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ABSTRACT 

AN ECOLOGICAL EXAMINATION OF JOHNSON BAYOU (PASS CHRISTIAN, 

MS) WITH A REPRODUCTIVE HISTOLOGICAL ANALYSIS OF RANGIA 

CUNEATA, AND A COMPARATIVE MORPHOLOGICAL STUDY OF  

THE FOOT AND SHELL OF RANGIA CUNEATA AND  

POLYMESODA CAROLINIANA 

by Brandon David Drescher 

August 2017 

Johnson Bayou is an estuarine system located in Pass Christian, MS. Research 

involved a biotic and abiotic examination of Johnson Bayou, resulting in the 

identification of numerous species of plants and animals, including Rangia cuneata 

(Mactridae) and Polymesoda caroliniana (Cyrenidae), sympatric species of infaunal 

bivalves. Environmental factors (e.g., water temperature, salinity) were measured over 

three years to describe the system from an abiotic standpoint, and used in a qualitative 

and quantitative reproductive histological study on R. cuneata. Results revealed 

differences in timing of gamete production and spawning between three subpopulations 

of this species. Sediment samples taken from the study areas had statistically different 

levels of organic matter and sediment particle sizes. A laboratory-based experiment was 

undertaken to examine the effect of three sediment types on the number and length of 

burrowing events between both species of clams. It was found that the number of 

burrowing events and the length of burrowing events differed significantly, and the 

difference in length of burrowing events in silt between species was significant.  
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Infaunal bivalves are ecosystem engineers, capable of altering the morphology of 

sediment and water column via burrowing with their foot. However, little research has 

examined the foot morphology and ultrastructure of bivalves between sympatric species 

from different families. A comparative study using light and electron microscopy 

methods revealed that R. cuneata and P. caroliniana have the same general organization 

of foot tissue, with a thick internal musculature, subepithelial region, and ciliated, simple 

epithelium. However, the composition of glandular tissue comprising the subepithelium 

was different between species. While P. caroliniana produces only acidic 

mucopolysaccharides, R. cuneata produces both acidic and nonacidic 

mucopolysaccharides.  

Bivalve shells provide shelter and substrate for numerous organisms and as a 

source of calcium and carbonate ions. Shell of either species has not been examined from 

a system in MS. Using microscopy methods, R. cuneata produces four shell layers, while 

P. caroliniana produces three. Presence of iron and titanium were detected from the 

periostracum, silicon and strontium in the nacre, but not from the adductor muscle scar, 

and the elemental composition of the outer and middle layers was the same.  
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CHAPTER I – LITERATURE REVIEW OF RANGIA CUNEATA AND POLYMESODA 

CAROLINIANA WITH RESPECT TO ECOLOGY, AND FOOT AND SHELL 

ULTRASTRUCTURE 

Background 

Historical and current background on Rangia cuneata 

Prior to the Eocene, the wedge clam, Rangia cuneata (G. B. Sowerby I, 1831), 

was restricted to the Gulf of Mexico. According to fossil records, by the time of the 

Pleistocene, R. cuneata had expanded into estuaries and rivers along the Atlantic coast, 

but for reasons unknown, the populations died out (Richards 1962a). Beginning around 

1955, living specimens of R. cuneata were reported in estuaries stretching from Maryland 

to Florida. This resurgence or reinvasion of R. cuneata was likely due to anthropogenic 

actions (Hopkins and Andrews 1970). For instance, a stable population in the Hudson 

River is hypothesized to have arisen as a result of ballast water exchange from the Gulf of 

Mexico (Carlton 1992). Today, the range of R. cuneata extends from the Chesapeake Bay 

area and vicinity (Richards 1962b; Pfitzenmeyer and Drobeck 1964; Hopkins and 

Andrews 1970; Abbott and Morris 1995) down the Atlantic coast into the Gulf of Mexico 

(Woodburn 1962; Andrews 1971) and as far south as parts of Veracruz (Stark 1977) and 

Laguna de Pom of Laguna de Terminos, Campeche, Mexico (Alvarez-Legorreta et al. 

1994). There is a report of this species found in the mangroves of the Martinique Islands 

in the Caribbean (Lécuyer et al. 2004). Rangia cuneata has since invaded the Baltic Sea 

(Rudinskaya and Gusev 2012) and other parts of European coastal waterways. Due to 

rapidly increasing population numbers in certain habitats, infrastructure has been affected 

including blockage of fire hoses in Delaware (Counts III 1980) and industrial water pipes 
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in Antwerp (Verween et al. 2006). It is proposed that blockages can occur because R. 

cuneata is able to exploit even a thin layer of soft sediment to establish a population. 

Once settled, sedimentation increases due to the presence of the clams, which leads to 

increasing numbers of clams and consequent blockage of the pipes (Verween et al. 2006). 

Aside from reported annoyances and invasions, various aspects of this species have been 

studied in some detail ranging from human consumption and life histories to 

environmental impacts.  

Two other species have been described in the genus Rangia, Rangia flexuosa and 

Rangia mendica. Both species may be found alongside or in the same system as R. 

cuneata. Rangia cuneata and R. flexuosa are known to occur sympatrically (Conrad, 

1839) (Foltz et al. 1995). Rangia flexuosa has been reported in the Gulf of Mexico from 

Louisiana (Abbott and Morris 1995) to Vera Cruz, Mexico (Stark 1977), but is not nearly 

as common as R. cuneata (Andrews 1971). Some of the morphological differences 

between R. flexuosa and R. cuneata include a greater elongation of the posterior end of 

the shell in the former. Between these two species, the pallial sinus is described as more 

defined in R. cuneata and R. cuneata also possesses a longer posterior lateral tooth 

compared to that found in R. flexuosa (Wakida-Kusunoki and MacKenzie 2004). The 

third species in this genus, R. mendica (Gould 1851), has been found in low salinity 

estuaries along the coast of Mexico (Stark 1977). Little to no information is available for 

R. mendica besides its reported existence along the Atlantic and Pacific coasts of Mexico 

(Huber 2010).  
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Life history and sympatry 

Much of the life history of R. cuneata has been studied from gonadogenesis and 

gametogenesis to growth rates and proposed life spans in various ecosystems. Rangia 

cuneata is a dioecious species with an exception mentioned by Olsen (1976a) who found 

that 2.1% (n = 238 slides) of a population in Ochlokonee River Estuary, Florida, was 

hermaphroditic. In some bivalves, such as freshwater mussels and blood clams (Anadara 

spp.), male and female gonad can be differentiated based on color of the tissue (Walker et 

al. 2006; Afiati 2007). Gonadal coloration and appearance of a single species may differ 

depending on the locality within a single system; however, in most cases this is due to 

presence or absence of gametes. For example, Fairbanks (1963) noted that R. cuneata 

along the north shore of Lake Pontchartrain possessed pale and flaccid gonads in contrast 

to those along the south shore that possessed opaque and firm gonads when observed 

along the same time frame. Additionally, a gonadal tissue color range of white, orange, or 

red is not uncommon (Fairbanks 1963; Cain 1972) in any studied population of R. 

cuneata. These differences in coloration and appearance are not surprising given that 

temperature, salinity, and other environmental factors affect gametogenesis and 

spawning. Thus, depending on the environmental factors of the system in which a 

population of R. cuneata is found, reproductive stages can be inter- and intraspecifically 

different.  

Gonadogenesis was thought to begin once a shell length of approximately 25 mm 

was obtained (Fairbanks 1963); however, clams as small as 14 mm have been reported to 

possess gonads (Cain 1972). Water temperature and salinity are the most important cues 

(10-15°C; 3-5 ppt) for gametogenesis and spawning to occur (Cain 1972; Jovanovich and 
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Marion 1989), with fully ripe gonads forming with increasing water temperature (Cain 

1975). Spawning, triggered by increasing salinity, occurs from late spring to early fall, 

but can occur more than once in a single year (Fairbanks 1963; Chanley 1965; 

Jovanovich and Marion 1989). Variations in reproductive cycles and spawning periods 

are not unusual given the extent of R. cuneata’s range (Cain 1975; Lane 1986; Fritz et al. 

1990). Asymmetrical reproductive cycles have been reported in populations of other 

bivalve species located at different latitudes (Giese 1959; Ropes 1968; Loosanoff 1969; 

Jovanovich and Marion 1989). Local conditions may play a role within populations 

(Giese 1959), but whether or not populations of R. cuneata differ with respect to when 

they become reproductively active based on their location is unclear (Giese 1959).  

With regard to gametogenesis, Ropes and Stickney (1965) have established five 

gametogenic phases for males and females (early and late active, ripe, partially spawned, 

and spent), but advise that divisions between the phases may not be obvious or easy to 

determine under microscopy. Other references may use a different scale with added sub-

phases and with more or less than the stated five phases. For example, Delgado and 

Camacho (2005) listed four stages in a study determining gonadal development 

relationship to food availability in the venerid Ruditapes decussatus. The stages included 

sexual rest (I), initiation of gametogenesis (II), advanced gametogenesis (III), and 

reproduction period (IV). Partial spawning may occur during stage IV (Delgado and 

Camacho 2005). Stages were determined based on developmental phase of gametes. 

Partial spawning may be indicated by a reduction in the number of ripe gametes, but a 

large (~50%) percentage of gametes are still present in the gonad. This may be followed 

in subsequent months by another increase in the number of gametes and a final spawning 
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event, in which nearly all gametes are released from the gonad. A study by Afiati (2007), 

on two species of Anadara, used a follicular system based on gametogenic stages such as 

early, developing, ripe, spawning, spent, and redeveloping. These stages were further 

broken into three sub-stages (e.g., “redeveloping female stage 2”; Afiati 2007). 

Modifications of previously published descriptions of gonadal phases or stages 

(Marroquin-Mora and Rice 2008) were also encountered in the literature.  

At the periphery of the female gonad, oogonia are embedded in or attached to the 

follicle (also called alveolar) wall via a peduncle, marking the early active or first phase. 

These oocytes are not of a singular shape (Cain 1972; Olsen 1976a). The nuclei of 

oocytes can range anywhere from 5 to 20 μm in diameter. The late active or second phase 

of gametogenesis begins when primary oocytes begin to enlarge away from the follicle 

walls. The third phase is the ripe phase, recognized when interstitial fluid is virtually 

absent (Olsen 1976a) and oocyte nuclei are approximately 30 μm in diameter (Cain 

1972). The last two gametogenic phases, partially spawned and spent, involve eggs that 

were not released and are eventually broken down by immune cells (Olsen 1976a) or 

hemocytes.  

