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ABSTRACT

NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

USING POLYNOMIAL PARTICULAR SOLUTIONS

by Thir Raj Dangal

August 2017

Polynomial particular solutions have been obtained for certain types of partial differential

operators without convection terms. In this dissertation, a closed-form particular solution

for more general partial differential operators with constant coefficients has been derived for

polynomial basis functions. The newly derived particular solutions are further coupled with

the method of particular solutions (MPS) for numerically solving a large class of elliptic

partial differential equations. In contrast to the use of Chebyshev polynomial basis functions,

the proposed approach is more flexible in selecting the collocation points inside the domain.

Polynomial basis functions are well-known for yielding ill-conditioned systems when their

order becomes large. The multiple scale technique is applied to circumvent the difficulty of

ill-conditioning.

The derived polynomial particular solutions are also applied in the localized method of

particular solutions to solve large-scale problems. Many numerical experiments have been

performed to show the effectiveness of the particular solutions on this algorithm.

As another part of the dissertation, a modified method of particular solutions (MPS)

has been used for solving nonlinear Poisson-type problems defined on different geometries.

Polyharmonic splines are used as the basis functions so that no shape parameter is needed

in the solution process. The MPS is also applied to compute the sizes of critical domains

of different shapes for a quenching problem. These sizes are compared with the sizes of

critical domains obtained from some other numerical methods. Numerical examples are

presented to show the efficiency and accuracy of the method.
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Chapter 1

INTRODUCTION

1.1 Background

A partial differential equation (PDE) is a differential equation which involves an unknown
function of several variables and its partial derivatives. There is a wide range of applications
of PDEs in science and engineering. PDEs can be used to describe many real-world
phenomena such as sound, heat, electrostatics, electrodynamics, fluid flow, elasticity, or
quantum mechanics.

Analytical solutions of most of the PDEs cannot be obtained trivially and many of them
do not have analytical solutions. Thus, numerical methods are developed to approximate the
solutions of PDEs [48]. Some methods are mesh-based methods such as the finite element
method (FEM) [7, 8, 34, 50, 59, 64], finite difference method (FDM) [49, 72], finite volume
method (FVM) [28, 46] and the boundary element method (BEM) [38, 41, 60, 69]. In the
mesh-based methods, mesh generations for the domain are essential. But the generations
of mesh for irregular domains with high dimensions are very difficult. It is one of the
biggest limitations of mesh-based methods. To overcome this difficulty, meshless methods
[5, 14, 15, 30, 39, 40, 55] are used to solve PDEs.

Meshless methods are computational methods which do the approximation entirely
in terms of the computational nodes. They do not need mesh connectivity. Therefore,
such methods can easily overcome the difficulty of mesh generations of the domain which
is essential in mesh-based methods. There are many kinds of meshless methods in the
literature. These methods are more applicable to high dimensional and moving boundary
problems. Some of the numerical meshless techniques are well developed and widely
applied to academic, industrial and engineering problems. Some such methods are the
smooth particle hydrodynamics (SPH) [30, 54], the element free Galerkin method [5] ,
the reproducing kernel particle method [55], Kansa’s method [39, 40] and the method of
approximate particular solutions (MPS) [14, 15].

Meshless methods are classified as boundary-type and domain-type methods. The
boundary-type methods are used to solve homogeneous PDEs and the domain-type methods
are applied to solve non-homogeneous PDEs. The boundary-type methods require only the
boundary to be discretized whereas the domain-type methods require the whole domain
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to be discretized. Some examples of boundary-type meshless methods are the method of
fundamental solutions (MFS) [26, 43], the Trefftz Method [19, 20] and the boundary knot
method (BKM) [21]. Some of the domain-type methods are Kansa’s method [39, 40], the
MPS [14, 15] and smooth particle hydrodynamics [30].

The MPS is a radial basis function based domain-type meshless method. The method
has been used to solve many engineering problems such as the Navier-Stokes problem [87],
the wave propagation problem [79] and the time-fractional diffusion problem [81]. The
MPS can work on regular and irregular domains of high dimensions. However, there are
some obvious weaknesses of the MPS such as the very ill-conditioned collocation matrix,
the indeterminate shape parameter of the radial basis functions and the difficulty in deriving
the closed-form particular solutions for the differential operators [22, 61, 63, 82].

The size of the globally dense matrix in the MPS grows with the increase of computa-
tional points. It causes the condition number of the resultant matrix to become usually very
high.

The determination of the optimal shape parameter of the radial basis functions to get the
most accurate approximation is an outstanding research topic [29, 36, 65, 76, 80].

Furthermore, the MPS requires the particular solutions of the basis function for the
given differential operator in the solution process. Although the particular solutions are not
unique, it is always a complicated task to find the particular solution for the given differential
operator. Much work has been done to find particular solutions [14, 15, 18, 31, 32].

This dissertation will address these specific issues within the method. The following
improvements have been made in the method:

• Polynomial basis functions are applied in the MPS instead of radial basis function
to avoid the need for an indeterminate shape parameter. The change has made the
method more accurate and easy to implement.

• The closed-form particular solution using the standard polynomial basis function
of order s {xi− jy j},0 ≤ i ≤ s,0 ≤ j ≤ i, under a general linear differential operator
has been derived. It is a great improvement in the method. With these closed-form
particular solutions, the method is open to solve PDEs with linear differential operators
of any order.

• It is known that polynomial basis functions are notoriously unstable when the order of
the polynomial basis becomes higher. As a result, the polynomial basis functions are
not ideal for a global approach since the resultant matrix is extremely ill-conditioned
when the order of the polynomial basis is getting higher. Hence, our derived closed-
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form particular solution is useless without the proper treatment of the matrix resulting
from our formulation. There are various types of preconditioners in the literature.
In this paper, we adopt the so-called multiple scale technique [51, 52] which is a
pre-conditioning technique to reduce the condition number of the resultant matrix
of the MPS. As we shall see in our presented numerical results, the multiple scale
technique is very effective for the reduction of the condition number of our formulated
matrix system and thus allows our proposed algorithm to successfully solve various
kinds of boundary value problems.

The derived polynomial particular solutions have been coupled with the MPS to solve a large
class of partial differential equations. The numerical results are produced using traditional
MPS and the MPS based on polynomial basis functions. The comparison of the results from
the two methods has shown that the new approach is far better than the traditional MPS in
terms of accuracy, stability and ease of implementation.

The method of particular solution is not suitable for large-scale problem because of the
highly ill-conditioned resultant matrix. There are many mesh-based localized numerical
methods such as the finite element method [50] and the finite difference method [49] to
solve large-scale problems. But these methods are difficult to implement for the problems
defined on higher dimensional irregular geometries. Therefore, localized meshless methods
[25, 45, 68, 70, 78, 83] are preferred over the mesh-based methods because of their ability
to solve problems defined on regular and irregular domains in higher dimensions. In this
dissertation, the localized method of particular solution (LMPS) [83] has been modified
by replacing the radial basis function by polynomial basis functions. The advantages of
choosing polynomial basis functions over radial basis functions are already explained above.
Various types of partial differential equations have been solved using this modified algorithm
to see the efficacy of the polynomial particular solution in the localized approach.

1.2 Outline

In this dissertation, closed-form polynomial particular solutions for general second order
partial differential operators with constant coefficients have been derived. The derived
particular solutions are applied on the MPS and the LMPS to solve various types of partial
differential equations. Using these methods, we can solve both small-scale and large-scale
problems defined on regular and irregular domains with high dimensions.

In Chapter 2, we derive closed-form particular solutions for general second order partial
differential operators with constant coefficients. Furthermore, brief explanation of the
MPS and the LMPS based on radial basis functions are given. We have experienced ill
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conditioning problems with our new approach when higher-order polynomial basis functions
are employed. So, we have applied a pre-conditioning technique, called the multiple scale
technique to reduce the condition number of the resultant matrix. In the next portion of
Chapter 2, the multiple scale technique is presented. At the end of Chapter 2, the Houbolt
method, a third order finite difference time marching scheme is explained. The method has
been applied to solve some linear time dependent problems.

In Chapter 3, we explain the method of particular solutions based on polynomial basis
functions. As a numerical experiment, the method is employed to solve PDEs with constant
coefficients. The closed-form particular solutions we derived in Chapter 2 works only for
PDEs with constant coefficients. They do not work for Poisson problem and PDEs with
variable coefficients. In one portion of Chapter 3, a new approach is proposed to solve
Poisson problem and PDEs with variable coefficients. The new algorithm successfully solved
Poisson problem and PDEs with variable coefficients. To prove the further effectiveness
of the method, we have solved some nonlinear, time-dependent and higher dimensional
problems. The numerical results are illustrated by using tables and figures. We have used
the root mean squared error (RMSE), root mean squared error of the derivative with respect
to x (RMSEx), maximum absolute error (MAE), average absolute error (Ave Abs Err) and
the relative error (Rel Err) to compute the numerical accuracy of the algorithms.

In Chapter 4, the localized method of particular solutions based on polynomial basis
functions is presented. This new scheme is applied to solve large-scale problems. The
numerical results for PDEs with constant and variable coefficients are presented. The
computational domains are regular and irregular in different dimensions. In one part of
Chapter 4, some near-singular problems are solved using this approach.

In Chapter 5, we explain a new approach for the MPS [84]. In this approach, the basis
function is formed by combining polyharmonic splines and polynomial basis functions. We
have used this modified method to compute the sizes of critical domains for a quenching
problem and compared the sizes of the domains with the sizes obtained from some other
numerical methods. The results show that the proposed scheme has excellent outcomes.

The conclusion and future work are explained in Chapter 6.
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Chapter 2

MESHLESS METHODS

2.1 Basis Functions

A set of functions in a function space is called a basis if the functions are linearly independent
and every function in the function space is a linear combination of the functions in the
set. The functions in this set are called basis functions. In numerical methods and in
approximation theory, basis functions are an important tool to approximate a given function
and its derivatives. Furthermore, basis functions are used in many numerical models to
obtain approximate solutions of partial differential equations. In this dissertation, a large
class of partial differential equations is solved by numerical methods using radial basis
functions and polynomial basis functions.

2.1.1 Radial Basis Functions

In recent research, radial basis functions [10] have many applications in science and en-
gineering problems such as multivariate function approximation, surface reconstruction,
computer graphics, numerical solution of partial differential equations etc. Since radial
basis functions are univariate continuous functions, they can easily handle scatter data
interpolation problems in very high dimensions. Therefore, radial basis functions have been
a good alternative tool for scatter data interpolation problems. There are many kinds of
radial basis functions in the literature. Some are globally supported which are good to use
for small-scale problems. For large-scale problems, such functions are not feasible to use
because of the dense and ill-conditioned interpolation matrix. To control this difficulty,
compactly supported radial basis functions(CSRBF) [10, 16, 17], the Local Multiquadric
Approximation [45], and the Local RBF Collocation Method [68] have been developed.

Definition 2.1.1. Let Rs be the s-dimensional Euclidean space. A function Φ : Rs→ R is
said to be radial if there exists a univariate function φ : [0,∞)→ R such that

Φ(x) = φ(r),

where r = ‖x‖ is the Euclidean norm.

Some of the commonly used globally supported RBFs are listed in Table 2.1.
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Table 2.1: Commonly Used RBFs

RBFs Formulations
Linear φ(r) = r
Cubic φ(r) = r3

Multiquadric(MQ) φ(r) =
√

r2 + c2, c > 0
Inverse Multiquadric (IMQ) φ(r) = 1/

√
r2 + c2, c > 0

Matern φ(r) = Kν(r)rν , ν > 0
Gaussian φ(r) = e−cr2

, c > 0
Thin Plate Spline (TPS) φ(r) = r2ln(r)

Polyharmonic Splines in 2D φ(r) = r2nln(r), n ∈ N
Polyharmonic Splines in 3D φ(r) = r2n−1, n ∈ N

2.2 Polynomial Particular Solutions

The derivation of particular solutions has played a key role in solving various types of
differential equations. In general, for a given differential equation, if the particular solution
and the homogenous solution can be obtained, the problem is considered to be solved.
However, it is a challenge to obtain a particular solution and the homogeneous solution is not
always available. It is well-known that the particular solution of a given differential equation
is not unique and there are numerous ways to find a particular solution [3, 15, 22, 32, 63, 77]
for various differential operators and basis functions.

Consider the following partial differential equation

Lup(x,y) = f (x,y)

where L is a given linear differential operator with constant coefficients and f (x,y) is a
given function. For a general function f (x,y), the closed-form particular solution up(x,y) is
difficult, if not impossible, to obtain. Consequently, the approximate particular solution is
often needed. Over the past two decades, many numerical methods have been proposed for
the approximation of the particular solution [14, 15, 18, 31, 32]. In recent years, radial basis
functions (RBFs) have been successfully employed for the construction of approximate
particular solutions. Due to the rapid development in this area, the method of particular
solutions has been established [14, 15, 79] in the context of RBFs and has been applied for
solving a large class of partial differential equations in science and engineering. Despite
the success of the use of RBFs, there are still challenges such as the determination of the
shape parameter of RBFs and the difficulty in deriving closed-form particular solutions
[22, 61, 63, 82]. As a result, Chebyshev polynomial functions have been adopted as an
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alternative to alleviate some of these difficulties [15, 18, 77]. These approaches have been
proven to be highly accurate. However, the solution procedure is quite tedious and the closed-
form particular solutions are only available for some specific differential operators. One of
the disadvantages of using Chebyshev polynomials as the basis functions is the requirement
that the forcing term of the differential equation should be smoothly extendable to the
exterior of the domain for the case of non-rectangular domains. As such, the collocation
points can be selected to be at the specific Gauss-Lobatto points.

In this dissertation, the closed-form particular solution using the standard polynomial
basis functions of order s {xi− jy j},0≤ i≤ s,0≤ j ≤ i, under a general linear differential
operator have been derived. Coupling with the MPS using the newly derived particular
solution, a large class of partial differential equations, have been simulated. One of the
clear advantages of the proposed approach using the standard polynomial basis over the
Chebyshev polynomial basis is that the collocation points can be distributed arbitrarily
inside the computational domain without the need for fictitious collocation points outside the
domain. Hence, the proposed method is more widely applicable. Furthermore, the proposed
method can be easily coupled with the MPS which allows us to solve more general types of
partial differential equations.

It is known that polynomial basis functions are notoriously unstable when the order
of the polynomial basis becomes higher. As a result, polynomial basis functions are not
ideal for a global approach since the resultant matrix is extremely ill-conditioned when the
order of the polynomial basis is getting higher. Hence, our derived closed-form particular
solution is useless without proper treatment of the matrix resulting from our formulation.
There are various types of preconditioners in the literature. In this paper, we adopt the
so-called multiple scale technique [51, 52] which is a pre-conditioning technique to reduce
the condition number of the resultant matrix of the MPS. As we shall see in our presented
numerical results, the multiple scale technique is very effective for the reduction of the
condition number of our formulated matrix system and thus allows our proposed algorithm
to successfully solve various kinds of boundary value problems.

Let us consider a polynomial basis and find the particular solutions for the basis functions
for the general partial differential operators. For simplicity, let us consider the 2D case. We
choose the following sequence of the polynomials

pl(x,y) = xi− jy j, 0≤ j ≤ i,0≤ i≤ s,1≤ l ≤ w, (x,y) ∈ R2.

