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CHAPTER I – PROBLEM STATEMENT 

The purpose of this research was to optimize evacuation time from the M.M. 

Roberts Stadium at The University of Southern Mississippi (USM) in Hattiesburg, MS, 

and its surroundings by integrating pedestrian and vehicular evacuation models. The two 

main objectives of this research were to (1) examine the role of affordance theory (i.e., 

evacuees’ perception of a hazard, the need to evacuate, evacuation route choice, and 

experience evacuating from large, outdoor public places) in optimizing stadium 

evacuation time and (2) optimize evacuation time by implementing agent-based modeling 

in conjunction with affordance theory and physical attributes of evacuees (i.e., age, 

gender, physical fitness level as estimated by body mass index (BMI), and blood alcohol 

concentration (BAC)). This chapter introduces the research issue, the project objectives, 

and expected outcomes of the research. 

Research Issue Introduction 

The American professional sports industry is a billion dollar industry that was 

worth about $435 billion in 2012, an increase of about $15 billion from 2009 (Sports 

2013; Zale and Kar 2012). Football, the most-watched and lucrative professional sport in 

the U.S., generated $12 billion during the 2014 season and had an average fan attendance 

of 68,274 at regular season games in 2015 (Wattles 2015; NFL 2016). According to the 

National Collegiate Athletic Association (NCAA), total fan attendance at college football 

games reached a record high of about 50 million in 2013 (NCAA n.d.). Because watching 

football is a popular and revenue-generating past-time, the U.S. government created 

legislation and programs to protect football stadiums, audiences, and their economic 

value. For instance, the USA PATRIOT Act requires protection of stadiums (considered 
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part of the nation’s critical infrastructure) because they represent American culture and 

promote mass gatherings (USA PATRIOT ACT 2001). The Congressional Research 

Service (CRS) Report of 2004 also stated that major athletic competitions are high profile 

events that require special protection (Moteff and Parfomak 2004). Therefore, industry 

professionals and researchers, such as the International Association of Venue Managers 

(IAVM) - an organization for facility managers, and the National Center for Spectator 

Sport Safety and Security (NCS4) at USM have created best practice guidelines 

addressing safety, security, emergency preparedness, emergency response training, and 

evacuation planning for sporting events (Hall et al. 2010; Hall 2013; McGee et al. 2013).  

Large numbers of people gather in a relatively small area in football stadiums. 

Thus, staging a full-scale evacuation drill in a 30,000-seat stadium is time- and cost-

prohibitive, and accurately replicating the range of human reactions to a real emergency 

during practice is difficult (Johnson 2006; Baker et al. 2007). An alternative solution is to 

implement computer-simulated evacuation models, which reduce time and cost of 

emergency planning and preparation for hazard events (e.g., severe thunderstorm, bomb 

threat) (Johnson 2006; Baker et al. 2007). Computer-based stadium-specific training, 

modeling, and simulation have been identified as part of evacuation planning and stadium 

security management standards that these types of venues should address to promote 

safety and security (Gips 2003; Pantera et al. 2003; Hall 2008; Phillips et al. 2006; Hall et 

al. 2008).  

An individual evacuee’s locomotion speed (i.e., exiting an evacuation zone on 

foot) and how it is affected by herding behavior, panic, and evacuation route affordance 

(i.e., evacuees’ perception of available evacuation routes) are used in modeling 
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evacuation from warehouses, museums, and rooms (Yang et al. 2002; Parisi and Dorso 

2005; Was 2005; Varas et al. 2007; Joo et al. 2013; Pluchino et al. 2013). In contrast, 

vehicular evacuation models use driving speed and drivers’ decision-making processes to 

evacuate from larger areas, such as a 10-mile radius surrounding a nuclear power plant 

(Stern and Sinuany-Stern 1989; Cova and Johnson 2003; Pal et al. 2003; Chen 2008).  

Although evacuation models use numerous input parameters, they rarely include 

evacuees’ physical and psychological characteristics, which influence a timely and 

orderly evacuation (Gibson 1966, 1979; Hinmann et al. 1988; Spyropoulos et al. 1997; 

Bohannon 1997; Samson et al. 2001; Lindell et al. 2005). Joo et al. (2013) is one such 

study, in which pedestrian evacuation was determined based on evacuees’ evacuation 

route affordance. Likewise, very few studies have combined pedestrian and vehicular 

evacuation for a venue of mass gathering (e.g., a football stadium - Zale and Kar (2012)). 

This research attempted to combine pedestrian and vehicular movement within and 

surrounding a football stadium to optimize evacuation time based on evacuees’ 

psychological and physical attributes.  

Project Objectives 

The goal of this research was to optimize evacuation time from M.M. Roberts 

Stadium and the surrounding campus (in Hattiesburg, MS) by integrating vehicular and 

pedestrian evacuation models. Previous research shows that: (1) age, gender, and BMI of 

an individual affect his/her locomotion speed, (2) prior evacuation experience affects the 

decision to evacuate and evacuation time, and (3) the perception of safe and effective 

evacuation routes affects evacuation time (Gibson 1966, 1979; Hinmann et al. 1988; 

Spyropoulos et al. 1997; Bohannon 1997; Samson et al. 2001; Lindell et al. 2005; Joo et 
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al. 2013). Although the individual impacts of locomotion speed, prior evacuation 

experience evacuating, and perception of safety and evacuation route effectiveness on 

evacuation have been examined, the collective effect of these variables has rarely been 

investigated (Lindell et al. 2005; Joo et al. 2013).  

In this study, the evacuee characteristics of age, gender, BMI, BAC, and 

affordance attributes (i.e., prior experience attending USM football games, evacuating 

from large and outdoor public places, and with hazard events) were used in an agent-

based model to simulate evacuee movement within the stadium, along with network 

analysis to determine the time required to evacuate the stadium and its surroundings 

(Figure 1). The following objectives and research questions were examined to accomplish 

the research goal. 

1. Objective 1: Determine the impact of evacuees’ attributes on evacuation time. 

• To what extent do evacuees’ physical attributes (i.e., age, gender, 

BMI, and BAC) and affordance attributes (identified above) influence 

their evacuation decision and time to evacuate from the M.M. Roberts 

Stadium?  

2. Objective 2: Optimize evacuation time.  

• How does evacuation time vary based on the aforementioned evacuee 

attributes? 

• How do the results of this research compare with other stadium 

evacuation models (e.g., Zale 2010; Pedestrian Dynamics 2017)? 
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Figure 1. Evacuation model diagram. 

