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ABSTRACT 

DETERMINING FEASIBILITY RESILIENCE: SET BASED DESIGN ITERATION 

EVALUATION THROUGH PERMUTATION STABILITY ANALYSIS 

by James E. Ross 

May 2017 

The goal of robust design is to select a design that will still perform satisfactorily 

even with unexpected variation in design parameters. A resilient design will 

accommodate unanticipated future system requirements. Through studying the variations 

of system parameters through the use of multi-objective optimization, a designer hopes to 

locate a robustly resilient design, which performs current mission well even with varying 

system parameters and is able to be easily repurposed to new missions. This ability to 

withstand changes is critical because it is common for the product of a design to undergo 

changes throughout its life cycle. This subject has been an active area of research in 

industrial design and systems engineering but most methodologies rest upon exhaustive 

understanding of design, manufacturing and mission variance. The thrust of this research 

is to develop new methodologies for estimating robust resilience given imperfect 

information. In this work we will apply new methodologies for locating resilient designs 

within a dataset derive from a study performed by the Small Surface Combatant Task 

Force in order to improve upon a state of the art design process. Two new methodologies, 

permutation stability analysis and mutation stability analysis, are presented along with 

results and discussion as applied to the SSCTF dataset. It is demonstrated that these new 

methods improve upon the state of the art by providing insight into the robustness and 
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resilience of selected system properties. These methodologies, although applied to the 

SSCTF dataset are posed more generally for wider application in system design.
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CHAPTER I - INTRODUCTION 

The Small Surface Combatant Task Force (SSCTF) was created in 2014 with the 

purpose of examining existing Littoral Combat Ship (LCS) designs, modified LCS 

designs, and new design concepts. With these designs, the goal was to determine if the 

existing LCS ship could be modified to meet today and future mission needs, or if a 

completely new design would be a better option. In order to be able to answer the 

question of whether to buy a new ship or to modify the existing model, the Navy began 

its design process. The naval design process is a complicated time-consuming process 

that requires the skill set of a group of highly specialized naval architects. The group of 

naval architects is required to meet many times in order to finalize a ship design. The 

process of meeting and redesign requires weeks of time and many meetings. Steps 

towards a final design are small and potential changes to the design always left more 

designs to be created. All designs created were to be placed into a tradespace made up of 

possible designs in order to ensure a large number of designs were analyzed. The designs 

were to include the lethality of the ship towards land, sea, and air. The designs were also 

to include cost, combat systems, and weapons. The goal of the SSCTF was to determine 

whether or not to purchase a new Navy vessel or to continue to use the existing LCS to 

fulfill mission requirements through a lengthy study of the capabilities of the current LCS 

against the expected capabilities of a new ship design. 

Part of the goal of the Navy ship design team was to develop a more robust 

tradespace than had previously been possible given time and financial restraints on the 

ship design process. In order to develop this more robust tradespace, The Small Surface 

Combatant Task Force (SSCTF) used Set Based Design Methods (SBD). The SBD 
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method was followed using steps defined in the technical paper titled “What is Set-Based 

Design” (David J. Singer, Doerry, and Buckley 2009). The first step in the process is to 

define bounds for the tradespace so that designs are not created outside of the tradespace 

area of interest. Next, the designer must ensure that the tradespace is sufficiently large 

enough to fulfill the density of designs requirement as determined by the design expert. 

Once a sufficiently large tradespace has been created, then the tradespace should be 

analyzed by subject matter experts focusing on the design alternatives within their 

domain of specialty. During the analyses, the design experts should eliminate designs that 

will not produce a good solution. A good solution is a design that is capable of fulfilling 

the requirements of the design and is also known as a feasible design. During this 

reduction in the tradespace, designs that are feasible will emerge and a tradespace with 

more viable options to the designers will be created. Once designers have ensured that the 

tradespace is sufficiently large and eliminated designs in the tradespace in their domain 

of specialty, the remaining designs from each group of specialist should be recombined 

into one tradespace. The end result of this process of populating a tradespace and then 

reducing the size of the tradespace by design experts will result in a tradespace that is 

more robust than had previously been possible by allowing more feasible ship designs to 

be considered in the final design options. 

The Navy ship design study was focused on creating a robust tradespace of 

possible designs for each of the 5 Hull Mechanical and engineering (HM&E) 

configurations. These 5 configurations are called the design Seeds and represent the 5 

different propulsion systems studied during this effort. The 5 Seeds are as follows: 
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• Mechanical Drive Twin Shaft 

• Mechanical Drive Single Shaft 

• Integrated Power System twin Shaft 

• Integrated Power System Single Shaft 

• Integrated Power System twin Shaft, Adjacent motors 

The 5 different HM&E configurations are also known as M1, M2, I1, I2, IC. M1 

designates the single propeller propulsion system. M2 is the dual propeller based system 

in which the propellers are not located in the same compartment within the ship. I1 is the 

single electrical propulsion system. I2 is the dual electrical propulsion system in which 

the propulsion systems are not dual located (located within the same compartment). IC is 

a dual electrical based system in which the electrical propulsion systems are located 

within the same compartment. The mechanical propulsion systems have been around for 

enough years to establish a wealth of historical data leading to a better understanding of 

the limitations and also the benefits of using such a system. The electrical propulsion 

systems are very new in comparison to its mechanical alternatives. The electrical 

propulsion systems have a large amount of potential but until they have had more years 

of use, the limitations and benefits are not be fully understood. In addition, the cost 

associated with using a mechanical based propulsion system is much lower than using an 

Integrated Power System so even though the Mechanical system wins out in the cost 

category, it produces less power for use in current and future components of the ship than 

the Integrated Power System. Even if the Mechanical System is able to handle the power 

requirements of the current ship design, it may not be able to handle future power 

requirements of the ship. Even though Integrated Power Systems have not been around 



 

4 

for a long time and there is not a large amount of information available, Integrated Power 

Systems may enable use of electronics that might require more electricity than what 

current mechanical systems produce. 

When choosing the best mechanical model of a naval ship, it is helpful to use the 

ship base configuration with the most feasible designs in order to ensure that changes 

made to a design do not cause a ship to become infeasible. It will be helpful to identify 

which ship has the most feasible designs. In order to identify which ship has the most 

feasible designs, we are going to look at 5 different mechanical models of ship design, 

and we are also going to look at the number of feasible designs that are affected by 4 

critical variables of the ship design.  

The four critical variables of ship design are Free Power, Free Weight, Free Cost, 

Free Space. Power is the variable responsible for holding a value representing the amount 

of power the ship is capable of maintaining. Weight is the amount of weight the ship can 

hold without becoming unstable and sinking. Cooling is the amount of Cooling available 

for ship components. Space is the amount of space remaining on the ship after the 

expected components have already been added to the ship. These 4 variables have the 

biggest overall impact on ship feasibility so making good choices for the values of these 

4 parameters for each of the 5 HM&E configurations will likely result in a good design. 

The robust trade space created by the SSCTF was based upon the idea of 

Capability Concepts. “A Capability Concept is a set of operational capability levels and 

an associated CONOPS for employing the capabilities” (Garner et al. 2015). An example 

would be the capability of the design handling itself versus submarines in relation to the 

extent it is capable of offense or defense. An example of a chart representing operational 
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capability levels of a design can be seen in Figure 1 (Garner et al. 2015). As one moves 

further out from the center of the chart in each of the 14 example operational capabilities, 

the overall operational capability of the design increases for the Capability Concept that 

this design represents. A completed bullseye chart displaying all Operational Capabilities 

for a Capability Concept is called a Configuration. An example of a configuration is 

represented by Figure 1. There can be many configurations that meet all the requirements 

of a Capability Concept, which means the Capability Concept is a feasible concept and 

meets the “current level of fidelity and analysis” (Garner et al. 2015). There can also be 

Capability Concepts in which no configurations meet all the requirements. These 

capability concepts are infeasible thus do not meet current fidelity requirements. 

 

Figure 1. Operational capability levels in a Bulls eye chart  

(Garner et al. 2015) 
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For the example study performed in this work, the list of initial Capability 

Concepts began with 192 different Capability Concepts. This list was reduced to 13 

different Capability Concepts and then further to 8 Capability Concepts. The reduced set 

of Capability Concepts can be viewed within the bullseye chart in Figure 1 along with a 

few of the Capability Concepts that were eliminated from final consideration. The 

elimination of Capability Concepts was performed by area experts and is not covered in 

this material. For the 8 remaining Capability Concepts, there are “mission system 

alternatives (MAs) designed to achieve a complete detect-to-engage capability for a 

mission area capability level” (Garner et al. 2015). An example of a MA would be the 

ship’s ability to perform all tasks required from detecting to engaging in warfare with an 

aircraft. Using different MAs for the four primary mission capabilities seen in figure 1, 

over 2000 different Combat Capability Alternatives were created. Then estimates for 4 

the primary variables, Power, Space, Weight, and Cooling were developed. An example 

of Combat Capabilities and how they relate to MAs can be seen in Table 1 (Garner et al. 

2015).  

Table 1  

Example of Mission Area Capabilities and Capability Concepts  

Capability Concept 

Mission Area Capabilities CC 

1 

CC 

2 

CC 

3 

CC 

4 

CC 

5 

Self Defense against Air, Surface, 

Undersea Threats 

X  X X  

Capability to detect and engage small 

craft within- the- horizon of own ship 

 X X X X 

Capability to achieve mission kill of   X  X 
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over-the-horizon surface targets 

(Garner et al. 2015) 

Even if a Design is found to be feasible, it may not be a viable design. Some 

designs will pass the requirements of a Capability Concept but will not pass future testing 

and analysis (Garner et al. 2015). For example, a ship design with engine A may fill all 

the Operational Capabilities of a Capability Concept today but may fail to satisfy those 

same Operational Capabilities at a future time. As Time moves forward after a ship is 

built, it always gets heavier as more components are added to the ship. The ship’s engine 

may have been capable of maintaining a level of speed but after the ship has become 

heavier than that same engine will no longer be able to maintain that level of speed. With 

the problem of not all designs that are found to be feasible remaining viable throughout 

the design’s lifespan, finding ship designs that will pass future testing and analysis is 

critical.  

When examining a variable of interest in a Capability Concept, it is helpful to 

assign a combined score to all the configurations the Capability Concept. Assigning a 

combined score to all the configurations of the Capability concept is a better option than 

relying on any one design in a configuration because even if a design is viable now does 

not mean it will be viable in the future. According to Garner, a “diverse group of 

configurations will mitigate “the risk that any one configuration will prove not viable” 

(Garner et al. 2015).  

In order to allow a wider range of values to be studied for each ship design, sets of 

regression equations were developed for each of the 5 seeds using the statistical software 

JMP. The regression equations were valuable in allowing approximations for of 
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configuration properties of specific “Rapid Ship Design Environment or RSDE 

Configurations”. RSDE is the tool that was used for creating a table of configurations 

representing the data space of designs (Garner et al. 2015). 

The Engineering Resilient Systems (ERS) tradespace Toolkit was used to 

combine “regression equations, the cost algorithms, HM&E crew size algorithms, other 

algorithms and the data associated with the CCAs” (Garner et al. 2015). By combining 

the pieces of information into one software package, the ERS team was able to assist in 

the ship design process. The ERS team was responsible for generating the estimates using 

Monte Carlo methods. The final result of the ERS tradespace tool was the generation of 

approximately 10000 feasible designs for each of the 2000+ CCAs. After generation of 

the feasible designs produced by the ERS Tradspace Toolkit, some of the designs were 

compared with existing Small Surface Combatant designs and designs produced by the 

Small Surface Combatant team in order to determine the validity of the ERS tradespace 

toolkit results. It was determined that the results of the ERS Tradespace Toolkit were 

valid and could be used for producing possible designs.  

After the ERS tradespace tool finished generating data, the Feasibility Element 

Calculator was to determine the feasibility of each design the was produced by the ERS 

tradespace tool. The 4 levels of feasibility are Feasible Excessive, Feasible, High Risk for 

Feasibility, and Not Feasible (Garner et al. 2015). Feasible Excessive represents a ship 

design that far exceeds the requirements of the desired ship design which sounds good, 

but the design is likely to be very high in cost. A feasible design is one that fills all 

requirements of the desired design but does not overly exceed the design requirements, 

thus being the most ideal level of design. High Risk For Feasibility means that it is 
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unlikely that the ship design will be able to meet all the requirements of the desired ship 

design. Low Feasibility implies that the requirements of the desired ship design will not 

be met by this design. Each of the elements found in Table 2 are assigned a feasibility 

score. A design can also be found infeasible if more than 5 of the elements in table 2 are 

found to be High Risk For Feasibility. 

Table 2  

Feasibility Elements of Ship Design  

SUW Performance 

ASW Performance 

Sea keeping 

AW Performance 

Sustained Speed 

Endurance Speed 

Arrangeable Area 

Displacement 

Length to Beam Ratio 

Stack Up Length 
(Garner et al. 2015). 

During the stage of generating ship designs using the ERS Tradespace Toolkit, it 

was noticed that it would be very helpful to identify designs that were resistant to failure 

if changes were made to the CCA. A design that was resistant to failure if changes were 

made to the CCA would be a resilient design. Even if the design was not the most optimal 

design in the set of designs, if the design is more resistant to failure than the optimal 

design, it would be a better option. Noticing this need for an understanding of resilience 

in tradespace analysis was the source of inspiration for this paper. 
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CHAPTER II – BACKGROUND: INTRODUCTION TO RESEARCH 

The problem with exploring the full space of design options prior to any 

narrowing is the complexity of determining complex interrelationships and tradeoffs 

among design parameters. Multi-Objective Optimization (MOO) is a way to help analyze 

the complex relationships between design parameters. MOO is the process of attempting 

to find an optimum balance between the parameters that make up a design. The 

parameters that make up a design are numerical value representations of the components 

of a design such as the expected power output from an engine or the diameter of a 

cylinder in an engine. In MOO problems designers are generally looking for the best 

possible design by balancing differing objectives. The problem with this approach is 

searching for the optimal design is often a time-consuming process; to make matters 

worse, the optimal design is often unable to withstand even the smallest of changes to its 

parameters. Often the resulting design from an MOO process works great but only under 

specific conditions; this leads to the desire to find an optimal design and a design that is 

also able to withstand changes.  

A design that is able to withstand changes is known as a robust design. Since it is 

very difficult to locate a design that is completely robust, designs can be given a 

resiliency score that represents the measure of robustness. In order to help find a more 

resilient score, Set-based design can be utilized. Set-based design is a method of design in 

which areas of a design are analyzed in parallel. This parallel analysis allows each design 

team to focus on areas of the design without having to worry about how their design area 

affects other steps in the design process; design teams are able produce a more robust 

design as a result of set-based design. All design teams for a particular design are able to 
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work on their area of the design concurrently. The result of this design method is that 

more time is spent searching the solution space of possible options for each area of the 

design, but a good option for each component in the design is available. Although set-

based design is a newer concept in the design world it can be highly effective in ensuring 

that the final design chosen is among the set of best design options for a designer. 

Fundamentally, set-based design is about deferring design choices until the full space of 

possible designs has been fully explored (David J. Singer, Doerry, and Buckley 2009). In 

the early stages of the design process, narrowing design options based on incomplete or 

inadequate exploration leads to non-optimal solutions (David J. Singer, Doerry, and 

Buckley 2009). If choices are made but turn out to be poor choices then correcting these 

choices can often be both time consuming and costly (Vlahakis and Partridge 1989).  

In this work, we will search for a design using Multi-Objective Optimization 

(MOO) techniques and of the designs found we are going to attempt to locate a set of 

designs that are robust. In our pursuit of the set of robust designs, we are going to look at 

examples of MOO and at methods used to generate, explore, and filter data for MOO. We 

are going to examine methods and concepts used for expressing uncertainty and 

Imprecision in the design process. We are going to explore strategies used in searching 

for an optimal design and concepts necessary for understanding how to recognize the 

solution space of optimal designs and how to search for a robust design using strategies 

of substitution and modification of parameter values. This substitution of parameter 

values will assist in the assignment a resiliency score, which will represent a design’s 

ability to withstand changes. The resiliency score will allow us to identify a design that 

may not be the best overall design but will be likely to outperform the best design in 
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terms of being able to adapt to predicted and unpredicted changes to the parameters 

representing the components of the design. By combining the concepts of multi-objective 

optimization, set-based design, and resiliency, this work hopes to both encourage ideas 

and develop new methods in locating sets of resilient design within a design space. 

Introduction to Multi-Objective Optimization 

In the early stages of the design process, choices are often made on incomplete or 

inadequate information. The problem with having to make choices in the early stages 

with partial information is that often these decisions are critical and will have long lasting 

impacts on the overall design. If choices are made that turn out to be poor choices then 

correcting those choices can often be both time consuming and costly. After 

modifications have been made to the initial design, eventually an acceptable design will 

be created which can include information on manufacturing imprecision. Imprecision is a 

known issue in manufacturing as it is highly unlikely to obtain two products that are 

identical. As Daum explains, when having cylinders manufactured, a designer can request 

two cylinders of 50mm and instead of receiving two cylinders of exactly 50mm, the 

designer will instead receive two cylinders within a predefined manufacturing range of 

50mm (Correa Florez, Bolaños Ocampo, and Escobar Zuluaga 2014). The range is often 

small but the variations in final manufactured product are expected. Imprecision is 

closely related to the issue of uncertainty. Imprecision is how far from the intended 

specifications was the item that was produced; uncertainty is knowing that there is going 

to be some degree of difference between the final product and the designed product, but 

not knowing for sure the variation from the specifications of the product. As Antonsson 

describes, the tools designers use often do not have any way of capturing imperfections in 
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the manufactured final product (Josephson et al. 1998). Because the designer’s tools are 

often incapable of capturing imperfections in the manufactured product, a tool that could 

help with providing complete or adequate information to the designer would be very 

useful. 

Multi-Objective Optimization is the perfect resource for designers to leverage to 

help with providing more information on a design before critical decisions are made. 

Multi-objective optimization is the process of attempting to maximize the effectiveness 

of a design by managing the objective function values of multiple objective functions. An 

objective function is a function that provides numerical representation to the parameters 

that make up a design. An objective function can utilize other objective functions to 

provide its numerical representation of a parameter. By helping to identify the preferred 

combinations of objective function values, MOO is able to provide designers with more 

information before critical design decisions are made. However, according to Fonseca, 

real world problems involving multi-objective optimization problems are often difficult 

to solve due to conflicting requirements of the objective function. The overall goal of 

multi-objective optimizations turns into a level of acceptance for the parameters of the 

objective function, which is the result of a compromise in value between the objective 

function parameters (Fonseca, Fleming, and others 1993). While MOO helps designers to 

locate optimal designs, it is important to realize that real work usage of MOO is likely to 

be a measure of acceptance as Fonseca described. 

Introduction to Conflicting Objective Values 

In many real world problems, it is a more common issue to have conflicting 

objectives than to not have conflicting objectives; Multi-Objective Optimization (MOO) 
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deals with objective functions possessing conflicting objectives. Conflicting objectives 

are objective function values that require the designer to manage the output value of two 

or more objective functions that require a choice to be made where one objective function 

will benefit and the conflicting objective function(s) values will be penalized. The goal of 

Multi-Objective Optimization is to locate an ideal solution and thus a balance in gain 

versus loss for each of the objectives in the objective function must be found (M. T. M. 

Emmerich, Giannakoglou, and Naujoks 2006). An example would be, a designer could 

want a design that has 3 weapon systems but only have the budget to afford two weapon 

systems. The conflict between wanting more resources and the cost of the resources is an 

example of conflicting objectives. 

Studies on Conflict 

The study of multi-objective optimization ranges across many fields in the search 

of ways to handle conflictive objective function values. In the study performed by Llopis-

Albert, the author described an efficient multi-objective algorithm for scheduling robot 

tasks such as trajectory planning and physical movement. The algorithm described takes 

into consideration collision avoidance and the time it takes to perform real-world tasks. 

The decisions made by the algorithm are based on a selection from a pareto-optimal 

frontier of possible choices representing “trade-offs between the different decision 

variables of the multi-objective optimization problem (Llopis-Albert, Rubio, and Valero 

2015). A pareto-optimal frontier is the set of solutions that are considered Pareto 

efficient. A Pareto efficient solution is a solution in which making a change to any 

objective function value cannot improve the solution value. The result of the work by 

Llopis-Albert is an algorithm that helps show the trade-offs for choosing different 
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decision variables and the time required for performing each task so that the time and 

cost efficiency of the robot’s tasklist is maximized. In another study performed by 

Kaitaniemi, the author studies the use of multi-objective optimization in order to 

determine ecological and evolutionary causes for changes in the life cycle of a specific 

species of moth. Normally when studying life cycles of insects, researchers tend to use 

single objective optimization but using a single objective for optimization is inefficient 

due to the life cycle of an insect requiring the contribution of many objectives 

(Kaitaniemi et al. 2012). Expansion of knowledge in multi-objective optimization is 

useful by increasing the understanding of a design solution space and will result in a 

better overall design of a final product or, in the case of insects, better understanding and 

prediction of life cycles. In a study by Chen who is also dealing with conflicting objective 

function values, Chen describes a method which seeks to identify the tradeoffs between 

objective function values in multi-objective optimization in proton therapy. The study 

seeks to utilize multi-objective optimization to improve the accuracy of intensity-

modulate proton therapy, which utilizes pencil beams which have dosage amounts 

associated with points along the beam (S.-J. Chen and Hwang 1992d). The goal of the 

work presented by Fonseca is to explain the known issues in evolutionary multi-objective 

optimization problems and how real world problems involving multi-objective 

optimization problems are often difficult to solve due to conflicting requirements of the 

objective function. According to Fonseca, the overall goal of multi-objective 

optimizations turns into a level of acceptance for the parameters of the objective function 

that are the result of a compromise in value between the objective function parameters 

(Fonseca, Fleming, and others 1993). The study of multi-objective optimization is 
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currently assisting scientist in their studies not focused only on manufacturing design, but 

also in areas such as robot AI, evolutionary life cycles, and proton therapy techniques. 

Multi-Objective Optimization With High Fidelity Metamodels 

The concept of multi-objective optimization can be applied to objective functions 

values that are created using high fidelity models, but it is suggested that a designer use 

metamodels to assist in computation speed. Because Multidisciplinary design 

optimization (MDO) is a complex method of optimizing the design when creating a 

design composed of multiple subsystems. When working on optimization, the amount of 

computational resources increases when seeking a higher level of fidelity in the analysis 

of subsystems. It is helpful to develop metamodels to use during analysis rather than 

using actual solvers to reduce the amount of computation required to analyze multiple 

subsystems. In an example study using metamodels for high fidelity objective function 

calculations, J. He used metamodels during the optimization of a ship hull. J. He used 

metamodels instead of actual solvers for resistance, seakeeping, and maneuvering. By 

using a metamodel, HE was able take the time required to perform optimization on the 

design of a ship hull from hours to seconds for all points produced by the model. Then 

HE used actual solvers on what was believed to be the optimal solution in order to verify 

that the solution produced by the metamodel was correct. The use of metamodels allowed 

HE to analyze a far greater number of solutions in a much shorter time frame as there was 

no longer a need to run the software for 12 hours for each solution (He, Hannapel, and 

Vlahopoulos 2011). By using meta-models, a designer can apply the concept of 

multiobjective optimization to objective function values that were created using high 

fidelity models. 
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Methods for Searching the Solution Space with Multi-Objective Optimization 

In multi-objective optimization, there are many methods for identifying robust 

points in a set of solutions by generating random points around a solution. This point 

generation can be performed using Monte Carlo methods, which is potentially inefficient 

as the same solution can potentially be used twice, or by using the concept of a Latin 

hypercube. Deb uses the Latin hypercube concept to generate patterns of points around a 

solution to identify robust points in an example of his first method at the start of each 

generation of the first method a new random Latin hypercube of points is generated 

around each point and a random point is chosen to calculate the mean effective objective 

function value for each group of points (Kalyanmoy Deb and Goel 2001b). 

Deb isn’t the only researcher looking for ways to more efficiently search the 

solution space. Josephson presents a method that utilizes three serial modules to explore a 

large solution space. The names of these three modules are seeker, filter, and viewer. The 

seeker module is used for selecting from the list of available components. The seeker 

module also ensures that the configuration of these components satisfies given constraints 

placed the design. This method of design space reduction ensures that computational 

resources are not spent on further evaluation of designs that would not produce a viable 

or would produce a sub-optimal result. Once designs are configured then the filter 

module uses a dominance based preto-optimal reduction method is used to reduce the 

number of designs. Dominance filtering is filtering out designs that are dominated by at 

least one other design. Dominance filtering reduction method produces a best-in-class set 

of designs during each iteration of the design analysis. Last the viewer module is used to 

provide designers with a visual means of identifying interesting areas of the solution 
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space. The viewer is especially useful for human interaction with multiple criteria 

parameters in which optimization of the solution space is difficult to procedurally 

determine (Josephson et al. 1998). 

In addition to the seeker, filter, viewer method described above, Josephson also 

describes a method of design space exploration that takes a broad range of samples from 

all areas of the design space. The goal is to ensure that all areas of the solution space are 

sampled well enough as to give a reasonable estimation of the design space. It is possible 

that sampling from all regions of the design space may result in a very large number of 

designs string computational resources may be required for solution space exploration 

(Josephson et al. 1998). When dealing with this kind of design space exploration, a 

designer is dealing with an embarrassingly parallel problem. This means that parallel 

processing will be able to search all areas of the design space at once given enough 

compute power. 

Reducing the Problem Space For Multi-Objective Optimization Problems 

Emmerich proposed that order to reduce the size of the problem space in multi-

objective optimizations problems, the method of using equality and inequality constraints 

can be utilized (M. T. M. Emmerich, Giannakoglou, and Naujoks 2006). An example of 

using an equality constraint is listing that x = 2. This simply states that in all solutions to 

the multi-objective optimization problem, the variable x will always be equal to 2. An 

example of an inequality constraint is listing that y < 3. This means that in all solutions to 

the multi-objective optimizations problem, y will always be less than 3. Putting both the 

equality constraint and the inequality constraint together would result in a problem space 

in which x was always equal to 2 and y was always less than or equal to 3. Equality and 



 

19 

inequality constraints are simple concepts to follow but the user of these methods must be 

careful as to not eliminate areas of the design space that could hold the desired result. 

The method presented by Kang in “An Approach for Effective Design Space 

Exploration” is a method for efficient exploration of a design space using a user-defined 

metric for reducing the number of solutions which require analysis. The reduction of the 

number of solutions requiring analysis is performed through identifying similar solutions 

and using analysis of one solution to represent the probable value outcome of analysis on 

other similar solutions (Kang, Jackson, and Schulte 2010). As Kang describes, an 

effective design space exploration (DSE) tool must utilize an effective means for 

representation, analysis, and an effective exploration method. Representation is ensuring 

that the data is well represented without requiring the analysis of every solution. Proper 

Analysis must be able to ensure solutions are valid and be able to handle potentially 

complex calculations for determining feasibility and constraints. Last, exploration must 

be able to effectively eliminate inferior solutions. By utilizing this guideline for a DSE 

tool a user can explore their data efficiently for useful solutions (Kang, Jackson, and 

Schulte 2010). 

Utilizing a Vector in Multi-Objective Optimization 

Studying the use of vectors in multi-objective optimization is proposed by several 

authors for different applications. Kuroiwa presents a method in which a vector 

representing the worst case values for each component in a multi-objective optimization 

problem (Kuroiwa 2001). Fliege presents the same concept but applied to portfolio 

selection problems(Fliege and Werner 2014). Yu also presents the same concept but 

applied to game theory (Yu and Liu 2012) . Vectors when searching for solutions in 
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multi-objective optimization problems are applicable to a wide number of applications as 

seen in the works presented by the authors above. 