This sequence forms a basis for Pd
s , the set of d-variate polynomials of degree ≤ s, with

d = 2. Here, w = (s+1)(s+2)/2 is the dimension of the polynomial space Pd
s .

Let us see one simple example to find the particular solution for such kind of basis



8

function. Consider a partial differential equation of the form:

(L−3I)up :=
(

∆+
∂

∂x
+

∂

∂y
−3I

)
up = x2y2, (2.1)

where

L =

(
∆+

∂

∂x
+

∂

∂y

)
(2.2)

and I is an identity operator. Then, we have

−3
(

I− 1
3

L
)

up = x2y2. (2.3)

We see that (
I− 1

35 L5
)

x2y2 = x2y2.

It follows that(
I− 1

3
L
)(

I +
1
3

L+
1
32 L2 +

1
33 L3 +

1
34 L4

)
x2y2 = x2y2. (2.4)

Then, from (2.3) and (2.4), we have

−3up =

(
I +

1
3

L+
1
32 L2 +

1
33 L3 +

1
34 L4

)
x2y2. (2.5)

Then, the particular solution of equation (2.1) can be written as

up = −1
3

x2y2− 2
9

x2y− 2
9

xy2− 8
27

x2− 8
27

y2− 8
27

xy− 4
9

x− 4
9

y− 56
81

.

Similarly, we can find the particular solution for the polynomial functions for any general
differential operator.

Theorem 2.2.1. Consider a general form second order linear partial differential equation in
two variables with constant coefficients:

a1
∂ 2up

∂x2 +a2
∂ 2up

∂x∂y
+a3

∂ 2up

∂y2 +a4
∂up

∂x
+a5

∂up

∂y
+a6up = xmyn, (2.6)

where {ai}6
i=1 are real constants, a6 6= 0 and m and n are positive integers. Then the

polynomial particular solution of (2.6) is given by

up =
1
a6

N

∑
k=0

(
−1
a6

)k

Lk(xmyn) (2.7)

where N = m+n and

L= a1
∂ 2

∂x2 +a2
∂ 2

∂x∂y
+a3

∂ 2

∂y2 +a4
∂

∂x
+a5

∂

∂y
.
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Proof. Equation (2.6) can be written as

(L+a6I)up = xmyn, (2.8)

which implies (
I +

L

a6

)
(a6up) = xmyn. (2.9)

Since L is a differential operator containing various partial derivatives, it is clear that
Lm+n+1(xmyn) = 0. Hence, the following identity is always true.(

I +
(
L

a6

)N+1
)

xmyn = xmyn, (2.10)

where N = m+n. By direct algebraic factorization, we have

I +
(
L

a6

)N+1

=

(
I +

L

a6

) N

∑
k=0

(
−1
a6

)k

Lk. (2.11)

From (2.10) and (2.11), we have(
I +

L

a6

) N

∑
k=0

(
−1
a6

)k

Lk(xmyn) = xmyn. (2.12)

Comparing (2.9) and (2.12), it follows that

a6up =
N

∑
k=0

(
−1
a6

)k

Lk(xmyn).

Consequently, the particular solution up for the above general differential operator is given
by

up =
1
a6

N

∑
k=0

(
−1
a6

)k

Lk(xmyn). (2.13)

The following algorithm is presented to find the particular solution of the basis function
xmyn for the above operator.
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Algorithm 1
Step 1: Let p(x,y) = xmyn, m,n: nonnegative integers.

Step 2: Let partsol = 0 and L= a1
∂ 2

∂x2 +a2
∂ 2

∂x∂y +a3
∂ 2

∂y2 +a4
∂

∂x +a5
∂

∂y .

for k = 1,2, ...,m+n
term = Lp

partsol = partsol +

(
−1
a6

)k

∗ term

p = term

end

Step 3: The required particular solution of xmyn for

the operator L is given by
1
a6
(partsol + xmyn).

2.3 The Method of Particular Solutions

To review the formulation of the method of particular solutions, we consider a boundary
value problem: for given f (x) and g(x), find u(x) from

Lu(x) = f (x),x ∈Ω (2.14)

Bu(x) = g(x),x ∈ Γ, (2.15)

where L is a differential operator, B is a boundary differential operator and Ω is a bounded
domain with boundary Γ.

By the method of particular solutions, we approximate

û(x) =
n

∑
i=1

aiΦ(‖x− xi‖), x ∈Ω, (2.16)

where Φ(‖x− xi‖) is obtained by analytically solving

LΦ(‖x− xi‖) = φ(‖x− xi‖).

Then,

f (x)≈ Lû(x) =
n

∑
i=1

aiφ(‖x− xi‖),x ∈Ω, (2.17)

where φ(‖x− xi‖) is a radial basis function. Also,

g(x)≈ û(x) =
n

∑
i=1

aiBΦ(‖x− xi‖), x ∈ Γ. (2.18)
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Let us take ni interior points in Ω and nb boundary points in Γ such that n = ni +nb is
the total number of collocation points. For given interior points {xi}ni

i=1, we have

f (xi) =
n

∑
j=1

a jφ(
∥∥xi− x j

∥∥), i = 1,2, ...,ni. (2.19)

Similarly, for the boundary points {xi}n
i=ni+1, we have

g(xi) =
n

∑
j=1

a jBΦ(
∥∥xi− x j

∥∥), i = ni +1, ...,n. (2.20)

Equations (2.19) and (2.20) can be solved for
{

a j
}n

j=1 . Then (2.16) together with the
computed weighted coefficients give the approximate values {ûi}n

i=1 .

2.4 Localized Method of Particular Solutions

The MPS is not suitable for large-scale problems because of the dense and ill-conditioned
coefficient matrix for the resulting system of equations. There are many mesh-based
localized numerical methods such as the finite elements method, and the finite difference
method to solve large-scale problems. But these methods are difficult to implement for the
problems defined on higher dimensional irregular geometries. Therefore, localized meshless
methods [25, 45, 68, 70, 78, 83] are preferred over mesh-based methods because of their
ability to solve problems defined on regular and irregular domains in higher dimensions.
These localized meshless methods have utilized radial basis functions in their solution
process. In this section, we will have a brief review of the localized method of particular
solutions.

Let us consider the boundary value problem (2.14) – (2.15). Let {xi}Ni
i=1 be interior

points in Ω, let {xi}Ni+Nb
i=Ni+1 be boundary points on Ω and let N = Ni +Nb. For each xi, we

choose n nearest points x[i]k , k = 1,2, ...,n, to form a local domain Ωi such that Ωi∩Ω j 6= φ

for some j 6= i and [xi]
N
i=1 =

⋃
i Ωi. In the LMPS, we approximate the solution at each point

x[i]j ∈Ωi, j = 1,2, ...,n, by

u(x[i]j )' û(x[i]j ) =
n

∑
k=1

αkΦ

(∥∥∥x[i]j −x[i]k

∥∥∥) , j = 1,2, ...,n, (2.21)

where Φ

(∥∥∥x[i]j −x[i]k

∥∥∥) is obtained by analytically solving

LΦ

(∥∥∥x[i]j −x[i]k

∥∥∥)= φ

(∥∥∥x[i]j −x[i]k

∥∥∥) .
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Let Φn be the matrix in the system of equations (2.21), we have

α = Φ
−1
n ûn (2.22)

where

ûn =
[
û(x[i]1 ), û(x

[i]
2 ), . . . , û(x

[i]
n )
]T

,α =
[
α1,α2, . . . ,αn

]T
.

Then, applying (2.22) to (2.21), we get

û(x[i]j ) =
n

∑
k=1

αkΦ

(∥∥∥x[i]j −x[i]k

∥∥∥)= Φ̂nα = Φ̂nΦ
−1
n û[i] = Ψ

[i]û[i] (2.23)

where
Φ̂n(x

[i]
j ) =

[
Φ

(∥∥∥x[i]j −x[i]1

∥∥∥) ,Φ(∥∥∥x[i]j −x[i]2

∥∥∥) , ...,Φ(∥∥∥x[i]j −x[i]n

∥∥∥)]
and

Ψ
[i] = Φ̂nΦ

−1
n = [ψ1,ψ2, ...,ψn].

Now, we want to express equation (2.23) in the global sense. Let û= [û(x1), û(x2), . . . , û(xN)]
T .

The global form of equation (2.23) is

û(x[i]j ) = Ψû, (2.24)

where the N×1 vector Ψ is obtained by padding N−n zeros in Ψ[i] based on the mapping
between û[i] and û. The above scheme can be used to solve the problem (2.14)-(2.15).
Applying (2.21) to (2.14), We have

f (x[i]j ) = Lû(x[i]j )

=
n

∑
k=1

αkLΦ

(∥∥∥x[i]j −x[i]k

∥∥∥)
= LΦ̂nα

= LΦ̂nΦ
−1
n û[i]

= Λ
[i]û[i]

= Λ(x[i]j )û

where
Λ
[i] = LΦ̂nΦ

−1
n ,

and Λ(x[i]j ) is obtained by padding N−n zeros in Λ[i]. Thus,

f (x[i]j ) = Λ(x[i]j )û, 1≤ i≤ Ni. (2.25)
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Similarly, applying (2.21) to (2.15), we get

g(x[i]j ) = Bû(x[i]j )

=
n

∑
k=1

αkBΦ

(∥∥∥x[i]j −x[i]k

∥∥∥)
= BΦ̂nα

= BΦ̂nΦ
−1
n û[i]

= ϒ
[i]û[i]

= ϒ(x[i]j )û

where
ϒ
[i] =BΦ̂nΦ

−1
n ,

and ϒ(x[i]j ) is obtained by padding N−n zeros in ϒ[i]. Thus,

g(x[i]j ) = ϒ(x[i]j )û, Ni +1≤ i≤ N. (2.26)

Finally, equations (2.25) and (2.26) form a sparse system of equations. The approximate
solution at each point can be obtained by solving equations (2.25) and (2.26).

2.5 Multiple Scale Technique

High order polynomials are notorious in numerical interpolation due to the severe ill
conditioning of the resulting matrix. The MPS using polynomials as basis functions has
experienced the same difficulty and a special treatment of the resultant matrix system (2.25)
– (2.26) is required. To alleviate this difficulty, a multiple scale technique [51, 52] is applied
to reduce the condition number of the resulting matrix. Let w = (s+1)(s+2)/2. Equations
(2.25) – (2.26) can be written in the matrix form

Ac = b, (2.27)

where

A =


[
xi− jy j]

ni×w[
Bui j

p

]
nb×w

 ,c =


a00
a10

...
ass

 ,b =



f (x1,y1)
...

f (xni,yni)
g(xni+1 ,yni+1)

...
g(xn,yn)


.
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Let
A = [A1 A2 · · · Aw] and Rk = ‖Ak‖2, k = 1,2, · · · ,w,

where Ak is the kth column of matrix A. In the multiple scale technique, the linear system
(5.18) is equivalent to

Ã c̃ = b, (2.28)

where
Ã =

[
A1

R1

A2

R2
· · · Aw

Rw

]
and

c̃ = [ã00 ã10 · · · ãss]
T

= [a00R1 a10R2 · · · assRw]
T . (2.29)

Note that Ã is now better conditioned due to the reduction of round-off errors. Once (2.28)
is solved, {ai j} in c can be recovered from c̃ in (2.29); i.e.,

a00 =
ã00

R1
, a10 =

ã10

R2
, · · · , ass =

ãss

Rw
.

2.6 Houbolt Method

For time-dependent PDEs, there are many schemes to discretize the time domain. One of
them is the Houbolt finite difference scheme [35, 73, 86]. The method is obtained by solving
the Taylor’s series expansion as follows:

un ≈ un+1− (δ t)un+1
t +

(δ t)2

2
un+1

tt −
(δ t)3

6
un+1

ttt , (2.30)

un−1 ≈ un+1− (2δ t)un+1
t +

(2δ t)2

2
un+1

tt −
(2δ t)3

6
un+1

ttt , (2.31)

un−2 ≈ un+1− (3δ t)un+1
t +

(3δ t)2

2
un+1

tt −
(3δ t)3

6
un+1

ttt , (2.32)

where un = u(x, tn),δ t = tn+1−tn,un+1
t = ∂un+1/∂ t,un+1

tt = ∂ 2un+1/∂ t2,un+1
ttt = ∂ 3un+1/∂ t3.

We can solve equations (2.30), (2.31) and (2.32) to get

un+1
t ≈ 1

6δ t
(11un+1−18un +9un−1−2un−2), (2.33)

un+1
tt ≈ 1

δ t2 (2un+1−5un +4un−1−un−2). (2.34)

In this dissertation, the Houbolt method is utilized to discretize the time domain and change
the problem into a series of time-independent problems. Then, the MPS with polynomial
basis functions is employed to solve the problems. Time-dependent problems such as the
diffusion equation and the wave equation are solved in this dissertation.
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Chapter 3

METHOD OF PARTICULAR SOLUTIONS BASED ON
POLYNOMIAL BASIS FUNCTIONS

3.1 Methodology

In Chapter 2, we discussed the particular solutions for differential operators using polynomial
basis functions. In this section, we will use the derived particular solutions to formulate the
MPS based on polynomial basis functions.

Let us consider the boundary value problem (2.14) – (2.15). To discretize the given
partial differential equation, we employ the MPS using a polynomial basis functions. In the
MPS, we assume that the solution of (2.14)–(2.15) can be represented by

u(x,y)' û(x,y) =
s

∑
i=0

i

∑
j=0

ai jui j
p (x,y), (3.1)

where
Lui j

p (x,y) = xi− jy j, 0≤ j ≤ i,0≤ i≤ s. (3.2)

Let {(xi,yi)}
ni
i=1 be the set of interior points in the domain Ω, let {(xi,yi)}n

i=ni+1 be the
boundary points on Γ, and let n = ni +nb. Applying (3.1) to (2.14), we obtain

s

∑
i=0

i

∑
j=0

ai jLui j
p (xk,yk) = f (xk,yk), k = 1,2, ...,ni. (3.3)

From (3.2), the above equation becomes

s

∑
i=0

i

∑
j=0

ai jx
i− j
k y j

k = f (xk,yk), k = 1,2, ...,ni. (3.4)

In the MPS, the governing differential equation (2.14) has been transformed to a simple data
interpolation problem as shown in (3.4). Imposing (3.1) to satisfy the boundary condition
(2.15), we obtain

s

∑
i=0

i

∑
j=0

ai jBui j
p (xk,yk) = g(xk,yk), k = ni +1,ni +2, ...,n. (3.5)
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To ensure that the system of equations (3.4) – (3.5) is solvable, the total number of collocation
points n has to be larger than (s+1)(s+2)/2. The least squares method will be adopted to
solve the above system. Once the undetermined coefficients

{ai j}= {a00,a10,a11,a20,a21,a22, · · · ,ass}

are determined, the approximate solution û can be obtained from (3.1).

3.2 Numerical Results for Linear PDEs with constant coefficients

For the numerical experiments, we have considered several domains including regular and
irregular geometries. The parametric equation of the boundary ∂Ω is defined as follows:

∂Ω = {(x,y)|x = r(θ)cos(σ(θ)),y = r(θ)sin(σ(θ)),0≤ θ < 2π} ,

where

•
r(θ) = esinθ sin2(2θ)+ ecosθ cos2(2θ), σ(θ) = θ (3.6)

is the amoeba-like boundary.