 In males, spermatozoa can be found abundantly located along thickened follicle 

walls indicating an early active phase of gametogenesis. Spermatocytes fill the lumen in 

the late active phase. Primary and secondary spermatocytes are a few microns in 

diameter. Secondary spermatocytes, or spermatids (Cain 1975), multiply, forming dense 

masses or sperm balls (Cain 1975), and become spermatozoa with eosinophilic tails 

directed towards the center of the lumen when males are in the ripe phase. For reasons 

unknown, males may remain ripe long after female gonads are spent (Cain 1972). 



 

6 

Partially spawned and spent phases in males are similar to females where the lumens 

appear to be near or completely empty of gametes. Remaining sperm undergo cytolysis 

by immune cells (Cain 1975; Olsen 1976a).  

Rangia cuneata are known broadcast spawners where the gametes of both sexes 

are released through the excurrent siphon into the water column and observed as a pale 

coloration with a granular texture (female oocytes) or a thin milky white stream (male 

sperm) upon release (Cain 1975). In contrast, Chanley (1965) states that gametes of both 

sexes appear as a thin white stream. After fertilization, zygotes obtain a diameter of 

nearly 70 μm. Within nearly nine hours, a ciliated blastula develops followed by a pelagic 

trochophore stage at 26 hours (Fairbanks 1963). However, Chanley (1965) reported that 

within 24 hours post-fertilization, the larvae form a shell with a straight-hinge, and a 

yellow color that darkens and intensifies with growth. As growth continues to a size of 

60-75 μm, the larvae become rounded and the straight-hinge line becomes masked. 

Metamorphosis typically begins after six days (~ 160 μm in length) with the first sight of 

a functional foot. A statocyst is present at the base of the foot. Gills form shortly 

thereafter at a larval length of approximately 180 μm. At the cost of shell length, shell 

height increases, and rounded anterior and posterior ends become the most noticeable 

characteristics of larvae prior to metamorphosing into a juvenile (Chanley 1965). From 

here, juvenile clams retain a similar shape into adulthood (Chanley 1965).  

In terms of environmental conditions, embryos are unable to develop in 

freshwater (Cain 1975). Cain (1975) reported optimal conditions for embryos at 18-29°C 

and 6-10 ppt. Larvae can survive a range of temperatures as well as salinity, but appear to 

better tolerate a temperature and salinity range of 8-32°C and 2-20 ppt, respectively (Cain 
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1972; Cain 1973). Adults appear to be able to tolerate a similar temperature and salinity 

range, with a preferred salinity range of 0-18 ppt (Hopkins et al. 1973) and a reported 

limit of 20 ppt (Cain 1972), but have been known to tolerate up to 38 ppt (Hopkins et al. 

1973). 

Sympatric species 

Whereas R. cuneata accounts for a major percentage of the benthic biomass in 

certain areas (e.g., upper James River Estuary, Chesapeake Bay) (Cain 1972; 

Pfitzenmeyer 1972), other species of bivalves may be present including Macoma 

balthica, Macoma mitchelli, and Ischadium recurvum (Wells 1961; Cain 1972). In a 

study of the fauna associated with oyster beds in Newport River, Beaufort, NC, R. 

cuneata was present in the muddy substrate between or under the eastern oyster, 

Crassostrea virginica (Wells 1961). Polymesoda caroliniana (Bosc 1801; Veneridae, 

Cyrenidae), the marsh clam, coexists with R. cuneata in estuarine systems in Florida 

(Olsen 1976a, 1976b; Marelli 1987), Alabama (Swingle and Bland 1974), Mississippi 

(Duobinis-Gray and Hackney 1982), Louisiana (Fairbanks 1963; Hoese 1973), and in 

areas of Eastern Mexico (Wakida-Kusunoki and MacKenzie 2004).  

Less information is available on P. caroliniana than R. cuneata. More research 

has been published on a congeneric species inhabiting parts of the Philippines (e.g., 

Polymesoda erosa), specifically its reproductive strategies and cycles (Dolorosa and 

Dangan-Galon 2016). While there is no known economic value for P. caroliniana in the 

United States, species of Polymesoda in the Southeast Asian countries are harvested for 

food. Over harvesting and habitat loss seem to be driving the increase in studies assessing 

life span and reproductive strategies for P. erosa (Dolorosa and Dangan-Galon 2016). No 
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studies assessing the phylogenetic relationships within the genus Polymesoda were 

found. Specimens of P. caroliniana are not described to reach reported sizes of P. erosa, 

but size may be influenced by location (i.e., more food availability and warmer 

temperatures in the Philippines).  

Although R. cuneata and P. caroliniana can be found near each other, one 

reference stated that the physiology of P. caroliniana allows it to be intertidal while R. 

cuneata is only subtidal (Marelli 1987). It remains unclear as to whether physiological 

differences cause this spatial separation, but it has been proposed that larvae of R. 

cuneata fail to settle or survive in intertidal zones (Marelli 1987). Regardless, the 

assertion that R. cuneata is strictly subtidal does not hold true in the study site reported in 

this dissertation, as R. cuneata have been found in areas exposed to the air during low 

tide for several hours.  

Environmental impacts of Rangia cuneata 

Bivalves biochemically alter the composition of the water column and the 

sediment they inhabit through filtering particulates from the water column and bringing 

in material from the sediment via the foot or mantle cavity. Nearly all elemental 

biogeochemical cycles are affected including carbon (Doering et al. 1986; Chauvaud et 

al. 2003), nitrogen and phosphorus (Asmus et al. 1995), silicate (Dame et al. 1991), and 

sulfur (Hansen et al. 1996). For example, ammonia fluxes are noticeably higher in 

bivalve beds in contrast to substrate with no bivalves (Prins and Smaal 1994). In addition 

to alterations as a result of filtration, bivalves deposit biochemically altered and 

unaltered, or indigestible, material known as pseudofeces onto the sediment surfaces 

(Norkko et al. 2001). Pseudofeces may be mixed with unaltered or incompletely digested 
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algae (e.g., diatom frustules) (Olsen 1976b) and sand, and then expelled from the mantle 

cavity (Fairbanks 1963; Wong et al. 2010). Feces and pseudofeces are an important 

component of sediment, because the nutrients are cycled and may be used further by 

microbial or pelagic organisms (Vaughn and Hakenkamp 2001). As a result, bivalves are 

able to transfer energy to other trophic levels (Rosenberg 2001). Local microbial food 

webs, infaunal and epifaunal macrobenthic organisms, phytoplankton and pelagic 

predators that inhabit the same area are all affected by transfer of energy (Schaffner et al. 

1987; Rosenberg 2001). Sediment characteristics such as permeability, porosity, and the 

microtopography of the sediment surface can be drastically altered by the deposition of 

feces, pseudofeces or mucus, bivalve movement through the sediments, and formations 

such as pits or mounds (Graf and Rosenberg 1997). In addition, sediment chemistry is 

also affected (Phelps et al. 1969); for example, higher oxygen levels can be detected in 

the top few centimeters of sediment or deeper when in proximity to burrowed or 

burrowing bivalves (Aller 1982). By altering the microtopography of the sediment 

surface and sublayer, bivalves can indirectly allow or enhance the formation of bacterial 

mats and films of diatoms (Graf and Rosenberg 1997). Diatom films reduce shear stress 

causing turbulence in the water column to develop at higher angular velocities (de Jonge 

and van der Bergs 1987; Delgado et al. 1991) resulting in greater stabilization of 

sediments. While sediment stabilization via diatom-produced mucilage has been reported 

from laboratory studies, it has only been suggested from field observations (Paterson 

1989). In contrast, bare sediments (e.g., coarse sand with little to no microbial life) 

experience greater turbulence, causing scouring at the sediment surface (de Jonge and 

van der Bergs 1987), which may affect recruitment and settlement of bivalve larvae.  
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Although bivalves may allow formation of microbial mats, they will also filter 

and consume microbes, detritus, and possibly even larvae of bivalves and those of other 

organisms. Gut contents of R. cuneata have reportedly contained detritus (> 50%), algae 

(~17-20%), and sand (Darnell 1958). Plant material and diatom frustules or remnants 

have also been reported (Darnell 1961, Cleveland 2003). The effect of bivalves on larval 

recruitment of any organism that broadcast spawns has been under debate. Theoretically, 

any filter-feeder could filter out suspended gametes or larvae and consequently alter the 

future distribution of organisms. For example, Commito and Boncavage (1989) found a 

positive correlation between mussel beds and oligochaete abundance (i.e., greater the 

density of mussels, the more oligochaetes were present).  

Filtering also affects water column turbidity and clarity. Few studies have been 

conducted on water column clearance rates by R. cuneata in a laboratory setting or in the 

field beyond those conducted in Lake Pontchartrain and the upper region of Barataria 

Estuary in southeastern Louisiana (Lakes Cataouatche, Salvador and Lac des Allemands) 

(Wong et al. 2010). Bivalve clearance rates are generally calculated based on the 

reduction of Chlorophyll-a concentration within a selected time span. For this calculation 

to be accurate, the volume of the ecosystem or mesocosm as well as the initial Chl-a 

concentration must be known. In Lake Salvador and Lac des Allemands, R. cuneata were 

determined to filter approximately 1.35 and 2.27 L h-1, respectively; while a filtration rate 

of 2.06 L h-1 g-1 was determined by dry tissue weight for both systems (Wong et al. 

2010). Assuming an active filtration period of 24 hours per day, with a biomass of 15.9%, 

40%, and 99.9% (Lake Cataouatche, Lac des Allemands, Lake Salvador, respectively), 

authors estimated a filtering rate of the lakes between 1.0 and 1.5 days (Wong et al. 
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2010). Although there is no information on differences in clearance rates between 

juveniles and adults, due to morphological size differences and differing metabolic 

requirements, adults would presumably be able to clear a greater volume of water faster 

than juveniles. While epifaunal bivalves (e.g., Geukensia demissa) can filter the water 

column, but live attached to a hard substrate, infaunal bivalves such as R. cuneata and P. 

caroliniana live buried in the substrate. A strong foot is required for settlement and 

burrowing into a substrate.  

