
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Spring 5-2017

Determining Feasibility Resilience: Set Based Design Iteration Determining Feasibility Resilience: Set Based Design Iteration

Evaluation Through Permutation Stability Analysis Evaluation Through Permutation Stability Analysis

James E. Ross
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Ross, James E., "Determining Feasibility Resilience: Set Based Design Iteration Evaluation Through
Permutation Stability Analysis" (2017). Dissertations. 1400.
https://aquila.usm.edu/dissertations/1400

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F1400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=aquila.usm.edu%2Fdissertations%2F1400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/1400?utm_source=aquila.usm.edu%2Fdissertations%2F1400&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

DETERMINING FEASIBILITY RESILIENCE: SET BASED DESIGN ITERATION

EVALUATION THROUGH PERMUTATION STABILITY ANALYSIS

by

James E. Ross

A Dissertation

Submitted to the Graduate School

and the School of Computing

at The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved:

__

Dr. Zheng Sun, Committee Chair

Associate Professor, Computing

__

Dr. Andrew Strelzoff, Committee Member

Senior Research Scientist, Army Corps of Engineers

__

Dr. Chaoyang Zhang, Committee Member

Professor, Computing

__

Dr. Zheng Wang, Committee Member

Assistant Professor, Computing

__

Dr. Nan Wang, Committee Member

Associate Professor, Computing

Dr. Andrew Sung

Director, School of Computing

__

Dr. Karen S. Coats

Dean of the Graduate School

May 2017

COPYRIGHT BY

James E. Ross

2017

Published by the Graduate School

ii

ABSTRACT

DETERMINING FEASIBILITY RESILIENCE: SET BASED DESIGN ITERATION

EVALUATION THROUGH PERMUTATION STABILITY ANALYSIS

by James E. Ross

May 2017

The goal of robust design is to select a design that will still perform satisfactorily

even with unexpected variation in design parameters. A resilient design will

accommodate unanticipated future system requirements. Through studying the variations

of system parameters through the use of multi-objective optimization, a designer hopes to

locate a robustly resilient design, which performs current mission well even with varying

system parameters and is able to be easily repurposed to new missions. This ability to

withstand changes is critical because it is common for the product of a design to undergo

changes throughout its life cycle. This subject has been an active area of research in

industrial design and systems engineering but most methodologies rest upon exhaustive

understanding of design, manufacturing and mission variance. The thrust of this research

is to develop new methodologies for estimating robust resilience given imperfect

information. In this work we will apply new methodologies for locating resilient designs

within a dataset derive from a study performed by the Small Surface Combatant Task

Force in order to improve upon a state of the art design process. Two new methodologies,

permutation stability analysis and mutation stability analysis, are presented along with

results and discussion as applied to the SSCTF dataset. It is demonstrated that these new

methods improve upon the state of the art by providing insight into the robustness and

iii

resilience of selected system properties. These methodologies, although applied to the

SSCTF dataset are posed more generally for wider application in system design.

iv

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my committee chair Dr.

Jonathan Sun. Dr. Sun kept me motivated and moving forward as I have a tendency to

spend too much time on the details. His persistence and encouragement in regards to

academic research motivated me to keep moving forward and to meet my deadlines on

time. Without our Friday lunch meetings, and Dr. Sun’s dedication to keeping me on

track, this work would not have been completed.

I would also like to give special recognition to Dr. Andrew Strelzoff. His ability

to identify relevant motivating ideas and to recognize the impact of those ideas was the

inspiration for this work. His tirelessly patient efforts into my academic career will

always hold a special memory for me.

I would like to thank committee members Dr. Chaoyang Zhang, Dr. Zheng Wang,

and Dr. Nan Wang for their time and encouragement in the pursuit of academic

excellence. Time is the greatest gift anyone can give anyone else, and for their time, I

thank them. In addition, I would like to thank ERDC: Information Technology

Laboratory for their dedication to academic pursuits, and providing all of the tools

necessary for completing my research. Without their encouragement and support, this

work would not have been possible.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... xi

LIST OF ILLUSTRATIONS ... xiii

LIST OF ABBREVIATIONS .. xvi

CHAPTER I - INTRODUCTION .. 1

CHAPTER II – BACKGROUND: INTRODUCTION TO RESEARCH 10

Introduction to Multi-Objective Optimization .. 12

Introduction to Conflicting Objective Values ... 13

Studies on Conflict .. 14

Multi-Objective Optimization With High Fidelity Metamodels 16

Methods for Searching the Solution Space with Multi-Objective Optimization 17

Reducing the Problem Space For Multi-Objective Optimization Problems 18

Utilizing a Vector in Multi-Objective Optimization ... 19

Uncertainty and Imprecision ... 20

Uncertainty .. 20

Imprecision ... 21

Closing of Uncertainty and Imprecision ... 22

Compensating Methods .. 22

vi

Pareto Front ... 25

Robust Solution ... 27

Scoring Distance ... 29

Scoring Distance into Genetic Algorithm ... 31

Set Based Design .. 34

Description of Set-Based Design .. 35

Three Methods for Testing Robustness .. 46

Distance Test Metric for Robustness .. 46

Three Methods for Distance Calculation .. 47

Storage Methods for Single Column Distance.. 48

Single Column Distance Selected Value Storage ... 48

Single Column Distance Total Value Storage .. 48

Multi-column distance. ... 48

Combined Multi-Distance Storage ... 49

Individual Distance Storage .. 50

Combined Multi-Distance ... 51

Methods for Calculating Score Distance .. 52

Average Closest Selected Column Score .. 53

Weighted Sum Distance Score.. 53

Average Weighted Sum Distance ... 54

vii

Genetic Algorithm Test Metric for Robustness .. 56

Genetic Algorithm Example ... 57

Combined Test Metric for Robustness ... 58

CHAPTER III - METHODOLOGY ... 60

Research Approach ... 61

Step 1: The Three Concept Levels Method for Deconstruction of a Multi-Objective

Optimization Problem ... 61

The First Concept Level.. 61

Tradespace Components ... 62

The Second Concept Level ... 64

Metric Value Definitions .. 66

The Third Concept Level .. 67

Summary: The General Description of the first three concept levels of Multi-

Objective Optimization Problem .. 69

Fourth Concept Level: Adding Robustness to Multi-Objective Optimization 70

Adding Robustness by Testing Changes to the Score Metric 71

Robust Score Metric as a Percentage .. 72

Modifying a Value for Finding a Robust Percentage ... 73

Test for Calculating Robustness ... 73

Basic Boolean Test Metric for Robustness ... 74

viii

Summary of Adding the Robust Metric to a Multi-Objective Optimization Problem

... 75

Step 2 Part 1: Permutation Stability Analysis - Calculating Robustness with

Substitution ... 75

Introduction: Substitute Primary Parameter Value from Feasible Design with

Primary Parameter Value from Another Design ... 75

Description of Permutation Testing .. 77

Permutation Analysis for a Single Critical Variable ... 78

Optimizing the Permutation Analysis Method: Duplicate Tests 79

Subset Testing ... 79

General Example of Permutation Analysis ... 80

Sudo Code Example of Permutation Stability Analysis Applied to SSCTF

Dataset... 84

Step 2 Part 2: Permutation Stability Analysis - Calculating Robustness with Mutation

... 87

A Genetic Algorithm Substitution Method for Finding Resilient Designs within a

Tradespace .. 87

Possible Choices ... 88

In Between. ... 88

Below and Above .. 88

ix

CHAPTER IV – RESULTS .. 91

Introduction to Results and the Initial Statistics of the SSCTF Dataset 91

Non-Unique Designs ... 92

Unique Designs ... 93

Successful Unique Designs for Each Mechanical Model ... 94

Number of Failures for Each Mechanical Model ... 96

Combined Statistics for Each of the Mechanical Models ... 97

Algorithmic and Performance Issues .. 100

Permutation ... 101

Introduction to Permutation .. 101

Space Permutation Results .. 102

Weight Permutation Results ... 104

Power Permutation Results ... 106

Cooling Permutation Results .. 108

Mutation Analysis ... 110

Introduction to Mutation Analysis .. 110

Space - Mutation Analysis .. 111

Weight - Mutation Analysis .. 113

Power - Mutation Analysis ... 115

Cooling - Mutation Analysis ... 116

x

Mutation Conclusion ... 118

CHAPTER V – CONCLUSION ... 119

Summary of Objective .. 119

Summary of the Methodology .. 120

Concluding Results ... 121

CHAPTER VI – FUTURE WORKS .. 128

Cost per Mechanical Model as a Refinement to Permutation and Mutation Analysis 128

Comparison of Ship Mechanical Models as They Relate to Ship Cost 128

Genetic Algorithm Crossover Technique ... 131

Max and Min Feasibility Impact ... 132

Standard Deviation Distance Plateau Method .. 133

APPENDIX A – Full Source Code: Permutation Stability Analysis 134

REFERENCES ... 159

xi

LIST OF TABLES

Table 1 Example of Mission Area Capabilities and Capability Concepts 6

Table 2 Feasibility Elements of Ship Design .. 9

Table 3 Design space: di ... 80

Table 4 Design Space: di with variation for each V ... 81

Table 5 Design space: di with variations for each K and .. 82

Table 6 Design space: di with variation for each K and ... 82

Table 7 Design space: di with variation for each K .. 83

Table 8 Permutation stability analysis source code .. 85

Table 9 Calculate mutated value ... 89

Table 10 The full dataset with all non-unique designs ... 92

Table 11 Total number of unique designs from the full dataset 94

Table 12 Successful unique designs for each mechanical model 95

Table 13 Number of failures for each mechanical model ... 97

Table 14 Combined results showing pre-permutation statistics 99

Table 15 Timings .. 101

Table 16 After permutation results for all mechanical models on critical variable Space

... 103

Table 17 After permutation results for all mechanical models on critical variable Weight

... 105

Table 18 After permeation results for all mechanical models on critical variable Power

... 107

xii

Table 19 After permutation results for all mechanical models on critical variable Cooling

... 109

Table 20 Effects of mutation on Space ... 112

Table 21 Effects of mutation on Weight ... 113

Table 22 Effects of mutation on Power .. 115

Table 23 Effects of mutation on Cooling .. 117

xiii

LIST OF ILLUSTRATIONS

Figure 1. Operational capability levels in a Bulls eye chart ... 5

Figure 2. Payoff table by Deb... 34

Figure 3. Classical Design Spiral by Evans.. 36

Figure 4. Set-Based Design Process ... 38

Figure 5. Designing-In Costs .. 40

Figure 6. Evolution of Design Knowledge ... 41

Figure 7. Robust Test ... 46

Figure 8. Single Column Distance.. 47

Figure 9. 3D point data converted to Euclidean ... 49

Figure 10. R distance Script ... 50

Figure 11. Multi Column Individual Storage Distance .. 51

Figure 12. Multi Column Score Random Selection ... 52

Figure 13. Average curColSel .. 53

Figure 14. Method 2 – Weighted Sum ... 54

Figure 15. Average Weighted Sum .. 55

Figure 16. Sudo Code Example For a Genetic Algorithm ... 57

Figure 17. The first concept level ... 61

Figure 18. Definition of a tradespace ... 63

Figure 19. Parameter Definition ... 63

Figure 20. Parameter Value Range Definition 1 of 2 ... 64

Figure 21. Parameter Value Range Definition 2 of 2 ... 64

Figure 22. The second concept level .. 65

xiv

Figure 23. Additional Metrics .. 65

Figure 24. Sudo Code for Commonly useful Metric Value Examples 66

Figure 25. The third concept level .. 67

Figure 26. Score Metric .. 68

Figure 27. Three different types of score metric .. 68

Figure 28. Three levels of capability concept .. 69

Figure 29. Summary of concept levels of a multi Objective optimization Problem 70

Figure 30. Introduction to adding robustness ... 70

Figure 31. Four concept levels of multi-objective optimization 71

Figure 32. Adding robust score to the tradespace .. 72

Figure 33. Robustness Tests ... 74

Figure 34. Summary of the concept levels of a multi-objective optimization problem with

robustness .. 75

Figure 35. Four regions of a design tradespace .. 77

Figure 36. General algorithm for locating a robust design through substitution analysis 84

Figure 37. Total number of unique designs from the full dataset 92

Figure 38. Total number of unique designs from the full dataset 93

Figure 39. Code used for producing the successful unique designs chart 95

Figure 40. Code to pull of the number of failures for each mechanical model 96

Figure 41. Combined statistics for each of the mechanical models 98

Figure 42. Pre-permutation statistics for mechanical models .. 100

Figure 43. Produce charts for all mechanical models and a combine chart of results ... 102

Figure 44. Space - Combined bar chart statistics ... 104

xv

Figure 45. After permutation results for all seeds Weight ... 106

Figure 46. After permutation bar chart results for all mechanical models on critical

variable Power .. 108

Figure 47. After permutation bar chart results for all mechanical models on critical

variable Cooling .. 110

Figure 48. Create and populate bar charts for mutation data ... 111

Figure 49. Bar chart comparing percent success after mutate and before permutation for

Space ... 112

Figure 50. Bar chart comparing percent success after mutate and before permutation for

Weight ... 114

Figure 51. Bar chart comparing percent success after mutate and before permutation for

Power .. 116

Figure 52. Bar chart comparing percent success after mutate and before permutation for

Cooling .. 117

Figure 53. Average statistics permutation, mutation, and average costs 131

xvi

LIST OF ABBREVIATIONS

 AMPV Armored Multi-Purpose Ground Vehicle

 C3 Command and Control Centers

LCS Littoral Combat Ship

 MOO Multi Objective Optimization

SBD Set Based Design Methods

SME Subject Matter Experts

SSCTF Small Surface Combatant Task Force

1

CHAPTER I - INTRODUCTION

The Small Surface Combatant Task Force (SSCTF) was created in 2014 with the

purpose of examining existing Littoral Combat Ship (LCS) designs, modified LCS

designs, and new design concepts. With these designs, the goal was to determine if the

existing LCS ship could be modified to meet today and future mission needs, or if a

completely new design would be a better option. In order to be able to answer the

question of whether to buy a new ship or to modify the existing model, the Navy began

its design process. The naval design process is a complicated time-consuming process

that requires the skill set of a group of highly specialized naval architects. The group of

naval architects is required to meet many times in order to finalize a ship design. The

process of meeting and redesign requires weeks of time and many meetings. Steps

towards a final design are small and potential changes to the design always left more

designs to be created. All designs created were to be placed into a tradespace made up of

possible designs in order to ensure a large number of designs were analyzed. The designs

were to include the lethality of the ship towards land, sea, and air. The designs were also

to include cost, combat systems, and weapons. The goal of the SSCTF was to determine

whether or not to purchase a new Navy vessel or to continue to use the existing LCS to

fulfill mission requirements through a lengthy study of the capabilities of the current LCS

against the expected capabilities of a new ship design.

Part of the goal of the Navy ship design team was to develop a more robust

tradespace than had previously been possible given time and financial restraints on the

ship design process. In order to develop this more robust tradespace, The Small Surface

Combatant Task Force (SSCTF) used Set Based Design Methods (SBD). The SBD

2

method was followed using steps defined in the technical paper titled “What is Set-Based

Design” (David J. Singer, Doerry, and Buckley 2009). The first step in the process is to

define bounds for the tradespace so that designs are not created outside of the tradespace

area of interest. Next, the designer must ensure that the tradespace is sufficiently large

enough to fulfill the density of designs requirement as determined by the design expert.

Once a sufficiently large tradespace has been created, then the tradespace should be

analyzed by subject matter experts focusing on the design alternatives within their

domain of specialty. During the analyses, the design experts should eliminate designs that

will not produce a good solution. A good solution is a design that is capable of fulfilling

the requirements of the design and is also known as a feasible design. During this

reduction in the tradespace, designs that are feasible will emerge and a tradespace with

more viable options to the designers will be created. Once designers have ensured that the

tradespace is sufficiently large and eliminated designs in the tradespace in their domain

of specialty, the remaining designs from each group of specialist should be recombined

into one tradespace. The end result of this process of populating a tradespace and then

reducing the size of the tradespace by design experts will result in a tradespace that is

more robust than had previously been possible by allowing more feasible ship designs to

be considered in the final design options.

The Navy ship design study was focused on creating a robust tradespace of

possible designs for each of the 5 Hull Mechanical and engineering (HM&E)

configurations. These 5 configurations are called the design Seeds and represent the 5

different propulsion systems studied during this effort. The 5 Seeds are as follows:

3

• Mechanical Drive Twin Shaft

• Mechanical Drive Single Shaft

• Integrated Power System twin Shaft

• Integrated Power System Single Shaft

• Integrated Power System twin Shaft, Adjacent motors

The 5 different HM&E configurations are also known as M1, M2, I1, I2, IC. M1

designates the single propeller propulsion system. M2 is the dual propeller based system

in which the propellers are not located in the same compartment within the ship. I1 is the

single electrical propulsion system. I2 is the dual electrical propulsion system in which

the propulsion systems are not dual located (located within the same compartment). IC is

a dual electrical based system in which the electrical propulsion systems are located

within the same compartment. The mechanical propulsion systems have been around for

enough years to establish a wealth of historical data leading to a better understanding of

the limitations and also the benefits of using such a system. The electrical propulsion

systems are very new in comparison to its mechanical alternatives. The electrical

propulsion systems have a large amount of potential but until they have had more years

of use, the limitations and benefits are not be fully understood. In addition, the cost

associated with using a mechanical based propulsion system is much lower than using an

Integrated Power System so even though the Mechanical system wins out in the cost

category, it produces less power for use in current and future components of the ship than

the Integrated Power System. Even if the Mechanical System is able to handle the power

requirements of the current ship design, it may not be able to handle future power

requirements of the ship. Even though Integrated Power Systems have not been around

4

for a long time and there is not a large amount of information available, Integrated Power

Systems may enable use of electronics that might require more electricity than what

current mechanical systems produce.

When choosing the best mechanical model of a naval ship, it is helpful to use the

ship base configuration with the most feasible designs in order to ensure that changes

made to a design do not cause a ship to become infeasible. It will be helpful to identify

which ship has the most feasible designs. In order to identify which ship has the most

feasible designs, we are going to look at 5 different mechanical models of ship design,

and we are also going to look at the number of feasible designs that are affected by 4

critical variables of the ship design.

The four critical variables of ship design are Free Power, Free Weight, Free Cost,

Free Space. Power is the variable responsible for holding a value representing the amount

of power the ship is capable of maintaining. Weight is the amount of weight the ship can

hold without becoming unstable and sinking. Cooling is the amount of Cooling available

for ship components. Space is the amount of space remaining on the ship after the

expected components have already been added to the ship. These 4 variables have the

biggest overall impact on ship feasibility so making good choices for the values of these

4 parameters for each of the 5 HM&E configurations will likely result in a good design.

The robust trade space created by the SSCTF was based upon the idea of

Capability Concepts. “A Capability Concept is a set of operational capability levels and

an associated CONOPS for employing the capabilities” (Garner et al. 2015). An example

would be the capability of the design handling itself versus submarines in relation to the

extent it is capable of offense or defense. An example of a chart representing operational

5

capability levels of a design can be seen in Figure 1 (Garner et al. 2015). As one moves

further out from the center of the chart in each of the 14 example operational capabilities,

the overall operational capability of the design increases for the Capability Concept that

this design represents. A completed bullseye chart displaying all Operational Capabilities

for a Capability Concept is called a Configuration. An example of a configuration is

represented by Figure 1. There can be many configurations that meet all the requirements

of a Capability Concept, which means the Capability Concept is a feasible concept and

meets the “current level of fidelity and analysis” (Garner et al. 2015). There can also be

Capability Concepts in which no configurations meet all the requirements. These

capability concepts are infeasible thus do not meet current fidelity requirements.

Figure 1. Operational capability levels in a Bulls eye chart

(Garner et al. 2015)

6

For the example study performed in this work, the list of initial Capability

Concepts began with 192 different Capability Concepts. This list was reduced to 13

different Capability Concepts and then further to 8 Capability Concepts. The reduced set

of Capability Concepts can be viewed within the bullseye chart in Figure 1 along with a

few of the Capability Concepts that were eliminated from final consideration. The

elimination of Capability Concepts was performed by area experts and is not covered in

this material. For the 8 remaining Capability Concepts, there are “mission system

alternatives (MAs) designed to achieve a complete detect-to-engage capability for a

mission area capability level” (Garner et al. 2015). An example of a MA would be the

ship’s ability to perform all tasks required from detecting to engaging in warfare with an

aircraft. Using different MAs for the four primary mission capabilities seen in figure 1,

over 2000 different Combat Capability Alternatives were created. Then estimates for 4

the primary variables, Power, Space, Weight, and Cooling were developed. An example

of Combat Capabilities and how they relate to MAs can be seen in Table 1 (Garner et al.

2015).

Table 1

Example of Mission Area Capabilities and Capability Concepts

Capability Concept

Mission Area Capabilities CC

1

CC

2

CC

3

CC

4

CC

5

Self Defense against Air, Surface,

Undersea Threats

X X X

Capability to detect and engage small

craft within- the- horizon of own ship

 X X X X

Capability to achieve mission kill of X X

7

over-the-horizon surface targets

(Garner et al. 2015)

Even if a Design is found to be feasible, it may not be a viable design. Some

designs will pass the requirements of a Capability Concept but will not pass future testing

and analysis (Garner et al. 2015). For example, a ship design with engine A may fill all

the Operational Capabilities of a Capability Concept today but may fail to satisfy those

same Operational Capabilities at a future time. As Time moves forward after a ship is

built, it always gets heavier as more components are added to the ship. The ship’s engine

may have been capable of maintaining a level of speed but after the ship has become

heavier than that same engine will no longer be able to maintain that level of speed. With

the problem of not all designs that are found to be feasible remaining viable throughout

the design’s lifespan, finding ship designs that will pass future testing and analysis is

critical.

When examining a variable of interest in a Capability Concept, it is helpful to

assign a combined score to all the configurations the Capability Concept. Assigning a

combined score to all the configurations of the Capability concept is a better option than

relying on any one design in a configuration because even if a design is viable now does

not mean it will be viable in the future. According to Garner, a “diverse group of

configurations will mitigate “the risk that any one configuration will prove not viable”

(Garner et al. 2015).

In order to allow a wider range of values to be studied for each ship design, sets of

regression equations were developed for each of the 5 seeds using the statistical software

JMP. The regression equations were valuable in allowing approximations for of

8

configuration properties of specific “Rapid Ship Design Environment or RSDE

Configurations”. RSDE is the tool that was used for creating a table of configurations

representing the data space of designs (Garner et al. 2015).

The Engineering Resilient Systems (ERS) tradespace Toolkit was used to

combine “regression equations, the cost algorithms, HM&E crew size algorithms, other

algorithms and the data associated with the CCAs” (Garner et al. 2015). By combining

the pieces of information into one software package, the ERS team was able to assist in

the ship design process. The ERS team was responsible for generating the estimates using

Monte Carlo methods. The final result of the ERS tradespace tool was the generation of

approximately 10000 feasible designs for each of the 2000+ CCAs. After generation of

the feasible designs produced by the ERS Tradspace Toolkit, some of the designs were

compared with existing Small Surface Combatant designs and designs produced by the

Small Surface Combatant team in order to determine the validity of the ERS tradespace

toolkit results. It was determined that the results of the ERS Tradespace Toolkit were

valid and could be used for producing possible designs.

After the ERS tradespace tool finished generating data, the Feasibility Element

Calculator was to determine the feasibility of each design the was produced by the ERS

tradespace tool. The 4 levels of feasibility are Feasible Excessive, Feasible, High Risk for

Feasibility, and Not Feasible (Garner et al. 2015). Feasible Excessive represents a ship

design that far exceeds the requirements of the desired ship design which sounds good,

but the design is likely to be very high in cost. A feasible design is one that fills all

requirements of the desired design but does not overly exceed the design requirements,

thus being the most ideal level of design. High Risk For Feasibility means that it is

9

unlikely that the ship design will be able to meet all the requirements of the desired ship

design. Low Feasibility implies that the requirements of the desired ship design will not

be met by this design. Each of the elements found in Table 2 are assigned a feasibility

score. A design can also be found infeasible if more than 5 of the elements in table 2 are

found to be High Risk For Feasibility.

Table 2

Feasibility Elements of Ship Design

SUW Performance

ASW Performance

Sea keeping

AW Performance

Sustained Speed

Endurance Speed

Arrangeable Area

Displacement

Length to Beam Ratio

Stack Up Length
(Garner et al. 2015).

During the stage of generating ship designs using the ERS Tradespace Toolkit, it

was noticed that it would be very helpful to identify designs that were resistant to failure

if changes were made to the CCA. A design that was resistant to failure if changes were

made to the CCA would be a resilient design. Even if the design was not the most optimal

design in the set of designs, if the design is more resistant to failure than the optimal

design, it would be a better option. Noticing this need for an understanding of resilience

in tradespace analysis was the source of inspiration for this paper.

10

CHAPTER II – BACKGROUND: INTRODUCTION TO RESEARCH

The problem with exploring the full space of design options prior to any

narrowing is the complexity of determining complex interrelationships and tradeoffs

among design parameters. Multi-Objective Optimization (MOO) is a way to help analyze

the complex relationships between design parameters. MOO is the process of attempting

to find an optimum balance between the parameters that make up a design. The

parameters that make up a design are numerical value representations of the components

of a design such as the expected power output from an engine or the diameter of a

cylinder in an engine. In MOO problems designers are generally looking for the best

possible design by balancing differing objectives. The problem with this approach is

searching for the optimal design is often a time-consuming process; to make matters

worse, the optimal design is often unable to withstand even the smallest of changes to its

parameters. Often the resulting design from an MOO process works great but only under

specific conditions; this leads to the desire to find an optimal design and a design that is

also able to withstand changes.

A design that is able to withstand changes is known as a robust design. Since it is

very difficult to locate a design that is completely robust, designs can be given a

resiliency score that represents the measure of robustness. In order to help find a more

resilient score, Set-based design can be utilized. Set-based design is a method of design in

which areas of a design are analyzed in parallel. This parallel analysis allows each design

team to focus on areas of the design without having to worry about how their design area

affects other steps in the design process; design teams are able produce a more robust

design as a result of set-based design. All design teams for a particular design are able to

11

work on their area of the design concurrently. The result of this design method is that

more time is spent searching the solution space of possible options for each area of the

design, but a good option for each component in the design is available. Although set-

based design is a newer concept in the design world it can be highly effective in ensuring

that the final design chosen is among the set of best design options for a designer.

Fundamentally, set-based design is about deferring design choices until the full space of

possible designs has been fully explored (David J. Singer, Doerry, and Buckley 2009). In

the early stages of the design process, narrowing design options based on incomplete or

inadequate exploration leads to non-optimal solutions (David J. Singer, Doerry, and

Buckley 2009). If choices are made but turn out to be poor choices then correcting these

choices can often be both time consuming and costly (Vlahakis and Partridge 1989).

In this work, we will search for a design using Multi-Objective Optimization

(MOO) techniques and of the designs found we are going to attempt to locate a set of

designs that are robust. In our pursuit of the set of robust designs, we are going to look at

examples of MOO and at methods used to generate, explore, and filter data for MOO. We

are going to examine methods and concepts used for expressing uncertainty and

Imprecision in the design process. We are going to explore strategies used in searching

for an optimal design and concepts necessary for understanding how to recognize the

solution space of optimal designs and how to search for a robust design using strategies

of substitution and modification of parameter values. This substitution of parameter

values will assist in the assignment a resiliency score, which will represent a design’s

ability to withstand changes. The resiliency score will allow us to identify a design that

may not be the best overall design but will be likely to outperform the best design in

12

terms of being able to adapt to predicted and unpredicted changes to the parameters

representing the components of the design. By combining the concepts of multi-objective

optimization, set-based design, and resiliency, this work hopes to both encourage ideas

and develop new methods in locating sets of resilient design within a design space.

Introduction to Multi-Objective Optimization

In the early stages of the design process, choices are often made on incomplete or

inadequate information. The problem with having to make choices in the early stages

with partial information is that often these decisions are critical and will have long lasting

impacts on the overall design. If choices are made that turn out to be poor choices then

correcting those choices can often be both time consuming and costly. After

modifications have been made to the initial design, eventually an acceptable design will

be created which can include information on manufacturing imprecision. Imprecision is a

known issue in manufacturing as it is highly unlikely to obtain two products that are

identical. As Daum explains, when having cylinders manufactured, a designer can request

two cylinders of 50mm and instead of receiving two cylinders of exactly 50mm, the

designer will instead receive two cylinders within a predefined manufacturing range of

50mm (Correa Florez, Bolaños Ocampo, and Escobar Zuluaga 2014). The range is often

small but the variations in final manufactured product are expected. Imprecision is

closely related to the issue of uncertainty. Imprecision is how far from the intended

specifications was the item that was produced; uncertainty is knowing that there is going

to be some degree of difference between the final product and the designed product, but

not knowing for sure the variation from the specifications of the product. As Antonsson

describes, the tools designers use often do not have any way of capturing imperfections in

13

the manufactured final product (Josephson et al. 1998). Because the designer’s tools are

often incapable of capturing imperfections in the manufactured product, a tool that could

help with providing complete or adequate information to the designer would be very

useful.

Multi-Objective Optimization is the perfect resource for designers to leverage to

help with providing more information on a design before critical decisions are made.

Multi-objective optimization is the process of attempting to maximize the effectiveness

of a design by managing the objective function values of multiple objective functions. An

objective function is a function that provides numerical representation to the parameters

that make up a design. An objective function can utilize other objective functions to

provide its numerical representation of a parameter. By helping to identify the preferred

combinations of objective function values, MOO is able to provide designers with more

information before critical design decisions are made. However, according to Fonseca,

real world problems involving multi-objective optimization problems are often difficult

to solve due to conflicting requirements of the objective function. The overall goal of

multi-objective optimizations turns into a level of acceptance for the parameters of the

objective function, which is the result of a compromise in value between the objective

function parameters (Fonseca, Fleming, and others 1993). While MOO helps designers to

locate optimal designs, it is important to realize that real work usage of MOO is likely to

be a measure of acceptance as Fonseca described.

Introduction to Conflicting Objective Values

In many real world problems, it is a more common issue to have conflicting

objectives than to not have conflicting objectives; Multi-Objective Optimization (MOO)

14

deals with objective functions possessing conflicting objectives. Conflicting objectives

are objective function values that require the designer to manage the output value of two

or more objective functions that require a choice to be made where one objective function

will benefit and the conflicting objective function(s) values will be penalized. The goal of

Multi-Objective Optimization is to locate an ideal solution and thus a balance in gain

versus loss for each of the objectives in the objective function must be found (M. T. M.

Emmerich, Giannakoglou, and Naujoks 2006). An example would be, a designer could

want a design that has 3 weapon systems but only have the budget to afford two weapon

systems. The conflict between wanting more resources and the cost of the resources is an

example of conflicting objectives.

Studies on Conflict

The study of multi-objective optimization ranges across many fields in the search

of ways to handle conflictive objective function values. In the study performed by Llopis-

Albert, the author described an efficient multi-objective algorithm for scheduling robot

tasks such as trajectory planning and physical movement. The algorithm described takes

into consideration collision avoidance and the time it takes to perform real-world tasks.

The decisions made by the algorithm are based on a selection from a pareto-optimal

frontier of possible choices representing “trade-offs between the different decision

variables of the multi-objective optimization problem (Llopis-Albert, Rubio, and Valero

2015). A pareto-optimal frontier is the set of solutions that are considered Pareto

efficient. A Pareto efficient solution is a solution in which making a change to any

objective function value cannot improve the solution value. The result of the work by

Llopis-Albert is an algorithm that helps show the trade-offs for choosing different

15

decision variables and the time required for performing each task so that the time and

cost efficiency of the robot’s tasklist is maximized. In another study performed by

Kaitaniemi, the author studies the use of multi-objective optimization in order to

determine ecological and evolutionary causes for changes in the life cycle of a specific

species of moth. Normally when studying life cycles of insects, researchers tend to use

single objective optimization but using a single objective for optimization is inefficient

due to the life cycle of an insect requiring the contribution of many objectives

(Kaitaniemi et al. 2012). Expansion of knowledge in multi-objective optimization is

useful by increasing the understanding of a design solution space and will result in a

better overall design of a final product or, in the case of insects, better understanding and

prediction of life cycles. In a study by Chen who is also dealing with conflicting objective

function values, Chen describes a method which seeks to identify the tradeoffs between

objective function values in multi-objective optimization in proton therapy. The study

seeks to utilize multi-objective optimization to improve the accuracy of intensity-

modulate proton therapy, which utilizes pencil beams which have dosage amounts

associated with points along the beam (S.-J. Chen and Hwang 1992d). The goal of the

work presented by Fonseca is to explain the known issues in evolutionary multi-objective

optimization problems and how real world problems involving multi-objective

optimization problems are often difficult to solve due to conflicting requirements of the

objective function. According to Fonseca, the overall goal of multi-objective

optimizations turns into a level of acceptance for the parameters of the objective function

that are the result of a compromise in value between the objective function parameters

(Fonseca, Fleming, and others 1993). The study of multi-objective optimization is

16

currently assisting scientist in their studies not focused only on manufacturing design, but

also in areas such as robot AI, evolutionary life cycles, and proton therapy techniques.

Multi-Objective Optimization With High Fidelity Metamodels

The concept of multi-objective optimization can be applied to objective functions

values that are created using high fidelity models, but it is suggested that a designer use

metamodels to assist in computation speed. Because Multidisciplinary design

optimization (MDO) is a complex method of optimizing the design when creating a

design composed of multiple subsystems. When working on optimization, the amount of

computational resources increases when seeking a higher level of fidelity in the analysis

of subsystems. It is helpful to develop metamodels to use during analysis rather than

using actual solvers to reduce the amount of computation required to analyze multiple

subsystems. In an example study using metamodels for high fidelity objective function

calculations, J. He used metamodels during the optimization of a ship hull. J. He used

metamodels instead of actual solvers for resistance, seakeeping, and maneuvering. By

using a metamodel, HE was able take the time required to perform optimization on the

design of a ship hull from hours to seconds for all points produced by the model. Then

HE used actual solvers on what was believed to be the optimal solution in order to verify

that the solution produced by the metamodel was correct. The use of metamodels allowed

HE to analyze a far greater number of solutions in a much shorter time frame as there was

no longer a need to run the software for 12 hours for each solution (He, Hannapel, and

Vlahopoulos 2011). By using meta-models, a designer can apply the concept of

multiobjective optimization to objective function values that were created using high

fidelity models.

17

Methods for Searching the Solution Space with Multi-Objective Optimization

In multi-objective optimization, there are many methods for identifying robust

points in a set of solutions by generating random points around a solution. This point

generation can be performed using Monte Carlo methods, which is potentially inefficient

as the same solution can potentially be used twice, or by using the concept of a Latin

hypercube. Deb uses the Latin hypercube concept to generate patterns of points around a

solution to identify robust points in an example of his first method at the start of each

generation of the first method a new random Latin hypercube of points is generated

around each point and a random point is chosen to calculate the mean effective objective

function value for each group of points (Kalyanmoy Deb and Goel 2001b).

