The University of Southern Mississippi

The Aquila Digital Community

Dissertations

Spring 5-2017

Krylov Subspace Spectral Methods for PDEs in Polar and
Cylindrical Geometries

Megan Richardson
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

6‘ Part of the Applied Mathematics Commons, and the Other Mathematics Commons

Recommended Citation

Richardson, Megan, "Krylov Subspace Spectral Methods for PDEs in Polar and Cylindrical Geometries"
(2017). Dissertations. 1407.

https://aquila.usm.edu/dissertations/1407

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F1407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=aquila.usm.edu%2Fdissertations%2F1407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=aquila.usm.edu%2Fdissertations%2F1407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/1407?utm_source=aquila.usm.edu%2Fdissertations%2F1407&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

KRYLOV SUBSPACE SPECTRAL METHODS FOR PDES IN POLAR AND

CYLINDRICAL GEOMETRIES

by

Megan Richardson

A Dissertation
Submitted to the Graduate School
and the Department of Mathematics
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Approved:

Dr. James V. Lambers, Committee Chair
Associate Professor, Mathematics

Dr. Ching-Shyang Chen, Committee Member
Professor, Mathematics

Dr. Haiyan Tian, Committee Member
Associate Professor, Mathematics

Dr. Huiging Zhu, Committee Member
Associate Professor, Mathematics

Dr. Karen S. Coats
Dean of the Graduate School

May 2017

COPYRIGHT BY

MEGAN RICHARDSON

2017

ABSTRACT
KRYLOV SUBSPACE SPECTRAL METHODS FOR PDES IN POLAR AND
CYLINDRICAL GEOMETRIES

by Megan Richardson

May 2017

As a result of stiff systems of ODE:s, difficulties arise when using time stepping methods
for PDEs. Krylov subspace spectral (KSS) methods get around the difficulties caused by
stiffness by computing each component of the solution independently. In this dissertation,
we extend the KSS method to a circular domain using polar coordinates. In addition to using
these coordinates, we will approximate the solution using Legendre polynomials instead of
Fourier basis functions. We will also compare KSS methods on a time-independent PDE
to other iterative methods. Then we will shift our focus to three families of orthogonal
polynomials on the interval (—1,1), with weight function @(x) = 1. These families of
polynomials satisfy the boundary conditions (1) p(1) =0, (2) p(—1) = p(1) =0, and (3)
p(1) = p'(1) = 0. The first two boundary conditions arise naturally from PDEs defined on
a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian
coordinates. The third boundary condition includes both Dirichlet and Neumann boundary
conditions for a higher-order PDE. The families of orthogonal polynomials are obtained by
orthogonalizing short linear combinations of Legendre polynomials that satisfy the same
boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is
shown that from these recurrence relations, one can efficiently compute the corresponding
recurrences for generalized Jacobi polynomials (GJPs) that satisfy the same boundary

conditions.

il

ACKNOWLEDGMENTS

Although the process of writing this dissertation has been long journey, I could not have
completed it by myself. I would like to thank all of those who have assisted me in this effort.
First, I would like to express my deepest gratitude to my adviser, Dr. James Lambers. This
dissertation would not have been possible without his time, patience, and guidance.

In addition, I am deeply grateful to Dr. C.S. Chen, Dr. Haiyan Tian, and Dr. Huiqing Zhu
for serving on my committee and for their suggestions and guidance during the course of my
research. I would also like to thank my fellow colleagues in the Department of Mathematics
for their support and friendship over the years.

I would like to thank my family and friends for their continuous love and support. Last,
but definitely not least, a special thank you goes to my parents for their endless love, support,
and encouragement. I appreciate their sacrifices and I would not have been able to get

through this without them.

il

TABLE OF CONTENTS

ABSTRACT e

ACKNOWLEDGMENTS oo oo 11

LIST OF ILLUSTRATIONS o o .

LISTOF TABLES o o

LIST OF ABBREVIATIONS
NOTATION AND GLOSSARY o ..

1 INTRODUCTION s s s s s .
1.1 Introduction

2 SPATIAL DISCRETIZATION

2.1
2.2

3 KRYLOV SUBSPACE SPECTRAL METHODS

3.1
3.2

4 ORTHOGONAL POLYNOMIALS

4.1
4.2
4.3
4.4

S NUMERICAL RESULTS

5.1
5.2
53
54

6 CONCLUSIONS

Conversion to Polar Coordinates
Time-Dependent Case

KSS Method
Optimization

The Case m =0

The Case m #£ 0

Boundary Condition p(1) = p'(1) =0

Recurrence Relations for Generalized Jacobi Polynomials

Computing Functions of A

Solving Cx’ = —Ax using Crank-Nicolson and Backward Euler
Solving Cx’' = —Ax using KSS to Compute e—C A4

Results of GJPs for the Boundary Condition p(1) = p'1 =0

APPENDIX

v

LIST OF ILLUSTRATIONS

Figure

4.1 Graphsof ¢;fori=0,1,2,3,4. 36
42 Graphsof ¢;,i=0,1,2,3,4. 51
4.3 Graphs of ¢3j for j=0,1,2,3.. 63
5.1 Graphofdo(A)form=5andK=2 81
52 Graphofda(A)form=0and K =3 81

vi

Table
5.1
5.2
53
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

LIST OF TABLES

Time-independent estimates of relative error form=0 67
Time-independent estimates of relative error form=1 67
Time-independent estimates of relative error form=5 67
Time-independent estimates of relative error form=10. 67
Estimates of relative error form=0,N=20. 68
Estimates of relative error form =0, N=80. 68
Estimates of relative errorform=1and N=20. 68
Estimates of relative error form=1and N=80. 68
Estimates of relative error form=5and N=20. 69
Estimates of relative error form=5and N=80. 69
Estimates of relative error form =10and N =20 69
Estimates of relative error form=10and N=80 69
Estimates of error for backward Euler with m = 0, K = 3, a random smooth
function, and columns of identity oL 70
Estimates of error for Crank-Nicolson with m = 0, K = 3, a random smooth
function, and columns of identityo L. 70
Estimates of error for backward Euler with m = 1, K = 3, a random smooth
function, and columns of identity 70
Estimates of error for Crank-Nicolson with m = 1, K = 3, a random smooth
function, and columns of identity oL L. 70
Estimates of error for Crank-Nicolson with m = 3, K = 3, a random smooth
function, and columns of identity 70
Estimates of error for backward Euler with m = 3, K = 3, a random smooth
function, and columns of identity, 71
Estimates of error for backward Euler with m = 10, K = 3, a random smooth
function, and columns of identityo L L. 71
Estimates of error for Crank-Nicolson with m = 10, K = 3, a random smooth
function, and columns of identity 71
Estimates of error for Crank-Nicolson with m = 0 , K = 3, a random function,
and columns of identity L Lo 71
Estimates of error for backward Euler with m = 0, K = 3, a random function,
and columns of identity L L 71
Estimates of error for backward Euler with m = 0, K = 1, a random smooth
function, and columns of eigenvectorsof C 72
Estimates of error for backward Euler with m = 0, K = 2, a random smooth
function, and columns of eigenvectorsof C 72

vil

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

5.38

5.39

5.40

541

5.42

543

5.44

5.45

Estimates of error for backward Euler with m = 0, K = 3, a random smooth
Function, and columns of eigenvectorsof C
Estimates of error for Crank-Nicolson with m = 0, K = 1, a random smooth
function, and columns of eigenvectorsof C
Estimates of error for Crank-Nicolson with m = 0, K = 2, a random smooth
function, and columns of eigenvectorsof C
Estimates of error for Crank-Nicolson with m = 0, K = 3, a random smooth
function, and columns of eigenvectorsof C
Estimates of error for Crank-Nicolson with m = 1, K = 3, a random smooth
function, and columns of eigenvectorsof C
Estimates of error for Crank-Nicolson with m = 3, K = 3, a random smooth
function, and columns of eigenvectorsof C
Estimates of error for Crank-Nicolson with m = 10, K = 3, a random smooth
function, and columns of eigenvectorsof C
Estimates of error for backward Euler with m = 3, K = 3, a random smooth
function, and columns of eigenvectorsof C
Estimates of error for backward Euler with m = 10, K = 3, a random smooth
function, and columns of eigenvectorsof C
Estimates of error for backward Euler with m = 0, K = 3, a random function,
and columns of eigenvectorsof C
Estimates of error for Crank-Nicolson with m = 0, K = 3, a random function,
and columns of eigenvectorsof C
Estimates of error for Crank-Nicolson with m = 1, K = 3, a random function,
and columns of eigenvectorsof C L.
Estimates of error for backward Euler with m = 1, K = 3, a random function,
and columns of eigenvectorsof C
Estimates of error for backward Euler with m = 10, K = 3, a random function,
and columns of eigenvectorsof C L.
Estimates of error for KSS with m = 0, K = 1, a random smooth function, and
columns of identity
Estimates of error for KSS with m = 0, K = 2, a random smooth function, and
columnsof identity
Estimates of error for KSS with m = 0, K = 3, a random smooth function, and
columnsofidentity

Estimates of error for KSS with m = 0, K = 1, a random function, and columns
ofidentity e
Estimates of error for KSS with m = 0, K = 2, a random function, and columns
ofidentity L e e
Estimates of error for KSS with m = 0, K = 3, a random function, and columns
ofidentity
Estimates of error for KSS with m = 1, K = 3, a random smooth function, and

columnsof identity

5.46

5.47

5.48

5.49

5.50

5.51

5.52

5.53

5.54

5.55

5.56

5.57

5.58

5.59

5.60

5.61

Estimates of error for KSS with m = 1, K = 3, a random function, and columns
ofidentity
Estimates of error for KSS with m = 0, K = 2, a random smooth function, and
columns of eigenvectors of C o
Estimates of error for KSS with m = 0, K = 3, a random smooth function, and
columns of eigenvectors of C
Estimates of error for KSS with m = 1, K = 1, a random smooth function, and
columns of eigenvectorsof C L.
Estimates of error for KSS with m = 3, K = 3,a random smooth function, and
columns of eigenvectors of C
Estimates of error for KSS with m = 5, K = 3, a random smooth function, and
columns of eigenvectorsof C L L.
Estimates of error for KSS with m = 10, K = 3, a random smooth function, and
columns of eigenvectors of C oo
Estimates of error for KSS with m = 0, K = 1, a random smooth function, and
columns of eigenvectors of C
Estimates of error for KSS with m = 0, K = 1, a random function, and columns
ofeigenvectorsof C L
Estimates of error for KSS with m = 0, K = 2, a random function, and columns
ofeigenvectors of C e
Estimates of error for KSS with m = 0, K = 3, a random function, and columns
ofeigenvectors of C
Estimates of error for KSS with m = 1, K = 1, a random function, and columns
ofeigenvectorsof C
Estimates of error for KSS with m = 3, K = 3, a random function, and columns
ofeigenvectors of C
Estimates of error for KSS with m = 5, K = 3, a random function, and columns
ofeigenvectorsof C L
Estimates of error for KSS with m = 10, K = 3, a random function, and columns
ofeigenvectors of C
Estimates of Relative Error for p(1) = p’(1) =0using GIPs

ix

KSS
GJP
ODE
PDE
IBVP

LIST OF ABBREVIATIONS

Krylov Subspace Spectral
Generalized Jacobi Polynomials
Ordinary Differential Equation
Partial Differential Equation
Initial Boundary Value Problem

NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. In particular, the notation for partial derivatives varies extensively,
and the notation used is chosen for stylistic convenience based on the application. While it
would be convenient to utilize a standard nomenclature for this important symbol, the many
alternatives currently in the published literature will continue to be utilized.

The capital letters, A, B, ... are used to denote matrices, including capital Greek letters,
e.g., A for a diagonal matrix. Functions which are denoted in boldface type typically
represent vector valued functions, and real valued functions usually are set in lower case
Roman or Greek letters. Lower case letters such as i, j,k,[,m,n and sometimes p and d are
used to denote indices.

Vectors and matrices are typeset in square brackets, e.g., [-]. The standard notation e;
refers to the standard basis vectors. In general the norms are typeset using double pairs of

lines, e.g., || - ||, and the absolute value of numbers is denoted using a single pair of lines,

e.g., ||

xi

Chapter 1
INTRODUCTION

1.1 Introduction

The time-dependent reaction-diffusion equation arises in numerous mathematical models.
To solve most of these, we use numerical methods. However, the time-dependent ordinary
differential equations (ODEs) that are derived from partial differential equations (PDEs)
in time and space become extremely stiff [1]. As a result, both explicit and implicit time-
stepping methods have problems solving the system.

Normally, explicit time-stepping methods such as Euler’s method, or higher-order
methods like Runge-Kutta, as well as the Lanczos method solve the system of ODE ' = Au
by approximating the matrix exponential ¢*’ using a polynomial. But as A gets larger due
to the increased spatial resolution, the eigenvalues of A tend to spread out. As a result, the
polynomial must be higher-degree to attain sufficient accuracy which can be computationally
expensive. Implicit time-stepping methods require a system of equations to be solved at each
time step, but generally using iterative methods. These methods also rely on polynomial
approximations.

To reduce the computational expense, we can use the Krylov Subspace Spectral (KSS)
method. This method can compute the same approximation, but with low-degree approxi-
mations by using different interpolating polynomials for each component of the solution
independently. That is, as the number of grid points increases, the efficiency of KSS becomes
an advantage over the other time-stepping methods.

Previously, the KSS method has only been used on a rectangular domain with Fourier
basis functions. However, using polar coordinates and Legendre polynomials, we will extend
the KSS method to a circular domain. When mapping polar or cylindrical geometries to
rectangular domains using polar coordinates, it makes sense to use spectral methods [25].
Numerous algorithms based on spectral-collocation and spectral-tau methods already exist.
See, for example, [4, 6, 8, 14, 18].

After applying separation of variables in polar coordinates, the resulting PDEs that
depend on the radial coordinate r and time ¢ can be solved numerically using the Legendre-
Galerkin formulation similar to that used for the steady-state problem [25]. It is natural to
use bases of polynomials that satisfy the boundary conditions for each PDE, and these can

easily be obtained by taking short linear combinations of Legendre polynomials.

However, the bases used in [25] are not orthogonal with respect to the weight function
o = 1. This weight function is used in the variational formulation of the PDE. In [26]
orthogonal bases were introduced that satisfy these same boundary conditions. These bases
are known as generalized Jacobi polynomials (GJPs) that have indices a, B < —1 that are
orthogonal with respect to the weight function @*# (x) = (1 —x)%(1 —x)B. GIPs corre-
sponding to specific indices were introduced in [26] for the purpose of solving differential
equations of odd higher order. Generalization to other (non-integer) indices was carried
out in [15] to obtain families of orthogonal polynomials for Chebyshev spectral methods
or problems with singular coefficients. However, although these GJPs can be described
in terms of short linear combinations of Legendre polynomials, at least for certain index
pairs of interest [15, 26] the three-term recurrence relations characteristic of families of
orthogonal polynomials are unknown.

In this dissertation, we develop families of orthogonal polynomials that satisfy the
requisite boundary conditions, to facilitate transformation between physical and frequency
space without using functions such as the Legendre polynomials that lie outside of the
solution space. These families can also be modified to work with alternative weight functions,
thus leading to the development of new numerical methods.

The outline of this dissertation is as follows. In Chapter 2, we provide context for
the use of KSS methods and these families of polynomials by adapting the variational
formulation employed in [25] to the time-independent and time-dependent PDE. In Chapter
3, we describe the KSS method and how it is implemented. In Chapter 4, we develop
orthogonal polynomials with a weight function, @ = 1, that satisfy the boundary conditions
() p(1) =0, (2) p(1) = p(1) =0, and (3) p(1) = p’(1) = 0 and we describe how these
polynomials can be modified to obtain three-term recurrence relations for the GJPs described
in [15, 26]. In Chapter 5, we provide numerical results. Chapter 6 contains the conclusions

and possible paths for future work.

Chapter 2

SPATIAL DISCRETIZATION

On the circular domain, the unit disk, we will use short linear combinations of Legendre
polynomials instead of Fourier basis functions to approximate the solution of various PDE:s.
In [25], Shen describes two problems that arise when using spectral methods on polar and
cylindrical geometries. Specifically, transforming to polar coordinates results in singularity at
the pole(s), and constant coefficients in Cartesian coordinates will have variable coefficients

+

of the form r** in polar coordinates [25]. To work around these problems, we will need

to choose suitable basis functions and use variational formulations that include the pole

conditions.

2.1 Conversion to Polar Coordinates
We consider the elliptic equation on a unit disk

AU—-aU = FinQ={(x,y):*+y* <1}, 2.1)
U = OonodQ, (2.2)

where « is a constant. Following the approach used in [25], we can convert the initial
boundary value problem (IBVP) in (2.1) — (2.2) to polar coordinates by applying the polar
transformation x = rcos 0, y = rsin 0 and letting u(r,0) = U (rcos0,rsin@), f(r,0) =

F (rcos8,rsin0). The resulting problem in polar coordinates is as follows:

1 1
urr+;ur+r—2u99—au = f7 (F,G)EQ:(O,I)X[O,zﬂ'), (23)
u(l,6) = 0, 6€0,2xn), u2m-periodicin 6,

The solution is represented using the Fourier series

[}

u(r,0) = Z (U1 m(r) cos(m0) + up ;u(r) sin(m0)]. (2.4)
|m|=0

The Fourier coefficients u; ,(r, 0), uz »(r, 0) must satisfy the boundary conditions u; ,,(1,0) =

ur;m(1,0) =0form=0,1,2,.... Due to the singularity at the pole r = 0, we must impose

additional pole conditions on (2.4) to have regularity in Cartesian coordinates. For u(r, 0) to

be infinitely differentiable in the Cartesian plane, the additional pole conditions are [25]
Ui m (0) = uz,, (0) =0 form # 0. (2.5)

By substituting in the series in (2.4) into (2.3) and applying the pole conditions in (2.5),

we obtain the following ODEs, for each nonnegative integer m:

1 m?
urr+—ur—(—2+a)u = f(r), O0<r<l, (2.6)
r r
w(0) = 0ifm#0, 2.7)
(1) = o, 2.8)

where u and f are generic functions.