Provides a general overview of the evacuation process. Determination of the number and locations of evacuees are shown in gold. The 

evacuation steps for uninjured and injured evacuees are shown in blue and red, respectively. Determination of evacuation routes, 

calculation of evacuation time, and model assessment are shown in green. 

Outcomes 

An important outcome of this research is gaining insight about how evacuees’ 

physical and psychological attributes influence the total time required to exit a stadium 
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and its immediate surrounding area. Due to the inclusion of these attributes, the 

methodology presented in this study depicts a more realistic depiction of evacuation time 

to aid in resource protection and evacuation preparation and response. Other outcomes 

include: (1) determining both pedestrian and vehicular evacuation times, (2) the 

combined impact of pedestrian and vehicular evacuation on total evacuation time, and (3) 

a model/methodology that can be replicated in other stadiums/mass gathering venues.  
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CHAPTER II - BACKGROUND 

First, this chapter provides an overview of evacuation modeling. Next, it explains 

cellular automata and agent-based modeling methodologies that have extensively been 

used in evacuation modeling to increase its accuracy. An overview of affordance theory 

from perceptual psychology and a discussion of modeling the effects of panic and BAC 

on evacuation is also presented. Finally, a summary of evacuation modeling research 

issues is provided, justifying the need for this project.  

Evacuation Modeling Overview 

Evacuation modeling started in the 1980s in response to the Three Mile Island 

(1979) and Chernobyl (1986) incidents (Urbanik et al. 1980; Sheffi et al. 1982; Stern and 

Sinuany-Stern 1993; Cova and Church 1997). With the increase in the number of 

recorded natural hazards by almost three times between 1970 and 2000 (UN 2004), the 

focus of evacuation modeling shifted from human-made hazards to natural hazards, 

especially tropical storms (Hobeika and Jamei 1985; Pal et al. 2003; Chen 2008), floods 

(Pal et al. 2003), and wildfires (Cova and Johnson 2002; Church and Sexton 2002; Cova 

at al. 2005). After the World Trade Center terrorist attacks on 9/11/2001, evacuation 

modeling due to anthropogenic hazards was revisited (Pal et al. 2003; Georgiadou et al. 

2007). In addition to the type of hazard, evacuation models can be categorized by 

methodology into flow-based, agent-based, or cellular-automata-based models (Table 1). 
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Table 1  

Evacuation Modeling Methods  

Modeling Method Evacuee Depiction 

 

Includes Individual Evacuee 

Attributes 

 

 

Flow-based 

 

Continuous stream No 

 

Agent-based 

 

Individual evacuees Yes 

 

Cellular automata 

 

Individual evacuees Yes 

 

Flow-based evacuation models depict evacuees as a continuous stream or flow 

that moves from an origin along specific evacuation routes to potential destinations (De 

Silva and Eglese 2000; Cova and Johnson 2002; Lo et al. 2004; Santos and Aguirre 2004; 

Chen 2008). In this approach, all evacuees are assumed to have the same physical, 

demographic, and perceptual attributes. Because information about evacuee 

characteristics, such as physical and psychological attributes, is not always available, this 

model is useful and easy to implement (De Silva and Eglese 2000; Cova and Johnson 

2002; Lo et al. 2004; Santos and Aguirre 2004; Chen 2008).  

In contrast to flow-based models, agent-based and cellular automata models 

depict evacuees as individuals rather than a continuous stream; thus, evacuation time is 

derived based on individual evacuee attributes. Input parameters, such as age, gender, 

fitness level, whether the evacuee is part of a group (e.g., a family), evacuee perception of 

a hazard, and locomotion speed (e.g., moving on foot or driving), are generally used in 
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these models to create a realistic depiction of evacuation (Yang et al. 2002; Varas et al. 

2007; Yamamoto et al. 2007; Yuan and Tan 2007). To make these models more efficient 

and easy to implement, a generalized value (e.g., average) of each attribute is assigned to 

all evacuees rather than assigning unique values to each evacuee (Yang et al. 2002; Varas 

et al. 2007; Yamamoto et al. 2007; Yuan and Tan 2007).  

Evacuation inherently involves movement through space during a certain time 

period. Depicting space and time is a strength of a geographic information system (GIS) 

(Cova 1999; Johnson 1999; Cutter 2003; Chen 2008). Due to the spatiotemporal nature of 

evacuation models and resulting outputs, implementing GIS-based evacuation models 

would facilitate the visualization of evacuation zone(s), evacuation routes, and locations 

of evacuees at various stages of evacuation (De Silva and Eglese 2000; Zou et al. 2006; 

Chen 2008; Cai et al. 2014). Such information could not only provide a clear and 

comprehensive understanding of the model as the evacuation progresses, but also could 

help with emergency response planning. However, despite recommendations to 

implement GIS-based evacuation models that would allow the visualization of the 

evacuation process and produce easily interpreted output maps (e.g., of evacuation zones, 

evacuation routes, or evacuee locations), as well as numerical outputs (e.g., total 

evacuation time), very few such models exist (De Silva and Eglese 2000; Zou et al. 2006; 

Chen 2008; Yassemi et al. 2008).  

Cellular Automata Modeling 

Cellular automata is defined as a “discrete dynamical system whose behavior is 

completely specified in terms of a local relation” (Toffoli and Margolus 1987, 5) in 

which a space is represented as a grid of square cells of uniform size each containing a 
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small amount of data (i.e., objects). Time advances in discrete intervals (Toffoli and 

Margolus 1987; Batty 1997, 2007) such that at every time interval the state of each cell is 

evaluated based on the state of its neighboring cells, thus simulating change (Toffoli and 

Margolus 1987; Batty 1997, 2007). Cellular automata is used to model phenomena that 

are self-stimulating (e.g., biological cellular reproduction during wound healing), rather 

than relying on external stimulation to produce output (Batty 1997, 2007). Because this 

approach simulates local changes, it cannot be used to simulate neighborhood, zonal, and 

global changes that are not caused by local changes (Batty 1997, 2007). Some of the 

phenomena that are modeled using cellular automata are urban growth, fire spread, 

pedestrian and vehicle movement, and pedestrian evacuation (Ward et al. 2003; Dijkstra 

et al. 2006; Yue et al. 2007; Yassemi et al. 2008; Tonguz et al. 2009).  

Although widely used in evacuation modeling, cellular automata models rarely 

incorporate evacuee characteristics. Joo et al. (2013) is one of the few studies that did so; 

evacuees’ perceptions of a fire was used to determine their evacuation route choices in a 

cellular automata pedestrian evacuation model for a generic warehouse. The model used 

a cell size of 0.8 by 0.8 meters and a time step of 0.4 meters per second (Joo et al. 2013). 