•

r(θ) =

(
cos(4θ)+

√
18
5
− sin2(4θ)

)1/3

, σ(θ) = θ (3.7)

is the cassini-shaped domain.

•
r(θ) = 2+

1
2

sin(6θ), σ(θ) = θ +
1
2

sin(6θ) (3.8)

is the gear-shaped domain.

•
r(θ) = 1+ cos2(4θ), σ(θ) = θ (3.9)

is the star-shaped domain.

We have considered two more domains which do not have parametric representations. The
domains are the L-shaped domain and the corner-shaped domain. The profiles of the domains
are given in Figure 3.1.

The root-mean-squared error (RMSE), the root-mean-squared error of the derivative
with respect to x (RMSEx), the average absolute error (Ave Abs Error), the maximum
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Figure 3.1: The profiles of the computational domains.

absolute error (MAE) and the relative error (Rel Err) are used to measure the accuracy of
the solutions. They are defined as follows

RMSE =

√√√√ 1
nt

nt

∑
j=1

(
û j−u j

)2
,

RMSEx =

√√√√ 1
nt

nt

∑
j=1

(
∂ û j

∂x
−

∂u j

∂x

)2

,

Ave Abs Err =
1
nt

nt

∑
j=1
|û j−u j|,
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MAE = max
1≤ j≤nt

|û j−u j|

and

Rel Err =

√√√√∑
nt
j=1
(
û j−u j

)2

∑
nt
j=1 u2

j
,

where nt is the number of test points in the domain and û j and u j are the approximate
solution and exact solution at the jth test point respectively.

Example 3.2.1. In this example, we consider the following differential equation in the unit
square.

∆u(x,y)− ∂ 2u(x,y)
∂x∂y

+
∂u(x,y)

∂y
−u(x,y) = f (x,y), (x,y) ∈Ω, (3.10)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (3.11)

where f (x,y) and g(x,y) are given based on the following analytical solution

u(x,y) = e2x cos(y), (x,y) ∈Ω.

The number of interior points, boundary points and test points are 400, 108 and 230
respectively. In Figure 3.2, we show the condition number and RMSE for various orders
of the polynomial basis functions with and without the use of the multiple scale technique.
From these figures, we clearly see that the multiple scale technique plays an important role
in the reduction of the condition number of the collocation matrix. We also observe the
improvement of the accuracy when using higher order polynomial bases. One important
feature of the proposed algorithm is the numerical stability. When the order of polynomial
basis becomes higher, the numerical accuracy remains stable. Without implementing the
multiple scale technique, the proposed approach would fail due to an extremely high
condition number.

Table 3.1 shows the RMSE and maximum errors for various sets of interior and boundary
points with a polynomial basis of order 11. From this table, we observe that increasing
the number of interior and boundary points does not contribute to increasing the accu-
racy. In contrast, Figure 3.2 shows that increasing the order of the polynomial basis
functions significantly improves the accuracy. For a polynomial basis with order 11, there
are (11+1)(11+2)/2=78 basis functions. Hence, the minimum number of interior and bound-
ary points should be at least 78. From the first row in Table 3.1, it is shown that we can
achieve good accuracy using only 80 interior points and 20 boundary points. Since the
computational cost is relatively low for such a small number of collocation points, we will
double this number in the numerical implementation.
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Figure 3.2: Example 3.2.1: The profiles of condition numbers and RMSE with and without
using multiple scale technique.

Table 3.1: Example 3.2.1: The RMSE and Maximum errors for different numbers of interior
and boundary points with polynomial basis of order 11.

(ni,nb) RMSE MAE
(81,20) 5.265e−08 4.530e−07
(121,28) 6.405e−08 1.760e−07
(169,64) 5.749e−10 2.389e−09
(361,88) 1.666e−09 5.702e−09
(576,116) 8.325e−09 2.497e−08
(1089,316) 1.468e−08 4.912e−08
(1444,556) 6.749e−09 2.658e−08
(2304,636) 2.056e−08 7.318e−08

Since the multiple scale technique is essential in overcoming the ill-conditioning of
the resultant matrix and improves the numerical accuracy, we will continue to use such a
technique in the remaining examples in this section.

Example 3.2.2. Let us consider the following Helmholtz problem

∆u(x,y)+u(x,y) = f (x,y), (x,y) ∈Ω, (3.12)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (3.13)

where f (x,y) and g(x,y) are given based on the following analytical solution

u(x,y) = sin(2x)cos(2y), (x,y) ∈Ω.

The domain is the amoeba-like domain as shown in Figure 3.1a.
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For the numerical approximation, the number of interior points, boundary points, and
test points are 412, 100 and 257 respectively. As we have mentioned in the previous example,
the number of collocation points depends on the order of the polynomial basis functions.
For simplicity, we choose the same number of collocation points for the case of polynomial
order equal to 30. To demonstrate the effectiveness of the proposed algorithm, we make
a comparison with the MPS using the MQ (Multiquadric) radial basis function. In Figure
3.3, we observe that our proposed approach is not only more accurate but also more stable
than the MPS using MQ. As shown in Figure 3.3b, the higher order of the polynomials
does not cause any problem in stability due to the use of the multiple scale scheme. On the
other hand, the uncertainty of the shape parameter as shown in Figure 3.3a is an additional
challenge for the MPS using radial basis functions.
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Figure 3.3: Example 3.2.2: (a) RMSE versus the shape parameter using RBF. (b) RMSE
versus the polynomial order using polynomial basis.

Example 3.2.3. Let us consider the following mixed boundary value problem

∆u(x,y)+u(x,y) = f (x,y), (x,y) ∈Ω, (3.14)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω
D, (3.15)

∂u
∂n

= h(x,y), (x,y) ∈ ∂Ω
N , (3.16)

where n is the unit outward normal vector, and f (x,y), g(x,y), and h(x,y) are given based
on the following analytical solution

u(x,y) = e2x+2y, (x,y) ∈Ω.

The boundaries ∂ΩD and ∂ΩN denote the boundaries on which the Dirichlet and Neumann
conditions are applied respectively such that ∂Ω = ∂ΩD∪∂ΩN ,∂ΩD∩∂ΩN = /0. As shown
in Figure 3.4, ∂ΩN is located in the fourth quadrant; i.e., 3π/2≤ θ < 2π .



21

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

X

Y
∂ΩN

∂ΩD

Figure 3.4: Example 3.2.3: The profile of the domain and its boundary conditions.

In the numerical implementation, we choose 545 uniformly distributed interior points,
116 points on the Dirichlet boundary, 34 points on the Neumann boundary, and 350 randomly
selected test points inside the domain.

We observed similar results in accuracy and stability as in the previous example. Due to
the mixed boundary conditions, the accuracy is even more sensitive to the shape parameter
in the case of the MPS using MQ as shown in Figure 3.5a. On the other hand, as shown in
Figure 3.5b, not only is the accuracy using a polynomial basis much better than the MPS
using MQ but so is the stability, which is extremely important in the numerical computation.

Example 3.2.4. In this example, we perform numerical tests on various geometric domains
as shown in Figure 3.1. We consider the following partial differential equation.

2
∂ 2u(x,y)

∂x2 +3
∂ 2u(x,y)

∂x∂y
+3

∂ 2u(x,y)
∂y2 +7u(x,y) = f (x,y), (x,y) ∈Ω, (3.17)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (3.18)

where f (x,y) and g(x,y) are given based on the following analytical solution

u(x,y) = e2x+3y, (x,y) ∈Ω.

In Table 3.2, we present results for five different irregular domains as shown in Figure
3.1. Since the areas of these five domains are quite different, the maximum forcing terms
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Figure 3.5: Example 3.2.3: (a) RMSE versus the shape parameter of the MQ. (b) RMSE
versus the polynomial order.

and exact solutions have a large discrepancy. Hence, it is more appropriate to use relative
error to measure the accuracy of our computation. Overall, from Table 3.2, it appears that
the smoothness of the boundary has little impact on the numerical accuracy. The order of
polynomial remains a dominating factor for performance on the proposed algorithm.

Table 3.2: Example 3.2.4: RMSE and relative error (Rel Err) for different computational
domains.

Domains ni nb RMSE Rel Err Polynomial Order
Amoeba 294 100 2.072e-06 6.974e-09 18
Cassini 313 100 6.430e-08 4.892e-09 17
Gear-Shaped 296 100 5.952e-05 1.562e-07 21
L-shaped 300 96 2.641e-10 6.443e-11 13
Corner-Shaped 330 90 8.867e-08 2.979e-09 13

Example 3.2.5. In this example, we consider the following fourth order boundary value
problem from [82].

(∆2−100)u(x,y) = f (x,y), (x,y) ∈Ω, (3.19)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (3.20)

∆u(x,y) = h(x,y), (x,y) ∈ ∂Ω, (3.21)
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where f (x,y),g(x,y) and h(x,y) are given based on the following analytical solution

u(x,y) = sin(πx)cosh(y)− cos(πx)sinh(y), (x,y) ∈Ω.

The computational domain is the Cassini (three) as shown in Figure 3.4.
In order to compare our results to those of [82], we choose the same number of colloca-

tion points in both approaches. To measure the numerical accuracy, we choose 230 random
test points to compute the errors. In Table 5.3, we observe that the proposed algorithm is far
more accurate than the results obtained in [82] where polyharmonic splines of order 3 were
used. In this example, the proposed algorithm is also very effective for solving fourth order
partial differential equations in an irregular domain.

Table 3.3: Example 3.2.5: Comparison of RMSE and RMSEx with polynomial basis
functions and polyharmonic splines.

Polyharmonic Splines (r6 lnr) Polynomial Basis Functions
(ni,nb) RMSE RMSEx RMSE RMSEx order
(126,80) 2.440e-05 8.585e-05 8.382e-11 2.968e-10 22
(208,140) 5.887e-06 3.482e-05 5.441e-12 1.539e-11 23
(374,200) 1.643e-06 1.710e-05 3.605e-13 1.295e-12 23

3.3 Numerical Results for Poisson-type problems and PDEs with variable
coefficients

In Section 3.2, we solved partial differential equations with constant coefficients. Theorem
2.2.1 does not work if the coefficients of the PDEs are variable or a6 = 0. Therefore, we
were not able to solve PDEs with variable coefficients and Poisson problem. In this section,
a new scheme is presented to solve such problems using the particular solutions obtained
from Theorem 2.2.1.

If L is an operator with variable coefficients, we can rewrite equations (2.14) as follows:

L′u(x,y)+u(x,y)+Lu(x,y) = L′u(x,y)+u(x,y)+ f (x,y),

or

(L′+1)u(x,y) = (L′−L+1)u(x,y)+ f (x,y), (3.22)
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where L′ is a differential operator with constant coefficients. Then the system of equations
(2.14) and (2.15) takes the form:

(L′+1)u(x,y) = (L′−L+1)u(x,y)+ f (x,y), (x,y) ∈Ω (3.23)

u(x,y) = g(x,y), (x,y) ∈ Γ. (3.24)

Now, using the MPS, we approximate the solution to the problem (3.23)-(3.24) by

u(x,y)≈ û(x,y) =
s

∑
i=0

i

∑
j=0

ai jui j
p (x,y), (3.25)

where
(L′+1)ui j

p (x,y) = xi− jy j, 0≤ j ≤ i,0≤ i≤ s.

Then, using the approximation in (3.25) for u(x,y), equations (3.23) and (3.24) form a linear
system of equations in the following way:

s

∑
i=0

i

∑
j=0

ai j(L
′+1)ui j

p (xk,yk) =
s

∑
i=0

i

∑
j=0

ai j(L
′−L+1)ui j

p (xk,yk)+ f (xk,yk), k = 1,2, ...,ni.

It follows that

s

∑
i=0

i

∑
j=0

ai jx
i− j
k y j

k =
s

∑
i=0

i

∑
j=0

ai j(L
′−L+1)ui j

p (xk,yk)+ f (xk,yk), k = 1,2, ...,ni (3.26)

and

s

∑
i=0

i

∑
j=0

ai jBui j
p (xk,yk) = g(xk,yk), k = ni +1,ni +2, ...,n. (3.27)

Equations (3.26) and (3.27) can be solved to find the undetermined coefficients

{ai j}= {a00,a10,a11,a20,a21,a22, · · · ,ass}.

The approximate solutions can be obtained from equation (3.25) using the calculated values
of {ai j}.

In Section 3.2, we noticed that multiple scale technique is essential to control condition
number of the resulting matrix and improve the numerical accuracies when using the
polynomial basis functions. Therefore, in this section, all the numerical results are produced
using multiple scale technique.
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Example 3.3.1. Let us consider a Poisson equation with mixed boundary conditions:

∆u(x,y) = f (x,y), (x,y) ∈Ω, (3.28)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω
D, (3.29)

∂u
∂n

= h(x,y), (x,y) ∈ ∂Ω
N , (3.30)

where n is the unit outward normal vector, f (x,y), g(x,y), and h(x,y) are given based on
the following analytical solution

u(x,y) = sin(4x)cos(4y), (x,y) ∈Ω.

The boundaries ∂ΩD and ∂ΩN denote the boundaries on which the Dirichlet and Neumann
conditions are applied respectively such that ∂Ω = ∂ΩD∪∂ΩN , ∂ΩD∩∂ΩN = /0. We have
chosen a unit square to be the domain. The number of interior points, boundary points and
test points are 625, 200, and 400 respectively. We have taken 150 points on the Dirichlet
boundary and 50 points on the Neumann boundary. The test points are randomly distributed
inside the domain. The problem is solved using the MPS based on radial basis function
MQ and polynomial basis functions. Figure 3.6a shows the effect of indeterminate shape
parameter on the RMSE. In Figure 3.6b, we can see that the RMSE is very stable for the
higher order polynomial basis functions. It shows that our approach work for Poisson’s
problem very effectively.

0 1 2 3
10

−6

10
−4

10
−2

10
0

10
2

Shape Parameter

R
M

S
E

(a) RBF

0 10 20 30
10

−6

10
−4

10
−2

10
0

Polynomial Order

R
M

S
E

(b) Polynomial

Figure 3.6: Example 3.3.1: (a) RMSE versus the shape parameter using RBF MQ. (b) RMSE
versus the polynomial order using polynomial basis.
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Example 3.3.2. Let us consider the following partial differential equation with variable
coefficients.

∆u(x,y)+ x2y
∂u(x,y)

∂x
− ycos(y)

∂u(x,y)
∂y

= f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where f (x,y) and g(x,y) are given based on the following analytical solution

u(x,y) = cos(πx)− cos(πy/2), (x,y) ∈Ω.

In this example, we have compared the numerical accuracy of the MPS based on RBF MQ
and the polynomial basis functions on various computational domains. Cassini, Amoeba
and Gear-Shaped domains are considered for the numerical experiment. The number of
interior points taken on Cassini, Amoeba and Gear-Shaped domains are 429, 438 and 434
respectively. 150 boundary points are taken on each domain. The number of test points
are 376, 365, 374 respectively. Since the domains are of different sizes, there is a large
difference in the maximum forcing terms and exact solutions among these domains. Hence,
for a fair comparison, we have used the relative error to observe the effectiveness of our
algorithm on these domains. Figure 3.7a shows the profiles of the relative errors for different
values of the shape parameter of MQ for three computational domains. Similarly, Figure
3.7b shows the comparison of the relative error of the method defined on three different
domains for different polynomial orders. The results are consistent with the geometrical
complexity of the computational domains. In this experiment, we can see more stable and
accurate results from our approach in comparison to the MPS using RBF MQ.