Deb isn’t the only researcher looking for ways to more efficiently search the

solution space. Josephson presents a method that utilizes three serial modules to explore a

large solution space. The names of these three modules are seeker, filter, and viewer. The

seeker module is used for selecting from the list of available components. The seeker

module also ensures that the configuration of these components satisfies given constraints

placed the design. This method of design space reduction ensures that computational

resources are not spent on further evaluation of designs that would not produce a viable

or would produce a sub-optimal result. Once designs are configured then the filter

module uses a dominance based preto-optimal reduction method is used to reduce the

number of designs. Dominance filtering is filtering out designs that are dominated by at

least one other design. Dominance filtering reduction method produces a best-in-class set

of designs during each iteration of the design analysis. Last the viewer module is used to

provide designers with a visual means of identifying interesting areas of the solution

18

space. The viewer is especially useful for human interaction with multiple criteria

parameters in which optimization of the solution space is difficult to procedurally

determine (Josephson et al. 1998).

In addition to the seeker, filter, viewer method described above, Josephson also

describes a method of design space exploration that takes a broad range of samples from

all areas of the design space. The goal is to ensure that all areas of the solution space are

sampled well enough as to give a reasonable estimation of the design space. It is possible

that sampling from all regions of the design space may result in a very large number of

designs string computational resources may be required for solution space exploration

(Josephson et al. 1998). When dealing with this kind of design space exploration, a

designer is dealing with an embarrassingly parallel problem. This means that parallel

processing will be able to search all areas of the design space at once given enough

compute power.

Reducing the Problem Space For Multi-Objective Optimization Problems

Emmerich proposed that order to reduce the size of the problem space in multi-

objective optimizations problems, the method of using equality and inequality constraints

can be utilized (M. T. M. Emmerich, Giannakoglou, and Naujoks 2006). An example of

using an equality constraint is listing that x = 2. This simply states that in all solutions to

the multi-objective optimization problem, the variable x will always be equal to 2. An

example of an inequality constraint is listing that y < 3. This means that in all solutions to

the multi-objective optimizations problem, y will always be less than 3. Putting both the

equality constraint and the inequality constraint together would result in a problem space

in which x was always equal to 2 and y was always less than or equal to 3. Equality and

19

inequality constraints are simple concepts to follow but the user of these methods must be

careful as to not eliminate areas of the design space that could hold the desired result.

The method presented by Kang in “An Approach for Effective Design Space

Exploration” is a method for efficient exploration of a design space using a user-defined

metric for reducing the number of solutions which require analysis. The reduction of the

number of solutions requiring analysis is performed through identifying similar solutions

and using analysis of one solution to represent the probable value outcome of analysis on

other similar solutions (Kang, Jackson, and Schulte 2010). As Kang describes, an

effective design space exploration (DSE) tool must utilize an effective means for

representation, analysis, and an effective exploration method. Representation is ensuring

that the data is well represented without requiring the analysis of every solution. Proper

Analysis must be able to ensure solutions are valid and be able to handle potentially

complex calculations for determining feasibility and constraints. Last, exploration must

be able to effectively eliminate inferior solutions. By utilizing this guideline for a DSE

tool a user can explore their data efficiently for useful solutions (Kang, Jackson, and

Schulte 2010).

Utilizing a Vector in Multi-Objective Optimization

Studying the use of vectors in multi-objective optimization is proposed by several

authors for different applications. Kuroiwa presents a method in which a vector

representing the worst case values for each component in a multi-objective optimization

problem (Kuroiwa 2001). Fliege presents the same concept but applied to portfolio

selection problems(Fliege and Werner 2014). Yu also presents the same concept but

applied to game theory (Yu and Liu 2012) . Vectors when searching for solutions in

20

multi-objective optimization problems are applicable to a wide number of applications as

seen in the works presented by the authors above.

Uncertainty and Imprecision

Uncertainty and Imprecision play a large role in the manufacturing process. After

modifications have been made to the initial design, eventually an acceptable design will

be created which can include information on manufacturing imprecision and uncertainty.

The issue with having this information on imprecision and uncertainty is that the tools

designers use often do not have any way of capturing these imperfections in the

manufactured final product (K. Deb et al. 2002). In order to explore the differences in

between uncertainty and imprecision, the following section will be divided into two

sections. The first section will focus on uncertainty and methods associated with dealing

with uncertainty. The second section will focus on imprecision and the ideas for handling

imprecision in the manufacturing process.

Uncertainty

Uncertainty is uncontrolled variations in manufacturing. In naval ship design, the

first ship may turn out to be 152 feet long and the next ship built using the same

specifications may turn out to be 148 feet long. It is common to have minor differences in

the end product of any engineering design. It is because of dealing with these differences

that the field of uncertainty in engineering design is a common area of research. For

example, Chen uses the same concept of representing uncertainty in multi-objective

optimization problem as Kuroiwa and applies it to proton therapy for cancer treatment.

The method utilizes preto fronts to identify the tradeoff between properly dosing the

21

intended target with radiation versus the potential for harm to unintended targets in

proximity of the target (S.-J. Chen and Hwang 1992d).

Doolittle also shows interest in handling uncertainty in a method of replacing

objective function values with a value the represents an uncertain multi-objective

optimization function value. This method also includes constraints that are placed on the

objective function values (Dolan 1989). Gunawan also displayed interest in handling

uncertainty in multi-objective optimization problems. The method proposed by Gunawan

uses what was called a sensitivity region. The sensitivity region is the region that contains

possible solutions to the allowed variation of uncertain parameters. The method presented

by Gunawan is used to identify preto optimum solutions in a discontinuous and/or non-

differentiable front (Gunawan and Azarm 2004). The target area of research for the

Gunawan’s work is on a vibrating platform. The result of this Gunawan’s work shows a

method in which a designer can identify points in the decision space that can handle

small perturbations to their value by using a sensitivity region around the point. Handling

uncertainty in manufacturing is a valued area of research and will help to lessen the

potential of design failure after construction.

Imprecision

Imprecision is the unavoidable vagueness in the objective function values in the

beginning of the design process and leads to fundamental difficulties in identifying a

resilient design in multi-objective optimization. Imprecision is a fundamental problem in

multi-objective optimization problems because there are often many options available to

a designer, so trying to identify components that will all work together to achieve the

goals of the design is a complicated process. In order to deal with imprecision in

22

manufacturing, Antonsson describes the Method of Imprecision or MOI. MOI is a

method based on fuzzy mathematics used for handling imprecision in design methods in

engineering. MOI is a useful tool in set-based concurrent design and in the preliminary

stages of engineering design (Josephson et al. 1998).

Closing of Uncertainty and Imprecision

There is a distinct difference between imprecision and uncertainty in engineering

design (K. Deb et al. 2002). Imprecision is having a range of possible values for a

particular parameter but having no way of being able to determine the exact value that

will be chosen for the parameter in the final product. Imprecision is inherently and

unavoidably part of the initial design process. Designers often start with many options for

a given component of a design. It is unlikely that the designer will know the exact

optional component that will be used in the final product due to the relationship between

components in a multi-component design. Imprecision lends to the goal of designers to

study multi-objective optimization by giving a wide range of options for components in a

design.

Compensating Methods

Compensating methods are utilized in multi-objective optimization problems in

order to alleviate the strain of some parameters not performing as well as others.

Compensating methods often use combination functions in order to identify designs that

may not be as strong in one parameter but good enough in another parameter to make up

for the weaker parameter. To give a little more detail on combination functions,

combination functions are functions that combine objective values of the objective value

to give a combined score to the objective function. The score is a combined means for

23

describing how well an objective function will perform on a given task. The name of the

function that combines the objective values into an aggregate score is often called a

metric.

Combination functions can be observed as two types and those two types are

compensating and non-compensating (Josephson et al. 1998). In compensating

combination functions, the function will compensate for objective function values that do

not perform well with objective function values that perform very well. For a non-

compensating combination function, the objective function will not compensate for

attributes that perform poorly and as a result will have a objective function value that is

limited by the worst performing objective value.

Minimizing the effect of the weakest parameter is a goal of compensating method

user. The adaptive weighted sum method or WSM was created to detect uniformly-

spaced Pareto optimal solutions. The adaptive weighted sum method was designed to

provide an adaption to the commonly known weighted sum method, which is the most

commonly used algorithm in multi-objective optimization problems (Kim and Weck

2006). The weighted sum method is performed by multiplying all objective functions by

a weighting factor and adding up the weighted objective functions. The weighted sum

method has some pitfalls and one of the pitfalls is the inability to handle non-convex

portions of a Pereto surface. One of the features of the adaptive weighted sum method is

that it can reach points in the non-convex portions of a pareto surface. In addition, the

weighted sum method ignores the non-Pereto Optimal solutions and it can handle

problems with two or more objective functions. The adaptive weighted sum method

works by using a two-phase process. In the first phase the algorithm uses the weighted

24

sum method to identify Pereto front patches and in the second phase, additional

constraints are placed on the Pereto front patches. The additional constraints are used to

refine the patches in order to create a well distributed preto front mesh.

Weighted Sum method: Oweighted Sum = W1O1+W2O2+W3O3+W4O4 +..... + WxOx

Utility theory is an addition to compensating method, which is a method of

creating a weighted sum that includes uncertainty. To briefly review, a weighted sum is

creating an aggregate of objective function values that are used to give a score to the

objective function. Utility theory adds a little too weighted sum method as it also includes

uncertainty. Because Utility theory is an aggregate of the objective function, it can view

viewed as a compensating method for assigning objective function value. The reason why

Utility theory is considered a compensating method is because an objective function can

have a low or zero score for one of its objective function values and still register an

acceptable objective function score by scoring high for another objective function value.

Methods have been created in order to assist Utility theory in avoiding the issue of

having a objective function be considered acceptable even though it contains an objective

function value that scores below what would be acceptable for the individual objective

function value. Two of these methods are objective constraints and subjective goals.

When using objective constraints, the values of the objective function must meet specific

guidelines without relying on any of the other objective function values. For subjective

constraints, objective function values are able to trade values between other objective

functions values in order to meet the overall requirements of the tradable objective

function values or for the overall objective function.

25

Pareto Front

The concept of the Pereto front was developed by Vilfred Pareto (1848-1923) and

can be read about in the ‘Manual of Political Economy’ [TODO: Cite]. The idea of the

perato front in relation to multi-objective optimization is that a point on the pareto front

cannot increase the value of any objective function without decreasing the value of

another objective function value. Pereto fronts have been heavily studied and utilized for

exploring solution spaces. We now present several methods which applied the usage of

Pereto fronts.

Using the idea of a Pereto front has a pitfall of it being possible to lose the perato

front optimal solution during optimization, Goel proposes a method to quantify trade-offs

among objectives in the comprised region. He proposes a “methodology to construct a

response surface approximation of the Pareto optimal front based on surrogate models.”

Geol explains that during optimization of an elitist non-dominated Multi-objective

evolutionary algorithm (MOEA), it is common for the population size to exceed the size

of the original population. When the population size exceeds the original population size

the non-dominated solution are lost and during this loss, it is possible that the preto

optimum solution can be lost without hope of recovery of the lost solution during

optimization (Goel et al. 2007). This loss is known as Preto-Drift. Deb presents an

algorithm to assist with Preto-Drift. The algorithm is called NSGA-II and this algorithm

works by storing all non-dominated solutions of optimal preto fronts in an archive format

in order to improve convergence of the preto optimum front. By storing all non-

dominated solutions, the time and memory required to compute the preto front is

increased but the Preto-Drift is reduced (Daum, Deb, and Branke 2007).

26

Deb discusses an interesting aspect of Pareto front multi-objective optimization

problems in his paper “A Hybrid Integrated Multi-Objective Optimization Procedure for

Estimating Nadir Point.” The nadir point is a point representation of the objective

function with the lowest possible objective function values corresponding to the Pareto

front (Kalyanmoy Deb and Gupta 2006). As Deb points out, the Nadir point is often

incorrectly describe as the combination of the lowest objective values for all points in the

design space which results in an overestimation of the Nadir point (Kalyanmoy Deb and

Gupta 2006). The Nadir point is a significant point because it is used to identify the range

of possible values for the objective function. The range of acceptable values from the

Pareto optimal front to the Nadir point can be visualized using methods such as bar

charts, petal diagrams and value (Kalyanmoy Deb and Gupta 2006). Once a designer has

the range of acceptable values using the Nadir point to the Pareto front points, the

designer has the option to normalize the points using a method described in Nonlinear

multi Objective optimization by K. Miettinen. The Nadir point is also a rather difficult

point to locate in objective functions with 3 or more objective function values as it often

requires a clear understanding of the design space which is not always easy to obtain due

to the inherent imprecision associated with early stages of multi-objective design

optimization (Miettinen 1998).

Component-based design is a method of design in which standard components are

assembled to completed a design. Component-based design can be thought of as building

a design using a predefined set of building blocks. Computer assistance is especially

useful when using component-based design.

27

Using the idea of maximization and minimization tradeoffs as understood from

the Markowitz portfolio optimization problems, Fliege presents a method for locating the

robust preto front in a multi-objective optimization with uncertainty problem. The

method utilizes standard methods in multi-objective optimization to locate the robust

preto front (Fliege and Werner 2014).

Robust Solution

Choosing points which lie in the Pereto front of a solution space can come at a

price. The points which lie in the Pereto front are often not resilient to change. This

means that any modification to the values of the objectives in the objective function will

result in a point that is no longer feasible. A feasible design is a design that will

accomplish the overall objective of the design. While the points lying on the Pereto front

may be the best for short term multi-objective problems, there is a danger in choosing

Pereto front points in objective optimization problems in which changes can happen to

the objective function values after the Pereto front has been identified.

In multi-objective optimization problems, a large number of algorithms are

focused on finding the global optimum solution or the preto front of optimal solutions,

however, in practice, it has been found that the optimal solution is often sensitive to

perturbation in its value. In practice, designers are often more interested in points that can

withstand small perturbations to its value and therefore produce a stronger solution. The

way that Deb intends on finding robust solutions is to take the mean value of a solution

based on points within its vicinity. This will result in a point that is more robust because

it is comprised of several points (Kalyanmoy Deb and Gupta 2006).

28

Deb presents two methods in the described work. The first method seeks to use

the normalized difference between the function value and the perturbed value. If the

normalized difference is less than the chosen thresh hold then the function is found to be

robust. The second method seeks to use the mean effective function value or a value

representing the level of acceptable perturbation in the objective function values

(Kalyanmoy Deb and Gupta 2006). Deb’s method gives the user control over acceptable

robustness level of function solution.

According to Gunawan, there are two major types of optimization approaches

found in literature. The two type are deterministic approaches and probabilistic

approaches. “Deterministic approaches obtain a robust optimum design using its first-

order derivative or other non-statistical measures, and then incorporate such measures

when optimizing the design objective (Gunawan and Azarm 2004).” Probabilistic

approaches use statistics to gauge the level of sensitivity (commonly used method are

mean and variance) of a design and then use the results of these statistics to “optimize the

design based on this information (Gunawan and Azarm 2004).”

In “Introducing Uncertainty in Multidiscipline Ship Design” Hannapel discussed

the importance to identifying constraints influenced by uncertainty during the

optimization process. Once the constraints are identified, the concept of reliability can be

applied thus converting the uncertainty constraints into probabilistic constraints. The end

result is of the process of introducing reliability helps ensure that the determined solution

will provide a probabilistic result within a given reliability level. Robustness is

introduced into the optimization process by “modifying the objective function to depend

on the mean and variance of the response of the objective function” (Hannapel and

29

Vlahopoulos 2010). The focus of the paper was to introduce reliability and robustness

into a multi-disciplined parallel optimization process containing properties with

uncertainty in the ship design process.

Ehrgott, Deb, Gunawen, and Hannapel all discuss methods for robust

optimization. Finding the robust solution is a leading reason for study in the area of

multi-objective optimization problems. A robust solution is a solution that is capable of

withstanding changes to parameter values. Robust solutions are often desired over

optimal solutions due to the inability of most optimal solutions to withstand perturbations

to solution parameter values. We now present multiple methods used in searching for

robust solutions.

Scoring Distance

The work by Barrico presents a method of using the distance between points in a

solution space to determine the degree of robustness. Distance between points could be

used to determine areas of point concentration and could mean that points located in these

areas had feasible possible values within range (Kalyanmoy Deb, Miettinen, and Sharma

2009).

Deb applies the concept of applying difference of mean value and original

objective function value to multi-objective optimization based on original method

proposed by Branke for single optimization Barrico adds to Deb’s method by adding

degree of robustness which is based on neighborhood of objective function values

(Kalyanmoy Deb and Goel 2001a). Branke proposes a method for single objective

function that assigns a mean value to each objective function value based on a

predetermined neighborhood of values (Bernstein 1998). Deb utilize the method

30

proposed by Branke but instead of applying it to single optimization functions, they apply

the Branke method to multi-objective functions and they also present an idea for

restricting the difference between the mean value of the objective function and the value

of the original objective function. The result of the first and second multi-objective

optimization concepts by Deb is the ability of the designer to predetermine the level of

robustness they would like to achieve (Correa Florez, Bolaños Ocampo, and Escobar

Zuluaga 2014).

Taking the first half of the method presented by Deb for applying a mean value to

each objective function value in a multi-objective function, Barrico proposed the degree

of robustness to extend Deb’s method. The degree of robustness is performed by take a

neighborhood of objective function values and applying a ratio to each objective mean

value and to not allow objective function mean values that lie outside the range of the

ratio (Kalyanmoy Deb, Miettinen, and Sharma 2009). The goal of this work by Barrico is

to locate the non-dominated front of robust solutions in a trade space. The work utilizes

the methods of neighborhoods to calculate the robustness of a point. Neighborhoods of

increasing distance are calculated around a point. The number of times the distance of the

neighborhood around the point is increased is part of the degree of robustness calculation.

While the robustness level of a point is less than a given threshold, the size of the

distance will be increased until the threshold of the level of resistance is met (Kalyanmoy

Deb, Miettinen, and Sharma 2009). Using a distance calculation which look at the

distance from every point to its neighboring solutions is an interesting concept and this

work provides a useful and easy to follow method of utilizing point distance for

calculating robustness of a point.

31

Scoring Distance into Genetic Algorithm

In Deb’s method for finding a robust preto front, for each point in the objective

space, random points are generated within a set vicinity to determine a mean value for

each point. This mean value represents how well a point can withstand changes to its

value within the given range. Each point in the objective space becomes a representation

of the mean value of points within a given range and after a few thousand generations of

NSGA-II, a good understanding each point’s ability to withstand minor changes is

obtained (Daum, Deb, and Branke 2007).

This method by Deb could be used in addition to the substitution method that I

have proposed in order to add a stronger sense to the idea of robust optimization. After

the substitution method with other viable objective function values, points could be

generated randomly within a range of each solution and the local mean value could be

assigned to each point. Not only would a solution show whether it could withstand

changes by having other viable objective function values substituted for its own, but a

solution would show its resilience to minor modifications to its objective function value

within its local given range.

Avigad searches for a solution to unconstrained multi-objective optimization

problems using an evolutionary algorithm. Avigad discusses a method in which solutions

are associated with a performance cluster. This cluster represents how a solution may

perform in relation to a set of solutions with similar characteristics. In order to find the

“best of the worst case” set of performance clusters, Avigad uses an evolutionary multi-

objective optimization algorithm (EMO). EMO algorithms have been found to be very

32

useful in locating solution space fronts in large data sets so this is why Avigad chose this

method (Farina, Bramanti, and Barba 2002)

By providing an answer to a solution based on the set of worst case solutions, the

user has an idea of how solutions within the set will perform. Using a set of worst case

solutions is also preferred over trying to select a single worst case solution because

different designers will have different ideas on which component is the most valuable. In

addition, Avigad also presented work that was focused on determining the amount of

distance a solution needs to be shifted in order to be no longer dominated by another

solution (Farina, Bramanti, and Barba 2002).

In addition to the Worst-Crowded NSGA-II method, Deb also describes the

Extremized-Crowded NSGA-II Approach. This method, like the Worst-Crowded NSGA-

II Approach, uses sorting to assign rank but it assigns rank values in a slightly different

manner. The sorting is performed on the population and the rank is assigned based on

distance from the closest extreme point. The WC NSGA-II Approach uses the members

in each generation of the population on every non-dominated front. It takes these

population members and sorts them from minimum to maximum based on each objective

function value. The WC NSGA-II Approach then assigns a rank to each objective

function member based on its rank in the list. In this work using the substitution method,

we also sort the list of the population objective function values based on the resilient

score of each member of the population and then we assign each member a rank. As Deb

explains in the WC NSGA-II Approach, assigning rank to the members in the population

after sorting based on objective function value, ensures that the maximum objective value

will receive the best crowding distance score (Daum, Deb, and Branke 2007). Using this

33

idea of sorting to assign rank for crowding distance score can be directly associated with

the idea we used in the substitution method for sorting by resilience score and assigning

rank.

Genetic algorithms are useful for exploring solution spaces in which the solution

space is non-linear, discontinuous, non-differentiable. This solutions provided genetic

search algorithms do not guarantee an optimal solution but they will provide a solution

the is considered to be near-optimal. A common technique in genetic algorithms is known

as crossover. This method seeks to acquire the best attributes from both parents to

produce a stronger child.

The payoff table is a method in which the objective function values are plotted

into a table format making it easier to view the relationship between the objective

function values (Kalyanmoy Deb, Miettinen, and Sharma 2009). The payoff table suffers

from the limitations of having the possibility of an incorrect Nadir point determined by

identifying inaccurate minimization of the objective function values. An example of

inaccurately identifying the Nadir point region can be seen in figure 2 below by looking

at the dark shaded section of the solution space.

34

Figure 2. Payoff table by Deb

A payoff table may not produce the true nadir (Kalyanmoy Deb, Miettinen, and Sharma 2009)

Deb’s points out that because it is possible that the payoff table method can locate

and inaccurate estimation of the Nadir point that a more reliable method is required.

Several methods for better estimating the Nadir point are presented by Deb (Kalyanmoy

Deb, Miettinen, and Sharma 2009). The methods presented were the Worst-Crowded

NSGA-II method and the Extremized-Crowded NSGA-II approach. The comparison of

these two approaches resulted in showing that the extremized NSGA-II approach was

able to reliably calculate the nadir point for multi-objective optimization problems up to

20 parameters.

Set Based Design

In the paper ‘What is Set-Based Design’, the Singer’s goal was to describe set-

based design and how it relates to naval ship design. Naval ship design has traditionally

been done using the point-based design method. The author explains the set-based design

35

method and how it improves over the point-based design method (David J. Singer,

Doerry, and Buckley 2009).

In long term problems of objective optimization, such as naval ship design,

changes to the values of the objectives that make up an objective function is all but

guaranteed. For example, throughout the life cycle of a naval vessel, that vessel will

always become heavier. This is due to components being added to the naval vessel and

modifications to the initial configuration of the naval vessel. As the naval vessel becomes

heavier, that vessel is no longer able to move at the same max speed that it was able to

achieve early in its life cycle. This is due to there being more weight for the engines of

the naval vessel to have to move. In problems of multi-objective optimization in which

changes can happen to objective values, a designer should be aware of the impact of

those changes to the objective values in the overall design.

Description of Set-Based Design

Traditionally the process of designing complex systems happened in what is

known as the point-based design method. In each step of the design process, an choice

would be made based only on whether that element fit within the constraints placed on it

from previous elements in the design process (Figure 3). For example, if a designer’s

chose this weapon system now then the designer can only choose radar system A or B in

the next step of the design process. The point-based method worked and was successful

but the method possesses some pitfalls. The pitfalls are that as designers are choosing

elements that fit into their design that it is possible to fall into a situation where the only

choice for the current step in the design process will invalidate a previous. When a

previous choice becomes unfeasible it causes the designers to start back at the point of

36

the design process with the new invalidated previously valid choice and make new

choices until all choices in the design sequence are valid. This re-choosing of points

could cost weeks to months of development time. Eventually, the designers would find a

design with all feasible choices made at every step of the point-based design method, but

the final product of the design was most likely not an optimal design. The design chosen

using the point-based method was most likely only a possible valid design.

Figure 3. Classical Design Spiral by Evans

A choice would be made based only on whether that element fit within the constraints placed on it from previous elements in the

design process (Evans 1959)

Point-based strategies consist of five basic steps (J. K. Liker et al. 1996):

1. First, the problem is defined.

2. Engineers generate a large number of alternative design concepts, usually

through individual or group brainstorming sessions.

37

3. Engineers conduct preliminary analyses on the alternatives, leading to the

selection of a single concept for further development 

4. The selected concept is further analyzed and modified until all of the

product’s goals and requirements are met

5. If the selected concept fails to meet the stated goals, the process begins again,

either from step 1 or 2, until a solution is found

Set-Based Design (SBD) method is an improvement over the point-based design

method. SBD ensures that the design chosen after all choices of variables in the design

have been chosen from their set possible values in the optimal range. The reason why the

points chosen from the SBD method are able to be chosen from their optimal value

ranges is because more time is spent analyzing the range of possible values for a

particular variable. Also, the value ranges for each of the variables is studied

independently of all other systems in the design. This allows for multiple groups of

designers who specialize in different aspects of the design to work independently from

one another thus making the problem easier as optimal ranges for all variables can be

found without worrying about whether a particular design is incompatible with previous

or future components in the design. A good example of the process of SBD can be seen in

Figure 4 that shows independent groups of design specialist starting off their design in

separate areas and then combining their efforts to produce a single more optimal design.

Because designers have values in optimal ranges for all variables in a system, it allows

designers to chose an optimal design.

38

Figure 4. Set-Based Design Process

(Bernstein 1998).

Set-Based Design fits into the area of Concurrent Engineering “is one step beyond

Point-Based Design (D. J. Singer and Parsons 2003). Concurrent Engineering is a method

of design in which a team composed of a multiple specialist and different areas of

expertise are combined into a single group to develop a better design.

Set-Based design main features include (D. J. Singer and Parsons 2003):

• Broad sets of design parameters are defined to allow concurrent design to

begin

• These sets are kept open longer than typical to more fully define trade-off

information,

• The sets are gradually narrowed until a more globally optimum solution is

revealed and re- fined

• As the sets narrow, the level of detail (or design fidelity) increases.

39

Because set-based design operates in a manner that is not common to traditional

design processes there “has been a source of confusion” as to how SBD is useful (D. J.

Singer and Parsons 2003). The confusion comes from the delay in making critical design

decisions. By delaying design decisions until a better understanding of the possible

solution space for all components in a design allows the designers to make better choices

for the final design. This delay in design choices until a better understanding of the

solution space is understood is described in ‘The Second Toyota paradox: How delaying

Decisions Can Make Better Cars Faster” (Technology and reserved 2016a). This paper

describes how Toyota is able to design cars using SBD methods faster, more efficient,

and creating a better product as the final design than if they had used traditional point-

based design methods like their competition.

By allowing more time for the designers to make critical design decisions in their

area of expertise, the cost associated with the design process are kept much lower

throughout the design process. An example of the lower cost throughout the design

process can be seen in figure 5. By taking time more time to develop their design and

making more optimal choices at every step in the design process, designers are able to be

more efficient in their design choices. Being more efficient in the design choices prevents

the need to remake components that are no longer viable in the current iteration in the

design from going into production. Efficient design choices generate a lower overall cost

in the labor associated with developing a design at both the production levels and the

design levels.

40

Figure 5. Designing-In Costs

(Bernstein 1998)

During the initial stages in the design process, the stakeholders have a critical

level of impact on the final design. Often times the stakeholders will make choices on

critical components of a design when there is little data on the impact of those design

decisions. An example of the amount of knowledge through the design process can be

seen in figure 6. These stakeholder choices at the early stages of development with little

knowledge of the impact of those choices can have lasting impact on the overall design.

41

Figure 6. Evolution of Design Knowledge

(Bernstein 1998)

The set-based design method is a method in which multiple designers work on

their specialized area of the design without worrying about how their design affects other

parts of the overall design. This allows specialized designers to focus on their area of

expertise by allowing the designers to create analyze the set of best possible options in

their area of the design. Since designers at all stages are able to identify the best options

for their area of expertise, the overall design of the ship is improved.

The point based design method is the process of choosing components in a

sequential order without cause the entire system to become unfeasible. An example of an

infeasible design would be a ship that no longer floats. When designers are forced to or

opt to choose a component that causes the ship to become unfeasible, the designers must

return to a previous component and choose new components until all components for the

overall ship design are chosen and the result is a feasible ship.

42

Point based design is the method of trying to find a single solution that meets all

requirements of a design. Design decisions are made in sequence and often require

backtracking to previous decisions as new requirements of the design become known.

Point based design has a key drawback and that drawback is that a feasible design may be

located but that design is unlikely to be a global optimum in the design space.

By allowing each design team to focus on areas of the design without having to

worry about how their design area affects other steps in the design process, design teams

are able produce a more robust design. All design teams for a particular design are able to

work on their area of the design concurrently. The result of this design method is that

more time is spent searching the solution space of possible options for each area of the

design, but a good option for each component in the design is available. Traditional point

based design method is a contrast to spending more time in each design phase because

point based design makes a less informed design choice at each step in the design

process. Point based design is burdened with the issue of having to go through the steps

of backtracking through the design process while set based design does not suffer from

backtracking through the design process because it has many options pre-prepared for

each step in the design process (Sobek, Ward, and Liker 1999).

Set-based design is a method of analyzing a design space by analyzing a set of

designs rather than the single point design method used in point-based design. Set-based

design allows for greater flexibility and helps with the optimization process by reducing

the problem size to a more manageable state. After the problem size has been reduced,

point-based design can then be used efficiently for analysis of the remaining problem

space (Hannapel and Vlahopoulos 2010).

43

Toyota’s design method is considered to be a more concurrent engineering

method than the design method used by both Japanese and US auto manufacturers. This

concurrent approach design is performed without requiring design teams to be collocated

which is often considered a requirement by other auto manufacturers. Because design

decisions are made by design teams using the whole solution space of designs rather than

a specific design provided to them by another design team earlier in the design process,

design decision makers are able to choose a design from the set of possible designs which

results in an overall better design decision (Morgan and Liker 2006).

The process of using set based design may be difficult for companies to develop.

Toyota has developed a long-standing relationship with manufacturers that is built on

trust and the knowledge that the manufacturers know specific ranges of values that the

components they develop can utilize. Design decisions on how to identify sets of designs

are made by senior engineers with 15 to 20 years of experience. These decisions on how

to shape the design set is based on years of hands-on involvement in the design process

and thus companies that wish to adopt set based design have many years of design

experience before implementing set based design (Morgan and Liker 2006).

 ‘‘The second Toyota paradox: how delaying decisions can make better cars

faster,’’ Toyota’s design process is highly effective but seems as though this method

would slow down the overall design process as design decisions are delayed until very

late into the design process. The traditional method of design is to make design decisions

early in the design process and then to refine those design decisions as the design process

moves forward. This method of design is known as the point-based design method

(Technology and reserved 2016a). Toyota does not use the point-based design method

44

but instead uses the set-based design method and part of the requirement of using the set-

based design method is to delay design decisions until a large amount of information is

gathered for each component in a design.

Toyota consistently shows a high profit per vehicle and growth in market share.

The tools Toyota uses for its development are nothing special but rather the high success

rate is due to their design process. Toyota uses what is known as set based design for

their design process. This design method focuses on analyzing a large set of designs

rather than starting from a specific design and refining that design. Starting from a

specific design and refining that design is the most widely used method of design and is

known as point-based design. Point based design has many pitfalls such having to revisit

steps in the design process many times due to changes in requirements for steps further in

the design process. Set-based design avoids most of the headache with design changes by

providing many options for each component of the design. Having many options for

components allows changes further in the design process by having alternative

components ready to go for each step in the design process (Sobek, Ward, and Liker

1999).

Toyota’s design method is considered to be a more concurrent engineering

method than the design method used by both Japanese and US auto manufacturers. This

concurrent approach design is performed without requiring design teams to be collocated

which is often considered a requirement by other auto manufacturers. Because design

decisions are made by design teams using the whole solution space of designs rather than

a specific design provided to them by another design team earlier in the design process,

45

design decision makers are able to choose a design from the set of possible designs which

results in an overall better design decision (Sobek, Ward, and Liker 1999).

Marine design is moving to set based in "A hybrid agent approach for set-based

conceptual ship design." Marine design in the US is focused around cross-functional

teams using concurrent engineering approaches. As with most traditional design

approaches, this method of concurrent engineering was still based around point based

design methods. After researching the set based design utilized by Toyota, advanced

marine design has begun to also use set based design method in order to make more

informed decisions during the design process. The goal of utilizing set based design

methods is to “provide a greater probability of achieving a global optimum of achieving a

global optimum for the overall design” (Parsons, Singer, and Sauter 2016).

The Navy is using set based design as naval ship design is an evolving landscape

in which the design specifications for a particular ship can change at any point in the

design process. The point-based design method does not adapt to these changes easily

and leads to slowdowns in the design process. Set-based design is a more agile approach

and can adapt to an evolving design requirements (Hannapel and Vlahopoulos 2010).

In 2014 the Small Surface Combatant Task Force was formed to study the

Modifications to the Littoral Combat Ship (LCS) and to study new design concepts. The

paper Concept Exploration Methods for the Small Surface Combatant describes the

results of that study (Garner et al. 2015). The goal of the study was to analyze the results

of modifying the current LCS ship, using the current design, and to examine completely

new ship designs. In each of the designs examined, the designers were to examine

weapon systems, cost, sensors, and the lethality of “the lethality of the ship to air, surface,

46

and undersea threats” (Garner et al. 2015). The goal was to find a ship design that would

meet current mission goals while providing more capabilities than the current LCS

design. The study utilized Set Based Design methods in order to create a better design

than had previously been possible without using Set Based Design. The resulting design

was generated using multiple groups of specialist all working in their area of specialty

and after each group of specialist finished analyzing their area of the design, the

“configuration Capability Calculator intersected the feasible solutions by the Feasibility

Element algorithms” (Garner et al. 2015).

Three Methods for Testing Robustness

Figure 7. Robust Test

Distance Test Metric for Robustness

The Distance test metric for robustness is performed by examining the Euclidean

distance in between points. The Euclidean distance in between points can provide insight

into how closely points are related. The idea of measuring the distance in between points

is not a new concept as there are many algorithms that measure the distance in between

points, however, the focus of this work is to locate a robust design. In order to use the

Euclidean distance in between points to locate a robust design, understanding of how

47

methods to calculate the distance in between points using one or more column values,

methods for storing those distance calculations, and to calculate a score metric need to be

developed.

Three Methods for Distance Calculation

Three methods for distance calculation includes but are not limited to single

column distance, multi-column distance, and total distance.

1. Single column distance

Figure 8. Single Column Distance

Single column distance is calculated between column values in a selected column with each row of data within a tradespace

48

Storage Methods for Single Column Distance. Understanding methods for storing

values during single column distance can be helpful. Next we will discuss two methods

for this type of storage.

Single Column Distance Selected Value Storage

Single column distance delected value storage is performed with an additional

column that holds the distance between a selected column value or a randomly selected

column value and all other column values.

Single Column Distance Total Value Storage

Single column distance total value storage is handled by additional column to the

tradespace. Each row of data in the additional column holds a matrix. Each matrix stores

the result of measuring the distance between each column value in the selected column.

Since calculating the distance between all rows of data and all other rows of data in the

selected column could be computationally expensive, it is acceptable to choose manually

or randomly a set of row values from the selected column to use for calculating distance.