Uncertainty and Imprecision 

Uncertainty and Imprecision play a large role in the manufacturing process. After 

modifications have been made to the initial design, eventually an acceptable design will 

be created which can include information on manufacturing imprecision and uncertainty. 

The issue with having this information on imprecision and uncertainty is that the tools 

designers use often do not have any way of capturing these imperfections in the 

manufactured final product (K. Deb et al. 2002). In order to explore the differences in 

between uncertainty and imprecision, the following section will be divided into two 

sections. The first section will focus on uncertainty and methods associated with dealing 

with uncertainty. The second section will focus on imprecision and the ideas for handling 

imprecision in the manufacturing process. 

Uncertainty 

Uncertainty is uncontrolled variations in manufacturing. In naval ship design, the 

first ship may turn out to be 152 feet long and the next ship built using the same 

specifications may turn out to be 148 feet long. It is common to have minor differences in 

the end product of any engineering design. It is because of dealing with these differences 

that the field of uncertainty in engineering design is a common area of research. For 

example, Chen uses the same concept of representing uncertainty in multi-objective 

optimization problem as Kuroiwa and applies it to proton therapy for cancer treatment. 

The method utilizes preto fronts to identify the tradeoff between properly dosing the 
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intended target with radiation versus the potential for harm to unintended targets in 

proximity of the target (S.-J. Chen and Hwang 1992d).  

Doolittle also shows interest in handling uncertainty in a method of replacing 

objective function values with a value the represents an uncertain multi-objective 

optimization function value. This method also includes constraints that are placed on the 

objective function values (Dolan 1989). Gunawan also displayed interest in handling 

uncertainty in multi-objective optimization problems. The method proposed by Gunawan 

uses what was called a sensitivity region. The sensitivity region is the region that contains 

possible solutions to the allowed variation of uncertain parameters. The method presented 

by Gunawan is used to identify preto optimum solutions in a discontinuous and/or non-

differentiable front (Gunawan and Azarm 2004). The target area of research for the 

Gunawan’s work is on a vibrating platform. The result of this Gunawan’s work shows a 

method in which a designer can identify points in the decision space that can handle 

small perturbations to their value by using a sensitivity region around the point. Handling 

uncertainty in manufacturing is a valued area of research and will help to lessen the 

potential of design failure after construction. 

Imprecision 

Imprecision is the unavoidable vagueness in the objective function values in the 

beginning of the design process and leads to fundamental difficulties in identifying a 

resilient design in multi-objective optimization. Imprecision is a fundamental problem in 

multi-objective optimization problems because there are often many options available to 

a designer, so trying to identify components that will all work together to achieve the 

goals of the design is a complicated process. In order to deal with imprecision in 
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manufacturing, Antonsson describes the Method of Imprecision or MOI. MOI is a 

method based on fuzzy mathematics used for handling imprecision in design methods in 

engineering. MOI is a useful tool in set-based concurrent design and in the preliminary 

stages of engineering design (Josephson et al. 1998). 

Closing of Uncertainty and Imprecision 

There is a distinct difference between imprecision and uncertainty in engineering 

design (K. Deb et al. 2002). Imprecision is having a range of possible values for a 

particular parameter but having no way of being able to determine the exact value that 

will be chosen for the parameter in the final product. Imprecision is inherently and 

unavoidably part of the initial design process. Designers often start with many options for 

a given component of a design. It is unlikely that the designer will know the exact 

optional component that will be used in the final product due to the relationship between 

components in a multi-component design. Imprecision lends to the goal of designers to 

study multi-objective optimization by giving a wide range of options for components in a 

design. 

Compensating Methods 

Compensating methods are utilized in multi-objective optimization problems in 

order to alleviate the strain of some parameters not performing as well as others. 

Compensating methods often use combination functions in order to identify designs that 

may not be as strong in one parameter but good enough in another parameter to make up 

for the weaker parameter. To give a little more detail on combination functions, 

combination functions are functions that combine objective values of the objective value 

to give a combined score to the objective function. The score is a combined means for 
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describing how well an objective function will perform on a given task. The name of the 

function that combines the objective values into an aggregate score is often called a 

metric.  

Combination functions can be observed as two types and those two types are 

compensating and non-compensating (Josephson et al. 1998). In compensating 

combination functions, the function will compensate for objective function values that do 

not perform well with objective function values that perform very well. For a non-

compensating combination function, the objective function will not compensate for 

attributes that perform poorly and as a result will have a objective function value that is 

limited by the worst performing objective value. 

Minimizing the effect of the weakest parameter is a goal of compensating method 

user. The adaptive weighted sum method or WSM was created to detect uniformly-

spaced Pareto optimal solutions. The adaptive weighted sum method was designed to 

provide an adaption to the commonly known weighted sum method, which is the most 

commonly used algorithm in multi-objective optimization problems (Kim and Weck 

2006). The weighted sum method is performed by multiplying all objective functions by 

a weighting factor and adding up the weighted objective functions. The weighted sum 

method has some pitfalls and one of the pitfalls is the inability to handle non-convex 

portions of a Pereto surface. One of the features of the adaptive weighted sum method is 

that it can reach points in the non-convex portions of a pareto surface. In addition, the 

weighted sum method ignores the non-Pereto Optimal solutions and it can handle 

problems with two or more objective functions. The adaptive weighted sum method 

works by using a two-phase process. In the first phase the algorithm uses the weighted 
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sum method to identify Pereto front patches and in the second phase, additional 

constraints are placed on the Pereto front patches. The additional constraints are used to 

refine the patches in order to create a well distributed preto front mesh. 

Weighted Sum method: Oweighted Sum = W1O1+W2O2+W3O3+W4O4 +..... + WxOx  

Utility theory is an addition to compensating method, which is a method of 

creating a weighted sum that includes uncertainty. To briefly review, a weighted sum is 

creating an aggregate of objective function values that are used to give a score to the 

objective function. Utility theory adds a little too weighted sum method as it also includes 

uncertainty. Because Utility theory is an aggregate of the objective function, it can view 

viewed as a compensating method for assigning objective function value. The reason why 

Utility theory is considered a compensating method is because an objective function can 

have a low or zero score for one of its objective function values and still register an 

acceptable objective function score by scoring high for another objective function value.  

Methods have been created in order to assist Utility theory in avoiding the issue of 

having a objective function be considered acceptable even though it contains an objective 

function value that scores below what would be acceptable for the individual objective 

function value. Two of these methods are objective constraints and subjective goals. 

When using objective constraints, the values of the objective function must meet specific 

guidelines without relying on any of the other objective function values. For subjective 

constraints, objective function values are able to trade values between other objective 

functions values in order to meet the overall requirements of the tradable objective 

function values or for the overall objective function. 
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Pareto Front 

The concept of the Pereto front was developed by Vilfred Pareto (1848-1923) and 

can be read about in the ‘Manual of Political Economy’ [TODO: Cite]. The idea of the 

perato front in relation to multi-objective optimization is that a point on the pareto front 

cannot increase the value of any objective function without decreasing the value of 

another objective function value. Pereto fronts have been heavily studied and utilized for 

exploring solution spaces. We now present several methods which applied the usage of 

Pereto fronts. 

Using the idea of a Pereto front has a pitfall of it being possible to lose the perato 

front optimal solution during optimization, Goel proposes a method to quantify trade-offs 

among objectives in the comprised region. He proposes a “methodology to construct a 

response surface approximation of the Pareto optimal front based on surrogate models.” 

Geol explains that during optimization of an elitist non-dominated Multi-objective 

evolutionary algorithm (MOEA), it is common for the population size to exceed the size 

of the original population. When the population size exceeds the original population size 

the non-dominated solution are lost and during this loss, it is possible that the preto 

optimum solution can be lost without hope of recovery of the lost solution during 

optimization (Goel et al. 2007). This loss is known as Preto-Drift. Deb presents an 

algorithm to assist with Preto-Drift. The algorithm is called NSGA-II and this algorithm 

works by storing all non-dominated solutions of optimal preto fronts in an archive format 

in order to improve convergence of the preto optimum front. By storing all non-

dominated solutions, the time and memory required to compute the preto front is 

increased but the Preto-Drift is reduced (Daum, Deb, and Branke 2007). 
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Deb discusses an interesting aspect of Pareto front multi-objective optimization 

problems in his paper “A Hybrid Integrated Multi-Objective Optimization Procedure for 

Estimating Nadir Point.” The nadir point is a point representation of the objective 

function with the lowest possible objective function values corresponding to the Pareto 

front (Kalyanmoy Deb and Gupta 2006). As Deb points out, the Nadir point is often 

incorrectly describe as the combination of the lowest objective values for all points in the 

design space which results in an overestimation of the Nadir point (Kalyanmoy Deb and 

Gupta 2006). The Nadir point is a significant point because it is used to identify the range 

of possible values for the objective function. The range of acceptable values from the 

Pareto optimal front to the Nadir point can be visualized using methods such as bar 

charts, petal diagrams and value (Kalyanmoy Deb and Gupta 2006). Once a designer has 

the range of acceptable values using the Nadir point to the Pareto front points, the 

designer has the option to normalize the points using a method described in Nonlinear 

multi Objective optimization by K. Miettinen. The Nadir point is also a rather difficult 

point to locate in objective functions with 3 or more objective function values as it often 

requires a clear understanding of the design space which is not always easy to obtain due 

to the inherent imprecision associated with early stages of multi-objective design 

optimization (Miettinen 1998).  

Component-based design is a method of design in which standard components are 

assembled to completed a design. Component-based design can be thought of as building 

a design using a predefined set of building blocks. Computer assistance is especially 

useful when using component-based design. 
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Using the idea of maximization and minimization tradeoffs as understood from 

the Markowitz portfolio optimization problems, Fliege presents a method for locating the 

robust preto front in a multi-objective optimization with uncertainty problem. The 

method utilizes standard methods in multi-objective optimization to locate the robust 

preto front (Fliege and Werner 2014). 

Robust Solution 

Choosing points which lie in the Pereto front of a solution space can come at a 

price. The points which lie in the Pereto front are often not resilient to change. This 

means that any modification to the values of the objectives in the objective function will 

result in a point that is no longer feasible. A feasible design is a design that will 

accomplish the overall objective of the design. While the points lying on the Pereto front 

may be the best for short term multi-objective problems, there is a danger in choosing 

Pereto front points in objective optimization problems in which changes can happen to 

the objective function values after the Pereto front has been identified. 

In multi-objective optimization problems, a large number of algorithms are 

focused on finding the global optimum solution or the preto front of optimal solutions, 

however, in practice, it has been found that the optimal solution is often sensitive to 

perturbation in its value. In practice, designers are often more interested in points that can 

withstand small perturbations to its value and therefore produce a stronger solution. The 

way that Deb intends on finding robust solutions is to take the mean value of a solution 

based on points within its vicinity. This will result in a point that is more robust because 

it is comprised of several points (Kalyanmoy Deb and Gupta 2006). 



 

28 

Deb presents two methods in the described work. The first method seeks to use 

the normalized difference between the function value and the perturbed value. If the 

normalized difference is less than the chosen thresh hold then the function is found to be 

robust. The second method seeks to use the mean effective function value or a value 

representing the level of acceptable perturbation in the objective function values 

(Kalyanmoy Deb and Gupta 2006). Deb’s method gives the user control over acceptable 

robustness level of function solution. 

According to Gunawan, there are two major types of optimization approaches 

found in literature. The two type are deterministic approaches and probabilistic 

approaches. “Deterministic approaches obtain a robust optimum design using its first-

order derivative or other non-statistical measures, and then incorporate such measures 

when optimizing the design objective (Gunawan and Azarm 2004).” Probabilistic 

approaches use statistics to gauge the level of sensitivity (commonly used method are 

mean and variance) of a design and then use the results of these statistics to “optimize the 

design based on this information (Gunawan and Azarm 2004).”  

In “Introducing Uncertainty in Multidiscipline Ship Design” Hannapel discussed 

the importance to identifying constraints influenced by uncertainty during the 

optimization process. Once the constraints are identified, the concept of reliability can be 

applied thus converting the uncertainty constraints into probabilistic constraints. The end 

result is of the process of introducing reliability helps ensure that the determined solution 

will provide a probabilistic result within a given reliability level. Robustness is 

introduced into the optimization process by “modifying the objective function to depend 

on the mean and variance of the response of the objective function” (Hannapel and 
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Vlahopoulos 2010). The focus of the paper was to introduce reliability and robustness 

into a multi-disciplined parallel optimization process containing properties with 

uncertainty in the ship design process. 

Ehrgott, Deb, Gunawen, and Hannapel all discuss methods for robust 

optimization. Finding the robust solution is a leading reason for study in the area of 

multi-objective optimization problems. A robust solution is a solution that is capable of 

withstanding changes to parameter values. Robust solutions are often desired over 

optimal solutions due to the inability of most optimal solutions to withstand perturbations 

to solution parameter values. We now present multiple methods used in searching for 

robust solutions. 

Scoring Distance 

The work by Barrico presents a method of using the distance between points in a 

solution space to determine the degree of robustness. Distance between points could be 

used to determine areas of point concentration and could mean that points located in these 

areas had feasible possible values within range (Kalyanmoy Deb, Miettinen, and Sharma 

2009). 

Deb applies the concept of applying difference of mean value and original 

objective function value to multi-objective optimization based on original method 

proposed by Branke for single optimization Barrico adds to Deb’s method by adding 

degree of robustness which is based on neighborhood of objective function values 

(Kalyanmoy Deb and Goel 2001a). Branke proposes a method for single objective 

function that assigns a mean value to each objective function value based on a 

predetermined neighborhood of values (Bernstein 1998). Deb utilize the method 
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proposed by Branke but instead of applying it to single optimization functions, they apply 

the Branke method to multi-objective functions and they also present an idea for 

restricting the difference between the mean value of the objective function and the value 

of the original objective function. The result of the first and second multi-objective 

optimization concepts by Deb is the ability of the designer to predetermine the level of 

robustness they would like to achieve (Correa Florez, Bolaños Ocampo, and Escobar 

Zuluaga 2014). 

Taking the first half of the method presented by Deb for applying a mean value to 

each objective function value in a multi-objective function, Barrico proposed the degree 

of robustness to extend Deb’s method. The degree of robustness is performed by take a 

neighborhood of objective function values and applying a ratio to each objective mean 

value and to not allow objective function mean values that lie outside the range of the 

ratio (Kalyanmoy Deb, Miettinen, and Sharma 2009). The goal of this work by Barrico is 

to locate the non-dominated front of robust solutions in a trade space. The work utilizes 

the methods of neighborhoods to calculate the robustness of a point. Neighborhoods of 

increasing distance are calculated around a point. The number of times the distance of the 

neighborhood around the point is increased is part of the degree of robustness calculation. 

While the robustness level of a point is less than a given threshold, the size of the 

distance will be increased until the threshold of the level of resistance is met (Kalyanmoy 

Deb, Miettinen, and Sharma 2009). Using a distance calculation which look at the 

distance from every point to its neighboring solutions is an interesting concept and this 

work provides a useful and easy to follow method of utilizing point distance for 

calculating robustness of a point. 
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Scoring Distance into Genetic Algorithm 

In Deb’s method for finding a robust preto front, for each point in the objective 

space, random points are generated within a set vicinity to determine a mean value for 

each point. This mean value represents how well a point can withstand changes to its 

value within the given range. Each point in the objective space becomes a representation 

of the mean value of points within a given range and after a few thousand generations of 

NSGA-II, a good understanding each point’s ability to withstand minor changes is 

obtained (Daum, Deb, and Branke 2007). 

This method by Deb could be used in addition to the substitution method that I 

have proposed in order to add a stronger sense to the idea of robust optimization. After 

the substitution method with other viable objective function values, points could be 

generated randomly within a range of each solution and the local mean value could be 

assigned to each point. Not only would a solution show whether it could withstand 

changes by having other viable objective function values substituted for its own, but a 

solution would show its resilience to minor modifications to its objective function value 

within its local given range. 

Avigad searches for a solution to unconstrained multi-objective optimization 

problems using an evolutionary algorithm. Avigad discusses a method in which solutions 

are associated with a performance cluster. This cluster represents how a solution may 

perform in relation to a set of solutions with similar characteristics. In order to find the 

“best of the worst case” set of performance clusters, Avigad uses an evolutionary multi-

objective optimization algorithm (EMO). EMO algorithms have been found to be very 
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useful in locating solution space fronts in large data sets so this is why Avigad chose this 

method (Farina, Bramanti, and Barba 2002) 

By providing an answer to a solution based on the set of worst case solutions, the 

user has an idea of how solutions within the set will perform. Using a set of worst case 

solutions is also preferred over trying to select a single worst case solution because 

different designers will have different ideas on which component is the most valuable. In 

addition, Avigad also presented work that was focused on determining the amount of 

distance a solution needs to be shifted in order to be no longer dominated by another 

solution (Farina, Bramanti, and Barba 2002).  

In addition to the Worst-Crowded NSGA-II method, Deb also describes the 

Extremized-Crowded NSGA-II Approach. This method, like the Worst-Crowded NSGA-

II Approach, uses sorting to assign rank but it assigns rank values in a slightly different 

manner. The sorting is performed on the population and the rank is assigned based on 

distance from the closest extreme point. The WC NSGA-II Approach uses the members 

in each generation of the population on every non-dominated front. It takes these 

population members and sorts them from minimum to maximum based on each objective 

function value. The WC NSGA-II Approach then assigns a rank to each objective 

function member based on its rank in the list. In this work using the substitution method, 

we also sort the list of the population objective function values based on the resilient 

score of each member of the population and then we assign each member a rank. As Deb 

explains in the WC NSGA-II Approach, assigning rank to the members in the population 

after sorting based on objective function value, ensures that the maximum objective value 

will receive the best crowding distance score (Daum, Deb, and Branke 2007). Using this 
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idea of sorting to assign rank for crowding distance score can be directly associated with 

the idea we used in the substitution method for sorting by resilience score and assigning 

rank. 

Genetic algorithms are useful for exploring solution spaces in which the solution 

space is non-linear, discontinuous, non-differentiable. This solutions provided genetic 

search algorithms do not guarantee an optimal solution but they will provide a solution 

the is considered to be near-optimal. A common technique in genetic algorithms is known 

as crossover. This method seeks to acquire the best attributes from both parents to 

produce a stronger child. 

The payoff table is a method in which the objective function values are plotted 

into a table format making it easier to view the relationship between the objective 

function values (Kalyanmoy Deb, Miettinen, and Sharma 2009). The payoff table suffers 

from the limitations of having the possibility of an incorrect Nadir point determined by 

identifying inaccurate minimization of the objective function values. An example of 

inaccurately identifying the Nadir point region can be seen in figure 2 below by looking 

at the dark shaded section of the solution space. 
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Figure 2. Payoff table by Deb 

A payoff table may not produce the true nadir (Kalyanmoy Deb, Miettinen, and Sharma 2009) 

 

Deb’s points out that because it is possible that the payoff table method can locate 

and inaccurate estimation of the Nadir point that a more reliable method is required. 

Several methods for better estimating the Nadir point are presented by Deb (Kalyanmoy 

Deb, Miettinen, and Sharma 2009). The methods presented were the Worst-Crowded 

NSGA-II method and the Extremized-Crowded NSGA-II approach. The comparison of 

these two approaches resulted in showing that the extremized NSGA-II approach was 

able to reliably calculate the nadir point for multi-objective optimization problems up to 

20 parameters. 

Set Based Design 

In the paper ‘What is Set-Based Design’, the Singer’s goal was to describe set-

based design and how it relates to naval ship design. Naval ship design has traditionally 

been done using the point-based design method. The author explains the set-based design 
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method and how it improves over the point-based design method (David J. Singer, 

Doerry, and Buckley 2009).  

In long term problems of objective optimization, such as naval ship design, 

changes to the values of the objectives that make up an objective function is all but 

guaranteed. For example, throughout the life cycle of a naval vessel, that vessel will 

always become heavier. This is due to components being added to the naval vessel and 

modifications to the initial configuration of the naval vessel. As the naval vessel becomes 

heavier, that vessel is no longer able to move at the same max speed that it was able to 

achieve early in its life cycle. This is due to there being more weight for the engines of 

the naval vessel to have to move. In problems of multi-objective optimization in which 

changes can happen to objective values, a designer should be aware of the impact of 

those changes to the objective values in the overall design. 

Description of Set-Based Design 

Traditionally the process of designing complex systems happened in what is 

known as the point-based design method. In each step of the design process, an choice 

would be made based only on whether that element fit within the constraints placed on it 

from previous elements in the design process (Figure 3). For example, if a designer’s 

chose this weapon system now then the designer can only choose radar system A or B in 

the next step of the design process. The point-based method worked and was successful 

but the method possesses some pitfalls. The pitfalls are that as designers are choosing 

elements that fit into their design that it is possible to fall into a situation where the only 

choice for the current step in the design process will invalidate a previous. When a 

previous choice becomes unfeasible it causes the designers to start back at the point of 



 

36 

the design process with the new invalidated previously valid choice and make new 

choices until all choices in the design sequence are valid. This re-choosing of points 

could cost weeks to months of development time. Eventually, the designers would find a 

design with all feasible choices made at every step of the point-based design method, but 

the final product of the design was most likely not an optimal design. The design chosen 

using the point-based method was most likely only a possible valid design. 

 

Figure 3. Classical Design Spiral by Evans  

A choice would be made based only on whether that element fit within the constraints placed on it from previous elements in the 

design process (Evans 1959) 

Point-based strategies consist of five basic steps (J. K. Liker et al. 1996): 

1. First, the problem is defined.  

2. Engineers generate a large number of alternative design concepts, usually 

through individual or group brainstorming sessions.  
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3. Engineers conduct preliminary analyses on the alternatives, leading to the 

selection of a single concept for further development   

4. The selected concept is further analyzed and modified until all of the 

product’s goals and requirements are met 

5. If the selected concept fails to meet the stated goals, the process begins again, 

either from step 1 or 2, until a solution is found 

Set-Based Design (SBD) method is an improvement over the point-based design 

method. SBD ensures that the design chosen after all choices of variables in the design 

have been chosen from their set possible values in the optimal range. The reason why the 

points chosen from the SBD method are able to be chosen from their optimal value 

ranges is because more time is spent analyzing the range of possible values for a 

particular variable. Also, the value ranges for each of the variables is studied 

independently of all other systems in the design. This allows for multiple groups of 

designers who specialize in different aspects of the design to work independently from 

one another thus making the problem easier as optimal ranges for all variables can be 

found without worrying about whether a particular design is incompatible with previous 

or future components in the design. A good example of the process of SBD can be seen in 

Figure 4 that shows independent groups of design specialist starting off their design in 

separate areas and then combining their efforts to produce a single more optimal design. 

Because designers have values in optimal ranges for all variables in a system, it allows 

designers to chose an optimal design. 
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Figure 4. Set-Based Design Process 

(Bernstein 1998). 

Set-Based Design fits into the area of Concurrent Engineering “is one step beyond 

Point-Based Design (D. J. Singer and Parsons 2003). Concurrent Engineering is a method 

of design in which a team composed of a multiple specialist and different areas of 

expertise are combined into a single group to develop a better design.  

Set-Based design main features include (D. J. Singer and Parsons 2003): 

• Broad sets of design parameters are defined to allow concurrent design to 

begin 

• These sets are kept open longer than typical to more fully define trade-off 

information, 

• The sets are gradually narrowed until a more globally optimum solution is 

revealed and re- fined 

• As the sets narrow, the level of detail (or design fidelity) increases. 

 



 

39 

Because set-based design operates in a manner that is not common to traditional 

design processes there “has been a source of confusion” as to how SBD is useful (D. J. 

Singer and Parsons 2003). The confusion comes from the delay in making critical design 

decisions. By delaying design decisions until a better understanding of the possible 

solution space for all components in a design allows the designers to make better choices 

for the final design. This delay in design choices until a better understanding of the 

solution space is understood is described in ‘The Second Toyota paradox: How delaying 

Decisions Can Make Better Cars Faster” (Technology and reserved 2016a). This paper 

describes how Toyota is able to design cars using SBD methods faster, more efficient, 

and creating a better product as the final design than if they had used traditional point-

based design methods like their competition.  

By allowing more time for the designers to make critical design decisions in their 

area of expertise, the cost associated with the design process are kept much lower 

throughout the design process. An example of the lower cost throughout the design 

process can be seen in figure 5. By taking time more time to develop their design and 

making more optimal choices at every step in the design process, designers are able to be 

more efficient in their design choices. Being more efficient in the design choices prevents 

the need to remake components that are no longer viable in the current iteration in the 

design from going into production. Efficient design choices generate a lower overall cost 

in the labor associated with developing a design at both the production levels and the 

design levels. 
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Figure 5. Designing-In Costs  

(Bernstein 1998) 

During the initial stages in the design process, the stakeholders have a critical 

level of impact on the final design. Often times the stakeholders will make choices on 

critical components of a design when there is little data on the impact of those design 

decisions. An example of the amount of knowledge through the design process can be 

seen in figure 6. These stakeholder choices at the early stages of development with little 

knowledge of the impact of those choices can have lasting impact on the overall design. 
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Figure 6. Evolution of Design Knowledge  

(Bernstein 1998) 

The set-based design method is a method in which multiple designers work on 

their specialized area of the design without worrying about how their design affects other 

parts of the overall design. This allows specialized designers to focus on their area of 

expertise by allowing the designers to create analyze the set of best possible options in 

their area of the design. Since designers at all stages are able to identify the best options 

for their area of expertise, the overall design of the ship is improved. 

The point based design method is the process of choosing components in a 

sequential order without cause the entire system to become unfeasible. An example of an 

infeasible design would be a ship that no longer floats. When designers are forced to or 

opt to choose a component that causes the ship to become unfeasible, the designers must 

return to a previous component and choose new components until all components for the 

overall ship design are chosen and the result is a feasible ship.  
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Point based design is the method of trying to find a single solution that meets all 

requirements of a design. Design decisions are made in sequence and often require 

backtracking to previous decisions as new requirements of the design become known. 

Point based design has a key drawback and that drawback is that a feasible design may be 

located but that design is unlikely to be a global optimum in the design space.  

By allowing each design team to focus on areas of the design without having to 

worry about how their design area affects other steps in the design process, design teams 

are able produce a more robust design. All design teams for a particular design are able to 

work on their area of the design concurrently. The result of this design method is that 

more time is spent searching the solution space of possible options for each area of the 

design, but a good option for each component in the design is available. Traditional point 

based design method is a contrast to spending more time in each design phase because 

point based design makes a less informed design choice at each step in the design 

process. Point based design is burdened with the issue of having to go through the steps 

of backtracking through the design process while set based design does not suffer from 

backtracking through the design process because it has many options pre-prepared for 

each step in the design process (Sobek, Ward, and Liker 1999). 

Set-based design is a method of analyzing a design space by analyzing a set of 

designs rather than the single point design method used in point-based design. Set-based 

design allows for greater flexibility and helps with the optimization process by reducing 

the problem size to a more manageable state. After the problem size has been reduced, 

point-based design can then be used efficiently for analysis of the remaining problem 

space (Hannapel and Vlahopoulos 2010).  
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Toyota’s design method is considered to be a more concurrent engineering 

method than the design method used by both Japanese and US auto manufacturers. This 

concurrent approach design is performed without requiring design teams to be collocated 

which is often considered a requirement by other auto manufacturers. Because design 

decisions are made by design teams using the whole solution space of designs rather than 

a specific design provided to them by another design team earlier in the design process, 

design decision makers are able to choose a design from the set of possible designs which 

results in an overall better design decision (Morgan and Liker 2006).  

The process of using set based design may be difficult for companies to develop. 