Burrowing and pedal shape 

While pedal shape differs between some families of bivalves, as a likely result of 

coevolution with habitat substrate, burrowing appears to vary little between families and 

species of infaunal bivalves (Stanley 1975). A sequence of burrowing behaviors has been 

recognized (Stanley 1975), which involves probing with the foot upon the sediment until 

it reaches a certain depth, presumably the maximum length of extension. Closure of the 

siphons in conjunction with contraction of the adductor muscles causes an increase in 

pressure in the mantle cavity, subsequently increasing hemolymph volume in the foot for 

anchorage. Retractor muscles pull the shell forward in a rocking motion. Once the animal 

is pulled forward to its farthest extent, the siphons open relieving pressure in the mantle 

cavity. Several burrowing events in any species of infaunal bivalve must take place in 

repetitive cycles. After one cycle, the foot probes deeper and initiates the next series of 

burrowing activity (Trueman 1966). The clams undergo a rocking motion, which is 

critical to successful burrowing, because an erect clam on top of the sediment cannot 

push (or pull itself) straight down (Stanley 1975). Clams have two retractor muscles, 

anterior and posterior. The orientation of these muscles, the weight distribution of the 
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clam, and the distribution of any resisting forces of the sediment adjacent to the shell are 

important factors in order to reduce upward slippage and maintain a downward direction 

when burrowing (Stanley 1975). In burrowing bivalves, a prosogyrous shape with a 

nearly flat lunule helps the bivalve to resist strain from burrowing into coarse sediment. 

Otherwise, the organism would slide forward instead of down (Stanley 1970).  

Pedal Morphology and Ultrastructure of Clams 

Background on bivalve pedal morphology and ultrastructure 

Evolution appears to have favored foot morphology that facilitates living in a 

specific type of sediment (Rhoads and Young 1970). Foot morphology correlates strongly 

with the type of substrate and habitat, and less so with burrowing depth (Stanley 1970; 

Oliver and Allen 1980). Rangia cuneata is an infaunal siphonate deposit feeder (Kranz 

1974) that possesses a wedge- or hatchet-shaped foot with an ill-defined heel curving 

smoothly from the visceral mass towards a well-developed, pointed toe. The foot appears 

to provide two major functions. The primary function of the foot is for burrowing and 

anchoring the body into the substrate. In addition to this, it has been shown that the foot 

is likely used for feeding and removal of sediment from the region of the mouth (Morton 

1973). While at least one researcher has stated that R. cuneata lacks the structures for 

possible pedal feeding (Marelli 1987), evidence collected to date and reported in this 

dissertation contradicts that presumption.  

A review by Cooper (1981) stated that there had been little interest in R. cuneata 

besides the few studies that observed its ability to osmoconform and osmoregulate. Since 

then, some research has been performed beyond tolerance of salinity regimes, but a study 

on the pedal ultrastructure in this species has not been undertaken. While pedal 
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ultrastructure has been reviewed in other species (e.g., Mytilus edulis, Gomphina 

veneriformis) there are debates on how similar the ultrastructure is between species, 

particularly between sympatric species. For instance, alongside R. cuneata exists 

Polymesoda caroliniana (Veneroida: Cyrenidae) in Johnson Bayou, MS. Very little is 

known about P. caroliniana, and pedal ultrastructure is one of the areas where knowledge 

is lacking. The range of P. caroliniana extends in estuarine systems from Virginia to 

parts of the Gulf Coast (Duobinis-Gray and Hackney 1982). One report stated that P. 

caroliniana has a well-developed foot, but their position in the substratum is limited or 

difficult for them to maintain (Andrews and Cook 1951). This statement is unclear based 

on lack of previous gross morphological evidence, and observations reported in this 

dissertation in which P. caroliniana has been found burrowed as deeply as R. cuneata. A 

comparative look into the pedal ultrastructure will provide new insights into these 

species’ ability to burrow and their role in estuarine ecosystems, particularly in Johnson 

Bayou where multiple types of sediments are present.  

A major focus of this project involved understanding the pedal musculature, as 

the foot is capable of movements including elongation, contraction, torsion, and bending 

(Kier 1988). The system for pedal motion is thought to be hydrostatic, in which cavities 

within the tissue become distended with hemolymph, causing an increase in pressure and 

consequential swelling (Kier 1988). The hydrostat system relies on antagonism between 

the pressure produced by incoming hemolymph and the pedal musculature; however, this 

has been studied in few bivalves (Kier 1988). In conjunction with a neuromuscular 

system, local muscle contractions occur depending on the pattern and direction of 

burrowing (Trueman 1966; Trueman 1967; Kier and Smith 1985). A bivalve’s foot 
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movement is thought to be largely via hydrostatic pressure regardless of burrowing or 

feeding positions (Kranz 1974; Kier 1988).  

Research performed by Park et al. (2012) on the foot of the venerid Gomphina 

veneriformis is one of the most recent studies on pedal ultrastructure. The foot, as 

described from outer to inner, has an epithelial layer of ciliated columnar cells and 

secretory cells, a connective tissue or subepithelial layer rich in collagen fibers, and a 

muscular layer (Park et al. 2012). Observations utilizing transmission electron 

microscopic (TEM) techniques revealed a dense microvilli layer present amongst the cilia 

on the epithelium of G. veneriformis (Park et al. 2012). Two types of secretory cells in 

the pedal epithelium contain acidic mucopolysaccharide-rich granules confirmed from 

Alcian Blue - Periodic-acid Shiff (AB-PAS) (pH 2.5) staining (Park et al. 2012).  

The production of mucus (or mucins, as reported in some of the literature), 

particularly in invertebrates, has been shown to be essential in movement patterns, 

defense, and prevention of desiccation among other functions (Denny 1989). Mucins are 

lipids or proteins linked to sugars, that when combined make mucin (Nakamura et al. 

2013). However, the term “mucin” is somewhat vague, and “mucus” is the preferred term 

for external secretions from an epithelium (Davies and Hawkins 1998). In addition to 

locomotion through and adhesion to sediment particles during burrowing, the cilia and 

mucus might function in capturing and transporting food particles toward the gills or 

labial palps for processing. This would lend credence to so-called pedal feeding (Marelli 

1987).  

In bivalves, mucus production occurring from the pedal aperture, an unfused 

portion of the mantle margin from which the bivalve foot emerges, has been observed 
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since the early 1900s (Norenburg and Ferraris 1990). Norenburg and Ferraris (1990) 

studied glands from which mucus is produced and released in Mya arenaria. Glands 

located in the mantle tissue surrounding the pedal aperture give this tissue a brownish 

color. These glands produce mucus from two types of secretory cells, mucus goblet and 

bacillary mucus cells. Mucus goblet cells are outnumbered by bacillary mucus cells in M. 

arenaria (Norenburg and Ferraris 1990). Also in M. arenaria, homogenous, granular 

material packed in small secretory vesicles (0.3-0.6 µm in diameter) is found in mucus 

goblet cells and heterogeneous granules are abundant in bacillary mucus cells. The 

secretory vesicles stain positive for sulfated and nonsulfated mucosubstances; the latter 

apparently predominates in bacillary mucus cells (Norenburg and Ferraris 1990). In 

species that do not burrow (e.g., Mytilus edulis), multiple glands may be found in the foot 

prior and during settlement and subsequent metamorphosis. Up to nine glands were found 

in the pediveliger foot of M. edulis. Of the nine glands, two secrete weak acidic 

mucopolysaccharides and proteinaceous vesicles, which is presumably used to enhance 

ciliary gliding during pedal movement and thought to function in adhesion during pedal 

crawling, respectively (Lane and Nott 1975). The remaining glands are involved in 

byssus formation (Lane and Nott 1975). Infaunal clams do not produce a byssus, but it 

may be possible to see how the foot and its composition compare between species 

(infaunal and epifaunal), shedding light on evolutionary relationships based on 

phenotypes and how close the morphology is of structures between species of different 

families and orders.  
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Shell Morphology and Ultrastructure of Bivalves 

Shell morphology and growth in bivalves 

The shell of bivalves has four major orientations or regions: dorsal, ventral, 

posterior, and anterior. The dorsal part of the shell, the umbo, is the oldest part, and the 

ventral margin is the youngest, indicating that growth occurs outward from the umbo. 

Depending on the species, shell formation may not be a uniform, unidirectional process. 

Scallops (e.g., Pecten spp.) are an exception because they have equivalves, and formation 

is consequently fairly uniform, but in all bivalves the deposition of shell material occurs 

the fastest across the area of greatest inflation (Rosenberg 1980).  

Bivalve shells are generally comprised of three major regions: periostracum, 

prismatic, and nacre. With the exception of the periostracum (a thin, organic layer 

covering the external surface of the shell), the other layers are composed of aragonite 

(e.g., nacre), calcite, or both (Carter 1980). The prismatic layer of the shell in many 

bivalve Orders is composed of aragonite, but some (e.g., oysters and some venerids) may 

be composed of calcite, possibly in addition to aragonite (Carter 1980). The inner 

prismatic layer may be composed of compact sheets or variously oriented crystals of 

calcium carbonate. In many species, there are two structurally different prismatic layers, 

separated by a pallial myostracum. The myostracum is the site of mantle tissue 

attachment. The mantle tissue is responsible for controlling shell deposition. As shell 

growth progresses from the umbo to ventral margin, the soft tissue also grows and the 

prior points of attachment between mantle tissue and shell fills in with aragonite, but 

leaves a distinct line that can be visualized in shells that have been sectioned (Fritz and 
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Haven 1983; Fritz et al. 1990). The nacre is the innermost shell layer that is in direct 

contact with the soft body of the organism.  

Why certain bivalves produce shells out of aragonite and others of calcite is 

unknown.  Aragonite is more dense (2.93 g mL-1) than calcite (2.71 g mL-1), but the latter 

is more thermodynamically stable (Epstein et al. 1953). The outer prismatic layer is 

typically composed of calcite. It is hypothesized that the presence of a less dense, but 

more stable crystalline structure in contact with the external environment provides 

support for infaunal bivalves. Thus, the production of calcium carbonate in the form of 

calcite can decrease density to prevent sinking of the clam too deep or easily, and the 

clam can acquire protection from water quality extremes (e.g., increase in acidity or 

erosion) (Carter 1980).  

Shell is laid down as rings, or microgrowth increments, that form growth bands. 