The two evacuee perceptions that were modeled included: (1) evacuees who decided to 

evacuate because they perceived that the fire existed or that other evacuees were exiting 

the building and (2) evacuees who decided to evacuate selected their evacuation routes by 

examining the bordering the cell indicating their current location. If the evacuees 

perceived that the border cells were: (1) unoccupied by either other evacuees or the fire 

and (2) in the direction of an exit (i.e., the model assumed that the evacuees knew the 
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layout of the warehouse and exit locations), then they considered these cells as potential 

steps along their evacuation routes.  

This perception-based decision-making process allowed evacuees to choose the 

shortest routes out of the warehouse. Because evacuee locomotion speed remained 

constant at 0.8 meters per second, the shortest route was also the fastest route. The 

authors tested the model with different combination of evacuee numbers (10, 50, and 

100) and number of exits (1, 2, and 4). The results revealed that (1) both the number of 

evacuees and number of exits impacted evacuation time and (2) evacuation time 

decreased with increase in number of evacuees, which could be because there were more 

evacuees to initially perceive the fire, thus speeding up the process of noticing that 

evacuation was necessary. The authors also indicated that there may be an optimal 

number of evacuees required to decrease evacuation time and that additional evacuees 

beyond this optimal number may increase evacuation time due to congestion at exits. To 

more realistically represent evacuee behavior during an evacuation, the authors 

recommended using physical (i.e., age, gender, physical fitness) and psychological 

attributes of evacuees (in addition to the perception attributes used in their model).   

Agent-Based Modeling 

An agent-based model is used to model systems that are driven by the behavior of 

autonomous agents, which are discrete entities (e.g., individual people, vehicles, drivers 

of vehicles, cells in the human body, or animals) with individual user-defined 

characteristics, behaviors, goals, and rules for interacting with other agents and the 

environment (Bonabeau 2001; Macy and Willer 2002; Macal and North 2009; Agent-

Based 2010; Laver and Sergenti 2012). An agent may also have the ability to “learn” 
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from its environment and previous actions, thus changing selected behaviors and 

interaction rules (Caldwell 1997; Macal and North 2009; Agent-Based 2010). Because 

there is no centralized mechanism to control agent behavior, and since agents make 

decisions based on their immediate environment without the ability to “think” or “reason” 

strategically, agent-based modeling is ideal for examining events that evolve due to the 

actions of heterogeneous entities responding to their immediate environments, such as 

evacuation due to a fire (Caldwell 1997; Macy and Willer 2002; Macal and North 2009; 

Laver and Sergenti 2012). Like cellular automata, agent-based models are used to model 

phenomena resulting from local changes in which agents move along a grid at discrete 

time intervals (Caldwell 1997; Macy and Willer 2002; Parisi and Dorso 2005; Chen 

2008; Macal and North 2009; Laver and Sergenti 2012).  

Agent-based models have been used to predict many phenomena, such as 

sociological theories, pedestrian, and vehicle movement (including evacuation), and stock 

market trading (Epstein and Axtell 1996; Alfarano et al. 2005; Chen 2008; Ha and 

Lykotrafitis 2012). For example, the SugarScape model - an early agent-based model – 

examined human group formation and dissipation during diverse social processes, 

including birth, death, illness, and wealth accumulation (Epstein and Axtell 1996). In the 

initial model, (1) each agent (i.e., a person) moved from cell to cell, one cell at a time, to 

an unoccupied neighboring cell in any direction to gather sugar, and (2) only one agent 

could occupy each cell at a time (Epstein and Axtell 1996). In later versions of the model, 

agents were assigned demographic attributes (e.g., age, gender, economic and status, 

health condition) and cultural traits that influenced their ability to move to gather sugar. 

These attributes could be used to form specific groups (e.g., by gender or age), each with 
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homogeneous attitudes that influenced its movement and sugar-gathering behavior. The 

demographics of the groups formed by this model reflected social theories and cultural 

values of the time period.  

Ha and Lykotrafitis (2012) created a pedestrian agent based evacuation model to 

explore the effects of interior doorway width, main exit doorway width, locomotion 

speed, and friction coefficient (i.e., the force between agents in contact with each other or 

with walls; in proportion to the relative tangential velocity between agents or between an 

agent and a wall) on evacuation time from one room (200 agents), two rooms (100 

agents), one floor with six rooms (294 agents), and three floors each with six rooms (882 

agents). The study revealed that: (1) faster locomotion speed can be used to represent 

panic; (2) higher friction coefficients resulted in slower evacuation times because 

evacuees required more time to move around each other when exiting; (3) wider interior 

room doorway widths and main exit doorway widths resulted in faster evacuation times 

due to less congestion at doorways; (4) main exit doorway widths affected evacuation 

time from multi-room structures; (5) the optimal locomotion speed range required to 

produce the fastest evacuation time varied based on interior room doorway widths, exit 

doorway widths, and the floor plan; (6) speeds below the desired speed (i.e., the speed 

assigned to all evacuees for one run of the simulation ranged between 1 m/s and 10 m/s) 

produced slower times because the agents were walking normally through the structure; 

and (7) speeds above the desired speed produced slower times because the agents became 

congested at interior doorways and the main exit doorway.  

Chen (2008) developed an agent-based vehicle evacuation model to compare two 

evacuation scenarios for Galveston Island, TX: (1) all residents evacuated simultaneously 
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and (2) residents were divided into geographic zones such that each zone exited at unique 

times (i.e., staged evacuation). The input parameters included road networks, duration for 

which a driver traveled at a specific speed, distance between stopped cars, distance a 

driver allowed between his/her vehicle and the preceding vehicle, vehicle deceleration 

time, speed differences between vehicles following each other, influence of distances 

between vehicles on vehicles’ speed changes, vehicles’ acceleration during speed 

changes, vehicles’ acceleration from standstill, and vehicles’ acceleration magnitude 

when their velocities were 80 kilometer per hour. The estimated average evacuation times 

for the two scenarios were 17 hours and 8 minutes and 16 hours and 39 minutes, 

respectively, with a time difference of 44 minutes, due to traffic congestion in the first 

scenario when all evacuees left at the same time. 

Affordance Theory 

Developed by psychologist James J. Gibson and based on Gestaltist and Lewinian 

theories of behavior, affordance theory is a part of perceptual psychology that attempts to 

explain how people perceive their environments and act based on those perceptions 

(Gibson 1966, 1979). An individual determines the affordance of an object as helpful or 

harmful based on his/her perception and cognition of the object. Individuals derive 

affordances by perceiving characteristics of objects in their surroundings or of the 

surroundings themselves (e.g., size, shape, color, texture, motion, sound, scent, and 

distance from the individual) and assessing what opportunities the objects in their 

surroundings or the surroundings themselves can afford them. Then, individuals use these 

affordances to make decisions and take appropriate actions. For example, a hot pan on a 

stove may provide opportunities to cook and/or burn oneself. Thus, depending on past 
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experience with a stove, one may choose to carefully cook without burning oneself or to 

not cook because it is potentially harmful (Gibson 1966, 1979).  