Toyota has developed a long-standing relationship with manufacturers that is built on 

trust and the knowledge that the manufacturers know specific ranges of values that the 

components they develop can utilize. Design decisions on how to identify sets of designs 

are made by senior engineers with 15 to 20 years of experience. These decisions on how 

to shape the design set is based on years of hands-on involvement in the design process 

and thus companies that wish to adopt set based design have many years of design 

experience before implementing set based design (Morgan and Liker 2006). 

 ‘‘The second Toyota paradox: how delaying decisions can make better cars 

faster,’’ Toyota’s design process is highly effective but seems as though this method 

would slow down the overall design process as design decisions are delayed until very 

late into the design process. The traditional method of design is to make design decisions 

early in the design process and then to refine those design decisions as the design process 

moves forward. This method of design is known as the point-based design method 

(Technology and reserved 2016a). Toyota does not use the point-based design method 
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but instead uses the set-based design method and part of the requirement of using the set-

based design method is to delay design decisions until a large amount of information is 

gathered for each component in a design. 

Toyota consistently shows a high profit per vehicle and growth in market share. 

The tools Toyota uses for its development are nothing special but rather the high success 

rate is due to their design process. Toyota uses what is known as set based design for 

their design process. This design method focuses on analyzing a large set of designs 

rather than starting from a specific design and refining that design. Starting from a 

specific design and refining that design is the most widely used method of design and is 

known as point-based design. Point based design has many pitfalls such having to revisit 

steps in the design process many times due to changes in requirements for steps further in 

the design process. Set-based design avoids most of the headache with design changes by 

providing many options for each component of the design. Having many options for 

components allows changes further in the design process by having alternative 

components ready to go for each step in the design process (Sobek, Ward, and Liker 

1999).  

Toyota’s design method is considered to be a more concurrent engineering 

method than the design method used by both Japanese and US auto manufacturers. This 

concurrent approach design is performed without requiring design teams to be collocated 

which is often considered a requirement by other auto manufacturers. Because design 

decisions are made by design teams using the whole solution space of designs rather than 

a specific design provided to them by another design team earlier in the design process, 
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design decision makers are able to choose a design from the set of possible designs which 

results in an overall better design decision (Sobek, Ward, and Liker 1999).  

Marine design is moving to set based in "A hybrid agent approach for set-based 

conceptual ship design." Marine design in the US is focused around cross-functional 

teams using concurrent engineering approaches. As with most traditional design 

approaches, this method of concurrent engineering was still based around point based 

design methods. After researching the set based design utilized by Toyota, advanced 

marine design has begun to also use set based design method in order to make more 

informed decisions during the design process. The goal of utilizing set based design 

methods is to “provide a greater probability of achieving a global optimum of achieving a 

global optimum for the overall design” (Parsons, Singer, and Sauter 2016).  

The Navy is using set based design as naval ship design is an evolving landscape 

in which the design specifications for a particular ship can change at any point in the 

design process. The point-based design method does not adapt to these changes easily 

and leads to slowdowns in the design process. Set-based design is a more agile approach 

and can adapt to an evolving design requirements (Hannapel and Vlahopoulos 2010). 

In 2014 the Small Surface Combatant Task Force was formed to study the 

Modifications to the Littoral Combat Ship (LCS) and to study new design concepts. The 

paper Concept Exploration Methods for the Small Surface Combatant describes the 

results of that study (Garner et al. 2015). The goal of the study was to analyze the results 

of modifying the current LCS ship, using the current design, and to examine completely 

new ship designs. In each of the designs examined, the designers were to examine 

weapon systems, cost, sensors, and the lethality of “the lethality of the ship to air, surface, 
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and undersea threats” (Garner et al. 2015). The goal was to find a ship design that would 

meet current mission goals while providing more capabilities than the current LCS 

design. The study utilized Set Based Design methods in order to create a better design 

than had previously been possible without using Set Based Design. The resulting design 

was generated using multiple groups of specialist all working in their area of specialty 

and after each group of specialist finished analyzing their area of the design, the 

“configuration Capability Calculator intersected the feasible solutions by the Feasibility 

Element algorithms” (Garner et al. 2015).  

Three Methods for Testing Robustness 

 

Figure 7. Robust Test 

Distance Test Metric for Robustness 

The Distance test metric for robustness is performed by examining the Euclidean 

distance in between points. The Euclidean distance in between points can provide insight 

into how closely points are related. The idea of measuring the distance in between points 

is not a new concept as there are many algorithms that measure the distance in between 

points, however, the focus of this work is to locate a robust design. In order to use the 

Euclidean distance in between points to locate a robust design, understanding of how 
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methods to calculate the distance in between points using one or more column values, 

methods for storing those distance calculations, and to calculate a score metric need to be 

developed. 

Three Methods for Distance Calculation 

Three methods for distance calculation includes but are not limited to single 

column distance, multi-column distance, and total distance. 

1. Single column distance 

 

 

Figure 8. Single Column Distance 

Single column distance is calculated between column values in a selected column with each row of data within a tradespace 
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Storage Methods for Single Column Distance. Understanding methods for storing 

values during single column distance can be helpful. Next we will discuss two methods 

for this type of storage. 

Single Column Distance Selected Value Storage 

Single column distance delected value storage is performed with an additional 

column that holds the distance between a selected column value or a randomly selected 

column value and all other column values. 

Single Column Distance Total Value Storage 

Single column distance total value storage is handled by additional column to the 

tradespace. Each row of data in the additional column holds a matrix. Each matrix stores 

the result of measuring the distance between each column value in the selected column. 

Since calculating the distance between all rows of data and all other rows of data in the 

selected column could be computationally expensive, it is acceptable to choose manually 

or randomly a set of row values from the selected column to use for calculating distance. 

However, it is important to remember that not calculating the distance between all points 

will result in an estimate for the distance calculation. An additional column should be 

added to the tradespace with the value showing the percent of values that have had 

distance calculations performed. 

Multi-column distance. Multi-column distance is the distance between values in 

two or more columns values in each row of data in the tradespace. 
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Combined Multi-Distance Storage 

 

Figure 9. 3D point data converted to Euclidean 

At the time of the writing of this work, the statistical language R provides an easy 

to use function that will handle the creation of this distance matrix. 
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Figure 10. R distance Script 

Because the designer is choosing multiple columns to work with in Multi-column 

distance, the designer has options on the storage of the value of the distance calculation, 

and on the metric used for calculating the score value for the function. The following are 

two potential storage options for the values resulting from the distance comparisons. 

Individual Distance Storage 

Individual distance storage is a method of storing the individual distance value for 

each comparison of column values using two or more columns. 
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Figure 11. Multi Column Individual Storage Distance 

Combined Multi-Distance 

Combined multi-distance is a method of storing a single distance value based on 

the comparison of the distance between column values in multiple columns. 
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Figure 12. Multi Column Score Random Selection 

Methods for Calculating Score Distance 

Now that methods have been established for calculating the Euclidean distance in 

between points in one or more columns, and methods for storing those calculated 

distances, it is now time to introduce methods for calculating the score of the distance 

measurements is called distanceScoreMetric. The distanceScoreMetric function can be 

calculated using multiple methods found below. 
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Average Closest Selected Column Score 

Average closest selected column score is a distanceScoreMetric that is calculated 

by sorting the table of distances and taking the average distance score for each row based 

on a chosen number of closest points. 

 

Figure 13. Average curColSel 

Weighted Sum Distance Score 

Weighted sum distance score is calculated by either randomly selecting or having 

the designer select columns and assigning a weighting value to those columns. The points 

are now sorted in ascending or descending order based on designer preference. Choose a 

number of closest points and multiply or add the distance score for each row based on the 

selected number of closest points. 
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Figure 14. Method 2 – Weighted Sum 

Average Weighted Sum Distance 

Average weighted sum distance is calculated by either randomly selecting or 

having the designer select a chosen number of columns. Sort the table of distances and 

multiply or add the weighted sum value for each column to every row. Take the average 

distance score based on the distance between each row and its chosen number of closest 

to points. 
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Figure 15. Average Weighted Sum 

A designer has many options to use while searching for a robust design when 

calculating the distance in between points, storing the results of the distance storing the 

results of the distance calculations, and using the stored results for calculating a score 

metric value. 

The value returned from the score metric is dependent on the methods the 

designer chose during the distance calculations and the storage of those results. It would 

be considered good practice for the designer to try multiple methods and examining the 

results of each combination of methods chosen as part of the search for a robust design. 
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Genetic Algorithm Test Metric for Robustness. Genetic algorithm test metric for 

robustness takes the concept of the basic Boolean test and expands upon this method by 

applying the Boolean test to genetic algorithm concepts. The basic Boolean test is applied 

to a genetic algorithm by observing the value of the fitness score to determine if the 

fitness score is below, above or in an acceptable value range. If the value of the fitness 

score passes the Boolean test then the score metric is used to store the number of times a 

design passes or fails these tests. A design that passes the Boolean test more often is more 

robust. 

The general concept for the genetic algorithm test metric for adding robustness is 

to create a tradespace of random members with a predetermined max number of 

members, or it is also acceptable to use a previously created tradespace. Next, create a 

function that gives an idea on the strength of the members of the tradespace and call this 

function the fitness function. Perform some action on the parameter values for each 

member of the tradespace an arbitrary number of times.  

In order to use a genetic algorithm when searching a robust design, a designer 

must understand the basic practices for genetic algorithms such as linear normalization ( 

normalization over the range of 0 to 1.0) and duplicate handling (allow duplicate or force 

unique column configurations) could be considered when searching for a robust design. 

Also, methods for determining which members of the population survive to the next 

generation such as elitism, crossover, and mutation should be implemented in order to 

ensure efficient use of genetic algorithms in the search for robustness in MOO. Also, 

ensure that in every generation an action is taken that results in changes to the fitness 

function value. After the action is performed that results in a change to the function 
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value, perform a test that determines if the data member survives, dies, or is allowed to 

reproduce new data members. 

Genetic Algorithm Example 

Multiple genetic algorithm examples are available for use in scientific computing. 

The following figure provides a basic understanding of how to code a genetic algorithm 

for use in searching for robust designs. 

 

Figure 16. Sudo Code Example For a Genetic Algorithm 

Using the basic concept of a genetic algorithm, a designer has access to a 

powerful tool that can be used for calculating the score metric value used when searching 
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for a robust design. The designer is able to analyze many different parameter values 

combinations which provides opportunity to observe the results of modifying parameter 

values on the score metric. Observing the results of the changes displayed by the score 

metric can provide a good understanding of the robustness of a design. 

Combined Test Metric for Robustness. Combined test metric for robustness uses a 

combination of methods from two or more robustness tests to create a higher level 

robustness score. An example of such a combination of methods would be combining the 

robustness score of the distance and genetic algorithm robustness tests. As each method 

for testing robustness has the potential for being computationally expensive, it is 

recommended to take caution to keep the total computation time within an acceptable 

range for your tests. 

There are many possible tests for finding robustness. The Boolean test, distance 

test, genetic algorithm test and the combined test metric have been listed here but there 

are many more known and undiscovered methods for finding robustness. There is no 

known best method for finding robustness so the best option for a designer is to ready 

multiple methods for searching for robustness, and to apply them as interchangeable 

modules. 

We looked at adding robustness as a percentage. We then described the Boolean 

tests for calculating robustness such as the Boolean test and the different components of 

the more complicated distance test. We also described a genetic algorithm test and briefly 

explained that it is an option for the designer to combine testing methods. By 

understanding multiple means for searching for design robustness, a designer has more 
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control over understanding the ability of a design to withstand changes throughout a 

design’s lifecycle.  
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CHAPTER III  - METHODOLOGY 

Multi-objective optimization (MOO) is a vast field of study applied to multiple 

areas of scientific study where tradeoffs among competing interests must be balanced and 

considered. Robust design adds an additional layer of analysis to MOO trying to find 

advantageous tradeoffs among competing interests where there is uncertainty and 

decision-makers seek a robust solution that will still be acceptable even with expected 

variance in outcomes. In this work, we utilize the concept of parameter variance from 

multi-objective optimization in order to search for a robust design within the motivating 

Small Surface Combatant Task Force (SSCTF) dataset (please see the introduction for an 

overview of the SSCTF dataset and related project). While the research was focused on 

the SSCTF dataset, the methods presented herein are applicable to wide variety of multi-

stage design and decision problems. The SSCTF dataset was utilized to show that the 

concepts within this work had real world application and could be utilized to extend and 

improve a State of the Art design process.  

Two new methods of analysis to estimate design robustness are developed when 

exploring the complex relationships between design parameters, metrics, and models 

applied to the SSCTF dataset (explained further within the section). These two methods 

of analysis are developed while using the SSCTF metrics and models to estimate design 

robustness. In summary, the philosophy of this work was to utilize the SSCTF dataset and 

its metrics to show real world application of a new set of robustness estimate methods 

and this work also focused on ensuring transferability of this methodology to alternative 

datasets and problems. 
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Research Approach 

The approach of this work was to provide a two-step process in which step 1 

seeks to break down the concepts required for understanding the components of our 

multi-objective optimization problem and step 2 focused on providing 2 algorithms used 

in exploring the tradespace for a robust design estimate given uncertain changes to 

parameter values. While performing step 1 and step of the approach, effort was taken to 

ensure that transferring application of the methods to alternative data sets was intuitive. 

Step 1: The Three Concept Levels Method for Deconstruction  

of a Multi-Objective Optimization Problem 

The First Concept Level 

 

Figure 17. The first concept level 

The first concept level of a multi-objective optimization problem is the 

tradespace. The tradespace is the most basic component for the multi-objective 

optimization problem. The tradespace is composed of designs and deconstruction of the 

tradespace is a beginning point for components of a multi-objective optimization 

problem. In general, a tradespace is composed of variables that represent the capabilities 

of designs. These variables also provide insight into the relationships between the 
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variables and are utilized in some combination to provide the designer a means for 

comparing the effectiveness of the designs. 

Tradespace Components. The SSCTF tradespace was a complex configuration of 

design parameters which provided a description of the capabilities of a ship design. The 

SSCTF tradespace consists of several different components which are described below 

and are useful in understanding the tradespace utilized in this work. The first component 

is non-numeric designations which are the ID descriptions of the different designs. These 

ids allow the designer to identify the categorical capabilities of the ship design which are 

the family, combat capability, and combat capability alternative for a design. The family 

of the design is based on the HM&E or hull mechanical and engineering configuration of 

a ship design. The combat capability is the type of warfare the ship is designed to handle 

such as reconnaissance or anti-submarine warfare. The combat capability alternative is a 

variation of a combat capability that is capable of handling a different type of warfare 

than the original combat capability. The next component of the tradespace is the 

composed of fixed ship design properties. These properties are design inputs such as the 

length of the ship or the type of radar the ship utilizes. Next, we have modeled design 

outputs. Modeled design outputs are properties of the design that are directly affected by 

design inputs. An example would be the weight of the ship which is affected by many 

inputs such as the length of the ship, or the number and size of the weapons placed on the 

ship. 
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Figure 18. Definition of a tradespace 

Each design in the tradespace is represented by a row of data. The rows of data in 

the tradespace are composed of columns that are the parameters that make up a design. 

Each parameter is defined here as the numerical representation of the level of 

contribution provided to the multi-objective optimization problem. The numerical value 

representing a parameter can be the result of an equation or simply a static number. 

 

Figure 19. Parameter Definition 

For each of the Xb designs, there exists a range of possible values. This range of 

values can be most easily understood as a range of values between a minimum value and 

a maximum value. 
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Figure 20. Parameter Value Range Definition 1 of 2 

Because an infinite number of values that can be represented between any two 

numbers, a designer must use a value that represents a meaningful change in the design as 

the distance in between any two points in the range of values for each parameter. 

 

Figure 21. Parameter Value Range Definition 2 of 2 

 

The Second Concept Level 
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Figure 22. The second concept level 

The second concept level of a multi-objective optimization problem can be 

understood as additional columns of data added to the tradespace. These additional 

columns are defined here as metrics. Metrics are additional parameters added to a 

tradespace that are the result of functional calculations on the tradespace. For example, 

any algorithmic combination of parameter column values would be acceptable for 

creating a metric. Essentially, a metric is a meaningful calculation that the designer can 

use to show relationships between column values. 

 

Figure 23. Additional Metrics 

Metrics are commonly created in three different ways; a static metric is a number 

that is not calculated; independent metric is calculated using an algorithm that doesn’t 

rely on any other metric to obtain a value; and dependent function metrics which are 

calculated using an algorithm that relies on other metrics to obtain a value. Metrics added 

to the tradespace should provide a meaningful way for the designer to better understand 

both the relationships between parameters and provide insight into the operational 

effectiveness of a design. A list of pseudo code examples of metrics can be observed in 

the table below. 
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Metric Value Definitions 

 

Figure 24. Sudo Code for Commonly useful Metric Value Examples 
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The Third Concept Level 

 

Figure 25. The third concept level 

A metric is a value that represents the result of a functional combination of 

parameters and is included in the list of parameters within the design tradespace. The 

most important metric in multi-objective optimization problems is the score metric. The 

score metric represents the value of a design and is the core component of the The Third 

Concept Level. To give a little better understanding of what is represented by a score 

metric, a score metric is not limited to but could represent any of the following things: 

monetary value, level of effectiveness of a group of parameters, percentage of capability.  

In general, multi-objective optimization can be thought of as a tradespace 

composed of designs consisting of a set of parameters each of which represent a range of 

possible values with a determined distance between each point. It is common practice to 

add metrics to the list of parameters in order to show relationships between parameters, 

but there is one metric that is more critical than the other metrics. This critical metric 

represents the third concept level of multi-objective optimization and is used to represent 

the expected level of performance of a design. We call this critical metric the score 
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metric. The score metric is important because it represents the way a designer can 

compare one design to other designs. It can also be used to determine whether or not a 

design passed testing. 

 

Figure 26. Score Metric 

As introduced in concept level 2, there are three ways in which metrics are 

calculated and those methods are static, independent, and dependent. Since the score 

metric is critical in gauging ability of a design to perform, it is important to choose the 

right method when calculating the value of the score metric. 

 

Figure 27. Three different types of score metric 

Of the methods for calculating a metric (static, independent, and dependent), the 

score metric should never be calculated using a static number. A static number would 

imply the designer already knew whether or not a design passed testing and how well the 

design performed before testing. The score metric should also not be an independent 
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function as being an independent function would mean that changes made to the 

parameters of a design would have no impact on the score metric value. The score metric 

should be a dependent metric function that relies on the parameter values and possibly 

other metric values for gauging one design’s effectiveness against another design. 

Summary: The General Description of the first three concept levels of Multi-Objective 

Optimization Problem 

 

Figure 28. Three levels of capability concept 

In summary, the first three concept levels of a multi-objective optimization are the 

basic concepts required for understanding an approachable mechanism for deconstruction 

of a multi-objective optimization problem. Descriptions of the first three concept levels 

of a multi-objective optimization problem were explained as the tradespace, metric, and 

score metric concept levels. 
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Figure 29. Summary of concept levels of a multi Objective optimization Problem 

An understanding of these three concepts levels provides the designer a 

foundation needed for adding a fourth concept level and the focus topic of the next 

section, adding robustness to multi-objective optimization. 

Fourth Concept Level: Adding Robustness to Multi-Objective Optimization 

 

Figure 30. Introduction to adding robustness 

We have established a working description of the three concept levels for a multi-

objective optimization problem and we now need to look at the additional requirements 

that are needed for adding the fourth concept level of a multi-objective optimization 
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problem. The fourth concept level is adding robustness to a multi-objective optimization 

tradespace. 

Adding Robustness by Testing Changes to the Score Metric 

 

Figure 31. Four concept levels of multi-objective optimization 

Adding robustness to a multi-objective optimization problem is not a trivial 

problem as it requires additional computation and understanding of the solution space of 

designs. The robustness score is a metric that provides a numerical representation 

describing a design’s ability to withstand change. The robustness score or R is calculated 

by measuring the effect of changing the value of a parameter used in calculating the score 

metric (S) for a design. As we recall, the score metric is used for describing a design’s 

ability to perform and a means for comparing a design to other designs. By measuring the 

change in the value of the score metric, we observe three of the possible types of 

robustness metrics. Positive acceptable robustness is a scenario in which the robustness 

metric only accepts score metric values that are better than the original design’s score. An 

indifferent acceptable robustness is a type of robustness metric in which the robustness 

metric accepts score metric values that are better or worse than the original score metric 

value with the condition that the score metric value must be an acceptable design. A 
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negative acceptable robustness is a scenario that only accepts score metric values that are 

lower than the original score metric value. The focus of this work will utilize the 

indifferent acceptable score metric scenario. 

 

Figure 32. Adding robust score to the tradespace 

Robust Score Metric as a Percentage. Positive, indifferent, and negative are the 

types of robustness tests for the score metric that have been described. Understanding 

these three methods is essential to understanding how to calculate the robust score metric. 

However, these three methods will only result in a True or False answer. Having True or 

False does not fulfill the requirement of a numerical value representation of the level of 

robustness. While it is acceptable to consider True or False be equal to 1 and 0 

respectively, assigning the numerical representation of True or False to the robustness 

metric is insufficient. It is unlikely to locate a design that is fully robust, which in this 

case would be represented by a 1. A fully robust design would be able to withstand any 

changes to its parameter values and still be able to fulfill the required capabilities of the 

design, which is an unlikely scenario in product design. 

It is more likely to locate a design that is able to pass the robust test a percentage 

of the time. By listing resiliency as a percentage, a designer can expect a design to 

withstand a change and remain feasible a percent of the time which is valuable 
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information. In addition to being able to recognize a design's ability to withstand changes 

a percent of the time, assigning the robustness score as a percentage allows the designer a 

useful means for being able to compare designs and also the ability to reasonably predict 

the failure rate for a design. 

Modifying a Value for Finding a Robust Percentage. In order to calculate the 

percentage score that represents robustness, we need to modify a parameter value that is 

used in calculating the score value for a design. Modifying a parameter can be as simple 

as replacing the value of a parameter with another possible value within the 

predetermined range of possible values for a parameter. Modifying a parameter can also 

be a more complicated process of performing a calculation to assign a new parameter 

value. After we modify a parameter value, we need to perform one of three tests to 

determine whether or not the score metric is within range of acceptable values as 

determined by the robustness testing scenario chosen by the designer for an acceptable 

design. For example, in order to fulfill the requirements of the indifferent acceptable 

score metric, the resulting value of the calculation would need to lie on or in between the 

max and min possible values for the parameter. 

Test for Calculating Robustness. There are many possible tests for robustness and 

since there is no known best method for testing design robustness, it is best for the 

designer to understand at least a few different types of robustness tests. In order to limit 

the potential problem space for different types of robustness tests, this work is going to 

focus on the Boolean test, however, three additional robustness testing methods are 

explained in the background section to provide the reader with addition insight into 
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options for calculating robustness. A detailed description of our described Boolean test 

for robustness is now provided.  

 

Figure 33. Robustness Tests 

Basic Boolean Test Metric for Robustness. The basic test metric for robustness of 

design begins with a Boolean test in the form of A(<, >, <=, >=, ==, !=)B. Multiple test 

can be linked together when calculating the Boolean answer. The links between tests can 

be represented by using linking terms such as ‘and’, ‘or’ 

a) A (<,>,<=,>=,==,!=)B and C(<,>,<=,>=,==,!=)D 

1) A > B and C == D 

2) A < B or D != C 

3) A > B and C == D or A == C 

 

There are many possible tests for finding robustness. The Boolean test, distance 

test, genetic algorithm test and the combined test metric have been described but there are 

many more known and undiscovered methods for finding robustness. There is no known 

best method for finding robustness so the best option for a designer is to ready multiple 

methods for searching for robustness, and to apply them as interchangeable modules. 
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Summary of Adding the Robust Metric to a Multi-Objective Optimization Problem 

 

Figure 34. Summary of the concept levels of a multi-objective optimization problem with 

robustness 

Step 2 Part 1: Permutation Stability Analysis - 

 Calculating Robustness with Substitution 

Introduction: Substitute Primary Parameter Value from Feasible Design with Primary 

Parameter Value from Another Design 

Our search for a robust design began within a tradespace of feasible and infeasible 

naval ship designs. Feasible designs are the designs which provided an acceptable score 

metric value above the predetermined threshold of -1. The SSCTF design team provided 

the threshold score metric value. The infeasible designs are described to be any design 

that did not possess a score metric value above -1. During initial testing of the design 

space, permutation testing was performed utilizing both feasible and infeasible designs. It 

was realized that permutation testing performed on an infeasible design almost always 
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resulted in a failed final design. In order for a design to pass testing, a design had to pass 

all 16 testing metrics. Because of having to pass all 16 testing metrics, it is unlikely that 

modifying a single design parameter on a failed design would affect the outcome of the 

testing metrics because of the complexity of the relationships between design parameters. 

It should be noted that it is possible for a design to fail initial testing and still pass future 

score metric testing, however, further testing of a design that fails initial score metric 

testing may result in simply determining that the design was infeasible and that further 

testing of this infeasible design could have been better utilized by testing a starting viable 

design.  

The tradespace of designs can be divided into 4 areas based on the likelihood of 

success and the ability of a design to withstand testing as observed in figure 35 below. 

The first area of the design space that we are going to discuss is the infeasible and non-

resilient area. These are the designs that are both incapable of performing all required 

design tests and unable to withstand changes to parameter values. The infeasible and non-

resilient area of the tradespace is the worst-case scenario. Next, we have the infeasible 

but resilient area of the tradespace. These are the designs that do not pass all required 

testing of the tradespace but are able to withstand changes to parameter values without 

much change to design performance. Next, we have the non-resilient but feasible are of 

the tradespace. These designs are able to accomplish the required area task of the design 

but are unable to withstand changes to parameter values. This area of the design space is 

where many final versions of designs are located and is a leading reason for research into 

multi-objective optimization. The non-resilient feasible designs are often the optimal 

designs within the tradespace. What this means is that these designs outperform all other 
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designs within the tradespace but are unable to withstand changes to design parameters. 

The final area of the tradespace, and the most desired outcome is the area of the 

tradespace known as the feasible and resilient area of the tradespace. This area of the 

tradespace is the area in which designs are both capable of performing all required tasks 

of a design and the designs are also able to withstand reasonable changes to design 

parameters. An optimal feasible resilient design is the most ideal case of this scenario, 

however, locating such a design may not be possible so the alternative of a design that is 

both feasible and resilient but may not be the optimal design is also desired. 

 

Figure 35. Four regions of a design tradespace 

Description of Permutation Testing. Permutation analysis is a multi-step process 

for assisting a designer in selecting a design with a percentage level of resistance to 

changes in a design’s parameter values. We begin the description of permutation analysis 

by identifying critical parameters that have the largest impact on the score metric value of 

a design. For this work, we focused on Free Space, Free Weight, Free Power, and Free 

Cooling of a naval ship design. These 4 critical variables were predetermined by the 
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SSCTF design team as the 4 parameters that had the largest impact on the likelihood that 

a design would pass the 16 testing metrics with a score metric value greater than -1.  

Permutation analysis, as applied to the SSCTF dataset, began by dividing the 

tradespace up into the 5 different mechanical model families. These mechanical model 

families are known as I1, I2, IC, M1, M2 (described in Introduction). For each 

mechanical model, we repeat the substitution analysis method for each of the 4 critical 

parameter values. The following is a description of permutation analysis as applied to a 

single critical parameter. This method was applied to each of the 4 critical parameter 

values. 

Permutation Analysis for a Single Critical Variable. To begin permutation 

analysis start by storing all available values for a critical variable using the designs in the 

tradespace from a mechanical model into a data structure. Next, randomly chose a target 

design and trade the value of another design’s critical parameter from the data structure 

of available values with the value of the same critical parameter in the target design. 