2.1.1 Weighted Formulation

We will extend (2.6) to the interval (—1,1) using a coordinate transformation as in [25].

<s+1

Using the coordinate transformation r = ”1 in (2.6) and setting v(s) = >) we obtain

2
Ss—i_Ls_(" +g)v = _f(s+1)7 SEI:(_171>7 (2.9)

+1 (s+1)* 4
v(=1) = 0, ifm#0,
v(l) = 0.

To obtain a weighted variational formulation for (2.9), we must find v € X (m) such that

2

((s+1)vs, (wo),) + (sri T

w) -l-%((s-l—l)v,w)w:(g(s),w)w (2.10)

where X (m) =H; ,, (1) if m# 0, X(0) = {ve H,, (I) : u(1) =0}, o is a weight function,
and g(s) = ;(s+1)f (:5).

2.1.2 Legendre-Galerkin

To approximate (2.10) using the Legendre-Galerkin method, we let @ = 1 and we have to
find vy € Xy (m) such that Yw € Xy (m),
2

s+1

((s+1)(vN)s,ws)+< vN,w)+%((s+l)vN,w) = (Iyg(s),w), (2.11)

where Iy is the interpolation operator based on the Legendre-Gauss-Lobatto points. That
is, (Ivg) (t;) =g (t;),i=0,1,...,N, where {t;} are the roots of (1—%) L}, (t) and Ly is the
Legendre polynomial of degree N.

The Case m # 0

We let Ly () be the kth degree Legendre polynomial. Then
Xy (m) =span{¢; (1) = Li(t) = Lit2 (1) : i=0,1,...,N =2}

to satisfy the boundary conditions v(—1) = v(1) =0 in (2.7) and (2.8). Therefore, setting

mij = /(r+ 1) ¢i¢/dt, M= (my) i,j=0,1,...,N=2, (2.12)
1
1 ..
bij = /It_}_—l(])j(l)idt, B:(Bij) l,]ZO,l,...,N—Z, (213)
cij = /(r+ 1)¢;¢idt, C=(Cij) i,j=0,1,....N—2, (2.14)
1
£ o= /IINgq),-dt, F=(f) ij=01,....N—2, 2.15)
N-2
wo= Y x¢i(r), x=(x) i=0,1,...,N-2, (2.16)
i=0
and applying (2.12) — (2.14) to (2.11), we obtain the following matrix equation
o
<M+m2B+ZC>x:f. 2.17)
The matrices M and B in (2.17) are both symmetric tri-diagonal with
{2i+4, j=i+l {—,-%2, j=i+1,
mij =1y .. . ij =y 2(2i+3) .
4i4+6, j=Ii, wnar2 J=0
and the matrix C is symmetric seven-diagonal with
2(i43) .
T i) 2T J=i+3,
S =1 j=i+2,
- 2 2(i+3) ..
ornees) T erseey: J =i
2 2 ..
21 T2 J=t
The Case m =0

In the case where m = 0, (2.11) reduces to

o
((s+1) (vw)s,ws) +) ((s+Dwvy,w) = (Iyg(s),w), VYwe Xyn(0).
As before, we let Ly (7) be the kth degree Legendre polynomial, and define Xy (0) to be the
space of all polynomials of degree less than or equal to N that vanish at 1. This space can be

described as [25]

Xy (m) =span{¢; (1) =L;(t)—Li+1(t): i=0,1,....,N—1}

to satisfy the boundary conditions v(1) = 0 in (2.8). Similarly, extending the indexes i and j

to N — 1 in the definitions found in (2.17), we obtain the following matrix equation

<M+%C)x:f. (2.18)

The matrix M in (2.18) is a diagonal matrix with m;; = 2i+ 2 and the matrix C is a symmetric

penta-diagonal matrix with

2(i+2)

@ T
4 ..

¢ij = erneess): J =it
4(i+1) L
2) (2i43)° J=1L

2.2 Time-Dependent Case

This problem can also be extended to the time-dependent reaction-diffusion equation on a

unit disk

U
AU —aU = a—t'nQ:{(x,y):x2+y2<1},t>O (2.19)
U = OondQ, (2.20)
U()C,y,O) = F()C,y) OHQ, (221)

where « is a constant. As a result of the spatial discretization of (2.19) — (2.21), we can

rewrite the system in terms of ODEs

du
N = Au, (2.22)
u(0) = f,

where A is an N X N matrix.
After applying the polar transformations found in Section 2.1, we can convert (2.19) —

(2.20) to polar coordinates. The resulting problem is as follows:

11 P
4y + —1tgp — O = a_?’ (r.8) € 0 = (0,1) x [0,27), (2.23)
u(l,r) = 0, 6 €[0,2x), u2n-periodicin 6,
0
u(r,0,0) = a—?

Using the Fourier series, the solution can be represented as

)

u(rt)= Z [u1 m(r,t) cos(mB) + up p(r,t) sin(m0)] . (2.24)
|m|=0

For u(r, 0) to be infinitely differentiable in the Cartesian plane, the additional pole conditions
are
Ui m(0,1) =up,, (0,2) =0form #0 (2.25)

By substituting the series in (2.24) into (2.23) and applying the pole conditions in (2.25),

we obtain the following ODEs, for each nonnegative integer m:

urr—l—%u,—(’f—j—i—a)u = %, 0<r<l, (2.26)
u(r,0) = f(r),
u(0,¢) = 0ifm#0,
u(l,r) = 0,

where u and f are generic functions.
We will extend the problem found in equation (2.26) to the interval (—1,1) using a

coordinate transformation. Using the coordinate transformations described in Section 2.1.1,

we obtain
1 m? a 1dv
_ _ e - I=(-1.1 2.27
v(s,0) = g(s),
v(—=1,1) = 0, ifm#0,
v(l,1) = 0,

where g (s) = f (%) . To obtain a weighted variational formulation for (2.27), we must
find v € X (m) such that

v

5 ,w) (2.28)

where X (m) = Hy ,, (I) if m# 0, X(0) = {v € Hg, (I) : u(1,1) = 0}, @ is a weight function.
Using the Legendre-Galerkin method to approximate (2.28) where @ = 1, we have to
find vy € Xy (m) such that Yw € Xy (m),

m2
((s+1)vs, (ww),) + (S_Hv,w) +%((s+ Hvw), = % ((s—l— 1)

m? o av 1 /dv
((s+1) (vw)s,ws) + (H——IVN’W) + 71 ((S+ 1) a—;v,W> . = 1 (8_IN’W> (2.29)
v (5,0) = Ing(s),
where Iy is the interpolation operator based on the Legendre-Gauss-Lobatto points.

In the time-independent case, we get the system Au = f where A is M + BC and M +
m*B + BC for m = 0 and m # 0, respectively. We find that the solution to the system is

u=A"!f. But with the time-dependent case, the system becomes Cu’ = —Au. This means
that w1 = €€ (“AAy? which we will discuss in 2.2.1.

This problem arises in the time-dependent problem because of the difference in the
weight functions. In [25], Shen was able to include a weight function of s+ 1 in the right-
hand side, but this can not be done in the time-dependent case. Therefore, we use the weight

function of 1.

2.2.1 Implicit Time-Stepping
We will begin by examining the equation

u; = Lu (2.30)

where L is the linear operator A — ot/. To discretize this problem, we will an approximate %

by the following :

du un+1 _—

dr A
where At is the change in time. Now, we can adapt this method to equation (2.28) by letting

(2.31)

u' = ((5+1)Z¢jxj¢i)
J
= Y ((s+1)¢i 9))x;. (2.32)

J

Notice that the inner products in (2.32) are entries of the matrix C found in(2.14); therefore,

we have the following equation

an—l— 1 _ Cx"

m Ax"H (2.33)

We can solve (2.33) by multiplying both sides by At and then subtracting Cx"* from both

sides as follows:

cxX"tl—ox' = —ArAxtH!

cx'"tl = oxt — ArAxMH

Now, we can solve the equation for x":

x4 AarAx™t! = ox?
cloxt arcT A = X!
Xn+1_|_AtC71AXn+1 _ Xn

(I+AC A" = X"

The Implicit Euler method has first-order accuracy. If we want to compute the solution
implicitly and improve the order of accuracy to second degree, we will use the Crank-

Nicolson method [3]. Applying this method to equations (2.30) — (2.32), we have

C n+1 —Cx" n+1 n
oxl—oxt (T 2.34)
At 2
Multiplying both sides of equation (2.34) by Az, we have
n+1 n
Cx"! —Cx" = —ArA (%) . (2.35)

Then we will solve the equation in terms of x"*! on the left side and X" on the right side as

follows:
At At
an-l—l . an _ _?AXYH—I . ?Axn
At At
cx'l 4 ij"“ = Cx'— ?Ax"
At At
(C + EA)XIH_I = (C — ?A)Xn

We will solve the systems that arise from backward Euler and Crank-Nicolson by using KSS
methods, as described in the Chapter 3, and then comparing that with using KSS for the

temporal discretization instead.

10

Chapter 3
KRYLOYV SUBSPACE SPECTRAL METHODS

3.1 KSS Method

In this section, we will give an overview of KSS methods. We will consider the PDE
u+Lu=20

on [0,27) with initial condition u(x,0) = f(x) and periodic boundary conditions. We will
let § = e~LA' be the solution operator and let (-,-) denote the standard inner product. By
applying the solution operator, S, to the computed solution #(x,?,), we can approximate the

Fourier coefficients of the solution i (x,1, 1) using the following formula

1 .
G(0,t,41) = <\/T_n_e’wx,el‘mﬁ(x,tn)>. (3.1)

Using an N-point grid with uniform spacing i = ZW” we can approximate the operator L and
solution operator S using N x N matrices, and the quantity in (3.1) can be approximated as a

bilinear form,

0(@,1,,1) ~ele Ny (1),
where .
[€o]; = \/T_neleh’ [(tn)]; = u(jhta). (3.2)

Due to the spatial discretization of (3.1), the following bilinear form is obtained

u’ f(A)v, (3.3)

where u = \/Lz—ne"“’x and v = ii (x,1,) are N-vectors (these vectors come from the equations in

3.2), A =Ly is an N X N symmetric positive definite matrix, where Ly is the discretization
of L,and f (1) = e * [12].

Because A is a symmetric positive definite matrix, it has real eigenvalues
O<a=M<AHh<---<Ay=b, (3.4)

and corresponding orthonormal eigenvectors q;, j =1,...,N. As aresult, we can write (3.3)

as

™=

u fA)v=Y £(a)u"q;q}v.

1

J

11

Letting a = A1 and b = Ay be the smallest and largest eigenvalues of A, respectively, the

measure ¢ (A) can be defined as

0, if A <a,
a(A) =X iaiBj, if Ai<A <Ay, (3.5)
YV 0By, ifb<A,
where a; = u’q jand B = qJTV. If (3.5) is positive and increasing, then (3.3) can be viewed

as a Riemann-Stieltjes integral

b
@y =11= [) da).

Using Gaussian quadrature to approximate / [f], we obtain an approximation of the form

HHZ;WJ@HWUL

where the nodes ¢;, j = 1,...,K and the weights w;, j = 1,...,K are found using the
following Lanczos algorithm.

Choose ry, Bo = ||rol|2, and xo = 0.

forn=1,2,...K

Xy = I'nfl/ﬁnfl

oy, :x,{Axn
ry, = (A - anl)xn - Bn—lxn—l
Bn = llrall2

end

In the case where u # v, the weights could possibly be negative, which would destabilize

the quadrature rule [2]. To avoid this problem, we consider the block approach
[uv]" f(A)[u v]. (3.6)

As aresult of (3.6), we have the following matrix-valued integral

b
[r@auay = G A),

where pt (A) is a 2 x 2 matrix, each entry of which is a measure of the form & (A1) found in

(3.5). We seek a quadrature formula

2K

/abf(ﬁt)d,u (L) = Zf(lj) VjVJT--I-error,

Jj=1

12

where A; is a scalar value and v, is a two component vector. To find the nodes and weights,
we apply the following block Lanczos algorithm [13]:
Xo =0, Ry =[u v], Ry = X1 By (QR factorization).

forn=1,2,...K
V =AX,
M, =XV
ifn<K
R,=V —X,_1Bl | —X,M,
R, = X,,+1B; (QR factorization)
end

As a result of using the block Lanczos method, we obtain the 2 x 2 matrices M; and B;.

These matrices form a block tridiagonal matrix, Tk, where the nodes A ; are the eigenvalues
of

[M, BT

By M, BT
Tk = : (3.7)
Bx_2» Mg, BL |
i Bg-1 Mg
We can apply the KSS method to the time-independent problem in equations (2.1) and (2.2)

by letting the vectors u = ¢; and v = g. The function used for the time-independent problem

is f(x) = I as opposed to the exponential for the time-dependent problem. In the same

X
manner, the KSS method can be applied to the time-dependent problem in equations (2.19)
and (2.20) by letting vectors u = ¢, and v = u”. Instead of using ¢'®, we use columns of
identity because the matrix A is already in frequency space. Therefore, using the columns of
identity makes this approach more simple. We will use the same idea as the KSS method,
except we are computing the coefficients using the polynomials ¢; that are short linear
combinations of Legendre polynomials instead of the Fourier coefficients in (3.1).

To start the block KSS method for the time-dependent PDE, we define
Ry = [€ u”] ,

where j is the degree of the Legendre polynomial. Now we can compute QR factorization
of Ry which yields
Ro = X1 By,

ul’l
X = |ej ——
: [||un||J

where

13

and

1 [u”]j
By = .
0 0 ‘ u’ —eelu”

J

Applying the block Lanczos iteration to the discretized operator Ly with initial block X
yields a block tridiagonal matrix, Tk, of the form (3.7)[5]. By diagonalizing Tx we obtain the
nodes and (matrix-valued) weights for the Gaussian quadrature rule needed to approximate

each component of the solution.

3.2 Optimization

The main idea behind KSS methods is to compute each component of the solution, in some
orthonormal basis, using an approximation that is optimal for that component. Specifically,
each component uses a different polynomial approximation of S(Ly;At), where the function
S is based on the solution operator of the PDE and Ly is the discretization of the spatial
differential operator. Combining all of the components together, we have a solution of the

form [20]
2K

ul = f(Ly; An)u = ZDj (Ar) A",
Jj=0

where D;(At) is a matrix that is diagonal in the chosen basis and K is the number of
block Lanczos iterations. The diagonal entries are the coefficients of these interpolating
polynomials in the monomial basis, with each row corresponding to a particular component.
In the original block KSS method [20], the interpolation points are obtained by using block
Lanczos iteration and then diagonalizing a 2K x 2K matrix, Tk, for each component.

We will start by letting u be a discretization of the solution on a uniform N-point grid.
By applying KSS methods using the initial block Ry = [e; u"] where each j =1,2,...,N,
we can start the first iteration of the block Lanczos algorithm by finding the QR-factorization
of Ry. It follows that

Ry = X1By,

u}’l
X = |ej ——
: [Hunuz]

1 ["];
Bo = 0 ‘u”—ejeT.u” '

where

and

J

The vectors e; and u” become orthogonal as k — co. If i + j is odd, then the (i, j) entry
of Tx and limy_,. €] p(A)u” — 0 as long as p(A)u” is smooth where p(A) is a polynomial

14

of A. For example, we consider the 6 x 6 case where

X 0X 000
0Y 0Y 0 0
o X 0X 0XO0
K=1lovy oy ov]|"
00X 0X 0
|00 0Y 0 VY

as k — oo. Now we can find the permutation matrix, P, by grouping the odd-numbered rows

and columns together as follows:

PTTxP = (3.8)

N oNoNol WY
S OO X
oo XXOo
o~N~NooOo
NN N~<Nooo
N~Noooo

where X use non-block Lanczos with initial vector €; and Y use initial vector u”. As a result,
the eigenvalue problem for the matrix in (3.8) decouples and the block Gaussian quadrature
nodes can be obtained by computing the eigenvalues of these smaller, tridiagonal matrices
[21].

We can obtain the frequency-dependent nodes by applying the Lanczos algorithm
described in Section 3.1 to matrix A with initial vector e;, and the frequency-dependent
nodes by applying the Lanczos algorithm to with initial vector u”*. We will begin using the

matrix from the m = O case as follows:

Mi B ¢, 0O - 0

By, My B, (& :
A_|C B My By 0
0 C By My . Cyo
IO By

| 0 -+ 0 Cyv—2 By-1 My

where the main diagonal entries My are (2.12) plus (2.14) and By_1and Cy_ are defined
using equation (2.14). Then we let

L 0

where 1 is the jth component of the vector and X is the zero vector

X0=0

0

For k = 1, we will compute the value of ¢&; where

o = X]TAX1
[My B C; 0
By M, B, (&
= [0 010 - 0] Ci By M; B
0 G Bz My
| 0 0 Cvo2 By
0
= [0 0 Cj—» Bj-1 Mj Bj C; 0 0]|1
0
[0
= M,
= 2j+2.