Although affordance theory informs human decision processes and behavior, it is 

rarely used when examining evacuation time. Because cellular automata and agent-based 

evacuation models allow inclusion of individual evacuee behavior, including their 

perceptions of a hazard (De Silva and Eglese 2000; Was 2005; Varas et al. 2007; Yuan 

and Tan 2007; Joo et al. 2013), Joo et al. (2013) developed a cellular automata evacuation 

model of a warehouse using affordance theory to determine the impact of perceptual 

attributes of evacuees on evacuation time. In the model, evacuees determined their 

evacuation routes by assessing the affordance of all grid cells adjacent to their locations 

and in the direction of the exit. Grid cells perceived to afford evacuation (e.g., along an 

evacuation route and clear of smoke and/or fire) were included in the evacuation routes. 

The study, however, did not compare evacuation times calculated with affordance 

attributes to times without them, thereby failing to determine the effect of affordance on 

evacuation time. However, it showed that affordance theory can be used in evacuation 

modeling to determine an evacuee’s travel route choice based on his/her perception of the 

environment, the hazard, and past experience with the environment and hazard events.  

Panic and Stampede Behavior 

Panic is related to an individual’s response to an emergency situation based on his 

or her perception of the situation (LaPierre 1938; Quarantelli 2001; Mawson 2005; 

Pelechano et al. 2005; Zhang et al. 2007). Although the term “panic” has been used in 

academic research since the 1930’s, it is not clearly defined (LaPierre 1938; Quarantelli 

2001; Pelechano et al. 2005; Zhang et al. 2007). The earliest definition comes from 
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sociology, which considers panic to be any behavior that did not follow the instructions 

of emergency officials during an emergency situation, regardless of the following 

considerations: (1) whether the behavior was helpful or harmful to the individuals; (2) the 

individuals’ mental states, emotions, or perception of the situations; and (3) whether 

officials were actually present to provide guidance (LaPierre 1938).  

In psychology research, panic is defined as “inappropriate (or excessive) fear 

and/or flight and highly intense fear and/or flight” (Mawson 2005, 96). Subsequent 

definitions from sociology, psychology, and disaster research include groundless fear, 

irrational behavior, and flight behavior when an escape route is clearly present. However, 

there is no way to determine if the fear an individual experiences is “groundless”, 

“excessive”, “irrational”, or “intense”, and these terms are very subjective and can vary 

based on an individual’s perception of a situation (Quarantelli 2001; Mawson 2005). 

Thus, what one person considers “groundless fear” or “irrational behavior” may be 

normal and logical to another person (Mawson 2005).  

Due to lack of a clear definition, panic has seldom been used as an input 

parameter in pedestrian evacuation models. Even when panic was used, a definition to 

understand the effects it has on evacuation behavior and time is rarely provided 

(Pelechano et al. 2005; Hajibabai et al. 2007; Zhang et al. 2007). For example, in their 

pedestrian evacuation model of a generic building, Pelechano et al. (2005) divided 

evacuees into three categories: (1) individuals who knew the building layout and could 

handle stressful situations, (2) individuals who did not know the building layout and 

could handle stressful situations, and (3) individuals who did not know the building 

layout and could not handle stressful situations. “Stressful situation” was not defined, 
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although the authors indicated that the ability to deal with stress may vary based on an 

individual’s natural abilities and/or job training (e.g., firefighting). The model assumed 

that individuals without such natural abilities or job training would not search for 

evacuation routes, and would panic and wait for instruction from those with the 

aforementioned abilities or training. However, panicked behavior was not further 

described; whether panicking simply meant waiting for others to find an evacuation route 

or engaging in other behavior while waiting was not clarified. The results indicated that 

evacuation times decreased when the evacuees consisted of a higher percentage of 

evacuees in the first two categories.   

Zhang et al. (2007) created a pedestrian evacuation model of the Tianjin Olympic 

Center Stadium in Tianjin, China, most notably used for the 2007 Fédération 

Internationale de Football Association (FIFA) Women’s World Cup and the 2008 

Olympic Games. The model examined the relationship between stadium egress width and 

evacuation time. Although the authors indicated the importance of including evacuees’ 

psychological attributes in the model, they did not include panic because it was a 

complex psychological reaction that could not be accurately depicted via simulation.   

Interviews with individuals who experienced and/or witnessed hazard events 

requiring evacuation, such as the 1977 Beverly Hills Supper Club fire, the 1979 crush at 

the Riverfront Coliseum in Cincinnati, OH, prior to a concert by The Who, the 1993 

World Trade Center bombings, the 2001 World Trade Center terrorist attacks, and the 

2005 London bombings, revealed that the primary behavior of the participants following 

a hazard event was to help other people escape and/or escape themselves without 

harming other individuals (Johnson 1987; Clarke 2002; Drury et al. 2009). The 

http://www.fifa.com/
http://www.fifa.com/


 

18 

participants indicated that very few people acted in a way that was irrational or harmful 

to themselves or others; rather, the shared hazard experience promoted comradery and 

teamwork so that everyone could reach safety.  

Contributing to the discrepancy regarding the existence of panic during hazard 

events are the actions of government officials and news media (Johnson 1987; Clarke 

2002). Government officials often suppress information about hazard events (e.g., the 

extent and/or severity of the hazard, lack of emergency management resources) because 

they assume that this information may cause panic among the individuals experiencing 

the event (Johnson 1987; Clarke 2002). Likewise, when reporting about hazard events, 

news media often assume that certain information may cause panic. Therefore, they often 

state that the outcome was better than expected because people surprisingly did not panic, 

thus assuming that panic is the normal reaction (Johnson 1987; Clarke 2002). However, 

based on the aforementioned research, this assumption is groundless. Because whether 

panic actually exists is unknown and a clear definition does not exist, it is not a useful 

construct to explain human behavior; thus, a common recommendation is to cease using 

it as a technical research term (Quarantelli 2001; Pelechano et al. 2005). As such, 

including panic as an input parameter in the evacuation model is beyond the scope of this 

research. 

Similar to panic, human stampede behavior lacks a clear definition (Hseih et al. 