However, it is important to remember that not calculating the distance between all points

will result in an estimate for the distance calculation. An additional column should be

added to the tradespace with the value showing the percent of values that have had

distance calculations performed.

Multi-column distance. Multi-column distance is the distance between values in

two or more columns values in each row of data in the tradespace.

49

Combined Multi-Distance Storage

Figure 9. 3D point data converted to Euclidean

At the time of the writing of this work, the statistical language R provides an easy

to use function that will handle the creation of this distance matrix.

50

Figure 10. R distance Script

Because the designer is choosing multiple columns to work with in Multi-column

distance, the designer has options on the storage of the value of the distance calculation,

and on the metric used for calculating the score value for the function. The following are

two potential storage options for the values resulting from the distance comparisons.

Individual Distance Storage

Individual distance storage is a method of storing the individual distance value for

each comparison of column values using two or more columns.

51

Figure 11. Multi Column Individual Storage Distance

Combined Multi-Distance

Combined multi-distance is a method of storing a single distance value based on

the comparison of the distance between column values in multiple columns.

52

Figure 12. Multi Column Score Random Selection

Methods for Calculating Score Distance

Now that methods have been established for calculating the Euclidean distance in

between points in one or more columns, and methods for storing those calculated

distances, it is now time to introduce methods for calculating the score of the distance

measurements is called distanceScoreMetric. The distanceScoreMetric function can be

calculated using multiple methods found below.

53

Average Closest Selected Column Score

Average closest selected column score is a distanceScoreMetric that is calculated

by sorting the table of distances and taking the average distance score for each row based

on a chosen number of closest points.

Figure 13. Average curColSel

Weighted Sum Distance Score

Weighted sum distance score is calculated by either randomly selecting or having

the designer select columns and assigning a weighting value to those columns. The points

are now sorted in ascending or descending order based on designer preference. Choose a

number of closest points and multiply or add the distance score for each row based on the

selected number of closest points.

54

Figure 14. Method 2 – Weighted Sum

Average Weighted Sum Distance

Average weighted sum distance is calculated by either randomly selecting or

having the designer select a chosen number of columns. Sort the table of distances and

multiply or add the weighted sum value for each column to every row. Take the average

distance score based on the distance between each row and its chosen number of closest

to points.

55

Figure 15. Average Weighted Sum

A designer has many options to use while searching for a robust design when

calculating the distance in between points, storing the results of the distance storing the

results of the distance calculations, and using the stored results for calculating a score

metric value.

The value returned from the score metric is dependent on the methods the

designer chose during the distance calculations and the storage of those results. It would

be considered good practice for the designer to try multiple methods and examining the

results of each combination of methods chosen as part of the search for a robust design.

56

Genetic Algorithm Test Metric for Robustness. Genetic algorithm test metric for

robustness takes the concept of the basic Boolean test and expands upon this method by

applying the Boolean test to genetic algorithm concepts. The basic Boolean test is applied

to a genetic algorithm by observing the value of the fitness score to determine if the

fitness score is below, above or in an acceptable value range. If the value of the fitness

score passes the Boolean test then the score metric is used to store the number of times a

design passes or fails these tests. A design that passes the Boolean test more often is more

robust.

The general concept for the genetic algorithm test metric for adding robustness is

to create a tradespace of random members with a predetermined max number of

members, or it is also acceptable to use a previously created tradespace. Next, create a

function that gives an idea on the strength of the members of the tradespace and call this

function the fitness function. Perform some action on the parameter values for each

member of the tradespace an arbitrary number of times.

In order to use a genetic algorithm when searching a robust design, a designer

must understand the basic practices for genetic algorithms such as linear normalization (

normalization over the range of 0 to 1.0) and duplicate handling (allow duplicate or force

unique column configurations) could be considered when searching for a robust design.

Also, methods for determining which members of the population survive to the next

generation such as elitism, crossover, and mutation should be implemented in order to

ensure efficient use of genetic algorithms in the search for robustness in MOO. Also,

ensure that in every generation an action is taken that results in changes to the fitness

function value. After the action is performed that results in a change to the function

57

value, perform a test that determines if the data member survives, dies, or is allowed to

reproduce new data members.

Genetic Algorithm Example

Multiple genetic algorithm examples are available for use in scientific computing.

The following figure provides a basic understanding of how to code a genetic algorithm

for use in searching for robust designs.

Figure 16. Sudo Code Example For a Genetic Algorithm

Using the basic concept of a genetic algorithm, a designer has access to a

powerful tool that can be used for calculating the score metric value used when searching

58

for a robust design. The designer is able to analyze many different parameter values

combinations which provides opportunity to observe the results of modifying parameter

values on the score metric. Observing the results of the changes displayed by the score

metric can provide a good understanding of the robustness of a design.

Combined Test Metric for Robustness. Combined test metric for robustness uses a

combination of methods from two or more robustness tests to create a higher level

robustness score. An example of such a combination of methods would be combining the

robustness score of the distance and genetic algorithm robustness tests. As each method

for testing robustness has the potential for being computationally expensive, it is

recommended to take caution to keep the total computation time within an acceptable

range for your tests.

There are many possible tests for finding robustness. The Boolean test, distance

test, genetic algorithm test and the combined test metric have been listed here but there

are many more known and undiscovered methods for finding robustness. There is no

known best method for finding robustness so the best option for a designer is to ready

multiple methods for searching for robustness, and to apply them as interchangeable

modules.

We looked at adding robustness as a percentage. We then described the Boolean

tests for calculating robustness such as the Boolean test and the different components of

the more complicated distance test. We also described a genetic algorithm test and briefly

explained that it is an option for the designer to combine testing methods. By

understanding multiple means for searching for design robustness, a designer has more

59

control over understanding the ability of a design to withstand changes throughout a

design’s lifecycle.

60

CHAPTER III - METHODOLOGY

Multi-objective optimization (MOO) is a vast field of study applied to multiple

areas of scientific study where tradeoffs among competing interests must be balanced and

considered. Robust design adds an additional layer of analysis to MOO trying to find

advantageous tradeoffs among competing interests where there is uncertainty and

decision-makers seek a robust solution that will still be acceptable even with expected

variance in outcomes. In this work, we utilize the concept of parameter variance from

multi-objective optimization in order to search for a robust design within the motivating

Small Surface Combatant Task Force (SSCTF) dataset (please see the introduction for an

overview of the SSCTF dataset and related project). While the research was focused on

the SSCTF dataset, the methods presented herein are applicable to wide variety of multi-

stage design and decision problems. The SSCTF dataset was utilized to show that the

concepts within this work had real world application and could be utilized to extend and

improve a State of the Art design process.

Two new methods of analysis to estimate design robustness are developed when

exploring the complex relationships between design parameters, metrics, and models

applied to the SSCTF dataset (explained further within the section). These two methods

of analysis are developed while using the SSCTF metrics and models to estimate design

robustness. In summary, the philosophy of this work was to utilize the SSCTF dataset and

its metrics to show real world application of a new set of robustness estimate methods

and this work also focused on ensuring transferability of this methodology to alternative

datasets and problems.

61

Research Approach

The approach of this work was to provide a two-step process in which step 1

seeks to break down the concepts required for understanding the components of our

multi-objective optimization problem and step 2 focused on providing 2 algorithms used

in exploring the tradespace for a robust design estimate given uncertain changes to

parameter values. While performing step 1 and step of the approach, effort was taken to

ensure that transferring application of the methods to alternative data sets was intuitive.

Step 1: The Three Concept Levels Method for Deconstruction

of a Multi-Objective Optimization Problem

The First Concept Level

Figure 17. The first concept level

The first concept level of a multi-objective optimization problem is the

tradespace. The tradespace is the most basic component for the multi-objective

optimization problem. The tradespace is composed of designs and deconstruction of the

tradespace is a beginning point for components of a multi-objective optimization

problem. In general, a tradespace is composed of variables that represent the capabilities

of designs. These variables also provide insight into the relationships between the

62

variables and are utilized in some combination to provide the designer a means for

comparing the effectiveness of the designs.

Tradespace Components. The SSCTF tradespace was a complex configuration of

design parameters which provided a description of the capabilities of a ship design. The

SSCTF tradespace consists of several different components which are described below

and are useful in understanding the tradespace utilized in this work. The first component

is non-numeric designations which are the ID descriptions of the different designs. These

ids allow the designer to identify the categorical capabilities of the ship design which are

the family, combat capability, and combat capability alternative for a design. The family

of the design is based on the HM&E or hull mechanical and engineering configuration of

a ship design. The combat capability is the type of warfare the ship is designed to handle

such as reconnaissance or anti-submarine warfare. The combat capability alternative is a

variation of a combat capability that is capable of handling a different type of warfare

than the original combat capability. The next component of the tradespace is the

composed of fixed ship design properties. These properties are design inputs such as the

length of the ship or the type of radar the ship utilizes. Next, we have modeled design

outputs. Modeled design outputs are properties of the design that are directly affected by

design inputs. An example would be the weight of the ship which is affected by many

inputs such as the length of the ship, or the number and size of the weapons placed on the

ship.

63

Figure 18. Definition of a tradespace

Each design in the tradespace is represented by a row of data. The rows of data in

the tradespace are composed of columns that are the parameters that make up a design.

Each parameter is defined here as the numerical representation of the level of

contribution provided to the multi-objective optimization problem. The numerical value

representing a parameter can be the result of an equation or simply a static number.

Figure 19. Parameter Definition

For each of the Xb designs, there exists a range of possible values. This range of

values can be most easily understood as a range of values between a minimum value and

a maximum value.

64

Figure 20. Parameter Value Range Definition 1 of 2

Because an infinite number of values that can be represented between any two

numbers, a designer must use a value that represents a meaningful change in the design as

the distance in between any two points in the range of values for each parameter.

Figure 21. Parameter Value Range Definition 2 of 2

The Second Concept Level

65

Figure 22. The second concept level

The second concept level of a multi-objective optimization problem can be

understood as additional columns of data added to the tradespace. These additional

columns are defined here as metrics. Metrics are additional parameters added to a

tradespace that are the result of functional calculations on the tradespace. For example,

any algorithmic combination of parameter column values would be acceptable for

creating a metric. Essentially, a metric is a meaningful calculation that the designer can

use to show relationships between column values.

Figure 23. Additional Metrics

Metrics are commonly created in three different ways; a static metric is a number

that is not calculated; independent metric is calculated using an algorithm that doesn’t

rely on any other metric to obtain a value; and dependent function metrics which are

calculated using an algorithm that relies on other metrics to obtain a value. Metrics added

to the tradespace should provide a meaningful way for the designer to better understand

both the relationships between parameters and provide insight into the operational

effectiveness of a design. A list of pseudo code examples of metrics can be observed in

the table below.

66

Metric Value Definitions

Figure 24. Sudo Code for Commonly useful Metric Value Examples

67

The Third Concept Level

Figure 25. The third concept level

A metric is a value that represents the result of a functional combination of

parameters and is included in the list of parameters within the design tradespace. The

most important metric in multi-objective optimization problems is the score metric. The

score metric represents the value of a design and is the core component of the The Third

Concept Level. To give a little better understanding of what is represented by a score

metric, a score metric is not limited to but could represent any of the following things:

monetary value, level of effectiveness of a group of parameters, percentage of capability.

In general, multi-objective optimization can be thought of as a tradespace

composed of designs consisting of a set of parameters each of which represent a range of

possible values with a determined distance between each point. It is common practice to

add metrics to the list of parameters in order to show relationships between parameters,

but there is one metric that is more critical than the other metrics. This critical metric

represents the third concept level of multi-objective optimization and is used to represent

the expected level of performance of a design. We call this critical metric the score

68

metric. The score metric is important because it represents the way a designer can

compare one design to other designs. It can also be used to determine whether or not a

design passed testing.

Figure 26. Score Metric

As introduced in concept level 2, there are three ways in which metrics are

calculated and those methods are static, independent, and dependent. Since the score

metric is critical in gauging ability of a design to perform, it is important to choose the

right method when calculating the value of the score metric.

Figure 27. Three different types of score metric

Of the methods for calculating a metric (static, independent, and dependent), the

score metric should never be calculated using a static number. A static number would

imply the designer already knew whether or not a design passed testing and how well the

design performed before testing. The score metric should also not be an independent

69

function as being an independent function would mean that changes made to the

parameters of a design would have no impact on the score metric value. The score metric

should be a dependent metric function that relies on the parameter values and possibly

other metric values for gauging one design’s effectiveness against another design.

Summary: The General Description of the first three concept levels of Multi-Objective

Optimization Problem

Figure 28. Three levels of capability concept

In summary, the first three concept levels of a multi-objective optimization are the

basic concepts required for understanding an approachable mechanism for deconstruction

of a multi-objective optimization problem. Descriptions of the first three concept levels

of a multi-objective optimization problem were explained as the tradespace, metric, and

score metric concept levels.

70

Figure 29. Summary of concept levels of a multi Objective optimization Problem

An understanding of these three concepts levels provides the designer a

foundation needed for adding a fourth concept level and the focus topic of the next

section, adding robustness to multi-objective optimization.

Fourth Concept Level: Adding Robustness to Multi-Objective Optimization

Figure 30. Introduction to adding robustness

We have established a working description of the three concept levels for a multi-

objective optimization problem and we now need to look at the additional requirements

that are needed for adding the fourth concept level of a multi-objective optimization

71

problem. The fourth concept level is adding robustness to a multi-objective optimization

tradespace.

Adding Robustness by Testing Changes to the Score Metric

Figure 31. Four concept levels of multi-objective optimization

Adding robustness to a multi-objective optimization problem is not a trivial

problem as it requires additional computation and understanding of the solution space of

designs. The robustness score is a metric that provides a numerical representation

describing a design’s ability to withstand change. The robustness score or R is calculated

by measuring the effect of changing the value of a parameter used in calculating the score

metric (S) for a design. As we recall, the score metric is used for describing a design’s

ability to perform and a means for comparing a design to other designs. By measuring the

change in the value of the score metric, we observe three of the possible types of

robustness metrics. Positive acceptable robustness is a scenario in which the robustness

metric only accepts score metric values that are better than the original design’s score. An

indifferent acceptable robustness is a type of robustness metric in which the robustness

metric accepts score metric values that are better or worse than the original score metric

value with the condition that the score metric value must be an acceptable design. A

72

negative acceptable robustness is a scenario that only accepts score metric values that are

lower than the original score metric value. The focus of this work will utilize the

indifferent acceptable score metric scenario.

Figure 32. Adding robust score to the tradespace

Robust Score Metric as a Percentage. Positive, indifferent, and negative are the

types of robustness tests for the score metric that have been described. Understanding

these three methods is essential to understanding how to calculate the robust score metric.

However, these three methods will only result in a True or False answer. Having True or

False does not fulfill the requirement of a numerical value representation of the level of

robustness. While it is acceptable to consider True or False be equal to 1 and 0

respectively, assigning the numerical representation of True or False to the robustness

metric is insufficient. It is unlikely to locate a design that is fully robust, which in this

case would be represented by a 1. A fully robust design would be able to withstand any

changes to its parameter values and still be able to fulfill the required capabilities of the

design, which is an unlikely scenario in product design.

It is more likely to locate a design that is able to pass the robust test a percentage

of the time. By listing resiliency as a percentage, a designer can expect a design to

withstand a change and remain feasible a percent of the time which is valuable

73

information. In addition to being able to recognize a design's ability to withstand changes

a percent of the time, assigning the robustness score as a percentage allows the designer a

useful means for being able to compare designs and also the ability to reasonably predict

the failure rate for a design.

Modifying a Value for Finding a Robust Percentage. In order to calculate the

percentage score that represents robustness, we need to modify a parameter value that is

used in calculating the score value for a design. Modifying a parameter can be as simple

as replacing the value of a parameter with another possible value within the

predetermined range of possible values for a parameter. Modifying a parameter can also

be a more complicated process of performing a calculation to assign a new parameter

value. After we modify a parameter value, we need to perform one of three tests to

determine whether or not the score metric is within range of acceptable values as

determined by the robustness testing scenario chosen by the designer for an acceptable

design. For example, in order to fulfill the requirements of the indifferent acceptable

score metric, the resulting value of the calculation would need to lie on or in between the

max and min possible values for the parameter.

Test for Calculating Robustness. There are many possible tests for robustness and

since there is no known best method for testing design robustness, it is best for the

designer to understand at least a few different types of robustness tests. In order to limit

the potential problem space for different types of robustness tests, this work is going to

focus on the Boolean test, however, three additional robustness testing methods are

explained in the background section to provide the reader with addition insight into

74

options for calculating robustness. A detailed description of our described Boolean test

for robustness is now provided.

Figure 33. Robustness Tests

Basic Boolean Test Metric for Robustness. The basic test metric for robustness of

design begins with a Boolean test in the form of A(<, >, <=, >=, ==, !=)B. Multiple test

can be linked together when calculating the Boolean answer. The links between tests can

be represented by using linking terms such as ‘and’, ‘or’

a) A (<,>,<=,>=,==,!=)B and C(<,>,<=,>=,==,!=)D

1) A > B and C == D

2) A < B or D != C

3) A > B and C == D or A == C

There are many possible tests for finding robustness. The Boolean test, distance

test, genetic algorithm test and the combined test metric have been described but there are

many more known and undiscovered methods for finding robustness. There is no known

best method for finding robustness so the best option for a designer is to ready multiple

methods for searching for robustness, and to apply them as interchangeable modules.

75

Summary of Adding the Robust Metric to a Multi-Objective Optimization Problem

Figure 34. Summary of the concept levels of a multi-objective optimization problem with

robustness

Step 2 Part 1: Permutation Stability Analysis -

 Calculating Robustness with Substitution

Introduction: Substitute Primary Parameter Value from Feasible Design with Primary

Parameter Value from Another Design

Our search for a robust design began within a tradespace of feasible and infeasible

naval ship designs. Feasible designs are the designs which provided an acceptable score

metric value above the predetermined threshold of -1. The SSCTF design team provided

the threshold score metric value. The infeasible designs are described to be any design

that did not possess a score metric value above -1. During initial testing of the design

space, permutation testing was performed utilizing both feasible and infeasible designs. It

was realized that permutation testing performed on an infeasible design almost always

76

resulted in a failed final design. In order for a design to pass testing, a design had to pass

all 16 testing metrics. Because of having to pass all 16 testing metrics, it is unlikely that

modifying a single design parameter on a failed design would affect the outcome of the

testing metrics because of the complexity of the relationships between design parameters.

It should be noted that it is possible for a design to fail initial testing and still pass future

score metric testing, however, further testing of a design that fails initial score metric

testing may result in simply determining that the design was infeasible and that further

testing of this infeasible design could have been better utilized by testing a starting viable

design.

The tradespace of designs can be divided into 4 areas based on the likelihood of

success and the ability of a design to withstand testing as observed in figure 35 below.

The first area of the design space that we are going to discuss is the infeasible and non-

resilient area. These are the designs that are both incapable of performing all required

design tests and unable to withstand changes to parameter values. The infeasible and non-

resilient area of the tradespace is the worst-case scenario. Next, we have the infeasible

but resilient area of the tradespace. These are the designs that do not pass all required

testing of the tradespace but are able to withstand changes to parameter values without

much change to design performance. Next, we have the non-resilient but feasible are of

the tradespace. These designs are able to accomplish the required area task of the design

but are unable to withstand changes to parameter values. This area of the design space is

where many final versions of designs are located and is a leading reason for research into

multi-objective optimization. The non-resilient feasible designs are often the optimal

designs within the tradespace. What this means is that these designs outperform all other

77

designs within the tradespace but are unable to withstand changes to design parameters.

The final area of the tradespace, and the most desired outcome is the area of the

tradespace known as the feasible and resilient area of the tradespace. This area of the

tradespace is the area in which designs are both capable of performing all required tasks

of a design and the designs are also able to withstand reasonable changes to design

parameters. An optimal feasible resilient design is the most ideal case of this scenario,

however, locating such a design may not be possible so the alternative of a design that is

both feasible and resilient but may not be the optimal design is also desired.

Figure 35. Four regions of a design tradespace

Description of Permutation Testing. Permutation analysis is a multi-step process

for assisting a designer in selecting a design with a percentage level of resistance to

changes in a design’s parameter values. We begin the description of permutation analysis

by identifying critical parameters that have the largest impact on the score metric value of

a design. For this work, we focused on Free Space, Free Weight, Free Power, and Free

Cooling of a naval ship design. These 4 critical variables were predetermined by the

78

SSCTF design team as the 4 parameters that had the largest impact on the likelihood that

a design would pass the 16 testing metrics with a score metric value greater than -1.

Permutation analysis, as applied to the SSCTF dataset, began by dividing the

tradespace up into the 5 different mechanical model families. These mechanical model

families are known as I1, I2, IC, M1, M2 (described in Introduction). For each

mechanical model, we repeat the substitution analysis method for each of the 4 critical

parameter values. The following is a description of permutation analysis as applied to a

single critical parameter. This method was applied to each of the 4 critical parameter

values.

Permutation Analysis for a Single Critical Variable. To begin permutation

analysis start by storing all available values for a critical variable using the designs in the

tradespace from a mechanical model into a data structure. Next, randomly chose a target

design and trade the value of another design’s critical parameter from the data structure

of available values with the value of the same critical parameter in the target design.

After the value of the target design’s parameter has been substituted with the value from

the data structure of available values for the selected critical parameter, recalculate the

score for the modified initial design. If the design after substitution was performed is no

longer within the range of acceptable values as determined by the designer, discard the

modified design. Repeat the substitution of the chosen critical parameter value from the

target design with all other available values from the data structure of available values for

the chosen critical parameter. Next, recalculate the score metric of the target design after

every substitution to acquire a total number of feasible designs for the target design. The

total number of feasible designs after substitution can be used as the robustness score, or

79

you may perform a calculation based on the likelihood a design is still feasible after

substitution. A target design with a high robustness score means that the target design is

resilient for the chosen critical variable because the target design can withstand changes

to the chosen critical variable and still remain a feasible design.

The method described so far in the description of the substitution method would

be able to calculate the robustness score based on one chosen parameter in a design and

thus the robustness score would show the ability of the target design to withstand changes

for one chosen parameter. In order to determine a more complete robustness score for a

design, the substitution process should be repeated for all critical variables. Since the

process of substitution is the same for each critical variable, there is good opportunity to

run the code in parallel for each of the chosen parameters.

Optimizing the Permutation Analysis Method: Duplicate Tests

At this point in the permutation analysis, one could think about storing the value

combinations of the primary variables into an array so that duplicate feasibility tests are

not performed. As long as care is taken to ensure that processes are not performing work

on the same design using the same value, then testing if a value has been tested before a

process uses the value is a small overhead in comparison to allowing duplicate tests.

Subset Testing

If your tradespace contains a large enough number of designs to make

permutation analysis computationally infeasible with all parameters in each design, then

it is acceptable to perform permutation analysis on a subset of designs from the list of

possible designs for each design in the tradespace. Performing permutation analysis on a

subset of the possible solutions will obtain a robustness estimate, but you must keep in

80

mind that choosing fewer than all solution values for permutation analysis on target

designs could result in less accuracy of the robustness score, and therefore should be

listed as approximation of the robustness score.

General Example of Permutation Analysis

Permutation analysis can provide a way to identify designs from the set of

feasible designs that are better at withstanding changes to parameter values and are thus

more robust. In order to assist a designer in utilizing the permutation method, a generic

example of permutation analysis method is now presented.

Step 1: Generate design variation and assign feasibility score

Define T to be a Tradespace of designs di=1..n

 T = di=1..n

Each design di has properties (Vi=1..nR , [Xi=1..n])

 V : is a key variable of the design

 R : is the range of possible values for a variable

[X] : The list of parameters within the tradespace that do not change

Table 3

Design space: di

ID V1R V2R VnR [X1,X2,X3]

1 50-150 30-150 ... 1,20,10

di=1..n = Vi=1..nR , [Xi=1..n]

81

Perform Monte Carlo on V1 in order to select points within the range of possible Values.

In this case, the total size of the design tradespace is:

(VR)size * (VR)size = (150-50) * (150-30) = 12000Tradespace Size

12000 designs is not a very large design tradespace, however, if we are dealing

with a larger number of Key Variables or larger ranges of values for the key variables,

then the potential size of the tradespace grows rapidly. In order to deal with the large

numbers of potential designs, sampling methods such as Monte Carlo sampling can be

used to help analyze the solution space.

Table 4

Design Space: di with variation for each V

ID V1R V2R [X1,X2,X3]

1 50 150 1,20,10

2 92 48 1,20,10

3 143 37 1,20,10

4 150 50 1,20,10

For each variant, V use a testing method such as the Boolean, distance, genetic

algorithm, and combined tests for robustness when determining whether a design

generated by the Monte Carlo generation of data is a feasible design.

Boolean testing for feasibility method example

If the value of |V1 - V2| >= 100 then Feasible

Else Infeasible

82

F(v) = (Feasible|Infeasible)

Table 5

Design space: di with variations for each K and

ID V1R V2R [X1,X2,X3] F(v)

(Feasible|

Infeasible)

1 50 150 1,20,10 Infeasible

2 92 48 1,20,10 Infeasible

3 143 37 1,20,10 Feasible

4 150 50 1,20,10 Feasible

So far the feasibility design score for the base design is 0.5 as 2 of the 4 tested

designs are feasible:

Table 6

Design space: di with variation for each K and

ID V1R V2R [X1,X2,X3] Total Feasible

Design Score

1 50-150 30-150 1,20,10 2/4 = .5

Now substitute the values within rows 3 and 4 as they were the feasible designs

for the variables from column V1. Now substitute the parameter values within column V1,

83

from the designs that were feasible with one another. In this case, we are substituting the

values of rows 3 & 4.

Table 7

Design space: di with variation for each K

ID V1R V2R [X1,X2,X3] F(v)

(Feasible|

Infeasible)

1 50 30 1,20,10 Infeasible

2 92 48 1,20,10 Infeasible

3 150 37 1,20,10 Feasible

4 143 50 1,20,10 Infeasible

After the substitution, row 3 is the only row that remains feasible making the

design feasible for three designs out of the 6 designs tested. After the swap of feasible

designs, the design remains feasible 50% of the time. In order to increase the rate at

which substitution method finds the feasible designs from the range of possible design

combinations, during each iteration of swapping values between feasible designs, new

values should be generated for all key parameters in all designs that were infeasible.

84

Figure 36. General algorithm for locating a robust design through substitution analysis

Sudo Code Example of Permutation Stability Analysis Applied to SSCTF Dataset.

Permutation Stability Analysis is the core effort of this work so a sudo code example of

the selection of a single design value applied to the SSCTF dataset is provided below.

The method begins by randomly selecting a design through the selection of the cca index.

We then test to see if the value we are about to test has previously been tested. If the

value has been tested then we use the index of the first design that has not previously

been tested. If the design has not previously been tested then we use that design. Lastly,

we assign the selected value to the target design. After the new value has been assigned,

we send the new version of our target design through metric testing to determine if the

new value that was assigned to the target design has produced a valid design. We repeat

85

this value selection process for replacing the value of the target variable using every other

known successful value for the chosen critical variable. We repeat this process for every

design within the tradespace of designs to acquire a percent success for permutation

analysis.

Table 8

Permutation stability analysis source code

 # Attempt to randomly get the index of a value in the critical variable list

mechanicalModel = rowDict[mechModel]

chosenbscell = ""

chosenCCA = ""

numBscell = len(localVarValList[mechanicalModel])

chosenBscellIndex = random.randint(0, numBscell - 1)

curBscellIndex = 0

chosenCcaValIndex = 0

for bscell in localVarValList[chosenSeed]:

 if curBscellIndex == chosenBscellIndex:

 chosenbscell = bscell

 numCca = len(localVarValList[mechanicalModel][chosenbscell])

 chosenCcaIndex = random.randint(0, numCca - 1)

 curCcaIndex = 0

 for cca in localVarValList[mechanicalModel][chosenbscell]:

 if curCcaIndex == chosenCcaIndex:

 chosenCCA = cca

 numValForCca =

len(localVarValList[mechanicalModel][chosenbscell][chosenCCA])

 chosenCcaValIndex = random.randint(0, numValForCca - 1)

 break

 else:

 curCcaIndex += 1

 break

 else:

 curBscellIndex += 1

Once we have attempted to randomly choose a value to try for this row,

make sure we have a

random index of a value that hasn't been tested so that we can meet our

percentage.

If we don't get a random number that hasn't been tested, take the next

number that hasn't been tested

86

if

(localVarValList[mechanicalModel][chosenbscell][chosenCCA][chosenCc

aValIndex]['tested'] == True):

 seed = rowDict[CONST.seed]

 for bscell in localVarValList[rowDict[CONST.seed]]:

 for cca in localVarValList[seed][bscell]:

 for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])):

 if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] ==

False):

 if firstIndexOfUntestedCcaVal == -1:

 # store a reference into the structure to the first untested

value

 firstIndexOfUntestedSeed = seed

 firstIndexOfUntestedBscell = bscell

 firstIndexOfUntestedCca = cca

 firstIndexOfUntestedCcaVal = curCCAVal

 numUntested += 1

 else:

 numTested += 1

 randomPermute = \

 localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][f

irstIndexOfUntestedCca][

 firstIndexOfUntestedCcaVal]['value']

 # if we are allowing duplicate tests of the same value

 localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][fi

rstIndexOfUntestedCca][

 firstIndexOfUntestedCcaVal]['tested'] = True

else:

 randomPermute =

localVarValList[mechanicalModel][chosenbscell][chosenCCA][chosenCc

aValIndex]['value']

 # if we are allowing duplicate tests of the same value

 if allowDuplicatePermutation == False:

 localVarValList[mechanicalModel][chosenbscell][chosenCCA][chosen

CcaValIndex]['tested'] = True

Assign the randomly or next chosen value to the critical var in prop dict

rowDict contains a design and we are replacing the selected primary

variable vvalue with the permuted value for testing

rowDict[primaryVar] = randomPermute

87

In case the reader is curious why we bother with attempting to randomly choose a

value from the list of possible values for the critical variable, we apply random selection

because it is possible that the user may have a solution space that is too large to perform

permutation testing for 100 percent of possible values for every design. The random

selection is in place to provide a mechanism for performing permutation utilizing a

percentage of possible available values for a design. As we wished to show the results of

fully utilizing permutation analysis, we did not provide results of percentage of possible

results but the option is there in case the reader finds themself in a position where their

solution space is to large to perform full permutation testing. It is recommended that if

the reader chooses to perform permutation testing on a percentage of the population, the

reader should make a note of the percentage of possible values that were tested so that it

is clear that the results of permutation analysis represent the success rate for the subset of

possible values.

Step 2 Part 2: Permutation Stability Analysis - Calculating

Robustness with Mutation

A Genetic Algorithm Substitution Method for Finding Resilient Designs within a

Tradespace

In order to provide more functionality to permutation analysis, it was thought that

providing a means for the designer to explore the design space around successful designs

would be helpful. Mutation analysis was added to permutation analysis in order to

provide a means for the designer to locate designs that were not previously considered.

Because the selection of designs through mutation analysis is random, new values may or

may not be feasible. However, mutation analysis still provides a more enhanced view

88

than permutation analysis alone by adding to the expectation of a design to be able to

withstand changes to design parameters.

Possible Choices. Mutation analysis is an enhancement to permutation analysis

that performs a random selection of values utilizing a target design, and a selected design

from the design tradespace of possible designs. Mutation randomly chooses to select a

value in between, below, or above the two selected values.

In Between. For the in-between choice, mutation must decide if it wants to be

closer to the current value or the target value. After choosing the current or target value,

then mutation checks to see if its choice is above or below the halfway point between the

current and target value and it uses that information for ensuring the randomly chosen

values are closer to the selection of the current or target value. The in between choice

also has the option of selecting halfway in between the current and target value but if

mutation chooses halfway then it does not matter if the mutation selects the current or

target value because halfway is the same answer for both options.

Below and Above. If mutation chooses below or above then it must select the

target value or the current value. Once mutation chooses the target value or the current

value, it randomly chooses a number in between the halfway point and its choice of the

target or current value. Mutation then subtracts or adds the randomly chosen value with

its selection between the current and target value based on if it wants the mutated value to

be above or below the current or selected value.

89

A sudo code example of mutation analysis is now provided:

Table 9

Calculate mutated value

''' Mutation possible answers

 0) Somewhere in between

 a) Random value closer to current value

 b) Random value closer to target value

 c) Halfway

 Note: If the new value is already present, then move on without mutation

 1) Above or below current value by whichever puts the point:

 a) Places the current value in between itself and the target value (new <---- current -------

target)

 b) Places the target value in between itself and the current value (current ----- target ----->

new) '''

def mutateValue(current, target):

 # choice 0 or 1

 # 0) Somewhere in between

 # 1) Above or below current value by whichever puts the point:

 position = [0, 1]

 positionChoice = random.choice(position)

 # in between choice

 # 0) Random value closer to current value

 # 1) Random value closer to target value

 # 2) Halfway

 inBetween = [0, 1, 2]

 inBetweenChoice = random.choice(inBetween)

 # aboveBelowChoice

 # 0) Places the current value in between itself and the target value (new <---- current -------

target)

 # 1) Places the target value in between itself and the current value (current ----- target ----->

new)

 aboveBelow = [0, 1]

 aboveBelowChoice = random.choice(aboveBelow)

 # only dealing with positive numbers

 mutatedValue = 0

 halfway = (current+target)/2

 current = int(current)

 halfway = int(halfway)

 target = int(target)

 # force a mutated range

 if halfway == target or halfway == current:

 current = random.randrange(600,1000)

 target = random.randrange(0,400)

 halfway = 500

 current = int(current)

 halfway = int(halfway)

 target = int(target)

 # Somewhere in between

90

 if positionChoice == 0:

 # Random value closer to current value

 if inBetweenChoice == 0:

 if(current < halfway):

 mutatedValue = random.randrange(current, halfway,1)

 else:

 mutatedValue = random.randrange(halfway, current,1)

 # Random value closer to target value

 elif inBetweenChoice == 1:

 if(target < halfway):

 mutatedValue = random.randrange(target, halfway,1)

 else:

 mutatedValue = random.randrange(halfway, target,1)

 # Halfway

 elif inBetweenChoice == 2:

 mutatedValue = halfway

 else: #Above or below current value by whichever puts the point

 # Places the current value in between itself and the target value (new <---- current -------

target)

 if aboveBelowChoice == 0:

 # (new <---- current ------- target)

 if(current < halfway):

 mutatedValue = current - random.randrange(current, halfway, 1)

 else: # (target ----- current -------> new)

 mutatedValue = current + random.randrange(halfway, current, 1)

 # Places the target value in between itself and the target value (current ----- target ----->

new)

 elif aboveBelowChoice == 1:

 if(target < halfway):

 # (new <---- target ----- current)

 mutatedValue = target - random.randrange(target, halfway,1)

 else:

 # (current ----- target -----> new)

 mutatedValue = target + random.randrange(halfway, target,1)

 return mutatedValue

91

CHAPTER IV – RESULTS

Introduction to Results and the Initial Statistics of the SSCTF Dataset

We begin processing Small Surface Combatant Task Force (SSCTF) data

(described fully in the Introduction section) with basic statistics: Non-Unique designs,

Unique designs, Successful Unique designs, Unsuccessful Unique designs, and Summary

Statistics for each of the Five Mechanical Models. These statistical measures were

developed during the SSCTF project and are presented here as the base methodology

upon which we are improving. Code segments and derived tables and graphs are included

for completeness.