Then r; can be computed as follows:

ry =— (A—Otll)X]—B()X()

— O

15

M, By C 0 0 ~
By M, B, &
Ci By M; B3 0
= —M;
0 G By My Cn-2
. . Bn_1 0
0 0 Cnv—2 By-1 My |)
([My By Ci 0 0o]
1 B G M,
By My B, 0
. Ci By M; B3 0 _ 0
0 G By My Cno)
.. BN—l 0
| 0 0 Cnv—2 By-1 Mn | ~
(M —M;) B, G 0
B (My—M;) B, G
_ Ci B (M3 —M;) B3
0 G B3 (My— M)
i 0 0 Cy_>
-0
0
Cj 2
0
= 0
0
Cj
0
L 0 |
Now, we will compute the value of f;
B = lrill,
2 2
= \/|Cj—2} +1Ci|
and x»
r
X2 = =

B

o o0 --- 0
1
0
0
0 1
0 O 0 1
M; 0 :
0 M
' 0
0 M; |
0
0
Cn—2
By

—_ O

17

Because lim; ,..Cj_» =l and lim; ,.C; =1 — % Now, we will repeat the

J
" VICi 2 P+ICI?
process for k = 2 using the values from the previous step as follows:

o = XZTAXZ

0 0
0 My B, C, 0 0o]| 0
1 1
V2 By M, B, (& V2
0 0
_ 0 Ci By Ms B3 0 0
0 0 G Bz My Cn—2 0
\ﬁ . . . BN_] \/Z
0] |0 0 Cno2 By-1 My || O
0 | | 0
_ 0 4T
0
= %Cj—4‘Bj—3'Mj—Z'Bj—Z‘Cj—2+%Cj'Bj—H'Mj+2‘Bj+2‘Cj+2
0
- 0 -
1 1
5 j—2+§Mj+2
As j — oo,
Mja+Mis 2(j—2)+2+42(j+2)+2
2 - 2
2j—44242j+4+42
- 2
4j+4
)
2(2j+2)
- 2
2j+2
=~ Mj.

Therefore, o ~ M;. Now,

r = (A — (Xz[) Xy — BIXI

- oS5l~Fo cogl-o -

M, By (C 0 0
B M, B, G :
C] B> M3 B3 0
0 G B3 My Cno2
’ . By_

i O O CN72 BNfl MN i
0 -

(') i 0

€ :

7 0

0 | = | ylcaf +lcif

0 0

1

V2 :

0 0

0 |

(M — M) B, Ci
B, (My — M;) B,
G B, (M3 —M;)
0 (&) B3
0 0

0 -

o| [0
€ :

7 0

0 | = ylcaf +]cif

0 0

1

V2 :

0 0

0 |

M; 0 0 0
0 M, 0 :
-1 0o 0o M :
: . 0
0 Lo 0 M|
0 0
(653 :
B3 0
(My— M;) Cn—2
By
Cn—2 By_1 (My—M;)

19

Sl-

Ny

)

|
~

cNhococococococo Qo
- .
[\®)

20

21

In the computation of rp, we neglect the lower order terms. Now, we will compute the

values of 3,

B = ||1'2||2

1
— Ve 410 4lc P 2]l

and x3
[y}
X3 = E
_ 0 -
0
0
0

1
G+
0

! 0]

L2(Cial +4|Cia P +4 [+2]Csaf

2/C-afralcia 44l P2lcaf
0
0
0

]cj_2|2+|cj\2

by2lesaP+ales o +alesF2lcsaf
0
0
0
\%Cﬁz
W2les sl ales o e 2l
0

0
\/Ecj74
V2ICra+alci e P42l Crual
0
0
0
B 2 ’Cj;zyz-i-‘cj‘
Valeial il f2lcia
0
0
0
V2Cjis
N e L e [T
0

|2

For k = 3, we will repeat the process.

o3

X3TAX3

22

B
Ci

B

B,
G

0

C

B (&)
2

M; Bs
3

By M,
3

23

Q

Q

Q

Q

Q

Q

Q

0
V2C j—aMj_q

ValersP i+l 2l

V2C;_4B;_4

Valearale e alcal
V2(Cia)’-2¢i /| Cia [+ C)

V2 +alesaf +ale P2l
2B; 11/ |Cja| +|C))

2w/ |G| 4|l

V2lCia+alcia +4lc [P 42lcpa

2Bjy/ |CJ>2|2+|CJ|2

\/2|cj,4]2+4]cj,2\2+4\Ci\2+2|cj+2]2

V2loi-al+4lci o[+4lc, [+2|csa]

ZCJ'\/ ’Cj,2’2+‘Cj|2+ﬁ(Cj+2)2

2

V2l0ia4lc, o alc +2]c |
V2Cj12Bj3

V2lei-a+4lc, 2 +4lc, [+2|cpsal
V2C;1oMj14

ValCial +4lci - +4lei P2l
V2Cj12Bj14

V2lei o +4lcs o[+4lc,[+2csal
0

0

2(Cja)* My-a+4M; (|Cia + i) +2M14 (Ca)

2

24

0
V2C;_4
V2lei sl +4lc 2 +4lc, [+2|cpsal
0
0
0
_ 2y/ICj2*+c
V2lesal+alcsa+ale) 42l ol
0
0
0
V2Cjia
V20Cia +4lciaf +a|ci P 2]cpial

|2

2

2|Cjoal’ +4[Cia|” +4|Cj* +2|Cjia]
2(1)[2(j—4) +2] +4[2j+2] (124+12) +2[2(j+4) +2] (1)

2(1)2+4(1)*+4(1)*+2(1)?

2[2j —8+2]+4[2j+2](2)+2[2j+8+2]

2444442
2(2j—6)+8(2j+2)+2(2j+10)

12
4712416+ 16+4j+20

12

24j+24
12
2j+2

25

~ M]

Usually, we carry out K = 2 or K = 3 iterations which corresponds to third and fifth-order
accuracy in time for KSS. To determine the frequency-independent nodes, we calculate the
eigenvalues of the K x K matrix that results from the Lanczos method with initial vector u”.
Since the frequency-independent nodes do not depend on the frequency index, j, we only
compute them once for each vector u.

Comparing the calculated values of a;, oy, and a3, we can see that they are approx-
imately equal. Using the calculated values of o and B, we can construct the following

Jacobi matrix:

ap B 0
J=| B o B (3.9
0 B m

for three iterations. We then rewrite the matrix found in (3.9) as

J~ol+J (3.10)
where
0 B O
J=ail+| B 0 B |. (3.11)
0 B 0

Instead of directly finding the eigenvalues of (3.9), we can approximate them by finding the
eigenvalues of J found in (3.11) and adding a shift a; as follows:

AW ~ AN + .

We will repeat this process on the seven-diagonal matrix for the m # 0 case as follows:

"M, B, ¢, Dy O - 0]
By M, B (8] D> :
Ci Bb My By C3 . 0

A=\ D, C By My, By . Dy_3 |>
0 Dy, C3 By Ms . Cyo
Lo Bl
L 0 -+ 0 Dyg3 Cvo2 By1 My

where main and off diagonal entries My and By_ respectively are composed of (2.12),
(2.13), and (2.14), Cy_ and Dy _, are defined using equation (2.14) and the identity vector.

0

where 1 is the jth component and X is the zero column vector

Xy) = 0
0
0
Fork=1,
o = X]TAxl
_O_T M1 Bl C1 D1 0 0 F 0]
By, M, B, (& D,
Ci By My Bz G 0 0
- 1 D, C By My By Dy_3 1
(,) 0 B, G Bs Ms Cn_2 0
6 BN—I _6_
. 0 -~ 0 Dyi3 Cyo2 By-1 My |
0
0
0
L 0]
~ 4j+6

r = (A—OCII)Xl—B()XO

26

C D,
1
B (653
2
M; B
3
My
Bj

C D,
1
B G
2
M; B
3
My
B3

' '; N—1
) | 3 N-—2
DNf

By

(M, —M;)

B
G
B

G
B

(M3 —M;)

B3
G

My

G

Bj
(My—Mj)

By

27

0
; 0
: 1
0
0 .
1 5
- 01
; 0
: 1
0
0 N
M; ;
0
0
Dy_3
Cn—2
~1
e)

B = ||1'1”2

= \/|ij1}2+ 18|

r
Xy = —
B
-0 -

0

B;

0

B;

0

0

B,
B[+ (B[
= 0
B
|BJ>1|2+|BJ|2
0
- 0 =
C o
0
1
V2
= 0
1
V2
0
[0

For k=2

O = XgAXQ

As j— oo

29

Therefore, oy ~ M;. So,

r

(A—onl)x; — Bix;

By

1 1
0 0 7 0 7 0 0
-0
My By Ci D 0 0)
B, M, B G D> : 0
Ci B, M; Bj C3 0 \L@
Dy C By My By Dy_3 0
0 B, C3 By Ms Cy_2 ?
By_1 :
. 0 -+ 0 Dy3 Cyno2 Bv-1 My | O
1 1 1 1 -
3 j—1+§Cj_1+§Cj_1+§Mj+1
1 1
2 j—1+Cj—1+§ 1
Mii+Mj 4= 1) +6+4(j+1)+6
2 2
4 —4+6+4j+446
- 2
8j+12
- 2
_2(4j+6)
- 2
4j+6
~ Mj.
B, D 0 0 7
M, B> (653 D> : _Mj 0 0 0
B, My By G 0 0 M, 0 :
Cz B3 M4 B4 DN_3 - 0 0 Mj
B, C3 By Ms Cn—2 : ' 0
Lo e By L 0 0 M |
0 Dy3 Cy2 By-1 My |

o5k o%-o

o4k o%l-o -

30

S

2

S
o Woocoo ™o ---

2

j—2

Jj+1

31

Again, we neglect the lower order terms.

B = [ral,

I
- 5\/2\Bj_zlz+4\Bj_1]2+4\3,-\2+2|3j+1\2

|)

B

L2 [Bjaf + 4B+ 4By 2By
_ / :

0
%\/2|ij2|2+4|3171 |2+4|Bj|2+2|31'+1 |2
0
_ |Bj1 |2+|Bj
$\/2|Bj o 44 B [P 4] B[P 2] By [
0
%Bjﬂ
3218 4[B 1 P+4| B, +2]Bja
0

| 2

33

0
ﬁijz
V2B 418y a8y 2B
0
2
_ 2y/[Bj1| +B;
V21B 2 +4 B [+4]B, 2B
0
V2B
\/2]Bj,2]2+4]3j,1]2+4]Bj]2+2]13j+1]2
0

| 2

! 0 i
The calculated values of ¢ and o, are also approximately equal. We can determine the
nodes of this case in the same manner, except the a and 3 values will be different. Now, we

have o; = M for m = 0 and m # 0. For m = 0 the ; values are

Bi = /| +[cs?

1
B = 5\ 21C) o[+4]Ci o +4]Ci +2(Craal”

For m # 0 the f3; values are

B = \/\BH\%F 1B;*

1
Br=5/21Bj o +4 (B, [+ 4B +2(B1

When K = 2, we have the following:

M; B
T = /
’ { Bi M;]
where the eigenvalues are A = M; £ ;. Whens K = 3,
Mj B 0
T3=| B M; B2
0 B M;

where the eigenvalues are A = M; and A = M £ /[312 + [322

34

Chapter 4

ORTHOGONAL POLYNOMIALS

4.1 The Case m =0
In the case where m =0, (2.11) reduces to

((t+1)vly.w) +%((r+ v, w) = (Ing, w), Yw € Xy (0).

As before, we let L (1) be the kth degree Legendre polynomial, and define Xy (0) to be the
space of all polynomials of degree less than or equal to N that vanish at 1. This space can be
described as [25]

XN(O) = span{q)i(t) :Li(t) —Litq (l‘) :i=0,1,...,N— 1},

where ¢; (¢) is the ith basis function. By applying the Gram-Schmidt process [3] to these
basis functions, ¢;(¢), we can obtain a new set of orthogonal polynomials that will be
denoted by ¢, i =0, 1,2,..., where the degree of ¢; and ¢; is i + 1. The new basis functions,

@;, can be found by computing

g = <ék,¢i> ~
= Q; — S~ . 4.1
(P (P kZ::O <¢ka¢k>¢k ()

Fortunately, for 0 <k <i—2,

(0,0 = ($,Li—Lip1) if 0<k<i—2,
= <‘5kvLi> - <‘5kaLi+1>
— ()’

due to the orthogonality of the Legendre polynomials, thus greatly simplifying the computa-

tion of ¢;. To start the sequence ¢;, we let

b = ¢o,
= Lo—Lu,

= 1—ux,

35

so then

s (90.d1)
A

fl_l((50'¢1)dx 5
fl_l (@0 - o) dx
3,, 1\ _F
3, 1 1

= —EX —|—x—|—§—|—Z(l—x)

= 01—

and

g = ¢p— <€§0’¢~)2> bo — <€§1’¢~)2> b

{0, 90) (1,01)

gl By I ()i
ST (Bo-do)ax 7 (81-61)dx

2
= %(—5x3+3x2—|—3x—1)—%(l—x)—:?:(—%xz—I—Zx—l—%)
55 3, 3 1 4/ 3, 3 3
- 7”5”5)‘1*5(‘5”1”1)
53,3,,3 1 3, 1 1

The first several polynomials @g,d1.. . .,d; are shown in Figure 4.1. Now, comparing ¢,
with ¢~)1 and ¢, with ¢~)2 we can find a general formula for the values of qﬁi in terms of ¢;. By

subtracting ¢; from ¢;, we obtain

- 3, 3 3 3, 1
L (2" ”*5)
323,335 1
= — X"+ -x+-+x"—x—=
2 4 4 2 2
_or
- T4
1
= ;1=
- 15 (42)
p— 40, .

36

GRAPH OF ~¢ for m=0
2 T T T T

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.1: Graphs of ¢; fori =0,1,2,3,4.

and

A I A A A
54 5, 11 1 55 3, 3 1
= 2x +6x+6x 6+2x 2x 2x+2

20,1 1
3 3 3

_ 43033
T oo\ 2Ty,

5, 5, 11 1(53323 1)

4.
= 56 4.3)

This suggests a simple recurrence relation for ¢; in terms of ¢;. Before we prove that this

relation holds in general, we need the following result.

Lemma 1. Let N, = <(]3k, (§k>.Then

2 (k+2)*
M= — 22 (4.4)
(k+ 1) (2k+3)

Proof: We proceed by induction. For the base case, we have

For the induction step, we assume that there is a k > 0, such that N,_| =

show that the formula found in equation (4.4) is true for k. Given that ¢k

No = <(§07 (];07>

1
= /ﬁo-‘f’odx
1

(1—x)(1—x)dx

_\\|

|
—

(x2—2x—|— 1) dx

1
o

w| =,
[y}

|
=
+
=

—~
—_
w | =
W

1
—l4 44141

—Uf+ﬂ}—[

and using
2
Ly, L) = ——
we have
Ne = (de.)

2
<¢k+(kf_1> B 1,¢k+(ki1) (T’k—1>

<¢k7¢k>+(k_|k_l) {0k, x— 1>+(1Hk_1) {1, ¢k>+(k+1) (Pk—1,P—1)

<¢k,¢k>+2<kf_l) {0k, x—]>+<k-l|<—1) (Bk—1,P—1)

k 4
— | Ni—
) M

k

2
(L + Ly 1, L+ Ly 1) — 2 <—) (Li, Ly) + (

k+1
8(k+1) 4k* E *?
(2k+1)(2k+3) (k+1)2(2k+1) + (k+1> Ni_q
4 (3k* + 6k +2) o\
(k+1)* (2k+1)) (2k+3) <k+1>1W4
Moo (kY (2 e
k+ 12kt 1) (2k+3) \k+1) \2k+1 &2

)

37

2(k+1)>
K2 (2k+1)"

¢k+ (k—H) q;kfl,

‘We must

4.5)

38

_ 4 (3K + 6k 4 2) +<k>4<2(k+1)2>
(k+1)*(2k+1)) (2k+3) \k+1/ \K*(2k+1)
4 (3k* + 6k +2) 2k*
(k+1)*(2k+1)) (2k+3) (k+1)*(2k+1)
2 (k* 44k +4)
(k+1)* (2k+3)
2(k+2)
(k4+1)*(2k+3)

We can now establish the pattern seen in (4.2), (4.3).
Theorem 1. If ¢p(x) = 1 —x and ¢; is obtained by orthogonalizing ¢; = L;, | — L; against
00,01, ..,0;_1, then

¢i = @i+ cifi- (4.6)
fori=1,2,..., where ¢; = (h%l)z

Proof: Again we proceed by induction. For the base case, we will show that the theorem
holds when i = 1:

T _<(§07¢1>~
= ¢ (6o, 60) 0
_ 2, 1 —Tzl
= X5 ‘|‘§—?(—x)
1
= x—§x2+§+1(1—x)
= ity (47)

Note that equation (4.7) is equivalent to equation (4.2). For the induction step, we assume
that there is a j > 0, such that

‘PJ 0+ (]—l—l) (PJ 1- 4.8)
We show that (4.8) holds when i = j+ 1. We have

T o <¢J+17¢j>
¢J+1 ¢]+1+ Z <¢j7¢j> ¢j

_ 4. <¢J+17¢J>

- ¢]+1 <¢]7¢]> ‘Pj]

. (Liy1 —Lj2,9;j) -
¢J+1 -

(9/,9;) g

(Lj+1,0;) = (Lj+2:9)) -

= ¢j+1_ <¢;j7¢~)]> (pj
o, _<Lj+la¢;j>_<Lj+2a¢j (%) ¢j1 >¢
- (9;:6)) !
L) = (L) + (D (L) 5
- (97.95) !
—h. <J+17¢J>
- (P]+1 <¢],¢J> (P] |
.y _<L]+17¢J>+(j4jr_1)2<Lj+la(§j—l>~.
™ (9;.6)) !
.) _<Lj+17¢j>"’.
- (Pj—l-l <§5],(§]> (P]
o L Li L) o
- (Pj-l-l <(5J,(§]> q)]
— iy — <Lj+1,Lj>~—<~Lj+1,Lj+l> '3
" (6):95) !
o _<Lj+laLj+1>~.
- ¢j+1 (<$],¢;]> ¢]
gy g ML)
- ¢j+1+ <¢;ja§5j> J
Legendre polynomials are a set of orthogonal functions on (—1, 1), that is,
/ Lx dx_{o2 %fl;ém,
2+ if l =m.
Therefore, using Lemma 1, and (4.5), we obtain
Gt = 0 Mq}
" ey
= 0 2 0.
ET R DA
o 2 U172+,
TR 22

40

We now prove a converse of Theorem 1.