2009; Burkle and Hsu 2011; Illiyas et al. 2013). It is rarely researched and is not included 

as a hazard category in the World Health Organization’s Emergency Management-

Disaster Database (EM-DAT; the most comprehensive disaster database in the world that 

can be searched by location, type of hazard event, or year) (EM-DAT 2009; Hseih et al. 
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2009; Burkle and Hsu 2011; Illiyas et al. 2013). Given the limited research conducted on 

this topic, most of which comes from the disciplines of public health and emergency 

management, and due to the lack of a definition, a stampede appears to occur when a 

large group of people move en masse in the same direction in extremely close proximity 

to one another in or towards a space that cannot hold or support all of them (Hseih et al. 

2009; Burkle and Hsu 2011; Illiyas et al. 2013). Stampedes have occurred most often in 

Africa and Southeast Asia, usually during religious festivals (Burkle and Hsu 2011; 

Illiyas et al. 2013). However, they have also occurred at sports events, political protests, 

and music concerts Burkle and Hsu 2011). Rather than examining the social and 

psychological causes of stampedes, stampede-related research generally focuses on 

injuries people sustain as a result of experiencing stampedes and emergency mitigation 

and preparedness recommendations to reduce the risk and effects of stampedes (Hseih et 

al. 2009; Burkle and Hsu 2011; Illiyas et al. 2013).  

Stampedes often begin during non-emergency circumstances, rather than in 

response to a hazard event (Hseih et al. 2009; Burkle and Hsu 2011; Illiyas et al. 2013). 

When exacerbated by environmental factors and emergency management policies that do 

not consider the possibility of a stampede, the stampede itself can develop into an 

emergency (Hseih et al. 2009; Burkle and Hsu 2011; Illiyas et al. 2013). For example, the 

2009 stampede during FIFA World Cup Qualification Matches at the Félix Houphouët-

Boigny Arena in Abidjan in the Republic of Côte d'Ivoire occurred due to poor crowd 

control, insufficient entrances and exits to the stadium, and filling the stadium past 

maximum capacity, thus leaving no room for people to move individually without being 

trampled or crushed in an emotionally-charged but (initially) non-emergency situation 
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(FIFA extends 2009; FIFA inquiry 2009). More recently, on February 8, 2015, a 

stampede occurred during a soccer match between the Zamalek and Engineering for the 

Petroleum and Process Industries (ENPPI) Clubs in a stadium owned by the Egyptian 

military in Cairo, Egypt, for the same reasons as the aforementioned 2009 stampede, as 

well as due to the hostility between fans of the opposing teams (Kirkpatrick and Thomas 

2015; Maher and Mourad 2015). Because there is no specific definition of stampede 

available that can be used to parameterize it in an evacuation model (Hseih et al. 2009; 

Burkle and Hsu 2011; Illiyas et al. 2013), stampede behavior was not used as an input 

parameter in this research.  

Blood Alcohol Concentration 

The effect of BAC on evacuation behavior and/or time has not been examined at 

the time of this research. However, several studies looked at the effects of drinking in a 

social environment on memory, decision-making, and risk-taking behavior (Lyvers and 

Maltzman 1991; Weissenborn and Duka 2003; George et al. 2005).  

Lyvers and Maltzman (1991) examined the effects of social alcohol consumption 

on the frontal cortex of the brain, which governs higher cognitive functions, such as 

planning, decision-making, and understanding the consequences of one’s actions. 

Participants were evenly divided into the following four groups using a random, double-

blind approach: (1) individuals who were told they had been given an alcoholic beverage 

and actually received one, (2) individuals who were informed that they had been given an 

alcoholic beverage, but received a placebo, (3) individuals who were told they had been 

given a placebo and placebo and actually received one, and (4) individuals who were 

informed that they had been given a placebo, but actually received an alcoholic beverage. 
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The alcoholic beverages consisted of tonic water mixed with vodka, which was sufficient 

to induce a BAC of 0.05% while disguising the taste of the vodka. The placebo consisted 

of tonic water only.  

After the participants consumed their beverages, they took the Wisconsin Card 

Sorting Test twice. This test was a computerized examination in which participants sorted 

cards into one of four stacks based on color of the cards or the numbers or shapes on the 

cards. A chime sound indicated when a card was placed correctly and a buzzer sound 

indicated when a card was placed incorrectly. The participants did not know the sorting 

criteria in advance and figured it out by attempting to match colors, shapes, and numbers, 

and listening for the resulting sound. Multivariate analysis of variance (MANOVA) 

found that individuals who consumed alcoholic beverages performed statistically 

significantly more poorly than those who did not (alpha = 0.05), suggesting that alcohol 

in social drinking quantities impairs processes governed by the frontal cortex of the brain, 

such as planning, decision-making, and understanding the consequences of one’s actions. 

Although performance did not differ based on gender after consuming alcohol, the study 

revealed a practice effect for all participants (i.e., the scores of all the participants 

increased statistically significantly from the first run to the second, suggesting that their 

improvement was due to becoming more familiar with the task, rather than alcohol 

consumption). 

George et al. (2005) also investigated the effect of social drinking on decision-

making. Participants were divided evenly into two groups using a random, double-blind 

approach. One group was administered alcohol plus sufficient tonic water and Tabasco 

sauce to disguise the taste of the alcohol, while the other group was administered a 
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placebo (tonic water and Tabasco sauce). After beverage consumption, the participants 

took the following three tests: 

1. Matching Familiar Figures Task, developed by Carins and Cammock (1978): 

Participants were simultaneously shown a stimulus figure and six other 

figures. They were asked to identify which one of the six figures matched the 

stimulus figure. This matching process was performed 20 times. Participants 

were evaluated on the number of incorrectly matched figures, response time 

for the first attempt, and I score (i.e., index used to quantify impulsivity). 

2. Rey Auditory Verbal Learning Test, developed by Rey (1964): Participants 

were given two lists of 15 unrelated words and asked to repeat the words 

without memory aids. This test evaluated short-term memory.  

3. Decision-Making Task, developed by Rogers et al. (2003): Participants were 

shown two histograms (i.e., the “control and “experimental” histograms) each 

depicting binary-outcome gambles (i.e., probability of winning or losing; 

histogram height indicated the probability of winning). The control histogram 

always showed a 50% chance of winning or losing 10 points. The 

experimental histogram values varied; the chance of winning was either 33% 

or 66% and point value options were winning or losing 20 or 80 points, thus 

resulting in eight possible experimental histograms. Participants were asked to 

choose which histogram represented a more profitable probability. After 

performing eight trials, two of which depicted loss-only options (i.e., both the 

control and experimental histograms depicted losses), and two of which 

depicted win-only options (i.e., both the control and experimental histograms 
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depicted wins), the participants were told that the individual with most points 

at the end of the eight trials would receive an award of £10. The proportion of 

experimental gamble selection and time required to choose a histogram were 

used to evaluate the winners.  