Following basic statistics as developed during SSCTF, we introduce results from

design permutation and the additional insight gained on the permutation stability of the

four key characteristics of successful multi-purpose surface ships: Free Weight, Free

Power, Free Cooling and Free Space. These four characteristics are described fully in the

Introduction section. This extended methodology is applied to the problem of selecting a

surface ship mechanical model (described in the Introduction) that is both likely to be a

successful ship, meeting all key metrics (described in the methodology) and which is

most likely to survive the uncertainty bid and manufacturing process, preserving the four

key characteristics.

Code and derived tables and graphs are presented to support the utility of this new

methodology and potential usage in current exploratory clean-sheet undersea design and

other upcoming joint projects.

92

Non-Unique Designs

We begin by first looking at the total number of non-unique designs. All

mechanical models possess the same number of non-unique designs. We theorize that this

is because the data generated was focused on producing a uniform data set. It is

convenient that the data is equally present for all mechanical models for the sake of a fair

comparison of the results of permutation stability analysis.

Figure 37. Total number of unique designs from the full dataset

Table 10

The full dataset with all non-unique designs

Bscell

Total

number of

non-unique

designs in the

full dataset:

i1

Total

number of

non-unique

designs in

the full

dataset: i2

Total number

of non-unique

designs in the

full dataset: ic

Total number

of non-unique

designs in the

full dataset:

m1

Total number

of non-unique

designs in the

full dataset:

m2

1A 1900 1900 1900 1900 1900

1A-DF-

1
1900 1900 1900 1900 1900

1A-D2-2 1900 1900 1900 1900 1900

2A 2100 2100 2100 2100 2100

2A-DF-

1
2100 2100 2100 2100 2100

2A-D2-2 2100 2100 2100 2100 2100

3A 7800 7800 7800 7800 7800

3A-DF-

1
7800 7800 7800 7800 7800

93

3A-D2-2 7800 7800 7800 7800 7800

4A 6550 6550 6550 6550 6550

4A-DF-

1
6550 6550 6550 6550 6550

4A-D2-2 6550 6550 6550 6550 6550

5A 3400 3400 3400 3400 3400

5A-DF-

1
3400 3400 3400 3400 3400

5A-D2-2 3400 3400 3400 3400 3400

6A 2700 2700 2700 2700 2700

6A-DF-

1
2700 2700 2700 2700 2700

6A-D2-2 2700 2700 2700 2700 2700

7A 10200 10200 10200 10200 10200

7A-DF-

1
10200 10200 10200 10200 10200

7A-D2-2 10200 10200 10200 10200 10200

8A 8450 8450 8450 8450 8450

8A-DF-

1
8450 8450 8450 8450 8450

8A-D2-2 8400 8400 8400 8400 8400

Total 129250 129250 129250 129250 129250

Unique Designs

As expected, we can see in Table 11 below, that each Bscell has the same number

of unique designs across all mechanical models. While Bscells may have different

numbers of unique designs, all mechanical models possess the same total number of

unique designs.

Figure 38. Total number of unique designs from the full dataset

94

Table 11

Total number of unique designs from the full dataset

Bscell i1 i2 ic m1 m2

1A 38 38 38 38 38

1A-DF-1 38 38 38 38 38

1A-D2-2 38 38 38 38 38

2A 42 42 42 42 42

2A-DF-1 42 42 42 42 42

2A-D2-2 42 42 42 42 42

3A 156 156 156 156 156

3A-DF-1 156 156 156 156 156

3A-D2-2 156 156 156 156 156

4A 131 131 131 131 131

4A-DF-1 131 131 131 131 131

4A-D2-2 131 131 131 131 131

5A 68 68 68 68 68

5A-DF-1 68 68 68 68 68

5A-D2-2 68 68 68 68 68

6A 54 54 54 54 54

6A-DF-1 54 54 54 54 54

6A-D2-2 54 54 54 54 54

7A 204 204 204 204 204

7A-DF-1 204 204 204 204 204

7A-D2-2 204 204 204 204 204

8A 169 169 169 169 169

8A-DF-1 169 169 169 169 169

8A-D2-2 168 168 168 168 168

Total 2585 2585 2585 2585 2585

Successful Unique Designs for Each Mechanical Model

In table 12 we can see that not all bscells are equally successful before

permutation. It can also be observed that for each bscell, we may have cases where a

95

bscell is successful for some mechanical models, but not all mechanical models. So far in

the observation of the data, this is the first point where we can see a difference in the

performance of the different mechanical models. A successful design is one that passes

all 16 performance metrics (explained in greater detail in the methodology). We also see

variance in the number of successful designs among differing bscells. This can be

explained by the complex interaction among differing capabilities concepts and

mechanical models. For example, with some mechanical models, one bscell may have a

capability that leads to a longer hull length which then leads to a larger slower ship and

may not pass all metrics.

Figure 39. Code used for producing the successful unique designs chart

Table 12

Successful unique designs for each mechanical model

Bscell i1 i2 ic m1 m2

1A 0 0 0 2 34

1A-DF-1 31 38 38 38 38

1A-D2-2 5 26 26 26 26

2A 0 0 1 7 41

2A-DF-1 41 42 42 42 42

2A-D2-2 29 42 42 42 42

3A 0 0 0 12 139

3A-DF-1 124 156 156 156 156

3A-D2-2 25 78 78 78 78

4A 0 0 0 5 97

4A-DF-1 85 131 131 131 131

4A-D2-2 13 81 83 83 83

96

5A 0 0 0 12 67

5A-DF-1 68 68 68 68 68

5A-D2-2 55 68 68 68 68

6A 0 0 0 9 50

6A-DF-1 53 54 54 54 54

6A-D2-2 28 47 47 47 47

7A 0 0 0 24 182

7A-DF-1 172 204 204 204 204

7A-D2-2 0 0 0 0 0

8A 0 0 0 13 127

8A-DF-1 113 169 169 169 169

8A-D2-2 0 0 0 0 0

Total 842 1204 1207 1290 1943

Number of Failures for Each Mechanical Model

The number of failures for each mechanical model could have been inferred from

the total number of unique designs and the total number of designs that passed the 16

metrics, and also the requirements testing. However, it is helpful to have the total number

of failures in tabular format. We close the description of the failures data by observing

that some bscells have no failures implying that these bscells are likely to be pass all 16

metrics regardless of mechanical model.

Figure 40. Code to pull of the number of failures for each mechanical model

97

Table 13

Number of failures for each mechanical model

Bscell i1 i2 ic m1 m2

1A 38 38 38 36 4

1A-DF-1 7 0 0 0 0

1A-D2-2 33 12 12 12 12

2A 42 42 41 35 1

2A-DF-1 1 0 0 0 0

2A-D2-2 13 0 0 0 0

3A 156 156 156 144 17

3A-DF-1 32 0 0 0 0

3A-D2-2 131 78 78 78 78

4A 131 131 131 126 34

4A-DF-1 46 0 0 0 0

4A-D2-2 118 50 48 48 48

5A 68 68 68 56 1

5A-DF-1 0 0 0 0 0

5A-D2-2 13 0 0 0 0

6A 54 54 54 45 4

6A-DF-1 1 0 0 0 0

6A-D2-2 26 7 7 7 7

7A 204 204 204 180 22

7A-DF-1 32 0 0 0 0

7A-D2-2 204 204 204 204 204

8A 169 169 169 156 42

8A-DF-1 56 0 0 0 0

8A-D2-2 168 168 168 168 168

Total 1743 1381 1378 1295 642

Combined Statistics for Each of the Mechanical Models

Lets condense the previous summary statistics data down into a single table (table

5) showing overall mechanical model performance. We can see that the mechanical

98

model, M2, passes testing 75% of the time. Mechanical model I2, Ic, and M1 pass testing

46-49 percent of the time. Mechanical model I2 comes in last with the lowest pre-

permutation testing with only 32% of unique designs passing testing. Thus, a design from

the mechanical model family M2 is estimated to be 26 percent more likely than the

alternative mechanical models to pass all required metrics following the bid and

manufacture process. This is a significant difference and without any further analysis,

M2 would be the best choice when seeking a design likely to be a successful ship “as

built.” We can see that in the data provided, M2 has nearly 2 times the number of rows of

data that were present at the start before permutation. This is acceptable as we are

focused on estimating the likelihood a design will still be successful following “intra-

mechanical model” design parameter swaps.

Figure 41. Combined statistics for each of the mechanical models

99

Table 14

Combined results showing pre-permutation statistics

Mechanical

mode

variants before

permute

success before

permute

failures before

permute

percent success

before permute

i1 2585 842 1743 0.325725

i2 2585 1204 1381 0.465764

ic 2585 1207 1378 0.466925

m1 2585 1290 1295 0.499033

m2 2585 1943 642 0.751644

100

Figure 42. Pre-permutation statistics for mechanical models

Table 14 represents the current “state of art” in the SSCTF design selection

process. In the next section, we will take a quick look at computation running times.

After computation running times, the following section will begin an enhancement and

refinement to the current process of design selection with an addition to the SSCTF

design process. This enhancement to the design process will be known as design

permutation computations and analysis.

Algorithmic and Performance Issues

Although the primary focus of this study is the development of a new analysis

methodologies with existing SSCTF data which is the neighborhood of 27Mb,

algorithmic and computational efficiency may be important in future studies in which

potentially billions of designs are evaluated. Database reads were accomplished in 12.24

seconds. Parallel (using the MPI4Py library) permutation analysis on an 8 core (16

thread) Mac Pro is summarized in Table 6.

101

Table 15

Timings

Mechanical

Model

Time

(Seconds)

config data

Number of

Rows

Time (seconds) it

took for permute

Avg Calculation

Time (seconds)

per row

m2 5.10 30978 10741 2.88

m1 2.29 16951 3481 4.86

ic 1.97 14332 2439 5.82

i1 .34 2305 227 10.15

i2 2.00 14353 2314 6.20

Time it took for Configuring the data structures, permuting the data, and the number of unique designs processed for each mechanical

model

The permutation calculation average time per row seems to do better with more

rows of data, but at best we can expect to spend ~2.8 seconds per row. The current

implementation adapts to the number of cores and could easily scale to much larger

problems. Eventually, this could be extended to HPC either using MPI4Py or the HPC

Modernization Program Galaxy Orchestration platform.

Permutation

Introduction to Permutation

In this section, we will look at the results of permutation analysis. At this point

the code used is the same for all mechanical models, however, the results of permutation

on each of the 4 critical variables (Power, Space, Cooling, Weight) have different results.

Let's first take a quick look at the code before we look at the results from permutation on

the 4 critical variables for each of the 5 mechanical models. Although the code below

prints out individual tables for each mechanical model, a combined table showing all

mechanical models in one location will be presented for each of the critical variables in

102

their respective sections. Finer details of the permutation code and algorithm are in the

Methodology Section.

Figure 43. Produce charts for all mechanical models and a combine chart of results

Space Permutation Results

Space is the first critical variable on which we observe the results of permutation.

We can immediately notice that for the mechanical models, M1 is slightly better than M2

at handling permutation on the critical variable Space. We look back to the summary

statistic for the mechanical models and note that before permutation, M2 was 75 percent

103

likely to pass the 16 testing metrics, when M1 was 49 percent likely to pass those same

metrics. This means that if we have a passing design for both M1 and M2, and we care

most about whether or not the design will be able to handle changes in Space, we should

choose M1 over M2. At this point, we can see that permutation has already shown that it

has the potential to influence the mechanical model selection process.

Table 16

After permutation results for all mechanical models on critical variable Space

Mechanical

Model

variants tested during

permute

variants feasible

after permute

variants permute

failures

percent success

after permute

i1 1940810.0 1731536.0 209274.0 0.892172

i2 17281012.0 15714097.0 1566915.0 0.909327

ic 17297517.0 15800915.0 1496602.0 0.913479

m1 21865500.0 21367190.0 498310.0 0.977210

m2 60188311.0 57844962.0 2343349.0 0.961066

104

Figure 44. Space - Combined bar chart statistics

Weight Permutation Results

After examination of the Space critical variable, and noting that mechanical

model M1 is the optimal choice when looking at a design’s ability to withstand changes

to the Space variable, we move on to examine the results of permutation on the critical

variable Weight. Looking at the Weight critical variable, we can see that M2 is ~2 percent

better at handling permutation to the Weight critical variable than M1. It is surprising that

M1 did not perform as well as M2 when handling permutation to the critical variable

Weight because M2 has two propellers and would assumingly possess less free weight to

use than M1, which only has one propeller. Because there is a complex relationship

between engine performance and fuel consumption to obtain the required ship range, it is

possible that having two screws (M2) is more efficient than one screw (M1) therefore

requiring less fuel and more favorable weight permutation stability. However, this

reasoning for M2 having a better robustness score for the critical variable weight is

speculative. If the designer cares mostly about a design’s ability to handle changes as

105

observed through permutation to the critical variable Weight, then the designer should

choose mechanical model M2. Again, the additional layer of analysis produces

interesting and potentially important information.

Table 17

After permutation results for all mechanical models on critical variable Weight

Mechanical

Model

variants tested

during permute

variants

feasible after

permute

variants

permute

failures

percent

success after

permute

i1 1940810.0 1561953.0 378857.0 0.804794

i2 17281012.0 15610203.0 1670809.0 0.903315

ic 17297517.0 15927389.0 1370128.0 0.920790

m1 21865500.0 20578473.0 1287027.0 0.941139

m2 60188311.0 57921822.0 2266489.0 0.962343

106

Figure 45. After permutation results for all seeds Weight

Power Permutation Results

So far we have determined that M1 is better at handling permutation on the

critical variable Space, and M2 is better at handling permutation on the critical variable

Weight. We now move on to examine the results of permutation on the critical variable

Power. For all mechanical models, the results show that they are all very capable of

handling changes to the critical variable Power. However, M1 is impressively able to

handle changes to the critical variable Power 99 percent of the time. M1’s closest

competitor is M2 with 98 percent chance of handling changes to the critical variable

Power. Even though 98 percent chance that M2 will handle a change to the critical

variable power is really good, it is still slightly better for a designer interested mainly in a

mechanical model’s ability to withstand changes to power requirements to choose the

mechanical model M1. Ship power is generated by bypassing an engine’s main drive and

diverting mechanical power to a generator. The current result is not a significant

differentiating factor but could become one with finer detailed simulation of ship

107

subsystems. As a side note, one of the primary attractions of electrical non-mechanical

energy transfer systems such as i1, i2 and mixed mode engines such as ic is survivability

by avoiding situations where damage to a ship’s main drive shuts down secondary power

generation making a ship inoperable.

Table 18

After permeation results for all mechanical models on critical variable Power

Mechanical

Model

variants tested

during permute

variants

feasible after

permute

variants

permute

failures

percent

success after

permute

i1 1940810.0 1735649.0 205161.0 0.894291

i2 17281012.0 16495189.0 785823.0 0.954527

ic 17297517.0 16429965.0 867552.0 0.949845

m1 21865500.0 21745880.0 119620.0 0.994529

m2 60188311.0 59502099.0 686212.0 0.988599

108

Figure 46. After permutation bar chart results for all mechanical models on critical

variable Power

Cooling Permutation Results

The last critical variable that we are going to perform permutation analysis on is

Cooling. We have determined that mechanical model M1 is best at handling permutation

on Space and Power, M2 is the optimal choice for handling permutation on Weight. Both

M1 and M2 possess the ability to withstand permutation on the critical variable Cooling

97.7 percent of the time. This similar resistance to permutation on Cooling makes both

M1 and M2 comparable choices when a designer cares mostly about a design’s ability to

withstand changes to the critical variable Cooling. As with ships free Power (above)

Cooling was identified as a critical feature but was not modeling in sufficient detail to

make useful inferences from permutation testing.

109

Table 19

After permutation results for all mechanical models on critical variable Cooling

Mechanical

Model

variants tested

during permute

variants

feasible after

permute

variants

permute

failures

percent

success after

permute

i1 1940810.0 1918330.0 22480.0 0.988417

i2 17281012.0 17148238.0 132774.0 0.992317

ic 17297517.0 17178435.0 119082.0 0.993116

m1 21865500.0 21815771.0 49729.0 0.997726

m2 60188311.0 60011812.0 176499.0 0.997068

110

Figure 47. After permutation bar chart results for all mechanical models on critical

variable Cooling

Mutation Analysis

Introduction to Mutation Analysis

Adding in mutation analysis (described in the Methodology) to the permutation

process provided some results that may have revealed some bias in the data sets showing

more focus on fully populating the range of possible values for M1 and M2. In order to

help identify whether or not there was bias in the data, we present the results of

Algorithm 2 (described in the Methodology). Algorithm 2 is the addition of mutation into

the permutation stability analysis. Adding mutation to the permutation stability analysis

adds additional knowledge in the form of helping to identify potential designs that may

not have been considered or revealing if some mechanical models have had their solution

space more fully explored than other mechanical models.

111

Figure 48. Create and populate bar charts for mutation data

Space - Mutation Analysis

We begin looking at the ability of the 5 mechanical models to withstand mutation

analysis to the 4 critical variables with examining the Space critical variable. We can see

that the ability of all mechanical models to withstand mutation is a lower percentage than

each of the mechanical models ability to withstand permutation. Having a lower

percentage chance to withstand mutation than permutation is not surprising as mutation is

exploring potential designs above, below, and in between selected designs. Despite the

112

lower percentage chance to survive mutation, we can see that M1 is more likely to

survive mutation than the alternative mechanical models when focusing on the Space

critical variable in table 15 below.

Table 20

Effects of mutation on Space

Mechanical

Model

success before

permute

success after permute success after mutate

i1 0.325725338491 0.8921718251657813 0.822094540794937

i2 0.465764023211 0.9093273588375496 0.8509669505471895

ic 0.466924564797 0.9134787958294823 0.856502240596922

m1 0.499032882012 0.9772102170085294 0.9608808347260953

m2 0.75164410058 0.9610663771575182 0.9330797611635518

Figure 49. Bar chart comparing percent success after mutate and before permutation for

Space

113

Weight - Mutation Analysis

When looking at the effects of mutation analysis on the space critical variable, the

mechanical model M1 has the highest chance of producing a successful design. However,

mechanical model M2 is the most capable of handling mutation of designs for the Weight

critical variable. When looking at the ability of M2 to withstand changes to the weight

critical variable, M2 is the most likely of the mechanical models to survive both mutation

and permutation.

Table 21

Effects of mutation on Weight

Mechanical

Model

success before

permute

success after permute success after mutate

i1 0.325725338491 0.8047943899711976 0.7294705350280938

i2 0.465764023211 0.9033153266718408 0.855368557527916

ic 0.466924564797 0.9207904810846551 0.8805951373521519

m1 0.499032882012 0.941138917472731 0.9097935947616783

m2 0.75164410058 0.9623433692964071 0.9402608557844796

114

Figure 50. Bar chart comparing percent success after mutate and before permutation for

Weight

115

Power - Mutation Analysis

The mechanical model M1 is better than M2 at handling mutation on the space

critical variable, and M2 is better than M1 at handling mutation on the weight critical

variable. But when it comes to handling the effects of mutation on the critical variable

Power, M1 and M2 both seem to be only mildly affected by mutation. However, as we

can see in Table 17, M1 is slightly better than M2 when mutation analysis is performed

on the critical variable Power.

Table 22

Effects of mutation on Power

Mechanical

Model

success before

permute

success after permute success after mutate

i1 0.325725338491 0.8942910434303203 0.866667559222817

i2 0.465764023211 0.95452679507427 0.9400133474972053

ic 0.466924564797 0.9498452870432212 0.9347440851921458

m1 0.499032882012 0.9945292812878735 0.9926935427987083

m2 0.75164410058 0.9885989158260314 0.9849463888436505

116

Figure 51. Bar chart comparing percent success after mutate and before permutation for

Power

Cooling - Mutation Analysis

So far we have observed that M1 handles mutation analysis on both critical

variables Space and Power slightly better than the alternative mechanical models, and

M2 handles mutation to the Weight critical variable more efficiently than the other

mechanical models. This leads us to our final critical variable that we performed mutation

analysis upon, Cooling. We can see from the table below that all critical variables handle

mutation on Cooling approximately the same with M1 and M2 performing slightly better.

It was known that the critical variable Cooling had less data available to work with which

may have led to the results of mutation on Cooling not having much effect on the results

of mutation analysis.

117

Table 23

Effects of mutation on Cooling

Mechanical

Model

success before

permute

 success after permute success after mutate

i1 0.325725338491 0.98841720724852 0.9820829048571408

i2 0.465764023211 0.992316769411421 0.9880163887940463

ic 0.466924564797 0.9931156593168835 0.9890093823388916

m1 0.499032882012 0.9977256865838878 0.9965569819802315

m2 0.75164410058 0.9970675535321135 0.9955903820177083

Figure 52. Bar chart comparing percent success after mutate and before permutation for

Cooling

118

Mutation Conclusion

The results of mutation show that mechanical models M1 and M2 both handle

mutation well. The results also show that the critical variable, Space, and Weight are

more affected by mutation than the critical variables Power and Cooling. We can also

note from the results of mutation that the data sets were fairly well populated with

designs. Even though the effects of mutation were not that strong in the SSCTF dataset,

mutation may have more impact in another dataset. Overall mutation analysis clarified

Space and Weight permutation differences.

119

CHAPTER V – CONCLUSION

The objective of Robust Design is to model and make design choices which

minimize risk of poor outcomes. By studying the effects of variants to design parameters,

a designer can hope to soften the possible negative effects of changes to design

parameters. Locating a design that is able to handle changes that negatively impact

performance to design parameters throughout its lifecycle is known as a robust design. In

many cases, the designer would prefer a robust design over an optimal design because the

optimal design may not be able to handle changes to design parameters. This inability to

handle changes to design parameters can lead to the optimal design no longer being a

feasible design after even the smallest change to a design’s parameters.

Summary of Objective

The study performed by the SSCTF was awarded the honor of being the best

frigate based study the Navy had ever performed. Nevertheless, the work presented here

was aimed at providing additional enhancements to this state of the art study. In order to

facilitate this enhancement, this work sought to provide a methodology for design area

experts to leverage when searching for a design capable of withstanding changes to

design parameters in situations, such as the motivating SSCTF problem, where limited

information is available on the likelihood of post-bid design changes. The method

presented here was targeted, but not limited to, designers that do not have the luxury of a

vertically integrated design process. The methodology takes into consideration that a

designer may not have exact knowledge of the result of manufacturing which could have

variation as a result of differences in the manufacturing process or if manufacturing uses

exploratory means to find a way to fix unworkable design elements. This work utilized a

120

data set provided by the Navy’s Small Surface Combatant Task Force, however, the

methodology does not require this data. This methodology can be applied to any dataset

in which a designer faces the same or similar design complications as the Navy design

teams face with manufacturing variance and a lack of vertical introspection.

Summary of the Methodology

The methodology represents two additional types of analysis beyond modeling

done during the SSCTF. The first algorithm presented is a method to estimate design

robustness utilizing the assembled population of ship designs as an estimate of possible

as-manufactured variance. Four critical ship properties: Free Space, Free Weight, Free

Power and Free Cooling are introduced and used in Algorithm 1 during permutation

stability analysis on the design set. Permutation stability analysis is the process of

utilizing known acceptable parameter values within other similar designs. By utilizing

known acceptable values within similar designs helps to increase the likelihood that the

borrowed parameter value will be an acceptable parameter value for the target design in

the situation that no other constraints are know. The second algorithm of this

methodology explores further by utilization of a genetic algorithm concept of mutation.

The second algorithm added mutation by randomly choosing a value between, above, or

below target design and the selected design. While some designs generated through

mutation may have been infeasible without the need to test the value, mutating values in

this way generated mostly acceptable results and has the potential to locate unidentified

designs within explored areas of the tradespace. In addition, mutation also helps to

simulate manufacturing variance and exploratory redefinition of design.

121

Concluding Results

We began the analysis of the Small Surface Combatant Task Force (SSCTF)

dataset by populating the basic statistics: non-unique designs, unique designs, successful

unique designs, unsuccessful unique designs and summary statistics for each of the five

mechanical models. The basic statistics were presented as a summary of the base analysis

methodology, which we are refining and extending.

For sake of completeness, we will briefly step through each of the basic statistics

and provide a summary of their individual impact. We start with non-unique designs

which allowed us to compare each of the mechanical models to determine if the

mechanical models were equally populated within the dataset. Being equally present

meant that the comparison of the results of permutation stability analysis would be a fair

comparison. Next, we examined the number of unique designs. Because permutation

utilized known alternative possible values when trading values between critical variables,

it was more beneficial for permutation to trade unique values because trading non-unique

values would produce a redundant result. For clarity, if the same design value is tested, it

will produce the same result regardless of how many times it is tested. After identifying

the number of unique designs for the full dataset, we looked at the number of successful

unique designs for each mechanical model. By knowing the initial number of unique

designs for each mechanical model we were able to identify that not all mechanical

models possess the same number of successful designs. Not passing the same number of

successful designs means that some mechanical models are more successful than others.

Next, we produced a table showing the number of failures for each mechanical model.

While the number of failures could have been derived from the number of unique values

122

minus the number of successful unique values, it is helpful to have basic statistics easily

viewable and accessible when performing data analysis. By having the number of unique

failures easily viewable, we are able to view which mechanical models have the largest

number of failed designs before permutation begins. We finish presenting the basic

statistics for the mechanical models with a table which contained each of the previously

mentioned statistics. We also included bar charts which provided a means for visible

comparison of each of the basic statistics. By using the summary statistics table and bar

charts, we were able to see that mechanical model M2 passed initial testing before

permutation 75% of the time. Mechanical models I2, Ic, and M1 passed testing 26-29%

less often than mechanical model M2. Lastly, I2 passed testing 32% of the time. Without

any further analysis, M2 would be considered the optimal choice when seeking the best

successful “as built” ship design. Utilizing the summary statistics represented the current

state of the art in the SSCTF design process.

After finishing with the initial statistics, we then presented a short summary of

algorithmic and performance issues. The SSCTF dataset was roughly 27MB. In the

future, datasets may be larger increasing the need for algorithmic efficiency, however, the

current parallel implementation was sufficient for the current dataset with total analysis

runtime around 32 hours on an 8 core CPU. We presented a table of computation

statistics with most notable statistic of permutation requiring a minimum of ~2.8 seconds

per row.

After examining algorithmic and performance issues, we then looked at the results

of our proposed enhancement and refinement to the current design selection process with

design permutation computation and analysis. This proposed enhancement is also known

123

as Algorithm 1. The results of permutation stability analysis were divided up into sections

based on Free Space, Free Weight, Free Power, Free Cooling. These four ship

characteristics were most important for SSCTF decision makers. Examples exist of ships

that lack one or more of these characteristics and therefore have difficulty fulfilling their

primary missions and are poor targets for modification to meet new and evolving future

missions. Thus, designing for as much of the four “free” capability characteristics as

possible was a major decision point and is a focus of this work. We wish to provide

additional analysis beyond SSCTF methodology to try to select designs most likely to

have acceptable performance even with limited manufacturing information.

For the SSCTF study performance was defined as passing 16 performance metrics

such as range, speed, efficiency, and so forth. These metrics represent the capability to

perform key missions for the designed ship. In manufacture Free Space, Free Weight,

Free Power, Free Cooling could be consumed with unanticipated configuration changes

leaving a ship with unsatisfactory performance. The first analysis method beyond SSCTF

methodology is “permutation” essentially taking the population of ships with similar

mechanical design as a survey of the population of possible in-manufacture outcomes

and swapping out key characteristics and determining if a ship still passed all 16 metrics.

This refinement is an estimate of the robustness of a design. Is the design simply a “sharp

point” where performance degrades very badly with minor change orders or is the design

in the center of a “plateau” of other good designs all of which will perform similarly

well?

The first critical variable we examined for the results of permutation was Free

Space. It was easily noticeable that M1 was better than its closest competitor, M2, at

124

handling permutation on the critical variable Space. After looking back to the summary

statistics for the mechanical models, we note that M2 was 75% likely to pass the 16

testing metrics, and M1 was 49% likely to pass those same testing metrics. The results of

permutation on the critical variable space show that if we have a passing design for both

of the critical variables, M1 and M2, and we care more about the design’s ability to

withstand changes in Space throughout its life cycle, we should choose M1 over M2. We

can see at this point that permutation has already shown that it has the potential to

influence the mechanical model selection process.

Next, we looked at the results of permutation on the critical variable Weight. We

were able to determine that M2 is ~2 percent better at handling permutation on Weight

than its closest competitor, M1. M2 possesses two mechanical screws and M1 possesses

one mechanical screw making it surprising that M2 is better at handling changes to the

Weight than M1. It is possible that M2 is better at handling permutation on the critical

variable Weight than M2 because of the complex relationship between fuel efficiency and

fuel weight. We observed that a designer caring most about a design’s ability to handle

changes to the critical variable Weight should choose the mechanical model M2. As with

the critical variable Space, the results of permutation on the critical variable Weight

produces additional interesting results.

Next, we continued on with observing the results of permutation on the critical

variable Power. All of the mechanical models handled permutation on Power very well

except for I1 with the lowest permutation score of 89%. The two top mechanical models

for handling permutation to Power was M1 and M2 which were separated by only 1%

stability, and the better of the two, M1, handling permutation 99% of the time. The

125

difference in permutation stability on Power between M1 and M2 is very slight, however,

it may be possible to enhance this difference by performing permutation stability on

subsystems which contribute to the permutation success percentage of the critical

variable Power.

We conclude the results of permutation on the 4 critical variables with the critical

variable Cooling. M1 and M2 perform approximately the same from permutation on the

critical variable Cooling with 97.7% success rate. In the SSCTF study, Cooling was

identified as a critical variable but we may not have had sufficient variation in

information to fully model Cooling and be able to infer useful results from permutation

testing.

Permutation results for Power and Cooling show less difference between

mechanical models. This negative result is still useful in pointing to an underlying

weakness in SSCTF modeling in that Power and Cooling were not modeled at a level of

detail where wholesale changes in ship configuration actually made much difference.

This is unrealistic and could be addressed in future studies.

After concluding the results of permutation, we began presenting the results for

algorithm 2. For algorithm 2, the goal was to further enhance permutation by adding the

genetic algorithm concept of mutation. We called Algorithm 2 mutation analysis and

used it as a way to simulate uncertainty in the manufacturing process. Mutation analysis

also adds to further enhance permutation by helping to identify designs that may not have

been considered.

We begin exploring the results of the enhancement to permutation, mutation

analysis, with the critical variable Space. It was not surprising that Space, as well as the

126

alternative critical variables, possessed a lower percentage chance to pass mutation than

permutation. However, despite a lower success rate than permutation, M1 still possessed

a 96% chance to survive mutation analysis. It should be noted that the next best

performer with regards to mutation analysis on the variable Space was M2 with 93%

chance to survive testing. In regards to the loss of success rate between permutation and

mutation analysis, M2 suffered a 3% loss in performance from its 96% chance to pass

permutation testing where M1 only suffered a 1% loss. Between the 97% chance to pass

permutation testing and the 96% chance to pass mutation testing, M1 appears to be the

better option for a designer most interested in a design’s ability to withstand changes to

the Space critical variable.

Next, we look at the critical variable Weight for the mechanical models abilities to

withstand mutation analysis. When looking at the critical variable Weight, we observed

that M1 is most capable of producing a successful “as-built” design, however, M2 was

more capable of handling mutation analysis than M1 making M2 the desired mechanical

model when looking for the mechanical model most capable (according to these results)

of handling potentially unexpected changes to the critical variable Weight.

Looking at the result of looking at mutation analysis using the critical variable

Power, we observed that M1 was better at handling mutation on the critical variable

Space than M1, and the M2 was better at handling mutation on the critical variable Space

than M1. Also, M2 was better than M1 when it came to mutation handling on the critical

variable Weight. However, while M1 and M2 perform approximately the same when

mutation is performed on the critical variable Power, M1 performs slightly better than

M2 at 99.26% while M2 performs at 98.49%.

127

M1 is the initial choice model when looking for the mechanical model most

capable of handling mutation efficiently on the critical variables Space and Power, and

M2 handles mutation more efficiently on the critical variable Weight.

With knowledge of the mechanical models ability to handle mutation on the

critical variables, we moved on to mutation on the final critical variable that we

performed mutation analysis upon, Cooling. The results of mutation on the critical

variable Cooling were revealing in the sense that mutation had little effect on the success

of the critical variable Cooling. These results could have been a result of a lack of data

for the critical variable Cooling or that the result of changes to the critical variable

Cooling had little impact on the outcome of the testing performed using the 16 metrics.

We concluded the results of mutation on the mechanical model by noting that M1

and M2 both handle mutation well and that the critical variables Space and Weight are

most affected by mutation analysis. Mutation had some effect on the results of testing the

16 metrics on each of the critical variables, but the effects were not very strong.

However, the effects of mutation could have stronger impact on an alternative dataset.

Lastly, mutation did help to enhance the effects of permutation on the critical variables

by increasing the differences between them.

In future work, we present a survey of possible additional enhancements beyond

the two methods presented herein. Although the SSCTF is generally considered the best

frigate level study ever undertaken, additional analysis methods are needed to ensure the

best possible ships are developed given known and unavoidable uncertainties in the bid,

manufacture and delivery process.

128

CHAPTER VI – FUTURE WORKS

Cost per Mechanical Model as a Refinement to Permutation and Mutation Analysis

Here we introduce four key ship cost measures (all figures are in Hundreds of

Millions of inflation-adjusted Dollars:

1. Ship Development Cost: The initial pre-manufacture cost of research and

development including both research and preparation of a manufacturing

process. This will be higher for ships with novel features (such as non-

mechanical drive trains) and is essentially an estimate of how close in

manufacturing a new ship line is to an existing ship currently being

manufactured,

2. Ship First Follow Cost: The cost of the second ship brought out of production

- generally the most important key cost metric.

3. Ship Design Cost - High: The pessimistic estimate of ship pre-manufacture

research only cost. Essentially how novel are a ship’s proposed sub-systems.

4. Ship Design Cost - Low: The pessimistic estimate of ship pre-manufacture

research only cost. Essentially how many ship subsystems can be bought “off

the shelf”

Comparison of Ship Mechanical Models as They Relate to Ship Cost

The following is a set of 8 charts showing (1) Space Permutation/Mutation

Summary (2) Weight Permutation/Mutation Summary (3) Power Permutation/Mutation

Summary and (4) Cooling Permutation/Mutation Summary (5) Ship Development Cost

(6) Ship First Follow Cost (7) Ship Design Cost - High and (8) Ship Design Cost - Low.

129

Ship Development Costs are all roughly comparable which we interpret to mean

that none of the proposed ships/mechanical models are close to existing ship

manufacturing plants. SSCTF was a “clean sheet” design deliberately different from

existing Frigate-level ships. Ship First Follow Cost is lowest for M1 representing cost

saving of a single-screw design. Ships Design Costs High and Low again show M1 as the

least novel design with lowest research cost and most available off the shelf parts.