Theorem 2. If ¢p(x) = 1 —x and ¢; is defined as in (4.6) fori = 1,2,..., then (¢, ;) =0
when j < k.

Proof: Case 1: j <k—1

i) = (o () oo (725) o)

) <¢k’¢’>+(L (01,9 1>+() (Be1,0;)
+<ki1>2< i)2<¢3k_1,¢3j_1>
— <¢k7¢j>+() (Bt 0)+

+

.

(]) (B1,0j-1)] -

» +‘»

= (o) + (1) oo
= (Ly—Lgs1,L; LJ+1>+(]Hk_1) {(Qk—1,0;)

= (L,Lj) — (Lg,Lj1) — (L1, Lj) + (Lit,]+1>+<k+1> (Pk—1,9;)

- (k+1) (91, 95)

= 0.

Case?2: j=k—1
. ko\?
(God) = o)+ () (Bene)
= <¢k»¢k—1>+<k+L1> (Bk—1,P—1)
2
= <Lk_Lk+17Lk—1_Lk>+<k_|k_1> (1, Px—1)
2
= (L, Lg—1) — (Lic; L) — Ly 1, La—1) + (Lay1, Li) + (%) (-1, Px—1)
= —<Lk,Lk>+<k+1) (Pr—1,01)

— _<L"’L">+<k+1> (Ok—1,P—1)

41

- _(2k2+1)+(k

)2 2((k—1)+2)*
1 (k—=1)+1)*(2(k—1)+3)

- _(2k2+1)+(k

B 2 N 2
 2k+1 2k+1
= 0. O

2 2(k+1)°
1) k2 (2k+1)

All orthogonal polynomials satisfy a general three-term recurrence relation that has the form

Bidj+1(x) = (x— ;) §;(x) = ¥j-19j-1 (), (4.9)

where ¢, B, and y; are constants. By enforcing orthogonality, we obtain the formulas

First, we will find the value of «;.

Theorem 3. Let a; be defined as in (4.10). Then &; = — .

Proof:

Bj

)

T{059)
_ <éj+lvx$j>

<€’5j+17€5j+1>,
(j+1,%9))

KNI

(4.10)

4.11)

(4.12)

GG v 2 0.

Base case: When j = 0, we use (4.10) to obtain

)

(90, x90)

(90, P0)

f—11¢;0'x430dx

Ly 6o Godx

f_ll (I1—x)-x(1—x)dx
M =x)-(1—x)dx
f_ll (x* —2x% +x) dx
I (2 —2x+1)dx

1
1.4 23,12
X 3X +2x ‘_1

1 1
§x3 — xz _|_ x‘
—1

For the induction hypothesis, we assume there is a j > 0 such that ;| = —

<¢va¢1>
(6).9))

oj =

42

1
m . From

N
and ¢; = ¢;+c;P;_1 where c; = (er—1> , we obtain

<(];j,X¢~)j> =

(@j+ci@j1,x(9;+cidj-1))

= (9 +cj®j1,x¢; +xc;Pj 1)

= (¢, x0;) +2¢;{Pj—1,x0;) +C? (Pj—1,xP;—1).

(4.13)

Now, from the recurrence relation for Legendre polynomials, we obtain

(9),x¢;) =

(Lj—=Ljs1,x(Lj—Ljt1))
<LJ - Lj+1 7ij

Lj—Lj+1,(

—xLjy1)
j+1 j
2j+1 9t

j+2 j+1
A SPE Y (LN ST
AT 1) (2j+3 T3

)

j+1 j+1
= —(m)< L) — (m) (Ljt1,Ljs1)

. j+1
N 2j+3

and

(9j—1,x0;)

)

j+1 2
2j+1)\2j+3

23+ 2(j+1)
@it D2j+3) @+D@Ei+3)
—4(j+1)
2T 1)2j+3) (19

= Jj+1
- (o (e

- 2 +1<¢J 17 J= 1>

J [Jt2 j+1
2j+1 77! 2j+3 72T 3
Jj+1 -

2 +3<¢J—17 J>

j j+1 j—1\’

= m@’] 1,L; 1>—m (@j-1,Lj) + e (9j-2,Lj)
i j+1

= 2j_|_1<¢j_]’ j—1 —m@’j—liﬁ
iz jt1

= 2j+1 <¢j—1’ J 1> 2]_+3<L]_1 Lj7Lj>

43

i+ 1
= 2]+1<¢’/ nLjor) = 2J-+3[<LJ—I7LJ>—<LJ»LJ>}

Jj+1
= 2]+1<¢’1 L) =5 (S (L)

+1
- 2 +1<¢] 17 j— 1>+2 _|_3<L]7L]>
= ﬁ[@j—lij 1 =L Lin]+ o +3< irLi)
' +1
= S0)] +)
Al)) e
2j+1 j 2—1) | T 2j+3\2j+1
_ (2]'—1)(2 >+ 2(j+1)
+1\ 72 J\2j=1) " @i+)2j+3)
_ 2 2(j+1)
J2j+1) (2j+1)(2j+3)
2(j+3j+3)
_ | 4.15
T+ 25+)

To calculate the middle term in equation (4.13) we will multiply 2¢; by the result from

3 B j 2 2(j2+3j+3)
2ci(9j-1,x9;) = 2<j+1) ('(2j+1)(2j+3)

_ 4j(P+3i+3) (4.16)
(G+1)*(2j+1)(2j+3)

equation (4.15):

We rearrange the formula for ¢¢;_; to obtain the following:

(@j-1.%0;-1) = &j1-(dj-1,0;-1)
L2+
JjU+1) 22j+1)
—2(j+1)

P 2j+1)

2(dy1xf 1) = (jil)ét" (;iéﬁii)

— . 4.17
G+ @i+ 1) @10

Therefore,

44

Now we can use the results from Equations (4.14) — (4.17) to determine the numerator of

OCj.
(B —4(j+1) 4j(j*+3j+3) N —2j
P Qj+1)(2j+3) (j+1)22j+1)(2j+3) (+1>@2j+1)
_ —2(j+2)
(+1)°(2j+3)
Hence,

2(j+2) (+1)*(2j+3)
(J+1)3 (2j+3) 2(j+2)
1

EE)

Now, we will find the value of j3;.

Theorem 4. Let B;be defined as in (4.11). Then f3; = 21123 ,Vj>0.

Proof: For the base case, we consider j = 0:

(1,x00)
(01,01)
It 61 -xgodx
I 1 b dx
f_ll (—%x2+ %x—l— %) x(1—x)dx
S84 34 3) (32 4 3x 4 3) dx
I Gt =907 4+ 3x) ax

T (9 27
oy (3 = 303 = H + gt) dx

Po =

For the induction step, we assume there is a j > 0, such that ﬁj 1= ” . From B]
<$j+17x¢;j>

N2
(0+1.04+1) d¢j ¢1+C1¢J 1 where ¢; = <#> , we obtain

(9j41,x0;) = (@jr1+cjr19j,x(9j+c;Pj—1))

45

= (@j41+cjp19),x0;+xC;Pj—1)
= (@j11,x0;) +cj{Pj—1,x0j1) +cjs1(D;,x0;)
+cjcjp1 {9, xPj1). (4.18)

Using the recurrence relation for Legendre polynomials, we obtain

(9j41,%9;) = (Ljs1—Ljs2,x(Lj—Ljs1))
= <Lj+1_Lj+27XLj_XLj+1>

J+1 J Jj+2 J+1
= (Liyy—Ljyy, | =—Liy1+="—Li |- (=L +2——L;
<J+1 J+27(2J.+1]+1+2J-+1 j 1) (2j+3 J+2+2j+3 j
J+1 J+2

= %+J<%+hj+o+

o j+1 2 +]—FZ 2
2+ 1\2j+3) 2j+3\2j+5

2(j+1) 2(j+2)
2j+1)(2j+3) (2j+3)(2j+5)
2(4/24+12j+7)

T (2j+D)(2j+3)(2j+5) (4.19)

<lq+2» Lj2)

and

<¢5—4,X¢U+1> = <'}—4,X(lq+1-—lq+2)>
= (@j_1,xLjt1—xLji2)

x j+2 j+1 j+3]+2
<% h(2+3 Ha+2 3L) <2.+5 H3+2 —slit

J+2 - j+3
= 2]+3<¢] I j+2>+2 +3<¢j 1y j> 2j +5<¢] 1, J+3>

j+2
2 +5<¢] 1, j+1>

j+1

= 2]+3<¢] L J>

j+1 i—1\?

= 213 (91, J>+<T) <¢J—2’LJ>]
j+1

= m@j—liﬁ
j+1

= 2J+3<LJ 1= Lj?Lj>

J+1
= 213 [(Lj-1:Lj) —(Lj;L;)]

46

= (L)

2j+3

.]+1
- 2]+3 < Jo J>

Jj+1 2
2j+3\2j+1

20+
(2j+1)(2j+3)°

We then have

i (@j-1,x9j41) = (ji—'1>2(_(2j—2k(1j)—2_2lj)+3)>

— 2/ (4.20)
D@D (2j+3) '

The last term in (4.18) is obtained as follows:

3 (1 j j+2 j+l
X)) = L L) S i)
<¢jax¢j> <¢ja (2 i1]+1+2 i+ 1 j— 1) <2+3]+2+2J.+3 Jj

J+1 j+1 -
- 2]+1<‘Pj7 j+1>+m<¢j, Lj1)— 2 +3<¢j7 Lj)
J+1

J
= 2+ (—(Lj+1:Ljs1)) + 2+l [ej (1=cjm1) (Lj-1,Lj-1)]

L5 [(1-e) (LL)]

__]+1(2)+j 2 _jtl 2
O 2j+1\2j+3) 2j+1\ (j+1)? 2j+3\ (j+1)?

20+ 2j - 2
2j+1)(2j+3) (j+D*@j+1) G+1D(2j+3)
2j+2) (2+j+1)

G+1)72j+1)(2j+3)

We then have

GGy — (1) (L 205Dy
C]—|—l<¢]7 ¢J> - (j_|_2> ((j+1)2(2j+1)(2j+3))
—2(2+j+1)

T (+2)Qj+ 1) (2j+3) (4.21)

We rearrange the formula for ;_; to obtain the following:

(9j,%0j-1) = Bj-1-(9;,9;)

47

j+1 2((j+2)?
2j+1 (j+1)*(2j+3)

2(j+2)°
(+1)(2j+1)(2j+3)
Therefore,
h h — J 2]+1 2 2(]+2)2
e i) = <J+—1) '(J'+2> '<(j+1)(2j+1)(2j+3)
_ 2j*
T (DR (2 +3) (4.22)

Now we can use the results from Equations (4.19) — (4.22) to determine the numerator of f3;.

(G158 — 242 +12j+7) 252
S (2j+1)(2j+3)(2j+5) (G+1)(2j+1)(2j+3)
L 2(fA i) N 22
(J+2)2j+1D(2j+3) (G+1D)(2j+1)(2j+3)
242+ 12j+7) 2(/*+j+1)
(2j+1D(2j+3)(2j+5) (j+2)(2j+1)(2j+3)
B 2(j+3)?
- (+2)(2+3)(2j+5)
Hence,
5 — 2(j+3)° (i+2?%(2j+5)
! (j+2)(2j+3)(2j+5) 2(j+3)
j+2
- 53

Using the results from Theorem 4, we can find the value of ¥;.

Theorem 5. Let y; be defined as in (4.12). Then y; = %,v i>o0.

Proof:
Base Case: When j =0,
y - 08
{0, 90)
f11 ‘f;l -x(ﬁodx
11160 Gods
I (=3 +3x+2) x(1—x)dx
L (1 =x)-(1-x) dx

48

Jh Gt = 323+ 3x) dx
(2 —2x41) dx

1
3.5 9 .4 3.3
10 — 16X 13X)71

1
%x3 —x? —|—x‘
-1

oN Wl oo
&l o=l

D, 2
Induction Hypothesis: Assume there is a j > 0, such that y; | = % Lety; =

3. B - - .\ 2
% and ¢; = ¢; +c;¢;_1 where c; = (,-JT1> . Induction Step: Notice that 3; and 7;
have the same numerator. So, we will use the induction steps found in Theorem 4. Thus,

o 2(j+3)° +1)*(2j+3)
TS Gr)0i+3) 25 2(j+2)
(+1)*(+3)?
(J+2)3(2j+5)

In summary, the polynomials ¢; satisfy the recurrence relation

JH25 I - PU+2?
m%ﬂ(x) = (x+ m) 9;(x) — Gt 1)3(2j+3)¢1—1(x)- (4.23)

We can rewrite equation (4.8) as ¢ i —Cj ¢ i—1 = ¢;. In matrix form, we have

[1 —C1
1 —C)
d=PC, C= 1. , (4.24)

_Cn

1

where @ = [@o(x) ¢1(x) -+ ¢;i(x)] and = | do(x) d(x) - ¢i(x) |, with x
being a vector of at least n + 2 Legendre-Gauss-Lobatto points. This ensures that the

columns of @ are orthogonal. Then, given f € X, 1(0), we can obtain the coefficients f; in

by simply computing f; = (@, /) /N;, where Nj is as defined in (4.5). Then the coefficients
fiin
n
fx) =Y figi(x)
i=0

49

can be obtained by solving the system Cf = f using back substitution, where C is as defined
in (4.24). These coefficients can be used in conjunction with the discretization used in [25],
which makes use of the basis {¢;}.

4.2 The Case m # 0
In the case where m # 0, we work with the space
Xn(m) ={p € Py|p(—1) = p(1) = 0}.
As discussed in [25], this space can easily be described in terms of Legendre polynomials:
Xy (m) =span{¢;(t) =L;(t)—Li12(¢t),i=0,1,....N—2}.

Applying the Gram-Schmidt process to the basis function {¢;}, we obtain a new set of
orthogonal polynomials that will be denoted as {¢A)l} These basis functions are obtained in

the same way as in equation (4.1). First, we let

~

b = o
= Loy—L,
3, 3
23
and
& = o
= Li—L3
54,
= ——x+=x
2 2

Then, we have

Ao {($0,92) » B (01,02) »
(PZ ¢2 < A(),(ﬁ()> 0 <é1’él>¢l
— ¢2_f1_1(A0'¢2)dx¢30_f1_1 ((]31-(P2)dx¢31
[(o do)dx (61 1) dx
)

= (—gx —}—Zx —§>—W(—§x —|—§ —%E —EX +§x

50

_ B a2 S
= 8x + 5x 2
and
po_ (40,93 - B (01,03) B ($2,03) -
T G m T e (Bl

= ¢3—

f171(¢30'¢3)dx€5 T (0-¢3)dx . S
(

I (9o~ o) dx o I (61 61) dx - i

63 5, 455 27 0 (3,3 — 55,5
= |-—x+—"X" x5 |+ | 55| X +=x
8 4 8 2V 2 "2) 2\ 2 "2
0/ 35, _, 5
9
8

63 s 45 5 27 3(53 5)
= —X+—X ——X+—=|—zx +=x

4 8 10 2 2
63 5 45 5 27 345 3
= —gx +Zx —gx—é—lx —l—Zx
63 5 21 5 21
= —gx —|—?x —gx.

The graphs of the first several members of the sequence {¢A),} are shown in Figure 4.2.
Again, we will compare ¢, with ¢, and ¢3 with @3 to find a general formula for the
values of ¢;. We obtain the following formula

. 35, ., 5 35, 21 7
-0 = g +5x 2 (8x—|—4x 8)
035, 5 535, 21, 7
= TR ot g
_ _1x2+1
4 4
_1(3,,3
6\ 2 2
1.
= ¢ (4.25)
and
. 21 . 21 4 2
O3 —¢3 = —%x5+7x3—§x—<—%x5 st3—§7x>

51

GRAPH OF ¢ VALUES FORm=0

1.5

Figure 4.2: Graphs of ¢;, i =0,1,2,3,4.