The results revealed no difference (statistically significant or otherwise) between 

the placebo and alcohol groups for the number of incorrectly matched figures, response 

time for the first attempt, I score from the Matching Familiar Figures Task or short-term 

memory from the Rey Auditory Verbal Learning Test. On the Decision-Making Task, 

analysis of variance (ANOVA) with an alpha value of 0.05 revealed that participants in 

both groups always chose the experimental histogram when the probability of winning 

was high and always chose the control histogram when it was low. Similarly, participants 

in both groups always chose the experimental histogram more often when the potential 

number of points to win was high and chose the control histogram when it was low. The 

decision time for both groups was statistically significantly faster when the probability of 

winning was high and/or the expected point gain was large. It was statistically 

significantly slower for both groups when the probability of winning was low and/or 

there was an expected point loss. Participants in both groups chose the control histogram 

statistically significantly more often during win-only situations rather than during loss-

only situations.  

These results indicated that, in general, social drinking did not influence 

impulsive behavior, short-term memory, risk-taking behavior, risk-aversion behavior, or 

time required to make decisions regarding risks. However, regardless of the magnitude of 

the potential losses, the alcohol group chose the experimental card in the Decision-
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Making Task slightly (i.e., not statistically significantly) more often than the placebo 

group when the probability of a gain was high rather than low, the number of points to be 

obtained was large rather than small, or when they thought they would win the £10.  

Thus, individuals who were drinking socially may not be able to distinguish between the 

probability of a gain and how many points they may obtain, particularly when the 

probability of a loss is high.  

Weissenborn and Duka (2003) examined the effects of social drinking on working 

memory, problem-solving, and decision-making. Participants took the following four 

tests to evaluate cognitive function twice; once after drinking a beverage consisting of 

tonic water, Tabasco sauce, and sufficient alcohol to induce a mean BAC of 0.60 g/L, and 

on another day after drinking a placebo beverage consisting of  tonic water and Tabasco 

sauce sufficient disguise the taste of the alcohol: 

1. Cantab Tower of London, developed by Owen et al. (1990): In this computer-

based test, a computer screen was divided in half horizontally. The top half 

contained three colored balls arranged in a pattern, while the bottom half 

contained three colored balls not arranged in a pattern. Participants moved the 

balls in the bottom half to match the pattern in the top half as quickly as 

possible and using as few ball moves as possible. 

2. Cantab Spatial Working Memory Task, developed by Owen et al. (1990): 

Participants were presented with groups of four, six, or eight boxes with 

tokens inside them (Owen et al. 1990; Weissenborn and Duka 2003). The goal 

was to locate the box containing a blue token. Participants performed this task 

repeatedly, with the instruction that a box that contained the blue token in past 
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APPENDIX C  USM Football Game Attendee and Tailgater Questionnaire 
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APPENDIX D  BAC Calculations 

USM’s Ticket Office revealed that the most common beverage consumed while 

tailgating was beer in approximately 12-fluid-ounce increments. According to the 

National Institute on Alcohol Abuse and Alcoholism, beer contains about 5% alcohol 

(NIAA n.d.).  Thus, each 12-fluid-ounce quantity of beer contains 0.60 fluid ounces of 

alcohol (i.e., 12 fluid ounces of beer * 0.05 alcohol). 

Widmark’s equation is used by forensic scientists and breathalyzers to compute 

BAC (Alha 1951; Widmark 1981; Gullberg 1994). Thus, in this research, it was used to 

compute the BAC of individuals attending football games at the M.M. Roberts Stadium.  

Widmark’s equation is as follows: 

Ct = [(0.8 * A * f) / (P * 16 ounces per pound)] - ßt 

where: 

t = time in which the number of alcoholic beverages (i.e., A) were  

     consumed in hours 

Ct = BAC in g/100 mL at time t 

A = number of alcoholic beverages consumed in time t 

  f = number of fluid ounces of alcohol per unit A above (a constant value  

     of 0.60; derived in the first paragraph of this appendix) 

  P = body weight in pounds 

  ß = drop in blood concentration per hour (a constant value of 0.015  

      kg/L/hr) 

Values for t, A, and P were obtained from items on the questionnaire. Ct was 

calculated for each participant who provided t, A, and P (N = 120).  
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APPENDIX E  BMI Calculations 

According to the CDC, BMI is the most widely used, but admittedly imperfect, 

quantitative estimate of physical fitness and is calculated as follows (About 2014): 

BMI = (w / h2) * 703 

where: 

BMI = body mass index (a unit-less value) 

 w = weight in pounds 

 h = height in inches 

Values for w and h were obtained from items on the questionnaire. BMI was 

calculated for each participant who provided w and h (N = 327). 
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APPENDIX F  Kolmogorov-Smirnoff Goodness-of-Fit Test Results 

Table A1.  

Kolmogorov-Smirnoff Goodness-of-Fit Test Results 

 

Variable 

 

Test Statistic p Value 

 

Gender 

 

0.350 < 0.001 

 

Age 

 

0.216 < 0.001 

 

Age Recoded 

 

0.312 < 0.001 

 

Height (Inches) 

 

0.074 < 0.001 

 

Weight (Pounds) 

 

0.074 < 0.001 

 

Average Party Size 

 

0.323 < 0.001 

 

Number of People < 8 Years of Age in the Party 

 

0.428 < 0.001 

 

Number of People 8 to 18 Years of Age in the Party 

 

0.280 < 0.001 

 

Number of People Requiring Special Accommodations 

in the Party 

 

0.491 < 0.001 

 

Number of Games Attended per Year 

 

0.250 < 0.001 

 

Number of Years Attending Games 

 

0.306 < 0.001 
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Table A1 (continued). 

 

Variable 

 

Test Statistic p Value 

 

Location during Games 

 

0.479 < 0.001 

 

Number of People Travel with to Games 

 

0.159 < 0.001 

 

Mode of Transportation to Games 

 

0.448 < 0.001 

 

Reserved Parking Space Ownership 

 

0.436 < 0.001 

 

Distance Traveled to Games 

 

0.381 < 0.001 

 

Number of Alcoholic Beverages Consumed while 

Tailgating 

 

0.160 < 0.001 

 

Time Period in which Alcoholic Beverages Were 

Consumed while Tailgating 

 

0.162 < 0.001 

 

Feeling of Safety inside M.M. Roberts Stadium for a 

Football Game 

 

0.393 < 0.001 

 

Feeling of Safety when Tailgating 

 

0.405 < 0.001 

 

Experience Evacuating from a Large, Outdoor Public 

Place 

 

0.515 < 0.001 

 

Cause of Evacuation from a Large, Outdoor Public 

Place 

 

0.359 < 0.001 
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Table A1 (continued). 