After the value of the target design’s parameter has been substituted with the value from 

the data structure of available values for the selected critical parameter, recalculate the 

score for the modified initial design. If the design after substitution was performed is no 

longer within the range of acceptable values as determined by the designer, discard the 

modified design. Repeat the substitution of the chosen critical parameter value from the 

target design with all other available values from the data structure of available values for 

the chosen critical parameter. Next, recalculate the score metric of the target design after 

every substitution to acquire a total number of feasible designs for the target design. The 

total number of feasible designs after substitution can be used as the robustness score, or 
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you may perform a calculation based on the likelihood a design is still feasible after 

substitution. A target design with a high robustness score means that the target design is 

resilient for the chosen critical variable because the target design can withstand changes 

to the chosen critical variable and still remain a feasible design.  

The method described so far in the description of the substitution method would 

be able to calculate the robustness score based on one chosen parameter in a design and 

thus the robustness score would show the ability of the target design to withstand changes 

for one chosen parameter. In order to determine a more complete robustness score for a 

design, the substitution process should be repeated for all critical variables. Since the 

process of substitution is the same for each critical variable, there is good opportunity to 

run the code in parallel for each of the chosen parameters. 

Optimizing the Permutation Analysis Method: Duplicate Tests 

At this point in the permutation analysis, one could think about storing the value 

combinations of the primary variables into an array so that duplicate feasibility tests are 

not performed. As long as care is taken to ensure that processes are not performing work 

on the same design using the same value, then testing if a value has been tested before a 

process uses the value is a small overhead in comparison to allowing duplicate tests. 

Subset Testing 

If your tradespace contains a large enough number of designs to make 

permutation analysis computationally infeasible with all parameters in each design, then 

it is acceptable to perform permutation analysis on a subset of designs from the list of 

possible designs for each design in the tradespace. Performing permutation analysis on a 

subset of the possible solutions will obtain a robustness estimate, but you must keep in 
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mind that choosing fewer than all solution values for permutation analysis on target 

designs could result in less accuracy of the robustness score, and therefore should be 

listed as approximation of the robustness score. 

General Example of Permutation Analysis 

Permutation analysis can provide a way to identify designs from the set of 

feasible designs that are better at withstanding changes to parameter values and are thus 

more robust. In order to assist a designer in utilizing the permutation method, a generic 

example of permutation analysis method is now presented.  

Step 1: Generate design variation and assign feasibility score 

Define T to be a Tradespace of designs di=1..n  

 T = di=1..n 

Each design di has properties (Vi=1..nR , [Xi=1..n ]) 

 V : is a key variable of the design  

 R : is the range of possible values for a variable 

[X] : The list of parameters within the tradespace that do not change 

Table 3  

Design space: di 

ID V1R V2R VnR [X1,X2,X3] 

1 50-150 30-150 ... 1,20,10 

 

di=1..n  = Vi=1..nR , [Xi=1..n ] 
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Perform Monte Carlo on V1 in order to select points within the range of possible Values. 

In this case, the total size of the design tradespace is: 

(VR)size * (VR)size = (150-50) * (150-30) = 12000Tradespace Size 

12000 designs is not a very large design tradespace, however, if we are dealing 

with a larger number of Key Variables or larger ranges of values for the key variables, 

then the potential size of the tradespace grows rapidly. In order to deal with the large 

numbers of potential designs, sampling methods such as Monte Carlo sampling can be 

used to help analyze the solution space. 

Table 4  

Design Space: di with variation for each V 

ID V1R V2R [X1,X2,X3] 

1 50 150 1,20,10 

2 92 48 1,20,10 

3 143 37 1,20,10 

4 150 50 1,20,10 

 

For each variant, V use a testing method such as the Boolean, distance, genetic 

algorithm, and combined tests for robustness when determining whether a design 

generated by the Monte Carlo generation of data is a feasible design.  

Boolean testing for feasibility method example 

If the value of |V1 - V2| >= 100 then Feasible 

Else Infeasible  
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F(v) = (Feasible|Infeasible) 

Table 5  

Design space: di with variations for each K and  

ID V1R V2R [X1,X2,X3] F(v)  

(Feasible| 

Infeasible) 

1 50 150 1,20,10 Infeasible 

2 92 48 1,20,10 Infeasible 

3 143 37 1,20,10 Feasible 

4 150 50 1,20,10 Feasible 

 

So far the feasibility design score for the base design is 0.5 as 2 of the 4 tested 

designs are feasible: 

Table 6  

Design space: di with variation for each K and 

ID V1R V2R [X1,X2,X3] Total Feasible 

Design Score 

1 50-150 30-150 1,20,10 2/4 = .5 

 

Now substitute the values within rows 3 and 4 as they were the feasible designs 

for the variables from column V1. Now substitute the parameter values within column V1, 
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from the designs that were feasible with one another. In this case, we are substituting the 

values of rows 3 & 4. 

Table 7  

Design space: di with variation for each K 

ID V1R V2R [X1,X2,X3] F(v)  

(Feasible| 

Infeasible) 

1 50 30 1,20,10 Infeasible 

2 92 48 1,20,10 Infeasible 

3 150 37 1,20,10 Feasible 

4 143 50 1,20,10 Infeasible 

 

After the substitution, row 3 is the only row that remains feasible making the 

design feasible for three designs out of the 6 designs tested. After the swap of feasible 

designs, the design remains feasible 50% of the time. In order to increase the rate at 

which substitution method finds the feasible designs from the range of possible design 

combinations, during each iteration of swapping values between feasible designs, new 

values should be generated for all key parameters in all designs that were infeasible. 
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Figure 36. General algorithm for locating a robust design through substitution analysis 

Sudo Code Example of Permutation Stability Analysis Applied to SSCTF Dataset. 

Permutation Stability Analysis is the core effort of this work so a sudo code example of 

the selection of a single design value applied to the SSCTF dataset is provided below. 

The method begins by randomly selecting a design through the selection of the cca index. 

We then test to see if the value we are about to test has previously been tested. If the 

value has been tested then we use the index of the first design that has not previously 

been tested. If the design has not previously been tested then we use that design. Lastly, 

we assign the selected value to the target design. After the new value has been assigned, 

we send the new version of our target design through metric testing to determine if the 

new value that was assigned to the target design has produced a valid design. We repeat 
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this value selection process for replacing the value of the target variable using every other 

known successful value for the chosen critical variable. We repeat this process for every 

design within the tradespace of designs to acquire a percent success for permutation 

analysis. 

Table 8  

Permutation stability analysis source code 

 # Attempt to randomly get the index of a value in the critical variable list 

mechanicalModel = rowDict[mechModel] 

chosenbscell = "" 

chosenCCA = "" 

numBscell = len(localVarValList[mechanicalModel]) 

chosenBscellIndex = random.randint(0, numBscell - 1) 

curBscellIndex = 0 

chosenCcaValIndex = 0 

for bscell in localVarValList[chosenSeed]: 

  if curBscellIndex == chosenBscellIndex: 

      chosenbscell = bscell 

      numCca = len(localVarValList[mechanicalModel][chosenbscell]) 

      chosenCcaIndex = random.randint(0, numCca - 1) 

      curCcaIndex = 0 

      for cca in localVarValList[mechanicalModel][chosenbscell]: 

          if curCcaIndex == chosenCcaIndex: 

              chosenCCA = cca 

              numValForCca = 

len(localVarValList[mechanicalModel][chosenbscell][chosenCCA]) 

              chosenCcaValIndex = random.randint(0, numValForCca - 1) 

              break 

          else: 

              curCcaIndex += 1 

      break 

  else: 

      curBscellIndex += 1 

 

# Once we have attempted to randomly choose a value to try for this row, 

make sure we have a 

# random index of a value that hasn't been tested so that we can meet our 

percentage. 

# If we don't get a random number that hasn't been tested, take the next 

number that hasn't been tested 



 

86 

if 

(localVarValList[mechanicalModel][chosenbscell][chosenCCA][chosenCc

aValIndex]['tested'] == True): 

  seed = rowDict[CONST.seed] 

  for bscell in localVarValList[rowDict[CONST.seed]]: 

      for cca in localVarValList[seed][bscell]: 

          for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])): 

              if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == 

False): 

                  if firstIndexOfUntestedCcaVal == -1: 

                      # store a reference into the structure to the first untested 

value 

                      firstIndexOfUntestedSeed = seed 

                      firstIndexOfUntestedBscell = bscell 

                      firstIndexOfUntestedCca = cca 

                      firstIndexOfUntestedCcaVal = curCCAVal 

                  numUntested += 1 

              else: 

                  numTested += 1 

 

  randomPermute = \ 

  localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][f

irstIndexOfUntestedCca][ 

      firstIndexOfUntestedCcaVal]['value'] 

   # if we are allowing duplicate tests of the same value 

 localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][fi

rstIndexOfUntestedCca][ 

      firstIndexOfUntestedCcaVal]['tested'] = True 

else: 

  randomPermute = 

localVarValList[mechanicalModel][chosenbscell][chosenCCA][chosenCc

aValIndex]['value'] 

   # if we are allowing duplicate tests of the same value 

  if allowDuplicatePermutation == False: 

      localVarValList[mechanicalModel][chosenbscell][chosenCCA][chosen

CcaValIndex]['tested'] = True 

 

# Assign the randomly or next chosen value to the critical var in prop dict 

# rowDict contains a design and we are replacing the selected primary 

variable vvalue with the permuted value for testing 

rowDict[primaryVar] = randomPermute 
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In case the reader is curious why we bother with attempting to randomly choose a 

value from the list of possible values for the critical variable, we apply random selection 

because it is possible that the user may have a solution space that is too large to perform 

permutation testing for 100 percent of possible values for every design. The random 

selection is in place to provide a mechanism for performing permutation utilizing a 

percentage of possible available values for a design. As we wished to show the results of 

fully utilizing permutation analysis, we did not provide results of percentage of possible 

results but the option is there in case the reader finds themself in a position where their 

solution space is to large to perform full permutation testing. It is recommended that if 

the reader chooses to perform permutation testing on a percentage of the population, the 

reader should make a note of the percentage of possible values that were tested so that it 

is clear that the results of permutation analysis represent the success rate for the subset of 

possible values. 

Step 2 Part 2: Permutation Stability Analysis - Calculating  

Robustness with Mutation 

A Genetic Algorithm Substitution Method for Finding Resilient Designs within a 

Tradespace 

In order to provide more functionality to permutation analysis, it was thought that 

providing a means for the designer to explore the design space around successful designs 

would be helpful. Mutation analysis was added to permutation analysis in order to 

provide a means for the designer to locate designs that were not previously considered. 

Because the selection of designs through mutation analysis is random, new values may or 

may not be feasible. However, mutation analysis still provides a more enhanced view 
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than permutation analysis alone by adding to the expectation of a design to be able to 

withstand changes to design parameters. 

Possible Choices. Mutation analysis is an enhancement to permutation analysis 

that performs a random selection of values utilizing a target design, and a selected design 

from the design tradespace of possible designs. Mutation randomly chooses to select a 

value in between, below, or above the two selected values. 

In Between. For the in-between choice, mutation must decide if it wants to be 

closer to the current value or the target value. After choosing the current or target value, 

then mutation checks to see if its choice is above or below the halfway point between the 

current and target value and it uses that information for ensuring the randomly chosen 

values are closer to the selection of the current or target value. The in between choice 

also has the option of selecting halfway in between the current and target value but if 

mutation chooses halfway then it does not matter if the mutation selects the current or 

target value because halfway is the same answer for both options. 

Below and Above. If mutation chooses below or above then it must select the 

target value or the current value. Once mutation chooses the target value or the current 

value, it randomly chooses a number in between the halfway point and its choice of the 

target or current value. Mutation then subtracts or adds the randomly chosen value with 

its selection between the current and target value based on if it wants the mutated value to 

be above or below the current or selected value.  
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A sudo code example of mutation analysis is now provided: 

Table 9  

Calculate mutated value 

''' Mutation possible answers 

  0) Somewhere in between 

      a) Random value closer to current value 

      b) Random value closer to target value 

      c) Halfway 

      Note: If the new value is already present, then move on without mutation 

  1) Above or below current value by whichever puts the point: 

      a) Places the current value in between itself and the target value ( new <---- current ------- 

target ) 

      b) Places the target value in between itself and the current value ( current ----- target -----> 

new ) ''' 

def mutateValue(current, target): 

  # choice 0 or 1 

   # 0) Somewhere in between 

   # 1) Above or below current value by whichever puts the point: 

  position = [0, 1] 

  positionChoice = random.choice(position) 
 

  # in between choice 

   # 0) Random value closer to current value 

   # 1) Random value closer to target value 

   # 2) Halfway 

  inBetween = [0, 1, 2] 

  inBetweenChoice = random.choice(inBetween) 
 

  # aboveBelowChoice 

   # 0) Places the current value in between itself and the target value ( new <---- current ------- 

target ) 

   # 1) Places the target value in between itself and the current value ( current ----- target -----> 

new ) 

  aboveBelow = [0, 1] 

  aboveBelowChoice = random.choice(aboveBelow) 
 

  # only dealing with positive numbers 

  mutatedValue = 0 

  halfway = (current+target)/2 
 

  current = int(current) 

  halfway = int(halfway) 

  target = int(target) 
 

   # force a mutated range 

  if halfway == target or halfway == current: 

      current = random.randrange(600,1000) 

      target = random.randrange(0,400) 

      halfway = 500 
 

  current = int(current) 

  halfway = int(halfway) 

  target = int(target) 
 

   # Somewhere in between 
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  if positionChoice == 0: 

       # Random value closer to current value 

      if inBetweenChoice == 0: 

          if(current < halfway): 

              mutatedValue = random.randrange(current, halfway,1) 

          else: 

              mutatedValue = random.randrange(halfway, current,1) 
 

       # Random value closer to target value 

      elif inBetweenChoice == 1: 

          if(target < halfway): 

              mutatedValue = random.randrange(target, halfway,1) 

          else: 

              mutatedValue = random.randrange(halfway, target,1) 
 

       # Halfway 

      elif inBetweenChoice == 2: 

          mutatedValue = halfway 

  else: #Above or below current value by whichever puts the point 

       # Places the current value in between itself and the target value ( new <---- current ------- 

target ) 

      if aboveBelowChoice == 0: 

           # ( new <---- current ------- target ) 

          if(current < halfway): 

              mutatedValue = current - random.randrange(current, halfway, 1) 

          else: # ( target ----- current -------> new ) 

              mutatedValue = current + random.randrange(halfway, current, 1) 
 

       # Places the target value in between itself and the target value ( current ----- target -----> 

new ) 

      elif aboveBelowChoice == 1: 

          if(target < halfway): 

               # ( new <---- target ----- current ) 

              mutatedValue = target - random.randrange(target, halfway,1) 

          else: 

               # ( current ----- target -----> new ) 

              mutatedValue = target + random.randrange(halfway, target,1) 
 

  return mutatedValue 
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CHAPTER IV – RESULTS 

Introduction to Results and the Initial Statistics of the SSCTF Dataset 

We begin processing Small Surface Combatant Task Force (SSCTF) data 

(described fully in the Introduction section) with basic statistics: Non-Unique designs, 

Unique designs, Successful Unique designs, Unsuccessful Unique designs, and Summary 

Statistics for each of the Five Mechanical Models. These statistical measures were 

developed during the SSCTF project and are presented here as the base methodology 

upon which we are improving. Code segments and derived tables and graphs are included 

for completeness. 

Following basic statistics as developed during SSCTF, we introduce results from 

design permutation and the additional insight gained on the permutation stability of the 

four key characteristics of successful multi-purpose surface ships: Free Weight, Free 

Power, Free Cooling and Free Space. These four characteristics are described fully in the 

Introduction section. This extended methodology is applied to the problem of selecting a 

surface ship mechanical model ( described in the Introduction) that is both likely to be a 

successful ship, meeting all key metrics (described in the methodology) and which is 

most likely to survive the uncertainty bid and manufacturing process, preserving the four 

key characteristics. 

Code and derived tables and graphs are presented to support the utility of this new 

methodology and potential usage in current exploratory clean-sheet undersea design and 

other upcoming joint projects. 
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Non-Unique Designs 

We begin by first looking at the total number of non-unique designs. All 

mechanical models possess the same number of non-unique designs. We theorize that this 

is because the data generated was focused on producing a uniform data set. It is 

convenient that the data is equally present for all mechanical models for the sake of a fair 

comparison of the results of permutation stability analysis. 

 

Figure 37. Total number of unique designs from the full dataset 

Table 10  

The full dataset with all non-unique designs 

Bscell 

Total 

number of 

non-unique 

designs in the 

full dataset: 

i1 

Total 

number of 

non-unique 

designs in 

the full 

dataset: i2 

Total number 

of non-unique 

designs in the 

full dataset: ic 

Total number 

of non-unique 

designs in the 

full dataset: 

m1 

Total number 

of non-unique 

designs in the 

full dataset: 

m2 

1A 1900 1900 1900 1900 1900 

1A-DF-

1 
1900 1900 1900 1900 1900 

1A-D2-2 1900 1900 1900 1900 1900 

2A 2100 2100 2100 2100 2100 

2A-DF-

1 
2100 2100 2100 2100 2100 

2A-D2-2 2100 2100 2100 2100 2100 

3A 7800 7800 7800 7800 7800 

3A-DF-

1 
7800 7800 7800 7800 7800 
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3A-D2-2 7800 7800 7800 7800 7800 

4A 6550 6550 6550 6550 6550 

4A-DF-

1 
6550 6550 6550 6550 6550 

4A-D2-2 6550 6550 6550 6550 6550 

5A 3400 3400 3400 3400 3400 

5A-DF-

1 
3400 3400 3400 3400 3400 

5A-D2-2 3400 3400 3400 3400 3400 

6A 2700 2700 2700 2700 2700 

6A-DF-

1 
2700 2700 2700 2700 2700 

6A-D2-2 2700 2700 2700 2700 2700 

7A 10200 10200 10200 10200 10200 

7A-DF-

1 
10200 10200 10200 10200 10200 

7A-D2-2 10200 10200 10200 10200 10200 

8A 8450 8450 8450 8450 8450 

8A-DF-

1 
8450 8450 8450 8450 8450 

8A-D2-2 8400 8400 8400 8400 8400 

Total 129250 129250 129250 129250 129250 

 

Unique Designs  

As expected, we can see in Table 11 below, that each Bscell has the same number 

of unique designs across all mechanical models. While Bscells may have different 

numbers of unique designs, all mechanical models possess the same total number of 

unique designs. 

 

Figure 38. Total number of unique designs from the full dataset 
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Table 11  

Total number of unique designs from the full dataset 

Bscell i1 i2 ic m1 m2 

1A 38 38 38 38 38 

1A-DF-1 38 38 38 38 38 

1A-D2-2 38 38 38 38 38 

2A 42 42 42 42 42 

2A-DF-1 42 42 42 42 42 

2A-D2-2 42 42 42 42 42 

3A 156 156 156 156 156 

3A-DF-1 156 156 156 156 156 

3A-D2-2 156 156 156 156 156 

4A 131 131 131 131 131 

4A-DF-1 131 131 131 131 131 

4A-D2-2 131 131 131 131 131 

5A 68 68 68 68 68 

5A-DF-1 68 68 68 68 68 

5A-D2-2 68 68 68 68 68 

6A 54 54 54 54 54 

6A-DF-1 54 54 54 54 54 

6A-D2-2 54 54 54 54 54 

7A 204 204 204 204 204 

7A-DF-1 204 204 204 204 204 

7A-D2-2 204 204 204 204 204 

8A 169 169 169 169 169 

8A-DF-1 169 169 169 169 169 

8A-D2-2 168 168 168 168 168 

Total 2585 2585 2585 2585 2585 

 

Successful Unique Designs for Each Mechanical Model 

In table 12 we can see that not all bscells are equally successful before 

permutation. It can also be observed that for each bscell, we may have cases where a 
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bscell is successful for some mechanical models, but not all mechanical models. So far in 

the observation of the data, this is the first point where we can see a difference in the 

performance of the different mechanical models. A successful design is one that passes 

all 16 performance metrics (explained in greater detail in the methodology). We also see 

variance in the number of successful designs among differing bscells. This can be 

explained by the complex interaction among differing capabilities concepts and 

mechanical models. For example, with some mechanical models, one bscell may have a 

capability that leads to a longer hull length which then leads to a larger slower ship and 

may not pass all metrics. 

 

Figure 39. Code used for producing the successful unique designs chart 

Table 12  

Successful unique designs for each mechanical model 

Bscell i1 i2 ic m1 m2 

1A 0 0 0 2 34 

1A-DF-1 31 38 38 38 38 

1A-D2-2 5 26 26 26 26 

2A 0 0 1 7 41 

2A-DF-1 41 42 42 42 42 

2A-D2-2 29 42 42 42 42 

3A 0 0 0 12 139 

3A-DF-1 124 156 156 156 156 

3A-D2-2 25 78 78 78 78 

4A 0 0 0 5 97 

4A-DF-1 85 131 131 131 131 

4A-D2-2 13 81 83 83 83 
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5A 0 0 0 12 67 

5A-DF-1 68 68 68 68 68 

5A-D2-2 55 68 68 68 68 

6A 0 0 0 9 50 

6A-DF-1 53 54 54 54 54 

6A-D2-2 28 47 47 47 47 

7A 0 0 0 24 182 

7A-DF-1 172 204 204 204 204 

7A-D2-2 0 0 0 0 0 

8A 0 0 0 13 127 

8A-DF-1 113 169 169 169 169 

8A-D2-2 0 0 0 0 0 

Total 842 1204 1207 1290 1943 

 

Number of Failures for Each Mechanical Model 

The number of failures for each mechanical model could have been inferred from 

the total number of unique designs and the total number of designs that passed the 16 

metrics, and also the requirements testing. However, it is helpful to have the total number 

of failures in tabular format. We close the description of the failures data by observing 

that some bscells have no failures implying that these bscells are likely to be pass all 16 

metrics regardless of mechanical model. 

 

Figure 40. Code to pull of the number of failures for each mechanical model  



 

97 

Table 13  

Number of failures for each mechanical model 

Bscell i1 i2 ic m1 m2 

1A 38 38 38 36 4 

1A-DF-1 7 0 0 0 0 

1A-D2-2 33 12 12 12 12 

2A 42 42 41 35 1 

2A-DF-1 1 0 0 0 0 

2A-D2-2 13 0 0 0 0 

3A 156 156 156 144 17 

3A-DF-1 32 0 0 0 0 

3A-D2-2 131 78 78 78 78 

4A 131 131 131 126 34 

4A-DF-1 46 0 0 0 0 

4A-D2-2 118 50 48 48 48 

5A 68 68 68 56 1 

5A-DF-1 0 0 0 0 0 

5A-D2-2 13 0 0 0 0 

6A 54 54 54 45 4 

6A-DF-1 1 0 0 0 0 

6A-D2-2 26 7 7 7 7 

7A 204 204 204 180 22 

7A-DF-1 32 0 0 0 0 

7A-D2-2 204 204 204 204 204 

8A 169 169 169 156 42 

8A-DF-1 56 0 0 0 0 

8A-D2-2 168 168 168 168 168 

Total 1743 1381 1378 1295 642 

 

Combined Statistics for Each of the Mechanical Models 

Lets condense the previous summary statistics data down into a single table (table 

5) showing overall mechanical model performance. We can see that the mechanical 
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model, M2, passes testing 75% of the time. Mechanical model I2, Ic, and M1 pass testing 

46-49 percent of the time. Mechanical model I2 comes in last with the lowest pre-

permutation testing with only 32% of unique designs passing testing. Thus, a design from 

the mechanical model family M2 is estimated to be 26 percent more likely than the 

alternative mechanical models to pass all required metrics following the bid and 

manufacture process.  This is a significant difference and without any further analysis, 

M2 would be the best choice when seeking a design likely to be a successful ship “as 

built.” We can see that in the data provided, M2 has nearly 2 times the number of rows of 

data that were present at the start before permutation. This is acceptable as we are 

focused on estimating the likelihood a design will still be successful following “intra-

mechanical model” design parameter swaps. 

 

Figure 41. Combined statistics for each of the mechanical models 
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Table 14  

Combined results showing pre-permutation statistics 

Mechanical 

mode 

variants before 

permute 

success before 

permute 

failures before 

permute 

percent success 

before permute 

i1 2585 842 1743 0.325725 

i2 2585 1204 1381 0.465764 

ic 2585 1207 1378 0.466925 

m1 2585 1290 1295 0.499033 

m2 2585 1943 642 0.751644 
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Figure 42. Pre-permutation statistics for mechanical models 

Table 14 represents the current “state of art” in the SSCTF design selection 

process. In the next section, we will take a quick look at computation running times. 

After computation running times, the following section will begin an enhancement and 

refinement to the current process of design selection with an addition to the SSCTF 

design process. This enhancement to the design process will be known as design 

permutation computations and analysis. 

Algorithmic and Performance Issues 

Although the primary focus of this study is the development of a new analysis 

methodologies with existing SSCTF data which is the neighborhood of 27Mb, 

algorithmic and computational efficiency may be important in future studies in which 

potentially billions of designs are evaluated. Database reads were accomplished in 12.24 

seconds. Parallel (using the MPI4Py library) permutation analysis on an 8 core (16 

thread) Mac Pro is summarized in Table 6. 
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Table 15  

Timings 

Mechanical 

Model 

Time 

(Seconds) 

config data 

Number of 

Rows 

Time (seconds) it 

took for permute 

Avg Calculation 

Time (seconds) 

per row 

m2 5.10 30978 10741 2.88 

m1 2.29 16951 3481 4.86 

ic 1.97 14332 2439 5.82 

i1 .34 2305 227 10.15 

i2 2.00 14353 2314 6.20 

Time it took for Configuring the data structures, permuting the data, and the number of unique designs processed for each mechanical 

model 

The permutation calculation average time per row seems to do better with more 

rows of data, but at best we can expect to spend ~2.8 seconds per row. The current 

implementation adapts to the number of cores and could easily scale to much larger 

problems. Eventually, this could be extended to HPC either using MPI4Py or the HPC 

Modernization Program Galaxy Orchestration platform. 

Permutation 

Introduction to Permutation 

In this section, we will look at the results of permutation analysis. At this point 

the code used is the same for all mechanical models, however, the results of permutation 

on each of the 4 critical variables (Power, Space, Cooling, Weight) have different results. 

Let's first take a quick look at the code before we look at the results from permutation on 

the 4 critical variables for each of the 5 mechanical models. Although the code below 

prints out individual tables for each mechanical model, a combined table showing all 

mechanical models in one location will be presented for each of the critical variables in 
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their respective sections. Finer details of the permutation code and algorithm are in the 

Methodology Section. 

 

Figure 43. Produce charts for all mechanical models and a combine chart of results 

Space Permutation Results 

Space is the first critical variable on which we observe the results of permutation. 

We can immediately notice that for the mechanical models, M1 is slightly better than M2 

at handling permutation on the critical variable Space. We look back to the summary 

statistic for the mechanical models and note that before permutation, M2 was 75 percent 
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likely to pass the 16 testing metrics, when M1 was 49 percent likely to pass those same 

metrics. This means that if we have a passing design for both M1 and M2, and we care 

most about whether or not the design will be able to handle changes in Space, we should 

choose M1 over M2. At this point, we can see that permutation has already shown that it 

has the potential to influence the mechanical model selection process. 