Space

Weight

130

Power

Cooling

Ship Development Cost

Ship First Follow Cost

Ship Design Cost - High Ship Design Cost - Low

131

Figure 53. Average statistics permutation, mutation, and average costs

One focus of future work is the possibility that manufacturing risk as

characterized by permutation and mutation analysis could be further refined by rerunning

cost metrics for ships altered in post-bid design and manufacture to arrive as a

“permutation stability per 100 Million Dollars” metric. As shown in the charts above the

M1 mechanical Model is significantly cheaper to develop and manufacture. Given that,

for the key metric Space, M1 is also more permutation stable as it is possible that a

different decision might be made if cost figures were added into risk estimates presented

herein. This work was not possible for the current investigation as cost modeling was not

available to the ITL SSCTF development team.

Genetic Algorithm Crossover Technique

The genetic algorithm crossover technique begins by taking two parent designs

and combining them to produce a child with the best attributes of both parents. It would

be interesting to create one child from every pair of parents in the solution space. Look at

132

the feasibility of each of the children and take the standard deviation. Use the standard

deviation number to identify all children within the same standard deviation. Children

nodes of standard deviation greater than 1 must choose a node greater than 1 to partner

with for the next generation. Children that are between standard deviation of .5 to 1 must

choose another node in the range of .5 to 1. Last, children within the range of 0 to .5

standard deviation must choose a node in the range of 0 to .5. If a node does not have a

partner then that node does not survive to the next generation. Any node produced from a

pair of nodes that is an infeasible result is discarded. All nodes start with 1 point of life.

After each generation, each node that was able to produce a child that survives feasibility

testing gains a point of life. Each node pair that does not produce a feasible child, or

cannot pair, loses a point of life. This process could be further divided into more pieces

but I would start with .5 increments to the standard deviation. The point of this division

of the solution space would cause nodes within ranges of standard deviations to be

created. It may result in finding areas of the solution space in which nodes are

congregated. It would also reveal nodes that were always able to produce a child with

feasible results. It would be interesting to explore the results of this test to see if a notion

of node resiliency can be found.

Max and Min Feasibility Impact

Compare the max and min of each key parameter against all other key parameters

to determine feasibility impact. Find the region of max and min for each of the key

parameters. This will help find regions of acceptable values for each of the key

parameters and produce a stronger child by determining their level of impact on each of

the other key parameters. It is possible for a variable to have multiple midpoints by

133

having regions of infeasible values contained within the regions of acceptable values. For

example, variable A is feasible from 20-30, infeasible from ranges 31-41 and feasible

from ranges 42-52. For the variable A, the most likely points of most resilience would be

points 25 and 47. This may not be true but it would be interesting to test.

Standard Deviation Distance Plateau Method

Take the objective function fitness score for each of the points in the database and

plot those points to a 3d plot where the fitness score is the Z value. Now run a clustering

algorithm on the graph and group the points into clusters. For each cluster calculate the

standard deviation. Now proceed using 2 different tests based on determining which

cluster has the lowest standard deviation score. Test 1 is to look at all points based on

cluster and determine which cluster has the lowest standard deviation score. The method

will suffer from points that are exceptionally above and below the standard deviation.

Test two is to look points within plus or minus 1 standard deviation to determine which

cluster has the lowest standard deviation score. By ignoring points that are exceptionally

good and bad it will be easier to identify clusters of resilient points. A resilient point, in

this case, would not be the individual point but rather a set of points representing the

possible feasible choices for the resilient point.

134

APPENDIX A – Full Source Code: Permutation Stability Analysis

author__ = 'James Ross'
#example command line run command with 16 processes

#time mpirun -np 16 python mpiTesting.py

#note there is an excute file that will run this code for C400,P400,S400,criticalVariableValueList
The file is propFeasPerm

It runs all permutation testing and takes about 1 day to run.
Single test runs can be ran in 30 seconds.
from mpi4py import MPI
import sqlite3 as lite

from collections import Counter
import random

import sys

#add the path to the models
sys.path.append("../models/python")
import july11i1 as i1

import july11i2 as i2

import july11ic as ic

import july11m1 as m1

import july11m2 as m2
#add the path to the requirements file

sys.path.append("../analysis/python")
import requirements
#add the path to the metricsv31 file

sys.path.append("../metrics/python")
import metricsv31

from operator import attrgetter
import CONST
import tableTemplate

import os.path

import pandas as pd
import time

import itertools

import numpy as np
import math

import threading

from IPython.core import display as ICD
import plotly.plotly as py

import plotly.graph_objs as go

import matplotlib.pyplot as plt
import matplotlib

matplotlib.style.use('ggplot')
from bokeh.io import output_notebook, show
import multiprocessing

import bokeh.charts

import bokeh.plotting as bk
bk.output_notebook()
In[3]:
#if the bat file is used then use the following 4 lines to accept input from the bat file
#permRunsPercent = int(sys.argv[1])
#prop = sys.argv[2]#'SPACE'
#propname = sys.argv[3]#"S400"
#feasible = sys.argv[4]#True for select feasible, False for select infeasible

#combinationChoice = sys.argv[5]
#debug TEsting
Note: permRuns was changed to permRunsPercent remove this line in final version

permRunsPercent = .10#CONST.PERMRUNS#int(sys.argv[1])
prop = CONST.PROPSPACE
propname = CONST.PROPNAMESPACE

combinationChoice = 0

numDbToTest = 1
percentOfRowsToTest = .10

set this to true when testing to limit to only one DB to speed things up

#testingApplication = True
testingApplication = True

testingPermuteAgainstMultipleDB = False

135

#allow duplicate permutation test
allowDuplicatePermutation = False

how often to show a row progress update when showing how far along in seed progressing we are

updateRowProgress = 10
criticalVariableValueList = {}
fullCriticalVariableList = {}
geneticDictionary = {}
dfFull ={}
con = Counter()
testOut = 10
testcounter = 0

run the program using

feasible solutions or run it using infeasible solutions
ifFeas = CONST.FEASIBLESOLUTION

the percentage of the time that we are going to mutate

mutationChance = .5
a list of the possible primary variables

this lst is here for reference of what is available and is not actually used anywhere else

FullPrimaryVariableList = {'SPACE',WEIGHT',
 'POWER','COOLING'}
#a list of the variables we would like to examine

this can be any subset of FullPrimaryVariableList of 1 to all possible values
PrimaryVariableValueList = {'SPACE'}
#PrimaryVariableValueList = {WEIGHT'}
#PrimaryVariableValueList = {'POWER'}
#PrimaryVariableValueList = {'COOLING'}
csvFilePath = propname+"/"+"permutationWithFeasible_Perm" + str(permRunsPercent) + "_" + propname + "_" + ifFeas +
".csv"
In[4]:
create a list of all possible combinations of the primary variable list
0 element holds each individual element
1 element holds all combinations of values -1 element. This allows comparison of possible combinations

example access to the combination list
combinationOptions['option 1 or option 2']['value in combination']['combination choice']
combinationOptions = []
a = list(itertools.combinations(PrimaryVariableValueList,1))
df = pd.DataFrame(a)[0]
#single column of all elements

combinationOptions.append(df)
combinationOptions

In[5]:
#multi column of data stored in column row format
a = list(itertools.combinations(PrimaryVariableValueList, len(PrimaryVariableValueList) - 1))
df = pd.DataFrame(a)
df = df.transpose
combinationOptions.append(df)
combinationOptions

In[6]:
criticalVariableValueList = {}
In[7]:
testingApplication = True
In[8]:
if you would like to see the result of permutation ran on infeasible solutions then use

the InfeasibleSoultions in the line below and comment out ifFeas in the line above
#ifFeas = "InfeasibleSolutions"
#a simple class for holding table values

class Data:
 #my rank values

 #OVERALL_RANK_BY_FEASIBILITY_PER_HUNDRED_MILLION = 0

 # possibleNumberOfRowsThatCouldHaveBeenTested
 def __init__(self,
BS_CELL,CCA,SEED,NUMTIMES_CCA_FOUND,NUM_TIMES_FAILED_PERMUTE,NUM_VALUES_TESTED_DURING
_PERMUTE,FEASIBLE_AFTER_PERMUTE, AVERAGE_FOLLOW_COST,
 PERCENT_FEASIBLE_AFTER_PERMUTE,UPGRADABILITY_METRIC,UPGRADABILITY_PER_HUNDRED_M
ILLION,
 CHANGE_VULNERABILITY,CHANGE_SPEED,AAW,ASW,SUW,MIW,C2,IO,FEASIBILITY_OF_DESIGN_BY_A
VERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC,
 OVERALLRANK, CCARANK):

136

 self.BS_CELL=BS_CELL

 self.CCA=CCA

 self.SEED= SEED

 self.NUMTIMES_CCA_FOUND=NUMTIMES_CCA_FOUND
 self.NUM_TIMES_FAILED_PERMUTE=NUM_TIMES_FAILED_PERMUTE

 self.NUM_VALUES_TESTED_DURING_PERMUTE = NUM_VALUES_TESTED_DURING_PERMUTE

 self.FEASIBLE_AFTER_PERMUTE=FEASIBLE_AFTER_PERMUTE
 self.AVERAGE_FOLLOW_COST=AVERAGE_FOLLOW_COST

 self.PERCENT_FEASIBLE_AFTER_PERMUTE=PERCENT_FEASIBLE_AFTER_PERMUTE

 self.UPGRADABILITY_METRIC=UPGRADABILITY_METRIC
 self.UPGRADABILITY_PER_HUNDRED_MILLION=UPGRADABILITY_PER_HUNDRED_MILLION

 self.CHANGE_VULNERABILITY =CHANGE_VULNERABILITY

 self.CHANGE_SPEED = CHANGE_SPEED
 self.AAW = AAW

 self.ASW = ASW

 self.SUW = SUW
 self.MIW = MIW

 self.C2 = C2

 self.IO = IO

 self.FEASIBILITY_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC=FEASIBILIT
Y_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC

 self.OVERALLRANK = 0
 self.CCARANK = 0

 def __repr__(self):
 return repr((self.BS_CELL, self.CCA, self.SEED, self.NUMTIMES_CCA_FOUND,
self.NUM_TIMES_FAILED_PERMUTE, self.NUM_VALUES_TESTED_DURING_PERMUTE,
self.FEASIBLE_AFTER_PERMUTE,
 self.AVERAGE_FOLLOW_COST, self.PERCENT_FEASIBLE_AFTER_PERMUTE,
self.UPGRADABILITY_METRIC, self.UPGRADABILITY_PER_HUNDRED_MILLION,
 self.CHANGE_VULNERABILITY,self.CHANGE_SPEED,self.AAW,self.ASW,self.SUW,self.MIW,self.C2,self.I
O,
 self.FEASIBILITY_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC,self
.OVERALLRANK,self.CCARANK))
In[9]:
NUM_RUNS = CONST.NUMRUNS # (Num Rows in Results DB / Num CCAs) / Num of Seeds

def openReadDbPandas():
 global con, cur, numDBs, dfMain, columnNames

 con = Counter()
 cur = Counter()
 numDBs = 0

 path = '../apd-data/'
 for f in os.listdir(path):
 if os.path.isfile(os.path.join(path, f)):
 if "results" in f:
 numDBs += 1
 # same sql statement for all connections

 sql = 'SELECT * FROM Results WHERE "Req Cumulative" > -1'
 # init the master data frame
 con[0] = lite.connect("../apd-data/results_%d.db" % 0)
 dfMain = pd.read_sql(sql, con[0])
 #columnNames = [description[0] for description in cur[0].description]
 columnNames = list(dfMain)
 # establish a connection to all dbs

 if testingApplication:
 for x in range(1, numDbToTest-1):
 con[x] = lite.connect("../apd-data/results_%d.db" % x)
 dfTemp = pd.read_sql(sql, con[x])
 dfMain = pd.concat([dfMain, dfTemp], axis=0)

 #con[0] = lite.connect("../apd-data/results_%d.db" % 0)
 #dfTemp = pd.read_sql(sql, con[0])
 #dfMain = pd.concat([dfMain, dfTemp], axis=0)
 else:
 for x in range(1, numDBs-1):
 con[x] = lite.connect("../apd-data/results_%d.db" % x)
 dfTemp = pd.read_sql(sql, con[x])
 dfMain = pd.concat([dfMain, dfTemp], axis=0)
 #print (len(dfMain))

137

 #print (list(dfMain))
In[10]:
Testing cell for openReadDbPandas

#this is simply used as a quick populate for testing of functions
openReadDbPandas()
In[11]:
#def initGlobals():
global criticalVariableValueListDf
criticalVariableValueListDf = pd.DataFrame()
criticalVariableValueList = Counter()
#initGlobals()
#global criticalVariableValueList
#criticalVariableValueList = Counter()
In[12]:
#maybe ill use this, i dont know

def populateCritVarDictSeedBscellCca(seedName, primaryVar):
 # for every returned row ie every row in the feasible set
 myDf = dfMain.loc[dfMain[CONST.seed] == seedName]
 #for propDict in myDf:
 for index, propDict in myDf.iterrows():
 #Using BS_CELL, CCA, Seed, count number feasible for each [BS_CELL, CCA, and seed] : increment number found
in
 # DataDict[], using all values from propDict, see if they have been added to dataDict yet
 #if this BS_CELL exists in the dictionary then append this row under the BS_CELL

 if propDict[CONST.seed] in criticalVariableValueList:
 if propDict[CONST.BSCELL] in criticalVariableValueList[propDict[CONST.seed]]:
 if propDict[CONST.CCA] in criticalVariableValueList[propDict[CONST.seed]][propDict[CONST.BSCELL]]:
 criticalVariableValueList[propDict[CONST.seed]][propDict[CONST.BSCELL]][propDict[CONST.CCA]].append(p
ropDict[primaryVar])
 else:
 criticalVariableValueList[propDict[CONST.seed]][propDict[CONST.BSCELL]][propDict[CONST.CCA]] =
[propDict[primaryVar]]
 else:
 criticalVariableValueList[propDict[CONST.seed]][propDict[CONST.BSCELL]] =
{propDict[CONST.CCA]:[propDict[primaryVar]]}
 else:
 criticalVariableValueList[propDict[CONST.seed]]= {propDict[CONST.BSCELL]: {propDict[CONST.CCA]:
[propDict[primaryVar]]}}
In[13]:
count the number of values in a dataframe

convert the return to a dataframe example: pd.DataFrame(lengthCounter)
def populateLengthDictionary(seedName):
 print("populating length dictionary from full data set for seed %s" % (seedName))
 lengthCounter = {}
 myDf = dfFull.loc[dfFull[CONST.seed] == seedName]
 for index, propDict in myDf.iterrows():
 #Using BS_CELL, CCA, Seed, count number feasible for each [BS_CELL, CCA, and seed] : increment number found
in
 # DataDict[], using all values from propDict, see if they have been added to dataDict yet
 #if this BS_CELL exists in the dictionary then append this row under the BS_CELL

 if propDict[CONST.seed] in lengthCounter:
 if propDict[CONST.BSCELL] in lengthCounter[propDict[CONST.seed]]:
 lengthCounter[propDict[CONST.seed]][propDict[CONST.BSCELL]] += 1

 else:
 lengthCounter[propDict[CONST.seed]][propDict[CONST.BSCELL]] = 1

 else:
 lengthCounter[propDict[CONST.seed]] = {propDict[CONST.BSCELL]: 1}
 # lengthDf = pd.DataFrame(lengthCounter)
 print ("Finished populating length dictionary from full data set for seed %s. It will take some time to finish the pickling of
data fo this process." % (seedName))
 return lengthCounter
In[14]:
#populate a dataframe using the list of values for each bscell.
#Use the unique list of values created by populateUniqueValueDf
The purpose is to know if a value has been tested for a bscell in a specific seed.
def populateTestedValuesDictionary(seedName, primaryVar):
 global testedValuesDf
 testedCounter = criticalVariableValueList

138

 #-->

 for seed in criticalVariableValueList:
 for bscell in criticalVariableValueList[seed]:
 for cca in criticalVariableValueList[seed][bscell]:
 #for curCCAVal in range(0, len(criticalVariableValueList[seed][bscell][cca])):
 #if isinstance(testedCounter[seed][bscell][cca][curCCAVal], dict) == False:
 if isinstance(testedCounter[seed][bscell][cca][0], dict) == False:
 testedCounter[seed][bscell][cca] = pd.Series(testedCounter[seed][bscell][cca]).unique()
 # for val in testedCounter[seed][bscell][cca] :
 tmpAry = testedCounter[seed][bscell][cca]
 aryObj = []
 for val in tmpAry:
 # i noticed that dictionaries were rea
 if isinstance(val, dict) == False:
 aryObj.append({'value': val, 'tested': False})
 else: aryObj.append({'value': val['value'], 'tested': False})
 # store the ary of value and weather the value has been tested back to the bscell
 testedCounter[seed][bscell][cca] = aryObj
 #testedCounter['m2']['1F']['1F.CS24']
 testedValuesDf = pd.DataFrame(testedCounter)
A BSCELL may not necessarily occur in all seeds as a feasible design

In[15]:
testcounter=0

def getRowData(curRow):
 # create a key value pair of this row's values
 colNum = 0

 rowDict = {}
 columnHeadings = list(dfMain)
 columnHeadings.append("RowID")
 for col in columnHeadings:
 rowDict[col] = curRow[colNum]
 colNum += 1

 myDataDict = {}
 # determine how many values we have

 numTimesToPermute = 0

 localVarValList = criticalVariableValueList
 # figure out how many values we have in this seed the first time we encounter it
 if (rowDict[CONST.seed] in permutePerSeed):
 numTimesToPermute = permutePerSeed[rowDict[CONST.seed]]
 else:
 for bscell in localVarValList[rowDict[CONST.seed]]:
 numTimesToPermute += len(localVarValList[rowDict[CONST.seed]][bscell])
 # keep track of how many values were tested for this seed

 permutePerSeed[rowDict[CONST.seed]] = numTimesToPermute

 # apply the percentage modifier in case the user wants to use less rows than all possible
 numTimesToPermutePercent = int(math.ceil(numTimesToPermute * permRunsPercent))
 # keep track of how many values were tested for this seed

 #totalNumberOfValuesTestedForSeed += numTimesToPermutePercent
 # if there was only 1 value then test
 if (numTimesToPermutePercent < 1 and numTimesToPermutePercent > 0):
 numTimesToPermutePercent = 1
 #if (curRowProgress % updateRowProgress == 0):
 # print("Currently on row %d of %d possible rows for this seed %s. I am process number %d" % (
 # curRowProgress, totalRows, rowDict[CONST.seed], RANK))
 # print("About to test %d possible values for this row" % (int(math.ceil(numTimesToPermutePercent))))

 # if you didnt check all the values then go ahead, else all values for this bscell have been tested
 # numTimesToPermute: number of possible values for this row

 for permute in range(0, numTimesToPermutePercent):
 firstIndexOfUntestedSeed = ""
 firstIndexOfUntestedBscell = ""
 firstIndexOfUntestedCca = ""
 firstIndexOfUntestedCcaVal = -1
 numUntested = 0

 numTested = 0

 firstIndexOfUntested = -1
 # For the very first row, set up the myDataDictionary

139

 if permute == 0:
 saveprop = rowDict[primaryVar]
 # Using BS_CELL,CCA, seed, count number feasible for each [BS_CELL,CCA,seed] : increment number
 # found in myDataDict[], using all values from rowDict, See if they have been added to myDataDict yet
 if (rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]) in myDataDict:
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][
 0] += 1 # count 0 - #numTimesCcaFound
 # everytime this CCA is reencountered, add to the total of values tested

 # myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][15] +=
numTimesToPermute
 else:
 # Initialize this [BS_CELL, CCA,seed] in the myDataDict by adding required info

 # [0=number feasible, 1=number tested, 2=number still feasible after permutation,
 # 3=average cost running total] notify that this node is done working

 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]] = [1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0]
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][3] = str(
 rowDict[CONST.METRIC_AVERAGE_FOLLOW_END_COST_MOST_LIKELY])
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][6] = str(
 rowDict[CONST.METRIC_VULNERABILITY])
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][7] = str(
 rowDict[CONST.DESIGN_SUSTAINED_SPEED])
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][8] = (
 rowDict[CONST.AAW]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][9] = (
 rowDict[CONST.ASW]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][10] = (
 rowDict[CONST.SUW]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][11] = (
 rowDict[CONST.MIW]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][12] = (
 rowDict[CONST.C2]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][13] = (
 rowDict[CONST.IO]).strip(' ')
 # If there was a value that needed to be tested then run regression and things on this value

 # if firstIndexOfUntestedCcaVal != -1:
 # Attempt to randomly get the index of a value in the critical variable list
 chosenSeed = rowDict[CONST.seed]
 chosenbscell = ""
 chosenCCA = ""
 numBscell = len(localVarValList[chosenSeed])
 chosenBscellIndex = random.randint(0, numBscell - 1)
 curBscellIndex = 0

 chosenCcaValIndex = 0

 for bscell in localVarValList[chosenSeed]:
 if curBscellIndex == chosenBscellIndex:
 chosenbscell = bscell
 numCca = len(localVarValList[chosenSeed][chosenbscell])
 chosenCcaIndex = random.randint(0, numCca - 1)
 curCcaIndex = 0

 for cca in localVarValList[chosenSeed][chosenbscell]:
 if curCcaIndex == chosenCcaIndex:
 # chosenCCA = localVarValList[chosenSeed][chosenbscell][cca]
 chosenCCA = cca
 numValForCca = len(localVarValList[chosenSeed][chosenbscell][chosenCCA])
 chosenCcaValIndex = random.randint(0, numValForCca - 1)
 break
 else:
 curCcaIndex += 1

 break
 else:
 curBscellIndex += 1

 # Once we have attempted to randomly choose a value to try for this row, make sure we have a
 # random index of a value that hasn't been tested so that we can meet our percentage.
 # If we don't get a random number that hasn't been tested, take the next number that hasn't been tested

 if (localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] == True):
 seed = rowDict[CONST.seed]
 for bscell in localVarValList[rowDict[CONST.seed]]:

140

 for cca in localVarValList[seed][bscell]:
 for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])):
 if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == False):
 if firstIndexOfUntestedCcaVal == -1:
 # store a reference into the structure to the first untested value

 firstIndexOfUntestedSeed = seed

 firstIndexOfUntestedBscell = bscell
 firstIndexOfUntestedCca = cca

 firstIndexOfUntestedCcaVal = curCCAVal
 numUntested += 1
 else:
 numTested += 1

 # How often do we state our progress
 '''
 if (permute % (int(math.ceil(numTimesToPermutePercent)) * .10) == 0):
 if (numUntested == 0):
 # print("No values left to test for this row. Adding to counter number of times a valid value has appeared")
 a = 0

 else:
 print("Untested values for bscell %s in Seed %s: %d. Tested Values for this bscell: %d. Process %d" % (
 rowDict[CONST.BSCELL], rowDict[CONST.seed], numUntested, numTested, RANK))
 #print(
 #"Untested values for bscell %s in Seed %s: %d. Tested Values for this bscell: %d. Process %d row %d" % (
 # rowDict[CONST.BSCELL], rowDict[CONST.seed], numUntested, numTested, RANK, curRowProgress))
 # End of print message
 '''
 randomPermute = \
 localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][firstIndexOfUntestedCca][
 firstIndexOfUntestedCcaVal]['value']
 # if we are allowing duplicate tests of the same value
 localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][firstIndexOfUntestedCca][
 firstIndexOfUntestedCcaVal]['tested'] = True

 else:
 randomPermute = localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['value']
 # if we are allowing duplicate tests of the same value

 if allowDuplicatePermutation == False:
 localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] = True

 # Assign the randomly or next chosen value to the critical var in prop dict
 rowDict[primaryVar] = randomPermute
 # run the datarow through the appropriate regression model for this seed

 if rowDict[CONST.seed] == CONST.i1:
 rowDict = i1.RegEx(rowDict)
 if rowDict[CONST.seed] == CONST.i2:
 rowDict = i2.RegEx(rowDict)
 if rowDict[CONST.seed] == CONST.ic:
 rowDict = ic.RegEx(rowDict)
 if rowDict[CONST.seed] == CONST.m1:
 rowDict = m1.RegEx(rowDict)
 if rowDict[CONST.seed] == CONST.m2:
 rowDict = m2.RegEx(rowDict)
 # run requirements and metrics on the datarow
 rowDict = requirements.RegEx(rowDict)
 rowDict = metricsv31.RegEx(rowDict)
 '''
 0 numTimes_Cca_Found = float(count[0])
 1 self.NUM_TIMES_FAILED_PERMUTE = NUM_TIMES_FAILED_PERMUTE

 2 feasible_after_permute = float(count[2])
 14 NUM_POSSIBLE_VALUES = float(count[15])
 '''
 # number of possible values
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][14] += 1

 # NOTE: For both the case where a row has been tested and not been tested, increment the appropriate values in the
myDataDict
 # If row is feasible after permute then add to still feasible count and to numtested

 if rowDict[CONST.REQ_CUMULATIVE] > -1:
 # This is a really interesting value. If the row fails feasibility test after permutation then it means that it lacks
resilience

 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][

141

 2] += 1 # count 2 - # feasible after permute

 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][4] += rowDict[
 CONST.METRIC_VULNERABILITY]
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][5] += rowDict[
 CONST.DESIGN_SUSTAINED_SPEED]
 else:
 # This means the row is no longer feasible so only add to number of rows tested
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][
 1] += 1 # count 1 - #NUM_TIMES_FAILED_PERMUTE

 # Another row has completed
 #curRowProgress += 1

 totalNumUntested = 0

 totalNumtested = 0
 seed = rowDict[CONST.seed]
 # Reset the values for each row so that each row has fair access to possible values

 for bscell in localVarValList[rowDict[CONST.seed]]:
 for cca in localVarValList[seed][bscell]:
 for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])):
 # While values are being reset, keep track of how many rows have not been tested and

 # also track the number of values that were tested for this seed

 if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == False):
 totalNumUntested += 1
 else:
 totalNumtested += 1

 localVarValList[seed][bscell][cca][curCCAVal]['tested'] = False

 if(int(rowDict['RowID']) % 50 == 0):
 print ("Computed seed %s bascel %s cca %s. Using row %s" % (rowDict[CONST.seed],rowDict[CONST.BSCELL],
rowDict[CONST.CCA],rowDict['RowID']))
 #for item in myDataDict:
 # dataDict[item] = myDataDict[item]
 return {'seed':rowDict[CONST.seed],'bscell': rowDict[CONST.BSCELL],'cca': rowDict[CONST.CCA],'myDataDict':
myDataDict, 'totalNumUntested': totalNumUntested, 'totalNumTested': totalNumtested}
In[16]:
#%success for mechanical model
def initRowsAndPermuteForSeedSuccessPercentage(seedName, primaryVar):
 global row, dictrows, propDict, permute, saveprop, randomPermute,workQueue,permutePerSeed

 # total number of rows that were tested by this process and the number of values left untested of the known

 # possible feasible values
 totalNumUntested = 0

 totalNumtested = 0

 totalNumberOfValuesTestedForSeed = 0
 myDf = dfMain.loc[dfMain[CONST.seed] == seedName]
 curRowProgress = 0

 totalRows = len(myDf)
 permutePerSeed = {}
 # number of rows to work on per process

 if SIZE > totalRows:
 numProcessRequired = totalRows

 else: numProcessRequired = SIZE

 # Minimum of 1 process per row
 if RANK <= numProcessRequired:
 # This is the total number of rows this process will work on

 myRowCount = int(math.ceil(totalRows / numProcessRequired))
 if(myRowCount > 1):
 #if RANK == 0:
 # startIndex = 0
 #else:
 startIndex = (RANK * myRowCount) #- 1

 endIndex = ((RANK + 1) * myRowCount) - 1
 # for the last set of rows, make sure we don't overshoot the number of rows

 #if(endIndex > totalRows):
 # endIndex = totalRows - 1
 elif myRowCount == 1:
 startIndex = RANK

 endIndex = RANK
 else:

142

 startIndex = 0

 endIndex = 0

 #The row in the database this process is starting on

 print ("Rank %d startIndex %d endIndex %d Number of processes %d Row count %d" % (RANK, startIndex,
endIndex, SIZE, myRowCount))
 columnHeadings = list(dfMain)
 # start on the proper row for this process
 curRowProgress = startIndex

 endIndex = startIndex + ((endIndex-startIndex) * percentOfRowsToTest)
 if(endIndex < 1):
 endIndex = 1

 # Create a thread for every row. the thread will handle permute for that row and return stats for the row.
 threadList = []
 rowList = []
 #rowList = {}
 threadCount = startIndex
 for curRow in myDf.iloc[int(startIndex):int(endIndex)].values:
 #threadList.append("Thread-" + str(threadCount))
 #rowList.append(curRow)
 curRow = np.append(curRow,str(threadCount))
 rowList.append(curRow)
 threadCount += 1
 print ("Computing permute with maximum power")

 print("Expect the rows to print in the order they are processed.")
 #test = getRowData(rowList[0])
 numThreads = int(endIndex) - int(startIndex)
 test1 = multiprocessing.cpu_count()
 dataList = []
 ###
 # non parallel way

 #for row in rowList:
 # dataList.append(getRowData(row))
 ###

 ####Paralle way

 #
 pool = multiprocessing.Pool(multiprocessing.cpu_count())
 dataList = pool.map(getRowData, rowList)
 pool.close()
 pool.terminate()
 pool.join()
 ###
 print("Finished permute")
 for item in dataList:
 seed = item['seed']
 bscell = item['bscell']
 cca = item['cca']
 if (seed, bscell,cca) in dataDict:
 dataDict[seed,bscell,cca][0] += item['myDataDict'][seed,bscell,cca][0]
 dataDict[seed, bscell, cca][1] += item['myDataDict'][seed, bscell, cca][1]
 dataDict[seed, bscell, cca][2] += item['myDataDict'][seed, bscell, cca][2]
 dataDict[seed, bscell, cca][14] += item['myDataDict'][seed, bscell, cca][14]
 else : dataDict[seed,bscell,cca]= item['myDataDict'][seed,bscell,cca]
 print ("Exiting Main Thread")
In[17]:
test =""
Start open and grab all rows with ReqCumulative > -1
def mpiCreateDictionaryAndPermute():
 global mpi_comm, SIZE, RANK, ROOT, dataDict, criticalVariableValueList,primaryVar, e

 mpi_comm = MPI.COMM_WORLD
 SIZE = mpi_comm.Get_size()
 RANK = mpi_comm.Get_rank()
 ROOT = 0
 dataDict = Counter()

 try:
 print ("Node " + str(RANK) + " Reading DBs")

143

 dbReadTime = time.time()
 openReadDbPandas()
 print ("Process %d reading databases: %s seconds " % (RANK, time.time() - dbReadTime))
 # Get the list of seeds
 seedList = dfMain.seed.unique()
 # For each seed family of designs

 for seedName in seedList:
 if combinationChoice == 0:
 for primaryVar in combinationOptions[0]:
 print ("Beginning work on seed family %s using primary variable %s" % (seedName, primaryVar))
 # Print column heading

 print ("Node " + str(RANK) + " beginning work on seed family " + seedName)
 #populate the data each processor will work on
 print ("Node " + str(RANK) + " configuring data structures")
 configTime = time.time()
 #######################################
 ############# Testing #################

 populateCritVarDictSeedBscellCca(seedName, primaryVar)
 print ("Process %d configuring data structures: %s seconds " % (RANK, time.time() - configTime))
 # go ahead and make a easy to reference dataframe that tells me the length of each element
 #populateLengthDictionary(seedName, primaryVar)
 # make a list of which values have been tested for each BSCELL
 populateTestedValuesDictionary(seedName, primaryVar)
 # run the substitution algorithm testing for resilience

 print ("Node " + str(RANK) + " beginning permutation")
 permuteTime = time.time()
 initRowsAndPermuteForSeedSuccessPercentage(seedName, primaryVar)
 print ("Process %d time it took for permute: %s seconds " % (RANK, time.time() - permuteTime))
 elif combinationChoice == 1:
 for primaryVar in combinationOptions[1]:
 print ("Beginning work on seed family %s using primary variable %s " % (seedName, primaryVar))
 #populate the data each processor will work on

 print ("Node " + str(RANK) + " configuring data structures")
 configTime = time.time()
 populateDictionary(seedName)
 print ("Process %d configuring data structures: %s seconds " % (RANK, time.time() - configTime))
 #run the substitution algorithm testing for resilience

 print ("Node " + str(RANK) + " beginning permutation")
 permuteTime = time.time()
 initRowsAndPermuteBroken(seedName)
 print ("Process %d time it took for permute: %s seconds " % (RANK, time.time() - permuteTime))
 except lite.Error as e:
 # report errors if they occur
 print ("Error retrieving data for permutation test")
 print ("Error: %s" % e)
 exit(1)
#Gather the results from each node into one dictionary

def getFeasibilityOfDesignByAverageFollowCostPerHundredMillionMetric(statData):
 return statData.FEASIBILITY_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC

def getCCA(statData):
 return statData.CCA
In[18]:
######################## Untested functions ###

def populateFinalDict():
 global dict, item

 for dict in dataDict:
 if dict in finalDict:
 finalDict[dict][0] += dataDict[dict][0]
 finalDict[dict][1] += dataDict[dict][1]
 finalDict[dict][2] += dataDict[dict][2]
 finalDict[dict][3] += dataDict[dict][3]
 finalDict[dict][4] += dataDict[dict][4]
 finalDict[dict][5] += dataDict[dict][5]
 finalDict[dict][6] += dataDict[dict][6]
 finalDict[dict][7] += dataDict[dict][7]
 finalDict[dict][8] += dataDict[dict][8]
 finalDict[dict][9] += dataDict[dict][9]
 finalDict[dict][10] += dataDict[dict][10]

144

 finalDict[dict][11] += dataDict[dict][11]
 finalDict[dict][12] += dataDict[dict][12]
 finalDict[dict][13] += dataDict[dict][13]
 finalDict[dict][14] = dataDict[dict][14]
 else:
 finalDict[dict] = [dataDict[dict][0], dataDict[dict][1], dataDict[dict][2], dataDict[dict][3], dataDict[dict][4],
 dataDict[dict][5],
 dataDict[dict][6], dataDict[dict][7], dataDict[dict][8], dataDict[dict][9], dataDict[dict][10],
 dataDict[dict][11], dataDict[dict][12], dataDict[dict][13], dataDict[dict][14]]
In[19]:
#Add all metrics and feasibility calculations to the data

def addMetricsAndFeasibilityToDataRows():
 global keylist, count, feasible_after_permute, numTimes_Cca_Found, num_times_failed_permute, avgcost,
changevulnerability, changespeed, percentFeasible, percentFeasibleAfterPermute, upgradeMetric,
metricPerHundredMillion, feasibilityOfDesignByAvgFollowCostPerHundredMillionMetric

 myTableTemplate = tableTemplate
 # countf1 = 0

 for keylist, count in finalDict.items():
 '''
 1 self.NUM_TIMES_FAILED_PERMUTE = NUM_TIMES_FAILED_PERMUTE

 2 feasible_after_permute = float(count[2])
 14 NUM_POSSIBLE_VALUES = float(count[15])
 '''
 # Num rows feasible after permuatation testing

 feasible_after_permute = float(count[2])
 # original number of rows passing ReqCumulative test
 numTimes_Cca_Found = float(count[0])
 # Original num rows passing req cumulative test by permutation swapping