3.
= 1o%
These results suggest a simple recurrence relation for ¢; in terms of ¢; and ¢;_», in which the
coefficient of ¢;_» is a ratio of triangular numbers d; = i(i — 1) /[(i4 1) (i +2)]. We therefore

define
¢ =0 ii—1) é i =23....N—2 (4.26)
i =0 — 0,2, 1= g3 g eeny — .
i+ 1)(i+2)"?
with initial conditions
. . 5
ho=g=1-2 ¢=01=5(x—r) (4.27)

To prove that these polynomials are actually orthogonal, we first need this result.

Lemma 2. Let §;(x) be defined as in (4.26), (4.27), and N; = ($;,¢;), V j > 2. Then

20 +3)(+9)
@i +5)(+2)(i+1)

(4.28)

V j>2and

A JG-1)

¢j:¢j+m¢3ﬁ% =2, ¢j=¢; j<L

52

Proof: For the base case we compute Ny and N; directly. We have

No = <430,€50>
= (9o, o)
= (Lo—Ly, Lo—Lo)
= (Lo,Lo) +(L2,L2)

2
= 2 —
+5
12
= <
and
Ny = <<1317(131>
= <¢17¢1>
= (L1 —Ls, L — L3)
= (Li,L1)+(L3,L3)
B 2+2
37
_
21
For the induction step, we assume there is a j > 2 such that N; , = % Now, we
must show that the formula (4.28) is true for j. We have
roa jG-=1) jiG-=1) -
N;=1(9¢;,0;) = <¢ L AL VY JUPYY) Emet (L b S
i=(0n0i) = {4 <J+1><.z+z>f j (J+1)(J+2)]
2j(j— G-
<¢1a¢1>+ G+1)(J+2 <¢J»¢J 2) + +1>(]+2 <¢’J 2,0j-2)

10j+3) 2j(-1)
Grnaies) GGy k)

jG=1
+(<j+1><j+z>) Niz2

4(2j+3) 2j(j—1) 2 G-1D \°
2j+1)2j+5) (G+1)(j+2) (2j+1) ((j+1)(j+2)> Niz2
4(2j+3) 4j(j—1) jG=1 Y’
(2j+1)(2j+5)+(J'+1)(J'+2)(2J'+1)+<(j+1)(j+2)) N2
24 (j2+3j+1) +(iGi—1))2[2(j+1)(j+2)]
G+DG+2)Qj+1)2j+5) \G+1)(+2)/) [iG-D@j+1)
24 (j2+3j+1) 2j(j—1)
G+0(+2)(2j+1)2j+5) (+1)(+2)(2j+1)

53

2(j2+7j+12)
G+ +2)(2j+5)

2(j2+7j+12)
G+1DG+2)(2j+5)

2(j+3)(j+4)
G+DG+2)Q2j+1)

Theorem 6. Let ¢; be obtained by orthogonalizing ¢; against ¢y, ¢1,.... Then ¢y = ¢y,

(131 = ¢y, and
¢ =0;+dij0, j>2, (4.29)

. _JU=1)
where dj = m
Proof: For the base case, we first show that ¢y = ¢ and ¢; = ¢; are already orthogonal.

We have

(¢1,00) = (Li—L3,Lo—Ly)
= (Lo,L1) —(L1,L2) — (Lo, L3) + (L2, L3)
0.

Next, we show directly that the theorem holds when j = 2:

b = ¢ <q§o,q32> 90— {01.02) X
(90, 90) {(¢1,01)

= —%f‘— 24—1x2—%— _I?E (—%xz—i—%) —% (—§x3—|—§x>

- B Ba Tl (o)

= ¢+ é(ﬁo- (4.30)
For the induction step, we assume that ¢y, . .., d j—1 are orthogonal, where j > 2, and that

¢;=0;+d;;2, (4.31)
where d; = m Then
Piv1 = i1+ z]: %ﬁ@
— g <¢j I ¢J+l>¢J

<¢] 17¢] 1>

54

<‘13j717Lj+1 —Lji3) »

= s (§j—1,0j—1) P
_ ¢_+1_<¢J LLj1) — (91,]+3> 1
! <¢] Iy ¢] 1>]
_ g (L) o
= 0j11 <¢] 1’¢] 1>¢]
4. <¢J 11Cj I‘P] 3 j+l>
N ¢J+l <¢]717¢171> (PJ !
= 01— <¢J’-17Lj+12+cj:1 <<51—3,Lj+1> 5o,
! (9j-1,9,-1) !
_ o <¢j—17Lj+1> o
A AL
— i <Lj—1A_LjJAr17Lj+1> -
! ($j—1,9-1) "’
— iy — <Lj—1,LjJ:1> _A<Lj+laLj+1> -
' (@j-1,0j-1) ’
— ¢'+1_(<LJ+1’]+1>)
! <¢J 1 (PJ 1>
< j+1s J+1>
= Qi1+ =9
<¢, 1 ¢J 1>
_ (2J+3) A
= ¢j+l+—<¢J 1(])] 1>¢ 1
Pjr1+ 2 ! hi

— 91
2j+3 (§j-1,6;1) "
Using Lemma 2, we obtain

2 JU+D2+3)
2j+3 2(j+2)(j+3)

TSI
Pt Gy e o

Giv1 = i1+

We can now confirm that the polynomials defined using the recurrence (4.29) are

orthogonal.
Theorem 7. Let @y be defined as follows:

k(k—1)

L B0, k>2, =, k<.

O = i+

Then <q3k,g13j> =0 for j # k.

55

Proof: We will show that for each k > 0, (¢, ;) =0 for 0 < j < k. The case k = 1 was
handled in the proof of Theorem 6. Proceeding by induction, we assume (ﬁo, ceey (ﬁk_l are all
orthogonal, and show that <¢3k, $j> =0forj=0,1,....,k—1.

Case l: j<k-—2

(0,9;) =

Case3: j=k—1

<¢k7 (5]> +
(Li — Lis2, ‘5]> +

<Lk7 ¢31> - <Lk+27 é]> +

k(k—1)
m@k 2,0;)
(k—i—k(lk)ﬁ@k 2— Lk7¢1>
k(k—1)

1) [(Li-2,9;) — (Lk. 9;)]

k(k—
k+1)k+2
k(k
(90824)
k(k—
(k+1)k+2

A . k(k
<Lk,¢kz>—<Lk+zv¢w>+k+ﬂ>—k+z
k(k—

(k+1)—k+2 (Qk—2,Pk—2)

k(k—1)
— (Lx, Ly) + KF) (k+2) (P2, P—2)

2 k(k—1) 2(k+1) (k+2)
k1 (k+4U(k%—2)(k(k—JU(Zk—kl))
2 2

_%+1+%+1
0.

<¢%,¢y>-+ <¢% 2.0))
<¢k 2, Gi2)
(Li = Lis2, fr2) + <¢% 2 02)

(92, 02)

(L,) +

k (k —
w+1)k+2
(9 1) + k+$ (k+2)

k(k —
(k+1)k+2

k(k—
@+1)k+2

(O, §j) + <¢k 2,9;)
<¢k 2 Pr1)
(Lg — Liy2, §x—1) + <¢k 2:0-1)

(L, 1) — (Lis2 o1) + <¢k 2, Pk—1)

56

= 0.

If k = 2, then the steps are the same except that the term with ¢;_s is not present. [

Like all families of orthogonal polynomials, the ¢ satisfy the recurrence relation
Bidj1(x) = (x—)@ (x) = ¥j-19j-1(x). (4.32)

By analogy with (4.10), (4.11), and (4.12), we have

(9j,x0;)
o = D) (4.33)
T (65,9))

(Dj11,0j11)
(ﬁ j+1 a'xé\ j
¥, = < 1A J>' (4.35)
(9):9))
Because ¢ ; contains only terms of odd degree, if j is odd and of even degree if j is even,
just like the Legendre polynomials, it is easily shown that ¢; = 0 for j =1,2,.... We will

now find the value of 8; and ;.
Theorem 8. Let fB; be defined as in (4.34). Then f3; = 2jj+—+35, Vj>0.

Proof: We show the base case j = 0 directly:

g = (o)
(01,01)
_ S 61 xodx
N S - by dx
_JA (35 (=3 4 3) dx
TN (3 3 (<364) dx
A B 52 0
" G a
;—§x7 — %xS + §x3‘1_
BT —3x5+ %x3‘l_
_ 1
20

57

For the induction step, we assume there is a j > 0 such that ;| = 4== 2 Then, using (4.34),

2j+3
N CEED) BN SR _ _ili-1)
we have 3; = CTRY and ¢; = ¢;+d;9;—2 where dj = 7577y For the numerator,
we have

(9j+1,20;) = (@j1+dj119;,x(9;+d;9;-2))
= (9jr1+dj10),x0; +xd;j$; 2)
= (@jr1,x0;) +d; ($j—2,x0;11) +dj11{§;—1,x0;)
+djdjs1 {Pj—1,xj_2) . (4.36)

We now compute each part of the numerator as follows:

(9jr1.x0;) = (Ljt1—Lji3,x(Lj—Ljs2))
= (Ljp1—Ljis.xLj—xLjy2)
j+1 j j+3 j+2
— (L. —L Lii+—t—p.)= (L 2.+,
<j+1 j+37(2j+1]+1+2j+1 j 1) (2].+5 J+3+2.+5 j+1

- 21+1<LJ+1’ J+1> 2] _|_5<L]+17 J+1>+2 _|_5<L]+37]+3>

AR 2\ Jj+2 2 +j+3 2
2+ 1\2j+3) 2j+5\2j+3) 2j+5\2j+7

))

_ 2(j+1) B 2(j+2) 2(j+3)

T2+ D@j+3) (2j+3)(2j+5) (2j+5)(2j+7)

_ o 2G+2)

T2+ 2j+T) (4.37)

A j+2 j+1 j+d j+3
o) = Lin+ 20— (L2 + 2700,
(@j—2,x¢j11) <¢J 2, (2 3 ;+2+2].+3 j) (2j+7]+4+2].+7 j+2

j+1
= 2]+3<¢] 25 J>

J+1
= 213 (=(L;:L}))

.]+1
- 2]+3 < Js J>

j+1 2
2j+3\2j+1

2@+
(2j+1)(2j+3)

Then

. (G- 2(j+1)
dj(9j-2,x9j41) = (m)'(_(2j+1)(2j+3))

58

_ —2j(j—1)
(+2)2i+1)(2j+3) (4.38)

For the third term in (4.36), we have

R X i1 j j+3 jt2,
<¢] 1,x¢]> <¢J 1,(2 1]+1+2.+1 j 1) (2.+5]+3+2 3 Lj

j+1 Jj+2
= 2].T<‘Pj—17Lj+1>+2 +1<¢J 1,Lj— 1> 2-+5<¢j*17l‘j+1>

Jj+1 J
REETEN] (= (Lj+1,Lj11)) + 21 [(1—dj1) - (Lj-1,Lj-1)]

J+2
2]+5[<Lj+1>Lj+l>}

B]+1(2>+j(4) j+2<2)
o 2j+1\2j+3) 2j+1\j(+1)/) 2j+3\2j+3

20+ 4 o 2(j+2)
2j+1)(2j+3) (G+D@2j+1) (2j+3)(2j+5)
6(j+3)
(J+D(2j+1)(2j+5)

and therefore

. b xd:) = JU+1) . 6(j+3)

Gl = GG ((j+1)(2j+1)(2j+5))

_ 6

~ ()2t 2j+5) (4.39)

We rearrange the formula for ;_; to get the following:

(pj—1,x0j2) = Bji—2-(dj=1.0j-1)
Jj+1 2((G+2)(+3)
2j+1 j(j+1)(2j+3)

2(j+2)(J+3)
Jj(2j+1)(2j+3)

Therefore,

LGS N (G [20+D(+3)

didj1 (95-1,50j2) = (<j+1><j+2>) <<j+2><j+3>) (j<zj+1><zj+3>>
2j(j—1)

J+1)@2j+1)(2j+3)

(4.40)

Now we can use the results from Equations (4.37) — (4.40) to determine the numerator of f3;.

2(j+2) 2j(j—1) L 6/
Qi+ 2i+7) (+2)Q2ji+1D)(2j+3) (+2)(2j+1)(2j+5)

<¢;j+1 ,X$j>

59

2j(j—1)
G+ 1) 2i+1)(2j+3)
6+4) 6)
G+22i+3)@+7) (G+2)2j+1)(2j+5)
2j(j—1)
G+ 1) 2i+1)(2j+3)
2(j+4) (j+5)
(i+2)(2+5) (2 +7)

(4.41)

Thus,

B, — 2j+4)(+5) (G+2)(+3)(2i+7)
T (+2)(2j+5)2j+7) 2(j+4)(j+5)
J+3

2j+5

From (4.35), (4.41), and Lemma 2, we obtain

v = 2j+4)(+5) (+1D)(+2)(2j+5)
! (+2)2j+52j+7) 2(+3)(i+4)

(G N+S)
= et (+42)

In summary, we have

s A o
Lo b0 = byt - LS

(j+2>(2j+5)¢j71()€)- (4.43)

Equation (4.31) can be rewritten as ¢; = o i —d; ¢ i—2. Now, we have the system

(1 0 —d»
1 0 —ds
1 0

&=®D, D= .
1 T _dn

1

where @ = [¢o(x) ¢1(x) -+ ¢i(x) | and D= [do(x) di(x) -+ ¢i(x)], with x
being a vector of at least n 4 3 Legendre-Gauss-Lobatto points. This ensures that the
columns of & are orthogonal.

Then, given f € X,,,2(m), we can obtain the coefficients f; in

60

by simply computing f; = <q3i, f > /Ni, where N; is as defined in (4.28). Then the coefficients
fiin
n
flx) =) figi(x)
i=0

can be obtained by solving the system Df = f'using back substitution, where D is as defined
in (4.2). These coefficients can be used in conjunction with the discretization used in [25],
which makes use of the basis {¢;}.

4.3 Boundary Condition p(1) = p/(1) =0
In the case where we have a derivative on the boundary, we work with the space
Xy(m) ={p € Py|p(1) = p'(1) = 0}. (4.44)
This space can easily be described in terms of Legendre polynomials:
Xy (m) =span{¢; (1) = L; (x) + biLiy1 (x) +ciLiya (x) i=0,1,...,N—2}.

To satisfy the boundary conditions in equation (4.44), we need recurrence relations that will

satisfy p’(1) = 0. We begin by letting

0o = Lo(x)+DboLy (x)+coLy(x)

3, 1
= 1+4+box+co (5)(_E)’ (4.45)
so then
01 = Li(x)+b1Ly(x)+ciLs(x)
3, 1 557 3
= S - 4.4
x+ b (2x 2) +c (2x zx) , (4.46)
and

0 = L (x) +byls (x) +crly (x)

3,5, 01 55 3 354 30, 3
= 2x 2—|—b2(2x 2x>—|—cz<8x Sx +8 . 4.47)

For equations (4.45), (4.46), and (4.47) we will impose the first boundary condition p (1) = 0.
So, we have

3 1
¢ (x) = 1—|—b0x+c0(§x2—5)

3 1
Po(1) = 14+bg-1+co|=(1)>—=
2 2
0 = 1+bg—+cy,
and
B 3, 1 5, 3
01 (x) = x+b (2x 2)+c1 <2x 2x)
B 3,01 5 43
o) = 14 (F07P-3)+a (F00-30)
0 = 14+by+cy,
and
3, 1 5, 3 35, 30, 3
o (x) = 5 2—|—b2(2x 2x)+cz(8x g —1—8
351 5 4 3 35 ., 30
a) = 02 5+m (F00-30)re(Fr-3
0 = 14+by+os.

Now, we will impose the second boundary condition p’ (1) = 0 and use the formula L’j (1)

JGU+1)

>— - Then
$o (%)
o (1)

0

and

and

¢ (x)

9; (x)
0 =

Ly (1) +boLj (1) +coLs (1)
1(1+1) 2(2+1)

0+ by - >

—|-C0~
by + 3¢,

Ly (x) + b1 L) (x) + 115 (x)

1(1+1) 2(2+1) 3(3+1)
y th— ‘T

1—|—3b1—|—6€1,

L (x) + baLs (x) + 2Ly (x)

2(2+1) 3(3+1) 4(44+1)
5 +by - > +co- >

34+ 6by + 10c,

(1)°+

Combining ¢ (x) and ¢} (x) into the following system of equations, we have

bo

Lslla L]

61

(4.48)

(4.49)

i)

(4.50)

4.51)

(4.52)

(4.53)

62

B[—

This system can be solved using Gaussian elimination which yields by = —% and ¢y =

The system of equations formed by ¢; (x) and ¢ (x) can be solved the same way.

Bl)15

yields b = —%, and c; = % Therefore,

0o (x) = 1—§x+§.(§x _5)

and

By applying the Gram-Schmidt process to {¢;}, we obtain a new set of orthogonal polyno-
mials that will be denoted by ¢;. To start the sequence {qS,} we let

b = o

= %(x—l)z,

and
Y . F <(]507¢1> -
T gy

_ 93 30,3 10 /3, 3.3
-3V TN e T \gt Tty

63

_3 | | | | | | | | |
-1 -08 -06 -04 -02 0 0.2 04 0.6 0.8 1

X

Figure 4.3: Graphs of ¢, for j =0,1,2,3.

The graphs of the first several members of the sequence {(]3 j} are shown in Figure 4.3.
Instead of computing the values of o, B i, and ; directly, we use MATLAB to compute

them.