According to Lutz and Rhoads (1980), there are at least five temporal categories of 

microgrowth increments: annual, fortnightly, monthly, semidiurnal and diurnal, and 

semiperiodic (e.g., spawning events). These increments or bands have been used to 

determine growth patterns and age in bivalves since the mid- to late 1900s (Clark 1979; 

Fritz and Haven 1983; Fritz et al. 1990).  

The shell ultrastructure of several species (e.g., Mercenaria mercenaria, 

Geukensia demissa, Arctica islandica, Anadara granosa, Cerastoderma edule) (Ansell 

1968; Pannella and MacClinktock 1968; Farrow 1971; Brousseau 1984; Richardson 

1987; Weidman 1995) have been extensively studied, including Rangia cuneata. A study 

by Taylor et al. (1973) on the shells of R. cuneata discerned three primary carbonate 

layers: a thin pallial myostracum composed of aragonite in between outer and inner 
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crossed lamellar layers. The lamellae may be composed of crystalline sheets of foliate 

crystals or rod-like crystals. These lamellae may cross one another’s orientation during 

growth (Lutz and Rhoads 1980). According to Taylor et al. (1973) and Fritz et al. (1990), 

the outer shell layer consists of three orders (1°, 2°, and 3°) of lamellae. These orders are 

based on how the crystals of carbonate are arranged. First-order (1°) are concentrically 

arranged and parallel to the ventral margin, while second-order (2°) are laid down in an 

imbricated fashion. Third-order (3°) lamellae are rod-like crystals, but these are difficult 

to visualize, because of their small size and apparently compose some 2° lamellae (Taylor 

et al. 1973, Fritz et al. 1990).  

Fritz et al. (1990) discovered two types of crossed lamellar microstructure 

comprising the outer shell layer in a Delaware estuary population of R. cuneata. A fast-

growth microstructure layer deposited during the spring and fall, and a slow-growth 

microstructure layer deposited in the summer. Distinction between the crossed lamellar 

microstructure was determined from the width of the 1° lamellae, angle deposition of this 

lamellae towards the inner shell surface, and the interdigitation of 2° lamellae between 

adjacent 1° lamellae (Fritz et al. 1990). Typically, 1° lamellae are broad while 2° lamellae 

are narrower and can be sharply angled with respect to the inner shell surface. Prismatic 

bands, or sublayers, can be deposited and replace lamellae during winter, which has been 

used to determine age (Ropes et al. 1984, Fritz et al. 1990). Whether this replacement is a 

result of shell dissolution of previously formed lamellae is unclear. No growth occurred 

during winter in the Delaware population as established by replacement of crossed 

lamellar microstructure by the prismatic bands (Fritz et al. 1990). Albeit rare, more than 

one prismatic band can be found during a single winter season (Fritz et al. 1990). The 
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presence of multiple bands in a single winter season is likely more common in faster 

growing juveniles (Fritz et al. 1990). Slow-growth crossed lamellar microstructure is 

composed of larger, more ordered 1° lamellae in this population indicating a population 

of slow-growers (Fritz et al. 1990).  

Caution must be taken in interpreting which bands and increments indicate “after-

the-fact” results. In a study on M. mercenaria, broad, translucent bands were interpreted 

to indicate fast growth, and narrow, opaque bands indicate slow growth (Clark 1979). 

Yet, others state the opposite (thin, opaque bands indicate fast growth) (Fritz and Haven 

1983; Fritz et al. 1990). Most agree that broad, thick growth bands indicate warm water 

temperatures, while narrow, tightly packed growth bands indicate cold water 

temperatures at the time of shell deposition (Lutz and Rhoads 1980; Fritz and Haven 

1983; Fritz et al. 1990). According to Fritz et al. (1990), R. cuneata grew at a faster rate 

in the most northern limits of this species, but cautioned that the methods utilized and 

compared with other studies (e.g., Fairbanks 1963; Wolfe and Petteway 1968), can affect 

the interpretation of the results. Nearly all published literature regarding shell growth and 

cessation states that environmental variables play a major role in shell growth rate (Lutz 

and Rhoads 1980, Fritz et al. 1990).  

Research on shell growth has shown that species respond differently to 

environmental factors (Ansell 1968; Kennish and Olsson 1975; Green 1980). 

Temperature appears to be the strongest environmental factor for shell growth (Kennish 

and Olsson 1975), and is correlated with growth patterns (Jones et al. 1990). Bivalves 

may cease shell growth or produce very little during winter, most likely due to colder 

temperatures (Fairbanks 1963; Clark 1979; Green 1980; Tanabe 1988; Dettman et al. 
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1999; Chauvaud et al. 2005). A study on R. cuneata in Lake Pontchartrain showed that 

the highest growth rate occurred during early summer (Fairbanks 1963). Similarly, in the 

marine clam, M. mercenaria, band widths are correlated positively with annual average 

water temperature (Jones et al. 1990), but in another marine clam, Spisula solidissima, 

band widths are negatively correlated with water temperature (Jones 1980). While 

studying two populations of M. mercenaria, Kennish and Olsson (1975) reported that 

thermal discharge from a nuclear generating station in Oyster Creek, NJ kept the 

surrounding water temperature at 30°C, which stunted the growth (growth is curbed 

around 25°C; Ansell 1968; Kennish and Olsson 1975) and consequently prevented 

spawning events from occurring in clams within a mile radius from the discharge canal. 

In contrast, clams in the nearby Barnegat Bay (< 30°C) showed normal growth patterns 

and undertook expected spawning events (Kennish and Olsson 1975). Thus, these 

reported discrepancies could be based on hypothetically optimal temperature values for 

maximum growth. At which point, if temperatures increase beyond this optimal value, 

growth may be negatively affected.  

In addition to temperature and seasonality, high sedimentation and storms can 

cause siphon and mantle closure with subsequent cessation of shell accretion (Fairbanks 

1963). During times of valve closure, the bivalve cannot feed or acquire oxygen. Bivalves 

can switch to anaerobiosis for a time, but build-up of succinic acid will cause metabolic 

harm. To counteract the effects of succinic acid build-up, shell may be broken down by 

actions of organic material and be used as an internal alkali buffer (Seed 1980). An 

indication that dissolution occurred may be indicated by a greater presence of organic 

material (organic matrix) (Gordon and Carriker 1978) and depressions in the shell layers. 
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Microgrowth increments and growth bands of fossil shells and those of living bivalves 

can show signs that the bivalve was stressed, because an interruption occurs in the normal 

deposition of shell material. However, the actual disturbance can be difficult to determine 

if ecological and environmental parameters were not recorded at that time (Ridgway et al. 

2011).  

Other environmental factors and geographical location are also known to have an 

effect on growth and shell deposition. For example, it has been found that an increase in 

salinity correlates with a decrease in the shell size of R. cuneata (Hoese 1973; Tarver and 

Dugas 1973). Food supply and available nutrients are provided by tidal periodicity and 

the clams’ intertidal position (Kennish and Olsson 1975; Lutz and Rhoads 1980). 

Mercenaria mercenaria and Tridacna squamosa are two bivalves whose growth patterns 

show tidal periodicity (Pannella and MacClintock 1968). As a factor of substrate 

composition, water circulation above sand generally provides greater food availability to 

a bed of clams. In support of this, Kennish and Olsson (1975) discovered a correlation 

between substrate type and growth rate in a population of M. mercenaria in Barnegat 

Bay, New Jersey. Clams in muddy substrate grew at a much slower rate than those in 

sand (Kennish and Olsson 1975).  

In times of stress such as extreme winter temperatures, storms, or other 

disturbances or physiological changes (e.g., spawning), rearrangement of structural 

elements will affect how the inner and outer shell layers are constructed (e.g., as studied 

in a M. mercenaria population in Connecticut and Massachusetts; Pannella and 

MacClintock 1968). These “growth breaks” can offer valuable insight into the 

relationship between bivalves and their environment, specifically with respect to seasonal 
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changes or abrupt events. Different growth breaks correspond to a specific type of shock, 

which can be observed when looking at growth increments. According to Kennish and 

Olsson (1975), every event or shock is an interruption in the daily deposition of shell 

material. Depressions in the shell layers, differences in band coloration, and crossed 

lamellae (e.g., crossing of rods or foliate crystals) are various indications that shocks have 

occurred and a severe stress imposed on the organism. The main types of “shock” are 

storm, spawn, tidal, and thermal-, heat-, and freeze- (or cold-) shock (Kennish and Olsson 

1975). Abrasion is considered a growth break, similar to thermal-shock, but is typically 

less conspicuous, because the bivalve recovers more quickly (Kennish and Olsson 1975).  

While shocks may affect the growth pattern or stunt growth (Hallam 1965), the 

species and location seem to have the largest effect on whether the animal will add 

material to its shell, based on variability within and between populations, even if the 

populations are under the same environmental influences (Green 1980; Fritz and Haven 

1983). Populations at different latitudes show mixed results. A population of M. 

mercenaria off the coast of Georgia did not show any growth bands indicative of winter 

cessation compared to other populations along the Atlantic coast (Clark 1979; Fritz and 

Haven 1983). In contrast, no growth variation was reported within or across six 

populations of G. demissa between Connecticut (Brousseau 1984) and Georgia (Kuenzler 

1961). The production of growth bands along a particular growth pattern influenced by 

the environment has been shown to be highly conserved. Transplantation studies with M. 

mercenaria that show shifts in microgrowth increments, particularly with respect to 

conditioning and spawning, support this observation (Rhoads and Pannella 1970; Doall et 
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al. 2008). Thus, populations of R. cuneata in the Gulf of Mexico versus the northern 

Atlantic coast of the United States may differ in growth rate and life span.  

The growth of R. cuneata in Trent River, NC was studied for two years by Wolfe 

and Petteway (1968) using a hypothetical decaying exponential equation known as the 

von Bertalanffy growth curve (von Bertalanffy 1938). This growth curve has been used 

extensively for other bivalves (e.g., G. demissa; Brousseau 1984, Macoma balthica; 

Cloern and Nichols 1978). Wolfe and Petteway (1968) determined that sizes of R. 

cuneata in Trent River fell into five distinct classes. These size classes are based on 

length of the maximum axis of growth (of the left valve) and a calculated percentage 

frequency of each length for every sample of clams. Based on their observations, 

calculations, and that larval settling of R. cuneata is presumed to occur when a shell 

length of 0.375 mm is reached (Fairbanks 1963), a clam could reach a length of 75 mm in 

10 years (Wolfe and Petteway 1968). Being entirely hypothetical, out of an average 

number of 524 clams measured from 12 samplings in the Trent River, only seven clams 

with lengths in excess of 70 mm, with a reported maximum of 73 mm, were encountered 

(Wolfe and Petteway 1968).  