Example 3.3.3. Let us consider the following fourth-order boundary value problem with
Dirichlet and Neumann boundary condition.

∆
2u(x,y)+ ycos(y)

∂u(x,y)
∂x

+ sinh(x)
∂u(x,y)

∂y
+ x2y3u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

∂u
∂n

= h(x,y), (x,y) ∈ ∂Ω
N ,

where n is the unit outward normal vector, f (x,y), g(x,y), and h(x,y) are given based on
the following analytical solution

u(x,y) = ysin(x)+ xcos(y), (x,y) ∈Ω.

The boundaries ∂ΩD and ∂ΩN denote the boundaries on which the Dirichlet and Neu-
mann conditions are applied respectively such that ∂Ω = ∂ΩD ∪ ∂ΩN ,∂ΩD ∩ ∂ΩN = /0.
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Figure 3.7: Example 3.3.2: (a) Rel Err versus the shape parameter using RBF MQ. (b) Rel
Err versus the polynomial order using polynomial basis.

The problem is defined on Cassini (Three). The number of interior points and test points are
545 and 350 respectively. We have taken 120 points on the Dirichlet boundary and 30 points
on the Neumann boundary. The profile of RMSE and RMSEx with different polynomial
order is given in Figure (3.8). This result shows the efficacy of our approach to approximate
the solutions and the derivative of the solutions of the fourth-order boundary value problems.

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

Polynomial Order

E
rr

or

 

 

RMSE
RMSEx

Figure 3.8: Example 3.3.3: RMSE and RMSEx versus the polynomial order.

Example 3.3.4. In this example, we solve a fourth-order boundary value problem with
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Dirichlet and Laplacian boundary condition. Consider the following problem.

∆
2u(x,y)+2ysin(x)

∂u(x,y)
∂x

− ycos(x)
∂u(x,y)

∂y
+ xyu(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

∆u(x,y) = h(x,y), (x,y) ∈ ∂Ω,

where f (x,y),g(x,y) and h(x,y) are given based on the following analytical solution

u(x,y) = sin(πx)cosh(y)− cos(πx)sinh(y), (x,y) ∈Ω.

An amoeba-shaped domain is considered for numerical computation. The number of interior
points, boundary points and test points are 468, 150 and 386 respectively. The profile of
RMSE and RMSEx with different polynomial order is given in Figure (3.9). The results on
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Figure 3.9: Example 3.3.4: RMSE and RMSEx versus the polynomial order.

the figure show that our algorithm is very effective for solving fourth order boundary value
problem with Dirichlet and Laplacian boundary conditions.

3.3.1 Cauchy-Navier Equation of Elasticity

In this section, we solve a Cauchy-Navier equation of elasticity subject to a Dirichlet
boundary condition [33]. The problem is as follows:

µ∆u1 +
µ

1−2ν

(
∂ 2u1

∂x2 +
∂ 2u2

∂xy

)
= f1(x,y), (x,y) ∈Ω, (3.31)

µ

1−2ν

(
∂ 2u1

∂x∂y
+

∂ 2u2

∂y2

)
+µ∆u2 = f2(x,y), (x,y) ∈Ω (3.32)

with the Dirichlet boundary conditions

u1(x,y) = g1(x,y), (x,y) ∈ ∂Ω, (3.33)

u2(x,y) = g2(x,y), (x,y) ∈ ∂Ω, (3.34)
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where the constants µ ≥ 0 and ν ∈ [0,1/2] are called shear modulus and Poisson’s ratio.
Let us see the formulation of the problem using our approach. we can rewrite equations
(3.31) and (3.32) as follows:

2µ

(
1−ν

1−2ν

)
∂ 2u1

∂x2 +µ
∂ 2u1

∂y2 +

(
µ

1−2ν

)
∂ 2u2

∂xy
= f1(x,y), (x,y) ∈Ω, (3.35)(

µ

1−2ν

)
∂ 2u1

∂xy
+2µ

(
1−ν

1−2ν

)
∂ 2u2

∂y2 +µ
∂ 2u2

∂y2 = f2(x,y), (x,y) ∈Ω (3.36)

Furthermore,(
2µ

(
1−ν

1−2ν

)
∂ 2u1

∂x2 +µ
∂ 2u1

∂y2 +u1(x,y)
)
− u1(x,y)

+

((
µ

1−2ν

)
∂ 2u2

∂xy
+u2(x,y)

)
−u2(x,y) = f1(x,y), (x,y) ∈Ω, (3.37)(

µ

1−2ν

)
∂ 2u1

∂xy
+2µ

(
1−ν

1−2ν

)
∂ 2u2

∂y2 +µ
∂ 2u2

∂y2 = f2(x,y), (x,y) ∈Ω. (3.38)

Let

L11 := 2µ

(
1−ν

1−2ν

)
∂ 2

∂x2 +µ
∂ 2

∂y2 +1 (3.39)

L12 :=
(

µ

1−2ν

)
∂ 2

∂xy
+1 (3.40)

L21 :=
(

µ

1−2ν

)
∂ 2

∂xy
(3.41)

L22 := 2µ

(
1−ν

1−2ν

)
∂ 2

∂y2 +µ
∂ 2

∂y2 . (3.42)

Then, equations (3.37) and (3.38) become

L11u1(x,y)−u1(x,y)+L12u2(x,y)−u2(x,y) = f1(x,y), (x,y) ∈Ω, (3.43)

L21u1(x,y)+L22u1(x,y) = f2(x,y), (x,y) ∈Ω, (3.44)

subject to

u1(x,y) = g1(x,y), (x,y) ∈ ∂Ω, (3.45)

u2(x,y) = g2(x,y), (x,y) ∈ ∂Ω. (3.46)

Let us construct particular solutions u(i j)
p1 and u(i j)

p2 such that

L11u(i j)
p1 = xi− jy j, L21u(i j)

p2 = xi− jy j, 0≤ i≤ s, 0≤ j ≤ i. (3.47)
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By the MPS, we approximate the solutions u1(x,y) and u2(x,y) by

û1(x,y) =
s

∑
i=0

i

∑
j=0

ai ju
i j
p1(x,y), (3.48)

û2(x,y) =
s

∑
i=0

i

∑
j=0

bi ju
i j
p2(x,y). (3.49)

Let {(xk,yk)}ni
k=1 be the set of interior points in Ω and {(xk,yk)}n

k=ni+1 be the boundary
points in ∂Ω. Then from equations (3.43) and (3.44), we have

s

∑
i=0

i

∑
j=0

ai jx
i− j
k y j

k−ui j
p1(xk,yk)+

s

∑
i=0

i

∑
j=0

bi jx
i− j
k y j

k−ui j
p2(xk,yk) = f1(xk,yk), (3.50)

s

∑
i=0

i

∑
j=0

ai jL21ui j
p1(xk,yk)+

s

∑
i=0

i

∑
j=0

bi jL22ui j
p2(xk,yk) = f2(xk,yk), (3.51)

for 1≤ k ≤ ni.
For the Dirichlet boundary condition, we have

s

∑
i=0

i

∑
j=0

ai ju
i j
p1(xk,yk) = g1(xk,yk), (3.52)

s

∑
i=0

i

∑
j=0

bi ju
i j
p2(xk,yk) = g2(xk,yk), (3.53)

for ni+1≤ k≤ n. Equations (3.50) – (3.53) can be solved to evaluate {a00,a10,a11, ...,ass }
and {b00,b10,b11, ...,bss } . These weighting coefficients can be applied in equations (3.48)
and (3.49) to obtain the values of approximate solutions.

Example 3.3.5. As a numerical experiment, we solve the above problem with µ = 1 and
ν = 0.3.The exact solutions considered for this problems are

u1(x,y) = ex+y, (x,y) ∈ Ω̄, (3.54)

u2(x,y) = sin(x+ y), (x,y) ∈ Ω̄. (3.55)

The domain is a unit square with uniform interior and boundary points and random test
points. The number of interior points, boundary points, and test points are 361, 88, 324
respectively. The profile of relative error with different polynomial order for both solutions
is given in Figure 3.10.

Table 3.4 shows the numerical accuracy of the problem defined on various kinds of
domains.
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Figure 3.10: Example 3.3.5: Relative error versus the polynomial order.

Table 3.4: Example 3.3.5: Relative error for different computational domains.

Domains ni nb Rel Err(u1) Rel Err(u2) Polynomial Order
Amoeba 294 100 7.966e-10 9.839e-10 15
Cassini 313 100 3.172e-12 4.354e-12 15
Gear-Shaped 296 100 5.372e-10 2.977e-09 15
L-shaped 300 96 2.161e-11 4.216e-11 9
Star-Shaped 317 100 1.689e-10 7.034e-10 15
Corner-Shaped 330 90 1.360e-10 3.633e-10 9

Figure 3.11: Example 3.3.5: The profile of annular domain.
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Moreover, the numerical accuracy of our method is compared with that of Kansa-radial
basis function method [56]. The annular domain considered in [56] is given in Figure 3.11.
The relative error obtained from Kansa-radial basis function method and the MPS with
polynomial basis functions are given in Table 3.5. The comparison shows that the results
obtained from the MPS is much accurate than that obtained from the Kansa-radial basis
function method.

Table 3.5: Example 3.3.5: Comparison of Rel Err for the Kansa-radial basis function method
and the MPS with polynomial basis functions.

Kansa Method The MPS with polynomial basis functions
(ni,nb) Rel

Err(u1)
Rel
Err(u2)

Rel
Err(u1)

Rel
Err(u2)

order

(6240,160) 1.368e-05 5.191e-05 1.342e-09 3.888e-09 12
(9800,200) 1.212e-05 1.736e-05 1.186e-09 3.813e-09 12
(14160,240) 2.877e-06 8.399e-06 1.660e-09 5.256e-09 12
(19320,280) 3.262e-06 1.173e-05 1.187e-09 3.814e-09 12
(25280,320) 4.089e-06 6.032e-06 1.016e-08 3.251e-08 12

In this section, we solved various kinds of boundary value problems with variable
coefficients using our algorithm. The numerical accuracies of the solutions and the derivative
of the solutions of these problems look very stable and accurate for higher order polynomial
basis functions.

3.4 Nonlinear Problems

In this section, we have employed our approach to solve nonlinear partial differential
equations. Three numerical examples are solved on regular and irregular domains to show
the effectiveness of the proposed scheme. Since the problems we considered are nonlinear,
we used the Picard method to carry out the iteration [13]. The iteration is summarized as
follows:
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Algorithm 2
Step 1: Construct a sequence

{
u(i) : i ∈ N∪{0}

}
such that

u(0) = 0 and

∆u(i+1) = f(u(i)) in Ω,

u(i+1) = g on ∂Ω.

Step 2: At each iteration, compute u(i+1) using modified MPS.

Step 3: If
∣∣∣u(i+1)−u(i)

∣∣∣< ε, ε > 0,
stop,

end.

Step 4: u(i+1) at the final iteration is the required

approximate solution.

For all the numerical results, we have chosen the tolerance ε = 10−4 in Algorithm 2 to
ensure the accuracy of the solution.

Example 3.4.1. Let us consider the nonlinear Poisson problem with Dirichlet boundary
condition:

∆u(x,y) = u2 +6x− x6−4x4y−4x2y2, (x,y) ∈Ω, (3.56)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (3.57)

where g(x,y) is given based on the following exact solution

uexact(x,y) = x3 +2xy.

In this example, we have tested our method on the Poisson-type boundary value problem
which includes the space variables x and y in the source term. The computational domain is
the Cassini as shown in Figure 3.1b. The number of interior points and boundary points are
460 and 150 respectively. In Figure 3.12, we observed that the numerical accuracy improves
with higher order of polynomial basis functions. As in previous examples, the numerical
accuracy remains stable when higher order polynomial basis functions are taken. We have
compared the numerical results for several sets of collocation points on the same domain.
Table 3.6 shows the RMSE and MAE for various sets of collocation points with polynomial
order 15. We see that the numerical accuracy does not improve with an increase in the
number of collocation points. We need only 5 iterations to achieve excellent result. Thus,
from this experiment, we observe that our algorithm is very efficient and accurate to solve
nonlinear problems as well.

Example 3.4.2. In this example, we test our algorithm on a Helmholtz nonlinear problem
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Figure 3.12: Example 3.4.1: RMSE versus the polynomial order.

Table 3.6: Example 3.4.1: The RMSE and Maximum absolute error with a various set of
collocation points.

(ni,nb) RMSE MAE # Iterations

(313,100) 4.92e−07 1.39e−06 5
(460,150) 4.90e−07 1.39e−06 5
(1108,250) 4.90e−07 1.39e−06 5
(1973,450) 4.90e−07 1.39e−06 5
(3529,600) 4.89e−07 1.39e−06 5

with mixed boundary conditions. Let us consider the problem:

∆u(x,y)+u(x,y) = 4u3 +
1

(4+ x+ y)
, (x,y) ∈Ω, (3.58)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω
D, (3.59)

∂u
∂n

= h(x,y), (x,y) ∈ ∂Ω
N , (3.60)

where n is the unit outward normal vector, f (x,y), g(x,y), and h(x,y) are given based on
the following analytical solution

uexact(x,y) =
1

(4+ x+ y)
, (x,y) ∈Ω.

The domain considered is a Cassini (three). The number of interior points, Dirichlet’s and
Neumann’s boundary points are 545, 80 and 70 respectively. The RMSEs of the solution
with different polynomial orders have been presented in Figure 3.13. The behavior of the
approximate solutions to this problem is very similar to that of our previous examples. The
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numerical accuracy improves with the order of the basis functions and eventually the error
remains stable when the order of basis functions increases.
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Figure 3.13: Example 3.4.2: RMSE versus the polynomial order.

Example 3.4.3. Let us consider the modified Helmholtz problem with a Dirichlet boundary
condition:

∆u(x,y)−u(x,y) = 4u3− 1
(4+ x+ y)

, (x,y) ∈Ω, (3.61)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (3.62)

where g(x,y) is given based on the following analytical solution

uexact(x,y) =
1

(4+ x+ y)
.

In Figure 3.14, we see the error for different orders of polynomial basis functions in various
computational domains. The number of points in Cassini, gear-shape domain, star-shape
domain, and amoeba are 429, 434, 438, 438 respectively. The number of boundary points
on each domain is 150. We can see that the numerical accuracy is getting better when the
order of the basis functions is increasing. Furthermore, the numerical results are consistent
with the geometrical complexity of the domains. Table 3.7 shows the RMSE and maximum
absolute error for the above problem defined on various domains when polynomial basis
functions of order 10 are employed. We can see excellent numerical results with a small
number of iterations. This proves that our algorithm is very efficient to solve such problems
on irregular domains. We note that the number of iterations is higher for complicated
domains.
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Figure 3.14: Example 3.5.3: RMSE versus the polynomial order.