 #num_tested = float(num_feasible) * float(permRuns)
 #num_tested = float(num_feasible) * float(count[14])
 num_times_failed_permute = float(count[1])
 NUM_POSSIBLE_VALUES = float(count[14])
 # avg follow cost of ship rows
 avgcost = float(count[3])
 if feasible_after_permute > 0:
 changevulnerability = -float(count[6]) + (float(count[4])/float(feasible_after_permute))
 changespeed = -float(count[7]) + (float(count[5])/float(feasible_after_permute))
 else:
 changevulnerability = 0
 changespeed = 0

 #TODO: THIS REQUIRES having data from all databases and figuring out how many feasible values this cca
has
 percentFeasible = 1

 #percentFeasible = float(numTimes_Cca_Found)/ float((NUM_RUNS))
 percentFeasibleAfterPermute = float(feasible_after_permute)/float(NUM_POSSIBLE_VALUES)
 if (num_times_failed_permute == 0):
 upgradeMetric = percentFeasible * feasible_after_permute / 1

 else: upgradeMetric = percentFeasible * feasible_after_permute/num_times_failed_permute
 metricPerHundredMillion = upgradeMetric * hundredMillion/ avgcost
 feasibilityOfDesignByAvgFollowCostPerHundredMillionMetric = ((percentFeasible *
percentFeasibleAfterPermute)/avgcost) * hundredMillion
 statData.append(
 Data(
 str(keylist[0]),# BS CELL - combat capability
 str(keylist[1]),# CCA combat capability alternative

 str(keylist[2]),# SEED

 str(numTimes_Cca_Found),# numTimes_Cca_Found
 str(num_times_failed_permute),#num_times_failed_permute

 str(NUM_POSSIBLE_VALUES),#NUM_POSSIBLE_VALUES

 str(feasible_after_permute),#feasible after permute
 str(avgcost),#average follow cost
 str(percentFeasibleAfterPermute),#percent still feasible

 str(upgradeMetric),#upgrade metric
 str(metricPerHundredMillion),#metric per hundred million

 str(changevulnerability),#change vulnerability

 str(changespeed),#change speed
 count[8],#AAW

 count[9],#ASW

145

 count[10],#SUW

 count[11],#MIW

 count[12],#C2

 count[13],#IO
 str(feasibilityOfDesignByAvgFollowCostPerHundredMillionMetric),#Feasibility of Design By Average Follow Cost
Per HundredMillion Metric

 0,#Overall Rank
 0#CCA Rank

)
)
In[20]:
def addOverallRankAndSortData():
 global ovrRank, statAry, getRank, total1f, x
 # Add overall rank

 ovrRank = 0

 statAry = []
 # get data sorted by key then sorted by the BSCELL then sorted by overallRank

 getRank = sorted(statData, key=getFeasibilityOfDesignByAverageFollowCostPerHundredMillionMetric, reverse=True)
 total1f = 0.0

 for x in getRank:
 # label each row by rank

 x.OVERALLRANK = ovrRank
 ovrRank = ovrRank + 1

In[21]:
def addCCARankAndSortData():
 global ccaRankCount, curCell, ccaRank, firstPass, getCCARank, x, sortedBSCELL, y

 ###Add rank within CCA
 ccaRankCount = 0

 curCell = ""
 ccaRank = []
 # initialize a new BSCELL on first pass only

 firstPass = True

 # after overall rank has been assigned the sort by BSCELL in order to get Ready to assign Rank to Each CCA
 getCCARank = sorted(getRank, key=attrgetter(CONST.BS_CELL), reverse=False)
 for x in getCCARank:
 if firstPass == True:
 curCell = x.BS_CELL

 firstPass = False

 # We have hit a new set of BSCELL and need to sort the previous BSCELL list by the overallRank
 # and then assign a CCA rank based on who has the best overall rank. The list are being modified

 # by the reference so change made to sorted BSCELL after statData

 if curCell != x.BS_CELL:
 ccaRankCount = 0

 #for x in ccaRank:
 sortedBSCELL = sorted(ccaRank, key=attrgetter(CONST.OVERALLRANK), reverse=False)
 for y in sortedBSCELL:
 y.CCARANK = ccaRankCount
 ccaRankCount = ccaRankCount + 1
 ccaRank = []
 ccaRank.append(x)
 curCell = x.BS_CELL
In[22]:
#sort the data by 'x' then 'j' then 'a'. any three values could go here

def addSeedRankAndSortData():
 global seedRankCount, curCell, seedRank, firstPass, getSeedRank, finalList, x, sortedBSCELL, y

 ###Add rank for each seed

 seedRankCount = 0
 curCell = ""
 seedRank = []
 firstPass = True
 # get list sorted on feas per mil metric and then sort based on seed

 getSeedRank = sorted(getRank, key=attrgetter(CONST.SEED), reverse=False)
 finalList = []
 # add seed 1 - (n-1) to the list and when were done add the final seed

 for x in getSeedRank:
 if firstPass == True:
 curCell = x.SEED

 firstPass = False

146

 if curCell != x.SEED:
 seedRankCount = 0

 sortedBSCELL = sorted(seedRank, key=attrgetter(CONST.OVERALLRANK), reverse=False)
 for y in sortedBSCELL:
 y.seedRank = seedRankCount
 finalList.append(y)
 seedRankCount = seedRankCount + 1
 seedRank = []
 seedRank.append(x)
 curCell = x.SEED
 #add the final seed

 seedRankCount = 0

 sortedBSCELL = sorted(seedRank, key=attrgetter(CONST.OVERALLRANK), reverse=False)
 for y in sortedBSCELL:
 y.seedRank = seedRankCount
 finalList.append(y)
 seedRankCount = seedRankCount + 1

 seedRank = []
In[23]:
def writeDataToCSVFile():
 global y, varAry, stat_text, handle

 #print finalDict
 stat_text="SEED, BS CELL,CCA, NUM TIMES CCA FOUND, NUM TIMES FAILED PERMUTE,NUM VALUES TESTED
DURING PERMUTE,FEASIBLE AFTER PERMUTE,PERCENT FEASIBLE AFTER PERMUTE,"
 stat_text+="AVERAGE FOLLOW COST (Original Design),'Upgradabiliy' METRIC,'Upgradability' PER $100
Million,Change Vulnerability,"
 stat_text+="Speed,AAW,ASW,SUW,MIW,C2,IO,Feasibility of Design By Average Follow Cost Per HundredMillion
Metric,"
 stat_text+="Overall Rank,CCA Rank,Seed Rank\n"
 for y in finalList:
 varAry = str(
 y.BS_CELL + "," + y.CCA + "," + y.SEED + "," + y.NUMTIMES_CCA_FOUND + "," +
y.NUM_TIMES_FAILED_PERMUTE + "," +
 y.NUM_VALUES_TESTED_DURING_PERMUTE + "," + y.FEASIBLE_AFTER_PERMUTE + "," +
y.PERCENT_FEASIBLE_AFTER_PERMUTE + "," +

 y.AVERAGE_FOLLOW_COST + "," + y.UPGRADABILITY_METRIC + "," +
y.UPGRADABILITY_PER_HUNDRED_MILLION + "," + y.CHANGE_VULNERABILITY + "," +

 y.CHANGE_SPEED + "," + y.AAW + "," + y.ASW + "," + y.SUW + "," + y.MIW + "," + y.C2 + "," + y.IO + "," +

 y.FEASIBILITY_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC + "," +
str(y.OVERALLRANK) +

 "," + str(y.CCARANK) + " , " + str(y.seedRank))
 stat_text += varAry + "\n"
 handle = open(
 propname + "/" + "permutationWithFeasible_Perm" + str(permRunsPercent) + "_" + propname + "_" + ifFeas + ".csv",
"w")
 handle.write(stat_text)
 handle.close()
Once you have run everything above has been run at least once, you may begin exploring the data in the cells below
In[24]:
#csvFilePath

In[25]:

##############Begin gathering results#########################

###Step 1: Determine seed success before permutation############
#Read in the whole data set
def readEntireDataset():
 global dfFull
 dfFull = pd.DataFrame()
 con = Counter()
 cur = Counter()
 numDBs = 0

 path = '../apd-data/'
 for f in os.listdir(path):
 if os.path.isfile(os.path.join(path, f)):
 if "results" in f:
 numDBs += 1
 #############

 dfTemp = []

147

 # Attempted Parallel read of all databases. Does not work##

 # DO NOT DELETE, SAVE FOR REFERENCE #

 '''
 localPool = multiprocessing.Pool(multiprocessing.cpu_count())
 # if were testing just do 3 databases

 if testingApplication == True:
 # Read in all data sets
 dfTemp = localPool.map(getAllDataFromDbWithConnecting, range(0, numDbToTest))
 else:
 # Read in all data sets
 dfTemp = localPool.map(getAllDataFromDbWithConnecting, range(0, numDBs-1))
 localPool.close()
 #localPool.terminate()
 localPool.join()
 '''
 #Non parallel read of all databases##
 # DO NOT DELETE, SAVE FOR REFERENCE #

 # initialize

 dfTemp.append(getAllDataFromDbWithConnecting(0))
 if testingApplication:
 for x in range(1, numDbToTest):
 dfTemp.append(getAllDataFromDbWithConnecting(x))
 print("finished reading db %d" % (x))
 else:
 for x in range(1, numDBs-1):
 dfTemp.append(getAllDataFromDbWithConnecting(x))
 print("finished reading db %d" % (x))
 #######################################

 dfFull = dfTemp[0]
 for index in range(1,len(dfTemp)):
 dfFull = pd.concat([dfFull, dfTemp[index]], axis=0)
 print("Finished reading in entire data set")
In[26]:
Since we are reading the entire data set, this needs to happen in parallel
def getAllDataFromDbWithConnecting(dbNum):
 myCon = lite.connect("../apd-data/results_%d.db" % dbNum)
 # same sql statement for all connections

 sql = 'SELECT * FROM Results'
 myDataFrame = pd.read_sql(sql, myCon)
 print("Finished reading data for db %d. Expect the pickling of this data to take several minutes based on the size of the
db" % (dbNum))
 return myDataFrame
In[27]:
Since we are reading the entire data set, this needs to happen in parallel
def getAllDataFromDbWithoutConnecting(dbNum):
 myCon = lite.connect("../apd-data/results_%d.db" % dbNum)
 # same sql statement for all connections

 sql = 'SELECT * FROM Results'
 myDataFrame = pd.read_sql(sql, myCon)
 return myDataFrame

In[28]:
populate the fullCriticalVariableList
this is the same thing as criticalVariableList except it is for the whole data set
def populateFullValueList(seedName):
for every returned row ie every row in the feasible set
myDf = dfFull.loc[dfFull[CONST.seed] == seedName]
for index, propDict in myDf.iterrows():
 #Using BS_CELL, CCA, Seed, count number feasible for each [BS_CELL, CCA, and seed] : increment number found
in

 # DataDict[], using all values from propDict, see if they have been added to dataDict yet
 #if this BS_CELL exists in the dictionary then append this row under the BS_CELL

 if propDict[CONST.seed] in fullCriticalVariableList:
 if propDict[CONST.BSCELL] in fullCriticalVariableList[propDict[CONST.seed]]:
 if propDict[CONST.CCA] in fullCriticalVariableList[propDict[CONST.seed]][propDict[CONST.BSCELL]]:
 fullCriticalVariableList[propDict[CONST.seed]][propDict[CONST.BSCELL]][propDict[CONST.CCA]].append(prop
Dict[primaryVar])
 else:
 fullCriticalVariableList[propDict[CONST.seed]][propDict[CONST.BSCELL]][propDict[CONST.CCA]] =

148

[propDict[primaryVar]]
 else:
 fullCriticalVariableList[propDict[CONST.seed]][propDict[CONST.BSCELL]] =
{propDict[CONST.CCA]:[propDict[primaryVar]]}
 else:
 fullCriticalVariableList[propDict[CONST.seed]]= {propDict[CONST.BSCELL]: {propDict[CONST.CCA]:
[propDict[primaryVar]]}}
pause=0

In[29]:
In order to use the same methods I have previously used for examining the data set, go ahead and set this up for the full
data set
It is not useful in the sense that I already know which values are feasible based on which values are in
criticalVariableList
It is useful because it allows me the same methods I have used for accessing data in the criticalVariableList to be used
again

def fullPopulateTestedValuesDictionaryUnique(seedName, primaryVar):
 global testedValuesDf
 for seed in fullCriticalVariableList:
 for bscell in fullCriticalVariableList[seed]:
 for cca in fullCriticalVariableList[seed][bscell]:
 if isinstance(fullCriticalVariableList[seed][bscell][cca][0], dict) == False:
 fullCriticalVariableList[seed][bscell][cca] = pd.Series(fullCriticalVariableList[seed][bscell][cca]).unique()
 tmpAry = fullCriticalVariableList[seed][bscell][cca]
 aryObj = []
 for val in tmpAry:
 aryObj.append({'value': val, 'tested': False})
 # store the ary of value and weather the value has been tested back to the bscell
 fullCriticalVariableList[seed][bscell][cca] = aryObj
 pause=0

In[30]:
def populateLengthDictionaryV2(myCriticalVariableList):
 lengthCounter = {}
 for seed in fullCriticalVariableList:
 for bscell in fullCriticalVariableList[seed]:
 if seed in lengthCounter:
 lengthCounter[seed][bscell] = np.NAN
 else: lengthCounter[seed] = {bscell: np.NAN}
 for seed in myCriticalVariableList:
 for bscell in myCriticalVariableList[seed]:
 for cca in myCriticalVariableList[seed][bscell]:
 if np.isnan(lengthCounter[seed][bscell]):
 lengthCounter[seed][bscell] = 1
 else:
 lengthCounter[seed][bscell] += 1

 # lengthDf = pd.DataFrame(lengthCounter)
 return lengthCounter
In[31]:
determine the number of failed cca's each seed-bscell has

def populateFailureLengthDictionary(uniqueLengthFullDict, successLengthDictMain):
 lengthCounter = {}
 for seed in uniqueLengthFullDict:
 for bscell in uniqueLengthFullDict[seed]:
 if seed in lengthCounter:
 lengthCounter[seed][bscell] = np.nan

 else: lengthCounter[seed] = {bscell: np.nan}
 if seed in successLengthDictMain:
 if bscell in successLengthDictMain[seed]:
 lengthCounter[seed][bscell] = uniqueLengthFullDict[seed][bscell] - successLengthDictMain[seed][bscell]
 return lengthCounter
In[32]:
1) Determine the number of values a seed had that are not unique

2) Determine the number of values a seed has that are unique
3) Determine the success of a seed before permute

4) Determine the number of Failed values a seed had before permute

dfTemp =[]
def populateSeedInformationBeforePermute():
global nonUniqueLengthFullDf,uniqueLengthFullDf,successLengthDfMain,failureLengthDfMain

149

global uniqueLengthFullDict, successLengthDictMain, failureLengthDict
 # Read entire data set reads the entire data set using a parallel read on multiple databases

 # data is placed into dfFull
##########################
#TODO: Remove for testing only

testingApplication = False

##########################
myTime = time.time()
print ('begin reading entire database')
readEntireDataset()
print("Total run time for populating length dataFrame which describes the number of successful values each seed has
before permute --- %s seconds ---" % (time.time() - myTime))
seedList = dfFull.seed.unique()

print("Start run time for populating non unique critical variable value list dictionary")
dfTemp_time = time.time()
#non parallel version

if testingApplication:
 # Approx 100 secs using one db per seed

 populateFullValueList(seedList[4])
else:
 for seed in seedList:
 populateFullValueList(seed)
print("Total run time for populating non unique critical variable value list dictionary --- %s seconds ---" % (time.time() -
dfTemp_time))
######################################

#1) Determine the number of values a seed had that are non unique
dfTemp =[]
 # populate a dictionary that holds the number of non unique values in the data set
myTime = time.time()
#dfTemp = populateLengthDictionary(seedList[0])

print("Start run time for populating non unique length dictionary")
dfTemp_time = time.time()
###parallel varsion not working for some reason #######

#localPool = multiprocessing.Pool(len(seedList))
#for result in tqdm(localPool.imap_unordered(populateLengthDictionary, seedList)):
dfTemp.append(result)
#dfTemp = localPool.imap_unordered(populateLengthDictionary, seedList)
#localPool.close()
#localPool.terminate()
#localPool.join()
###########################

#non parallel version

if testingApplication:
 dfTemp.append(pd.DataFrame(populateLengthDictionary(seedList[0])))#, dfFull))
else:
 for seed in seedList:
 dfTemp.append(pd.DataFrame(populateLengthDictionary(seed)))#, dfFull))
print("Total run time for populating length dictionary --- %s seconds ---" % (time.time() - dfTemp_time))
######################################
nonUniqueLengthFullDf = pd.concat(dfTemp, axis=1)
#nonUniqueLengthFullDf = dfTemp[0]
#for index in range(1,len(dfTemp)):
nonUniqueLengthFullDf = pd.concat([nonUniqueLengthFullDf, dfTemp[index]], axis=0)
print("Total run time for populating non unique length dataFrame using the full database --- %s seconds ---" % (time.time()
- myTime))
Just because I was curious if there was a performance difference between these two methods for calculating the
number of values

in the dataset
2) Determine the number of values a seed has that are unique

myTime = time.time()
 # unique Length full df is used for determining the number of unique values for each df
uniqueLengthFullDict = populateLengthDictionaryV2(fullCriticalVariableList)
uniqueLengthFullDf = pd.DataFrame(uniqueLengthFullDict)
print("Total run time for populating length dataFrame using the pre-configured critical vairable list --- %s seconds ---" %
(time.time() - myTime))
 # 3) Determine the success of a seed before permute

150

myTime = time.time()
 # get the number of successful values for a bscell
successLengthDictMain = populateLengthDictionaryV2(criticalVariableValueList)
 # if there is no value, then there were no successes
for seed in successLengthDictMain:
 for bscell in successLengthDictMain[seed]:
 if np.isnan(successLengthDictMain[seed][bscell]):
 successLengthDictMain[seed][bscell] = 0

successLengthDfMain = pd.DataFrame(successLengthDictMain)
print("Total run time for populating length dataFrame which describes the number of successful values each seed has
before permute --- %s seconds ---" % (time.time() - myTime))
4) Determine the number of Failed values a seed had before permute
myTime = time.time()
#for every row

failureLengthDict = populateFailureLengthDictionary(uniqueLengthFullDict, successLengthDictMain)
 # if there is no value then every cca failed

for seed in failureLengthDict:
 for bscell in failureLengthDict[seed]:
 if np.isnan(failureLengthDict[seed][bscell]):
 failureLengthDict[seed][bscell] = uniqueLengthFullDict[seed][bscell]

unique Length full df is used for determining the number of unique values for each df
failureLengthDfMain = pd.DataFrame(failureLengthDict)
print("Total run time for populating failure dataFrame which describes the number of failed values each seed has before
permute --- %s seconds ---" % (time.time() - myTime))
In[33]:

########## Begin Genetic Algorithm Testing ##

def populateFinalDictGeneticAlgorithm():
 global dict, item

 for dict in dataDictGeneticAlgorithm:
 if dict in finalDictGeneticAlgorithm:
 finalDictGeneticAlgorithm[dict][0] += dataDictGeneticAlgorithm[dict][0]
 finalDictGeneticAlgorithm[dict][1] += dataDictGeneticAlgorithm[dict][1]
 finalDictGeneticAlgorithm[dict][2] += dataDictGeneticAlgorithm[dict][2]
 finalDictGeneticAlgorithm[dict][3] += dataDictGeneticAlgorithm[dict][3]
 finalDictGeneticAlgorithm[dict][4] += dataDictGeneticAlgorithm[dict][4]
 finalDictGeneticAlgorithm[dict][5] += dataDictGeneticAlgorithm[dict][5]
 finalDictGeneticAlgorithm[dict][6] += dataDictGeneticAlgorithm[dict][6]
 finalDictGeneticAlgorithm[dict][7] += dataDictGeneticAlgorithm[dict][7]
 finalDictGeneticAlgorithm[dict][8] += dataDictGeneticAlgorithm[dict][8]
 finalDictGeneticAlgorithm[dict][9] += dataDictGeneticAlgorithm[dict][9]
 finalDictGeneticAlgorithm[dict][10] += dataDictGeneticAlgorithm[dict][10]
 finalDictGeneticAlgorithm[dict][11] += dataDictGeneticAlgorithm[dict][11]
 finalDictGeneticAlgorithm[dict][12] += dataDictGeneticAlgorithm[dict][12]
 finalDictGeneticAlgorithm[dict][13] += dataDictGeneticAlgorithm[dict][13]
 finalDictGeneticAlgorithm[dict][14] = dataDictGeneticAlgorithm[dict][14]
 finalDictGeneticAlgorithm[dict][15] = dataDictGeneticAlgorithm[dict][15]
 finalDictGeneticAlgorithm[dict][16] = dataDictGeneticAlgorithm[dict][16]
 finalDictGeneticAlgorithm[dict][17] = dataDictGeneticAlgorithm[dict][17]
 else:
 finalDictGeneticAlgorithm[dict] = [dataDictGeneticAlgorithm[dict][0], dataDictGeneticAlgorithm[dict][1],
dataDictGeneticAlgorithm[dict][2],
 dataDictGeneticAlgorithm[dict][3], dataDictGeneticAlgorithm[dict][4],
 dataDictGeneticAlgorithm[dict][5],dataDictGeneticAlgorithm[dict][6], dataDictGeneticAlgorithm[dict][7],
 dataDictGeneticAlgorithm[dict][8], dataDictGeneticAlgorithm[dict][9], dataDictGeneticAlgorithm[dict][10],
 dataDictGeneticAlgorithm[dict][11], dataDictGeneticAlgorithm[dict][12],
dataDictGeneticAlgorithm[dict][13],
 dataDictGeneticAlgorithm[dict][14], dataDictGeneticAlgorithm[dict][15],
dataDictGeneticAlgorithm[dict][16],
 dataDictGeneticAlgorithm[dict][17]]
def startGeneticAlgorithmPermutationTesting():
 global dataDictGeneticAlgorithm

 dataDictGeneticAlgorithm = Counter()
 # Get the list of seeds
 seedList = dfMain.seed.unique()
 # For each seed family of designs

151

 for seedName in seedList:
 #print ("Beginning work on seed family %s using primary variable %s" % (seedName, primaryVar))
 #configTime = time.time()
 #criticalvariableValueList
 #print ("Process %d configuring data structures: %s seconds " % (RANK, time.time() - configTime))
 # make a list of which values have been tested for each BSCELL

 #populateTestedValuesDictionary(seedName, primaryVar)
 #testValuesDf
 # run the substitution algorithm testing for resilience

 print ("Node " + str(RANK) + " beginning genetic algorithm permutation")
 permuteTime = time.time()
 initRowsAndPermuteForSeedSuccessPercentageUsingGeneticAlgorithm(seedName, primaryVar)
 print ("Process %d time it took for genetic algorithm permutation: %s seconds " % (RANK, time.time() - permuteTime))

def initRowsAndPermuteForSeedSuccessPercentageUsingGeneticAlgorithm(seedName, primaryVar):
 global row, dictrows, propDict, permute, saveprop, randomPermute, workQueue, permutePerSeedGeneticAlgorithm,
dataDictGeneticAlgorithm

 # total number of rows that were tested by this process and the number of values left untested of the known

 # possible feasible values
 totalNumUntested = 0

 totalNumtested = 0

 totalNumberOfValuesTestedForSeed = 0
 myDf = dfMain.loc[dfMain[CONST.seed] == seedName]
 curRowProgress = 0

 totalRows = len(myDf)
 permutePerSeedGeneticAlgorithm = {}
 columnHeadings = list(dfMain)
 startIndex = 0

 endIndex = totalRows

 # start on the proper row for this process
 curRowProgress = startIndex

 endIndex = startIndex + ((endIndex-startIndex) * percentOfRowsToTest)
 if(endIndex < 1):
 endIndex = 1

 # Create a thread for every row. the thread will handle permute for that row and return stats for the row.
 threadList = []
 rowList = []
 threadCount = startIndex

 for curRow in myDf.iloc[int(startIndex):int(endIndex)].values:
 curRow = np.append(curRow,str(threadCount))
 rowList.append(curRow)
 threadCount += 1
 print ("Computing permute with maximum power")
 print("Expect the rows to print in the order they are processed.")
 dataList = []
 ###

 # non parallel way

 for row in rowList:
 dataList.append(getRowDataGeneticAlgorithm(row))
 ###

 ####Paralle way
 #

 #pool = multiprocessing.Pool(multiprocessing.cpu_count())
 #dataList = pool.map(getRowDataGeneticAlgorithm(), rowList)
 #pool.close()
 #pool.terminate()
 #pool.join()
 ###

 '''
 dataDictGeneticAlgorithm[0] numTimes_Cca_Found = float(count[0])
 dataDictGeneticAlgorithm[1] self.NUM_TIMES_FAILED_PERMUTE = NUM_TIMES_FAILED_PERMUTE

 dataDictGeneticAlgorithm[2] feasible_after_permute = float(count[2])
 dataDictGeneticAlgorithm[14] NUM_POSSIBLE_VALUES = float(count[15])
 dataDictGeneticAlgorithm[15] Total number of mutations

 dataDictGeneticAlgorithm[16] Total number of passed mutations

 dataDictGeneticAlgorithm[17] Total number of failed mutations
 '''

152

 print("Finished permute with genetic algorithm")
 for item in dataList:
 seed = item['seed']
 bscell = item['bscell']
 cca = item['cca']
 if (seed, bscell,cca) in dataDictGeneticAlgorithm:
 dataDictGeneticAlgorithm[seed,bscell,cca][0] += item['myDataDict'][seed,bscell,cca][0]
 dataDictGeneticAlgorithm[seed, bscell, cca][1] += item['myDataDict'][seed, bscell, cca][1]
 dataDictGeneticAlgorithm[seed, bscell, cca][2] += item['myDataDict'][seed, bscell, cca][2]
 dataDictGeneticAlgorithm[seed, bscell, cca][14] += item['myDataDict'][seed, bscell, cca][14]
 dataDictGeneticAlgorithm[seed, bscell, cca][15] += item['myDataDict'][seed, bscell, cca][15]
 dataDictGeneticAlgorithm[seed, bscell, cca][16] += item['myDataDict'][seed, bscell, cca][16]
 dataDictGeneticAlgorithm[seed, bscell, cca][17] += item['myDataDict'][seed, bscell, cca][17]
 else : dataDictGeneticAlgorithm[seed,bscell,cca]= item['myDataDict'][seed,bscell,cca]
 print ("Exiting permute with genetic algorithm")
testcounter=0
def getRowDataGeneticAlgorithm(curRow):
 global geneticDictionary

 geneticDictionary = {}
 # create a key value pair of this row's values

 colNum = 0

 rowDict = {}
 columnHeadings = list(dfMain)
 columnHeadings.append("RowID")
 for col in columnHeadings:
 rowDict[col] = curRow[colNum]
 colNum += 1
 myDataDict = {}
 # determine how many values we have

 numTimesToPermute = 0
 localVarValList = criticalVariableValueList
 # figure out how many values we have in this seed the first time we encounter it
 if (rowDict[CONST.seed] in permutePerSeedGeneticAlgorithm):
 numTimesToPermute = permutePerSeedGeneticAlgorithm[rowDict[CONST.seed]]
 else:
 for bscell in localVarValList[rowDict[CONST.seed]]:
 numTimesToPermute += len(localVarValList[rowDict[CONST.seed]][bscell])
 # keep track of how many values were tested for this seed

 permutePerSeedGeneticAlgorithm[rowDict[CONST.seed]] = numTimesToPermute
 # apply the percentage modifier in case the user wants to use less rows than all possible

 numTimesToPermutePercent = int(math.ceil(numTimesToPermute * permRunsPercent))
 # if there was only 1 value then test
 if (numTimesToPermutePercent < 1 and numTimesToPermutePercent > 0):
 numTimesToPermutePercent = 1

 # if you didnt check all the values then go ahead, else all values for this bscell have been tested
 # numTimesToPermute: number of possible values for this row

 for permute in range(0, numTimesToPermutePercent):
 firstIndexOfUntestedSeed = ""
 firstIndexOfUntestedBscell = ""
 firstIndexOfUntestedCca = ""
 firstIndexOfUntestedCcaVal = -1
 numUntested = 0

 numTested = 0

 firstIndexOfUntested = -1
 # For the very first row, set up the myDataDictionary

 if permute == 0:
 saveprop = rowDict[primaryVar]
 # Using BS_CELL,CCA, seed, count number feasible for each [BS_CELL,CCA,seed] : increment number
 # found in myDataDict[], using all values from rowDict, See if they have been added to myDataDict yet
 if (rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]) in myDataDict:
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][
 0] += 1 # count 0 - #numTimesCcaFound

 # everytime this CCA is reencountered, add to the total of values tested
 # myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][15] +=
numTimesToPermute

 else:
 # Initialize this [BS_CELL, CCA,seed] in the myDataDict by adding required info

 # [0=number feasible, 1=number tested, 2=number still feasible after permuation,

153

 # 3=average cost running total] notify that this node is done working

 # [14] Total values tested

 # [15] Total number of mutations

 # [16] Total number of passed mutations
 # [17] Total number of failed mutations

 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]] = [1, 0, 0, 0, 0,
 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0,
 0, 0, 0]
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][3] = str(
 rowDict[CONST.METRIC_AVERAGE_FOLLOW_END_COST_MOST_LIKELY])
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][6] = str(
 rowDict[CONST.METRIC_VULNERABILITY])
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][7] = str(
 rowDict[CONST.DESIGN_SUSTAINED_SPEED])
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][8] = (
 rowDict[CONST.AAW]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][9] = (
 rowDict[CONST.ASW]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][10] = (
 rowDict[CONST.SUW]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][11] = (
 rowDict[CONST.MIW]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][12] = (
 rowDict[CONST.C2]).strip(' ')
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][13] = (
 rowDict[CONST.IO]).strip(' ')
 # Attempt to randomly get the index of a value in the critical variable list
 chosenSeed = rowDict[CONST.seed]
 chosenbscell = ""
 chosenCCA = ""
 numBscell = len(localVarValList[chosenSeed])
 chosenBscellIndex = random.randint(0, numBscell - 1)
 curBscellIndex = 0

 chosenCcaValIndex = 0

 for bscell in localVarValList[chosenSeed]:
 if curBscellIndex == chosenBscellIndex:
 chosenbscell = bscell
 numCca = len(localVarValList[chosenSeed][chosenbscell])
 chosenCcaIndex = random.randint(0, numCca - 1)
 curCcaIndex = 0

 for cca in localVarValList[chosenSeed][chosenbscell]:
 if curCcaIndex == chosenCcaIndex:
 # chosenCCA = localVarValList[chosenSeed][chosenbscell][cca]
 chosenCCA = cca
 numValForCca = len(localVarValList[chosenSeed][chosenbscell][chosenCCA])
 chosenCcaValIndex = random.randint(0, numValForCca - 1)
 break
 else:
 curCcaIndex += 1

 break
 else:
 curBscellIndex += 1

 # Once we have attempted to randomly choose a value to try for this row, make sure we have a
 # random index of a value that hasn't been tested so that we can meet our percentage.
 # If we don't get a random number that hasn't been tested, take the next number that hasn't been tested

 if (localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] == True):
 seed = rowDict[CONST.seed]
 for bscell in localVarValList[rowDict[CONST.seed]]:
 for cca in localVarValList[seed][bscell]:
 for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])):
 if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == False):
 if firstIndexOfUntestedCcaVal == -1:
 # store a reference into the structure to the first untested value

 firstIndexOfUntestedSeed = seed

 firstIndexOfUntestedBscell = bscell
 firstIndexOfUntestedCca = cca

 firstIndexOfUntestedCcaVal = curCCAVal

154

 numUntested += 1

 else:
 numTested += 1

 # How often do we state our progress
 '''
 if (permute % (int(math.ceil(numTimesToPermutePercent)) * .10) == 0):
 if (numUntested == 0):
 # print("No values left to test for this row. Adding to counter number of times a valid value has appeared")
 a = 0

 else:
 print("Untested values for bscell %s in Seed %s: %d. Tested Values for this bscell: %d. Process %d" % (
 rowDict[CONST.BSCELL], rowDict[CONST.seed], numUntested, numTested, RANK))
 #print(
 #"Untested values for bscell %s in Seed %s: %d. Tested Values for this bscell: %d. Process %d row %d" % (
 # rowDict[CONST.BSCELL], rowDict[CONST.seed], numUntested, numTested, RANK, curRowProgress))
 # End of print message
 '''
 randomPermute = \
 localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][firstIndexOfUntestedCca][
 firstIndexOfUntestedCcaVal]['value']
 # if we are allowing duplicate tests of the same value

 localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][firstIndexOfUntestedCca][
 firstIndexOfUntestedCcaVal]['tested'] = True

 else:
 randomPermute = localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['value']
 # if we are allowing duplicate tests of the same value

 if allowDuplicatePermutation == False:
 localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] = True

 '''
 Up to this point, everything has been the same as the initial version of permute. Minus the pre-configuration.
 The concept of genetic algorithm concept of mutation is introduced here. This means that for a certain percentage

 of the time, rather than trying possible values, we try a new value that is a mutation of the target row value and

 the new target value. We will need to add the new value to the possible values. We also need to randomly choose
 a mutation.
 '''
 ifMutated = False
 #randomly mutate the value we test
 myRand = random.randrange(0,100)
 if (myRand + 1)/100 > mutationChance :
 # were not actually going to check the chosen index this pass so reset it to show it hasnt been selected

 localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] = False

 # mutate the value
 mutatedValue = mutateValue(rowDict[primaryVar], randomPermute)
 # Since we are going to mutate, we need to add the new value to the list of values. So mutate and add it
 if chosenSeed in geneticDictionary:
 if chosenbscell in geneticDictionary[chosenSeed]:
 if chosenCCA in geneticDictionary[chosenSeed][chosenbscell]:
 geneticDictionary[chosenSeed][chosenbscell][chosenCCA].append({
 'passed': False, 'target':rowDict[primaryVar], 'current':rowDict[primaryVar],
 'mutant': mutatedValue})
 else:
 geneticDictionary[chosenSeed][chosenbscell][chosenCCA] = [{
 'passed': False, 'target':rowDict[primaryVar], 'current':rowDict[primaryVar],
 'mutant': mutatedValue}]
 else:
 geneticDictionary[chosenSeed][chosenbscell] = {chosenCCA:[{
 'passed': False, 'target':rowDict[primaryVar], 'current':rowDict[primaryVar],
 'mutant': mutatedValue}]}
 else:
 geneticDictionary[chosenSeed] = {chosenbscell: {chosenCCA: [{
 'passed': False, 'target':rowDict[primaryVar], 'current':rowDict[primaryVar],
 'mutant': mutatedValue}]}}
 rowDict[primaryVar] = mutatedValue
 ifMutated = True

 # Add to the number of mutations

 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][15] += 1
 else: rowDict[primaryVar] = randomPermute

 # run the datarow through the appropriate regression model for this seed

155

 if rowDict[CONST.seed] == CONST.i1:
 rowDict = i1.RegEx(rowDict)
 if rowDict[CONST.seed] == CONST.i2:
 rowDict = i2.RegEx(rowDict)
 if rowDict[CONST.seed] == CONST.ic:
 rowDict = ic.RegEx(rowDict)
 if rowDict[CONST.seed] == CONST.m1:
 rowDict = m1.RegEx(rowDict)
 if rowDict[CONST.seed] == CONST.m2:
 rowDict = m2.RegEx(rowDict)
 # run requirements and metrics on the datarow

 rowDict = requirements.RegEx(rowDict)
 rowDict = metricsv31.RegEx(rowDict)
 '''
 0 numTimes_Cca_Found = float(count[0])
 1 self.NUM_TIMES_FAILED_PERMUTE = NUM_TIMES_FAILED_PERMUTE
 2 feasible_after_permute = float(count[2])
 14 NUM_POSSIBLE_VALUES = float(count[15])
 [15] Total number of mutations