 

Variable 

 

Test Statistic p Value 

 

Compliance with Evacuation Orders from a Large, 

Outdoor Public Place 

 

0.485 < 0.001 

 

Evacuate before, during, or after Hazard Events in a 

Large, Outdoor Public Place 

 

0.255 < 0.001 

 

Length of Time since Evacuated from a Large, Outdoor 

Public Place 

 

0.304 < 0.001 

 

Experience with Major Hazard Events 

 

0.408 < 0.001 

 

Type of Major Hazard Event Experienced 

 

0.446 < 0.001 

 

Evacuation Actions from Major Hazard Event 

 

0.365 < 0.001 

 

Compliance with Evacuation Orders for Major Hazard 

Event 

 

0.274 < 0.001 

 

Evacuate before, during, or after Major Hazard Event 

 

0.414 < 0.001 

 

Length of Time since Major Hazard Event Occurred 

 

0.316  < 0.001 

 

BMI 

 

0.078 < 0.001 

 

BAC 

 

0.155 < 0.001 
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APPENDIX G  Linear Regression Results 

Based on the findings of Carey (2005), which examined the effects of age group 

and gender on walking speed at inner city crosswalks, linear regression was used to 

examine the relationship between walking speed (i.e., the dependent variable) and gender 

and age group (i.e., predictive variables). Gender and age group explained a statistically 

significantly proportion of variance in walking speed, R2 = 0.70, F(2, 337) = 384.19, p < 

0.001. Both gender (ß = -0.65, t(337) = -21.57, p < 0.001) and age group  (ß = -0.54, 

t(337) = -18.05, p < 0.001) statistically significantly predicted walking speed.  

Both BMI and BAC are partially determined by an individual’s weight 

(Appendices D and E) (About 2014; Alha 1951; Widmark 1981; Gullberg 1994). 

Furthermore, frequency analysis of the questionnaire data, presented in Chapter IV, 

revealed that the most commonly consumed number of alcoholic beverages was two 

(27.9% of participants); the most common window of alcohol consumption was four 

hours (24.3% of participants); and BAC ranged from 0.00003209 to 0.04094 with a mean 

of 0.007302, only six participants over  0.02 (i.e., at which there may be some judgment 

impairment), and no participants over the legal limit of intoxication (i.e.,0.08) (Impaired 

2016); thus, the effects of alcohol consumption on the decision-making processes and 

behavior of evacuees were most likely minimal.  

While Carey (2005) did not include BMI or BAC, all participants in that study 

must presumably have had BMI and BAC values, even if the BAC values were extremely 

close to zero, and thus similar, but not the same, as those of the survey participants for 

this research. Therefore, in a final attempt to include BMI and BAC in this project, three 

unorthodox linear regressions were used to try to examine the relationship between 
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gender, age group, BMI, BAC, and locomotion speed, keeping in mind that the 

independent variables came from the questionnaire data for this project and the walking 

speed came from Carey (2005), and the results from these analyses may not be viable due 

to this combination of data sets. 

In the first linear regression, the independent variables were gender, age group, 

BMI, and BAC, and the dependent variable was locomotion speed. Although this model 

was statistically significant overall (R2 = 0.70, F(4, 115) = 67.44, p < 0.001), the only 

statistically significant predictors were gender (ß = -0.72, t(115) = -13.16, p < 0.001) and 

age group (ß = -0.46, t(115) = -8.57, p < 0.001).  

Since BMI and BAC were not statistically significant predictors of locomotion 

speed, their relationship to locomotion speed was examined in a second linear regression 

in which gender and age group were the independent variables, BMI and BAC were 

covariates, and locomotion speed was the dependent variable. Like the previous model in 

which BMI and BAC were independent variables rather than covariates, this model was 

statistically significant overall (R2 = 0.70, F(4, 115) = 67.44, p < 0.001), but the only 

statistically significant predictors were gender (ß = -0.72, t(115) = -13.16, p < 0.001) and 

age group (ß = -0.46, t(115) = -8.57, p < 0.001). 

Finally, a third linear regression in which gender and age group were the 

independent variables, BMI and BAC were moderators, and locomotion speed was the 

dependent variable was conducted in a final attempt to examine the relationship between 

the variables. Similar to the previous results, overall, the model was statistically 

significant (R2 = 0.71, F(6, 113) = 44.93, p < 0.001). However, only gender was a 

statistically significant predictor (ß = -0.77, t(113) = -4.77, p < 0.001). 
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Since gender and age group were statistically significant predictors when BMI 

and BAC were not included as covariates or moderators, research examining the 

collective effects of gender, age, BMI, and BAC on walking speed was not present, and 

Carey (2005) examined the effects of gender and age group on locomotion speed at inner 

city crosswalks, which is usually fast and purpose-filled movement (i.e., similar to 

evacuation), only gender and age group were used to determine locomotion speed in this 

model.  
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APPENDIX H  Within-Stadium Evacuation Time Raw Data 

Table A2.  

Within-Stadium Evacuation Times for Condition #1 

Run Number of Evacuees 

 

Minimum 

Evacuation Time 

(s) 

 

Mean 

Evacuation Time 

(s) 

Maximum 

Evacuation 

Time (s) 

 

1 

 

36000 1 421 1109 

 

2 

 

35998 1 422 1130 

 

3 

 

36000 1 422 1245 

 

4* 

 

35976 2 422 1107 

 

5** 

 

35999 1 443 1389 

 

6** 

 

35989 2 421 1349 

 

7* 

 

35837 1 418 1104 

 

8* 

 

35776 1 418 1124 

 

9 

 

36000 1 421 1111 

 

10 

 

36000 2 420 1184 

 

11 

 

36000 1 421 1117 
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Table A2 (continued). 

Run Number of Evacuees 

 

Minimum 

Evacuation Time 

(s) 

 

Mean 

Evacuation Time 

(s) 

Maximum 

Evacuation 

Time (s) 

 

12 

 

35998 2 422 1117 

 

13 

 

36000 1 420 1109 

 

14 

 

35983 1 421 1132 

 

15 

 

35999 1 420 1231 

 

16* 

 

35897 2 420 1384 

 

17* 

 

35919 1 420 1113 

 

18 

 

36000 1 422 1245 

 

19 

 

35999 1 422 1249 

 

20* 

 

35850 1 420 1449 

 

21 

 

35992 1 422 1117 

 

22 

 

35998 1 421 1121 

 

23 

 

36000 2 421 1108 
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Table A2 (continued). 