Shell size has been and may still be used as a proxy for estimating age in several 

species of bivalve (Fairbanks 1963, Kennish and Olsson 1975, Green 1980). While not 

addressed for R. cuneata and P. caroliniana in this dissertation from Johnson Bayou, it 

should be stressed that aging and interpretation of age continues to be a highlight of 

research. Growth rings are the most common method for estimating age, specifically 

those formed in the hinge ligament. However, in species that live > 300 years (e.g., A. 

islandica; Schöne et al. 2005), the rings may become too compressed to be reliable. The 
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compression of growth bands has been reported in Modiolus modiolus, the horse mussel. 

This species is native to the North Sea and surrounding areas and produces growth lines 

that converge and get compressed into blocks of aragonite, making the process of 

resolving age and growth pattern difficult (Anwar 1990). Outer growth rings are then 

counted as a means of estimation (Wanamaker et al. 2009; Butler et al. 2013). Even then, 

growth breaks and the physiological responses bivalves have under the influence of 

environmental factors makes age determination by counting growth rings hypothetical 

and sometimes unreliable.  

Based on shell size, R. cuneata reportedly lives four to five years (Fairbanks 

1963) with a maximum age range of 15-20 years (Hopkins et al. 1973; Harrel and 

McConnell 1995). The age range of Polymesoda caroliniana, the second species of 

interest in this dissertation, is and remains unknown. The shell of P. caroliniana is too 

thin, much like that of Mya arenaria (Cerrato et al. 1991), and is too easily eroded or 

chipped to be reliable in estimating age.  

Shell ultrastructure and growth patterns are important to understand when the 

species is of economic interest (e.g., age of reproductive capability), used to examine 

population dynamics (e.g., mortality and recruitment; Hallam 1972), and used to analyze 

the presence of specific elements within shell and compare levels to past environmental 

levels.  

Elemental analysis 

As species deposit shell material, the levels of elements incorporated into the shell 

(namely oxygen, carbon, and calcium) are in equilibrium with the external environment. 

Since the elements are essentially trapped in shell unless dissolution occurs, one may 
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determine the level of elements in a body of water at the time the bivalve was alive. For 

those that lived hundreds of years before the present, the shells can be used as 

paleoproxies (Lutz and Rhoads 1980, Schöne et al. 2005).  

As an example, Weidman (1995) was able to reconstruct a 109-year record of 

bottom water temperatures from Nantucket Shoals by analyzing the δ18O measurements 

from shells of A, islandica, because oxygen in the carbonate of the shell is in isotopic 

equilibrium with that in seawater. Bivalves primarily living in low latitudes have been the 

main subjects in sclerochronological research, because of their long lifespans (e.g., A. 

islandica; Jones 1983, Schöne et al. 2005). The first step regarding composition of shells 

of any species is to determine what elements are present. As reported in this dissertation, 

energy dispersive X-ray spectroscopy (EDS) is an invaluable tool for providing evidence 

of what elements are incorporated in shell material, leading to inferences and future 

research of potentially spatially mapping the elements and making connections between 

control of biomineralization and elements present in the habitat.  
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CHAPTER II – A STUDY ON THE ECOLOGY OF JOHNSON BAYOU, 

REPRODUCTIVE HISTOLOGICAL ANALYSIS OF RANGIA CUNEATA, AND 

OBSERVATIONS ON BURROWING BEHAVIOR OF RANGIA CUNEATA AND 

POLYMESODA CAROLINIANA ACROSS THREE SEDIMENT TYPES 

Introduction 

Habitat description of Johnson Bayou 

The chosen site for ecological research was Johnson Bayou, located in Pass 

Christian, MS. This system drains into Bayou Portage; the latter linking Johnson Bayou 

to St. Louis Bay, an estuary between Pass Christian and Bay St. Louis, MS. Johnson 

Bayou is a brackish marsh with little to no salinity for several months of the year. As a 

consequence, the composition of flora within the bayou is highly variable. Moving inside 

the bayou from the Bay, rushes and cordgrasses give way to vines, shrubs, and trees. 

Submerged aquatic vegetation (SAV) is abundant for most of the year particularly in the 

middle areas of the Bayou. The width of the channel in the lower reaches is much greater 

than the upper areas of the system. The banks are gently sloped and broad, but transition 

towards a steeper slope in the middle to the upper parts of the system. While the bottom 

contours of Johnson Bayou were not studied in detail, in cross-section, the channel is 

broad and rounded in the lower reaches, but is more V-shaped in the upper reaches of the 

Bayou. Scouring is greater in the upper areas of the Bayou; thus, when looking down into 

the Bayou, the sediment appears predominantly sand with some areas of thick clay.  

An examination of this system through the measurement of biotic and abiotic 

parameters was undertaken as no prior record of research or work by any institution or 

agency has been found to date. Residents have mentioned that canals leading north-
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northwest from the main channel were created for land development in the 1950s 

(Figures 1, 2), but records were not available to confirm this statement or time frame. The 

locations of these canals and properties were used in some part to measure abiotic factors 

and compare the results to those acquired from the channel, or natural areas of the bayou. 

Aside from many species of animals and plants identified during the research, two 

species of clams were found in Johnson Bayou, Rangia cuneata (Macridae) and 

Polymesoda caroliniana (Cyrenidae).  

Sympatric clams 

Both species are infaunal organisms that use a well-developed foot to burrow into 

sediment. Thus, these clams are benthic ecosystem engineers found in various estuaries 

along the Atlantic and Gulf coasts (Richards 1962; Woodburn 1962; Pfitzenmeyer and 

Drobeck 1964; Hopkins and Andrews 1970; Andrews 1971; Hoese 1973; Swingle and 

Bland 1974; Olsen 1976a, 1976b; Duobinis-Gray and Hackney 1982; Marelli 1987; 

Abbott and Morris 1995; Wakida-Kusunoki and MacKenzie 2004). As organisms that 

live buried in the sediments and filter the water column for food, bivalves inherently 

connect processes occurring in the water column and substrate; however, little 

information is available on their burrowing behavior, particularly across different 

sediment types.  

Reproductive studies such as rate of gametogenesis and spawning cycles are 

commonly studied in species of economic or environmental interest. While the 

reproductive cycle of R. cuneata has been studied (Cain 1972, Jovanovich and Marion 

1986), a histological examination of the timing of gametogenesis and spawning, 

correlated to salinity gradients throughout the system, has not been studied in this species 
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in any ecosystem along the MS coast. While noted previously that P. caroliniana was 

also found in sympatry with R. cuneata, the number of P. caroliniana encountered were 

low and due to concern for negative impact on this population, P. caroliniana individuals 

were not included in this reproductive cycle study. Because salinity has been 

hypothesized to influence gonadogenesis and spawning cycles (Fairbanks 1963; Chanley 

1965; Jovanovich and Marion 1989), clams utilized in the reproductive histology 

experiment were removed from specific sites within Johnson Bayou that experienced 

different salinity regimes. The salinity gradients were established based on seasonal 

salinity measurements taken at various times in 2015 to determine the three study sites, 

indicated as lower, middle, and upper. Each site was approximately 0.1 km in length and 

located 1 km in distance between one another while following the channel.  

To adequately assess reproductive phases of R. cuneata collected from the three 

sites in Johnson Bayou, the determination of the number of phases for reproductively 

active or capable bivalves followed work conducted by Ropes and Stickney (1965) and 

Ropes (1968), referred to in some sources as the “Ropes’ method” (Schneider et al. 

1997). The term “phase” was used to indicate where clams were in their reproductive 

cycle, while “stage” indicated the development of the gametes. The terms “follicle” and 

“lobule” were used to describe the regions of the female and male gonad, respectively, in 

which gametogenesis and gonad maturation occurred. The term “follicle” has been used 

in the literature as early as a study by Loosanoff in 1942 on gonadal changes in a species 

of oyster. While follicle is the term used herein, some differences in terminology exist in 

the literature with “alveoli” (Ropes and Stickney 1965; Ropes 1968) and “acinar” (Bower 

and Blackbourn 2003) being used to describe gonadal regions for one or both sexes. The 
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term “lobule” is commonly seen in studies of fish, but because it defines the male gonad 

and functions in the same manner, there was no reason not to use it here for R. cuneata.  

Research aims 

The research conducted in Johnson Bayou was varied, and yet connected through 

a primary focus on the bivalve, R. cuneata. In order to answer questions centered on this 

focal species, Johnson Bayou was observed and described through recording and 

identifying flora and fauna as well as measuring abiotic factors from 2014 to 2016. As a 

result of information gained through this type of data collection, a study involving a 

reproductive histological analysis of R. cuneata in Mississippi waters was performed in 

2016. Published literature addressing reproductive cycles and spawning in R. cuneata 

populations from Louisiana (Fairbanks 1963) and Alabama (Jovanovich and Marion 

1989) hypothesized that the reproductive cycle of R. cuneata correlated with temperature 

and salinity changes. Based on this assumption, the reproductive histological study 

conducted with R. cuneata from Johnson Bayou was constructed to involve inclusion of 

individuals from different areas of the bayou as dictated by the salinity difference 

measured for the chosen sites.  

Due to the connection previously mentioned that burrowing bivalves have with 

both the water column and the sediment, organic matter (OM) and sediment particle size 

were examined using samples taken from the same three sites where specimens of R. 

cuneata were collected for the reproductive analysis. This study was prompted through 

the observations that R. cuneata distribution was not even throughout Johnson Bayou. 

Based on this uneven distribution, it was hypothesized that OM and sediment particle 

sizes differed between and within locations where clams were present versus where they 
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were absent. Last, a short-term behavioral study was undertaken to determine if R. 

cuneata and P. caroliniana differed in burrowing behavior across three sediment types 

(sand, silt, and clay) found in Johnson Bayou. Based on preliminary investigations, silt 

was hypothesized to be the easiest sediment type in which clams could burrow, and that 

sand and clay would force clams to spend a greater amount of time burrowing. All 

research performed provide some understanding of how R. cuneata and P. caroliniana 

exist and behave in this brackish marsh.  

