(cn, rn, y − yn, z − zn) = 2cn

(
2cn(x− xn)

2 − 1
)
e−cnr2n ,

∂2Φ

∂y2
(cn, rn, x− xn, z − zn) = 2cn

(
2cn(y − yn)

2 − 1
)
e−cnr2n ,

∂2Φ

∂z2
(cn, rn, x− xn, y − yn) = 2cn

(
2cn(z − zn)

2 − 1
)
e−cnr2n ,

∆Φ(cn, rn) = 2cn
(
2cn r

2
n − 3

)
e−cnr2n ,

∆2Φ(cn, rn) = 4c2n
(
4c2n r

4
n − 20cn r

2
n + 15

)
e−cnr2n ,

and also the derivatives with respect to the shape parameters cn

∂Φ(cn, rn)

∂cn
= −r2ne

−cnr2n ,

∂

∂cn

(
∂Φ(cn, rn)

∂x

)
= 2(x− xn)

(
cn r

2
n − 1

)
e−cnr2n ,

∂

∂cn

(
∂Φ(cn, rn)

∂y

)
= 2(y − yn)

(
cn r

2
n − 1

)
e−cnr2n ,



RBF NEURAL NETWORKS 23

∂

∂cn

(
∂Φ(cn, rn)

∂z

)
= 2(z − zn)

(
cn r

2
n − 1

)
e−cnr2n ,

∂∆Φ(cn, rn)

∂cn
= −2

(
2c2nr

4
n − 7cnr

2
n + 3

)
e−cnr2n ,

∂∆2Φ(cn, rn)

∂cn
= −4cn

(
4c3nr

6
n − 36c2nr

4
n + 75cnr

2
n − 30

)
e−cnr2n .

We shall also need the following derivatives with respect to the centre coordinates xn, yn and zn

∂Φ

∂xn
(cn, rn, x− xn) = 2cn(x− xn) e

−cnr2n ,

∂Φ

∂yn
(cn, rn, y − yn) = 2cn(y − yn) e

−cnr2n ,

∂Φ

∂zn
(cn, rn, z − zn) = 2cn(z − zn) e

−cnr2n ,

∂

∂xn

(
∂Φ(cn, rn)

∂x

)
= 2cn

(
1− 2cn(x− xn)

2
)
e−cnr2n ,

∂

∂yn

(
∂Φ(cn, rn)

∂y

)
= 2cn

(
1− 2cn(y − yn)

2
)
e−cnr2n ,

∂

∂zn

(
∂Φ(cn, rn)

∂z

)
= 2cn

(
1− 2cn(z − zn)

2
)
e−cnr2n ,

∂

∂xn

(
∂Φ(cn, rn)

∂y

)
=

∂

∂yn

(
∂Φ(cn, rn)

∂x

)
= −4c2n(x− xn)(y − yn) e

−cnr2n ,

∂

∂xn

(
∂Φ(cn, rn)

∂z

)
=

∂

∂zn

(
∂Φ(cn, rn)

∂x

)
= −4c2n(x− xn)(z − zn) e

−cnr2n ,

∂

∂yn

(
∂Φ(cn, rn)

∂z

)
=

∂

∂zn

(
∂Φ(cn, rn)

∂y

)
= −4c2n(y − yn)(z − zn) e

−cnr2n ,

∂∆Φ

∂xn
(cn, rn, x− xn) = 4c2n(x− xn)

(
2cnr

2
n − 5

)
e−cnr2n ,

∂∆Φ

∂yn
(cn, rn, y − yn) = 4c2n(y − yn)

(
2cnr

2
n − 5

)
e−cnr2n ,

∂∆Φ

∂zn
(cn, rn, y − yn) = 4c2n(z − zn)

(
2cnr

2
n − 5

)
e−cnr2n ,

∂∆2Φ

∂xn
(cn, rn, x− xn) = 8c3n(x− xn)

(
4c2nr

4
n − 28cnr

2
n + 35

)
e−cnr2n ,

∂∆2Φ

∂yn
(cn, rn, y − yn) = 8c3n(y − yn)

(
4c2nr

4
n − 28cnr

2
n + 35

)
e−cnr2n ,

∂∆2Φ

∂zn
(cn, rn, z − zn) = 8c3n(z − zn)

(
4c2nr

4
n − 28cnr

2
n + 35

)
e−cnr2n .
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