4.4 Recurrence Relations for Generalized Jacobi Polynomials

In Sections 4.1 and 4.2, we developed families of polynomials that are orthogonal with
respect to the weight function @(x) = 1. The orthogonal bases developed in [26] are defined
in such a way as to satisfy specified boundary conditions, such as the ones employed in
this dissertation. These orthogonal bases are known as generalized Jacobi polynomials
(GJPs) [15, 26]. These GJPs have parameters ¢, 3 < —1 that are orthogonal with respect to
the weight function @®PB (x) = (1—x)%(1 —|—x)B . Originally, the polynomials developed in
[26] were used to solve third or higher odd-order equations, but we can adapt them to our
method because they both use short linear combinations of Legendre polynomials. We will
now examine the changes that occur to the orthonormal polynomials and their three-term

recurrence relations as we change the weight function.

64

Let J, be the n x n Jacobi matrix consisting of the recursion coefficients corresponding
to a sequence of polynomials p;(t), j =0,1,...,n— 1 that is orthonormal with respect to

the inner product
I
(8o~ [FOln)/.ah,

where dA () = w(t)dt, and let J, be the n x n Jacobi matrix for a sequence of polynomials

pi(t), j=0,1,...,n—1 that is orthonormal with respect to the inner product

Uosho= | TWs)d,

where the measure dA (1) = @(t) dt is a modification of dA () by some factor. The following

procedures can be used to generate J,, from J,,:

e Multiplying by a linear factor: In the case dA (r) = (t — ¢)dA(t), we have

_ Sot)
Jo=L"L+cl+ 221 e,
l}’l}’l
where L is a lower triangular matrix and J,, — ¢l = LL” is the Cholesky factorization
[9, 10].

e Dividing by a linear factor: In the case dA (¢) = (t —¢)~'dA(r), where c is near or on
the boundary of the interval of integration, the inverse Cholesky (IC) procedure [7]

can be used to obtain J,. We have the following equation

nn

. Op—
Jo=L"'J,L—cl+ (;’ 1) e c’
where I = (J,, — cI) LL” +e,d” and ¢ and d are vectors that do not have to be computed

if one is content with only computing J,,_.

In both cases, the modified and original polynomials are related by L:
p(t) =Lp(7),

where p(t) = [po(t) -+ pa-1(t)]" and B(t) = [po(1) - pu1 ()]
Three-term recurrence relations for the Jacobi polynomials are well-known, but we are
not aware of similar recurrence relations for GJPs. We now present efficient algorithms for

modifying the family of polynomials {¢;} in Section 4.3 to obtain such recurrences.

65

4.4.1 GJPs for the Boundary Condition p(1) = p/(1) =0

The polynomials {qS j} can be modified to obtain the three-term recurrence relation for the
GJPs
(~1)) &

0x) = (1= = 2775

{(1 —x)j+2(1—|—x)j}, Jj=0,1,..., (4.54)

which are orthogonal on (—1, 1) with respect to the weight function (1 —x)~2 [15]. These
polynomials satisfy the boundary condition ¢(1) = ¢'(1) = 0.
Let ~
0 %
Bo ou m

Bn—3 -2 Y2
ﬁn72 Op—1 i

be the matrix of recursion coefficients for the family of polynomials {¢ J}'J:(l) where

_ (95:%9;)
T (05:65)
T, 041)
yi— (Pj41,x0;)
= ——t
(9).9)
To symmetrize J,, we must apply a diagonal similarity transformation which yields the
following))
o B

d o1 O

S
Il

6n—3 (0/73) 6}1—2
5n—2 Op—1]

where §; = \/mmrjzo,l,...,n—z
Let J, be the Jacobi matrix for the polynomials ¢ ;i (x). We can apply the inverse Cholesky
algorithm to compute J,_; directly from J, since its measure is a modification of that of J,,
and J,, by dividing by a linear factor. Unfortunately, this computationally expensive.
To get around this problem, we let J, be the Jacobi matrix for polynomials ¢;(x) that
are orthonormal with respect to the weight function 0 = (1 — x)_z. We would like to obtain

J,_1 from J, and then obtain J,_, from J,_;.

66

First, we let T;, = I — J,, with the modification dA(r) = (1 —t)~'dA(¢). Then, we can

find the (n,n) entry of the matrix equation

s 2
On_
T,=L"L+ (”—1> e.el (4.55)

lnn

for 12

2 where 8,_1 = (x@,_2, ®n—1)5- The entry 8,1 of J, is unknown, so we will leave it

that way for now. Next, we will compute the factorization

T Snfl ? T
L'L=T,—] €€, .

nn

Therefore,
Jo=I—LL". (4.56)

The correct J, and the matrix obtained in (4.56) differ by the (n,n) entry. So, deleting the
last row and column yields the correct J,,_ 1. We will repeat this process for the modification
of the weight function by dividing by another factor (1 —x).

Let T,y =1 —J,_1. Now, we can solve the (n— 1,n— 1) entry of the matrix

A 2
_ e On—
Ty :LTL+ <l Z 2 1) enflerY;—l
n—1,n—

for l,%_l_‘n_l where 3,,_2 can be computed using (4.54). Next, we will compute the factoriza-

N 2
e On_2
LTLzTn_1—<l 1 1) e, 1€ ;.
n—1,n—

tion

As a result, we have
Jo1=I1—-LL".
Lastly, we need to delete the last row and column of J,_1 to obtain J,_».
To find the value of the unknown Sn,l, we will note that the correct value of the
(n—2,n—2) entry is now known and its value can be found by using (4.54). However, it
can be determined using the properties of even and odd functions that its value must be zero.

Thus, we solve the equation
F(5,-1) =0,

where F(§) is the (n —2,n—2) entry of J,_, obtained from J,, using the above procedure,
with §,_ = §.

To solve this equation, we use the secant method. Applying the quadratic formula in
solving (4.55), we have it can be determined that the solution must lie in (0, %] Choosing

the initial guesses close to the upper bound of % results in rapid convergence.

67

Chapter 5

NUMERICAL RESULTS

5.1 Computing Functions of A

First, we will look at the time-independent case with various values of m. In the time-

independent case, we will show that the KSS method outperforms the Lanczos method.

5.1.1 Solving Au=f

Table 5.1: Time-independent estimates of relative error for m =0

N KSS Lanczos | Lanczos Iterations
20 | 3.4793e-06 | 8.4745e-06 16

80 | 8.7820e-06 | 7.1359¢-06 35
320 | 1.3737e-05 | 1.5611e-05 69

Table 5.2: Time-independent estimates of relative error for m = 1

N KSS Lanczos | Lanczos Iterations
20 | 4.1118e-02 | 7.6304e-02 14

80 | 5.3879e-02 | 5.5219¢-02 41
320 | 5.9915e-02 | 3.5040e-01 73

Table 5.3: Time-independent estimates of relative error for m =5

N KSS Lanczos | Lanczos Iterations
20 | 1.0386e-02 | 1.2069e-02 6
80 | 1.4657e-02 | 1.8802e-02 24
320 | 7.3949¢-03 | 6.1633e-01 73

Table 5.4: Time-independent estimates of relative error for m = 10

N KSS Lanczos | Lanczos Iterations
20 | 4.4631e-03 | 2.3181e-03 6

80 | 3.4187e-03 | 3.4365e-03 18
320 | 1.2808e-02 | 1.2969e-02 55

68

Tables 5.1 — 5.4 contain the time-independent results using low-frequency components.
The asymptotic analysis in Chapter 3 is only for the high-frequency case, therefore its results
are best not used for computing low-frequency components [21]. Notice that the number of
iterations for Lanczos increases substantially as N increase, while the same accuracy was
obtained with three iterations for KSS. The Lanczos method results for N = 320 in Tables

5.2 and 5.3 do not have the same order of accuracy. When the number of Lanczos iterations

is larger than 73, the accuracy deteriorates.

Table 5.5: Estimates of relative error for m = 0, N = 20

5.1.2 Solving X’ = Ax

At

KSS

Lanczos (2)

Lanczos (4)

1

2.3648e-04

7.54572e-02

2.5399¢-03

1/2

1.4928e-05

2.0904e-02

1.5748e-04

1/4

1.1787e-06

4.9484¢e-03

2.8968¢e-06

1/8

1.1736e-07

2.1593e-03

2.4413e-07

Table 5.6: Estimates of relative error for m = 0, N = 80

At

KSS

Lanczos (2)

Lanczos (4)

1

2.3648e-04

7.5457e-02

2.5399¢-03

172

1.4928e-05

2.0904e-02

1.5628e-04

1/4

1.1787e-06

4.9484e-03

5.0867e-04

1/8

1.1736e-07

5.8363e-03

4.5024e-04

Table 5.7: Estimates of relative error for m =1 and N = 20

At

KSS

Lanczos (2)

Lanczos (4)

1/100

5.0368e-06

8.4921e-02

2.1033e-04

17200

6.0623e-0

4.4214e-0

2.7240e-05

1/400

7.4320e-08

2.2574e-02

3.4646e-06

1/800

9.2036e-09

1.1408e-02

4.3682e-07

Table 5.8: Estimates of relative error for m =1 and N = 80

At

KSS

Lanczos (2)

Lanczos (4)

1/100

1.0321e-05

7.7712e-01

1.9314e-03

1/200

1.2463e-06

7.0728e-01

8.9913e-05

1/400

1.5303e-07

2.2345e-02

3.4043e-06

1/800

1.8950e-08

1.1287e-02

4.2917e-07

Table 5.9: Estimates of relative error for m =5 and N = 20

At

KSS

Lanczos (2)

Lanczos (4)

1/100

2.4342e-01

3.7214e-01

4.7104e-03

17200

3.3808e-02

2.1411e-01

6.7567e-04

1/400

4.4119e-03

1.1565e-01

9.0480e-05

1/800

5.6110e-04

6.0223e-02

1.1707e-05

Table 5.10: Estimates of relative error for m =5 and N = 80

At

KSS

Lanczos (2)

Lanczos (4)

1/100

6.1828e+00

9.9741e-01

4.7932e-02

17200

6.4629¢+00

9.6505¢-01

1.9885e-03

17400

4.0200e+00

1.8508e-01

2.0236e-04

1/800

6.6176e-01

9.9458e-02

2.6323e-05

Table 5.11: Estimates of relative error for m = 10 and N = 20

At

KSS

Lanczos (2)

Lanczos (4)

1/100

7.1758e-04

4.6867e-01

1.4996¢-02

17200

1.4674e-05

1.9315e-01

2.4914e-03

1/400

1.0342e-05

1.0047e-01

3.6240e-04

1/800

1.9787e-06

5.1782e-02

4.8868e-05

Table 5.12: Estimates of relative error for m = 10 and N = 80

At

KSS

Lanczos (2)

Lanczos (4)

1/100

5.4918e+00

4.6889¢-01

1.5006e-02

17200

9.0088e+00

1.9316e-01

2.4917e-03

17400

7.0997e+00

1.0047e-01

3.6245e-04

1/800

7.2146e+00

5.1784e-02

4.8875e-05

69

Tables 5.5 —5.12 contain the relative error estimates for the time-dependent problem

x = Ax. By examining these tables, we can conclude that in the m = 0 case, the KSS method

outperforms the Lanczos method. As we increase N, the accuracy of the Lanczos method

deteriorates. In the m # 0 case, the KSS method doesn’t perform well until the time step is

made small enough, which is when the Lanczos method performs better. However, when the

time step is larger, Lanczos method needs more iterations to obtain high accuracy. Usually

KSS’ strength is at larger time step, with larger matrices, but that is not the case here.

5.2 Solving Cx' = —Ax using Crank-Nicolson and Backward Euler

Table 5.13: Estimates of error for backward Euler with m = 0, K = 3, a random smooth

function, and columns of identity

At

N =20

N =280

N =320

1

1.0093e00

1.0093e00

1.0093e00

0.1

1.3746e-01

1.3746e-01

1.3746e-01

0.01

4.3125e-02

4.3125e-02

4.3126e-02

0.001

2.3217e-01

2.3217e-01

2.3217e-01

Table 5.14: Estimates of error for Crank-Nicolson with m = 0, K = 3, a random smooth

function, and columns of identity

At N =20 N =280 N =320
1 6.1769¢e-01 | 6.1779¢-01 | 6.1797e-01
0.1 | 5.8057e-02 | 5.7341e-02 | 5.6739e-02
0.01 | 8.0611e-02 | 8.0741e-02 | 2.1963e-02
0.001 | 2.3957e-01 | 2.3957e-01 | 2.3957e-01

Table 5.15: Estimates of error for backward Euler with m = 1, K = 3, a random smooth

function, and columns of identity

At N =20 N =280 N =320
1 9.0328e00 | 9.0335¢00 | 9.0344e00
0.1 | 7.6784e-01 | 8.1193e-01 | 8.2591e-01
0.01 | 1.2236e-01 | 1.2236e-01 | 8.2010e-02
0.001 | 4.5779e-01 | 8.4076e-01 | 8.4076e-01

Table 5.16: Estimates of error for Crank-Nicolson with m = 1, K = 3, a random smooth

function, and columns of identity

At N=20 N =280 N =320
1 1.6147e+01 | 1.6204e+01 | 1.6195e+01
0.1 | 8.2899e-01 | 1.0418e+00 | 2.8855e+00
0.01 | 1.5552e-01 | 2.6510e+02 | 5.8555e+11
0.001 | 8.0579e-01 | 6.3783e+54 | 1.3248e+77

Table 5.17: Estimates of error for Crank-Nicolson with m = 3, K = 3, a random smooth

function, and columns of identity

At N=20 N =280 N =320
1 2.9896e+04 | 2.9896e+04 | 2.9896e+04
0.1 | 1.7425e+03 | 1.6777e+03 | 1.5795e+03
0.01 | 2.3868e+00 | 1.8809e+04 | 9.7379¢e+13
0.001 | 1.7425e+03 | 1.8947e+49 | 2.3224e+75

Table 5.18: Estimates of error for backward Euler with m = 3, K = 3, a random smooth

function, and columns of identity

At N =20 N =280 N =320
1 3.1308e+03 | 3.1308e+03 | 3.1308e+03
0.1 | 2.5692e+01 | 2.5696e+01 | 2.5700e+01
0.01 | 5.9403e-01 | 5.9403e-01 | 6.1510e-01
0.001 | 5.4720e-01 | 5.0422e-01 | 5.0422e-01

Table 5.19: Estimates of error for backward Euler with m = 10, K = 3, a random smooth

function, and columns of identity

At N =20 N =280 N =320
1 1.1665e+21 | 1.1665e+21 | 1.1665e+21
0.1 | 6.9410e+14 | 6.9410e+14 | 6.9410e+14
0.01 | 2.2701e+04 | 2.2701e+04 | 2.2701e+04
0.001 | 5.6092e-01 | 5.6090e-01 | 5.6090e-01

Table 5.20: Estimates of error for Crank-Nicolson with m = 10, K = 3, a random smooth

function, and columns of identity

At N =20 N =280 N =320
1 9.3915e+22 | 9.3916e+22 | 9.4055e+22
0.1 | 1.7062e+22 | 1.7079e+22 | 1.6589¢e+22
0.01 | 1.0792e+21 | 1.1534e+21 | 5.9127e+28
0.001 | 9.6019e-01 | 1.9342e+31 | 1.4839e+72

Table 5.21: Estimates of error for Crank-Nicolson with m = 0 , K = 3, a random function,

and columns of identity

At N=20 N =280 N =320
1 5.5390e+00 | 5.5390e+00 | 5.7028e+00
0.1 | 4.3148e+00 | 5.3553e+00 | 5.6738e+00
0.01 | 6.4461e-02 | 3.6326e+00 | 5.3175e+00
0.001 | 1.9786e-01 | 1.0508e-01 | 3.5396e+00

Table 5.22: Estimates of error for backward Euler with m = 0, K = 3, a random function,

and columns of identity

At N =20 N =280 N =320
| 9.6381e-01 | 9.6373e-01 | 9.6370e-01
0.1 | 1.3684e-01 | 1.3721e-01 | 1.3743e-01
0.01 | 3.1591e-02 | 3.1442e-02 | 3.2238e-02
0.001 | 1.9261e-01 | 1.9194e-01 | 1.9196e-01

Table 5.23: Estimates of error for backward Euler with m = 0, K = 1, a random smooth

function, and columns of eigenvectors of C

At N =20 N =280 N =320
1 8.7086e-01 | 8.6922e-01 | 8.6911e-01
0.1 | 8.2056e-02 | 8.3597e-02 | 8.3699¢e-02
0.01 | 1.3479e-01 | 1.3560e-01 | 1.3565e-01
0.001 | 1.4754e-01 | 1.4834e-01 | 1.4839e-01

Table 5.24: Estimates of error for backward Euler with m = 0, K = 2, a random smooth

function, and columns of eigenvectors of C

At N=20 N =280 N =320
1 1.0021e+00 | 1.0012e+00 | 1.0011e+00
0.1 | 1.2531e-01 | 1.2364e-01 | 1.2351e-01
0.01 | 2.3661e-02 | 2.9146e-02 | 2.9549¢-02
0.001 | 4.2474e-02 | 4.9127e-02 | 4.9504e-02

Table 5.25: Estimates of error for backward Euler with m = 0, K = 3, a random smooth

Function, and columns of eigenvectors of C

At N=20 N =280 N =320
1 1.0085e+00 | 1.0080e+00 | 1.0075e+00
0.1 1.3735e-01 | 1.3716e-01 | 1.3472e-01
0.01 | 9.7796e-03 | 1.3875e-02 | 1.4624e-02
0.001 | 2.3721e-02 | 2.8241e-02 | 4.9504e-02

Table 5.26: Estimates of error for Crank-Nicolson with m = 0, K = 1, a random smooth
function, and columns of eigenvectors of C

At N=20 N =280 N =320
1 5.6483e-01 | 5.6791e-01 | 5.6905e-01
0.1 | 9.6348e-02 | 1.0230e-01 | 1.3707e-01
0.01 | 2.3734e+01 | 8.3667e+00 | 1.0823e-01
0.001 | 1.0619e-01 | 5.5858e+06 | 8.5365e+01

When using columns of the eigenvectors of the matrix C, KSS has better accuracy than
using standard basis vectors. The numerical results of KSS using Backward Euler and
Crank Nicolson are computed using the more efficient KSS method described in Chapter
2. Crank-Nicolson is second-order accurate in time whereas backward Euler is first-order
accurate. However, the backward Euler method outperforms Crank-Nicolson method in

most cases.