Table 3.7: Example 3.4.3: The RMSE and Maximum error with different domains.

Domain (ni,nb) # Iterations RMSE MAE

Amoeba (438,150) 4 4.26e−07 1.03e−06
Star-Shaped (438,150) 5 6.11e−05 2.80e−04
Cassini (Four) (429,150) 4 5.48e−06 1.15e−05
Gear-Shaped (434,150) 33 3.31e−02 1.88e−01

3.5 Time-Dependent Problems

In this section, we solve time-dependent problems using the MPS with polynomial basis
functions. For the time discretization, we have used the Houbolt method, a third order finite
difference time marching scheme. The Houbolt method transforms the time-dependent
problem into a series of inhomogeneous modified Helmholtz equations, which are solved
by our numerical approach. Three numerical examples are presented to demonstrate the
effectiveness of the proposed scheme.

3.5.1 Reaction-Diffusion Equations

Example 3.5.1. Consider the parabolic equation

∂u
∂ t

(x,y, t) = ∆u(x,y, t)+(2cos(t)− sin(t))sin(x)sin(y) (x,y) ∈Ω, t ≥ 0,

u(x,y, t) = sin(x)sin(y)cos(t), (x,y) ∈ ∂Ω, t ≥ 0,

u(x,y,0) = sin(x)sin(y), (x,y) ∈Ω.
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where the analytical solution is given by

u(x,y) = sin(x)sin(y)cos(t).

The domain is the amoeba-like domain as shown in Figure 3.1a. The numerical results are
observed with terminal time t = 10. The number of interior points, boundary points, and
test points are 316, 100 and 234 respectively. In Figure 3.15, we have compared the RMSE
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Figure 3.15: Example 3.5.1: The profile of the RMSE vs Time using radial basis function
MQ and polynomial basis functions of order 20.

obtained by the MPS using radial basis function MQ and using polynomial basis functions
of order 20. The time step chosen for the MPS with polynomial basis functions and radial
basis function are 0.04 and 0.02 respectively. We can see that the MPS with polynomial
basis functions is far better than the traditional MPS with radial basis function MQ.

The problem is also solved by using the MPS based on radial basis function MQ and
based on polynomial basis functions for various time steps. Figure 3.16 shows that our
approach gives a better result than that obtained from the MPS with radial basis function
MQ.

Furthermore, we have computed the RMSE for the problem with various computational
domains. Table 3.8 shows very nice results for the problem defined on various irregular do-
mains. The numerical accuracy and the polynomial orders are consistent with the complexity
of the domains.

Example 3.5.2. In this example, we consider another time-dependent problem defined on a
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Figure 3.16: Example 3.5.1: The profile of the RMSE vs Time for different time steps.

Table 3.8: Example 3.5.1: RMSE for different computational domains.

Domains ni nb RMSE Polynomial Order
Amoeba 316 100 5.191e-07 20
Cassini 336 100 6.904e-08 20
Gear-Shaped 475 170 6.745e-07 25
L-shaped 437 140 3.267e-09 19
Star-Shaped 317 120 2.942e-07 19

square domain. Consider the parabolic equation

∂u
∂ t

(x,y, t) = ∆u(x,y, t)+(2sin(t)+ cos(t))sin(x)sin(y) (x,y) ∈Ω, t ≥ 0,

u(x,y, t) = sin(x)sin(y)sin(t), (x,y) ∈ ∂Ω, t ≥ 0,

u(x,y,0) = 0, (x,y) ∈Ω.

where the analytical solution is given by

u(x,y) = sin(x)sin(y)sin(t).

The computational domain is given by [−2,2]× [−2,2] . The numerical results were
observed with terminal time t = 10. The number of interior points, boundary points and
the test points are 400, 156 and 529 respectively. The time step chosen for the MPS with
polynomial basis functions and radial basis function are 0.004 and 0.02 respectively. In
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Figure 3.17: Example 3.5.2: The profile of the RMSE vs Time using radial basis function
MQ and polynomial basis functions of order 21.

Figure 3.17, we see that the RMSE with polynomial basis functions is far better than that
with radial basis function MQ. Polynomial basis functions of order 21 were employed in the
computation.

3.5.2 Wave Equation

Example 3.5.3. Consider the wave equation

∂ 2u
∂ t2 (x,y, t) = ∆u(x,y, t)+ f (x,y, t) (x,y) ∈Ω, t > 0,

u(x,y, t) = x(1− x)y(1− y)cos(t), (x,y) ∈ ∂Ω, t > 0,

u(x,y,0) = x(1− x)y(1− y), (x,y) ∈Ω,

∂u
∂ t

(x,y,0) = 0, (x,y) ∈Ω,

where the analytical solution is given by

u(x,y) = x(1− x)y(1− y)cos(t)

and

f (x,y, t) = (2x(1− x)+2y(1− y)− x(1− x)y(1− y))cos(t).

The computational domain is given by [0,1]× [0,1] . The number of interior points, bound-
ary points and the test points are 400, 156 and 361 respectively. We chose dt = 0.1. In
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Figure 3.18, we have shown the profiles of RMSE versus times for various terminal time.
Polynomial basis functions of order 19 were employed in the solution process.
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Figure 3.18: Example: 3.5.3: RMSE versus time.

The problem is also solved for various time steps with polynomial basis functions of
order 24. Figure 3.19 shows the profiles of the RMSE versus time for various time steps.
We observed that the higher order polynomial basis functions were necessary to obtain
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acceptable results for smaller time steps.
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Figure 3.19: Example: 3.5.3: RMSE versus time.
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3.6 3D Boundary Value Problems

In this section, we are solving some 3-D boundary value problems using the MPS with
polynomial basis functions. The determination of the particular solutions for the differential
operator is very similar to the 2-D case. Therefore, the way of solving three-dimensional
problems is as easy as the 2-D problems. We have presented two numerical examples to
show the efficacy of the proposed scheme in 3D problems.

Example 3.6.1. Let us consider the following 3-D Poisson problem.

∆u(x,y,z) = f (x,y,z), (x,y,z) ∈Ω,

u(x,y,z) = g(x,y,z), (x,y,z) ∈ ∂Ω,

where f (x,y,z) and g(x,y,z) are given based on the following analytical solution

u(x,y) = cos(3x)cos(3y)cos(3z), (x,y,z) ∈Ω.

We consider the computational domain as the Stanford Bunny whose boundary data
points are available at the website of the Stanford Computer Graphics Laboratory [1]. Since
the scale of the original Bunny is too small, we magnify the size of the Bunny by 10 as the
computational domain in our numerical simulation. The number of interior points, boundary
points, and test points are 2345, 453, 690 respectively. The profile of the computational
domain is given in Figure 3.20. We solve this problem using the MPS based on radial basis

Figure 3.20: Example 3.6.1: The profile of the Stanford Bunny with boundary points.

function MQ and based on polynomial basis functions. In Figure 3.21a, the RMSE of the
solution is fluctuating heavily with the shape parameter. But, in Figure 3.21b, we can see
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that the results are stable when the order of polynomial basis functions increases. The results
obtained from the MPS with polynomial basis functions are far better and stable than those
of the MPS with radial basis function MQ.
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Figure 3.21: Example 3.6.1: (a) RMSE versus the shape parameter of the MQ. (b) RMSE
versus the polynomial order.

Example 3.6.2. Let us consider the following 3-D Helmholtz problem.

(∆+λ
2)u(x,y,z) = f (x,y,z), (x,y,z) ∈Ω,

u(x,y,z) = g(x,y,z), (x,y,z) ∈ ∂Ω,

where f (x,y,z) and g(x,y,z) are given based on the following analytical solution

u(x,y) = e2x+2y+2z, (x,y,z) ∈Ω.

The domain considered here is a unit cube. The number of interior points, boundary points,
and test points are 1728, 488, 729 respectively. The numerical accuracy of the problem is
compared with the MPS using MQ and polynomial basis functions for λ = 1. Figure 3.22
shows the comparison of the numerical results obtained from the MPS with radial basis
function MQ and with polynomial basis functions of different orders. The figure clearly
shows that the MPS with polynomial basis functions can perform better than the MPS with
radial basis function MQ. As a further experiment, for the same domain with the given
collocation points, we have observed the numerical accuracy of our proposed method for
various values of λ with polynomial basis functions of order 12 in Table 3.9. We observed
that the accuracy improves with the increase of the wavelength λ .
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Figure 3.22: Example 3.6.2: (a) RMSE versus the shape parameter of the MQ. (b) RMSE
versus the polynomial order.

Table 3.9: Example 3.6.2: RMSE and MAE for different values of wavelengths.

λ RMSE MAE
1 1.35e-06 5.96e-06
10 1.75e-04 4.81e-04
50 8.24e-07 5.81e-06
100 6.65e-07 5.85e-06
500 6.27e-07 5.91e-06
1000 6.13e-07 5.54e-06
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Chapter 4

LOCALIZED METHOD OF PARTICULAR SOLUTIONS BASED
ON POLYNOMIAL BASIS FUNCTIONS

4.1 Introduction

The global approach of the method of particular solutions (MPS) [14, 15, 79] is capable
of solving a large class of partial differential equations in science and engineering. This
method has employed radial basis functions (RBFs) for the construction of particular
solutions for the differential equations. Challenges faced when using this method include
the indeterminate shape parameter of the radial basis functions, the difficulty of finding the
particular solutions for the differential operator, and a dense and ill-conditioned interpolation
matrix. In the previous chapter, we discussed the global-type method of particular solutions
using polynomial basis functions. The replacement of radial basis function with polynomial
basis functions has made the method more accurate and simpler. The method of particular
solutions based on polynomial basis functions is still not suitable for the large-scale problem
because the matrix formed in the collocation process becomes highly ill-conditioned. There
are many mesh-based localized numerical methods such as the finite element method [50]
and the finite difference method [49] to solve large-scale problems. These methods are
difficult to implement for problems defined on higher dimensional domains with irregular
geometries. Therefore, localized meshless methods [25, 45, 68, 70, 78, 83] are preferred
over mesh-based methods because of their ability to solve problems defined on regular and
irregular domains in higher dimensions. These localized meshless methods have utilized
radial basis functions in their solutions process.

Most of the radial basis functions contain shape parameters. Finding the best shape
parameter of the RBF has been an open research problem [29, 36, 65, 76, 80]. To avoid the
difficulty of determining a good shape parameter of the RBFs, we propose the localized
method of particular solutions based on polynomial basis functions. The main attractions of
the proposed approach are:

• Closed-form particular solutions for the general partial differential equations with
constant coefficients based on polynomial basis functions are available.

• The shape parameter is avoided.
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Replacement of the radial basis function by the polynomial basis functions has made the
method simpler and easy to implement with very nice numerical results.

4.2 Methodology

Let us consider the boundary value problem (2.14) – (2.15). Let {xi}Ni
i=1 be the interior

points in Ω and {xi}Ni+Nb
i=Ni+1 be the boundary points on Ω and N = Ni +Nb. For each xi, we

choose n nearest points x[i]k , k = 1,2, ...,n, to form a local domain Ωi such that Ωi∩Ω j 6= φ

for some j 6= i and [xi]
N
i=1 =

⋃
i Ωi. In the LMPS, we approximate the solution at each point

x[i]j ∈Ωi, j = 1,2, ...,n, by

u(x[i]j )' û(x[i]j ) =
s

∑
l=0

l

∑
m=0

a[i]lmUlm(x
[i]
j ), j = 1,2, ...,n, (4.1)

where
LUlm(x

[i]
j ) = xl−mym, 0≤ m≤ l,0≤ l ≤ s. (4.2)

The system of equations in (4.1) can be written in matrix form as follows:
û(x[i]1 )

û(x[i]2 )
...

û(x[i]n )

=


U00(x

[i]
1 ) U10(x

[i]
1 ) U11(x

[i]
1 ) . . . Uss(x

[i]
1 )

U00(x
[i]
2 ) U10(x

[i]
2 ) U11(x

[i]
2 ) . . . Uss(x

[i]
2 )

...
U00(x

[i]
n ) U10(x

[i]
n ) U11(x

[i]
n ) . . . Uss(x

[i]
n )




a00
a10

...
ass

 (4.3)

Let Φn,s be the matrix in equation (4.3). From (4.3), we have

a[i]lm = Φ
−1
n,s û[i] (4.4)

where

û[i] =
[
û(x[i]1 ), û(x

[i]
2 ), . . . , û(x

[i]
n )
]T

,a[i]lm =
[
a00,a10, . . . ,ass

]T
.

Then, applying (4.4) to (4.1), we get

û(x[i]j ) =U [i]
lma[i]lm =U [i]

lmΦ
−1
n,s û[i] = Ψ

[i]û[i] (4.5)

where
U [i]

lm = [U00(x
[i]
j ),U10(x

[i]
j ), ...,Uss(x

[i]
j )]

and
Ψ

[i] =U [i]
lmΦ

−1
n,s = [ψ1,ψ2, ...,ψn].
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Now, we want to express equation (4.5) in the global sense. Let û= [û(x1), û(x2), . . . , û(xN)]
T .

The global form of equation (4.5) is

û(x[i]j ) = Ψû, (4.6)

where the 1×N vector Ψ is obtained by padding N−n zeros in Ψ[i] based on the mapping
between û[i] and û. The above scheme can be used to solve the problem (2.14)-(2.15).
Applying (4.1) to (2.14), we have

f (x[i]j ) = Lû(x[i]j )

=
s

∑
l=0

l

∑
m=0

a[i]lmLUlm(x
[i]
j )

= LU [i]
lma[i]lm

= LU [i]
lmΦ

−1
n,s û[i]

= Λ
[i]û[i]

= Λ(x[i]j )û

where
Λ
[i] = LU [i]

lmΦ
−1
n,s ,

and Λ(x[i]j ) is obtained by padding N−n zeros in Λ[i]. Thus,

f (x[i]j ) = Λ(x[i]j )û, 1≤ i≤ Ni. (4.7)

Similarly, applying (4.1) to (2.15), we get

g(x[i]j ) = Bû(x[i]j )

=
s

∑
l=0

l

∑
m=0

a[i]lmBUlm(x
[i]
j )

= BU [i]
lma[i]lm

= BU [i]
lmΦ

−1
n,s û[i]

= ϒ
[i]û[i]

= ϒ(x[i]j )û

where
ϒ
[i] =BU [i]

lmΦ
−1
n,s ,

and ϒ(x[i]j ) is obtained by padding N−n zeros in ϒ[i]. Thus,

g(x[i]j ) = ϒ(x[i]j )û, Ni +1≤ i≤ N. (4.8)
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Finally, equations (4.7) and (4.8) form a sparse system of equations. The approximate
solutions at each point can be obtained by solving equations (4.7) and (4.8).

4.3 Numerical Results

For the numerical implementation of the local approach of the MPS, we have adopted
the kd-tree search algorithm [71] to find the nearest neighbor points of each collocation
point. The kd-tree or k dimensional tree is a data structure used to organize the points in k
dimensional space. Regular and irregular domains are considered in 2D and 3D spaces.

The resultant matrix sometimes becomes singular for the uniform set of collocation
points. Thus, the collocation points and test points are chosen randomly throughout the
problem domain.