Table 16  

After permutation results for all mechanical models on critical variable Space 

Mechanical 

Model 

variants tested during 

permute 

variants feasible 

after permute 

variants permute 

failures 

percent success 

after permute 

i1 1940810.0 1731536.0 209274.0 0.892172 

i2 17281012.0 15714097.0 1566915.0 0.909327 

ic 17297517.0 15800915.0 1496602.0 0.913479 

m1 21865500.0 21367190.0 498310.0 0.977210 

m2 60188311.0 57844962.0 2343349.0 0.961066 
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Figure 44. Space - Combined bar chart statistics 

Weight Permutation Results 

After examination of the Space critical variable, and noting that mechanical 

model M1 is the optimal choice when looking at a design’s ability to withstand changes 

to the Space variable, we move on to examine the results of permutation on the critical 

variable Weight. Looking at the Weight critical variable, we can see that M2 is ~2 percent 

better at handling permutation to the Weight critical variable than M1. It is surprising that 

M1 did not perform as well as M2 when handling permutation to the critical variable 

Weight because M2 has two propellers and would assumingly possess less free weight to 

use than M1, which only has one propeller. Because there is a complex relationship 

between engine performance and fuel consumption to obtain the required ship range, it is 

possible that having two screws (M2) is more efficient than one screw (M1) therefore 

requiring less fuel and more favorable weight permutation stability. However, this 

reasoning for M2 having a better robustness score for the critical variable weight is 

speculative. If the designer cares mostly about a design’s ability to handle changes as 
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observed through permutation to the critical variable Weight, then the designer should 

choose mechanical model M2. Again, the additional layer of analysis produces 

interesting and potentially important information. 

Table 17  

After permutation results for all mechanical models on critical variable Weight 

Mechanical 

Model 

variants tested 

during permute 

variants 

feasible after 

permute 

variants 

permute 

failures 

percent 

success after 

permute 

i1 1940810.0 1561953.0 378857.0 0.804794 

i2 17281012.0 15610203.0 1670809.0 0.903315 

ic 17297517.0 15927389.0 1370128.0 0.920790 

m1 21865500.0 20578473.0 1287027.0 0.941139 

m2 60188311.0 57921822.0 2266489.0 0.962343 
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Figure 45. After permutation results for all seeds Weight 

Power Permutation Results  

So far we have determined that M1 is better at handling permutation on the 

critical variable Space, and M2 is better at handling permutation on the critical variable 

Weight. We now move on to examine the results of permutation on the critical variable 

Power. For all mechanical models, the results show that they are all very capable of 

handling changes to the critical variable Power. However, M1 is impressively able to 

handle changes to the critical variable Power 99 percent of the time. M1’s closest 

competitor is M2 with 98 percent chance of handling changes to the critical variable 

Power. Even though 98 percent chance that M2 will handle a change to the critical 

variable power is really good, it is still slightly better for a designer interested mainly in a 

mechanical model’s ability to withstand changes to power requirements to choose the 

mechanical model M1. Ship power is generated by bypassing an engine’s main drive and 

diverting mechanical power to a generator. The current result is not a significant 

differentiating factor but could become one with finer detailed simulation of ship 
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subsystems. As a side note, one of the primary attractions of electrical non-mechanical 

energy transfer systems such as i1, i2 and mixed mode engines such as ic is survivability 

by avoiding situations where damage to a ship’s main drive shuts down secondary power 

generation making a ship inoperable.  

Table 18  

After permeation results for all mechanical models on critical variable Power 

Mechanical 

Model 

variants tested 

during permute 

variants 

feasible after 

permute 

variants 

permute 

failures 

percent 

success after 

permute 

i1 1940810.0 1735649.0 205161.0 0.894291 

i2 17281012.0 16495189.0 785823.0 0.954527 

ic 17297517.0 16429965.0 867552.0 0.949845 

m1 21865500.0 21745880.0 119620.0 0.994529 

m2 60188311.0 59502099.0 686212.0 0.988599 

 

  



 

108 

  

 

Figure 46. After permutation bar chart results for all mechanical models on critical 

variable Power 

Cooling Permutation Results 

The last critical variable that we are going to perform permutation analysis on is 

Cooling. We have determined that mechanical model M1 is best at handling permutation 

on Space and Power, M2 is the optimal choice for handling permutation on Weight. Both 

M1 and M2 possess the ability to withstand permutation on the critical variable Cooling 

97.7 percent of the time. This similar resistance to permutation on Cooling makes both 

M1 and M2 comparable choices when a designer cares mostly about a design’s ability to 

withstand changes to the critical variable Cooling. As with ships free Power (above) 

Cooling was identified as a critical feature but was not modeling in sufficient detail to 

make useful inferences from permutation testing. 
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Table 19  

After permutation results for all mechanical models on critical variable Cooling 

Mechanical 

Model 

variants tested 

during permute 

variants 

feasible after 

permute 

variants 

permute 

failures 

percent 

success after 

permute 

i1 1940810.0 1918330.0 22480.0 0.988417 

i2 17281012.0 17148238.0 132774.0 0.992317 

ic 17297517.0 17178435.0 119082.0 0.993116 

m1 21865500.0 21815771.0 49729.0 0.997726 

m2 60188311.0 60011812.0 176499.0 0.997068 
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Figure 47. After permutation bar chart results for all mechanical models on critical 

variable Cooling 

Mutation Analysis 

Introduction to Mutation Analysis 

Adding in mutation analysis (described in the Methodology) to the permutation 

process provided some results that may have revealed some bias in the data sets showing 

more focus on fully populating the range of possible values for M1 and M2. In order to 

help identify whether or not there was bias in the data, we present the results of 

Algorithm 2 (described in the Methodology). Algorithm 2 is the addition of mutation into 

the permutation stability analysis. Adding mutation to the permutation stability analysis 

adds additional knowledge in the form of helping to identify potential designs that may 

not have been considered or revealing if some mechanical models have had their solution 

space more fully explored than other mechanical models. 
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Figure 48. Create and populate bar charts for mutation data 

Space - Mutation Analysis 

We begin looking at the ability of the 5 mechanical models to withstand mutation 

analysis to the 4 critical variables with examining the Space critical variable. We can see 

that the ability of all mechanical models to withstand mutation is a lower percentage than 

each of the mechanical models ability to withstand permutation. Having a lower 

percentage chance to withstand mutation than permutation is not surprising as mutation is 

exploring potential designs above, below, and in between selected designs. Despite the 
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lower percentage chance to survive mutation, we can see that M1 is more likely to 

survive mutation than the alternative mechanical models when focusing on the Space 

critical variable in table 15 below. 

Table 20  

Effects of mutation on Space 

Mechanical 

Model 

success before 

permute 

success after permute success after mutate 

i1 0.325725338491 0.8921718251657813 0.822094540794937 

i2 0.465764023211 0.9093273588375496 0.8509669505471895 

ic 0.466924564797 0.9134787958294823 0.856502240596922 

m1 0.499032882012 0.9772102170085294 0.9608808347260953 

m2 0.75164410058 0.9610663771575182 0.9330797611635518 

 

 

Figure 49. Bar chart comparing percent success after mutate and before permutation for 

Space 
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Weight - Mutation Analysis 

When looking at the effects of mutation analysis on the space critical variable, the 

mechanical model M1 has the highest chance of producing a successful design. However, 

mechanical model M2 is the most capable of handling mutation of designs for the Weight 

critical variable. When looking at the ability of M2 to withstand changes to the weight 

critical variable, M2 is the most likely of the mechanical models to survive both mutation 

and permutation. 

Table 21  

Effects of mutation on Weight 

Mechanical 

Model 

success before 

permute 

success after permute success after mutate 

i1 0.325725338491 0.8047943899711976 0.7294705350280938 

i2 0.465764023211 0.9033153266718408 0.855368557527916 

ic 0.466924564797 0.9207904810846551 0.8805951373521519 

m1 0.499032882012 0.941138917472731 0.9097935947616783 

m2 0.75164410058 0.9623433692964071 0.9402608557844796 
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Figure 50. Bar chart comparing percent success after mutate and before permutation for 

Weight 
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Power - Mutation Analysis 

The mechanical model M1 is better than M2 at handling mutation on the space 

critical variable, and M2 is better than M1 at handling mutation on the weight critical 

variable. But when it comes to handling the effects of mutation on the critical variable 

Power, M1 and M2 both seem to be only mildly affected by mutation. However, as we 

can see in Table 17, M1 is slightly better than M2 when mutation analysis is performed 

on the critical variable Power. 

Table 22  

Effects of mutation on Power 

Mechanical 

Model 

success before 

permute 

success after permute success after mutate 

i1 0.325725338491 0.8942910434303203 0.866667559222817 

i2 0.465764023211 0.95452679507427 0.9400133474972053 

ic 0.466924564797 0.9498452870432212 0.9347440851921458 

m1 0.499032882012 0.9945292812878735 0.9926935427987083 

m2 0.75164410058 0.9885989158260314 0.9849463888436505 
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Figure 51. Bar chart comparing percent success after mutate and before permutation for 

Power 

Cooling - Mutation Analysis 

So far we have observed that M1 handles mutation analysis on both critical 

variables Space and Power slightly better than the alternative mechanical models, and 

M2 handles mutation to the Weight critical variable more efficiently than the other 

mechanical models. This leads us to our final critical variable that we performed mutation 

analysis upon, Cooling. We can see from the table below that all critical variables handle 

mutation on Cooling approximately the same with M1 and M2 performing slightly better. 

It was known that the critical variable Cooling had less data available to work with which 

may have led to the results of mutation on Cooling not having much effect on the results 

of mutation analysis. 
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Table 23  

Effects of mutation on Cooling 

Mechanical 

Model 

success before 

permute 

 success after permute success after mutate 

i1 0.325725338491  0.98841720724852 0.9820829048571408 

i2 0.465764023211  0.992316769411421 0.9880163887940463 

ic 0.466924564797  0.9931156593168835 0.9890093823388916 

m1 0.499032882012  0.9977256865838878 0.9965569819802315 

m2 0.75164410058  0.9970675535321135 0.9955903820177083 

 

 

Figure 52. Bar chart comparing percent success after mutate and before permutation for 

Cooling 
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Mutation Conclusion 

The results of mutation show that mechanical models M1 and M2 both handle 

mutation well. The results also show that the critical variable, Space, and Weight are 

more affected by mutation than the critical variables Power and Cooling. We can also 

note from the results of mutation that the data sets were fairly well populated with 

designs. Even though the effects of mutation were not that strong in the SSCTF dataset, 

mutation may have more impact in another dataset. Overall mutation analysis clarified 

Space and Weight permutation differences. 
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CHAPTER V – CONCLUSION 

The objective of Robust Design is to model and make design choices which 

minimize risk of poor outcomes. By studying the effects of variants to design parameters, 

a designer can hope to soften the possible negative effects of changes to design 

parameters. Locating a design that is able to handle changes that negatively impact 

performance to design parameters throughout its lifecycle is known as a robust design. In 

many cases, the designer would prefer a robust design over an optimal design because the 

optimal design may not be able to handle changes to design parameters. This inability to 

handle changes to design parameters can lead to the optimal design no longer being a 

feasible design after even the smallest change to a design’s parameters. 

Summary of Objective 

The study performed by the SSCTF was awarded the honor of being the best 

frigate based study the Navy had ever performed. Nevertheless, the work presented here 

was aimed at providing additional enhancements to this state of the art study. In order to 

facilitate this enhancement, this work sought to provide a methodology for design area 

experts to leverage when searching for a design capable of withstanding changes to 

design parameters in situations, such as the motivating SSCTF problem, where limited 

information is available on the likelihood of post-bid design changes. The method 

presented here was targeted, but not limited to, designers that do not have the luxury of a 

vertically integrated design process. The methodology takes into consideration that a 

designer may not have exact knowledge of the result of manufacturing which could have 

variation as a result of differences in the manufacturing process or if manufacturing uses 

exploratory means to find a way to fix unworkable design elements. This work utilized a 
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data set provided by the Navy’s Small Surface Combatant Task Force, however, the 

methodology does not require this data. This methodology can be applied to any dataset 

in which a designer faces the same or similar design complications as the Navy design 

teams face with manufacturing variance and a lack of vertical introspection. 

Summary of the Methodology 

The methodology represents two additional types of analysis beyond modeling 

done during the SSCTF. The first algorithm presented is a method to estimate design 

robustness utilizing the assembled population of ship designs as an estimate of possible 

as-manufactured variance. Four critical ship properties: Free Space, Free Weight, Free 

Power and Free Cooling are introduced and used in Algorithm 1 during permutation 

stability analysis on the design set. Permutation stability analysis is the process of 

utilizing known acceptable parameter values within other similar designs. By utilizing 

known acceptable values within similar designs helps to increase the likelihood that the 

borrowed parameter value will be an acceptable parameter value for the target design in 

the situation that no other constraints are know. The second algorithm of this 

methodology explores further by utilization of a genetic algorithm concept of mutation. 

The second algorithm added mutation by randomly choosing a value between, above, or 

below target design and the selected design. While some designs generated through 

mutation may have been infeasible without the need to test the value, mutating values in 

this way generated mostly acceptable results and has the potential to locate unidentified 

designs within explored areas of the tradespace. In addition, mutation also helps to 

simulate manufacturing variance and exploratory redefinition of design. 
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Concluding Results 

We began the analysis of the Small Surface Combatant Task Force (SSCTF) 

dataset by populating the basic statistics: non-unique designs, unique designs, successful 

unique designs, unsuccessful unique designs and summary statistics for each of the five 

mechanical models. The basic statistics were presented as a summary of the base analysis 

methodology, which we are refining and extending. 

For sake of completeness, we will briefly step through each of the basic statistics 

and provide a summary of their individual impact. We start with non-unique designs 

which allowed us to compare each of the mechanical models to determine if the 

mechanical models were equally populated within the dataset. Being equally present 

meant that the comparison of the results of permutation stability analysis would be a fair 

comparison. Next, we examined the number of unique designs. Because permutation 

utilized known alternative possible values when trading values between critical variables, 

it was more beneficial for permutation to trade unique values because trading non-unique 

values would produce a redundant result. For clarity, if the same design value is tested, it 

will produce the same result regardless of how many times it is tested. After identifying 

the number of unique designs for the full dataset, we looked at the number of successful 

unique designs for each mechanical model. By knowing the initial number of unique 

designs for each mechanical model we were able to identify that not all mechanical 

models possess the same number of successful designs. Not passing the same number of 

successful designs means that some mechanical models are more successful than others. 

Next, we produced a table showing the number of failures for each mechanical model. 

While the number of failures could have been derived from the number of unique values 
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minus the number of successful unique values, it is helpful to have basic statistics easily 

viewable and accessible when performing data analysis. By having the number of unique 

failures easily viewable, we are able to view which mechanical models have the largest 

number of failed designs before permutation begins. We finish presenting the basic 

statistics for the mechanical models with a table which contained each of the previously 

mentioned statistics. We also included bar charts which provided a means for visible 

comparison of each of the basic statistics. By using the summary statistics table and bar 

charts, we were able to see that mechanical model M2 passed initial testing before 

permutation 75% of the time. Mechanical models I2, Ic, and M1 passed testing 26-29% 

less often than mechanical model M2. Lastly, I2 passed testing 32% of the time. Without 

any further analysis, M2 would be considered the optimal choice when seeking the best 

successful “as built” ship design. Utilizing the summary statistics represented the current 

state of the art in the SSCTF design process.  

After finishing with the initial statistics, we then presented a short summary of 

algorithmic and performance issues. The SSCTF dataset was roughly 27MB. In the 

future, datasets may be larger increasing the need for algorithmic efficiency, however, the 

current parallel implementation was sufficient for the current dataset with total analysis 

runtime around 32 hours on an 8 core CPU. We presented a table of computation 

statistics with most notable statistic of permutation requiring a minimum of ~2.8 seconds 

per row.  

After examining algorithmic and performance issues, we then looked at the results 

of our proposed enhancement and refinement to the current design selection process with 

design permutation computation and analysis. This proposed enhancement is also known 
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as Algorithm 1. The results of permutation stability analysis were divided up into sections 

based on Free Space, Free Weight, Free Power, Free Cooling. These four ship 

characteristics were most important for SSCTF decision makers. Examples exist of ships 

that lack one or more of these characteristics and therefore have difficulty fulfilling their 

primary missions and are poor targets for modification to meet new and evolving future 

missions. Thus, designing for as much of the four “free” capability characteristics as 

possible was a major decision point and is a focus of this work. We wish to provide 

additional analysis beyond SSCTF methodology to try to select designs most likely to 

have acceptable performance even with limited manufacturing information. 

For the SSCTF study performance was defined as passing 16 performance metrics 

such as range, speed, efficiency, and so forth. These metrics represent the capability to 

perform key missions for the designed ship. In manufacture Free Space, Free Weight, 

Free Power, Free Cooling could be consumed with unanticipated configuration changes 

leaving a ship with unsatisfactory performance.  The first analysis method beyond SSCTF 

methodology is “permutation” essentially taking the population of ships with similar 

mechanical design as a survey of the population of possible in-manufacture outcomes 

and swapping out key characteristics and determining if a ship still passed all 16 metrics. 

This refinement is an estimate of the robustness of a design. Is the design simply a “sharp 

point” where performance degrades very badly with minor change orders or is the design 

in the center of a “plateau” of other good designs all of which will perform similarly 

well? 

The first critical variable we examined for the results of permutation was Free 

Space. It was easily noticeable that M1 was better than its closest competitor, M2, at 
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handling permutation on the critical variable Space. After looking back to the summary 

statistics for the mechanical models, we note that M2 was 75% likely to pass the 16 

testing metrics, and M1 was 49% likely to pass those same testing metrics. The results of 

permutation on the critical variable space show that if we have a passing design for both 

of the critical variables, M1 and M2, and we care more about the design’s ability to 

withstand changes in Space throughout its life cycle, we should choose M1 over M2. We 

can see at this point that permutation has already shown that it has the potential to 

influence the mechanical model selection process.  

Next, we looked at the results of permutation on the critical variable Weight. We 

were able to determine that M2 is ~2 percent better at handling permutation on Weight 

than its closest competitor, M1. M2 possesses two mechanical screws and M1 possesses 

one mechanical screw making it surprising that M2 is better at handling changes to the 

Weight than M1. It is possible that M2 is better at handling permutation on the critical 

variable Weight than M2 because of the complex relationship between fuel efficiency and 

fuel weight. We observed that a designer caring most about a design’s ability to handle 

changes to the critical variable Weight should choose the mechanical model M2. As with 

the critical variable Space, the results of permutation on the critical variable Weight 

produces additional interesting results.  

Next, we continued on with observing the results of permutation on the critical 

variable Power. All of the mechanical models handled permutation on Power very well 

except for I1 with the lowest permutation score of 89%. The two top mechanical models 

for handling permutation to Power was M1 and M2 which were separated by only 1% 

stability, and the better of the two, M1, handling permutation 99% of the time. The 
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difference in permutation stability on Power between M1 and M2 is very slight, however, 

it may be possible to enhance this difference by performing permutation stability on 

subsystems which contribute to the permutation success percentage of the critical 

variable Power. 

We conclude the results of permutation on the 4 critical variables with the critical 

variable Cooling. M1 and M2 perform approximately the same from permutation on the 

critical variable Cooling with 97.7% success rate. In the SSCTF study, Cooling was 

identified as a critical variable but we may not have had sufficient variation in 

information to fully model Cooling and be able to infer useful results from permutation 

testing. 

Permutation results for Power and Cooling show less difference between 

mechanical models. This negative result is still useful in pointing to an underlying 

weakness in SSCTF modeling in that Power and Cooling were not modeled at a level of 

detail where wholesale changes in ship configuration actually made much difference. 

This is unrealistic and could be addressed in future studies.  

After concluding the results of permutation, we began presenting the results for 

algorithm 2. For algorithm 2, the goal was to further enhance permutation by adding the 

genetic algorithm concept of mutation. We called Algorithm 2 mutation analysis and 

used it as a way to simulate uncertainty in the manufacturing process. Mutation analysis 

also adds to further enhance permutation by helping to identify designs that may not have 

been considered.  

We begin exploring the results of the enhancement to permutation, mutation 

analysis, with the critical variable Space. It was not surprising that Space, as well as the 
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alternative critical variables, possessed a lower percentage chance to pass mutation than 

permutation. However, despite a lower success rate than permutation, M1 still possessed 

a 96% chance to survive mutation analysis. It should be noted that the next best 

performer with regards to mutation analysis on the variable Space was M2 with 93% 

chance to survive testing. In regards to the loss of success rate between permutation and 

mutation analysis, M2 suffered a 3% loss in performance from its 96% chance to pass 

permutation testing where M1 only suffered a 1% loss. Between the 97% chance to pass 

permutation testing and the 96% chance to pass mutation testing, M1 appears to be the 

better option for a designer most interested in a design’s ability to withstand changes to 

the Space critical variable.  

Next, we look at the critical variable Weight for the mechanical models abilities to 

withstand mutation analysis. When looking at the critical variable Weight, we observed 

that M1 is most capable of producing a successful “as-built” design, however, M2 was 

more capable of handling mutation analysis than M1 making M2 the desired mechanical 

model when looking for the mechanical model most capable (according to these results) 

of handling potentially unexpected changes to the critical variable Weight. 

Looking at the result of looking at mutation analysis using the critical variable 

Power, we observed that M1 was better at handling mutation on the critical variable 

Space than M1, and the M2 was better at handling mutation on the critical variable Space 

than M1. Also, M2 was better than M1 when it came to mutation handling on the critical 

variable Weight. However, while M1 and M2 perform approximately the same when 

mutation is performed on the critical variable Power, M1 performs slightly better than 

M2 at 99.26% while M2 performs at 98.49%.  
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M1 is the initial choice model when looking for the mechanical model most 

capable of handling mutation efficiently on the critical variables Space and Power, and 

M2 handles mutation more efficiently on the critical variable Weight.  

With knowledge of the mechanical models ability to handle mutation on the 

critical variables, we moved on to mutation on the final critical variable that we 

performed mutation analysis upon, Cooling. The results of mutation on the critical 

variable Cooling were revealing in the sense that mutation had little effect on the success 

of the critical variable Cooling. These results could have been a result of a lack of data 

for the critical variable Cooling or that the result of changes to the critical variable 

Cooling had little impact on the outcome of the testing performed using the 16 metrics. 

We concluded the results of mutation on the mechanical model by noting that M1 

and M2 both handle mutation well and that the critical variables Space and Weight are 

most affected by mutation analysis. Mutation had some effect on the results of testing the 

16 metrics on each of the critical variables, but the effects were not very strong. 

However, the effects of mutation could have stronger impact on an alternative dataset. 

Lastly, mutation did help to enhance the effects of permutation on the critical variables 

by increasing the differences between them. 

In future work, we present a survey of possible additional enhancements beyond 

the two methods presented herein. Although the SSCTF is generally considered the best 

frigate level study ever undertaken, additional analysis methods are needed to ensure the 

best possible ships are developed given known and unavoidable uncertainties in the bid, 

manufacture and delivery process. 
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CHAPTER VI – FUTURE WORKS 

Cost per Mechanical Model as a Refinement to Permutation and Mutation Analysis 

Here we introduce four key ship cost measures (all figures are in Hundreds of 

Millions of inflation-adjusted Dollars: 

1. Ship Development Cost: The initial pre-manufacture cost of research and 

development including both research and preparation of a manufacturing 

process. This will be higher for ships with novel features (such as non-

mechanical drive trains) and is essentially an estimate of how close in 

manufacturing a new ship line is to an existing ship currently being 

manufactured, 

2. Ship First Follow Cost: The cost of the second ship brought out of production 

- generally the most important key cost metric. 

3. Ship Design Cost - High: The pessimistic estimate of ship pre-manufacture 

research only cost. Essentially how novel are a ship’s proposed sub-systems. 

4. Ship Design Cost - Low: The pessimistic estimate of ship pre-manufacture 

research only cost. Essentially how many ship subsystems can be bought “off 

the shelf” 

Comparison of Ship Mechanical Models as They Relate to Ship Cost 

The following is a set of 8 charts showing (1) Space Permutation/Mutation 

Summary (2) Weight Permutation/Mutation Summary (3) Power Permutation/Mutation 

Summary and (4) Cooling Permutation/Mutation Summary (5) Ship Development Cost 

(6) Ship First Follow Cost (7) Ship Design Cost - High and (8) Ship Design Cost - Low. 
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Ship Development Costs are all roughly comparable which we interpret to mean 

that none of the proposed ships/mechanical models are close to existing ship 

manufacturing plants. SSCTF was a “clean sheet” design deliberately different from 

existing Frigate-level ships. Ship First Follow Cost is lowest for M1 representing cost 

saving of a single-screw design. Ships Design Costs High and Low again show M1 as the 

least novel design with lowest research cost and most available off the shelf parts. 

Space 

 

Weight 
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Power 

 

Cooling 

 

Ship Development Cost 

 

Ship First Follow Cost 

 

Ship Design Cost - High  Ship Design Cost - Low 
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Figure 53. Average statistics permutation, mutation, and average costs 

One focus of future work is the possibility that manufacturing risk as 

characterized by permutation and mutation analysis could be further refined by rerunning 

cost metrics for ships altered in post-bid design and manufacture to arrive as a 

“permutation stability per 100 Million Dollars” metric. As shown in the charts above the 

M1 mechanical Model is significantly cheaper to develop and manufacture. Given that, 

for the key metric Space, M1 is also more permutation stable as it is possible that a 

different decision might be made if cost figures were added into risk estimates presented 

herein. This work was not possible for the current investigation as cost modeling was not 

available to the ITL SSCTF development team. 

Genetic Algorithm Crossover Technique 

The genetic algorithm crossover technique begins by taking two parent designs 

and combining them to produce a child with the best attributes of both parents. It would 

be interesting to create one child from every pair of parents in the solution space. Look at 
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the feasibility of each of the children and take the standard deviation. Use the standard 

deviation number to identify all children within the same standard deviation. Children 

nodes of standard deviation greater than 1 must choose a node greater than 1 to partner 

with for the next generation. Children that are between standard deviation of .5 to 1 must 

choose another node in the range of .5 to 1. Last, children within the range of 0 to .5 

standard deviation must choose a node in the range of 0 to .5. If a node does not have a 

partner then that node does not survive to the next generation. Any node produced from a 

pair of nodes that is an infeasible result is discarded. All nodes start with 1 point of life. 

After each generation, each node that was able to produce a child that survives feasibility 

testing gains a point of life. Each node pair that does not produce a feasible child, or 

cannot pair, loses a point of life. This process could be further divided into more pieces 

but I would start with .5 increments to the standard deviation. The point of this division 

of the solution space would cause nodes within ranges of standard deviations to be 

created. It may result in finding areas of the solution space in which nodes are 

congregated. It would also reveal nodes that were always able to produce a child with 

feasible results. It would be interesting to explore the results of this test to see if a notion 

of node resiliency can be found. 

Max and Min Feasibility Impact  

Compare the max and min of each key parameter against all other key parameters 

to determine feasibility impact. Find the region of max and min for each of the key 

parameters. This will help find regions of acceptable values for each of the key 

parameters and produce a stronger child by determining their level of impact on each of 

the other key parameters. It is possible for a variable to have multiple midpoints by 
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having regions of infeasible values contained within the regions of acceptable values. For 

example, variable A is feasible from 20-30, infeasible from ranges 31-41 and feasible 

from ranges 42-52. For the variable A, the most likely points of most resilience would be 

points 25 and 47. This may not be true but it would be interesting to test. 

Standard Deviation Distance Plateau Method 

Take the objective function fitness score for each of the points in the database and 

plot those points to a 3d plot where the fitness score is the Z value. Now run a clustering 

algorithm on the graph and group the points into clusters. For each cluster calculate the 

standard deviation. Now proceed using 2 different tests based on determining which 

cluster has the lowest standard deviation score. Test 1 is to look at all points based on 

cluster and determine which cluster has the lowest standard deviation score. The method 

will suffer from points that are exceptionally above and below the standard deviation. 