Table 5.27: Estimates of error for Crank-Nicolson with m = 0, K = 2, a random smooth

function, and columns of eigenvectors of C

At N =20 N =280 N =320
1 5.8355e-01 | 5.6066e-01 | 5.4674e-01
0.1 |4.7992¢-02 | 2.4340e-02 | 1.1200e-01
0.01 | 2.4036e-02 | 3.0335e-01 | 8.2610e-02
0.001 | 2.1323e-02 | 2.1062e+09 | 4.0920e+05

Table 5.28: Estimates of error for Crank-Nicolson with m = 0, K = 3, a random smooth

function, and columns of eigenvectors of C

At N =20 N =280 N =320
1 6.0498e-01 | 5.9384e-01 | 5.8613e-01
0.1 | 5.7783e-02 | 4.3128e-02 | 3.3161e-02
0.01 | 9.7044e-03 | 8.8685e-02 | 1.4038e-02
0.001 | 1.2862e-02 | 5.2261e-01 | 4.3232e+08

Table 5.29: Estimates of error for Crank-Nicolson with m = 1, K = 3, a random smooth

function, and columns of eigenvectors of C

At N=20 N =280 N =320
1 1.6161e+01 | 1.6187e+01 | 1.6198e+01
0.1 | 9.0309e-01 | 6.3421e+00 | 1.4311e+01
0.01 | 3.7047e-01 | 3.2005e+11 | 4.5626e+22
0.001 | 1.8229e-02 | 1.8275e+140 | 2.6700e+234

Table 5.30: Estimates of error for Crank-Nicolson with m = 3, K = 3, a random smooth

function, and columns of eigenvectors of C

At N=20 N =280 N =320
1 2.9895e+04 | 2.9947e+04 | 2.9986e+04
0.1 | 1.8907e+03 | 9.3229e+02 | 5.4765e+03
0.01 | 7.8604e+02 | 4.9363e+09 | 3.2462e+21
0.001 | 1.2508e-02 | 7.4653e+104 | 2.9118e+184

Table 5.31: Estimates of error for Crank-Nicolson with m = 10, K = 3, a random smooth

function, and columns of eigenvectors of C

At N =20 N =280 N =320
1 9.3926e+22 | 9.3897e+22 | 9.3836e+22
0.1 | 1.7039e422 | 1.7175e+22 | 1.5170e+22
0.01 | 1.1237e+21 | 1.2335e+22 | 3.7232e+36
0.001 | 9.8645e+08 | 1.4972e+88 | 6.7650e+182

Table 5.32: Estimates of error for backward Euler with m = 3, K = 3, a random smooth

function, and columns of eigenvectors of C

At N =20 N =280 N =320
1 3.1309e+03 | 3.1312e+03 | 3.1311e+03
0.1 | 2.5693e+01 | 2.5695e+01 | 2.5715e+01
0.01 | 6.5196e-01 | 6.5260e-01 | 6.5554e-01
0.001 | 3.1162e-02 | 2.9537e-02 | 2.9812e-02

Table 5.33: Estimates of error for backward Euler with m = 10, K = 3, a random smooth

function, and columns of eigenvectors of C

At N =20 N =280 N =320
1 1.1674e+21 | 1.1665e+21 | 1.1668e+21
0.1 | 7.3319e+14 | 7.3470e+14 | 7.3493e+14
0.01 | 2.5849¢e+04 | 2.5869¢e+04 | 2.5889¢e+04
0.001 | 2.2632e+00 | 2.2613e+00 | 2.2607e+00

Table 5.34: Estimates of error for backward Euler with m = 0, K = 3, a random function,

and columns of eigenvectors of C

At N =20 N =280 N =320
1 9.5496e-01 | 9.4627e-01 | 9.4271e-01
0.1 | 1.3667e-01 | 1.3665e-01 | 1.3434e-01
0.01 | 1.0050e-02 | 1.4154e-02 | 1.4898e-02
0.001 | 2.1426e-02 | 2.5662e-02 | 2.6592¢-02

Table 5.35: Estimates of error for Crank-Nicolson with m = 0, K = 3, a random function,

and columns of eigenvectors of C

At N=20 N =280 N =320
1 5.5132e+00 | 5.4890e+00 | 5.6309e+00
0.1 | 4.2834e+00 | 5.2543e+00 | 5.6456e+00
0.01 | 2.1072e-02 | 5.2203e+00 | 8.6097e+00
0.001 | 1.1697e-02 | 5.8422e-01 | 4.1773e+10

Table 5.36: Estimates of error for Crank-Nicolson with m = 1, K = 3, a random function,

and columns of eigenvectors of C

At N=20 N =280 N =320
1 5.2657e+01 | 6.7296e+02 | 6.4673e+01
0.1 | 6.9516e+01 | 6.7296e+02 | 3.7841e+03
0.01 | 3.0660e+02 | 1.3391e+13 | 7.7340e+24
0.001 | 1.7401e-02 | 8.1090e+141 | 3.6040e+231

Table 5.37: Estimates of error for backward Euler with m = 1, K = 3, a random function,

and columns of eigenvectors of C

At N =20 N =280 N =320
1 8.6574e+00 | 8.6288e+00 | 8.6175e+00
0.1 | 8.0239e-01 | 7.8123e-01 | 7.7512e-01
0.01 | 4.4807e-02 | 5.7012e-02 | 6.0081e-02
0.001 | 3.3665e-02 | 4.4720e-02 | 4.5097e-02

Table 5.38: Estimates of error for backward Euler with m = 10, K = 3, a random function,

and columns of eigenvectors of C

At N =20 N =280 N =320
1 1.2874e+21 | 1.2905e+21 | 2.4813e+01
0.1 | 7.3152e+14 | 7.3294e+14 | 2.2274e+00
0.01 | 2.5693e+04 | 2.5712e+04 | 2.5664e+04
0.001 | 2.2414e+00 | 2.2393e+00 | 2.2386e+00

5.3 Solving Cx' = —Ax using KSS to Compute ¢ € 44

Table 5.39: Estimates of error for KSS with m = 0, K = 1, a random smooth function, and

columns of identity

At N=20 N =280 N =320
1 8.0094e-01 | 9.6729¢-01 | 9.9335e-01
0.1 | 6.7056e-01 | 7.6480e-01 | 8.9475e-01
0.01 | 7.4459¢e-01 | 9.4423e-01 | 9.7887¢e-01
0.001 | 9.9581e-01 | 9.6422e-01 | 7.8922e-01

Table 5.40: Estimates of error for KSS with m = 0, K = 2, a random smooth function, and

columns of identity

At N =20 N =280 N =320
1 5.5029e-01 | 8.9257e-01 | 9.8125e-01
0.1 | 3.4057e-01 | 8.4260e-01 | 8.3932e-01
0.01 | 2.1990e-01 | 8.8723e-01 | 9.2830e-01
0.001 | 9.8558e-05 | 1.1775e+07 | 9.2830e-01

76

Table 5.41: Estimates of error for KSS with m = 0, K = 3, a random smooth function, and
columns of identity

Table 5.42: Estimates of error for KSS with m = 0, K = 1, a random function, and columns

At N =20 N =280 N =320
1 3.7449¢e-01 | 8.1620e-01 | 9.6735e-01
0.1 | 6.9521e-02 | 6.8155e-01 | 8.2356e-01
0.01 | 1.1356e-04 | 8.7983e-01 | 9.2387e-01
0.001 | 2.7977e-06 | 9.7907e-01 | 9.0946e-01

of identity
At N =20 N =280 N =320
1 9.0341e-01 | 9.7462e-01 | 9.9365e-01
0.1 | 5.4207e-01 | 7.3791e-01 | 8.4850e-01
0.01 | 7.3015e-01 | 9.2873e-01 | 9.2481e-01
0.001 | 9.9503e-01 | 9.9153e-01 | 8.5607e-01

Table 5.43: Estimates of error for KSS with m = 0, K = 2, a random function, and columns

of identity
At N =20 N =280 N =320
1 7.2510e-01 | 9.3672e-01 | 9.8381e-01
0.1 | 3.8066e-01 | 7.6330e-01 | 8.3619¢-01
0.01 | 2.8135e-01 | 9.6465e-01 | 9.3759¢-01
0.001 | 1.6508e-03 | 4.1769e+04 | 8.7475e-01

Table 5.44: Estimates of error for KSS with m = 0, K = 3, a random function, and columns

of identity
At N=20 N =280 N =320
1 5.0875e-01 | 8.8661e-01 | 9.7315e-01
0.1 | 1.3269e-01 | 5.4087e-01 | 7.3300e-01
0.01 | 2.8581e-03 | 8.7015e-01 | 9.4461e-01
0.001 | 2.8366e-05 | 9.7785e-01 | 9.4277¢e-01

Table 5.45: Estimates of error for KSS with m = 1, K = 3, a random smooth function, and
columns of identity

At N =20 N =280 N =320
| 3.6532e-01 | 5.5999¢e-01 | 5.7317e-01
0.1 | 8.5295e-02 | 5.6086e-01 | 5.3209e-01
0.01 | 2.7475e-03 | 5.5642e-01 | 5.0815e-01
0.001 | 5.6796e-06 | 5.0796e-01 | 4.1729¢e-01

Table 5.46: Estimates of error for KSS with m = 1, K = 3, a random function, and columns

of identity

Table 5.47: Estimates of error for KSS with m = 0, K = 2, a random smooth function, and
columns of eigenvectors of C

Table 5.48: Estimates of error for KSS with m = 0, K = 3, a random smooth function, and
columns of eigenvectors of C

Table 5.49: Estimates of error for KSS with m = 1, K = 1, a random smooth function, and
columns of eigenvectors of C

Table 5.50: Estimates of error for KSS with m = 3, K = 3,a random smooth function, and
columns of eigenvectors of C

At N =20 N =280 N =320
1 3.4354e-01 | 5.9038e-01 | 6.1003e-01
0.1 | 1.2177e-01 | 5.6461e-01 | 5.4232¢-01
0.01 | 1.1695e-03 | 5.7615e-01 | 6.2295e-01
0.001 | 2.4366e-04 | 5.4236e-01 | 3.1266e-01

At N =20 N =280 N =320
1 1.2708e-01 | 1.7764e-01 | 1.9005e-01
0.1 | 1.0366e-02 | 1.0895e-02 | .1.3415e-02
0.01 | 7.1146e-04 | 1.5594e-03 | 1.6763e-04
0.001 | 5.5240e-06 | 9.5356e-05 | 1.7421e-04

At N =20 N =280 N =320
1 1.0157e-01 | 1.7054e-01 | 1.8769e-01
0.1 | 6.7930e-03 | 1.0603e-02 | 1.3062e-02
0.01 | 1.8237e-04 | 1.2086e-03 | 1.3553e-03
0.001 | 7.4155e-07 | 6.4302e-05 | 1.5688e-04

At

N=20

N =280

N =320

1

4.1550e-01

4.2816e-01

4.3355e-01

0.1

1.1887e-01

3.6967e-01

2.5724e-01

0.01

3.1797e-01

4.1613e-01

3.9872e-01

0.001

4.5431e-04

4.1630e-01

3.9885e-01

At N =20 N =280 N =320
| 5.1529e-01 | 5.3809e-01 | 5.3809e-01
0.1 | 5.9767e-02 | 2.1330e-01 | 5.3809e-01
0.01 | 2.7133e-03 | 4.0673e-01 | 5.3809e-01
0.001 | 4.4056e-06 | 4.3085e-01 | 4.5951e-01

Table 5.51: Estimates of error for KSS with m = 5, K = 3, a random smooth function, and

columns of eigenvectors of C

At N=20 N =280 N =320
1 9.5834e-01 | 9.9598e-01 | 9.9725e-01
0.1 | 4.1838e-01 | 9.6772e-01 | 9.1036e-01
0.01 | 1.5331e-02 | 9.2582e-01 | 9.7937e-01
0.001 | 9.1578e-05 | 9.3784e-01 | 9.8524¢e-01

Table 5.52: Estimates of error for KSS with m = 10, K = 3, a random smooth function, and

columns of eigenvectors of C

At N =20 N =280 N =320
1 8.3029¢-01 | 9.9842e-01 | 1.0000e+00
0.1 | 9.9994e-01 | 9.9997e-01 | 1.0000e+00
0.01 | 1.0000e+00 | 1.0000e+00 | 1.0000e+00
0.001 | 1.3558e-03 | 1.0000 e+00 | 1.0000e+00

Table 5.53: Estimates of error for KSS with m = 0, K = 1, a random smooth function, and

columns of eigenvectors of C

At N =20 N =280 N =320
1 1.6435e-01 | 1.8573e-01 | 1.9340e-01
0.1 | 8.6320e-03 | 4.6330e-02 | 2.4866e-02
0.01 | 7.7870e-04 | 1.4718e-03 | 1.9334¢-03
0.001 | 4.5418e-05 | 9.5481e-05 | 1.9626e-04

Table 5.54: Estimates of error for KSS with m = 0, K = 1, a random function, and columns

of eigenvectors of C

At N=20 N =280 N =320
1 1.8702e-01 | 1.8703e-01 | 1.8704e-01
0.1 | 6.9101e-03 | 3.7369e-02 | 2.2973e-02
0.01 | 2.2940e-03 | 1.0642e-03 | 6.9054¢e-03
0.001 | 2.1787e-04 | 3.5958e-04 | 3.5913e-04

Table 5.55: Estimates of error for KSS with m = 0, K = 2, a random function, and columns

of eigenvectors of C

At N =20 N =280 N =320
1 1.8645e-01 | 1.8703e-01 | 1.8704¢e-01
0.1 | 2.1058e-02 | 1.5243e-02 | 1.6840e-02
0.01 | 4.7218e-03 | 2.7190e-03 | 4.4225e-03
0.001 | 3.7749e-04 | 3.1036e-04 | 4.1755e-04

Table 5.56: Estimates of error for KSS with m = 0, K = 3, a random function, and columns

of eigenvectors of C

At N=20 N =280 N =320
1 1.8174e-01 | 1.8700e-01 | 1.8703e-01
0.1 | 2.6604e-02 | 1.1366e-02 | 1.7066e-02
0.01 | 4.4037e-03 | 2.7788e-03 | 1.8152e-03
0.001 | 5.1735e-05 | 2.2410e-04 | 4.3725e-04

Table 5.57: Estimates of error for KSS with m = 1, K = 1, a random function, and columns

of eigenvectors of C

At N =20 N =280 N =320
1 4.2342e-01 | 4.2364e-01 | 4.2364e-01
0.1 | 1.1114e-01 | 1.2295e-01 | 1.2186e-01
0.01 | 3.1406e-01 | 3.9561e-01 | 3.7494e-01
0.001 | 2.2495e-04 | 4.0155e-01 | 3.8292e-01

Table 5.58: Estimates of error for KSS with m = 3, K = 3, a random function, and columns

of eigenvectors of C

At N =20 N =280 N =320
1 5.1643e-01 | 5.4245e-01 | 5.9780 e-01
0.1 | 1.2139e-01 | 2.5955e-01 | 3.2585e-01
0.01 | 1.3007e-02 | 3.9591e-01 | 5.4344e-01
0.001 | 1.8660e-04 | 4.4504e-01 | 4.7220e-01

To compute the results in Tables 5.39 —5.60, we used the standard KSS method using
symmetric block Lanczos for each component. This method approximates the exponential
instead of discretizing in time.

When m = 0 and we use the standard basis vectors, we have decent accuracy using the
KSS method for N = 20. In this case, the accuracy tends to increase as the time step gets

smaller. As we increase the value of N to 80, the accuracy is first order except when the time

Table 5.59: Estimates of error for KSS with m = 5, K = 3, a random function, and columns

of eigenvectors of C

At N =20 N =280 N =320
1 9.9631e-01 | 9.9782e-01 | 9.9786e-01
0.1 | 7.1073e-01 | 9.6761e-01 | 9.2985e-01
0.01 | 5.9001e-02 | 9.2591e-01 | 9.8029¢-01
0.001 | 7.0122e-04 | 9.3509¢e-01 | 9.8555e-01

Table 5.60: Estimates of error for KSS with m = 10, K = 3, a random function, and columns

of eigenvectors of C

At N=20 N =280 N =320
1 1.0000e+00 | 1.0000e+00 | 1.0000e+00
0.1 | 9.9996e-01 | 9.9999e-01 | 1.0000e+00
0.01 | 1.0000e+00 | 1.0000e+00 | 1.0000e+00
0.001 | 9.7140e-03 | 1.0000e+00 | 1.0000e+00

step is 0.001. When N = 320, we have first order accuracy regardless of the time stepping
size. Increasing the quadrature nodes, K, seems to have minimal effect on the accuracy
when using standard basis vectors. KSS performs better when a smooth random function is
used rather than a random function. However, the order of accuracy for each time step stays
the same in both cases.