Throughout all numerical experiments, the size of the local domain is same as the
number of polynomial basis functions applied in the method.

In the local approach of the MPS, the size of the local domain is small. Thus, we do not
need high order polynomial basis functions to approximate the solution. As a result, the
interpolation matrix is small and well-conditioned. Therefore, multiple scale technique is
not required to reduce the condition number of the matrix.

Example 4.3.1. Let us consider the following Helmholtz problem.

(∆+λ
2)u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where f (x,y) and g(x,y) are given based on the following analytical solution

u(x,y) = e3x+4y, (x,y) ∈Ω.

In this example, we consider a unit square domain with randomly chosen collocation points.
We have observed the numerical accuracy of the method with different sets of collocation
points with various orders of polynomial basis functions. The results in Table 4.1 show that
the RMSE improves slightly with an increase in the collocation points. But the accuracy
improves rapidly with an increase in the order of the basis functions. As in the global
approach with the MPS, the numerical accuracy heavily depends upon the order of the
polynomial basis functions.

Furthermore, the RMSE and MAE of the solutions with different wavelengths have
been presented in Table 4.2. We have taken 20000 randomly chosen interior points and
200 boundary points as our collocation points in the unit square domain. Polynomial basis
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Table 4.1: Example 4.3.1: The RMSE for various sets of interior and boundary points with
different polynomial orders.

(ni,nb) RMSE Order Time

(20000,200)
1.427e-02 3 1.79
4.931e-04 4 3.16
2.362e-05 5 6.21

(40000,400)
4.612e-03 3 4.17
2.118e-04 4 6.91
2.327e-06 5 13.83

(60000,600)
3.999e-03 3 6.98
2.526e-04 4 11.08
6.688e-07 5 20.66

Table 4.2: Example 4.3.1: RMSE and MAE for different wavelength.

λ RMSE MAE
1 2.362e-05 4.267e-04
10 7.314e-04 1.846e-03
50 8.866e-05 3.355e-04
100 7.752e-06 4.214e-05
500 4.806e-08 2.432e-06
1000 7.616e-08 9.283e-06

functions of order 5 have been applied in the solution process. It is clear to see that the
results are getting better for higher wavelengths.

Example 4.3.2. Let us consider a partial differential equation containing convection terms.

∆u(x,y)+2
∂ 2

∂x∂y
u(x,y)−4

∂

∂y
u(x,y)+8u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where f (x,y) and g(x,y) are given based on the following analytical solution

u(x,y) = cos(3x)− cos(3y), (x,y) ∈Ω.

In this example, we solve the above problem defined in various domains. Table 4.3 lists
the RMSE and Average Abs Error for different computational domains. Basis functions of
order 5 are employed for all the computations. The results show that our proposed approach
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Table 4.3: Example 4.3.2: RMSE and average absolute error for different computational
domains.

Domains ni nb RMSE Ave Abs Err
Amoeba 18614 301 2.765e-05 1.450e-05
Cassini 18738 301 6.276e-06 3.534e-06
Gear-Shaped(5 Gear) 19530 301 1.380e-04 4.712e-05
Star-Shaped 18746 301 1.198e-05 7.339e-06
L-shaped 19360 200 3.040e-07 2.089e-07

can solve large-scale problems very effectively for complicated domains. The accuracy is
consistent with the complexity of the problem domains.

Example 4.3.3. Let us consider the following Poisson’s problem.

∆u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where f (x,y) and g(x,y) are given based on the following analytical solution

u(x,y) =
1.25+ cos(5.4y+2.7)

6(1+(3x+0.5)2)
.

We choose Ω to be the Star-Shape domain as shown in Figure 3.1f. Table 4.4 shows the
numerical accuracy of our approach with various set of collocation points. The method
produces nice results for various densities of the collocation points.

Table 4.4: Example 4.3.3: The RMSE and average absolute error for different number of
interior and boundary points with polynomial basis of order 6.

(ni,nb) RMSE Ave Abs Err
(1165,300) 4.63e−03 1.91e−03
(4673,300) 5.64e−05 2.84e−05
(10465,300) 1.52e−04 2.92e−05
(18629,300) 2.79e−05 1.47e−05
(29063,300) 6.37e−05 3.37e−05
(41905,300) 4.53e−05 1.81e−05
(57093,300) 1.32e−05 5.16e−06
(74553,300) 4.59e−04 1.28e−04
(116501,300) 2.68e−04 6.11e−05
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Example 4.3.4. Let us consider a problem with variable coefficients

∆u(x,y)+ ycos(y)ux(x,y)+ sinh(x)uy(x,y)+10xyu(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

∂u(x,y)
∂n

= h(x,y), (x,y) ∈ ∂Ω,

where n is the unit outward normal vector, f (x,y), g(x,y), and h(x,y) are given based on
the following analytical solution

u(x,y) = sin(πx)cosh(y)− cos(πx)sinh(y).

In this example, we have solved the problem using polynomial basis functions of different
orders. The domain considered in this problem is a unit square. The number of interior
points and boundary points are 40,000 and 236 respectively. Table 4.5 shows the numerical
accuracy of our approach for different orders of basis functions. We can see that the
numerical accuracy is better for higher order basis functions.

Table 4.5: Example 4.3.4: The RMSE for different polynomial orders.

Domain RMSE Order Time

Unit Square
1.88e-05 3 6.61
1.99e-07 4 10.88
2.37e-09 5 19.33
5.28e-10 6 30.65

Example 4.3.5. In this example, we choose the following modified Helmholtz problem
[83]:

(∆−100)u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where f (x,y) and g(x,y) are given based on the following analytical solution

u(x,y) = sin
πx
6

sin
7πx

4
sin

3πy
4

sin
5πy

4
, (x,y) ∈Ω.

The domain is the star-shaped domain as shown in Figure 3.1f. The collocation points are
randomly chosen. We have compared the numerical results obtained from the LMPS using
radial basis function MQ and the LMPS using polynomial basis functions. In Table 4.6,
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the comparison of RMSE obtained from the LMPS with RBF MQ and polynomial basis
functions is presented. The result shows that the RMSE obtained from the LMPS with
polynomial basis functions is slightly better than that from the LMPS with RBF MQ. It is
well known that the LMPS with RBF performs better for uniform sets of collocation points.
But, for the non-uniform set of collocation points, we see that the LMPS with polynomial
basis functions gives better results than the LMPS with RBF MQ.

Table 4.6: Example 4.3.5: Comparison of RMSE using MPS with RBF MQ and polynomial
basis functions for various set of collocation points.

RBF MQ Polynomial Basis Functions
(ni,nb) RMSE RMSE order
(384,80) 3.35e-03 1.12e-01 3
(6600,300) 1.17e-02 6.03e-03 3
(20161,900) 5.70e-02 2.03e-03 3

Furthermore, in Table 4.7, we present the RMSE for different sizes of local domain.
We have taken 6600 randomly chosen interior points and 300 boundary points in the same
domain. We see that the LMPS using polynomial basis functions gives better results than
the LMPS with RBF MQ. We observed improvement of the accuracy in our approach with
an increase of the polynomial order.

Table 4.7: Example 4.3.5: Comparison of RMSE using MPS with RBF MQ and polynomial
basis functions for various sizes of local domains.

RBF MQ Polynomial Basis Functions
n RMSE RMSE order
10 1.17e-02 6.03e-03 3
15 1.32e-01 4.08e-04 4
21 1.64e-02 1.01e-04 5
28 2.01e-02 1.34e-05 6

Example 4.3.6. In this example, we solve the Cauchy-Navier equation of elasticity [33]
using the local scheme. We have solved the problem (3.31) – (3.32) for a Dirichlet boundary
condition with µ = 1 and ν = 0.3. The exact solutions considered for this problem are

u1(x,y) = ex+y, (x,y) ∈ Ω̄, (4.9)

u2(x,y) = sin(x+ y), (x,y) ∈ Ω̄. (4.10)



53

We have tested the accuracy of the method on various types of computational domains.
Since the domains we considered are of various sizes, we have computed relative errors to
observe and compare the numerical accuracies of the method among the domains. Table 4.8
shows that the local scheme can successfully solve the problem defined in many different
irregular domains. We noticed that the numerical accuracy of the method depends upon the
geometrical complexity of the computational domain.

Table 4.8: Example 4.3.6: Relative error for different computational domains.

Domains ni nb Rel Err(u1) Rel Err(u2) Polynomial Order
Amoeba 87873 300 7.199e-08 5.720e-07 5
Cassini 88377 300 1.630e-08 2.823e-008 5
Gear-Shaped 89442 300 7.092e-07 3.064e-06 5
Star-Shaped 84972 300 5.374e-08 1.380e-07 5

4.4 3D Boundary Value Problems

Example 4.4.1. Let us consider the following 3-D Poisson problem.

∆u(x,y,z) = f (x,y,z), (x,y,z) ∈Ω,

u(x,y,z) = g(x,y,z), (x,y,z) ∈ ∂Ω,

where f (x,y,z) and g(x,y,z) are given based on the following analytical solution

u(x,y) = cos(x)cos(2y)cos(3z), (x,y,z) ∈Ω.

A Stanford Bunny is the domain with ni = 2345 and nb = 453. As in example 3.6.1,
we magnify the size of the Bunny by 10 as the computational domain in our numerical
simulation. Table 4.9 shows the numerical accuracy of the problem with different orders of
polynomial basis functions. The accuracy of the method is improving with an increase of
the order of the basis functions. The number of neighboring points in the local domain for
orders 3, 4, 5, and 6 are 20, 35, 56, and 84 respectively.

Example 4.4.2. Let us consider the following 3-D Helmholtz problem.

(∆+λ
2)u(x,y,z) = f (x,y,z), (x,y,z) ∈Ω,

u(x,y,z) = g(x,y,z), (x,y,z) ∈ ∂Ω,
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Table 4.9: Example 4.4.1: RMSE and average absolute error for various polynomial orders.

Order RMSE MAE
3 3.10e-02 2.14e-01
4 1.07e-02 6.91e-02
5 3.08e-04 2.10e-03
6 2.99e-05 5.108e-04

where f (x,y,z) and g(x,y,z) are given based on the following analytical solution

u(x,y) = ex+2y+3z, (x,y,z) ∈Ω.

A Stanford Bunny is considered to be our domain. As in example 4.4.1, we magnify
the size of the Bunny by 10 as the computational domain in our numerical simulation. The
profile of the Stanford Bunny with the distribution of the boundary points is shown in Figure
4.1a. Since the maximum of the exact solution occurs on the boundary, we also plot the
profile of the exact solution on the surface of the Bunny as shown in Figure 4.1b. The main
challenge of this problem is due to its complicated three-dimensional geometry.

(a) RBF (b) Polynomial

Figure 4.1: Example 4.4.2: Profiles of (a) Stanford Bunny and its boundary points (b) exact
solution.

In the numerical implementation, we first select Ni = 5000 and Nb = 453, with polyno-
mial order 3. Table 4.10 shows the numerical accuracy for various values of wavelength λ .
As we can see, the result for low wavelength is poor. To improve the accuracy, we can either
increase the order of the polynomials or the number of collocation points.
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Table 4.10: Example 4.4.2: RMSE and MAE for different value of wavelength λ using order
= 3, Ni =5000, Nb = 453.

λ RMSE MAE
1 9.130e-02 1.384e+00
10 3.291e-01 2.178e+00
100 8.110e-03 2.071e-01
500 1.279e-04 4.075e-03
1000 4.654e-04 3.278e-02

In Table 4.11, we observe that the increase of the number of boundary points to 8171
and of the number of interior points up to 20000 using the same order of polynomial does
not improve the accuracy as we have expected. On the other hand, as shown in Table 4.12,
the increase of the polynomial basis order has significantly improved the accuracy. Note that
the number of neighboring points in the local domain for orders 3, 4, 5, and 6 are 20, 35, 56,
and 84 respectively. Hence, in the 3D case, we would not recommend to use a polynomial
basis beyond order 5. Otherwise, the computational cost becomes too high. In Table 4.13,
we show the results of using a large number of boundary and interior points and polynomial
order 5. In these tables, we have demonstrated that the proposed localized method can
handle a large number of collocation points in a complicated irregular domain in 3D with
good accuracy.

Table 4.11: Example 4.4.2: RMSE and MAE for different number of interior points using
order = 3, Nb = 8171.

Ni RMSE MAE
5000 6.919e-01 1.972e+01
10000 8.474e-02 1.315e+00
15000 6.596e-02 7.773e-01
20000 3.224e-02 4.590e-01

4.5 Near-Singular Problems

In this section, we test our algorithm on near-singular problems.



56

Table 4.12: Example 4.4.2: RMSE and MAE for different number of polynomial orders
using Ni = 5000, Nb = 453.

order RMSE MAE
3 9.130e-02 1.384e+01
4 5.534e-03 9.521e-02
5 3.386e-04 6.607e-03
6 2.004e-04 4.858e-03

Table 4.13: Example 4.4.2: RMSE and MAE for different number of polynomial orders
using order =5, Ni = 20000, Nb = 8171.

λ RMSE MAE
1 2.927e-04 2.898e-02
10 2.259e-04 1.652e-02
100 7.572e-07 3.793e-04
1000 1.589e-07 2.107e-05

Example 4.5.1. Let us consider the following Poisson problem [85]

∆u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

defined in a unit squared domain, where a is a constant and

f (x,y) =
4a2−3a

√
x2 + y2 + x2 + y2

(
√

x2 + y2−a)3
,

g(x,y) =
x2 + y2√

x2 + y2−a
.

The analytical solution for this problem is given by

u(x,y) =
x2 + y2√

x2 + y2−a
. (4.11)

We can see that the forcing term f (x,y) contains the singularity at (1,1) when a =
√

2.
Therefore, it is difficult to approximate the solutions near the boundary when the values of
a are sufficiently close to

√
2. The profile of the exact solution when a = 1.45 is given in

Figure 4.2. For the numerical experiment, we have taken 25,281 interior points and 640
boundary points. The RMSE obtained from our approach is compared with that from LMPS
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Figure 4.2: Example 4.5.1: The profile of analytical solution in the domain

using RBF MQ [85] in Table 4.14. The size of the local domain in LMPS using RBF MQ
was 5. We have solved this problem for different values of a near

√
2.

Table 4.14: Example 4.3.5: Comparison of RMSE using MPS with RBF MQ and polynomial
basis functions for various values of a.

RBF MQ Polynomial Basis Functions
a RMSE RMSE order
1.43 5.64e-03 8.03e-02 3
1.44 2.31e-03 1.47e-02 3
1.45 1.27e-03 1.17e-02 3
1.46 8.12e-04 8.86e-03 3
1.47 5.69e-04 6.29e-03 3
1.48 4.24e-04 4.41e-03 3
1.49 3.29e-04 3.12e-03 3
1.50 2.65e-04 2.25e-03 3
1.60 4.04e-05 3.04e-04 3

In Table 4.14, we can see the effect of the singularity at one corner of the boundary. As
a approaches

√
2, the numerical accuracy of the problem is getting worse. For a = 1.6, we

have presented the error distribution on the surface of the exact solution and on the surface
of the domain. Figure 4.3 shows the profiles of maximum error on the computational domain
and on the surface of the approximate solution. In both of the figures, we can see that the
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error is maximal near the singular point (1,1).