Test two is to look points within plus or minus 1 standard deviation to determine which 

cluster has the lowest standard deviation score. By ignoring points that are exceptionally 

good and bad it will be easier to identify clusters of resilient points. A resilient point, in 

this case, would not be the individual point but rather a set of points representing the 

possible feasible choices for the resilient point. 
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APPENDIX A – Full Source Code: Permutation Stability Analysis 

author__ = 'James Ross' 
#example command line run command with 16 processes 

#time mpirun -np 16 python mpiTesting.py 

#note there is an excute file that will run this code for C400,P400,S400,criticalVariableValueList 
# The file is propFeasPerm 

# It runs all permutation testing and takes about 1 day to run. 
# Single test runs can be ran in 30 seconds. 
from mpi4py import MPI 
import sqlite3 as lite 

from collections import Counter 
import random 

import sys 

#add the path to the models 
sys.path.append("../models/python") 
import july11i1 as i1 

import july11i2 as i2 

import july11ic as ic 

import july11m1 as m1 

import july11m2 as m2 
#add the path to the requirements file 

sys.path.append("../analysis/python") 
import requirements 
#add the path to the metricsv31 file 

sys.path.append("../metrics/python") 
import metricsv31 

from operator import attrgetter 
import CONST 
import tableTemplate 

import os.path 

import pandas as pd 
import time 

import itertools 

import numpy as np 
import math 

import threading 

from IPython.core import display as ICD 
import plotly.plotly as py 

import plotly.graph_objs as go 

import matplotlib.pyplot as plt 
import matplotlib 

matplotlib.style.use('ggplot') 
from bokeh.io import output_notebook, show 
import multiprocessing 

import bokeh.charts 

import bokeh.plotting as bk 
bk.output_notebook() 
# In[3]: 
#if the bat file is used then use the following 4 lines to accept input from the bat file 
#permRunsPercent = int(sys.argv[1]) 
#prop = sys.argv[2]#'SPACE' 
#propname = sys.argv[3]#"S400" 
#feasible = sys.argv[4]#True for select feasible, False for select infeasible 

#combinationChoice = sys.argv[5] 
#debug TEsting 
# Note: permRuns was changed to permRunsPercent remove this line in final version 

permRunsPercent = .10#CONST.PERMRUNS#int(sys.argv[1]) 
prop = CONST.PROPSPACE 
propname = CONST.PROPNAMESPACE 

combinationChoice = 0 

numDbToTest = 1 
percentOfRowsToTest = .10 

# set this to true when testing to limit to only one DB to speed things up 

#testingApplication = True 
testingApplication = True 

testingPermuteAgainstMultipleDB = False 
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#allow duplicate permutation test 
allowDuplicatePermutation = False 

# how often to show a row progress update when showing how far along in seed progressing we are 

updateRowProgress = 10 
criticalVariableValueList = {} 
fullCriticalVariableList = {} 
geneticDictionary = {} 
dfFull ={} 
con = Counter() 
testOut = 10 
testcounter = 0 

# run the program using 

#  feasible solutions or run it using infeasible solutions 
ifFeas = CONST.FEASIBLESOLUTION 

# the percentage of the time that we are going to mutate 

mutationChance = .5 
# a list of the possible primary variables 

# this lst is here for reference of what is available and is not actually used anywhere else 

FullPrimaryVariableList = {'SPACE',WEIGHT', 
                        'POWER','COOLING'} 
#a list of the variables we would like to examine 

# this can be any subset of FullPrimaryVariableList of 1 to all possible values 
PrimaryVariableValueList = {'SPACE'} 
#PrimaryVariableValueList = {WEIGHT'} 
#PrimaryVariableValueList = {'POWER'} 
#PrimaryVariableValueList = {'COOLING'} 
csvFilePath = propname+"/"+"permutationWithFeasible_Perm" + str(permRunsPercent) + "_" + propname + "_" + ifFeas + 
".csv" 
# In[4]: 
# create a list of all possible combinations of the primary variable list 
# 0 element holds each individual element 
# 1 element holds all combinations of values -1 element. This allows comparison of possible combinations 

# example access to the combination list 
# combinationOptions[ 'option 1 or option 2' ][ 'value in combination' ][ 'combination choice' ] 
combinationOptions = [] 
a = list(itertools.combinations(PrimaryVariableValueList,1)) 
df = pd.DataFrame(a)[0] 
#single column of all elements 

combinationOptions.append(df) 
combinationOptions 

# In[5]: 
#multi column of data stored in column row format 
a = list(itertools.combinations(PrimaryVariableValueList, len(PrimaryVariableValueList) - 1)) 
df = pd.DataFrame(a) 
df = df.transpose 
combinationOptions.append(df) 
combinationOptions 

# In[6]: 
criticalVariableValueList = {} 
# In[7]: 
testingApplication = True 
# In[8]: 
# if you would like to see the result of permutation ran on infeasible solutions then use 

# the InfeasibleSoultions in the line below and comment out ifFeas in the line above 
#ifFeas = "InfeasibleSolutions" 
#a simple class for holding table values 

class Data: 
 #my rank values 

 #OVERALL_RANK_BY_FEASIBILITY_PER_HUNDRED_MILLION = 0 

 # possibleNumberOfRowsThatCouldHaveBeenTested 
 def __init__(self, 
BS_CELL,CCA,SEED,NUMTIMES_CCA_FOUND,NUM_TIMES_FAILED_PERMUTE,NUM_VALUES_TESTED_DURING
_PERMUTE,FEASIBLE_AFTER_PERMUTE, AVERAGE_FOLLOW_COST, 
              PERCENT_FEASIBLE_AFTER_PERMUTE,UPGRADABILITY_METRIC,UPGRADABILITY_PER_HUNDRED_M
ILLION, 
              CHANGE_VULNERABILITY,CHANGE_SPEED,AAW,ASW,SUW,MIW,C2,IO,FEASIBILITY_OF_DESIGN_BY_A
VERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC, 
              OVERALLRANK, CCARANK): 
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     self.BS_CELL=BS_CELL 

     self.CCA=CCA 

     self.SEED= SEED 

     self.NUMTIMES_CCA_FOUND=NUMTIMES_CCA_FOUND 
     self.NUM_TIMES_FAILED_PERMUTE=NUM_TIMES_FAILED_PERMUTE 

     self.NUM_VALUES_TESTED_DURING_PERMUTE = NUM_VALUES_TESTED_DURING_PERMUTE 

     self.FEASIBLE_AFTER_PERMUTE=FEASIBLE_AFTER_PERMUTE 
     self.AVERAGE_FOLLOW_COST=AVERAGE_FOLLOW_COST 

     self.PERCENT_FEASIBLE_AFTER_PERMUTE=PERCENT_FEASIBLE_AFTER_PERMUTE 

     self.UPGRADABILITY_METRIC=UPGRADABILITY_METRIC 
     self.UPGRADABILITY_PER_HUNDRED_MILLION=UPGRADABILITY_PER_HUNDRED_MILLION 

     self.CHANGE_VULNERABILITY =CHANGE_VULNERABILITY 

     self.CHANGE_SPEED = CHANGE_SPEED 
     self.AAW = AAW 

     self.ASW = ASW 

     self.SUW = SUW 
     self.MIW = MIW 

     self.C2 = C2 

     self.IO = IO 

     self.FEASIBILITY_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC=FEASIBILIT
Y_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC 

     self.OVERALLRANK = 0 
     self.CCARANK = 0 

 def __repr__(self): 
     return repr(( self.BS_CELL, self.CCA, self.SEED, self.NUMTIMES_CCA_FOUND, 
self.NUM_TIMES_FAILED_PERMUTE, self.NUM_VALUES_TESTED_DURING_PERMUTE, 
self.FEASIBLE_AFTER_PERMUTE, 
                   self.AVERAGE_FOLLOW_COST, self.PERCENT_FEASIBLE_AFTER_PERMUTE, 
self.UPGRADABILITY_METRIC, self.UPGRADABILITY_PER_HUNDRED_MILLION, 
                   self.CHANGE_VULNERABILITY,self.CHANGE_SPEED,self.AAW,self.ASW,self.SUW,self.MIW,self.C2,self.I
O, 
                   self.FEASIBILITY_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC,self
.OVERALLRANK,self.CCARANK)) 
# In[9]: 
NUM_RUNS = CONST.NUMRUNS # (Num Rows in Results DB / Num CCAs) / Num of Seeds 

def openReadDbPandas(): 
 global con, cur, numDBs, dfMain, columnNames 

 con = Counter() 
 cur = Counter() 
 numDBs = 0 

 path = '../apd-data/' 
 for f in os.listdir(path): 
     if os.path.isfile(os.path.join(path, f)): 
         if "results" in f: 
             numDBs += 1 
  # same sql statement for all connections 

 sql = 'SELECT * FROM Results WHERE "Req Cumulative" > -1' 
  # init the master data frame 
 con[0] = lite.connect("../apd-data/results_%d.db" % 0) 
 dfMain = pd.read_sql(sql, con[0]) 
 #columnNames = [description[0] for description in cur[0].description] 
 columnNames = list(dfMain) 
  # establish a connection to all dbs 

 if testingApplication: 
     for x in range(1, numDbToTest-1): 
         con[x] = lite.connect("../apd-data/results_%d.db" % x) 
         dfTemp = pd.read_sql(sql, con[x]) 
         dfMain = pd.concat([dfMain, dfTemp], axis=0) 
     
     #con[0] = lite.connect("../apd-data/results_%d.db" % 0) 
     #dfTemp = pd.read_sql(sql, con[0]) 
     #dfMain = pd.concat([dfMain, dfTemp], axis=0) 
 else: 
     for x in range(1, numDBs-1): 
         con[x] = lite.connect("../apd-data/results_%d.db" % x) 
         dfTemp = pd.read_sql(sql, con[x]) 
         dfMain = pd.concat([dfMain, dfTemp], axis=0) 
 #print (len(dfMain)) 
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 #print (list(dfMain)) 
# In[10]: 
# Testing cell for openReadDbPandas 

#this is simply used as a quick populate for testing of functions 
openReadDbPandas() 
# In[11]: 
#def initGlobals(): 
#    global criticalVariableValueListDf 
#    criticalVariableValueListDf = pd.DataFrame() 
#    criticalVariableValueList = Counter() 
#initGlobals() 
#global criticalVariableValueList 
#criticalVariableValueList = Counter() 
# In[12]: 
#maybe ill use this, i dont know 

def populateCritVarDictSeedBscellCca(seedName, primaryVar): 
 # for every returned row ie every row in the feasible set 
 myDf = dfMain.loc[dfMain[CONST.seed] == seedName] 
 #for propDict in myDf: 
 for index, propDict in myDf.iterrows(): 
     #Using BS_CELL, CCA, Seed, count number feasible for each [BS_CELL, CCA, and seed] : increment number found 
in 
     # DataDict[], using all values from propDict, see if they have been added to dataDict yet 
     #if this BS_CELL exists in the dictionary then append this row under the BS_CELL 

     if propDict[CONST.seed] in criticalVariableValueList: 
         if propDict[CONST.BSCELL] in criticalVariableValueList[propDict[CONST.seed]]: 
             if propDict[CONST.CCA] in criticalVariableValueList[propDict[CONST.seed]][propDict[CONST.BSCELL]]: 
                 criticalVariableValueList[propDict[CONST.seed]][propDict[CONST.BSCELL]][propDict[CONST.CCA]].append(p
ropDict[primaryVar]) 
             else: 
                 criticalVariableValueList[propDict[CONST.seed]][propDict[CONST.BSCELL]][propDict[CONST.CCA]] = 
[propDict[primaryVar]] 
         else: 
             criticalVariableValueList[propDict[CONST.seed]][propDict[CONST.BSCELL]] = 
{propDict[CONST.CCA]:[propDict[primaryVar]]} 
     else: 
         criticalVariableValueList[propDict[CONST.seed]]= {propDict[CONST.BSCELL]:  {propDict[CONST.CCA]: 
[propDict[primaryVar]]}} 
# In[13]: 
# count the number of values in a dataframe 

# convert the return to a dataframe example: pd.DataFrame(lengthCounter) 
def populateLengthDictionary(seedName): 
 print("populating length dictionary from full data set for seed %s" % (seedName)) 
 lengthCounter = {} 
 myDf = dfFull.loc[dfFull[CONST.seed] == seedName] 
 for index, propDict in myDf.iterrows(): 
     #Using BS_CELL, CCA, Seed, count number feasible for each [BS_CELL, CCA, and seed] : increment number found 
in 
     # DataDict[], using all values from propDict, see if they have been added to dataDict yet 
     #if this BS_CELL exists in the dictionary then append this row under the BS_CELL 

     if propDict[CONST.seed] in lengthCounter: 
         if propDict[CONST.BSCELL] in lengthCounter[propDict[CONST.seed]]: 
             lengthCounter[propDict[CONST.seed]][propDict[CONST.BSCELL]] += 1 

         else: 
             lengthCounter[propDict[CONST.seed]][propDict[CONST.BSCELL]] = 1 

     else: 
         lengthCounter[propDict[CONST.seed]] = {propDict[CONST.BSCELL]: 1} 
 # lengthDf = pd.DataFrame(lengthCounter) 
 print ("Finished populating length dictionary from full data set for seed %s.  It will take some time to finish the pickling of 
data fo this process." % (seedName)) 
 return lengthCounter 
# In[14]: 
#populate a dataframe using the list of values for each bscell. 
#Use the unique list of values created by populateUniqueValueDf 
# The purpose is to know if a value has been tested for a bscell in a specific seed. 
def populateTestedValuesDictionary(seedName, primaryVar): 
 global testedValuesDf 
 testedCounter = criticalVariableValueList 
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 #--> 

 for seed in criticalVariableValueList: 
     for bscell in criticalVariableValueList[seed]: 
         for cca in criticalVariableValueList[seed][bscell]: 
             #for curCCAVal in range(0, len(criticalVariableValueList[seed][bscell][cca])): 
             #if isinstance(testedCounter[seed][bscell][cca][curCCAVal], dict) == False: 
             if isinstance(testedCounter[seed][bscell][cca][0], dict) == False: 
                 testedCounter[seed][bscell][cca] = pd.Series(testedCounter[seed][bscell][cca]).unique() 
             # for val in testedCounter[seed][bscell][cca] : 
             tmpAry = testedCounter[seed][bscell][cca] 
             aryObj = [] 
             for val in tmpAry: 
                  # i noticed that dictionaries were rea 
                 if isinstance(val, dict) == False: 
                     aryObj.append({'value': val, 'tested': False}) 
                 else: aryObj.append({'value': val['value'], 'tested': False}) 
                 # store the ary of value and weather the value has been tested back to the bscell 
             testedCounter[seed][bscell][cca] = aryObj 
 #testedCounter['m2']['1F']['1F.CS24'] 
 testedValuesDf = pd.DataFrame(testedCounter) 
# A BSCELL may not necessarily occur in all seeds as a feasible design 

# In[15]: 
testcounter=0 

def getRowData(curRow): 
 # create a key value pair of this row's values 
 colNum = 0 

 rowDict = {} 
 columnHeadings = list(dfMain) 
 columnHeadings.append("RowID") 
 for col in columnHeadings: 
     rowDict[col] = curRow[colNum] 
     colNum += 1 

 myDataDict = {} 
     # determine how many values we have 

 numTimesToPermute = 0 

 localVarValList = criticalVariableValueList 
 # figure out how many values we have in this seed the first time we encounter it 
 if (rowDict[CONST.seed] in permutePerSeed): 
     numTimesToPermute = permutePerSeed[rowDict[CONST.seed]] 
 else: 
     for bscell in localVarValList[rowDict[CONST.seed]]: 
         numTimesToPermute += len(localVarValList[rowDict[CONST.seed]][bscell]) 
     # keep track of how many values were tested for this seed 

     permutePerSeed[rowDict[CONST.seed]] = numTimesToPermute 

 # apply the percentage modifier in case the user wants to use less rows than all possible 
 numTimesToPermutePercent = int(math.ceil(numTimesToPermute * permRunsPercent)) 
 # keep track of how many values were tested for this seed 

 #totalNumberOfValuesTestedForSeed += numTimesToPermutePercent 
 # if there was only 1 value then test 
 if (numTimesToPermutePercent < 1 and numTimesToPermutePercent > 0): 
     numTimesToPermutePercent = 1 
 #if (curRowProgress % updateRowProgress == 0): 
 #    print("Currently on row %d of %d possible rows for this seed %s. I am process number %d" % ( 
 #    curRowProgress, totalRows, rowDict[CONST.seed], RANK)) 
 #    print("About to test %d possible values for this row" % (int(math.ceil(numTimesToPermutePercent)))) 
 

     # if you didnt check all the values then go ahead, else all values for this bscell have been tested 
     #  numTimesToPermute: number of possible values for this row 

 for permute in range(0, numTimesToPermutePercent): 
     firstIndexOfUntestedSeed = "" 
     firstIndexOfUntestedBscell = "" 
     firstIndexOfUntestedCca = "" 
     firstIndexOfUntestedCcaVal = -1 
     numUntested = 0 

     numTested = 0 

     firstIndexOfUntested = -1 
     # For the very first row, set up the myDataDictionary 
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     if permute == 0: 
         saveprop = rowDict[primaryVar] 
         # Using BS_CELL,CCA, seed, count number feasible for each [BS_CELL,CCA,seed] : increment number 
         #  found in myDataDict[], using all values from rowDict, See if they have been added to myDataDict yet 
         if (rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]) in myDataDict: 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][ 
                 0] += 1  # count 0 -  #numTimesCcaFound 
             # everytime this CCA is reencountered, add to the total of values tested 

             # myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][15] += 
numTimesToPermute 
         else: 
             # Initialize this [BS_CELL, CCA,seed] in the myDataDict by adding required info 

             # [0=number feasible, 1=number tested, 2=number still feasible after permutation, 
             # 3=average cost running total] notify that this node is done working 

             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]] = [1, 0, 0, 0, 0, 0, 0, 0, 0, 
                                                                                         0, 0, 0, 0, 0, 0] 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][3] = str( 
                 rowDict[CONST.METRIC_AVERAGE_FOLLOW_END_COST_MOST_LIKELY]) 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][6] = str( 
                 rowDict[CONST.METRIC_VULNERABILITY]) 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][7] = str( 
                 rowDict[CONST.DESIGN_SUSTAINED_SPEED]) 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][8] = ( 
                 rowDict[CONST.AAW]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][9] = ( 
                 rowDict[CONST.ASW]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][10] = ( 
                 rowDict[CONST.SUW]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][11] = ( 
                 rowDict[CONST.MIW]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][12] = ( 
                 rowDict[CONST.C2]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][13] = ( 
                 rowDict[CONST.IO]).strip(' ') 
             # If there was a value that needed to be tested then run regression and things on this value 

             # if firstIndexOfUntestedCcaVal != -1: 
             # Attempt to randomly get the index of a value in the critical variable list 
     chosenSeed = rowDict[CONST.seed] 
     chosenbscell = "" 
     chosenCCA = "" 
     numBscell = len(localVarValList[chosenSeed]) 
     chosenBscellIndex = random.randint(0, numBscell - 1) 
     curBscellIndex = 0 

     chosenCcaValIndex = 0 

     for bscell in localVarValList[chosenSeed]: 
         if curBscellIndex == chosenBscellIndex: 
             chosenbscell = bscell 
             numCca = len(localVarValList[chosenSeed][chosenbscell]) 
             chosenCcaIndex = random.randint(0, numCca - 1) 
             curCcaIndex = 0 

             for cca in localVarValList[chosenSeed][chosenbscell]: 
                 if curCcaIndex == chosenCcaIndex: 
                     # chosenCCA = localVarValList[chosenSeed][chosenbscell][cca] 
                     chosenCCA = cca 
                     numValForCca = len(localVarValList[chosenSeed][chosenbscell][chosenCCA]) 
                     chosenCcaValIndex = random.randint(0, numValForCca - 1) 
                     break 
                 else: 
                     curCcaIndex += 1 

             break 
         else: 
             curBscellIndex += 1 

         # Once we have attempted to randomly choose a value to try for this row, make sure we have a 
         # random index of a value that hasn't been tested so that we can meet our percentage. 
         # If we don't get a random number that hasn't been tested, take the next number that hasn't been tested 

     if (localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] == True): 
         seed = rowDict[CONST.seed] 
         for bscell in localVarValList[rowDict[CONST.seed]]: 
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             for cca in localVarValList[seed][bscell]: 
                 for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])): 
                     if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == False): 
                         if firstIndexOfUntestedCcaVal == -1: 
                             # store a reference into the structure to the first untested value 

                             firstIndexOfUntestedSeed = seed 

                             firstIndexOfUntestedBscell = bscell 
                             firstIndexOfUntestedCca = cca 

                             firstIndexOfUntestedCcaVal = curCCAVal 
                         numUntested += 1 
                     else: 
                         numTested += 1 

         # How often do we state our progress 
         ''' 
         if (permute % (int(math.ceil(numTimesToPermutePercent)) * .10) == 0): 
             if (numUntested == 0): 
                 # print("No values left to test for this row. Adding to counter number of times a valid value has appeared") 
                 a = 0 

             else: 
                 print( "Untested values for bscell %s in Seed %s: %d. Tested Values for this bscell: %d. Process %d" % ( 
                         rowDict[CONST.BSCELL], rowDict[CONST.seed], numUntested, numTested, RANK)) 
                 #print( 
                 #"Untested values for bscell %s in Seed %s: %d. Tested Values for this bscell: %d. Process %d row %d" % ( 
                 #    rowDict[CONST.BSCELL], rowDict[CONST.seed], numUntested, numTested, RANK, curRowProgress)) 
                 # End of print message 
         ''' 
         randomPermute = \ 
         localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][firstIndexOfUntestedCca][ 
             firstIndexOfUntestedCcaVal]['value'] 
         # if we are allowing duplicate tests of the same value 
         localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][firstIndexOfUntestedCca][ 
             firstIndexOfUntestedCcaVal]['tested'] = True 

     else: 
         randomPermute = localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['value'] 
         # if we are allowing duplicate tests of the same value 

         if allowDuplicatePermutation == False: 
             localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] = True 

             # Assign the randomly or next chosen value to the critical var in prop dict 
     rowDict[primaryVar] = randomPermute 
     # run the datarow through the appropriate regression model for this seed 

     if rowDict[CONST.seed] == CONST.i1: 
         rowDict = i1.RegEx(rowDict) 
     if rowDict[CONST.seed] == CONST.i2: 
         rowDict = i2.RegEx(rowDict) 
     if rowDict[CONST.seed] == CONST.ic: 
         rowDict = ic.RegEx(rowDict) 
     if rowDict[CONST.seed] == CONST.m1: 
         rowDict = m1.RegEx(rowDict) 
     if rowDict[CONST.seed] == CONST.m2: 
         rowDict = m2.RegEx(rowDict) 
         # run requirements and metrics on the datarow 
     rowDict = requirements.RegEx(rowDict) 
     rowDict = metricsv31.RegEx(rowDict) 
     ''' 
     0 numTimes_Cca_Found = float(count[0]) 
     1  self.NUM_TIMES_FAILED_PERMUTE = NUM_TIMES_FAILED_PERMUTE 

     2  feasible_after_permute = float(count[2]) 
     14 NUM_POSSIBLE_VALUES = float(count[15]) 
     ''' 
     # number of possible values 
     myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][14] += 1 

     # NOTE: For both the case where a row has been tested and not been tested, increment the appropriate values in the 
myDataDict 
     # If row is feasible after permute then add to still feasible count and to numtested 

     if rowDict[CONST.REQ_CUMULATIVE] > -1: 
         # This is a really interesting value. If the row fails feasibility test after permutation then it means that it lacks 
resilience 

         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][ 
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             2] += 1  # count 2 - # feasible after permute 

         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][4] += rowDict[ 
             CONST.METRIC_VULNERABILITY] 
         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][5] += rowDict[ 
             CONST.DESIGN_SUSTAINED_SPEED] 
     else: 
         # This means the row is no longer feasible so only add to number of rows tested 
         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][ 
             1] += 1  # count 1 - #NUM_TIMES_FAILED_PERMUTE 

         # Another row has completed 
 #curRowProgress += 1 

 totalNumUntested = 0 

 totalNumtested = 0 
 seed = rowDict[CONST.seed] 
 # Reset the values for each row so that each row has fair access to possible values 

 for bscell in localVarValList[rowDict[CONST.seed]]: 
     for cca in localVarValList[seed][bscell]: 
         for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])): 
             # While values are being reset, keep track of how many rows have not been tested and 

             # also track the number of values that were tested for this seed 

             if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == False): 
                 totalNumUntested += 1 
             else: 
                 totalNumtested += 1 

             localVarValList[seed][bscell][cca][curCCAVal]['tested'] = False 
 

 if(int(rowDict['RowID']) % 50 == 0): 
     print ("Computed seed %s bascel %s cca %s. Using row %s" % (rowDict[CONST.seed],rowDict[CONST.BSCELL], 
rowDict[CONST.CCA],rowDict['RowID'])) 
 #for item in myDataDict: 
 #    dataDict[item] = myDataDict[item] 
 return {'seed':rowDict[CONST.seed],'bscell': rowDict[CONST.BSCELL],'cca': rowDict[CONST.CCA],'myDataDict': 
myDataDict, 'totalNumUntested': totalNumUntested, 'totalNumTested': totalNumtested} 
# In[16]: 
#%success for mechanical model 
def initRowsAndPermuteForSeedSuccessPercentage(seedName, primaryVar): 
 global row, dictrows, propDict, permute, saveprop, randomPermute,workQueue,permutePerSeed 

  # total number of rows that were tested by this process and the number of values left untested of the known 

  #  possible feasible values 
 totalNumUntested = 0 

 totalNumtested = 0 

 totalNumberOfValuesTestedForSeed = 0 
 myDf = dfMain.loc[dfMain[CONST.seed] == seedName] 
 curRowProgress = 0 

 totalRows = len(myDf) 
 permutePerSeed = {} 
  # number of rows to work on per process 

 if SIZE > totalRows: 
     numProcessRequired = totalRows 

 else: numProcessRequired = SIZE 

 # Minimum of 1 process per row 
 if RANK <= numProcessRequired: 
     # This is the total number of rows this process will work on 

     myRowCount = int(math.ceil(totalRows / numProcessRequired)) 
     if( myRowCount > 1): 
         #if RANK == 0: 
         #    startIndex = 0 
         #else: 
         startIndex = (RANK * myRowCount) #- 1 

         endIndex = ((RANK + 1) * myRowCount) - 1 
          # for the last set of rows, make sure we don't overshoot the number of rows 

         #if( endIndex > totalRows): 
         #    endIndex = totalRows - 1 
     elif myRowCount == 1: 
         startIndex = RANK 

         endIndex = RANK 
     else: 
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         startIndex = 0 

         endIndex = 0 

     #The row in the database this process is starting on 

     print ( "Rank %d startIndex %d endIndex %d Number of processes %d Row count %d" % (RANK, startIndex, 
endIndex, SIZE, myRowCount)) 
     columnHeadings = list(dfMain) 
      # start on the proper row for this process 
     curRowProgress = startIndex 

     endIndex = startIndex + ((endIndex-startIndex) * percentOfRowsToTest) 
     if( endIndex < 1): 
         endIndex = 1 

     # Create a thread for every row. the thread will handle permute for that row and return stats for the row. 
     threadList = [] 
     rowList = [] 
     #rowList = {} 
     threadCount = startIndex 
     for curRow in myDf.iloc[int(startIndex):int(endIndex)].values: 
         #threadList.append("Thread-" + str(threadCount)) 
         #rowList.append(curRow) 
         curRow = np.append(curRow,str(threadCount)) 
         rowList.append(curRow) 
         threadCount += 1 
     print ("Computing permute with maximum power") 
     
     print("Expect the rows to print in the order they are processed.") 
     #test = getRowData(rowList[0]) 
     numThreads = int(endIndex) - int(startIndex) 
     test1 = multiprocessing.cpu_count() 
     dataList = [] 
     ############################################# 
     # non parallel way 

     #for row in rowList: 
     #    dataList.append(getRowData(row)) 
     ############################################# 