Run Number of Evacuees 

 

Minimum 

Evacuation Time 

(s) 

 

Mean 

Evacuation Time 

(s) 

Maximum 

Evacuation 

Time (s) 

 

24* 

 

35953 2 421 1289 

 

25 

 

36000 2 422 1167 

 

26 

 

35999 2 421 1115 

 

27 

 

35997 2 421 1117 

 

28 

 

35998 2 421 1117 

 

29* 

 

35832 2 419 1162 

 

30 

 

35999 1 420 1112 

 

31 

 

36000 1 421 1114 

 

32* 

 

36000 1 424 1536 

 

33 

 

35995 1 421 1103 

 

34* 

 

35999 1 423 2021 

 

35 

 

36000 1 420 1111 
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Table A2 (continued). 

Run Number of Evacuees 

 

Minimum 

Evacuation Time 

(s) 

 

Mean 

Evacuation Time 

(s) 

Maximum 

Evacuation 

Time (s) 

 

36 

 

35998 2 421 1121 

 

37 

 

36000 2 421 1115 

 

38 

 

36000 2 419 1114 

 

39 

 

36000 1 421 1112 

 

40 

 

35999 1 420 1107 

*Run not used in calculations because the simulated number of evacuees was was 35,979 or less (i.e., more than 20 less than 36,000). 

**Run not used in calculations because the maximum evacuation time was more than 90 seconds greater than the largest cluster of 

evacuation times.  

Table A3.  

Within-Stadium Evacuation Times for Condition #2 

Run Number of Evacuees 

 

Minimum 

Evacuation 

Time (s) 

 

Mean 

Evacuation 

Time (s) 

Maximum 

Evacuation 

Time (s) 

 

1 

 

35996 37 17 21 

 

2 

 

36000 37 18 18 

 

3* 

 

35855 36 17 10 
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Table A3 (continued). 

Run Number of Evacuees 

 

Minimum 

Evacuation 

Time (s) 

 

Mean 

Evacuation 

Time (s) 

Maximum 

Evacuation 

Time (s) 

 

4 

 

36000 37 17 29 

 

5 

 

35988 37 18 9 

 

6 

 

35998 37 18 7 

 

7 

 

35997 38 18 50 

 

8 

 

35991 37 17 11 

 

9 

 

35999 36 17 45 

 

10 

 

35999 38 18 27 

 

11 

 

36000 36 17 26 

 

12 

 

35999 38 17 40 

 

13 

 

36000 38 19 31 

 

14 

 

35998 37 18 9 

 

15 

 

36000 37 17 29 
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Table A3 (continued). 

Run Number of Evacuees 

 

Minimum 

Evacuation 

Time (s) 

 

Mean 

Evacuation 

Time (s) 

Maximum 

Evacuation 

Time (s) 

 

16 

 

35998 36 17 26 

 

17 

 

35998 38 17 59 

 

18 

 

35998 38 17 5 

 

19 

 

35999 36 18 9 

 

20 

 

35989 39 18 9 

 

21* 

 

35970 36 18 28 

 

22 

 

35998 37 18 23 

 

23 

 

35995 37 17 17 

 

24 

 

35998 38 18 1 

 

25 

 

35999 37 17 18 

 

26 

 

36000 37 17 12 

 

27 

 

35999 37 18 10 
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Table A3 (continued). 

Run Number of Evacuees 

 

Minimum 

Evacuation 

Time (s) 

 

Mean 

Evacuation 

Time (s) 

Maximum 

Evacuation 

Time (s) 

 

28 

 

36000 36 17 40 

 

29 

 

35997 38 20 53 

 

30 

 

36000 37 17 11 

*Run not used in calculations because the simulated number of evacuees was 35,979 or less (i.e., more than 20 less than 36,000). 

Table A4.  

Within-Stadium Evacuation Times for Condition #3 

Run 
Number of 

Evacuees 

 

Minimum 

Evacuation Time 

(s) 

 

Mean 

Evacuation Time 

(s) 

Maximum 

Evacuation 

Time (s) 

 

1 

 

36000 1 443 1176 

 

2 

 

35996 1 444 1240 

 

3 

 

35999 2 444 1183 

 

4 

 

35996 1 444 1217 

 

5 

 

35999 1 445 1174 

 

6 

 

36000 1 443 1349 
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Table A4 (continued). 

Run 
Number of 

Evacuees 

 

Minimum 

Evacuation Time 

(s) 

 

Mean 

Evacuation Time 

(s) 

Maximum 

Evacuation 

Time (s) 

 

7 

 

35996 1 443 1156 

 

8 

 

35999 2 445 1416 

 

9* 

 

35937 1 444 1445 

 

10 

 

35999 2 443 1140 

 

11 

 

35999 1 444 1144 

 

12 

 

36000 1 444 1200 

 

13 

 

35998 2 444 1306 

 

14 

 

35997 1 442 1264 

 

15 

 

35996 2 443 1213 

 

16 

 

35999 2 444 1167 

 

17 

 

35998 1 444 1158 

 

18 

 

35998 1 444 1181 
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Table A4 (continued). 

Run 
Number of 

Evacuees 

 

Minimum 

Evacuation Time 

(s) 

 

Mean 

Evacuation Time 

(s) 

Maximum 

Evacuation 

Time (s) 

 

19 

 

35998 1 442 1135 

 

20 

 

35987 2 445 1170 

 

21 

 

36000 2 443 1203 

 

22 

 

36000 2 444 1169 

 

23 

 

36000 1 444 1208 

 

24* 

 

35940 1 442 1225 

 

25 

 

36000 1 442 1148 

 

26 

 

35985 1 445 1170 

 

27 

 

35999 1 444 1413 

 

28 

 

35998 2 443 1310 

 

29 

 

35983 2 443 1184 

 

30* 

 

35956 1 448 1788 

*Run not used in calculations because the simulated number of evacuees was 35,979 or less (i.e., more than 20 less than 36,000). 
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APPENDIX I Stadium Centroid to Parking Lot Centroid Raw Data and Intermediate 

Results 

The data and intermediate results are listed using each step from Chapter III. 

Step 1: The distance between the centroid of the stadium and that of each parking 

lot (i.e., 56 distances) was measured using the Near tool in ArcGIS (Figure A1 and the 

NEAR_DIST field of Table A5, both in Appendix I). 

 

Figure A1. Stadium centroid to parking lot centroid near features. 

 

 

 

 