 [16] Total number of passed mutations

 [17] Total number of failed mutations

 '''
 # number of possible values this will include mutations in the count
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][14] += 1

 # NOTE: For both the case where a row has been tested and not been tested, increment the appropriate values in the
myDataDict
 # If row is feasible after permute then add to still feasible count and to numtested
 if rowDict[CONST.REQ_CUMULATIVE] > -1:
 # This is a really interesting value. If the row fails feasibility test after permutation then it means that it lacks
resilience
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][
 2] += 1 # count 2 - # feasible after permute

 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][4] += rowDict[
 CONST.METRIC_VULNERABILITY]
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][5] += rowDict[
 CONST.DESIGN_SUSTAINED_SPEED]
 # if we mutated and passed, set the passed attribute to true and increment the passed counter
 if ifMutated:
 indexVal = 0
 for item in geneticDictionary[chosenSeed][chosenbscell][chosenCCA]:
 if item['mutant'] == mutatedValue:
 geneticDictionary[chosenSeed][chosenbscell][chosenCCA][indexVal]['passed'] = True
 # Add to the number of passed mutations

 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][16] += 1

 break
 indexVal+=1

 else:
 # This means the row is no longer feasible so only add to number of rows tested
 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][
 1] += 1 # count 1 - #NUM_TIMES_FAILED_PERMUTE

 # if we muted and failed, add to the number of failed mutations and set the passed attribute of the
 # mutated value to false

 if ifMutated:
 indexVal = 0
 for item in geneticDictionary[chosenSeed][chosenbscell][chosenCCA]:
 if item['mutant'] == mutatedValue:
 geneticDictionary[chosenSeed][chosenbscell][chosenCCA][indexVal]['passed'] = False
 # Add to the number of failed mutations

 myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][17] += 1

 break
 indexVal+=1

 # Another row has completed
 #curRowProgress += 1

 totalNumUntested = 0

 totalNumtested = 0
 seed = rowDict[CONST.seed]

156

 # Reset the values for each row so that each row has fair access to possible values

 for bscell in localVarValList[rowDict[CONST.seed]]:
 for cca in localVarValList[seed][bscell]:
 for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])):
 # While values are being reset, keep track of how many rows have not been tested and

 # also track the number of values that were tested for this seed

 if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == False):
 totalNumUntested += 1

 else:
 totalNumtested += 1
 localVarValList[seed][bscell][cca][curCCAVal]['tested'] = False

 if(int(rowDict['RowID']) % 50 == 0):
 print ("Computed seed %s bascel %s cca %s. Using row %s" % (rowDict[CONST.seed],rowDict[CONST.BSCELL],
rowDict[CONST.CCA],rowDict['RowID']))
 #for item in myDataDict:
 # dataDict[item] = myDataDict[item]
 return {'seed':rowDict[CONST.seed],'bscell': rowDict[CONST.BSCELL],'cca': rowDict[CONST.CCA],'myDataDict':
myDataDict,
 'totalNumUntested': totalNumUntested, 'totalNumTested': totalNumtested,
 'totalNumMutations': myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][15],
 'totalNumMutationsPassed': myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL],
rowDict[CONST.CCA]][16],
 'totalNumMutationsFailed': myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL],
rowDict[CONST.CCA]][17]}
'''
Mutation possible answers
 0) Somewhere in between

 a) Random value closer to current value

 b) Random value closer to target value
 c) Halfway

 Note: If the new value is already present, then move on without mutation

 1) Above or below current value by whichever puts the point:
 a) Places the current value in between itself and the target value (new <---- current ------- target)
 b) Places the target value in between itself and the current value (current ----- target -----> new)
'''
def mutateValue(current, target):
 # choice 0 or 1

 # 0) Somewhere in between
 # 1) Above or below current value by whichever puts the point:
 position = [0, 1]
 positionChoice = random.choice(position)
 # in between choice

 # 0) Random value closer to current value

 # 1) Random value closer to target value
 # 2) Halfway

 inBetween = [0, 1, 2]
 inBetweenChoice = random.choice(inBetween)
 # aboveBelowChoice

 # 0) Places the current value in between itself and the target value (new <---- current ------- target)
 # 1) Places the target value in between itself and the current value (current ----- target -----> new)
 aboveBelow = [0, 1]
 aboveBelowChoice = random.choice(aboveBelow)
 # only dealing with positive numbers

 mutatedValue = 0

 halfway = (current+target)/2

 current = int(current)
 halfway = int(halfway)
 target = int(target)
 # force a mutated range
 if halfway == target or halfway == current:
 current = random.randrange(600,1000)
 target = random.randrange(0,400)
 halfway = 500

 current = int(current)
 halfway = int(halfway)
 target = int(target)

157

 #NOTE: random.uniform(current, halfway) will select floating point number but it may not be a meaningful step

 # Somewhere in between

 if positionChoice == 0:
 # Random value closer to current value
 if inBetweenChoice == 0:
 if(current < halfway):
 mutatedValue = random.randrange(current, halfway,1)
 else:
 mutatedValue = random.randrange(halfway, current,1)
 # Random value closer to target value
 elif inBetweenChoice == 1:
 if(target < halfway):
 mutatedValue = random.randrange(target, halfway,1)
 else:
 mutatedValue = random.randrange(halfway, target,1)
 # Halfway
 elif inBetweenChoice == 2:
 mutatedValue = halfway

 else: #Above or below current value by whichever puts the point
 # Places the current value in between itself and the target value (new <---- current ------- target)
 if aboveBelowChoice == 0:
 # (new <---- current ------- target)
 if(current < halfway):
 mutatedValue = halfway - random.randrange(current, halfway, 1)
 else: # (target ----- current -------> new)
 mutatedValue = halfway + random.randrange(halfway, current, 1)
 # Places the target value in between itself and the current value (current ----- target -----> new)
 elif aboveBelowChoice == 1:
 if(target < halfway):
 # (new <---- target ----- current)
 mutatedValue = halfway - random.randrange(target, halfway,1)
 else:
 # (current ----- target -----> new)
 mutatedValue = halfway + random.randrange(halfway, target,1)
 return mutatedValue

###########END GENETIC ALGORITHM TESTING################

start Execution by calling the first major function and its helper functions

method 1, permutation with substitution
if __name__ == '__main__':
 start_time = time.time()
 mpiCreateDictionaryAndPermute()
 print("Total run time for permute --- %s seconds ---" % (time.time() - start_time))
 # Have the Root process of the mpi run to collect the data from all of the processes

 # and combine that data into one location for determining feasibility for each of
 # the combat capability alternatives

 print("Process %d: has completed and is passing off data to main" % (RANK))
 #print(criticalVariableValueList['m2']['3B'])
 test = mpi_comm.gather(criticalVariableValueList, root=0)
 if RANK == ROOT:
 print ("root is counting results")
 # make collection containing results from all nodes

 finalDict = Counter()
 populateFinalDict()
 statData = []
 numSeeds = CONST.NUMSEEDS

 hundredMillion = CONST.HUNDREDMILLION
 # After the easier to use dictionary is created in populateFinaDict() from the data then add metrics for amount it
 # costs per hundred million, general upgrade metric, and a metric for the cost per hundred million for ships after
 # the first ship the first few ships after the first ship always cost less. Also the percent of ships that are
 # feasible and the percent of ships that are feasible versus the number tested

 addMetricsAndFeasibilityToDataRows()
 # Now that we have added some more fields to the rows of data using 'addMetricsAndFeasibilityToDataRows()',
 # add the overall rank of each row to data set. This will identify the single best ship design. This is good except
 # the the single best design may not be the most resilient and it is possible that none of the other designs close

 # to the best design will be feasible. Sort the data rows based on the best overall row of data in the data set.
 addOverallRankAndSortData()
 # Once the best overall row has been found using 'addOverallRankAndSortData()', lets look for the best row of data

158

 # in each of the CCAs. Since we have the highest overall rank already assigned to each row of data,
 # simply sorting each CCA based on the overall rank will put the CCA rows of data in order
 addCCARankAndSortData()
 # Using 'addCCARankAndSortData()' we added the CCA Rank and sorted the data based on that rank.
 # Now that each row of data has a rank based on its overall performance against all other rows of data

 # and each row also has a rank based on its rank within its own CCA, it
 # is time to determine a the ranking for each of the 5 primary propulsion system configurations (the 5 seeds)
 addSeedRankAndSortData()
 # At this point each row of data has a overall rank, a CCA rank, and a relative to see rank.
 # Now its time to write the data out to a csv file
 writeDataToCSVFile()
 ##

 ####### Begin Genetic algorithm ############
 # Alot of this is very similiar to the initial permute but we are testing genetic algorithm mutation

 startGeneticAlgorithmPermutationTesting()
 #populate the same information as we did in th regular permute in the Genetic algorithm
 finalDictGeneticAlgorithm = Counter ()
 # I dont know if I need to do this

 populateFinalDictGeneticAlgorithm()
 testDF = pd.DataFrame(finalDictGeneticAlgorithm)
 testDF2 = pd.DataFrame(dataDictGeneticAlgorithm)
 # close the connections
 for x in range(0, numDBs-1):
 if(con[x]):
 con[x].close()

 #Genetic algorithm for permutation selection

159

REFERENCES

A, Z. M. M. n.d. “Extending EXPRESS for Imprecise and Uncertain Engineering

Information Modeling.” Journal of Intelligent Manufacturing 17 (1): 57–83.

doi:10.1007/s10845-005-5513-1.

Achille, Messac. 1996. “Physical Programming: Effective Optimization for Computationl

Design.” AIAA Journal 34 (1): 149–58.

Akao, Yoji. 2004. Quality Function Deployment: Integrating Customer Requirements

Into Product Design. Taylor & Francis.

Alexander, Joyce M. 1989. “An Analysis of Conflict in Northern Ireland.” In The

Analytic Hierarchy Process, edited by Professor Bruce L. Golden, Assistant

Professor Edward A. Wasil, and Assistant Professor Patrick T. Harker, 225–41.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_15.

Antonsson, E. K., and K. N. Otto. 1995. “Imprecision in Engineering Design.” Journal of

Mechanical Design 117 (B): 25–32. doi:10.1115/1.2836465.

AP, Paul Farley /. 2009. “Unbalanced Warfare Not New for U.S. Navy.” Msnbc.com.

April 10. http://www.nbcnews.com/id/30157793/ns/us_news-military

/t/unbalanced-warfare-not-new-us-navy/.

Art B. Owen. 2017. “Orthogonal Arrays for Computer Experiments, Integration and

Visualization.” Accessed April 13.

http://www3.stat.sinica.edu.tw/statistica/oldpdf/A2n27.pdf.

Avigad, Gideon, and Jürgen Branke. 2008. “Embedded Evolutionary Multi-Objective

Optimization for Worst Case Robustness.” In Proceedings of the 10th Annual

160

Conference on Genetic and Evolutionary Computation, 617–624. GECCO ’08.

New York, NY, USA: ACM. doi:10.1145/1389095.1389221.

Barker, Thomas B., and Andrew Milivojevich. 2016. Quality by Experimental Design,

Fourth Edition. CRC Press.

Barlow, Richard E., C. A. Claroti, and Fabio Spizzichino. 1993. Reliability and Decision

Making. CRC Press.

Barrico, C., and C. H. Antunes. 2006. “Robustness Analysis in Multi-Objective

Optimization Using a Degree of Robustness Concept.” In 2006 IEEE

International Conference on Evolutionary Computation, 1887–92.

doi:10.1109/CEC.2006.1688537.

Barrico, Carlos, and Carlos Henggeler Antunes. 2007. “An Evolutionary Approach for

Assessing the Degree of Robustness of Solutions to Multi-Objective Models.” In

Evolutionary Computation in Dynamic and Uncertain Environments, edited by Dr

Shengxiang Yang, Dr Yew-Soon Ong, and Dr Yaochu Jin, 565–82. Studies in

Computational Intelligence 51. Springer Berlin Heidelberg. doi:10.1007/978-3-

540-49774-5_25.

Bennett, James G., and Thomas Lamb. 1995. “The National Shipbuilding Research

Program. 1995 Ship Production Symposium. Paper No. 23: Concurrent

Engineering Application and Implementation for US Shipbuilding.” DTIC

Document. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix

=html&identifier=ADA452933.

Ben-Tal, A., and A. Nemirovski. 1998. “Robust Convex Optimization.” Mathematics of

Operations Research 23 (4): 769–805. doi:10.1287/moor.23.4.769.

161

Bernstein, Joshua I. (Joshua Ian). 1998. “Design Methods in the Aerospace Industry :

Looking for Evidence of Set-Based Practices.” Thesis, Massachusetts Institute of

Technology. http://dspace.mit.edu/handle/1721.1/82675.

Bogen, A. Christopher, Mahbubur Rashid, and others. 2013. “Evaluating Data Clustering

Approach for Life-Cycle Facility Control.” DTIC Document.

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD

A578625.

Box, George E. P., William Gordon Hunter, and J. Stuart Hunter. 1978. Statistics for

Experimenters: An Introduction to Design, Data Analysis, and Model Building.

Wiley Series in Probability and Mathematical Statistics. New York: Wiley.

Bramanti, A., P. Di Barba, M. Farina, and A. Savini. 2001. “Combining Response

Surfaces and Evolutionary Strategies for Multiobjective Pareto-Optimization in

Electromagnetics.” International Journal of Applied Electromagnetics and

Mechanics 15 (1–4): 231–36.

Branke, Jürgen. 1998. “Creating Robust Solutions by Means of Evolutionary

Algorithms.” In Parallel Problem Solving from Nature — PPSN V, edited by

Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-Paul Schwefel,

119–28. Lecture Notes in Computer Science 1498. Springer Berlin Heidelberg.

doi:10.1007/BFb0056855.

Cappelleri, David J., Mary I. Frecker, Timothy W. Simpson, and Alan Snyder. 2002.

“Design of a PZT Bimorph Actuator Using a Metamodel-Based Approach.”

Journal of Mechanical Design 124 (2): 354. doi:10.1115/1.1446866.

162

Chandra, Fiona, Dennice F. Gayme, Lijun Chen, and John C. Doyle. 2011. “Robustness,

Optimization, and Architectures.” European Journal of Control 17 (5–6): 472–82.

doi:10.3166/ejc.17.472-482.

Che, Jianguo, Jing Wang, and Kai Li. 2014. “A Monte Carlo Based Robustness

Optimization Method in New Product Design Process: A Case Study.” American

Journal of Industrial and Business Management 4 (7): 360–69.

doi:10.4236/ajibm.2014.47044.

Chen, Shu-Jen, and Ching-Lai Hwang. 1992a. “Fuzzy Multiple Attribute Decision

Making Methods.” In Fuzzy Multiple Attribute Decision Making, 289–486.

Lecture Notes in Economics and Mathematical Systems 375. Springer Berlin

Heidelberg. doi:10.1007/978-3-642-46768-4_5.

———. 1992b. “Fuzzy Ranking Methods.” In Fuzzy Multiple Attribute Decision Making,

101–288. Lecture Notes in Economics and Mathematical Systems 375. Springer

Berlin Heidelberg. doi:10.1007/978-3-642-46768-4_4.

———. 1992c. “Fuzzy Sets and Their Operations.” In Fuzzy Multiple Attribute Decision

Making, 42–100. Lecture Notes in Economics and Mathematical Systems 375.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-46768-4_3.

———. 1992d. “Multiple Attribute Decision Making — An Overview.” In Fuzzy

Multiple Attribute Decision Making, 16–41. Lecture Notes in Economics and

Mathematical Systems 375. Springer Berlin Heidelberg. doi:10.1007/978-3-642-

46768-4_2.

Chen, Wei, Jan Unkelbach, Alexei Trofimov, Thomas Madden, Hanne Kooy, Thomas

Bortfeld, and David Craft. 2012. “Including Robustness in Multi-Criteria

163

Optimization for Intensity-Modulated Proton Therapy.” Physics in Medicine and

Biology 57 (3): 591–608. doi:10.1088/0031-9155/57/3/591.

Chen, Yen-Sen. 2016. “Compressible and Incompressible Flow Computations with a

Pressure Based Method.” In 27th Aerospace Sciences Meeting. American Institute

of Aeronautics and Astronautics. Accessed September 1. http://arc.aiaa.org

/doi/abs/10.2514/6.1989-286.

Chen, Yen-Sen, and Richard Farmer. 2016. “CFD Analysis of Baffle Flame

Stabilization.” In 27th Joint Propulsion Conference. American Institute of

Aeronautics and Astronautics. Accessed September 1. http://arc.aiaa.org

/doi/abs/10.2514/6.1991-1967.

Correa Florez, Carlos A., Ricardo A. Bolaños Ocampo, and Antonio H. Escobar Zuluaga.

2014. “Multi-Objective Transmission Expansion Planning Considering Multiple

Generation Scenarios.” International Journal of Electrical Power & Energy

Systems 62 (November): 398–409. doi:10.1016/j.ijepes.2014.04.063.

Daum, D. A., K. Deb, and J. Branke. 2007. “Reliability-Based Optimization for Multiple

Constraints with Evolutionary Algorithms.” In 2007 IEEE Congress on

Evolutionary Computation, 911–18. doi:10.1109/CEC.2007.4424567.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II.” Trans. Evol. Comp 6 (2): 182–197.

doi:10.1109/4235.996017.

Deb, Kalyanmoy, Shamik Chaudhuri, and Kaisa Miettinen. 2006. “Towards Estimating

Nadir Objective Vector Using Evolutionary Approaches.” In Proceedings of the

164

8th Annual Conference on Genetic and Evolutionary Computation, 643–650.

ACM. http://dl.acm.org/citation.cfm?id=1144113.

Deb, Kalyanmoy, and Tushar Goel. 2001a. “A Hybrid Multi-Objective Evolutionary

Approach to Engineering Shape Design.” In Evolutionary Multi-Criterion

Optimization, edited by Eckart Zitzler, Lothar Thiele, Kalyanmoy Deb, Carlos

Artemio Coello Coello, and David Corne, 385–99. Lecture Notes in Computer

Science 1993. Springer Berlin Heidelberg. doi:10.1007/3-540-44719-9_27.

———. 2001b. “Controlled Elitist Non-Dominated Sorting Genetic Algorithms for

Better Convergence.” In Evolutionary Multi-Criterion Optimization, edited by

Eckart Zitzler, Lothar Thiele, Kalyanmoy Deb, Carlos Artemio Coello Coello,

and David Corne, 67–81. Lecture Notes in Computer Science 1993. Springer

Berlin Heidelberg. doi:10.1007/3-540-44719-9_5.

———. 2003. “Multi-Objective Evolutionary Algorithms for Engineering Shape

Design.” In Evolutionary Optimization, 147–75. International Series in

Operations Research & Management Science 48. Springer US. doi:10.1007/0-

306-48041-7_6.

Deb, Kalyanmoy, and Himanshu Gupta. 2005. “Searching for Robust Pareto-Optimal

Solutions in Multi-Objective Optimization.” In Evolutionary Multi-Criterion

Optimization, edited by Carlos A. Coello Coello, Arturo Hernández Aguirre, and

Eckart Zitzler, 150–64. Lecture Notes in Computer Science 3410. Springer Berlin

Heidelberg. doi:10.1007/978-3-540-31880-4_11.

———. 2006. “Introducing Robustness in Multi-Objective Optimization.” Evolutionary

Computation 14 (4): 463–494.

165

Deb, Kalyanmoy, Kaisa Miettinen, and Deepak Sharma. 2009. “A Hybrid Integrated

Multi-Objective Optimization Procedure for Estimating Nadir Point.” In

International Conference on Evolutionary Multi-Criterion Optimization, 569–

583. Springer. http://link.springer.com/chapter/10.1007/978-3-642-01020-0_44.

Deb, Kalyanmoy, Amrit Pratap, and Subrajyoti Moitra. 2000. “Mechanical Component

Design for Multiple Ojectives Using Elitist Non-Dominated Sorting GA.” In

Parallel Problem Solving from Nature PPSN VI, edited by Marc Schoenauer,

Kalyanmoy Deb, Günther Rudolph, Xin Yao, Evelyne Lutton, Juan Julian

Merelo, and Hans-Paul Schwefel, 859–68. Lecture Notes in Computer Science

1917. Springer Berlin Heidelberg. doi:10.1007/3-540-45356-3_84.

Dhingra, A. K., and Singiresu S. Rao. 1989. “Integrated Optimal Design of Planar

Mechanisms Using Fuzzy Theories.” In .

https://miami.pure.elsevier.com/en/publications/integrated-optimal-design-of-

planar-mechanisms-using-fuzzy-theori.

Dhingra, Anoop K., Singiresu S. Rao, and Virendra Kumar. 1992. “Nonlinear

Membership Functions in Multiobjective Fuzzy Optimization of Mechanical and

Structural Systems.” AIAA Journal 30 (1): 251–60. doi:10.2514/3.10906.

Diaz, A. R. 1989. “A Strategy for Optimal Design of Hierarchical Systems Using Fuzzy

Sets.” In The 1989 NSF Engineering Design Research Conference, 537–547.

Diaz, Alejandro R. 1988. “Fuzzy Set Based Models in Design Optimization.” In .

https://scholars.opb.msu.edu/en/publications/fuzzy-set-based-models-in-design-

optimization-3.

166

Ditlevsen, Ove. 1979. “Narrow Reliability Bounds for Structural Systems.” Journal of

Structural Mechanics 7 (4): 453–72. doi:10.1080/03601217908905329.

Doerry, Norbert, and Howard Fireman. 2009. “Fleet Capabilities-Based Assessment.”

Naval Engineers Journal 121 (4): 107–116.

Dolan, James G. 1989. “Choosing Initial Antibiotic Therapy for Acute Pyelonephritis.”

In The Analytic Hierarchy Process, edited by Professor Bruce L. Golden,

Assistant Professor Edward A. Wasil, and Assistant Professor Patrick T. Harker,

213–24. Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_14.

Doolittle, Erin K., Hervé LM Kerivin, and Margaret M. Wiecek. 2012. “A Robust

Multiobjective Optimization Problem with Application to Internet Routing.” In

Tech. Rep. R2012-11-DKW, Clemson University.

https://www.clemson.edu/science/departments/mathematical-

sciences/documents/technical-reports/TR2015-11-ed.hk.mw.pdf.

Dornberger, Rolf, and Dirk Bche. 2002. “Multidisciplinary Optimization In

Turbomachinery Design.” ResearchGate, August. https://www.researchgate.net

/publication/2527400_Multidisciplinary_Optimization_In_Turbomachinery_Desi

gn.

Dubois, Didier. 1991. “Fuzzy Sets and Their Applications : Vilem Novak, Translated

from Czechoslovakian. Bristol and Philadelphia: Adam Hilger, 1989, 248 Pages.”

Mathematical Social Sciences 21 (2): 193–97.

Dubois, Didier J. 1980. Fuzzy Sets and Systems: Theory and Applications. Academic

Press.

167

Efstathiou, J., and V. Rajkovic. 1979. “Multiattribute Decisionmaking Using a Fuzzy

Heuristic Approach.” IEEE Transactions on Systems, Man, and Cybernetics 9 (6):

326–33. doi:10.1109/TSMC.1979.4310221.

Ehrgott, Matthias, Jonas Ide, and Anita Schöbel. 2014. “Minmax Robustness for Multi-

Objective Optimization Problems.” European Journal of Operational Research

239 (1): 17–31. doi:10.1016/j.ejor.2014.03.013.

Emmerich, M. T. M., K. C. Giannakoglou, and B. Naujoks. 2006. “Single- and

Multiobjective Evolutionary Optimization Assisted by Gaussian Random Field

Metamodels.” IEEE Transactions on Evolutionary Computation 10 (4): 421–39.

doi:10.1109/TEVC.2005.859463.

Emmerich, Michael, Alexios Giotis, Mutlu Özdemir, Thomas Bäck, and Kyriakos

Giannakoglou. 2002. “Metamodel—Assisted Evolution Strategies.” In Parallel

Problem Solving from Nature — PPSN VII, edited by Juan Julián Merelo

Guervós, Panagiotis Adamidis, Hans-Georg Beyer, Hans-Paul Schwefel, and

José-Luis Fernández-Villacañas, 361–70. Lecture Notes in Computer Science

2439. Springer Berlin Heidelberg. doi:10.1007/3-540-45712-7_35.

Eskandarpour, Majid, Ehsan Nikbakhsh, and Seyed Hessameddin Zegordi. 2014.

“Variable Neighborhood Search for the Bi-Objective Post-Sales Network Design

Problem: A Fitness Landscape Analysis Approach.” Computers & Operations

Research, Recent advances in Variable neighborhood search, 52, Part B

(December): 300–314. doi:10.1016/j.cor.2013.06.002.

Evans, J. Harvey. 1959. “Basic Design Concepts.” Journal of the American Society for

Naval Engineers 71 (4): 671–78. doi:10.1111/j.1559-3584.1959.tb01836.x.

168

Farina, M., A. Bramanti, and P. Di Barba. 2002. “A GRS Method for Pareto-Optimal

Front Identification in Electromagnetic Multiobjective Synthesis.” In

Computation in Electromagnetics, 2002. CEM 2002. The Fourth International

Conference on (Ref. No. 2002/063), 2 pp.-. doi:10.1049/ic:20020161.

Farina, M., and J. K. Sykulski. 2001. “Comparative Study of Evolution Strategies

Combined with Approximation Techniques for Practical Electromagnetic

Optimization Problems.” IEEE Transactions on Magnetics 37 (5): 3216–20.

doi:10.1109/20.952580.

Fatti, L. Paul. 1989. “Water Research Planning in South Africa.” In The Analytic

Hierarchy Process, edited by Professor Bruce L. Golden, Assistant Professor

Edward A. Wasil, and Assistant Professor Patrick T. Harker, 122–37. Springer

Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_8.

Fireman, Howard, Marianne Nutting, Tom Rivers, Gary Carlile, and Kendall King. 1998.

“LPD 17 on the Shipbuilding Frontier: Integrated Product & Process

Development.” In Proceedings of the Association of Scientists and Engineers 35th

Annual Technical Symposium. http://fas.org/man/dod-

101/sys/ship/docs/ase98sbf.pdf.

Fishburn, Peter C. 1982a. “Expected Utility for Probability Measures.” In The

Foundations of Expected Utility, 23–34. Theory and Decision Library 31.

Springer Netherlands. doi:10.1007/978-94-017-3329-8_3.

———. 1982b. “Lexicographic Quasilinear Utility.” In The Foundations of Expected

Utility, 35–55. Theory and Decision Library 31. Springer Netherlands.

doi:10.1007/978-94-017-3329-8_4.

169

———. 1982c. “Linear Utilities on Product Sets.” In The Foundations of Expected

Utility, 73–84. Theory and Decision Library 31. Springer Netherlands.

doi:10.1007/978-94-017-3329-8_6.

———. 1982d. “Linear Utility for Partially Ordered Preferences.” In The Foundations of

Expected Utility, 57–71. Theory and Decision Library 31. Springer Netherlands.

doi:10.1007/978-94-017-3329-8_5.

———. 1982e. “Multilinear Utility for Probability Measures.” In The Foundations of

Expected Utility, 99–103. Theory and Decision Library 31. Springer Netherlands.

doi:10.1007/978-94-017-3329-8_8.

———. 1982f. “Multilinear Utility on Products of Mixture Sets.” In The Foundations of

Expected Utility, 85–98. Theory and Decision Library 31. Springer Netherlands.

doi:10.1007/978-94-017-3329-8_7.

———. 1982g. “Subjective Expected Utility for Arbitrary State Sets.” In The

Foundations of Expected Utility, 121–34. Theory and Decision Library 31.

Springer Netherlands. doi:10.1007/978-94-017-3329-8_10.

———. 1982h. “Subjective Linear Utility for Partially Ordered Preferences.” In The

Foundations of Expected Utility, 135–47. Theory and Decision Library 31.

Springer Netherlands. doi:10.1007/978-94-017-3329-8_11.

———. 1982i. “Subjective Linear Utility on Products of Mixture Sets.” In The

Foundations of Expected Utility, 107–20. Theory and Decision Library 31.

Springer Netherlands. doi:10.1007/978-94-017-3329-8_9.

170

———. 1982j. “Subjective Linear Utility with Conditional Preference Comparisons.” In

The Foundations of Expected Utility, 149–68. Theory and Decision Library 31.

Springer Netherlands. doi:10.1007/978-94-017-3329-8_12.

Fliege, Jörg, and Ralf Werner. 2014. “Robust Multiobjective Optimization &

Applications in Portfolio Optimization.” European Journal of Operational

Research, 60 years following Harry Markowitz’s contribution to portfolio theory

and operations research, 234 (2): 422–33. doi:10.1016/j.ejor.2013.10.028.

Fonseca, Carlos M., Peter J. Fleming, and others. 1993. “Genetic Algorithms for

Multiobjective Optimization: FormulationDiscussion and Generalization.” In

Icga, 93:416–423. Citeseer. http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.48.9077&rep=rep1&type=pdf.

French, Simon. 2016. “Decision Theory: An Introduction to the Mathematics of

Rationality (Ellis Horwood Series in Mathematics and Its Applications): Simon

French: 9780470203088: Amazon.com: Books.” Accessed September 1.

https://www.amazon.com/Decision-Theory-Introduction-Mathematics-

Applications/dp/0470203080.

Gabrel, Virginie, Cécile Murat, and Aurélie Thiele. 2014. “Recent Advances in Robust

Optimization: An Overview.” European Journal of Operational Research 235

(3): 471–83. doi:10.1016/j.ejor.2013.09.036.

Ganesan, Vikram. 2001. “Global Optimization of the Nonconvex Containership Design

Problem Using the Reformulation-Linearization Technique.” Virginia Polytechnic

Institute and State University. http://theses.lib.vt.edu/theses/available/etd-

08142001-202530/.

171

Garner, Matt, Norbert Doerry, Adrian MacKenna, Frank Pearce, Chris Bassler, Shari

Hannapel, and Peter McCauley. 2015. “Concept Exploration Methods for the

Small Surface Combatant.” In World Maritime Technology Conference, 3–7.

http://doerry.org/norbert/papers/20150717ssc-ce.pdf.

Goberna, M. A., V. Jeyakumar, G. Li, and J. Vicente-Pérez. 2015. “Robust Solutions to

Multi-Objective Linear Programs with Uncertain Data.” European Journal of

Operational Research 242 (3): 730–43. doi:10.1016/j.ejor.2014.10.027.

Goel, Tushar, and Kalyanmoy Deb. 2001. “Hybrid Methods for Multi-Objective

Evolutionary Algorithms.” In KANGAL REPORT NUMBER, 200–1.

Goel, Tushar, Rajkumar Vaidyanathan, Raphael T. Haftka, Wei Shyy, Nestor V. Queipo,

and Kevin Tucker. 2007. “Response Surface Approximation of Pareto Optimal

Front in Multi-Objective Optimization.” Computer Methods in Applied

Mechanics and Engineering 196 (4–6): 879–93. doi:10.1016/j.cma.2006.07.010.

Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization and Machine

Learning. 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc.

Golden, Bruce L., and Qiwen Wang. 1989. “An Alternate Measure of Consistency.” In

The Analytic Hierarchy Process, edited by Professor Bruce L. Golden, Assistant

Professor Edward A. Wasil, and Assistant Professor Patrick T. Harker, 68–81.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_5.

Golden, Bruce L., Edward A. Wasil, and Patrick T. Harker. 1989. “Introduction.” In The

Analytic Hierarchy Process, edited by Professor Bruce L. Golden, Assistant

172

Professor Edward A. Wasil, and Assistant Professor Patrick T. Harker, 1–2.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_1.

Golden, Bruce L., Edward A. Wasil, and Doug E. Levy. 1989. “Applications of the

Analytic Hierarchy Process: A Categorized, Annotated Bibliography.” In The

Analytic Hierarchy Process, edited by Professor Bruce L. Golden, Assistant

Professor Edward A. Wasil, and Assistant Professor Patrick T. Harker, 37–58.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_3.

Gray, Alexander W., and David J. Singer. 2008. “Impacts of Type-2 Fuzzy Modeling

Approach on Set-Based Design, Based on Results from an Existing Hybrid Agent

Design Experiment.” In . https://experts.umich.edu/en/publications/impacts-of-

type-2-fuzzy-modeling-approach-on-set-based-design-bas.

Gray, C. T. 1988. “Introduction to Quality Engineering: Designing Quality into Products

and Processes, G. Taguchi, Asian Productivity Organization, 1986. Number of

Pages: 191. Price: $29 (U.K.) - Gray - 1988 - Quality and Reliability Engineering

International - Wiley Online Library.” April.

http://onlinelibrary.wiley.com/doi/10.1002/qre.4680040216/abstract.

Gunawan, S., and S. Azarm. 2004. “Multi-Objective Robust Optimization Using a

Sensitivity Region Concept.” Structural and Multidisciplinary Optimization 29

(1): 50–60. doi:10.1007/s00158-004-0450-8.

Hammersley, J. M., and D. C. Handscomb. 1964. Monte Carlo Methods. Monographs on

Applied Probability and Statistics. Springer Netherlands.

173

Hannapel, Shari, and Nickolas Vlahopoulos. 2010. “Introducing Uncertainty in

Multidiscipline Ship Design.” Naval Engineers Journal 122 (2): 41–52.

doi:10.1111/j.1559-3584.2010.00267.x.

Harker, Patrick T. 1989. “The Art and Science of Decision Making: The Analytic

Hierarchy Process.” In The Analytic Hierarchy Process, edited by Professor

Bruce L. Golden, Assistant Professor Edward A. Wasil, and Assistant Professor

Patrick T. Harker, 3–36. Springer Berlin Heidelberg. doi:10.1007/978-3-642-

50244-6_2.

Hauser, John R., and Don Clausing. 1988. “The House of Quality.” Harvard Business

Review. May 1. https://hbr.org/1988/05/the-house-of-quality.

Hazır, Öncü, Erdal Erel, and Yavuz Günalay. 2011. “Robust Optimization Models for the

Discrete Time/Cost Trade-off Problem.” International Journal of Production

Economics 130 (1): 87–95. doi:10.1016/j.ijpe.2010.11.018.

He, Jim, Shari Hannapel, and Nickolas Vlahopoulos. 2011. “Multidisciplinary Design

Optimization of Ship Hull Forms Using Metamodels.” In .

doi:10.1115/DETC2011-47761.

“History of the United States Navy.” 2017. Wikipedia.

https://en.wikipedia.org/w/index.php?title=History_of_the_United_States_Navy&

oldid=758454658.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to

Automata Theory, Languages, and Computation. 3 edition. Boston: Pearson.

Hunter, J. Stuart. 1985. “ASQ: Statistical Design Applied to Product Design.”

http://asq.org/qic/display-item/?item=5515.

174

Ide, Jonas, Elisabeth Köbis, Daishi Kuroiwa, Anita Schöbel, and Christiane Tammer.