     ####Paralle way 

     # 
     pool = multiprocessing.Pool(multiprocessing.cpu_count()) 
     dataList = pool.map(getRowData, rowList) 
     pool.close() 
     pool.terminate() 
     pool.join() 
     ############################################# 
     print("Finished permute") 
     for item in dataList: 
         seed = item['seed'] 
         bscell = item['bscell'] 
         cca = item['cca'] 
         if (seed, bscell,cca) in dataDict: 
             dataDict[seed,bscell,cca][0] += item['myDataDict'][seed,bscell,cca][0] 
             dataDict[seed, bscell, cca][1] += item['myDataDict'][seed, bscell, cca][1] 
             dataDict[seed, bscell, cca][2] += item['myDataDict'][seed, bscell, cca][2] 
             dataDict[seed, bscell, cca][14] += item['myDataDict'][seed, bscell, cca][14] 
         else : dataDict[seed,bscell,cca]= item['myDataDict'][seed,bscell,cca] 
     print ("Exiting Main Thread") 
# In[17]: 
test ="" 
# Start open and grab all rows with ReqCumulative > -1 
def mpiCreateDictionaryAndPermute(): 
 global mpi_comm, SIZE, RANK, ROOT, dataDict, criticalVariableValueList,primaryVar,  e 

 mpi_comm = MPI.COMM_WORLD 
 SIZE = mpi_comm.Get_size() 
 RANK = mpi_comm.Get_rank() 
 ROOT = 0 
 dataDict = Counter() 
 

 try: 
     print ("Node " + str(RANK) + " Reading DBs") 
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     dbReadTime = time.time() 
     openReadDbPandas() 
     print ("Process %d reading databases: %s seconds " % (RANK, time.time() - dbReadTime)) 
      # Get the list of seeds 
     seedList = dfMain.seed.unique() 
      # For each seed family of designs 

     for seedName in seedList: 
         if combinationChoice == 0: 
             for primaryVar in combinationOptions[0]: 
                 print ("Beginning work on seed family %s using primary variable %s" % ( seedName, primaryVar)) 
                  # Print column heading 

                 print ("Node " + str(RANK) + " beginning work on seed family " + seedName) 
                  #populate the data each processor will work on 
                 print ("Node " + str(RANK) + " configuring data structures") 
                 configTime = time.time() 
                 ####################################### 
                 ############# Testing ################# 

                 populateCritVarDictSeedBscellCca(seedName, primaryVar) 
                 print ("Process %d configuring data structures: %s seconds " % (RANK, time.time() - configTime)) 
                  # go ahead and make a easy to reference dataframe that tells me the length of each element 
                 #populateLengthDictionary(seedName, primaryVar) 
                  # make a list of which values have been tested for each BSCELL 
                 populateTestedValuesDictionary(seedName, primaryVar) 
                  # run the substitution algorithm testing for resilience 

                 print ("Node " + str(RANK) + " beginning permutation") 
                 permuteTime = time.time() 
                 initRowsAndPermuteForSeedSuccessPercentage(seedName, primaryVar) 
                 print ("Process %d time it took for permute: %s seconds " % (RANK, time.time() - permuteTime)) 
         elif combinationChoice == 1: 
             for primaryVar in combinationOptions[1]: 
                 print ("Beginning work on seed family %s using primary variable %s " % ( seedName, primaryVar)) 
                  #populate the data each processor will work on 

                 print ("Node " + str(RANK) + " configuring data structures") 
                 configTime = time.time() 
                 populateDictionary(seedName) 
                 print ("Process %d configuring data structures: %s seconds " % (RANK, time.time() - configTime)) 
                  #run the substitution algorithm testing for resilience 

                 print ("Node " + str(RANK) + " beginning permutation") 
                 permuteTime = time.time() 
                 initRowsAndPermuteBroken(seedName) 
                 print ("Process %d time it took for permute: %s seconds " % (RANK, time.time() - permuteTime)) 
 except lite.Error as e: 
     # report errors if they occur 
     print ("Error retrieving data for permutation test") 
     print ("Error: %s" % e) 
     exit(1) 
#Gather the results from each node into one dictionary 

def getFeasibilityOfDesignByAverageFollowCostPerHundredMillionMetric(statData): 
 return statData.FEASIBILITY_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC 

def getCCA(statData): 
 return statData.CCA 
# In[18]: 
######################## Untested functions ############################################# 

def populateFinalDict(): 
 global dict, item 

 for dict in dataDict: 
     if dict in finalDict: 
         finalDict[dict][0] += dataDict[dict][0] 
         finalDict[dict][1] += dataDict[dict][1] 
         finalDict[dict][2] += dataDict[dict][2] 
         finalDict[dict][3] += dataDict[dict][3] 
         finalDict[dict][4] += dataDict[dict][4] 
         finalDict[dict][5] += dataDict[dict][5] 
         finalDict[dict][6] += dataDict[dict][6] 
         finalDict[dict][7] += dataDict[dict][7] 
         finalDict[dict][8] += dataDict[dict][8] 
         finalDict[dict][9] += dataDict[dict][9] 
         finalDict[dict][10] += dataDict[dict][10] 
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         finalDict[dict][11] += dataDict[dict][11] 
         finalDict[dict][12] += dataDict[dict][12] 
         finalDict[dict][13] += dataDict[dict][13] 
         finalDict[dict][14] = dataDict[dict][14] 
     else: 
         finalDict[dict] = [dataDict[dict][0], dataDict[dict][1], dataDict[dict][2], dataDict[dict][3], dataDict[dict][4], 
                            dataDict[dict][5], 
                            dataDict[dict][6], dataDict[dict][7], dataDict[dict][8], dataDict[dict][9], dataDict[dict][10], 
                            dataDict[dict][11], dataDict[dict][12], dataDict[dict][13], dataDict[dict][14]] 
# In[19]: 
#Add all metrics and feasibility calculations to the data 

def addMetricsAndFeasibilityToDataRows(): 
 global keylist, count, feasible_after_permute, numTimes_Cca_Found, num_times_failed_permute, avgcost, 
changevulnerability, changespeed,         percentFeasible, percentFeasibleAfterPermute, upgradeMetric, 
metricPerHundredMillion,         feasibilityOfDesignByAvgFollowCostPerHundredMillionMetric 

 myTableTemplate = tableTemplate 
 # countf1 = 0 

 for keylist, count in finalDict.items(): 
     ''' 
     1  self.NUM_TIMES_FAILED_PERMUTE = NUM_TIMES_FAILED_PERMUTE 

     2  feasible_after_permute = float(count[2]) 
     14 NUM_POSSIBLE_VALUES = float(count[15]) 
     ''' 
     # Num rows feasible after permuatation testing 

     feasible_after_permute = float(count[2]) 
     # original number of rows passing ReqCumulative test 
     numTimes_Cca_Found = float(count[0]) 
     # Original num rows passing req cumulative test by permutation swapping 

     #num_tested = float(num_feasible) * float(permRuns) 
     #num_tested = float(num_feasible) * float(count[14]) 
     num_times_failed_permute = float(count[1]) 
     NUM_POSSIBLE_VALUES = float(count[14]) 
     # avg follow cost of ship rows 
     avgcost = float(count[3]) 
     if feasible_after_permute > 0: 
         changevulnerability = -float(count[6]) + (float(count[4])/float(feasible_after_permute)) 
         changespeed = -float(count[7]) + (float(count[5])/float(feasible_after_permute)) 
     else: 
         changevulnerability = 0 
         changespeed = 0 

     #TODO: THIS REQUIRES having data from all databases and figuring out how many feasible values this cca 
has 
     percentFeasible = 1 

     #percentFeasible = float(numTimes_Cca_Found)/ float((NUM_RUNS)) 
     percentFeasibleAfterPermute = float(feasible_after_permute)/float(NUM_POSSIBLE_VALUES) 
     if ( num_times_failed_permute == 0): 
         upgradeMetric = percentFeasible * feasible_after_permute / 1 

     else: upgradeMetric = percentFeasible * feasible_after_permute/num_times_failed_permute 
     metricPerHundredMillion = upgradeMetric * hundredMillion/ avgcost 
     feasibilityOfDesignByAvgFollowCostPerHundredMillionMetric = ((percentFeasible * 
percentFeasibleAfterPermute)/avgcost) * hundredMillion 
     statData.append( 
         Data( 
             str(keylist[0]),# BS CELL - combat capability 
             str(keylist[1]),# CCA combat capability alternative 

             str(keylist[2]),# SEED 

             str(numTimes_Cca_Found),# numTimes_Cca_Found 
             str(num_times_failed_permute),#num_times_failed_permute 

             str(NUM_POSSIBLE_VALUES),#NUM_POSSIBLE_VALUES 

             str(feasible_after_permute),#feasible after permute 
             str(avgcost),#average follow cost 
             str(percentFeasibleAfterPermute),#percent still feasible 

             str(upgradeMetric),#upgrade metric 
             str(metricPerHundredMillion),#metric per hundred million 

             str(changevulnerability),#change vulnerability 

             str(changespeed),#change speed 
             count[8],#AAW 

             count[9],#ASW 
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             count[10],#SUW 

             count[11],#MIW 

             count[12],#C2 

             count[13],#IO 
             str(feasibilityOfDesignByAvgFollowCostPerHundredMillionMetric),#Feasibility of Design By Average Follow Cost 
Per HundredMillion Metric 

             0,#Overall Rank 
             0#CCA Rank 

         ) 
     ) 
# In[20]: 
def addOverallRankAndSortData(): 
 global ovrRank, statAry, getRank, total1f, x 
 # Add overall rank 

 ovrRank = 0 

 statAry = [] 
 # get data sorted by key then sorted by the BSCELL then sorted by overallRank 

 getRank = sorted(statData, key=getFeasibilityOfDesignByAverageFollowCostPerHundredMillionMetric, reverse=True) 
 total1f = 0.0 

 for x in getRank: 
     # label each row by rank 

     x.OVERALLRANK = ovrRank 
     ovrRank = ovrRank + 1 

# In[21]: 
def addCCARankAndSortData(): 
 global ccaRankCount, curCell, ccaRank, firstPass, getCCARank, x, sortedBSCELL, y 

 ###Add rank within CCA 
 ccaRankCount = 0 

 curCell = "" 
 ccaRank = [] 
 # initialize a new BSCELL on first pass only 

 firstPass = True 

 # after overall rank has been assigned the sort by BSCELL in order to get Ready to assign Rank to Each CCA 
 getCCARank = sorted(getRank, key=attrgetter(CONST.BS_CELL), reverse=False) 
 for x in getCCARank: 
     if firstPass == True: 
         curCell = x.BS_CELL 

         firstPass = False 

         # We have hit a new set of BSCELL and need to sort the previous BSCELL list by the overallRank 
         # and then assign a CCA rank based on who has the best overall rank. The list are being modified 

         # by the reference so change made to sorted BSCELL after statData 

     if curCell != x.BS_CELL: 
         ccaRankCount = 0 

         #for x in ccaRank: 
         sortedBSCELL = sorted(ccaRank, key=attrgetter(CONST.OVERALLRANK), reverse=False) 
         for y in sortedBSCELL: 
             y.CCARANK = ccaRankCount 
             ccaRankCount = ccaRankCount + 1 
         ccaRank = [] 
     ccaRank.append(x) 
     curCell = x.BS_CELL 
# In[22]: 
#sort the data by 'x' then 'j' then 'a'. any three values could go here 

def addSeedRankAndSortData(): 
 global seedRankCount, curCell, seedRank, firstPass, getSeedRank, finalList, x, sortedBSCELL, y 

 ###Add rank for each seed 

 seedRankCount = 0 
 curCell = "" 
 seedRank = [] 
 firstPass = True 
 # get list sorted on feas per mil metric and then sort based on seed 

 getSeedRank = sorted(getRank, key=attrgetter(CONST.SEED), reverse=False) 
 finalList = [] 
 # add seed 1 - (n-1) to the list and when were done add the final seed 

 for x in getSeedRank: 
     if firstPass == True: 
         curCell = x.SEED 

         firstPass = False 
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     if curCell != x.SEED: 
         seedRankCount = 0 

         sortedBSCELL = sorted(seedRank, key=attrgetter(CONST.OVERALLRANK), reverse=False) 
         for y in sortedBSCELL: 
             y.seedRank = seedRankCount 
             finalList.append(y) 
             seedRankCount = seedRankCount + 1 
         seedRank = [] 
     seedRank.append(x) 
     curCell = x.SEED 
 #add the final seed 

 seedRankCount = 0 

 sortedBSCELL = sorted(seedRank, key=attrgetter(CONST.OVERALLRANK), reverse=False) 
 for y in sortedBSCELL: 
     y.seedRank = seedRankCount 
     finalList.append(y) 
     seedRankCount = seedRankCount + 1 

 seedRank = [] 
# In[23]: 
def writeDataToCSVFile(): 
 global y, varAry, stat_text, handle 

  #print finalDict 
 stat_text="SEED, BS CELL,CCA, NUM TIMES CCA FOUND, NUM TIMES FAILED PERMUTE,NUM VALUES TESTED 
DURING PERMUTE,FEASIBLE AFTER PERMUTE,PERCENT FEASIBLE AFTER PERMUTE," 
 stat_text+="AVERAGE FOLLOW COST (Original Design),'Upgradabiliy' METRIC,'Upgradability' PER $100 
Million,Change Vulnerability," 
 stat_text+="Speed,AAW,ASW,SUW,MIW,C2,IO,Feasibility of Design By Average Follow Cost Per HundredMillion 
Metric," 
 stat_text+="Overall Rank,CCA Rank,Seed Rank\n" 
 for y in finalList: 
     varAry = str( 
         y.BS_CELL + "," + y.CCA + "," + y.SEED + "," + y.NUMTIMES_CCA_FOUND + "," + 
y.NUM_TIMES_FAILED_PERMUTE + "," + 
         y.NUM_VALUES_TESTED_DURING_PERMUTE + "," + y.FEASIBLE_AFTER_PERMUTE + "," + 
y.PERCENT_FEASIBLE_AFTER_PERMUTE + "," + 

         y.AVERAGE_FOLLOW_COST + "," + y.UPGRADABILITY_METRIC + "," + 
y.UPGRADABILITY_PER_HUNDRED_MILLION + "," + y.CHANGE_VULNERABILITY + "," + 

         y.CHANGE_SPEED + "," + y.AAW + "," + y.ASW + "," + y.SUW + "," + y.MIW + "," + y.C2 + "," + y.IO + "," + 

         y.FEASIBILITY_OF_DESIGN_BY_AVERAGE_FOLLOW_COST_PER_HUNDRED_MILLION_METRIC + "," + 
str(y.OVERALLRANK) + 

         "," + str(y.CCARANK) + " , " + str(y.seedRank)) 
     stat_text += varAry + "\n" 
 handle = open( 
     propname + "/" + "permutationWithFeasible_Perm" + str(permRunsPercent) + "_" + propname + "_" + ifFeas + ".csv", 
"w") 
 handle.write(stat_text) 
 handle.close() 
# Once you have run everything above has been run at least once, you may begin exploring the data in the cells below 
# In[24]: 
#csvFilePath 

# In[25]: 
############################################################## 

##############Begin gathering results######################### 

###Step 1: Determine seed success before permutation############ 
#Read in the whole data set 
def readEntireDataset(): 
 global dfFull 
 dfFull = pd.DataFrame() 
 con = Counter() 
 cur = Counter() 
 numDBs = 0 

 path = '../apd-data/' 
 for f in os.listdir(path): 
     if os.path.isfile(os.path.join(path, f)): 
         if "results" in f: 
             numDBs += 1 
 ############# 

 dfTemp = [] 
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 # Attempted Parallel read of all databases. Does not work## 

 #  DO NOT DELETE, SAVE FOR REFERENCE  # 

 ''' 
 localPool = multiprocessing.Pool(multiprocessing.cpu_count()) 
  # if were testing just do 3 databases 

 if testingApplication == True: 
      # Read in all data sets 
     dfTemp = localPool.map(getAllDataFromDbWithConnecting, range(0, numDbToTest)) 
 else: 
      # Read in all data sets 
     dfTemp = localPool.map(getAllDataFromDbWithConnecting, range(0, numDBs-1)) 
 localPool.close() 
 #localPool.terminate() 
 localPool.join() 
 ''' 
 #Non parallel read of all databases## 
 #  DO NOT DELETE, SAVE FOR REFERENCE  # 

  # initialize 

 dfTemp.append( getAllDataFromDbWithConnecting(0)) 
 if testingApplication: 
     for x in range(1, numDbToTest): 
         dfTemp.append(getAllDataFromDbWithConnecting(x)) 
         print( "finished reading db %d" % (x)) 
 else: 
     for x in range(1, numDBs-1): 
         dfTemp.append(getAllDataFromDbWithConnecting(x)) 
         print( "finished reading db %d" % (x)) 
 ####################################### 

 dfFull = dfTemp[0] 
 for index in range(1,len(dfTemp)): 
     dfFull = pd.concat([dfFull, dfTemp[index]], axis=0) 
 print("Finished reading in entire data set") 
# In[26]: 
# Since we are reading the entire data set, this needs to happen in parallel 
def getAllDataFromDbWithConnecting(dbNum): 
 myCon = lite.connect("../apd-data/results_%d.db" % dbNum) 
  # same sql statement for all connections 

 sql = 'SELECT * FROM Results' 
 myDataFrame = pd.read_sql(sql, myCon) 
 print("Finished reading data for db %d. Expect the pickling of this data to take several minutes based on the size of the 
db" % (dbNum)) 
 return myDataFrame 
# In[27]: 
# Since we are reading the entire data set, this needs to happen in parallel 
def getAllDataFromDbWithoutConnecting(dbNum): 
 myCon = lite.connect("../apd-data/results_%d.db" % dbNum) 
  # same sql statement for all connections 

 sql = 'SELECT * FROM Results' 
 myDataFrame = pd.read_sql(sql, myCon) 
 return myDataFrame 

# In[28]: 
# populate the fullCriticalVariableList 
# this is the same thing as criticalVariableList except it is for the whole data set 
def populateFullValueList(seedName): 
# for every returned row ie every row in the feasible set 
myDf = dfFull.loc[dfFull[CONST.seed] == seedName] 
for index, propDict in myDf.iterrows(): 
    #Using BS_CELL, CCA, Seed, count number feasible for each [BS_CELL, CCA, and seed] : increment number found 
in 

    # DataDict[], using all values from propDict, see if they have been added to dataDict yet 
    #if this BS_CELL exists in the dictionary then append this row under the BS_CELL 

    if propDict[CONST.seed] in fullCriticalVariableList: 
        if propDict[CONST.BSCELL] in fullCriticalVariableList[propDict[CONST.seed]]: 
            if propDict[CONST.CCA] in fullCriticalVariableList[propDict[CONST.seed]][propDict[CONST.BSCELL]]: 
                fullCriticalVariableList[propDict[CONST.seed]][propDict[CONST.BSCELL]][propDict[CONST.CCA]].append(prop
Dict[primaryVar]) 
            else: 
                fullCriticalVariableList[propDict[CONST.seed]][propDict[CONST.BSCELL]][propDict[CONST.CCA]] = 
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[propDict[primaryVar]] 
        else: 
            fullCriticalVariableList[propDict[CONST.seed]][propDict[CONST.BSCELL]] = 
{propDict[CONST.CCA]:[propDict[primaryVar]]} 
    else: 
        fullCriticalVariableList[propDict[CONST.seed]]= {propDict[CONST.BSCELL]:  {propDict[CONST.CCA]: 
[propDict[primaryVar]]}} 
pause=0 

# In[29]: 
# In order to use the same methods I have previously used for examining the data set, go ahead and set this up for the full 
data set 
# It is not useful in the sense that I already know which values are feasible based on which values are in 
criticalVariableList 
# It is useful because it allows me the same methods I have used for accessing data in the criticalVariableList to be used 
again 

def fullPopulateTestedValuesDictionaryUnique(seedName, primaryVar): 
 global testedValuesDf 
 for seed in fullCriticalVariableList: 
     for bscell in fullCriticalVariableList[seed]: 
         for cca in fullCriticalVariableList[seed][bscell]: 
             if isinstance(fullCriticalVariableList[seed][bscell][cca][0], dict) == False: 
                 fullCriticalVariableList[seed][bscell][cca] = pd.Series(fullCriticalVariableList[seed][bscell][cca]).unique() 
             tmpAry = fullCriticalVariableList[seed][bscell][cca] 
             aryObj = [] 
             for val in tmpAry: 
                 aryObj.append({'value': val, 'tested': False}) 
             # store the ary of value and weather the value has been tested back to the bscell 
             fullCriticalVariableList[seed][bscell][cca] = aryObj 
 pause=0 

# In[30]: 
def populateLengthDictionaryV2(myCriticalVariableList): 
 lengthCounter = {} 
 for seed in fullCriticalVariableList: 
     for bscell in fullCriticalVariableList[seed]: 
         if seed in lengthCounter: 
             lengthCounter[seed][bscell] = np.NAN 
         else: lengthCounter[seed] = {bscell: np.NAN} 
 for seed in myCriticalVariableList: 
     for bscell in myCriticalVariableList[seed]: 
         for cca in myCriticalVariableList[seed][bscell]: 
             if np.isnan(lengthCounter[seed][bscell]): 
                 lengthCounter[seed][bscell] = 1 
             else: 
                 lengthCounter[seed][bscell] += 1 

            
 # lengthDf = pd.DataFrame(lengthCounter) 
 return lengthCounter 
# In[31]: 
# determine the number of failed cca's each seed-bscell has 

def populateFailureLengthDictionary(uniqueLengthFullDict, successLengthDictMain): 
 lengthCounter = {} 
 for seed in uniqueLengthFullDict: 
     for bscell in uniqueLengthFullDict[seed]: 
         if seed in lengthCounter: 
             lengthCounter[seed][bscell] = np.nan 

         else: lengthCounter[seed] = {bscell: np.nan} 
         if seed in successLengthDictMain: 
             if bscell in successLengthDictMain[seed]: 
                 lengthCounter[seed][bscell] = uniqueLengthFullDict[seed][bscell] - successLengthDictMain[seed][bscell] 
 return lengthCounter 
# In[32]: 
# 1) Determine the number of values a seed had that are not unique 

# 2) Determine the number of values a seed has that are unique 
# 3) Determine the success of a seed before  permute 

# 4) Determine the number of Failed values a seed had before permute 

dfTemp =[] 
def populateSeedInformationBeforePermute(): 
global nonUniqueLengthFullDf,uniqueLengthFullDf,successLengthDfMain,failureLengthDfMain 
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global uniqueLengthFullDict, successLengthDictMain, failureLengthDict 
 # Read entire data set reads the entire data set using a parallel read on multiple databases 

 # data is placed into dfFull 
########################## 
#TODO: Remove for testing only 

testingApplication = False 

########################## 
myTime = time.time() 
print ('begin reading entire database') 
readEntireDataset() 
print("Total run time for populating length dataFrame which describes the number of successful values each seed has 
before permute --- %s seconds ---" % (time.time() - myTime)) 
seedList = dfFull.seed.unique() 
####################################################### 

print("Start run time for populating non unique critical variable value list dictionary") 
dfTemp_time = time.time() 
#non parallel version 

if testingApplication: 
    # Approx 100 secs using one db per seed 

    populateFullValueList(seedList[4]) 
else: 
    for seed in seedList: 
        populateFullValueList(seed) 
print("Total run time for populating non unique critical variable value list dictionary --- %s seconds ---" % (time.time() - 
dfTemp_time)) 
###################################### 

#1) Determine the number of values a seed had that are non unique 
dfTemp =[] 
 # populate a dictionary that holds the number of non unique values in the data set 
myTime = time.time() 
#dfTemp = populateLengthDictionary(seedList[0]) 
####################################################### 

print("Start run time for populating non unique length dictionary") 
dfTemp_time = time.time() 
###parallel varsion not working for some reason ####### 

#localPool = multiprocessing.Pool(len(seedList)) 
#for result in tqdm(localPool.imap_unordered(populateLengthDictionary, seedList)): 
#    dfTemp.append(result) 
#dfTemp = localPool.imap_unordered(populateLengthDictionary, seedList) 
#localPool.close() 
#localPool.terminate() 
#localPool.join() 
########################### 

#non parallel version 

if testingApplication: 
    dfTemp.append(pd.DataFrame(populateLengthDictionary(seedList[0])))#, dfFull)) 
else: 
    for seed in seedList: 
        dfTemp.append(pd.DataFrame(populateLengthDictionary(seed)))#, dfFull)) 
print("Total run time for populating length dictionary --- %s seconds ---" % (time.time() - dfTemp_time)) 
###################################### 
nonUniqueLengthFullDf = pd.concat(dfTemp, axis=1) 
#nonUniqueLengthFullDf = dfTemp[0] 
#for index in range(1,len(dfTemp)): 
#    nonUniqueLengthFullDf = pd.concat([nonUniqueLengthFullDf, dfTemp[index]], axis=0) 
print("Total run time for populating non unique length dataFrame using the full database --- %s seconds ---" % (time.time() 
- myTime)) 
# Just because I was curious if there was a performance difference between these two methods for calculating the 
number of values 

# in the dataset 
# 2) Determine the number of values a seed has that are unique 

myTime = time.time() 
 # unique Length full df is used for determining the number of unique values for each df 
uniqueLengthFullDict = populateLengthDictionaryV2(fullCriticalVariableList) 
uniqueLengthFullDf = pd.DataFrame(uniqueLengthFullDict) 
print("Total run time for populating length dataFrame using the pre-configured critical vairable list --- %s seconds ---" % 
(time.time() - myTime)) 
 # 3) Determine the success of a seed before permute 
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myTime = time.time() 
 # get the number of successful values for a bscell 
successLengthDictMain = populateLengthDictionaryV2(criticalVariableValueList) 
 # if there is no value, then there were no successes 
for seed in successLengthDictMain: 
    for bscell in successLengthDictMain[seed]: 
         if np.isnan(successLengthDictMain[seed][bscell]): 
                successLengthDictMain[seed][bscell] = 0 

            
successLengthDfMain = pd.DataFrame(successLengthDictMain) 
print("Total run time for populating length dataFrame which describes the number of successful values each seed has 
before permute --- %s seconds ---" % (time.time() - myTime)) 
# 4) Determine the number of Failed values a seed had before permute 
myTime = time.time() 
#for every row 

failureLengthDict = populateFailureLengthDictionary(uniqueLengthFullDict, successLengthDictMain) 
 # if there is no value then every cca failed 

for seed in failureLengthDict: 
    for bscell in failureLengthDict[seed]: 
         if np.isnan(failureLengthDict[seed][bscell]): 
                failureLengthDict[seed][bscell] = uniqueLengthFullDict[seed][bscell] 
            
# unique Length full df is used for determining the number of unique values for each df 
failureLengthDfMain = pd.DataFrame(failureLengthDict) 
print("Total run time for populating failure dataFrame which describes the number of failed values each seed has before 
permute --- %s seconds ---" % (time.time() - myTime)) 
# In[33]: 
################################################################################## 