Methodology 

Observations of Johnson Bayou 

Images of flora and fauna were acquired in the field for identification using a 

Pentax GPS-4 camera (Ricoh Imaging Americas Corporation, Denver, CO). A catch and 

release method (i.e., fishing) was used for capturing fish and crustaceans. Plants were 

identified using images taken in the field or from samples taken for identification in the 

lab with the aid of a field guide by Tiner and Rorer (1993). Rangia cuneata and P. 

caroliniana were the only two species investigated with regard to population density. A 1 

m2 quadrat of PVC pipe was randomly placed upon the substrate in areas along the banks 

of the bayou in close proximity to the emergent grasses throughout Johnson Bayou across 

a 3 km total distance following the channel. An estimation of population size for R. 

cuneata and P. caroliniana in Johnson Bayou was not determined.  

Abiotic factors – daily and seasonal measurements from Johnson Bayou from 2014-2016 

From 2014 to 2016, weather permitting, environmental parameters including pH, 

air and water temperature, salinity (HI 98130, Hanna Instruments, Incorporated, 

Woonsocket, RI or Hydrolab Quanta multi-probe meter, OTT Hydromet, Loveland, 
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USA), and surface and bottom dissolved oxygen (DO200 YSI Incorporated, Yellow 

Springs, OH) were recorded at a single point (30°20.265’N 89°13.959’W) approximately 

in the middle section of Johnson Bayou. Calibration of all instruments were performed at 

least once a week using buffer solution (pH 4 and 7; ForestrySuppliers, Incorporated, 

Jackson, MS), and DO electrode solution available from the manufacturer for the DO200 

YSI. Depth was measured either by lowering a secchi disk until it touched the bottom and 

then measuring the length of rope covered by water once the secchi disk was pulled up or 

via the use of a Hydrolab Quanta multi-probe meter lowered to the bottom, which 

provided the depth in a digital readout. Tidal direction and surface velocity was measured 

using a one foot ruler and a timer, starting and stopping when a particle floating on top of 

the water column crossed the entire length of the ruler. Velocity was converted to cm s-1. 

Weather parameters included precipitation received since last recording from an 8” depth 

rain gauge, and atmospheric conditions were visually estimated (e.g., percent cloud 

cover). Because differences in abiotic factors are expected to influence organism 

behaviors, 34 sites were selected within the channel and canals across a 4.4 mi area of 

Johnson Bayou between 30°20.233’N 89°14.202’W and 30°20.274’N 89°13.419’W 

(Figure 1) in October of 2014, February, June, and October of 2015, and February, May, 

and August of 2016. Measurements of surface and bottom pH, DO, water temperature, 

and salinity were taken during the highest predicted tides to capture the largest difference 

between surface and bottom water variables.  

Reproductive histological analysis of Rangia cuneata 

While R. cuneata and P. caroliniana were both present in the Johnson Bayou 

system, R. cuneata was the focus species of this study due to the low numbers of P. 
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caroliniana encountered. At the end of each month in 2016, three specimens of R. 

cuneata were collected (N = 108) by hand from three sites (lower, middle, upper) along 

the main channel of Johnson Bayou. The sites were approximately 1 km in distance from 

one another with the lower referring to the area of Johnson Bayou shortly before it meets 

Bayou Portage (30°20.452’N 89°14.666’W) to the middle of the Bayou near the site 

where daily abiotic measurements were taken (30°20.265’N 89°13.959’W) and the upper 

site referring to the innermost area where clams were found (30°20.247’N 89°13.094’W) 

(Figure 2). Salinity was measured at each site when clams were taken for analysis; 

however, water temperature was measured only at the middle site while taking normal 

daily abiotic factor measurements. Clams removed from each site were taken to the lab 

where measurements including length, height, and inflation (Figure 3) were taken to the 

nearest 0.01 mm using digital calipers (CenTech, Incorporated, Pittsburgh, PA) and 

whole body mass (= shell + soft tissue) was measured in grams using a NewClassic SG 

balance (Mettler Toledo, Switzerland). After measurements were taken, macroscopic 

images of the clams were captured with a Pentax GPS-4 camera (Ricoh Imaging 

Americas Corporation, Denver, CO) prior to fixation of soft tissue. The posterior or 

anterior adductor muscle was severed using a razor blade placed between the two shell 

valves and then clams were immediately placed in 100% EtOH. Following fixation for a 

minimum of 48 hours in 100% EtOH, gonadal tissue was dissected (~1 mm3) and fixed in 

Davidson’s Modified fixative (Electron Microscopy Sciences, Hatfield, PA) for 72 hours. 

Tissues were washed overnight in running tap water followed by 60%, and 2 x 70% 

changes in EtOH for 2 hours each. Tissue was processed in a Shandon Excelsior ES 

tissue processor (Thermo Fisher Scientific, Waltham, MA). Following processing, tissue 
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was embedded using an embedding tray (Triangle Biomedical Sciences, Durham, NC) 

and sectioned with an AO 820 rotary microtome (American Optical, Buffalo, NY) at 4-6 

µm before staining in Gill’s I hematoxylin (Mercedes Medical, Sarasota, FL) and eosin Y 

(Thermo Fisher Scientific, Waltham, MA). Light microscopy images were captured with 

a Digital Eclipse DXM 1200 Nikon camera and using ACT-1 software (Nikon 

Instruments, Incorporated, Melville, NY).  

The reproductive phase of each clam, regardless of sex, was classified using the 

five phases outlined by Ropes and Stickney (1965). These phases are early and late 

active, ripe, partially spawned, and spent (Table 1). Using three separate images taken per 

specimen, an average percentage of tissue type present, gonadal versus somatic, and 

percentage of each gametogenic stage present within the gonadal tissues per sex was 

calculated. Due to the difference in gamete size between males and females, female 

gonadal tissue was imaged at a total magnification of 100X while male gonadal tissue 

was imaged at a total magnification of 400X. Visual examination of gonadal tissue and 

determination of reproductive phases, followed methods adapted from Tomkiewicz et al. 

(2011) which involves the use of ImageJ version 1.48 to superimpose of a grid of 80 

crosses over each image (Figure 4). Gonadal tissue and gamete stages were counted if 

they intersected a cross.  

Organic matter analysis 

At the same time that clams were acquired for the reproductive histological study, 

cores of sediment were obtained using a 50 mL centrifuge tube, with the conical end 

removed. In addition to samples taken in areas where clams were collected, random 

duplicate samples were taken in areas where clams were not found. Sediment samples 
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were taken within the same area of each site (>1 m2) for each sampling date. Core 

samples were immediately processed or frozen at -20°C. Processing began by photo 

documentation of the core using a Pentax GPS-4 camera (Ricoh Imaging Americas 

Corporation, Denver, CO) after the core was removed from the sampling tube. Frozen 

samples were allowed to thaw before removal from the sampling tubes and imaging 

occurred. The mass of each sample was determined in a pre-weighed crucible using an 

AdventurerPro AV212C balance (Ohaus Corporation, Pine Brook, NJ). Samples were 

dried at 103-105°C (Steinman and Lamberti c1996) in a Precision compact drying oven 

(Thermo Fisher Scientific, Marietta, OH) for 72 hours or until mass was <4% of the 

previous mass. After determining water mass, samples were burned at 550°C for 6-8 

hours in a muffle furnace (Lindberg/Blue M, Thermo Fisher Scientific, Asheville, NC), 

then weighed, and the ash-free dry mass was calculated by subtracting the mass of the 

sample before and after burning.  

Sediment particle size analysis 

Burned sediment samples were analyzed for particle size distribution through a 

stainless steel soil sampling sieve set (Fieldmaster 78-700, Science First, Yulee, FL). Due 

to compaction in the crucible for OM determination, when necessary, samples were 

gently broken up with a mortar and pestle upon removal from the oven. Care was taken to 

minimize the effect this process would have on the particle sizes of the original sample. 

Starting and ending mass of each particle size collected was determined using a SI-234 

analytical balance (Denver Instrument, Bohemia, NY). Particle sizes were defined based 

on work by Wentworth (1922) on clastic sediments and mass of each particle size was 

used to determine any differences between sites.  
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Burrowing behaviors per sediment type 

A total of 13 clams, 8 Rangia cuneata and 5 Polymesoda caroliniana, were 

randomly chosen for a study to elucidate burrowing behavior in three prominent sediment 

types, sand, silt, and clay, found in Johnson Bayou. This study began with each sediment 

type being placed in separate ten gallon tanks. Upon removal from Johnson Bayou, clams 

were placed into one of the three tanks and after a period of acclimation (~24 hours), 

clams were removed from the sediment, placed on top of the sediment in a previously 

undisturbed area within the tank in one of five positions designated by shell orientation in 

relation to the sediment (Figure 5). Subsequent behavior was video recorded using either 

a Pentax GPS-4 camera (Ricoh Imaging Americas Corporation, Denver, CO) or a 

Polaroid XS100 action camera (Polaroid Corporation, Minnetonka, MN). Care was taken 

not to disturb the clams after placement into a select position. Recordings ceased when 

the clam did not burrow further or an estimated 90% of the clam had burrowed. 

Behavioral observations and measurements were determined by viewing the videos 

following completion of a burrowing cycle and included time (in seconds) between 

placement in a specific orientation and beginning of burrowing activity, events, and times 

between events. A single event was defined as the moment the foot began to swell, 

followed by closure of the siphons, contraction followed by relaxation of the adductor 

and retractor muscles, opening of the siphons, and final relaxation of the foot. If the foot 

was buried or could not be observed, swelling of the foot was indicated by the leaning of 

the animal to the posterior and dorsal ends (i.e., the foot emerges from the anterior end). 

Across all sediment types, cnce a successful recording in one orientation was obtained, 

and a period of rest was given (~24-48 hours), the clam was placed in a new orientation 
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and in a previously undisturbed area on the same sediment surface for observation and 

recording.  

Data analysis 

All qualitative data (e.g., images and figures) were edited and formatted in 

CorelDraw X8 (Corel Corporation, Ottawa, Ontario, Canada). Descriptive statistics 

including range, mean, and standard deviation were calculated using Sigmaplot 13.0 

(Systat Software, Incorporated, San Jose, CA). All quantitative data were recorded and 

analyzed, and resulting graphs were created in Sigmaplot 13.0. A Spearman correlation 

analysis was used to determine the presence of any correlation between salinity and pH, 

and water temperature and surface and bottom dissolved oxygen. A Spearman correlation 

analysis was also used to determine the presence of any correlation between water 

temperature, salinity, and gametogenesis (percent gonadal tissue) in R. cuneata.  