(a) Maximum Error on Domain (b) Maximum Error on Approximate Solution

Figure 4.3: Example 4.5.1: (a) Maximum error distribution in the computational domain.
(b) Maximum errors on approximate solutions.

Example 4.5.2. In this example, we solve a Helmholtz-type near singular problem [75].
Consider a modified Helmholtz problem

(∆−10)u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

defined in a domain [−0.5,0.5]× [−0.5,0.5] , where the function f (x) and g(x) are given by

f (x,y) =
4a2−3ar+ r2

(a− r)3 − 10r2

a− r
,

g(x,y) =
r2

a− r

with

r =
√

(x+0.5)2 +(y+0.5)2. (4.12)

The analytical solution to this problem is given by (4.11). The forcing term has a singularity
at (0.5,0.5) when a =

√
2. The number of interior points and boundary points are 400 and

136 respectively.
The results in Table 4.15 follow a similar pattern as in Table 4.14. The numerical error

deteriorates as a gets closer to
√

2. In Table 4.16, we investigate the numerical accuracy of
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Table 4.15: Example 4.5.2: RMSE and MAE for various values of a.

a RMSE MAE
1.45 4.15e-01 4.46e+00
1.5 2.12e-02 2.26e-01
1.6 6.80e-04 7.37e-03
1.7 7.54e-05 8.17e-04
1.8 1.77e-05 1.60e-04
1.9 6.67e-06 4.34e-05

the method with various orders of polynomial basis functions for a = 1.6. The accuracy
improves with the increase of the order of basis functions. In the global approach of our
algorithm, the accuracy remains stable after some order of the basis function. We can see
the similar behavior of the polynomial order in the local approach. The improvements of the
error for orders 4,5 and 6 are not remarkable.

Table 4.16: Example 4.5.2: RMSE and MAE for various Polynomial Order.

Order RMSE MAE
3 1.33e-02 4.58e-02
4 3.63e-04 1.96e-03
5 3.07e-04 4.61e-03
6 6.80e-04 7.37e-03

Figure 4.4 illustrates the profile of the maximum error of the solution in the domain and
on the surface of the numerical solution for a = 1.55. As in Figure 4.4, the error seems
maximal at the corner (0.5,0.5) of the boundary. As a final experiment in this problem,
we have presented the RMSE and MAE for various sets of collocation points on the same
domain in Table 4.17. We have chosen a = 1.6 and the order of the polynomial basis
functions is 6.
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Figure 4.4: Example 4.5.2: (a) Maximum error distribution in the computational domain.
(b) Maximum errors on approximate solutions.

Table 4.17: Example 4.5.2: The RMSE and Maximum errors for different numbers of
interior and boundary points with polynomial basis of order 6.

(ni,nb) RMSE MAE
(400,136) 6.80e−04 7.37e−03
(1089,236) 1.24e−04 6.01e−04
(2025,316) 8.47e−04 6.56e−03
(4225,404) 3.58e−05 1.80e−04
(7225,404) 3.22e−05 1.30e−04
(11025,404) 7.45e−05 2.81e−04
(21025,404) 7.34e−05 2.64e−04
(61504,404) 2.39e−05 1.07e−04



61

Chapter 5

THE MODIFIED MPS FOR FINDING CRITICAL DOMAINS FOR
QUENCHING PROBLEMS

Yao et al. [84] has modified the traditional MPS by using polyharmonic splines coupled
with polynomial basis functions. In this chapter, we have employed this modified method to
solve some Poisson-type nonlinear problems and to compute critial domains for quenching
problems.

5.1 Introduction

Nonlinear partial differential equation is one of the most active fields of recent research.
Most real world problems, including gas dynamics, fluid mechanics, elasticity, relativity and
much more, are modeled by nonlinear partial differential equations. In general, the exact
solutions of many such problems are not available. Therefore, numerical approximation
has to be done to find the solutions of the problems. There are many numerical schemes
to solve nonlinear problems. Some of them are the finite element method (FEM) [50],
the finite difference method (FDM) [49], the boundary element method (BEM) [41] and
meshless methods [4, 15, 40]. The mesh-based methods like the FEM and the FDM
require extensive work of mesh generation on the computational domain, requiring large
computational resources to solve the problem. Furthermore, the generation of the mesh for
an irregular domain is non-trivial. The radial basis function (RBF) collocation methods are
meshless methods which are able to overcome these drawbacks. We have used the MPS
[14, 15, 79], one of the RBF collocation methods, to solve some nonlinear Poisson-type
problems defined on regular and irregular domains. In addition, the MPS is also applied
to compute the size of the critical domains for the quenching problems [12]. The MPS is
modified to make the method more efficient.

Consider the following initial boundary value problem

∆u− ∂u
∂ t

= − f (t,u) in Ω, (5.1)

u(x,0) = u0(x) on D̄, (5.2)

u(x, t) = 0 on S, (5.3)
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where D ∈ Rm is a bounded convex domain, Ω = D× (0,T), S = ∂D× (0,T), and T≤ ∞

such that
lim

u→c−
f (t,u) = ∞,

for some positive constant c. This kind of problem was first studied by Kawarada [42] in
1975. According to him, The solution u is said to quench if there exists a finite time T such
that

sup
{
|ut(x, t)| : x ∈ D̄

}
→ ∞ as t→ T−. (5.4)

The time at which the quenching occurs is called the quenching time. When u is an increasing
function of t, a necessary condition for (5.4) is

max
{

u(x, t) : x ∈ D̄
}
→ c− as t→ T−. (5.5)

The point in Euclidian space where the solution u reaches c is called quenching point. For the
one-dimensional case, Acker and Kawohl [2] proved that the origin is the only quenching
point for the problem (5.1) – (5.3) when the domain is a ball with center at the origin. Also,
Deng and Levine [24] extended the results from balls to a convex domain D with smooth
boundary ∂D. They showed that the quenching points are in a compact subset of D. In 1994,
Chan and Ke [12] studied the critical domains and developed a method to find the size
of such domain for the problem (5.1) – (5.3) defined on a domain with piecewise smooth
boundary. A critical domain D∗ is a domain such that the solution exists for all domain
D at all time when D ⊂ D∗ and the quenching always occurs at finite time T in D ⊇ D∗.
With u0 ≡ 0, Chan and Ke [12] proved that a unique critical domain exists for each shape
of domain for the problem (5.1) – (5.3). This means each distinct shape of a domain has
distinct critical domain size. The size of the domain is specified by area in 2D and by volume
for 3D or higher. In 2007, Tian [74] applied a numerical method using Delta-shaped basis
function to compute the critical domains for quenching problems and compared the results
with the results already established with some other computational methods.

Let D ⊆ Rm and D1 ⊆ Rm. They will have the same shape if there exists x0 ∈ D∩D1

and a positive constant λ such that

D1 = {y : y = x0 +λ (x−x0)} for x ∈ D. (5.6)

If the problem (5.1) – (5.3) is defined in the domain D1 with known shape and x0 is at the
origin, we can transform this problem into a problem defined in a different sized domain D
having the same shape in the following way:

∆uλ −
∂uλ

∂ t
= −λ

2 f (λ 2t,uλ ) in Ω, (5.7)

uλ = 0 on D̄∪S, (5.8)
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where (cf. Chan and Ke [12]),

λ =

(
size of D1

size of D

)1/m

. (5.9)

From (5.9), we see that the size of the critical domain is determined by λ . The modified
MPS has been used to compute λ .

In Section 5.2, a brief review for the MPS for solving nonlinear Poisson-type problems
with Dirichlet’s boundary condition is given. In Section 5.3, an algorithm for the computation
of quenching problems is given. In Section 5.4, some numerical examples for solving
nonlinear Poisson-type problems are given, and critical domains for quenching problems are
computed and compared to the results already established by some other numerical methods.

5.2 The Method of Particular Solutions (MPS)

In this section, we give a brief review of the MPS [14, 15, 79] using polyharmonic splines.
For simplicity, let us consider the following Poisson problem in 2D

∆u(x,y) = f (x,y),(x,y) ∈Ω, (5.10)

u(x,y) = g(x,y),(x,y) ∈ ∂Ω, (5.11)

where Ω ⊆ R2 is a bounded and closed domain with boundary Ω, f and g are known
functions.

Let φ be a radial basis function (RBF) and let {pl}w
l=1 be a basis of Pm, the set of two

dimensional polynomials of degree ≤ m with w = (m+1)(m+2)/2. Let {(xi,yi)}n
i=1 be a

set of pairwise distinct interpolation points with {(xi,yi)}ni
i=1 ⊆Ω and {(xi,yi)}n

i=ni+1 ⊆ ∂Ω

such that n = ni +nb.

The MPS has been widely used in the context of RBFs with shape parameter such
as MQ, inverse MQ, Gaussian. Recently, Yao et al. [84] have extended the MPS using
polyharmonic splines with augmented polynomials as the basis function as follows

u(x,y)' û(x,y) =
n

∑
j=1

aiΦ(r)+
w

∑
l=1

an+l pl(x,y), (x,y) ∈Ω, (5.12)

where r = ‖(x,y)− (x j,y j)‖ and

∆Φ(r) = r2k lnr, k ∈ Z+. (5.13)

Note that Φ in (5.13) can be easily obtained through repeated integration in the polar
coordinates. It follows that

Φ(r) =
r2k+2

4(k+1)2 lnr− r2k+2

4(k+1)3 . (5.14)
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Furthermore,

f (x,y)≈ ∆û(x,y) =
n

∑
j=1

a jr2n lnr+
w

∑
l=1

an+lql(x,y), (x,y) ∈Ω, (5.15)

where

∆pl(x,y) = ql(x,y), l = 1,2, ...,w.

In addition, the following augmented equation needs to be imposed [27]

n

∑
j=1

a j pl(x,y) = 0, l = 1,2, ...,w. (5.16)

Using (5.12) and (5.16), we can establish the following matrix system

[
û
0w

]
=

[
AΦ Pnw
PT

nw 0ww

]
a1
a2
...

an+w

 , (5.17)

where 0w is the zero matrix of order w×1, û= [û(x1,y1), · · · , û(xn,yn)]
T , AΦ = [Φ(ri j)]1≤i, j≤n

and Pil = pl(xi,yi), i = 1,2, ...,n. From (5.17), we have

a =

[
AΦ Pnw
PT

nw 0ww

]−1[ û
0w

]
, (5.18)

where a = [a1,a2, · · · ,an+w]
T . By collocating the interior points, we have

f (xi,yi) =
n

∑
j=1

a jr2k lnr+
w

∑
l=1

an+lql(xi,yi), i = 1,2, ...,ni. (5.19)

with the additional augmented equations

ni

∑
j=1

a jql(x j,y j) = 0, l = 1,2, ...,w. (5.20)

Similarly, by collocating the boundary points, we have

g(xi,yi) =
n

∑
j=1

a jΦ(ri j)+
w

∑
l=1

an+l pl(xi,yi), i = ni +1, ...,n. (5.21)

with additional augmented conditions

n

∑
j=ni+1

a j pl(x j,y j) = 0, l = 1,2, ...,w. (5.22)



65

From (5.19)–(5.22), we have the following block matrix system

 φnin Qniw
Φnbn Pnbw

[QT
niw,P

T
nbw] 0ww




a1
a2
...

an+w

=

 fni

gnb

0w

 . (5.23)

Using (5.23), (5.18) becomes φnin Qniw
Φnbn Pnbw

[QT
niw,P

T
nbw] 0ww

[AΦ Pnw
PT

nw 0ww

]−1[ û
0ww

]
=

 fni

gnb

0w

 . (5.24)

We can rewrite equation (5.24) as φnini φninb Qniw
Φnbni Φnbnb Pnbw
QT

niw PT
nbw 0ww

Φnini Φninb Pniw
Φnbni Φnbnb Pnbw
PT

niw PT
nbw 0ww

−1ûni

ûnb

0w

=

 fni

gnb

0w

 . (5.25)

Let

A =

 φnini φninb Qniw
Φnbni Φnbnb Pnbw
QT

niw PT
nbw 0ww

 , B =

Φnini Φninb Pniw
Φnbni Φnbnb Pnbw
PT

niw PT
nbw 0ww

 .
Since the matrices A and B have the same second row, Lemma 1 in the Appendix implies
that the second rows of the matrices AB−1 and BB−1 are equal. Thus, the product matrix
AB−1 takes the form

AB−1 =

Cnini Cninb Cniw
0nbni Inbnb 0nbw
Cwni Cwnb Cww

 . (5.26)

Consequently, from (5.25) and (5.26), we haveCnini Cninb Cniw
0nbni Inbnb 0nbw
Cwni Cwnb Cww

ûni

ûnb

0w

=

 fni

gnb

0w

 . (5.27)

Note that (5.18) can be further reduced to the following matrix system[
Cnini Cninb

0nbni Inbnb

][
ûni

ûnb

]
=

[
fni

gnb

]
. (5.28)

Equation (5.28) implies that

Cniniûni +Cninbûnb = fni, (5.29)

ûnb = gnb. (5.30)
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Substituting (5.30) into (5.29), we can further reduce to the following system

ûni = C−1
nini

(fni−Cninbgnb). (5.31)

It is obvious that solving (5.31) is more efficient than solving (5.27).
The above-mentioned MPS can be extended to more general equations containing

variable coefficients or three-dimensional cases. We refer readers to [15] for more details.

5.3 Critical Domains for Quenching Problems

In this section, we apply the MPS to find the critical domain for the quenching problem
(5.7) – (5.8). We suppose f (u) = 1/(1−u). Then, we have,

∆u−ut = − γ

1−u
in Ω, (5.32)

u = 0 on D̄∪S, (5.33)

where γ = λ 2. The critical value of γ is obtained from the steady-state form of the above
problem. We have,

∆U = − γ

1−U
in D, (5.34)

U = 0 on ∂D. (5.35)

Once we compute the critical value γ∗ of γ, we can use equation (5.9) to compute critical
size of the considered domain. Here, we present an algorithm to compute the critical value
γ∗.
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Algorithm 3
Step 1: The upper bound γupper for γ∗ is obtained from the solution

of the problem

∆ξ =−1 in D,
ξ = 0 on ∂D.
We have, γupper = 1/maxD̄ξ and choose γlower = 0.
Estimate γ∗ with γ(1) = (γupper− γlower)/2.

Step 2: For each γ(k), Compute
{

U (i)
}

defined by

U (0) = 0 on D̄,
and for i≥ 1,

∆U (i) =− γk

1−U (i−1) in D,

U (i) = 0 on ∂D.

For each γ(k), Compute
{

U (i)
}

by the modified MPS.

If
{

U (i)
}

converges, the corresponding γ(k) is the

lower bound for γ∗; otherwise, it is an upper bound.

Step 3: If
∣∣∣γ(k−1)− γ(k−2)

∣∣∣< ε, ε > 0,

(a given tolerance), then γ(k−1) is

the approximate critical value.

Step 4: Update γ(k−1) in the following way:

If
{

U (i)
}

in Step 2 converges,

γ(k) = γ(k−1)+ 1
2

∣∣∣γ(k−1)− γ(k−2)
∣∣∣ ;

otherwise

γ(k) = γ(k−1)− 1
2

∣∣∣γ(k−1)− γ(k−2)
∣∣∣ .