########## Begin Genetic Algorithm Testing ######################################## 

def populateFinalDictGeneticAlgorithm(): 
 global dict, item 

 for dict in dataDictGeneticAlgorithm: 
     if dict in finalDictGeneticAlgorithm: 
         finalDictGeneticAlgorithm[dict][0] += dataDictGeneticAlgorithm[dict][0] 
         finalDictGeneticAlgorithm[dict][1] += dataDictGeneticAlgorithm[dict][1] 
         finalDictGeneticAlgorithm[dict][2] += dataDictGeneticAlgorithm[dict][2] 
         finalDictGeneticAlgorithm[dict][3] += dataDictGeneticAlgorithm[dict][3] 
         finalDictGeneticAlgorithm[dict][4] += dataDictGeneticAlgorithm[dict][4] 
         finalDictGeneticAlgorithm[dict][5] += dataDictGeneticAlgorithm[dict][5] 
         finalDictGeneticAlgorithm[dict][6] += dataDictGeneticAlgorithm[dict][6] 
         finalDictGeneticAlgorithm[dict][7] += dataDictGeneticAlgorithm[dict][7] 
         finalDictGeneticAlgorithm[dict][8] += dataDictGeneticAlgorithm[dict][8] 
         finalDictGeneticAlgorithm[dict][9] += dataDictGeneticAlgorithm[dict][9] 
         finalDictGeneticAlgorithm[dict][10] += dataDictGeneticAlgorithm[dict][10] 
         finalDictGeneticAlgorithm[dict][11] += dataDictGeneticAlgorithm[dict][11] 
         finalDictGeneticAlgorithm[dict][12] += dataDictGeneticAlgorithm[dict][12] 
         finalDictGeneticAlgorithm[dict][13] += dataDictGeneticAlgorithm[dict][13] 
         finalDictGeneticAlgorithm[dict][14] = dataDictGeneticAlgorithm[dict][14] 
         finalDictGeneticAlgorithm[dict][15] = dataDictGeneticAlgorithm[dict][15] 
         finalDictGeneticAlgorithm[dict][16] = dataDictGeneticAlgorithm[dict][16] 
         finalDictGeneticAlgorithm[dict][17] = dataDictGeneticAlgorithm[dict][17] 
     else: 
         finalDictGeneticAlgorithm[dict] = [dataDictGeneticAlgorithm[dict][0], dataDictGeneticAlgorithm[dict][1], 
dataDictGeneticAlgorithm[dict][2], 
                            dataDictGeneticAlgorithm[dict][3], dataDictGeneticAlgorithm[dict][4], 
                            dataDictGeneticAlgorithm[dict][5],dataDictGeneticAlgorithm[dict][6], dataDictGeneticAlgorithm[dict][7], 
                            dataDictGeneticAlgorithm[dict][8], dataDictGeneticAlgorithm[dict][9], dataDictGeneticAlgorithm[dict][10], 
                            dataDictGeneticAlgorithm[dict][11], dataDictGeneticAlgorithm[dict][12], 
dataDictGeneticAlgorithm[dict][13], 
                            dataDictGeneticAlgorithm[dict][14], dataDictGeneticAlgorithm[dict][15], 
dataDictGeneticAlgorithm[dict][16], 
                            dataDictGeneticAlgorithm[dict][17]] 
def startGeneticAlgorithmPermutationTesting(): 
 global dataDictGeneticAlgorithm 

 dataDictGeneticAlgorithm = Counter() 
  # Get the list of seeds 
 seedList = dfMain.seed.unique() 
  # For each seed family of designs 
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 for seedName in seedList: 
     #print ("Beginning work on seed family %s using primary variable %s" % ( seedName, primaryVar)) 
     #configTime = time.time() 
     #criticalvariableValueList 
     #print ("Process %d configuring data structures: %s seconds " % (RANK, time.time() - configTime)) 
      # make a list of which values have been tested for each BSCELL 

      #populateTestedValuesDictionary(seedName, primaryVar) 
     #testValuesDf 
      # run the substitution algorithm testing for resilience 

     print ("Node " + str(RANK) + " beginning genetic algorithm permutation") 
     permuteTime = time.time() 
     initRowsAndPermuteForSeedSuccessPercentageUsingGeneticAlgorithm(seedName, primaryVar) 
     print ("Process %d time it took for genetic algorithm permutation: %s seconds " % (RANK, time.time() - permuteTime)) 
 

def initRowsAndPermuteForSeedSuccessPercentageUsingGeneticAlgorithm(seedName, primaryVar): 
 global row, dictrows, propDict, permute, saveprop, randomPermute, workQueue, permutePerSeedGeneticAlgorithm, 
dataDictGeneticAlgorithm 

  # total number of rows that were tested by this process and the number of values left untested of the known 

  #  possible feasible values 
 totalNumUntested = 0 

 totalNumtested = 0 

 totalNumberOfValuesTestedForSeed = 0 
 myDf = dfMain.loc[dfMain[CONST.seed] == seedName] 
 curRowProgress = 0 

 totalRows = len(myDf) 
 permutePerSeedGeneticAlgorithm = {} 
 columnHeadings = list(dfMain) 
 startIndex = 0 

 endIndex = totalRows 

  # start on the proper row for this process 
 curRowProgress = startIndex 

 endIndex = startIndex + ((endIndex-startIndex) * percentOfRowsToTest) 
 if( endIndex < 1): 
     endIndex = 1 

 # Create a thread for every row. the thread will handle permute for that row and return stats for the row. 
 threadList = [] 
 rowList = [] 
 threadCount = startIndex 

 for curRow in myDf.iloc[int(startIndex):int(endIndex)].values: 
     curRow = np.append(curRow,str(threadCount)) 
     rowList.append(curRow) 
     threadCount += 1 
 print ("Computing permute with maximum power") 
 print("Expect the rows to print in the order they are processed.") 
 dataList = [] 
 ############################################# 

 # non parallel way 

 for row in rowList: 
     dataList.append(getRowDataGeneticAlgorithm(row)) 
 ############################################# 

 ####Paralle way 
 # 

 #pool = multiprocessing.Pool(multiprocessing.cpu_count()) 
 #dataList = pool.map(getRowDataGeneticAlgorithm(), rowList) 
 #pool.close() 
 #pool.terminate() 
 #pool.join() 
 ############################################# 

 ''' 
 dataDictGeneticAlgorithm[0] numTimes_Cca_Found = float(count[0]) 
 dataDictGeneticAlgorithm[1]  self.NUM_TIMES_FAILED_PERMUTE = NUM_TIMES_FAILED_PERMUTE 

 dataDictGeneticAlgorithm[2]  feasible_after_permute = float(count[2]) 
 dataDictGeneticAlgorithm[14] NUM_POSSIBLE_VALUES = float(count[15]) 
 dataDictGeneticAlgorithm[15] Total number of mutations 

 dataDictGeneticAlgorithm[16] Total number of passed mutations 

 dataDictGeneticAlgorithm[17] Total number of failed mutations 
 ''' 
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 print("Finished permute with genetic algorithm") 
 for item in dataList: 
     seed = item['seed'] 
     bscell = item['bscell'] 
     cca = item['cca'] 
     if (seed, bscell,cca) in dataDictGeneticAlgorithm: 
         dataDictGeneticAlgorithm[seed,bscell,cca][0] += item['myDataDict'][seed,bscell,cca][0] 
         dataDictGeneticAlgorithm[seed, bscell, cca][1] += item['myDataDict'][seed, bscell, cca][1] 
         dataDictGeneticAlgorithm[seed, bscell, cca][2] += item['myDataDict'][seed, bscell, cca][2] 
         dataDictGeneticAlgorithm[seed, bscell, cca][14] += item['myDataDict'][seed, bscell, cca][14] 
         dataDictGeneticAlgorithm[seed, bscell, cca][15] += item['myDataDict'][seed, bscell, cca][15] 
         dataDictGeneticAlgorithm[seed, bscell, cca][16] += item['myDataDict'][seed, bscell, cca][16] 
         dataDictGeneticAlgorithm[seed, bscell, cca][17] += item['myDataDict'][seed, bscell, cca][17] 
     else : dataDictGeneticAlgorithm[seed,bscell,cca]= item['myDataDict'][seed,bscell,cca] 
 print ("Exiting permute with genetic algorithm") 
testcounter=0 
def getRowDataGeneticAlgorithm(curRow): 
 global geneticDictionary 

 geneticDictionary = {} 
 # create a key value pair of this row's values 

 colNum = 0 

 rowDict = {} 
 columnHeadings = list(dfMain) 
 columnHeadings.append("RowID") 
 for col in columnHeadings: 
     rowDict[col] = curRow[colNum] 
     colNum += 1 
 myDataDict = {} 
 # determine how many values we have 

 numTimesToPermute = 0 
 localVarValList = criticalVariableValueList 
 # figure out how many values we have in this seed the first time we encounter it 
 if (rowDict[CONST.seed] in permutePerSeedGeneticAlgorithm): 
     numTimesToPermute = permutePerSeedGeneticAlgorithm[rowDict[CONST.seed]] 
 else: 
     for bscell in localVarValList[rowDict[CONST.seed]]: 
         numTimesToPermute += len(localVarValList[rowDict[CONST.seed]][bscell]) 
     # keep track of how many values were tested for this seed 

     permutePerSeedGeneticAlgorithm[rowDict[CONST.seed]] = numTimesToPermute 
 # apply the percentage modifier in case the user wants to use less rows than all possible 

 numTimesToPermutePercent = int(math.ceil(numTimesToPermute * permRunsPercent)) 
 # if there was only 1 value then test 
 if (numTimesToPermutePercent < 1 and numTimesToPermutePercent > 0): 
     numTimesToPermutePercent = 1 

 # if you didnt check all the values then go ahead, else all values for this bscell have been tested 
 #  numTimesToPermute: number of possible values for this row 

 for permute in range(0, numTimesToPermutePercent): 
     firstIndexOfUntestedSeed = "" 
     firstIndexOfUntestedBscell = "" 
     firstIndexOfUntestedCca = "" 
     firstIndexOfUntestedCcaVal = -1 
     numUntested = 0 

     numTested = 0 

     firstIndexOfUntested = -1 
     # For the very first row, set up the myDataDictionary 

     if permute == 0: 
         saveprop = rowDict[primaryVar] 
         # Using BS_CELL,CCA, seed, count number feasible for each [BS_CELL,CCA,seed] : increment number 
         #  found in myDataDict[], using all values from rowDict, See if they have been added to myDataDict yet 
         if (rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]) in myDataDict: 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][ 
                 0] += 1  # count 0 -  #numTimesCcaFound 

             # everytime this CCA is reencountered, add to the total of values tested 
             # myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][15] += 
numTimesToPermute 

         else: 
             # Initialize this [BS_CELL, CCA,seed] in the myDataDict by adding required info 

             # [0=number feasible, 1=number tested, 2=number still feasible after permuation, 
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             # 3=average cost running total] notify that this node is done working 

             # [14] Total values tested 

             # [15] Total number of mutations 

             # [16] Total number of passed mutations 
             # [17] Total number of failed mutations 

             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]] = [1, 0, 0, 0, 0, 
                                                                                           0, 0, 0, 0, 0, 
                                                                                           0, 0, 0, 0, 0, 
                                                                                           0, 0, 0] 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][3] = str( 
                 rowDict[CONST.METRIC_AVERAGE_FOLLOW_END_COST_MOST_LIKELY]) 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][6] = str( 
                 rowDict[CONST.METRIC_VULNERABILITY]) 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][7] = str( 
                 rowDict[CONST.DESIGN_SUSTAINED_SPEED]) 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][8] = ( 
                 rowDict[CONST.AAW]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][9] = ( 
                 rowDict[CONST.ASW]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][10] = ( 
                 rowDict[CONST.SUW]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][11] = ( 
                 rowDict[CONST.MIW]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][12] = ( 
                 rowDict[CONST.C2]).strip(' ') 
             myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][13] = ( 
                 rowDict[CONST.IO]).strip(' ') 
     # Attempt to randomly get the index of a value in the critical variable list 
     chosenSeed = rowDict[CONST.seed] 
     chosenbscell = "" 
     chosenCCA = "" 
     numBscell = len(localVarValList[chosenSeed]) 
     chosenBscellIndex = random.randint(0, numBscell - 1) 
     curBscellIndex = 0 

     chosenCcaValIndex = 0 

     for bscell in localVarValList[chosenSeed]: 
         if curBscellIndex == chosenBscellIndex: 
             chosenbscell = bscell 
             numCca = len(localVarValList[chosenSeed][chosenbscell]) 
             chosenCcaIndex = random.randint(0, numCca - 1) 
             curCcaIndex = 0 

             for cca in localVarValList[chosenSeed][chosenbscell]: 
                 if curCcaIndex == chosenCcaIndex: 
                     # chosenCCA = localVarValList[chosenSeed][chosenbscell][cca] 
                     chosenCCA = cca 
                     numValForCca = len(localVarValList[chosenSeed][chosenbscell][chosenCCA]) 
                     chosenCcaValIndex = random.randint(0, numValForCca - 1) 
                     break 
                 else: 
                     curCcaIndex += 1 

             break 
         else: 
             curBscellIndex += 1 

         # Once we have attempted to randomly choose a value to try for this row, make sure we have a 
         # random index of a value that hasn't been tested so that we can meet our percentage. 
         # If we don't get a random number that hasn't been tested, take the next number that hasn't been tested 

     if (localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] == True): 
         seed = rowDict[CONST.seed] 
         for bscell in localVarValList[rowDict[CONST.seed]]: 
             for cca in localVarValList[seed][bscell]: 
                 for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])): 
                     if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == False): 
                         if firstIndexOfUntestedCcaVal == -1: 
                             # store a reference into the structure to the first untested value 

                             firstIndexOfUntestedSeed = seed 

                             firstIndexOfUntestedBscell = bscell 
                             firstIndexOfUntestedCca = cca 

                             firstIndexOfUntestedCcaVal = curCCAVal 
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                         numUntested += 1 

                     else: 
                         numTested += 1 

         # How often do we state our progress 
         ''' 
         if (permute % (int(math.ceil(numTimesToPermutePercent)) * .10) == 0): 
             if (numUntested == 0): 
                 # print("No values left to test for this row. Adding to counter number of times a valid value has appeared") 
                 a = 0 

             else: 
                 print( "Untested values for bscell %s in Seed %s: %d. Tested Values for this bscell: %d. Process %d" % ( 
                         rowDict[CONST.BSCELL], rowDict[CONST.seed], numUntested, numTested, RANK)) 
                 #print( 
                 #"Untested values for bscell %s in Seed %s: %d. Tested Values for this bscell: %d. Process %d row %d" % ( 
                 #    rowDict[CONST.BSCELL], rowDict[CONST.seed], numUntested, numTested, RANK, curRowProgress)) 
                 # End of print message 
         ''' 
         randomPermute = \ 
         localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][firstIndexOfUntestedCca][ 
             firstIndexOfUntestedCcaVal]['value'] 
         # if we are allowing duplicate tests of the same value 

         localVarValList[firstIndexOfUntestedSeed][firstIndexOfUntestedBscell][firstIndexOfUntestedCca][ 
             firstIndexOfUntestedCcaVal]['tested'] = True 

     else: 
         randomPermute = localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['value'] 
         # if we are allowing duplicate tests of the same value 

         if allowDuplicatePermutation == False: 
             localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] = True 

     ''' 
     Up to this point, everything has been the same as the initial version of permute. Minus the pre-configuration. 
     The concept of genetic algorithm concept of mutation is introduced here. This means that for a certain percentage 

     of the time, rather than trying possible values, we try a new value that is a mutation of the target row value and 

     the new target value. We will need to add the new value to the possible values. We also need to randomly choose 
     a mutation. 
     ''' 
     ifMutated = False 
      #randomly mutate the value we test 
     myRand = random.randrange(0,100) 
     if (myRand + 1)/100 > mutationChance : 
          # were not actually going to check the chosen index this pass so reset it to show it hasnt been selected 

         localVarValList[chosenSeed][chosenbscell][chosenCCA][chosenCcaValIndex]['tested'] = False 

          # mutate the value 
         mutatedValue = mutateValue(rowDict[primaryVar], randomPermute) 
          # Since we are going to mutate, we need to add the new value to the list of values. So mutate and add it 
         if chosenSeed in geneticDictionary: 
             if chosenbscell in geneticDictionary[chosenSeed]: 
                 if chosenCCA in geneticDictionary[chosenSeed][chosenbscell]: 
                     geneticDictionary[chosenSeed][chosenbscell][chosenCCA].append({ 
                         'passed': False, 'target':rowDict[primaryVar], 'current':rowDict[primaryVar], 
                         'mutant': mutatedValue}) 
                 else: 
                     geneticDictionary[chosenSeed][chosenbscell][chosenCCA] = [{ 
                         'passed': False, 'target':rowDict[primaryVar], 'current':rowDict[primaryVar], 
                         'mutant': mutatedValue}] 
             else: 
                 geneticDictionary[chosenSeed][chosenbscell] = {chosenCCA:[{ 
                         'passed': False, 'target':rowDict[primaryVar], 'current':rowDict[primaryVar], 
                         'mutant': mutatedValue}]} 
         else: 
             geneticDictionary[chosenSeed] = {chosenbscell:  {chosenCCA: [{ 
                         'passed': False, 'target':rowDict[primaryVar], 'current':rowDict[primaryVar], 
                         'mutant': mutatedValue}]}} 
         rowDict[primaryVar] = mutatedValue 
         ifMutated = True 

          # Add to the number of mutations 

         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][15] += 1 
     else: rowDict[primaryVar] = randomPermute 

     # run the datarow through the appropriate regression model for this seed 
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     if rowDict[CONST.seed] == CONST.i1: 
         rowDict = i1.RegEx(rowDict) 
     if rowDict[CONST.seed] == CONST.i2: 
         rowDict = i2.RegEx(rowDict) 
     if rowDict[CONST.seed] == CONST.ic: 
         rowDict = ic.RegEx(rowDict) 
     if rowDict[CONST.seed] == CONST.m1: 
         rowDict = m1.RegEx(rowDict) 
     if rowDict[CONST.seed] == CONST.m2: 
         rowDict = m2.RegEx(rowDict) 
         # run requirements and metrics on the datarow 

     rowDict = requirements.RegEx(rowDict) 
     rowDict = metricsv31.RegEx(rowDict) 
     ''' 
     0 numTimes_Cca_Found = float(count[0]) 
     1  self.NUM_TIMES_FAILED_PERMUTE = NUM_TIMES_FAILED_PERMUTE 
     2  feasible_after_permute = float(count[2]) 
     14 NUM_POSSIBLE_VALUES = float(count[15]) 
     [15] Total number of mutations 

     [16] Total number of passed mutations 

     [17] Total number of failed mutations 

     ''' 
     # number of possible values this will include mutations in the count 
     myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][14] += 1 

     # NOTE: For both the case where a row has been tested and not been tested, increment the appropriate values in the 
myDataDict 
     # If row is feasible after permute then add to still feasible count and to numtested 
     if rowDict[CONST.REQ_CUMULATIVE] > -1: 
         # This is a really interesting value. If the row fails feasibility test after permutation then it means that it lacks 
resilience 
         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][ 
             2] += 1  # count 2 - # feasible after permute 

         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][4] += rowDict[ 
             CONST.METRIC_VULNERABILITY] 
         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][5] += rowDict[ 
             CONST.DESIGN_SUSTAINED_SPEED] 
         # if we mutated and passed, set the passed attribute to true and increment the passed counter 
         if ifMutated: 
             indexVal = 0 
             for item in geneticDictionary[chosenSeed][chosenbscell][chosenCCA]: 
                 if item['mutant'] == mutatedValue: 
                     geneticDictionary[chosenSeed][chosenbscell][chosenCCA][indexVal]['passed'] = True 
                      # Add to the number of passed mutations 

                     myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][16] += 1 

                     break 
                 indexVal+=1 

     else: 
         # This means the row is no longer feasible so only add to number of rows tested 
         myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][ 
             1] += 1  # count 1 - #NUM_TIMES_FAILED_PERMUTE 

          # if we muted and failed, add to the number of failed mutations and set the passed attribute of the 
          # mutated value to false 

         if ifMutated: 
             indexVal = 0 
             for item in geneticDictionary[chosenSeed][chosenbscell][chosenCCA]: 
                 if item['mutant'] == mutatedValue: 
                     geneticDictionary[chosenSeed][chosenbscell][chosenCCA][indexVal]['passed'] = False 
                      # Add to the number of failed mutations 

                     myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][17] += 1 

                     break 
                 indexVal+=1 
 

         # Another row has completed 
 #curRowProgress += 1 

 totalNumUntested = 0 

 totalNumtested = 0 
 seed = rowDict[CONST.seed] 
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 # Reset the values for each row so that each row has fair access to possible values 

 for bscell in localVarValList[rowDict[CONST.seed]]: 
     for cca in localVarValList[seed][bscell]: 
         for curCCAVal in range(0, len(localVarValList[seed][bscell][cca])): 
             # While values are being reset, keep track of how many rows have not been tested and 

             # also track the number of values that were tested for this seed 

             if (localVarValList[seed][bscell][cca][curCCAVal]['tested'] == False): 
                 totalNumUntested += 1 

             else: 
                 totalNumtested += 1 
             localVarValList[seed][bscell][cca][curCCAVal]['tested'] = False 
 

 if(int(rowDict['RowID']) % 50 == 0): 
     print ("Computed seed %s bascel %s cca %s. Using row %s" % (rowDict[CONST.seed],rowDict[CONST.BSCELL], 
rowDict[CONST.CCA],rowDict['RowID'])) 
 #for item in myDataDict: 
 #    dataDict[item] = myDataDict[item] 
 return {'seed':rowDict[CONST.seed],'bscell': rowDict[CONST.BSCELL],'cca': rowDict[CONST.CCA],'myDataDict': 
myDataDict, 
         'totalNumUntested': totalNumUntested, 'totalNumTested': totalNumtested, 
         'totalNumMutations': myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], rowDict[CONST.CCA]][15], 
         'totalNumMutationsPassed': myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], 
rowDict[CONST.CCA]][16], 
         'totalNumMutationsFailed': myDataDict[rowDict[CONST.seed], rowDict[CONST.BSCELL], 
rowDict[CONST.CCA]][17]} 
''' 
Mutation possible answers 
 0) Somewhere in between 

     a) Random value closer to current value 

     b) Random value closer to target value 
     c) Halfway 

     Note: If the new value is already present, then move on without mutation 

 1) Above or below current value by whichever puts the point: 
     a) Places the current value in between itself and the target value ( new <---- current ------- target ) 
     b) Places the target value in between itself and the current value ( current ----- target -----> new ) 
''' 
def mutateValue(current, target): 
 # choice 0 or 1 

  # 0) Somewhere in between 
  # 1) Above or below current value by whichever puts the point: 
 position = [0, 1] 
 positionChoice = random.choice(position) 
 # in between choice 

  # 0) Random value closer to current value 

  # 1) Random value closer to target value 
  # 2) Halfway 

 inBetween = [0, 1, 2] 
 inBetweenChoice = random.choice(inBetween) 
 # aboveBelowChoice 

  # 0) Places the current value in between itself and the target value ( new <---- current ------- target ) 
  # 1) Places the target value in between itself and the current value ( current ----- target -----> new ) 
 aboveBelow = [0, 1] 
 aboveBelowChoice = random.choice(aboveBelow) 
 # only dealing with positive numbers 

 mutatedValue = 0 

 halfway = (current+target)/2 

 current = int(current) 
 halfway = int(halfway) 
 target = int(target) 
  # force a mutated range 
 if halfway == target or halfway == current: 
     current = random.randrange(600,1000) 
     target = random.randrange(0,400) 
     halfway = 500 

 current = int(current) 
 halfway = int(halfway) 
 target = int(target) 
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 #NOTE: random.uniform(current, halfway) will select floating point number but it may not be a meaningful step 

  # Somewhere in between 

 if positionChoice == 0: 
      # Random value closer to current value 
     if inBetweenChoice == 0: 
         if(current < halfway): 
             mutatedValue = random.randrange(current, halfway,1) 
         else: 
             mutatedValue = random.randrange(halfway, current,1) 
      # Random value closer to target value 
     elif inBetweenChoice == 1: 
         if(target < halfway): 
             mutatedValue = random.randrange(target, halfway,1) 
         else: 
             mutatedValue = random.randrange(halfway, target,1) 
      # Halfway 
     elif inBetweenChoice == 2: 
         mutatedValue = halfway 

 else: #Above or below current value by whichever puts the point 
      # Places the current value in between itself and the target value ( new <---- current ------- target ) 
     if aboveBelowChoice == 0: 
          # ( new <---- current ------- target ) 
         if(current < halfway): 
             mutatedValue = halfway - random.randrange(current, halfway, 1) 
         else: # ( target ----- current -------> new ) 
             mutatedValue = halfway + random.randrange(halfway, current, 1) 
      # Places the target value in between itself and the current value ( current ----- target -----> new ) 
     elif aboveBelowChoice == 1: 
         if(target < halfway): 
              # ( new <---- target ----- current ) 
             mutatedValue = halfway - random.randrange(target, halfway,1) 
         else: 
              # ( current ----- target -----> new ) 
             mutatedValue = halfway + random.randrange(halfway, target,1) 
 return mutatedValue 

###########END GENETIC ALGORITHM TESTING################ 
######################################################### 

### start Execution by calling the first major function and its helper functions 

# method 1, permutation with substitution 
if __name__ == '__main__': 
 start_time = time.time() 
 mpiCreateDictionaryAndPermute() 
 print("Total run time for permute --- %s seconds ---" % (time.time() - start_time)) 
 # Have the Root process of the mpi run to collect the data from all of the processes 

 # and combine that data into one location for determining feasibility for each of 
 # the combat capability alternatives 

 print( "Process %d: has completed and is passing off data to main" % (RANK)) 
 #print(criticalVariableValueList['m2']['3B']) 
 test = mpi_comm.gather(criticalVariableValueList, root=0) 
 if RANK == ROOT: 
     print ("root is counting results") 
     # make collection containing results from all nodes 

     finalDict = Counter() 
     populateFinalDict() 
     statData = [] 
     numSeeds = CONST.NUMSEEDS 

     hundredMillion = CONST.HUNDREDMILLION 
     # After the easier to use dictionary is created in populateFinaDict() from the data then add metrics for amount it 
     # costs per hundred million, general upgrade metric, and a metric for the cost per hundred million for ships after 
     # the first ship the first few ships after the first ship always cost less. Also the percent of ships that are 
     # feasible and the percent of ships that are feasible versus the number tested 

     addMetricsAndFeasibilityToDataRows() 
     # Now that we have added some more fields to the rows of data using 'addMetricsAndFeasibilityToDataRows()', 
     # add  the overall rank of each row to data set. This will identify the single best ship design. This is good except 
     # the the single best design may not be the most resilient and it is possible that none of the other designs close 

     # to the best design will be feasible. Sort the data rows based on the best overall row of data in the data set. 
     addOverallRankAndSortData() 
     # Once the best overall row has been found using 'addOverallRankAndSortData()', lets look for the best row of data 
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     # in each of the CCAs. Since we have the highest overall rank already assigned to each row of data, 
     # simply sorting each CCA based on the overall rank will put the CCA rows of data in order 
     addCCARankAndSortData() 
     # Using 'addCCARankAndSortData()' we added the CCA Rank and sorted the data based on that rank. 
     # Now that each row of data has a rank based on its overall performance against all other rows of data 

     # and each row also has a rank based on its rank within its own CCA, it 
     # is time to determine a the ranking for each of the 5 primary propulsion system configurations ( the 5 seeds ) 
     addSeedRankAndSortData() 
     # At this point each row of data has a overall rank, a CCA rank, and a relative to see rank. 
     # Now its time to write the data out to a csv file 
     writeDataToCSVFile() 
     ############################################ 

     ####### Begin Genetic algorithm ############ 
     # Alot of this is very similiar to the initial permute but we are testing genetic algorithm mutation 

     startGeneticAlgorithmPermutationTesting() 
     #populate the same information as we did in th regular permute in the Genetic algorithm 
     finalDictGeneticAlgorithm = Counter () 
      # I dont know if I need to do this 

     populateFinalDictGeneticAlgorithm() 
     testDF = pd.DataFrame(finalDictGeneticAlgorithm) 
     testDF2  = pd.DataFrame(dataDictGeneticAlgorithm) 
     # close the connections 
     for x in range(0, numDBs-1): 
         if(con[x]): 
             con[x].close() 

     #Genetic algorithm for permutation selection 
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