2014. “The Relationship between Multi-Objective Robustness Concepts and Set-

Valued Optimization.” Fixed Point Theory and Applications 2014 (1): 83.

doi:10.1186/1687-1812-2014-83.

Ide, Jonas, Morten Tiedemann, Stephan Westphal, and Felix Haiduk. 2014. “An

Application of Deterministic and Robust Optimization in the Wood Cutting

Industry.” 4OR 13 (1): 35–57. doi:10.1007/s10288-014-0265-4.

Ishibuchi, H., T. Yoshida, and T. Murata. 2003. “Balance between Genetic Search and

Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop

Scheduling.” IEEE Transactions on Evolutionary Computation 7 (2): 204–23.

doi:10.1109/TEVC.2003.810752.

Iversen, Gudmund R. 1984. Bayesian Statistical Inference. SAGE.

Jahn, Johannes, and Truong Xuan Duc Ha. 2011. “New Order Relations in Set

Optimization.” Journal of Optimization Theory and Applications 148 (2): 209–36.

doi:10.1007/s10957-010-9752-8.

Jain, Anil K., and Richard C. Dubes. 1988. Algorithms for Clustering Data. Prentice Hall

PTR.

Jain, Ramesh. 1976. “Decisionmaking in the Presence of Fuzzy Variables.” IEEE

Transactions on Systems, Man, and Cybernetics SMC-6 (10): 698–703.

doi:10.1109/TSMC.1976.4309421.

John, Peter W. M. 1998. “Front Matter.” In Statistical Design and Analysis of

Experiments, i–xxiv. Classics in Applied Mathematics. Society for Industrial and

175

Applied Mathematics. http://epubs.siam.org/doi/abs/10.1137

/1.9781611971149.fm.

Josephson, John R., Balakrishnan Chandrasekaran, Mark Carroll, Naresh Iyer, Bryon

Wasacz, Giorgio Rizzoni, Qingyuam Li, and David A. Erb. 1998. “An

Architecture for Exploring Large Design Spaces.” In AAAI/IAAI, 143–150.

http://www.aaai.org/Papers/AAAI/1998/AAAI98-020.pdf.

Kackar, Raghu N. 1989. “Off-Line Quality Control, Parameter Design, and the Taguchi

Method.” In Quality Control, Robust Design, and the Taguchi Method, edited by

Khosrow Dehnad, 51–76. Springer US. doi:10.1007/978-1-4684-1472-1_4.

Kaitaniemi, Pekka, Annette Scheiner, Tero Klemola, and Kai Ruohomäki. 2012. “Multi-

Objective Optimization Shapes Ecological Variation.” Proceedings. Biological

Sciences / The Royal Society 279 (1729): 820–25. doi:10.1098/rspb.2011.1371.

Kang, Eunsuk, Ethan Jackson, and Wolfram Schulte. 2010. “An Approach for Effective

Design Space Exploration.” In Monterey Workshop, 33–54. Springer.

http://link.springer.com/10.1007%2F978-3-642-21292-5_3.

Katrin, Witting. 2012. “Numerical Algorithms for the T - Title - Veröffentlichungen Der

Universität - Digitale Sammlungen.” http://digital.ub.uni-

paderborn.de/hs/content/titleinfo/355856.

Kaufmann, Arnold, and Madan M. Gupta. 1988. Fuzzy Mathematical Models in

Engineering and Management Science. New York, NY, USA: Elsevier Science

Inc.

176

Keane, R. G., and B. F. Tibbitts. 1996. “A REVOLUTION IN WARSHIP DESIGN:

NAVY-INDUSTRY INTEGRATED PRODUCT TEAMS.”

https://trid.trb.org/view.aspx?id=480852.

Keane, Robert G., John Mcintire, Howard Fireman, and Daniel J. Maher. 2009. “The

LPD 17 Ship Design: Leading a Sea Change Toward Collaborative Product

Development.” Naval Engineers Journal 121 (2): 15–61. doi:10.1111/j.1559-

3584.2009.00189.x.

Keeney, Ralph L., and Howard Raiffa. 2016. “Decisions with Multiple Objectives:

Preferences and Value Tradeoffs: Ralph L. Keeney, Howard Raiffa:

9780521438834: Amazon.com: Books.” Accessed September 1.

https://www.amazon.com/Decisions-Multiple-Objectives-Preferences-

Tradeoffs/dp/0521438837.

Kennedy, Graeme J. 2016. “A Full-Space Barrier Method for Stress-Constrained Discrete

Material Design Optimization.” Structural and Multidisciplinary Optimization 54

(3): 619–39. doi:10.1007/s00158-016-1428-z.

Kim, I. Y., and O. L. de Weck. 2006. “Adaptive Weighted Sum Method for

Multiobjective Optimization: A New Method for Pareto Front Generation.”

Structural and Multidisciplinary Optimization 31 (2): 105–16.

doi:10.1007/s00158-005-0557-6.

Klamroth, K., E. Köbis, A. Schöbel, and Chr. Tammer. 2013. “A Unified Approach for

Different Concepts of Robustness and Stochastic Programming via Non-Linear

Scalarizing Functionals.” Optimization 62 (5): 649–71.

doi:10.1080/02331934.2013.769104.

177

Klir, George J., and Tina A. Folger. 1988. Fuzzy Sets, Uncertainty and Information. First

Edition edition. Englewood Cliffs, N.J: Prentice Hall.

Knowles, J. 2006. “ParEGO: A Hybrid Algorithm with on-Line Landscape

Approximation for Expensive Multiobjective Optimization Problems.” IEEE

Transactions on Evolutionary Computation 10 (1): 50–66.

doi:10.1109/TEVC.2005.851274.

Knowles, J., and D. Corne. 1999. “The Pareto Archived Evolution Strategy: A New

Baseline Algorithm for Pareto Multiobjective Optimisation.” In Proceedings of

the 1999 Congress on Evolutionary Computation, 1999. CEC 99, 1:105 Vol. 1.

doi:10.1109/CEC.1999.781913.

Knowles, Joshua D., and David W. Corne. n.d. “Approximating the Nondominated Front

Using.” Evolutionary Computation 8 (2).

Knowles, Joshua, and Evan J. Hughes. 2005. “Multiobjective Optimization on a Budget

of 250 Evaluations.” In Evolutionary Multi-Criterion Optimization, edited by

Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler, 176–90.

Lecture Notes in Computer Science 3410. Springer Berlin Heidelberg.

doi:10.1007/978-3-540-31880-4_13.

Kuroiwa, Daishi. 2001. “On Set-Valued Optimization.” Nonlinear Analysis: Theory,

Methods & Applications 47 (2): 1395–1400. doi:10.1016/S0362-546X(01)00274-

7.

Kuroiwa, Daishi, and Gue Myung Lee. 2012. “On Robust Multiobjective Optimization.”

Vietnam J. Math 40 (2–3): 305–317.

178

Lee, Jongsoo, and Yong Sik Kwon. 2012. “Conservative Multi-Objective Optimization

Considering Design Robustness and Tolerance: A Quality Engineering Design

Approach.” Structural and Multidisciplinary Optimization 47 (2): 259–72.

doi:10.1007/s00158-012-0823-3.

Lewis, Robert, and Doug E. Levy. 1989. “Predicting a National Acid Rain Policy.” In

The Analytic Hierarchy Process, edited by Professor Bruce L. Golden, Assistant

Professor Edward A. Wasil, and Assistant Professor Patrick T. Harker, 155–70.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_10.

Liberatore, Matthew J. 1989. “A Decision Support Approach for R&D Project

Selection.” In The Analytic Hierarchy Process, edited by Professor Bruce L.

Golden, Assistant Professor Edward A. Wasil, and Assistant Professor Patrick T.

Harker, 82–100. Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_6.

Liker, J. K., D. K. Sobek, A. C. Ward, and J. J. Cristiano. 1996. “Involving Suppliers in

Product Development in the United States and Japan: Evidence for Set-Based

Concurrent Engineering.” IEEE Transactions on Engineering Management 43

(2): 165–78. doi:10.1109/17.509982.

Liker, Jeffrey K. 2004. The Toyota Way: 14 Management Principles from the World’s

Greatest Manufacturer. 1 edition. New York: McGraw-Hill Education.

Liu, Zhifeng, Sez Atamturktur, and C. Hsein Juang. 2014. “Reliability Based Multi-

Objective Robust Design Optimization of Steel Moment Resisting Frame

Considering Spatial Variability of Connection Parameters.” Engineering

Structures 76 (October): 393–403. doi:10.1016/j.engstruct.2014.07.024.

179

Llopis-Albert, Carlos, Francisco Rubio, and Francisco Valero. 2015. “Improving

Productivity Using a Multi-Objective Optimization of Robotic Trajectory

Planning.” Journal of Business Research, Special issue on The Spirit of

StrategySpecial issue on The Spirit of Strategy, 68 (7): 1429–31.

doi:10.1016/j.jbusres.2015.01.027.

MacCormac, Earl R. 1989. “Forecasting Loads and Designing Rates for Electric

Utilities.” In The Analytic Hierarchy Process, edited by Professor Bruce L.

Golden, Assistant Professor Edward A. Wasil, and Assistant Professor Patrick T.

Harker, 138–54. Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_9.

Mack, Yolanda, Tushar Goel, Wei Shyy, and Raphael Haftka. 2007. “Surrogate Model-

Based Optimization Framework: A Case Study in Aerospace Design.” In

Evolutionary Computation in Dynamic and Uncertain Environments, edited by Dr

Shengxiang Yang, Dr Yew-Soon Ong, and Dr Yaochu Jin, 323–42. Studies in

Computational Intelligence 51. Springer Berlin Heidelberg. doi:10.1007/978-3-

540-49774-5_14.

Madsen, Jens I., Wei Shyy, and Raphael T. Haftka. 2000. “Response Surface Techniques

for Diffuser Shape Optimization.” AIAA Journal 38 (9): 1512–18.

doi:10.2514/2.1160.

Mäkinen, Raino A.E., Jacques Periaux, and Jari Toivanen. 1999. “Multidisciplinary

Shape Optimization in Aerodynamics and Electromagnetics Using Genetic

Algorithms.” International Journal for Numerical Methods in Fluids 30 (2): 149–

59. doi:10.1002/(SICI)1097-0363(19990530)30:2<149::AID-FLD829>3.0.CO;2-

B.

180

Mavrotas, George, José Rui Figueira, and Eleftherios Siskos. 2015. “Robustness Analysis

Methodology for Multi-Objective Combinatorial Optimization Problems and

Application to Project Selection.” Omega 52 (April): 142–55.

doi:10.1016/j.omega.2014.11.005.

Miettinen, Kaisa. 1998. Nonlinear Multiobjective Optimization. Vol. 12. International

Series in Operations Research & Management Science. Boston, MA: Springer

US. http://link.springer.com/10.1007/978-1-4615-5563-6.

Might, Robert J., and William D. Daniel Jr. 1989. “Decision Support for War Games.” In

The Analytic Hierarchy Process, edited by Professor Bruce L. Golden, Assistant

Professor Edward A. Wasil, and Assistant Professor Patrick T. Harker, 171–81.

Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_11.

Mitchell, Kenneth H., and Edward A. Wasil. 1989. “AHP in Practice: Applications and

Observations from a Management Consulting Perspective.” In The Analytic

Hierarchy Process, edited by Professor Bruce L. Golden, Assistant Professor

Edward A. Wasil, and Assistant Professor Patrick T. Harker, 192–212. Springer

Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_13.

Morgan, James M., and Jeffrey K. Liker. 2006. The Toyota Product Development System:

Integrating People, Process And Technology. 1 edition. New York: Productivity

Press.

Muller, K., and M. Tharigen. 1994. “Applications of Fuzzy Hierarchies and Fuzzy

MADM Methods to Innovative System Design.” In , Proceedings of the Third

IEEE Conference on Fuzzy Systems, 1994. IEEE World Congress on

Computational Intelligence, 364–67 vol.1. doi:10.1109/FUZZY.1994.343671.

181

“Multiobjective Decision Making: Theory and Methodology.” 2016. Accessed September

1. http://store.doverpublications.com/0486462897.html.

Myers, Raymond H., Douglas C. Montgomery, and Christine M. Anderson-Cook. 2016.

Response Surface Methodology: Process and Product Optimization Using

Designed Experiments. John Wiley & Sons.

Nahm, Y.-E., and H. Ishikawa. 2006. “A New 3D-CAD System for Set-Based Parametric

Design.” The International Journal of Advanced Manufacturing Technology 29

(1–2): 137–50. doi:10.1007/s00170-004-2213-5.

Nain, Pawan K. S., and Kalyanmoy Deb. 2016. “A Multi-Objective Search and

Optimization Procedure with Successive Approximate Models.” Accessed

September 1. http://www.egr.msu.edu/~kdeb/papers/k2004012.pdf.

Negoiţă, Dr C. V., and D. A. Ralescu. 1975a. “Deciding in Fuzzy Environment.” In

Applications of Fuzzy Sets to Systems Analysis, 152–68. Interdisciplinary Systems

Research / Interdisziplinäre Systemforschung. Birkhäuser Basel. doi:10.1007/978-

3-0348-5921-9_7.

———. 1975b. “Fuzzy Automata, Fuzzy Languages, and Fuzzy Algorithms.” In

Applications of Fuzzy Sets to Systems Analysis, 122–51. Interdisciplinary Systems

Research / Interdisziplinäre Systemforschung. Birkhäuser Basel. doi:10.1007/978-

3-0348-5921-9_6.

———. 1975c. “Fuzzy Clustering.” In Applications of Fuzzy Sets to Systems Analysis,

169–79. Interdisciplinary Systems Research / Interdisziplinäre Systemforschung.

Birkhäuser Basel. doi:10.1007/978-3-0348-5921-9_8.

182

———. 1975d. “Fuzzy Logic.” In Applications of Fuzzy Sets to Systems Analysis, 65–84.

Interdisciplinary Systems Research / Interdisziplinäre Systemforschung.

Birkhäuser Basel. doi:10.1007/978-3-0348-5921-9_4.

———. 1975e. “Fuzzy Sets, L-Sets, Flou Sets.” In Applications of Fuzzy Sets to Systems

Analysis, 12–42. Interdisciplinary Systems Research / Interdisziplinäre

Systemforschung. Birkhäuser Basel. doi:10.1007/978-3-0348-5921-9_2.

———. 1975f. “Fuzzy Systems.” In Applications of Fuzzy Sets to Systems Analysis, 85–

121. Interdisciplinary Systems Research / Interdisziplinäre Systemforschung.

Birkhäuser Basel. doi:10.1007/978-3-0348-5921-9_5.

———. 1975g. “Fuzzy Theories.” In Applications of Fuzzy Sets to Systems Analysis, 43–

64. Interdisciplinary Systems Research / Interdisziplinäre Systemforschung.

Birkhäuser Basel. doi:10.1007/978-3-0348-5921-9_3.

Nicoglou, Antonine. 2015. “The Evolution of Phenotypic Plasticity: Genealogy of a

Debate in Genetics.” Studies in History and Philosophy of Science Part C: Studies

in History and Philosophy of Biological and Biomedical Sciences 50 (April): 67–

76. doi:10.1016/j.shpsc.2015.01.003.

Obayashi, Shigeru, Daisuke Sasaki, and Akira Oyama. 2004. “Finding Tradeoffs by

Using Multiobjective Optimization Algorithms.” Transactions of the Japan

Society for Aeronautical and Space Sciences 47 (155): 51–58.

Ong, Yew S., Prasanth B. Nair, and Andrew J. Keane. 2003. “Evolutionary Optimization

of Computationally Expensive Problems via Surrogate Modeling.” AIAA Journal

41 (4): 687–96. doi:10.2514/2.1999.

183

O’Rourke, Ronald. 2009. “Navy CG (X) Cruiser Program: Background, Oversight Issues,

and Options for Congress.” In . DTIC Document. http://oai.dtic.mil/oai/oai?

verb=getRecord&metadataPrefix=html&identifier=ADA513538.

Osiadacz, Andrzej J. 1989. “Multiple Criteria Optimization; Theory, Computation, and

Application, Ralph E. Steuer, Wiley Series in Probability and Mathematical

Statistics - Applied, Wiley, 1986, No. of Pages 546, Price f5 1.40, $77.10.”

Optimal Control Applications and Methods 10 (1): 89–90.

doi:10.1002/oca.4660100109.

Otto, E. N., and E. K. Antonsson. 1994. “Modeling Imprecision in Product Design.” In ,

Proceedings of the Third IEEE Conference on Fuzzy Systems, 1994. IEEE World

Congress on Computational Intelligence, 346–51 vol.1.

doi:10.1109/FUZZY.1994.343674.

Otto, Kevin N., and Erik K. Antonsson. 1991. “Trade-off Strategies in Engineering

Design.” Research in Engineering Design 3 (2): 87–103.

———. 1994. “Design Parameter Selection in the Presence of Noise.” Research in

Engineering Design 6 (4): 234–246.

Papila, Nilay, Wei Shyy, Lisa Griffin, and Daniel Dorney. 2016. “Shape Optimization of

Supersonic Turbines Using Response Surface and Neural Network Methods.” In

39th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics

and Astronautics. Accessed September 1. http://arc.aiaa.org/doi/abs

/10.2514/6.2001-1065.

184

Papila, Nilay, Wei Shyy, Lisa Griffin, Frank Huber, Ken Tran, and Helen

McConnaughey. 2000. “Preliminary Design Optimization For A Supersonic

Turbine For Rocket Propulsion.” http://ntrs.nasa.gov/search.jsp?R=20000094037.

Pareto, Vilfredo. 1971. Manual of Political Economy. New York: A.M. Kelley.

Parmee, I. C. 2004. “A Review of the Development and Application of Cluster Oriented

Genetic Algorithms.” In IUTAM Symposium on Evolutionary Methods in

Mechanics, edited by Tadeusz Burczyński and Andrzej Osyczka, 331–40. Solid

Mechanics and Its Applications 117. Springer Netherlands. doi:10.1007/1-4020-

2267-0_31.

Parsons, M. G., David J. Singer, and John A. Sauter. 2016. “A Hybrid Agent Approach

For Set-Based Conceptual Ship Design.” Accessed September 1.

http://nsgl.gso.uri.edu/mit/mitw99002/mitw99002_part3d.pdf.

Parunak, H. Van Dyke, A. C. Ward, and J. A. Sauter. 1998. “A Systematic Market

Approach to Distributed Constraint Problems.” In International Conference on

Multi Agent Systems, 1998. Proceedings, 455–56.

doi:10.1109/ICMAS.1998.699283.

Parunak, H. Van Dyke, A Ward, M. Fleischer, and J. Sauter. 2016. “The RAPPID

Project: Symbiosis between Industrial Requirements and MAS Research.”

Accessed September 1. http://www.abcresearch.org/papers

/RAPPID99JAAMAS.pdf.

Parunak, H. Van Dyke, Allen C. Ward, John A. Sauter, and others. 1999. “The MarCon

Algorithm: A Systematic Market Approach to Distributed Constraint Problems.”

AI EDAM 13 (3): 217–234.

185

Pirzada, U. M., and V. D. Pathak. 2012. “Newton Method for Solving the Multi-Variable

Fuzzy Optimization Problem.” Journal of Optimization Theory and Applications

156 (3): 867–81. doi:10.1007/s10957-012-0141-3.

Poss, Michael. 2014. “Robust Combinatorial Optimization with Variable Cost

Uncertainty.” European Journal of Operational Research 237 (3): 836–45.

doi:10.1016/j.ejor.2014.02.060.

Prescott, B. P., and T. LeBaron. 2003. “Making Optimal Design Decisions for next

Generation Dispensing Tools.” In Simulation Conference, 2003. Proceedings of

the 2003 Winter, 2:1388–93 vol.2. doi:10.1109/WSC.2003.1261580.

Pugh, Stuart. 1991. Total Design: Integrated Methods for Successful Product

Engineering. Wokingham, England ; Reading, Mass: Addison-Wesley Pub.

Ramu, Palaniappan, Samy Missoum, and Raphael Haftka. 2016. “A Convex Hull

Approach for the Reliability-Based Optimization of Transient Dynamic

Problems.” In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization

Conference. American Institute of Aeronautics and Astronautics. Accessed

September 1. http://arc.aiaa.org/doi/abs/10.2514/6.2004-4618.

Rao, S. S. 1987. “Description and Optimum Design of Fuzzy Mechanical Systems.”

Journal of Mechanisms, Transmissions, and Automation in Design 109 (1): 126–

32. doi:10.1115/1.3258776.

Rao, S. S., and A. K. Dhingra. 1991. “Applications of Fuzzy Theories to Multi-Objective

System Optimization.” http://ntrs.nasa.gov/search.jsp?R=19910006699.

186

Rao, S. S., K. Sundararaju, B. G. Prakash, and C. Balakrishna. 1992. “Multiobjective

Fuzzy Optimization Techniques for Engineering Design.” Computers &

Structures 42 (1): 37–44. doi:10.1016/0045-7949(92)90534-7.

“Revolutionizing Product Development: Quantum Leaps in Speed, Efficiency and

Quality: Steven C. Wheelwright: 9781451676297: Amazon.com: Books.” 2016.

Accessed September 1. https://www.amazon.com/Revolutionizing-Product-

Development-Quantum-Efficiency/dp/1451676298.

Ross, James, Tulio Sulbaran, Andrew Strelzoff, and Nan Wang. 2017. “Conceptual

Dynamic Collision Model For the Open Source Building Environment for

Simulation and Training (OSBEST).” Accessed February 23. http://world-

comp.org/p2011/CGV3566.pdf.

Ross, Phillip J. 1995. Taguchi Techniques for Quality Engineering. 2 edition. New York:

McGraw-Hill Professional.

Ruusunen, Jukka, and Raimo P. Hamalainen. 1989. “Project Selection by an Integrated

Decision Aid.” In The Analytic Hierarchy Process, edited by Professor Bruce L.

Golden, Assistant Professor Edward A. Wasil, and Assistant Professor Patrick T.

Harker, 101–21. Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_7.

Saaty, Thomas L. 1978. “Exploring the Interface between Hierarchies, Multiple

Objectives and Fuzzy Sets.” Fuzzy Sets and Systems 1 (1): 57–68.

doi:10.1016/0165-0114(78)90032-5.

Saaty, Thomas L. 1989. “Group Decision Making and the AHP.” In The Analytic

Hierarchy Process, edited by Professor Bruce L. Golden, Assistant Professor

187

Edward A. Wasil, and Assistant Professor Patrick T. Harker, 59–67. Springer

Berlin Heidelberg. doi:10.1007/978-3-642-50244-6_4.

———. 2008. “Decision Making with the Analytic Hierarchy Process.” International

Journal of Services Sciences 1 (1): 83–98.

Sasaki, Daisuke, Masashi Morikawa, Shigeru Obayashi, and Kazuhiro Nakahashi. 2001.

“Aerodynamic Shape Optimization of Supersonic Wings by Adaptive Range

Multiobjective Genetic Algorithms.” In Evolutionary Multi-Criterion

Optimization, edited by Eckart Zitzler, Lothar Thiele, Kalyanmoy Deb, Carlos

Artemio Coello Coello, and David Corne, 639–52. Lecture Notes in Computer

Science 1993. Springer Berlin Heidelberg. doi:10.1007/3-540-44719-9_45.

Sasaki, Daisuke, Shigeru Obayashi, and Kazuhiro Nakahashi. 2002. “Navier-Stokes

Optimization of Supersonic Wings with Four Objectives Using Evolutionary

Algorithm.” Journal of Aircraft 39 (4): 621–29. doi:10.2514/2.2974.

Sen, Professor Pratyush, and Dr Jian-Bo Yang. 1998a. “An Integrated Multiple Criteria

Decision Support System.” In Multiple Criteria Decision Support in Engineering

Design, 211–41. Springer London. doi:10.1007/978-1-4471-3020-8_6.

———. 1998b. “MCDM and the Nature of Decision Making in Design.” In Multiple

Criteria Decision Support in Engineering Design, 13–20. Springer London.

doi:10.1007/978-1-4471-3020-8_2.

———. 1998c. “Multiple Attribute Decision Making.” In Multiple Criteria Decision

Support in Engineering Design, 21–112. Springer London. doi:10.1007/978-1-

4471-3020-8_3.

188

———. 1998d. “Multiple Criteria Decision Making and Genetic Algorithms.” In

Multiple Criteria Decision Support in Engineering Design, 176–210. Springer

London. doi:10.1007/978-1-4471-3020-8_5.

———. 1998e. “Multiple Objective Decision Making.” In Multiple Criteria Decision

Support in Engineering Design, 113–75. Springer London. doi:10.1007/978-1-

4471-3020-8_4.

———. 1998f. “Past, Present and the Future.” In Multiple Criteria Decision Support in

Engineering Design, 242–55. Springer London. doi:10.1007/978-1-4471-3020-

8_7.

Seppanen, Ville, Jukka Heikkila, and Katja Liimatainen. 2009. “Key Issues in EA-

Implementation: Case Study of Two Finnish Government Agencies.” In 2009

IEEE Conference on Commerce and Enterprise Computing, 114–120. IEEE.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210807.

Shafer, Glenn. 1976. A Mathematical Theory of Evidence. Princeton University Press.

Singer, D. J., and M. G. Parsons. 2003. “‘Evaluation of the Effectiveness of a Fuzzy

Logic Software Agent to Aid Design Team Negotiation and Communication.” In

Proceedings of the 2nd International Conference on Computer Applications and

Information Technology in the Maritime Industries, Hamburg, Germany.

Singer, David J., Norbert Doerry, and Michael E. Buckley. 2009. “What Is Set-Based

Design?” Naval Engineers Journal 121 (4): 31–43.

Sobek, D. K. Ii, A. C. Ward, and J. K. Liker. 1999. “Toyota’s Principles of Set-Based

Concurrent Engineering.” ResearchGate 40 (2).

189

https://www.researchgate.net/publication/248139929_Toyota’s_Principles_of_Set

-Based_Concurrent_Engineering.

Soyster, A. L. 1973. “Technical Note—Convex Programming with Set-Inclusive

Constraints and Applications to Inexact Linear Programming.” Operations

Research 21 (5): 1154–57. doi:10.1287/opre.21.5.1154.

Steponavice, I., and K. Miettinen. 2016. “Survey On Multiobjective Robustness for

Simulation-Based Optimization.” Accessed September 1.

http://users.monash.edu.au/~ingridas/ISMP2012_talk.pdf.

Taguchi, G., and M. S. Phadke. 1989. “Quality Engineering through Design

Optimization.” In Quality Control, Robust Design, and the Taguchi Method,

edited by Khosrow Dehnad, 77–96. Springer US. doi:10.1007/978-1-4684-1472-

1_5.

Technology, Copyright © Massachusetts Institute of, and 1977-2016 All rights reserved.

2016a. “The Second Toyota Paradox: How Delaying Decisions Can Make Better

Cars Faster.” MIT Sloan Management Review. Accessed September 1.

http://sloanreview.mit.edu/article/the-second-toyota-paradox-how-delaying-

decisions-can-make-better-cars-faster/.

———. 2016b. “Toyota’s Principles of Set-Based Concurrent Engineering.” MIT Sloan

Management Review. Accessed September 1. http://sloanreview.mit.edu

/article/toyotas-principles-of-setbased-concurrent-engineering/.

Thurston, Deborah L. n.d. “A Formal Method for Subjective Design Evaluation with

Multiple Attributes.” Research in Engineering Design 3 (2): 105–22.

doi:10.1007/BF01581343.

190

Thurston, Deborah L., and Yun Qi Tian. 2013. “A Method for Integrating Utility

Analysis into an Expert System for Design Evaluation.” arXiv Preprint

arXiv:1303.5755. http://arxiv.org/abs/1303.5755.

Tone, Kaoru, and Shigeru Yanagisawa. 1989. “Site Selection for a Large Scale Integrated

Circuits Factory.” In The Analytic Hierarchy Process, edited by Professor Bruce

L. Golden, Assistant Professor Edward A. Wasil, and Assistant Professor Patrick

T. Harker, 242–50. Springer Berlin Heidelberg. doi:10.1007/978-3-642-50244-

6_16.

Tribus, Myron. 2016. Rational Descriptions, Decisions and Designs: Pergamon Unified

Engineering Series. Elsevier.

Unal, Resit, and Edwin B. Dean. 1990. “Taguchi Approach to Design Optimization for

Quality and Cost: An Overview.”

http://ntrs.nasa.gov/search.jsp?R=20040121019.

“USS Cole Bombing.” 2016. Wikipedia. December 30.

https://en.wikipedia.org/w/index.php?title=USS_Cole_bombing&oldid=75744099

9.

Vaidyanathan, Rajkumar, Tushar Goel, Raphael Haftka, Nestor Quiepo, Wei Shyy, and

Kevin Tucker. 2004. “Global Sensitivity and Trade-Off Analyses for Multi-

Objective Liquid Rocket Injector Design.” In . American Institute of Aeronautics

and Astronautics. doi:10.2514/6.2004-4007.

Vaidyanathan, Rajkumar, Nilay Papita, Wei Shyy, P. Kevin Tucker, Lisa W. Griffin,

Raphael Haftka, Norman Fitz-Coy, and Helen McConnaughey. 2000. “Neural

191

Network and Response Surface Methodology for Rocket Engine Component

Optimization.” http://ntrs.nasa.gov/search.jsp?R=20000089909.

Vaidyanathan, Rajkumar, P. Kevin Tucker, Nilay Papila, and Wei Shyy. 2004.

“Computational-Fluid-Dynamics-Based Design Optimization for Single-Element

Rocket Injector.” Journal of Propulsion and Power 20 (4): 705–17.

doi:10.2514/1.11464.

Vargas, Luis G., and J. Bernat Roura-Agusti. 1989. “Business Strategy Formulation for a

Financial Institution in a Developing Country.” In The Analytic Hierarchy

Process, edited by Professor Bruce L. Golden, Assistant Professor Edward A.

Wasil, and Assistant Professor Patrick T. Harker, 251–65. Springer Berlin

Heidelberg. doi:10.1007/978-3-642-50244-6_17.

Vlahakis, John G., and William R. Partridge. 1989. “Assessment of Security at Facilities

That Produce Nuclear Weapons.” In The Analytic Hierarchy Process, edited by

Professor Bruce L. Golden, Assistant Professor Edward A. Wasil, and Assistant

Professor Patrick T. Harker, 182–91. Springer Berlin Heidelberg.

doi:10.1007/978-3-642-50244-6_12.

Wang, Jiachuan, and Janis Terpenny. n.d. “Interactive Evolutionary Solution Synthesis in

Fuzzy Set-Based Preliminary Engineering Design.” Journal of Intelligent

Manufacturing 14 (2): 153–67. doi:10.1023/A:1022947329200.

Wang, Ten-See, and Yen-Sen Chen. 1990. “A Unified Navier-Stokes Flowfield and

Performance Analysis of Liquid Rocket Engines.”

http://ntrs.nasa.gov/search.jsp?R=19900053583.

192

Ward, Allen C. 1989. “A Theory of Quantitative Inference for Artifact Sets Applied to a

Mechanical Design Compiler.” DTIC Document. http://oai.dtic.mil/oai/oai?

verb=getRecord&metadataPrefix=html&identifier=ADA216535.

Ward, Allen C., Jeffrey K. Liker, Durward K. Sobek, and John J. Cristiano. 1994. “Set-

Based Concurrent Engineering and Toyota.” In Proceedings of ASME Design

Engineering Technical Conferences, ASME, 79–90.

Ward, Allen C., Tomas Lozano-Perez, and Warren P. Seering. 1990. “Extending the

Constraint Propagation of Intervals.” Artificial Intelligence for Engineering,

Design, Analysis and Manufacturing 4 (1): 47–54.

Warner, Gary. 2005. “‘PEO Ships Brief to NDIA.” In Expeditionary Warfare Division

Annual Meeting, Fort Meyer, VA. http://proceedings.ndia.org/5860

/5860_Warner.pdf.

Wilson, Benjamin, David Cappelleri, Timothy W. Simpson, and Mary Frecker. 2001.

“Efficient Pareto Frontier Exploration Using Surrogate Approximations.”

Optimization and Engineering 2 (1): 31–50.

Winkler, Robert L. 2003. An Introduction to Bayesian Inference and Decision.

Probabilistic Pub.

Womack, James P., Daniel T. Jones, and Daniel Roos. 2007. The Machine That Changed

the World: The Story of Lean Production-- Toyota’s Secret Weapon in the Global

Car Wars That Is Now Revolutionizing World Industry. Reprint edition. New

York, NY: Free Press.

193

Wood, Kristin L., and Erik K. Antonsson. 1989. “Computations with Imprecise

Parameters in Engineering Design: Background and Theory.” Journal of

Mechanisms, Transmissions, and Automation in Design 111 (4): 616–625.

Xiao, Renbin, Zhengying Cai, and Xinhui Zhang. 2012. “A Production Optimization

Model of Supply-Driven Chain with Quality Uncertainty.” Journal of Systems

Science and Systems Engineering 21 (2): 144–60. doi:10.1007/s11518-011-5184-

8.

Yager, Ronald, and David Basson. 1975. “Decision Making with Fuzzy Sets.” Decision

Sciences 6 (3): 590–600. doi:10.1111/j.1540-5915.1975.tb01046.x.

Yager, Ronald R. 1978. “Fuzzy Decision Making Including Unequal Objectives.” Fuzzy

Sets and Systems 1 (2): 87–95. doi:10.1016/0165-0114(78)90010-6.

Young, Rosalind Cecily. 1931. “The Algebra of Many-Valued Quantities.”

Mathematische Annalen 104 (1): 260–90. doi:10.1007/BF01457934.

Yu, H., and H. M. Liu. 2012. “Robust Multiple Objective Game Theory.” Journal of

Optimization Theory and Applications 159 (1): 272–80. doi:10.1007/s10957-012-

0234-z.

Zadeh, L. A. 2016. “Fuzzy Sets-Information and Control-1965.pdf.” Accessed September

1. https://people.eecs.berkeley.edu/~zadeh/papers/Fuzzy%20Sets-Information%

20and%20Control-1965.pdf.

Zhou, Guan, Zheng-Dong Ma, Guangyao Li, Aiguo Cheng, Libin Duan, and Wanzhong

Zhao. 2016. “Design Optimization of a Novel NPR Crash Box Based on Multi-

Objective Genetic Algorithm.” Structural and Multidisciplinary Optimization 54

(3): 673–84. doi:10.1007/s00158-016-1452-z.

194

Zimmermann, H. J., and H. J. Sebastian. 1993. “Optimization and Fuzziness in Problems

of Design and Configuration.” In , Second IEEE International Conference on

Fuzzy Systems, 1993, 1237–40 vol.2. doi:10.1109/FUZZY.1993.327569.

———. 1994. “Fuzzy Design-Integration of Fuzzy Theory with Knowledge-Based

System-Design.” In , Proceedings of the Third IEEE Conference on Fuzzy

Systems, 1994. IEEE World Congress on Computational Intelligence, 352–57

vol.1. doi:10.1109/FUZZY.1994.343673.

Zimmermann, H.-J. 2001. Fuzzy Set Theory—and Its Applications. Dordrecht: Springer

Netherlands. http://link.springer.com/10.1007/978-94-010-0646-0.

	Determining Feasibility Resilience: Set Based Design Iteration Evaluation Through Permutation Stability Analysis
	Recommended Citation

	tmp.1492527083.pdf.ro8vh