A one-way ANOVA (p = 0.05) was performed to determine if collection location 

had a significant effect on the shell parameters of clams collected in 2016. After log 

transforming the data to correct for normality, a Pearson correlation was used to 

determine correlation between individual shell parameters and between whole body mass. 

After pooling the data from organic matter (OM) content per site, normality tests failed, 

regardless of transformation used. Thus, a Kruskal-Wallis one-way ANOVA on ranks 

was performed (p = 0.05) to test if OM content was statistically different across the 

collection sites in 2016. After separating the OM data based on sampling locations 

(presence versus absence of clams), the data passed normality after rank transformation. 

Thus, a two-way ANOVA (p = 0.05) was performed to determine if location and the 

presence of clams had a significant effect on OM. A Dunn’s test (p = 0.05) was run to test 
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significance in OM content between locations where clams were present and where they 

were absent within and between sites. A chi-square test was performed to determine 

relationship between sediment particle size and site (lower, middle, and upper).  

With respect to the burrowing study, after log transforming the data to correct for 

normality, a one-way repeated measures ANOVA (p = 0.05) was performed to determine 

if sediment type significantly influenced the number and length of burrowing events. A 

Holm-Sidak test (p = 0.05) was performed as a pairwise comparison between sediment 

types. Statistical analyses were performed in SigmaPlot 13.0 (Systat Software, 

Incorporated, San Jose, CA) and IBM SPSS Statistics (SPSS, Incorporated, Armonk, 

NY).  

Results 

Observations of Johnson Bayou 

Over the course of this study, a total of 40 plants were identified to the genus or 

species level (Table 2). These include emergent, submerged aquatic vegetation (SAV), 

free-floating plants, and trees or shrubs with direct contact to the channel. Some common 

species include but are not limited to Ruppia maritima (SAV), Alternantha philoxeroides, 

and Azolla caroliniana (free-floating). Alternantha philoxeroides (alligatorweed) is an 

exotic invasive species; however, in 2015 and 2016, Agasicles hygrophila (alligatorweed 

flea beetle) was observed throughout much of the system damaging a great proportion of 

alligatorweed (Figure 6). Alligatorweed could be seen throughout the system if salinity 

was not above 5 ppt, but was most concentrated in the innermost parts of the system. 

Alligatorweed was particularly abundant in ditches and small canals throughout Pass 

Christian and Long Beach, MS in 2016, as observed while driving through the area 
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between the university campus and field site. Myriophyllum aquaticum, Brazilian milfoil 

(Figure 6), is another exotic invasive species found associated with mats of alligatorweed.  

A total of 69 species of vertebrates and invertebrates were visually identified 

including 1 species of mammal (Myocaster coypus), 25 species of invertebrates (Table 3), 

16 species of fish (Table 4), 16 species of bird (Table 5), and 11 species of reptile and 

amphibian (Table 6). Prevalent invertebrates include the economically important and 

often observed blue crab (Callinectes sapidus) and encrusting barnacles (Balanus sp.). 

Other invertebrates included an unidentified nudibranch and the Atlantic sea nettle 

(Chrysaora quinquecirrha). Additional species for which the scientific names remain to 

be determined include mud crabs, isopods, and an oligochaete. Commonly encountered 

fish included Sciaenops ocellatus (red drum), Leponis macrochinus (bluegill), and 

Cynoscion nebulosus (spotted seatrout). Common resident species of bird include the red-

winged blackbird, Agelauius phoeniceus, and great blue heron, Ardea herodias. Other 

species included Pandion haliaetus (osprey), Pelecanus occidentalis (brown pelican), and 

migratory scaups such as Aythya affinis. Commonly observed reptiles and amphibians 

included Alligator mississippiensis (American alligator), Ophisaurus ventralis (eastern 

glass lizard), and Chelydra serpentina (snapping turtle).  

An unusual observation in the summer of 2015 was a high abundance of 

Chrysaora quinquecirrha. Up to 100 individuals were counted in one area at the launch 

point for taking field measurements. The sea nettles were generally smaller (dome 

diameter approximately 5-10 cm) than those observed in open waters. Salinity in Johnson 

Bayou at this time was below 5 ppt. No record was made of unusually strong tidal flow or 

weather patterns that could have pushed the sea nettles into the bayou.  
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Rangia cuneata and Polymesoda caroliniana 

The wedge and marsh clams, R. cuneata and P. caroliniana (Figure 7) were the 

primary species of interest during this study. Both species were observed in unequal 

abundance (0 – 37 m-2) throughout Johnson Bayou. Tidal flats were found to be areas 

containing the highest abundance of this species, with many flats exposed at low tide for 

several hours. To date, approximately 420 individuals of R. cuneata and < 100 

individuals of P. caroliniana were observed in Johnson Bayou from 2014-2016.  

External and internal features of R. cuneata and P. caroliniana were examined. 

The shell of both species has a large prosogyrous umbo (i.e., dorsal end), where the two 

valves are attached via the cardinal tooth. Prosogyrosity means that the umbo curves 

toward the anterior end, the region from which the foot emerges from the shell. Rangia 

cuneata has a well-developed lunule on either side of the umbo, while P. caroliniana 

does not. The anterior end of both species is well rounded, but the posterior end is 

elongated on R. cuneata and not so on P. caroliniana. The periostracum of R. cuneata 

lacks ornamentation or sculpture, is brown in coloration in the presence of oxygenated 

water or sediment, and has a strong luster under sunlight (Figure 7a). The periostracum of 

P. caroliniana is dark brown to black and is ruffled (Figure 7b). The nacre of R. cuneata 

is white with scars indicating anterior and posterior adductor and retractor muscles, a 

pallial sinus scar formed by the siphons leading to mantle tissue, and a pallial line 

indicating attachment of the mantle tissue (Figure 7c). The nacre of P. caroliniana is a 

mix of white, pink, and purple coloration with little to no discernible scars (Figure 7d).  

In both species, the foot emerges from the anterior end, whereas the siphons 

emerge from the posterior end (Figure 8). The incurrent siphon of both species is ventral 
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to the excurrent siphon, both of which are ringed by tentacles, but the incurrent siphon is 

nearly twice as large in diameter as the excurrent siphon. The siphons are fused in R. 

cuneata, but separate a few millimeters down in P. caroliniana (Figure 9). The siphons 

were observed to extend as much as 1.5 cm in both species.  

In order to support or correlate the presence, absence, and location of species, 

including the clams in Johnson Bayou, abiotic factors were measured (from 2014-2016). 

The results provide a basic understanding of Johnson Bayou with regard to biotic and 

abiotic factors.  

Abiotic factors – daily and seasonal results from Johnson Bayou from 2014-2016 

Abiotic data from Johnson Bayou for the years of 2014 (280 d), 2015 (244 d), and 

2016 (255 d) were recorded from the single point approximately in the middle section of 

Johnson Bayou. pH ranged from 4.21 to 8.37 (average = 6.60) (Figure 10). Dissolved 

oxygen ranged from 21.1% to 162.3% saturation (1.7 to 16.8 mg L-1) (averages of 67.6% 

saturation; 6.0 mg L-1) at the surface and 11.5% to 131.8% saturation (0.9 to 14.3 mg L-1) 

(averages of 56.3% saturation; 5.1 mg L-1) at the bottom (Figure 11). Across all years, air 

and water temperature ranged from 3.1°C to 38.3°C and 4.3°C to 34.9°C, respectively 

(averages of 22.1°C and 22.3°C, respectively). Monthly means of air and water 

temperature from 2014 to 2016 followed expected seasonal trends with peak 

temperatures in July (Figure 12). Salinity ranged from 0 to 23 ppt (average of 3.9 ppt) 

with the highest salinity levels in the fall and winter months (Figure 13). An analysis of 

values measured for salinity and pH returned a negative correlation (r = -0.42) between 

these factors, and a negative correlation was also found when water temperature was 

analyzed in comparison with surface (r = -0.40) and bottom dissolved oxygen (r = -0.65).  
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Average tidal velocity in the channel was approximately 5.8 cm s-1 (520 d). Velocity of 

water along tidal flats where clams were commonly encountered was observably slower 

than that in the channel. In addition to measuring abiotic factors from a single point 

within the bayou, the same factors were measured from 34 selected sites during selected 

months between 2014 and 2016 (Table 9), and demonstrate how these factors differed 

throughout the system and across seasons. The lowest and highest levels of pH recorded 

were 5.88 (bottom water; February 2016) and 7.55 (bottom water; October 2015). With 

regard to dissolved oxygen, the lowest and highest levels recorded were 8.9% saturation 

(bottom water; June 2015) and 126.7% saturation (surface water; February 2015). 

Overall, bottom water temperature was up to six degrees colder than surface 

temperatures. The lowest and highest water temperature recorded across all samples was 

12.6°C (bottom water; February 2015) and 32.4°C (surface water; June 2015), 

respectively. Peak salinity level was recorded at 22 ppt (October 2015) near the lower 

reaches of the bayou and at the bottom of the water column. In August 2016, water 

temperature was approximately four degrees warmer on the bottom than the top of the 

water column. This was not entirely unexpected, as the total rainfall for the month of 

August 2016 was 23.5 cm, roughly 10 cm higher than average for that area at that time, 

and it had rained for several days prior to the sample date.  

Reproductive Histological Analysis of Rangia cuneata 

The gonad is part of the visceral mass, situated dorsally to the foot and flanked by 

the gill demibranchs (Figure 14). The color of the gonad is pale to cream colored and 

does not differ between sexes. When a clam is ripe, the gonad increases in size, 

developing around and abutting digestive glandular tissue and intestines, pushing visceral 
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muscle tissue outwards against the gill demibranchs (Figure 14a, b). When a clam is 

spent, the gonad shrinks in size resulting in a much thinner visceral mass above the foot 

(Figure 14c). Under light microscopy, H&E stained sections show gonadal tissue abutting 

digestive gland (Figure 15a). The digestive gland is a series of large anastomosing tubes 

or clusters of smaller tubes in cross-section. Simple cuboidal cells line these tubes. 

Gonadal and digestive tissue is surrounded by visceral muscle tissue with gill 

demibranchs to the exterior of visceral muscle tissue (Figure 15b).  