We will compare the eigenvectors of A to the eigenvectors of C for the m = 0 case. The
matrix A is highly diagonally dominant, so its eigenvectors are mostly concentrated around
a single entry. That is, most components of the eigenvectors are negligibly small. However,
this is not the case for C. The measure of the Riemann-Stieltjes integral using u = q; is
more concentrated than using u = e¢; or A = C + 6AtM, so we are able to achieve better
accuracy with fewer quadrature nodes. On the other hand, q; used as basis vectors are not
concentrated (sparse), so it is more difficult to achieve decoupling into frequency-dependent
and frequency-independent nodes when using KSS only on A.

We will define the symbols for the spectral decomposition of C as follows:

C = QAQT

where Q = [q] g2 - qn] consists of the eigenvectors of C as its columns, and A is the
diagonal matrix containing the eigenvalues. If mathbfqy is used, then KSS works quite
well because the measures are concentrated. An advantage in computing the eigenvectors is
that a smooth solution can be computed using relatively few of them. Another advantage is
that the eigenvectors can be computed just once, for a given N, and then re-used in every

time step, even if adaptive time-stepping is used.

81

Multiplying a vector by the eigenvectors of C can be carried out rapidly because the
eigenvectors of C comes from applying the symmetric QR algorithm to C. Because C is
banded, it only requires O(n) Givens rotations where each rotation takes only O(1) flops
on a vector [11]. That is, matrix-vector multiplication by the columns of the matrix C is
possible in O(n) operations instead of O(n?).

Figure 5.1: Graph of da(A) form =5 and K =2

><10155

4.5 L
4
35

30

Figure 5.2: Graph of da(A) form =0 and K =3

047

0.35 [-|
08 |
025 |
=
T 02f
o
0.15 -

0.1+

0.05

10° 10’ 102

5.4 Results of GJPs for the Boundary Condition p(1) = p'1 =0

Table 5.61 provides numerical results up to N = 15 for the boundary conditions p(1) =
p'(1) = 0. For larger values of N, this method has difficulties due to roundoff error in the

Table 5.61: Estimates of Relative Error for p(1) = p’(1) = 0 using GJPs

N Error Iterations
5 | 1.4674 e-13 7
7 | 1.0266 e-11 6
10 | 2.5823 e-09 6
12 | 1.1534 e-06 6
15 | 4.4990 e-04 6

82

computation of GJP’s using Rodriguez’s formula. The number of secant iterations for N = 5

to N = 151is 6. When N = 5 the number of secant iterations is 7.

83

Chapter 6

CONCLUSIONS

In conclusion, we have shown that the KSS method can be extended to a circular domain.
In the time-independent case, we generalized KSS to the elliptic equation on a disk with
analytic expressions for the frequency-dependent nodes. In the time-dependent case, we
have taken the first steps in generalizing KSS to the parabolic PDE on a disk, but more work
is needed to obtain a more efficient implementation. When m = 0, whether time-independent
or time-dependent, the scalability observed in KSS for rectangular domains can also be
observed when solving PDEs on circular domains. It is possible that the results can be
improved by applying diagonal transformations.

We have obtained recurrence relations for generating orthogonal polynomials on the
interval (—1,1) that satisfy the boundary conditions (1) p(1) =0, (2) p(—1) = p(1) =0,
and (3) p(1) = p/(1) = 0. These families of orthogonal polynomials can be used to easily
implement transformation matrices between physical and frequency space for function
spaces of interest for solving PDEs in polar and cylindrical geometries. While these
polynomials are orthogonal with respect to the weight function @(s) = 1, it has been
shown that they can easily be modified to be orthogonal with respect to rational weight
functions. When modified as such to obtain GJPs, recursion coefficients can be obtained
with far greater efficiency than by computing the required inner products directly. Future
work includes the development of numerical methods that make use of these families of

orthogonal polynomials, or modifications thereof.

84

Appendix A

Al

function u=kss_steadyl(f,A,tdt,m,N,K,XC)
if nargin<7
XC=eye(size(A));
end
format shorte
% this should be a function with argument M,m, returns u
plotmeasure(A,XC(:,1),f)
% solve (A +m™2 B + Cu = £
% let M=A+m2B+C

% K = number of Lanczos iterations (can be 2 or 3)

% outline:

% frequency-independent nodes:

% Lanczos on M, initial vector f, K iterations

% output [X,T] = [Lanczos vectors, Jacobi matrix]

% nodes = eigenvalues of T

% stdlanczos - performs K Lanczos iterations on M with initial vector f
h o0 = |I£fl]_2

[X,T]=Lanczos(A,f ,K);
% these are the frequency-independent nodes, as a column vector
eg=eig(T(1:K,1:K));

% compute v = ||v|]|_2 X T~-1 e_1
el=zeros(K,1);

el(1)=1;

bO=norm(f) ;

85

v=b0*X (:,1:K)*(T(1:K,1:K)\el);

% compute w = bl..bK X_K+1
tt=1;
for i=1:K
tt=tt*T(i,i+1);
end
w=tt*X(: ,K+1)*b0;
% row vector of frequency-independent nodes

ni=eg.’;

% frequency-dependent nodes:

% use analysis, K iterations (K = 2 or 3)

%nf (# of components x K)
B=zeros(N,K) ;
betal=zeros(N,1);
beta2=zeros(N,1);
if m==0
alpha=2*(1:N)’+2;
for j=1:N
betal(j,1)=sqrt((2xj)/((2%j-1)*(2%j+1))~2+(2x(j+2))/
((2%xj+3)*(2%j+5))"2) ;
end
for j=1:N
beta2(j,1)=1/2%sqrt ((2+ (2% (j-2))/((2%j-5)*(2%j-3))) ~2+4*((2%])/
((2%j-1)*(2%j+1))) "2 + 4+ ((2%x(j+2))/((2%j+3)*(2%j+5))) ~2+. ..
2% (2% (§+4)) / ((2%j+7) *(2%j+9))) ~2) ;
end
if K==2
for j=1:N
B(j,1)=sqrt((betal(j))~2+(beta2(j))"2);
B(j,2)=-B(j,1);
end
end
if K==3

for j=1:N
B(j,1)=0;
B(j,2)=sqrt((betal(j))~2+(beta2(j))"2);
B(j,3)=-B(j,2);
end
end
else
alpha=4*(1:N)’+6;
for j=1:N
betal(j,1)=sqrt((2xj+2) "2+ (2xj+4)"2);
end
for j=1:N
beta2(j,1)=1/2%sqrt ((2%(2%j)) ~2+4* (2% j+2) ~2+4* (2% j+4) ~2+. . .
2% (2%j+6)"2) ;

end
if K==2
for j=1:N
B(j,1)=sqrt((betal(j))~2+(beta2(j))"2);
B(j,2)=-B(j,1);
end
end
if K==3
for j=1:N
B(j,1)=0;
B(j,2)=sqrt ((betal(j))~2+(beta2(j))"2);
B(j,3)=-B(j,2);
end
end
end
I=eye(N);
nf=zeros(N,K);
for j=1:N

[7,Tjl=Lanczos(A,XC(:,j) ,K);
nj=eig(Tj(1:K,1:K));
nf (j,:)=reshape(nj,1,k);

end

86

% make matrix of all nodes, row = each component, 2K columns
ni=repmat(ni,size(nf,1),1);

ns=[ni nf];

% divdiff_lagrange(nodes) => divided differences
% nested_mult(2nd half of divided differences) =>
% power form coefficients
% how to perform interpolation
% K = number of each type of node
% tfun = integrand (tfun(x)=1./x for inverse)
% ns = matrix of interpolation points, one set per row
% frequency-independent nodes in FIRST columns
tfun=inline(’1./x’);
F=divdiff_lagrange(ns,tfun);
% select columns of F and ns corresponding to
% frequency-dependent nodes,
% those are the only ones to convert to power form
Q=powerform(F(:,K:-1:1) ,ns(:,K+1:2%K-1));
z=0;
ml=size(ns,2)/2;
for n=1:K

Tw=XC’*w;

z=z+Q(:,ml-n+1) . *xTw;

if n<K

Yhw=Mx*w;
w=A%xw;

end
end
ul=A\f;
u=v+XCxz;
nu=norm(ul,’inf’);

err=norm(ul-u,’inf’);

% compute Jacobi matrix from Section 4, up to degree n-2:
n=15;

88

[alpha,beta,gammal=calcalphbetagam(n+2) ;
bg=sqrt (beta.*gamma) ;
% Junsym=diag(alpha)+diag(beta(l:n-1),-1)+diag(gamma(l:n-1,1));
% jump directly to symmetrized form
Jsym=diag(alpha)+diag(bg(1l:n-1),1)+diag(bg(l:n-1),-1);
T=eye(n)-Jsym;
% solve fcheckmod3(x) = 0, 0 < x < 1/2 for xstar
% secant method
x0=0.5;
fO0=fcheckmod3(x0) ;
x1=0.49;
fi1=fcheckmod3(x1);
tol=1le-15;
while true

x2=x1-f1*(x1-x0)/(£f1-£0) ;

err=abs (x2-x1)

if err<tol || err>1el0

break;

end

x0=x1;

f0=£1;

x1=x2;

fi1=fcheckmod3(x1);
end
xstar=x2;
% now that we have the correct \bar{\delta}_{n-1},
% compute Jacobi matrix for this value:
[7,J0]=fcheckmod3(xstar) ;

% check against true Jacobi matrix, constructed by computing

% inner products of polynomials directly, polynomials computed
% using Rodriguez formula implemented by makephit3

% P2 stores coefficients of polynomials, starting from degree 2
P2=zeros(n-1,n);

P2(1,1:3)=[1 -2 1];

for j=3:n

P2(j-1,1:j+1)=makephit3(j);
end
% J3 = exact Jacobi matrix
J3=zeros(n-1);
for i=1:n-1
for j=1:n-1
Pi=P2(i,1:i+2);
Pi=normpoly(Pi,3);
Pj=P2(j,1:j+2);
Pj=normpoly(Pj,3);
PiPj=conv(Pi,Pj);
tPiPj=conv([1 0],PiPj);
% divide by 1-x"2
[q,]=deconv(tPiPj,[1 -2 1 1);
% anti-diff
Ig=polyint(q);
% plug in -1,1
Ipipj=polyval(Iq,1)-polyval(Iq,-1);
J3(i,j)=Ipipj;
end

end

% function f for solving f(x)=0 using secant method
function [y,JO0]=fcheckmod3(x)

% make unsymmetric Jacobi matrix J, n x n

n=15;

%Computes the values of alpha, beta and gamma
[alpha,beta,gammal =calcalphbetagam(n+2) ;

bg=sqrt (beta.*gamma) ;

% Junsym=diag(alpha)+diag(beta(l:n-1),-1)+diag(gamma(l:n-1,1));
% jump directly to symmetrized form
Jsym=diag(alpha)+diag(bg(l:n-1),1)+diag(bg(l:n-1),-1);
T=eye(n)-Jsym;

% (n,n) entry of equation: Tnn = Lnn~2 + (x/Lnn)"2

% solve quadratic equation p(r) = 0, r = Lnn~2 where
% p=[1 -T(n,n) x°2 1]

% upper bound: 0 < [x| < 1/2 to ensure real roots

89

% quadratic formula:

r=(T(n,n) + sqrt(T(n,n)"2 - 4%x72))/2;
T(n,n)=T(n,n)-x"2/r;

% now compute L from rearranged equation using "reverse Cholesky":
L=reversechol(T) ;

% final formula for \bar{J}_n:
Ji=eye(n)-L*L’;

% remove last row and column
J1=J1(1:n-1,1:n-1);

% first mod:

% this is \bar{T}_{n-1} from paper:
Ti=eye(n-1)-7J1;

% compute \hat{\delta}_{n-2}

pn=makephit3(n) ;

pnl=makephit3(n+1);

qn=normpoly(pn,3);

gnl=normpoly(pni,3);

betan=ippolywt(conv([1 0],qn),qn1,3);

% solve (n,n) entry for r = \bar{L}(n-1,n-1):
r=(T1(n-1,n-1) + sqrt(Ti(n-1,n-1)"2-4xbetan~2))/2;
% isolate \bar{L}"T \bar{L}:
T1(n-1,n-1)=T1(n-1,n-1)-betan~2/r;

% reverse cholesky to get L1 = \bar{L}
Li=reversechol(T1);

% complete \hat{J}_{n-1}

JO=eye(n-1)-L1*L1’;

% JO=L1*L1’-eye(n-1);

% delete last row and column
J0=J0(1:n-2,1:n-2);

% entry we want to match: (n-2,n-2) is our f-value:
y=J0(n-2,n-2);

% compute exact value (happens to be 0), since we’re solving f(x)=0:

pnml=makephit3(n-1);

alphan2=ippolywt(conv([1 0],pnml),pnml,3)/ippolywt(pnml,pnml,3);
% we want this to be 0

y=y-alphan2;

90

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

91

BIBLIOGRAPHY

Richard C. Aiken. Stiff Computation. Oxford University Press, New York, NY, 1985.
K. Atkinson. An Introduction to Numerical Analysis. Wiley, 2nd edition edition, 1989.
L. Burden, Richard and J. Douglas Faires. Numerical Analysis. Thomson Brooks/Cole, 2005.

J. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in Fluid
Dynamics. Springer-Verlag, 1987.

A. Cibotarica, J.V. Lambers, and E. Palchak. Solution of nonlinear time-dependent pdes
through componentwise approximation of matrix functions. Journal of Computational Physics,
321:1120-1143, 2016.

H. Eisen, W. Heinrichs, and K. Witsch. Spectral collocation methods and polar coordinate
singularities. J. Comput. Phys., 96:241-257, 1991.

S. Elhay and J. Kautsky. Jacobi matrices for measures modified by a rational factor. Numerical
Algorithms, 6(2):205-227, 1994.

B. Fornberg. A pseudospectral approach for polar and spherical geometries. SIAM J. Sci.
Comput., 16(195):1071-1081, 1994.

W. Gautschi. The interplay between classical analysis and (numerical) linear algebra—a tribute
to gene h. golub. Electr. Trans. Num. Anal., 13:119-147, 2002.

G. Golub and J. Kautsky. Calculation of gauss quadratures with multiple free and fixed knots.
Numericshe Mathematik, 41:147-163, 1983.

Gene H. Golub and Charles Van Loan. Matrix Computations. Third edition, 1996.

Gene H. Golub and Gerard Meurant. Matrices, moments, and quadrature. In Proceedings of
the 15th Dundee Conference. Longman Scientific and Technical, 1994.

G.H. Golub and R. Underwood. The block lanczos method for computing eigenvalues. J. Rice
(Ed.), Mathematical Software III, pages 361-377, 1977.

D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and Applications.
SIAM-CBMS, Philadelphia, PA, 1977.

B.-Y. Guo, J. Shen, and L.L. Wang. Generalized jacobi polynomials/functions and their
applications. Applied Numerical Mathematics, 59:1011-1028, 2009.

M. Hochbruck and C. Lubich. On krylov subspace approximations to the matrix exponential
operator. SIAM J. Numer. Anal., 34:1911-1925, 1996.

M. Hochbruck, C. Lubich, and H. Selhofer. Exponential integrators for large systems of
differential equations. SIAM J. Sci. Comput., 19:1552-1574, 1998.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

92

W. Huang and D. M. Sloan. Pole condition for singular problems: the pseudospectral approxi-
mation. J. Comput. Phys., 107:254-261, 1993.

W.H. Hundsdorfer. Numerical solution of advection-diffusion-reaction equations. CWI Report
NM-N9603, 1996.

J.V. Lambers. Enhancement of krylov subspace spectral methods by block lanczos iteration.
Electron. T. Numer. Ana, 31:86—109, 2008.

E. M. Palchak, A. Cibotarica, and J. V. Lambers. Solution of time-dependent pde through
rapid estimation of block gaussian quadrature nodes. Linear Algebra and its Applications,
468:233-359, 2015.

M. Richardson and J. V. Lambers. Krylov subspace spectral methods for pdes in polar and
cylindrical geometries. in preparation.

M. Richardson and J.V. Lambers. Recurrence relations for orthogonal polynomials for pdes in
polar and cylindrical geometries. Springplus, 1567(5), 2016.

M. Sadkane. A block arnoldi-chebyshev method for computing the leading eigenpairs of large
sparse unsymmetric matrices. Numer. Math., 64:181-193, 1993.

Jie Shen. Efficient spectral-galerkin methods iii: Polar and cylindrical geometries. SIAM J. Sci.
Comput., 18:1583-1604, 1997.

Jie Shen. A new dual-petrov-galerkin method for third and higher odd-order differential
equations: Application to the kdv equation. SIAM J. Numer. Anal., 41(5):1595-1619, 2003.

	Krylov Subspace Spectral Methods for PDEs in Polar and Cylindrical Geometries
	Recommended Citation

	tmp.1493235580.pdf.pV7B0