Step 5: Repeat Steps 2−4 until the tolerance is reached.

As a numerical experiment, the critical values are computed by using the modified MPS
with the above algorithm for the problem (5.32) – (5.33) defined on different domains of
given shape. Furthermore, using the relation (5.9), the critical sizes of the domains are
calculated and compared with the sizes obtained from other numerical methods.

5.4 Numerical Results

To demonstrate the effectiveness of the modified MPS, we consider three numerical examples
of Poisson-type nonlinear problems with regular and irregular domains. The domains we
considered are squares, amoeba-like, and peanut-like domains. Furthermore, critical sizes of
the domains are computed for quenching problems defined on regular and irregular domains
and we compare the results with results obtained from other computational methods. The
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parametric equation of the boundary ∂Ω is defined as follows

∂Ω = {(x,y)|x = r(θ)cos(θ),y = r(θ)sin(θ),0≤ θ < 2π} ,

where
r(θ) = esinθ sin2(2θ)+ ecosθ cos2(2θ) (5.36)

is the amoeba-like boundary and

r(θ) =

√
cos(2θ)+

√
1.1− sin2(2θ) (5.37)

is the peanut-like boundary. The profiles of the amoeba-like and peanut-like domains are
shown in Figure 5.1.
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Figure 5.1: The profiles of amoeba-like and peanut-like domains.

Through all numerical examples except Example 5.4.5 in this section, we have chosen
the tolerance ε = 10−7 in Algorithm 2 to ensure the accuracy of the solution. We choose
polyharmonic splines of order 2 as the radial basis function plus a polynomial basis up to
degree 2; i.e., {1,x,y,x2,xy,y2}. If necessary, higher accuracy can be achieved using high
order polyharmonic splines. We find polyharmonic splines of order 2 to be sufficient for
solving nonlinear problems in this section. The boundary and interior points are selected
uniformly through the domain.

Example 5.4.1. Consider the following nonlinear Poisson problem with Dirichlet boundary
condition:

∆u(x,y) = 3u2, (x,y) ∈Ω, (5.38)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (5.39)
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where g(x,y) is given based on the following analytical solution

uexact(x,y) =
4

(3+ x+ y)2 .

In Table 5.1, we show the numerical results for three different domains. From the table,
we observe that the accuracy is quite high. The algorithm is also very efficient since only a
small number of iterations is required for all these three domains. The reasons that the unit
square domain has high accuracy could be because the domain is more regular and the area
of the domain is smaller than the other two domains.

Table 5.1: Example 5.4.1: The RMSE and Maximum error with different domains.

Domain (ni,nb) # Iterations RMSE MAE

Unit Square (841,236) 6 4.378e−08 1.233e−07
Amoeba (861,300) 15 5.220e−07 8.406e−06
Peanut (832,290) 15 1.204e−06 2.265e−05

Example 5.4.2. Let us consider the following nonlinear Poisson type problem:

∆u(x,y) = u3− 5
2
−
(

1− x2

4
− y2

)3

, (x,y) ∈Ω, (5.40)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (5.41)

where g(x,y) is given based on the following exact solution

uexact(x,y) = 1− x2

4
− y2.

In this example, we have tested our method for the Poisson-type nonlinear PDE which
includes the space variables x and y in the source term. The numerical results are presented
with the same domains as in previous examples. In Table 5.2, we observe that fewer of
iterations are required to obtain excellent accuracy. Therefore, the method can be a good
alternative to solve such problems accurately and efficiently.

Example 5.4.3. In this example, we consider a Poisson-Boltzmann Equation [6], a typical
example of Poisson-type nonlinear equations. This equation has been widely applied in
physical problems including bio-molecular processes and electro-static interactions between
colloidal particles. Here, we solve this equation defined on a square domain to observe the
efficiency and accuracy of the present method. Consider the problem

∇ · (ε∇u) = κ sinh(u)+ f , (x,y) ∈Ω, (5.42)
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Table 5.2: Example 5.4.2: The RMSE and Maximum error with different domains.

Domain (ni,nb) # Iterations RMSE MAE

Unit Square (841,236) 7 2.987e−10 6.224e−10
Amoeba (861,300) 15 3.132e−09 9.966e−09
Peanut (832,290) 8 1.937e−09 3.827e−09

with boundary condition

u(x,y) = g(x,y), (x,y) ∈ ∂Ω. (5.43)

Here, ε and κ are known field functions. In this experiment, we let ε = 1 and κ = 1.
The function g(x,y) is given based on the following exact solution, uexact(x,y) = x2 + y2 +

ex cos(y) and the source term f = 4− sinh(x2+y2+ex cos(y)). We have generated different
sets of interior points and boundary points on a square domain D = [−1,1]× [−1,1]. In
Table 5.3, various number of interior and boundary points are chosen and excellent results
have been observed. The improvement of the accuracy is consistent with the increasing
number of interior and boundary points. The number of iterations for various number of
interior and boundary points in Table 5.3 is 26.

Table 5.3: Example 5.4.3: The RMSE and Maximum error with different set of collocation
points.

(ni,nb) RMSE MAX

(361,88) 3.516e−05 1.049e−04
(576,116) 1.526e−05 4.830e−05
(1089,316) 4.778e−06 1.646e−05
(1444,476) 2.831e−06 9.953e−06
(3364,596) 5.766e−07 2.084e−06

Example 5.4.4. In this example, we extend the MPS for solving nonlinear problems to
compute critical domains of quenching problems using Algorithm 2. Let us consider the
rectangular domain D = [0,a]× [0,b]. The ratio a/b determines the shape of the rectangle.
Using the relation (5.9), we have,

Critical size of the domain = γ
∗ · (Area of D). (5.44)
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In Table 5.4, we show the results of the critical size computation for rectangular domains
with different ratios a/b and compare our results with Chan and Ke [12], who had adopted
the finite difference method (FDM). We have taken 841 interior points and 236 boundary
points. The results of both approaches are very close to each other. Since the computational
domain is rectangular, the FDM can be easily applied. However, for an irregular domain,
the FDM will have difficulty in implementing the solution algorithm. On the other hand,
the numerical procedure for the proposed MPS for the irregular domain is the same as the
rectangular domain. This is one of the attractive features of the MPS for solving nonlinear
or quenching problems.

Table 5.4: Example 5.4.4: Critical size of domains for rectangles with the different ratio a/b.

Ratio a/b FDM MPS

0.125 18.80540 18.81603
0.250 9.67221 9.67679
0.375 6.85011 6.85462
0.500 5.59863 5.60066
0.625 4.96792 4.97582
0.750 4.64531 4.64751
0.875 4.49641 4.50236
1.000 4.45375 4.46474

Example 5.4.5. In this example, the critical domain sizes of quenching problems are
produced for three different domain shapes including regular and irregular geometries
and compared with Chan [11] and Chan and Ke [12], Tian [74]. Chan [11] devised a
computational method using Green’s functions whereas Chan and Ke [12] used the finite
difference method and Tian [74] applied a numerical method using Delta-shaped basis
functions to compute the sizes of the critical domains.

In this numerical experiment, we have considered three domains, namely rectangle,
ellipse, and peanut. The rectangular domain is defined as [0,0.5]× [0,1] whereas the elliptic
domain is defined as

D =

{
(x,y) :

x2

a2 +
y2

b2 < 1
}

(5.45)

where a = 0.4575 and b = 0.3. The peanut-like domain we use in this example is different
from the one we considered in the examples above. The domain is defined in polar form as

r(θ) =
1
4
(1+ cos2(θ)), 0≤ θ ≤ 2π.
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To make the comparison, we choose the domain the same as taken by previous authors in
[11, 12, 74]. The profile of the peanut-like domain in this example is shown in Figure 5.2.
We have chosen 729 interior points and 208 boundary points of the rectangular domain and
858 interior points and 300 boundary points for the elliptical domain. Similarly, the interior
points and boundary points taken for the peanut-like domain are 780 and 300 respectively.
Furthermore, the areas of the rectangle, ellipse and peanut-like domains are 0.5, 0.4312, and
0.4663 respectively. As shown in Table 5.5, we notice that the critical size of three domains
using the modified MPS is close to the results obtained by other methods. The computer
running time for rectangle, ellipse, and peanut-like domains are 4.44, 6.59, and 6.61 seconds
respectively. There is no report of the numerical efficiency of previous work.

Figure 5.2: Example 5.4.5: The profile of peanut-like domain.

Table 5.5: Example 5.4.5: Critical size of domains for different geometries.

Domains Delta-shaped function MPS FDM Green’s function

Rectangle 5.599 5.601 5.599 −
Ellipse 4.460 4.466 − 4.460
Peanut 5.052 5.053 − −

Appendix

Lemma 1. Let A, B and C be three matrices of same size in block matrix form with 3 row
partitions and 3 column partitions such that the sub-matrices on the second row of the matrix
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A are equal to the corresponding sub-matrices of B. Let

A =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 ,B =

B11 B12 B13
A21 A22 A23
B31 B32 B33



and C =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 .
Then the sub-matrices on the second row of the product matrix AC are equal to the corre-
sponding sub-matrices of the product matrix BC.
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Chapter 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this dissertation, polynomial particular solutions for general linear differential operators
with constant coefficients have been derived. This is a further improvement of the previous
works [18, 32] where the differential operator contains no convective terms. Instead of
confining the collocation points on the Gauss-Lobatto points in a rectangular domain, we
are allowed to choose the collocation points in an arbitrary fashion using our proposed
algorithm. A multiple scale technique is required to alleviate the ill-conditioning problem.
Because the polynomial particular solutions are available, the MPS can be easily employed
to solve various types of elliptic partial differential equations. Another advantage of the
proposed algorithm is that there is no parameter to be adjusted and the algorithm is very
stable and highly accurate. Once the particular solutions are generated and stored in a table,
the computation is very efficient.

The particular solutions can not be obtained if the differential operator has variable
coefficients or a6 = 0. Therefore, Poisson’s problem and PDEs with variable coefficients can
not be solved using this approach. The method has been modified to solve such problems.
We have presented many numerical examples solved by the new scheme. The numerical
stability and efficiency of the method have been preserved even after modification. With
this new modification, we are able to solve a large class of partial differential equations.
We have tested the method on solving nonlinear, time-dependent, and 3-D problems. The
effectiveness of the method for solving such problems is very promising.

To solve large-scale problems, the localized version of the MPS based on polynomial
basis function is devised. The method has been employed to solve Poisson’s problem, PDEs
with constant coefficients, and PDEs with variable coefficients. Furthermore, 3-D problems
defined on regular and complicated domains are successfully solved by this new algorithm.
Additionally, the method is applied to solve some near-singular problems. Numerical results
show that the proposed algorithm is highly stable and accurate.

The numerical outcomes have proven that the particular solutions derived in this disser-
tation have made these two methods easy to implement and highly efficient to solve a large
class of partial differential equations.
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As another part of the dissertation, the traditional MPS has been modified for and applied
to solving nonlinear Poisson-type problems. The numerical results indicate that the method
can be an attractive alternative to other traditional methods. Furthermore, the method is
further used to compute the critical domains of quenching problems and compared to the
results of some other established numerical methods such as the finite difference method.
The comparisons show that the modified MPS can effectively solve nonlinear singular
problems. Unlike the FDM, it can solve such problems more efficiently defined on irregular
domains with higher dimensions. The simplicity of the implementation is another attraction
of this method, apart from the numerical accuracy and efficiency.

6.2 Future Works

The derivation of particular solutions for general partial differential operators is an important
contribution to the field of numerical methods. We have done extensive work to test these
particular solutions on two different numerical methods to see their effectiveness in solving
various partial differential equations. The derived particular solutions have made the MPS
and the LMPS more accurate and simple. These solutions have opened up future research
topics:

• The MPS is applied to solve a limited number of nonlinear and time-dependent
problems. We are planning to solve more challenging problems such as quenching
problem [12], the Burger’s equation [47], and the Fisher’s equation [9, 44].

• For nonlinear problems, we have applied Picard’s iteration in the solution process. For
Picard’s iteration, the forcing term should be Lipschitz continuous and the Lipschitz
constant should be strictly less than 1 for the sequence to converge. We will use the
Newton’s iteration method instead of Picard’s iteration in the MPS to solve nonlinear
problems.

• To prove the further applicability of our new schemes, we are collaborating with Dr.
Ji Lin to solve more engineering problems such as the inverse Cauchy Problem [53]
and plate bending vibration problems [37] .

• The LMPS with polynomial basis functions has successfully solved many PDEs
including near-singular problems. We have not solved nonlinear and time-dependent
problems using this algorithm. We plan to solve such problems in the future.

• The MPS and LMPS will be used to solve more challenging problems in 3-D with
complicated domains. The method will also be extended to solve axisymmetric
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problems [66, 67].
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Appendix A

POLYNOMIAL PARTICULAR SOLUTIONS

A.1 Poisson Type Problems

The particular solutions of polynomial basis functions for the Laplacian operator for 2D and
3D cases [23, 32] are as follows:

A particular solution of

∆φ = xnym, m≥ 0,n≥ 0, (A.1)

is given by

φ(x,y) =


∑
[ n+2

2 ]
k=1 (−1)k+1 m!n!xm+2kyn−2k+2

(m+2k)!(n−2k+2)! m≥ n,

∑
[m+2

2 ]
k=1 (−1)k+1 m!n!xm−2k+2yn+2k

(m−2k+2)!(n+2k)! m < n.

(A.2)

Similarly, the particular solution of

∆φ = xlymzn, m≥ 0,n≥ 0, (A.3)

is given by

φ(x,y) =
[m

2 ]+[ n
2 ]+1

∑
i=1

xl+2i
min{i,[m

2 ]+1}
∑

j=max{1,i−[ n
2 ]}

ai jym−2 j+2zn−2i+2 j (A.4)

where

ai j =
−1

(l +2i)(l +2i−1)
[(m−2 j+4)(m−2 j+3)ai−1, j−1 (A.5)

+(n−2i+2 j+2)(n−2i+2 j+1)ai−1, j],

a11 = ai0 = a0 j = 0. (A.6)
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A.2 Helmholtz Type Problems

The particular solutions of polynomial basis functions for the Helmholtz type operator for
2D and 3D cases [62, 32] are as follows: For ε =±1,the particular solution of

∆φ + ελ
2
φ = xnym, m,n≥ 0 (A.7)

is given by

φ(x,y) =
[m

2 ]

∑
0

[ n
2 ]

∑
0

ε(−ε)k+l(k+ l)!m!n!xm−2kyn−2l

λ 2k+2l+2k!l!(m−2k)!(n−2l)!
. (A.8)

where [t] is the largest integer that is less than or equal to t.

Similarly, for ε =±1, the particular solution of

∆φ + ελ
2
φ = xpypzr, (A.9)

is given by

φ(x,y,z) =
[ p

2 ]

∑
j=0

[ q
2 ]

∑
k=0

[ r
2 ]

∑
l=0

ε(−ε)k+l( j+ k+ l)!p!q!r!xp−2 jyq−2kzr−2l

λ 2 j+2k+2l+2 j!k!l!(p−2 j)!(q−2k)!(r−2l)!
(A.10)

where p,q and r are the positive integers and [t] is the largest integer that is less than or
equal to t.
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