While a specific salinity level is thought to trigger the release of gametes (i.e., 

spawning) from the clams into the water column, temperature is thought to have an effect 

on gametogenesis. During 2016 when collections of R. cuneata from the lower, middle, 

and upper sites occurred for the reproductive histological analysis, average temperatures 

peaked at 30.0°C in July and cooled to 19.9°C by the end of November. However, 

temperature did not differ more than 2°C between sites across measurements taken in 

2016. In contrast, salinity at the lower, middle, and upper sites ranged from 0.5 – 16 ppt, 

0 – 10 ppt, and 0 – 8 ppt, respectively across collection times. Salinity at the lower 

reaches of Johnson Bayou remained at 0 ppt until May (0.5 ppt) and peaked at 16 ppt in 

November. Salinity levels at the middle and upper sites remained at 0 ppt until July (0.5 

ppt) and September (0.5 ppt), respectively. Salinity levels peaked at the middle and upper 

sites in October with 10 and 8 ppt, respectively. Precipitation throughout December 

brought those areas down to 0 ppt again by January. A positive correlation was found 

between water temperature and the average percent gonadal tissue produced by clams 

from the lower, middle, and upper sites throughout 2016 (r = 0.55, 0.76, and 0.86, 

respectively). However, there was a negative correlation between salinity and percent 
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gonadal tissue produced by clams in the lower site (r = -0.01), and a positive correlation 

between salinity and percent gonadal tissue produced by clams in the middle (r = 0.355) 

and upper sites (r = 0.141).  

In 2016, 53 females and 47 male clams were collected. The sex of the remaining 8 

clams was not determined. There were 8 instances where only clams of the same sex 

were collected (i.e., all female or all male). Due to the fact that it took approximately two 

weeks to collect, fix, process, section, and stain gonadal tissue before sex could be 

determined, it was not possible to resample without potentially overlapping with the next 

sampling time frame. All five gonadal developmental phases were observed from this 

study (Figure 16). During the winter months, gonadal tissue was found to be collapsed or 

with nearly empty follicles containing degenerating oocytes or lobules with degenerating 

sperm cells (Figure 16a, b). As water temperature increased in the spring and early 

summer months, early and late active phases (Figure 16c, d) were characterized by the 

presence of enlarged oogonia (<20 µm in diameter) and spermatogonia (>5-8 µm in 

diameter) embedded in the follicular and lobule walls. All stages of gametes were 

typically present at this time, including early and late vitellogenic oocytes (20-50 µm in 

length including stalk; 20-30 µm in diameter) indicated by increasing amounts of yolk 

and vitellogenin, but attached to the follicular walls, mature oocytes with a thin stalk 

attached to the wall (as much as 90 µm in length including stalk; up to 40 µm in 

diameter), and a few ripe ova (~35-60 µm in diameter) free in the lumen (Figure 16c). In 

males, this included spermatocytes (4-5 µm in diameter) in clusters along the outer 

lumen, spermatids farther in the lumen, but smaller in size (~0.5-2 µm in diameter), and 

finally spermatozoa (~0.2-1 µm in diameter) in the central lumen with characteristically 
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eosinophilic tails oriented toward the center (Figure 16d). The ripe phase in both sexes 

was indicated by swollen follicles and lobules, and reduced somatic tissue (Figure 16e, f). 

All stages of gametes may be observed, but at the peak before spawning, the lumens were 

abundant with ripe ova with large nuclei (~30 µm in diameter) and darker stained 

nucleoli (10 µm in diameter), and spermatozoa (Figure 16e, f). Last, partially spawned 

clams showed a highly reduced number of ripe ova and spermatozoa (Figure 16g, h), 

some of which do not get released. If no further spawning events occur, oocytes and 

sperm cells degenerate and the clam enters the spent phase.  

In January across all sites, female clams had nearly collapsed follicles containing 

degenerating oocytes and infiltrating hemocytes indicating the spent phase (Figure 17a-

c). Somatic tissue dominates in tissue sections from female clams taken in January with 

digestive and muscle tissue present in several sections. In February, female clams were 

only collected from the middle site, and these females were in the spent phase with 

degenerating oocytes. Some follicles had oogonia and early vitellogenic oocytes 

embedded or attached to the follicular walls (Figure 17d). In March, female clams 

collected from the lower site were in the early active phase, producing early and late 

vitellogenic oocytes, and a few mature and ripe ova (Figure 17e). Some female clams 

from the middle and upper sites contained residual gametes, but also possessed early 

vitellogenic oocytes (Figure 17f, g). In April, female clams from the lower and middle 

sites were ripe (Figure 17h) and in the late active phases (Figure 17i), respectively. Many 

female clams from the upper site still appeared spent or were producing few early 

vitellogenic oocytes (Figure 17j). In May, female clams from the lower site appeared to 

be spawning with the majority of cells being mature or ripe ova inside enlarged follicles. 
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Digestive tissue was observed just outside of these follicles (Figure 17k). Female clams 

from the middle site were producing ripe ova (Figure 17l), but remained in the early to 

late active phase, while female clams in the upper site were in the early active phase, 

producing early and some late vitellogenic oocytes (Figure 17m). By June, clams from 

the lower site were partially spawned or spent with unspawned and degenerating oocytes 

remaining in the follicles (Figure 17n). However, female clams from the middle and 

upper sites were between the late active and ripe phases (Figure 17o, p). In July, female 

clams were only collected from the lower and upper sites. Female clams from the lower 

site were in the early active phase, producing early and late vitellogenic oocytes with 

some mature and ripe ova (Figure 18a). Female clams from the upper site were 

progressing from the early to late active phase (Figure 18b). From August to September, 

female clams across all sites had progressed through the late active phase (Figure 18c-h). 

In October, female clams were only collected from the lower and upper sites, and were 

ripe, indicated by swollen follicles and an abundance of ripe ova (Figure 18i, j). By 

November, all female clams were spent (Figure k-m) with a few remaining unspawned 

ripe ova. In December, female clams were only collected from the lower and upper sites, 

and had some unspawned ripe ova and degenerating oocytes (Figure 18n, o).  

Male clams were not always strictly maturing at the same rate as female clams. In 

January, all male clams were spent with near collapsed lobules (Figure 19a-c). As with 

females, muscle tissue and somatic tissue were commonly observed in histological 

sections during this phase. In February, male clams from the lower site were in the early 

active phase, producing gametes of all stages, but primarily spermatocytes (Figure 19d). 

Male clams at the middle and upper sites were spent with degenerating sperm cells in the 
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lumens (Figure 19e, f). Male clams from all three collection sites remained in the same 

phases in March as they were in February (Figure 19g-i). In April, male clams at the 

lower site progressed into the late active phase with increasing numbers of spermatids 

and spermatozoa (Figure 19j). Male clams from the middle site were in the early to late 

active phase (Figure 19k), while male clams from the upper site were in the early active 

phase (Figure 19i). In May, male clams were only collected from the middle and upper 

sites. Male clams from the middle site were in the ripe phase (Figure 19m). Male clams 

from the upper site were into the late active phase (Figure 19n). In June, male clams were 

only collected from the lower and middle sites. Male clams from the lower site had 

partially spawned or were spent as indicated by few spermatocytes and degenerating 

sperm cells (Figure 19o). Male clams from the middle site appeared partially spawned, 

but still produced gametes of all stages (Figure 19p). In July, male clams from the lower 

site were in the late active and ripe phases, with enlarged lobules filled primarily with 

spermatozoa (Figure 20a). Male clams from the middle site had partially spawned, 

indicated by smaller lobules and sparse amounts of spermatozoa, but numerous 

spermatocytes and spermatids (Figure 20b). Male clams from the upper site were in the 

late active phase (Figure 20c). In August, male clams from the lower site were ripe 

(Figure 20d), while male clams from the middle and upper sites were in the late active to 

ripe phases (Figure 20e, f). In September, male clams were only collected from the 

middle site, and these males were ripe (Figure 20g). In October, male clams from the 

lower site were partially spawned (Figure 20h), indicated by an increasing amount of 

space in the lumens of the lobules and less spermatozoa than in ripe clams. Male clams 

from the middle and upper sites were ripe with very little somatic tissue present (Figure 
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20i, j). In November, male clams were only collected from the middle and lower sites. 

Male clams from the middle site were spent with degenerating sperm cells present in the 

lumens (Figure 20k). Male clams from the upper site were partially spawned, indicated 

by increasing amounts of somatic tissue and fewer spermatozoa in the lumens (Figure 

20l). In December, male clams from the lower site were spent with unspawned 

spermatozoa and degenerating sperm cells (Figure 20n). No male clams were collected in 

December from the upper site.  

After using the methods outlined by Tomkieqicz et al. (2011) for a quantitative 

measurement of gonadal versus somatic tissue, and stages of gametes, the data were 

pooled and averaged from clams collected from each site per month (Figure 21). Data 

show that clams from the lower site spawned twice, once in June and again in November. 

This observation is based on the decrease in gonadal tissue in June and in November. 

Clams from the lower site had approximately 50% gonadal tissue by July, but only 

peaked to about 78% in October. In contrast, clams from the middle site reached about 

75% gonadal tissue as early as April, but did not spawn until October, with potential 

exception of males undergoing partial spawning in June. Clams from the upper site 

reflect a similar pattern, with slightly greater than 50% gonadal tissue by April, an 

unexplained decrease in gonadal tissue between May and June, and peaking between 

August and October, but never reaching 75% gonadal tissue (Figure 21).  

The data from gametic stages were pooled and averaged from clams collected 

from each site per month (Figure 22). Germ cells (oogonia and spermatogonia) accounted 

for 50% of gametic stages in two separate months (January and June) in clams from the 

lower site and once in clams from the middle (November). Germ cells generally 
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accounted for 10-30% in clams from across all sites throughout the year. Vitellogenic 

oocytes, which include early and late vitellogenic oocytes, and spermatocytes accounted 

for nearly 20% or less in clams from the lower site, with 5% or less in June and 

December. The percentage of vitellogenic oocytes and spermatocytes in clams from the 

middle and upper sites peaked between May and October, but varied from 0-20% (0% in 

spent clams in January) across all months. The percentage of mature oocytes and 

spermatids varied in clams from all sites across all months, anywhere from 0% to nearly 

25% (lower site in February). Clams from the lower and middle sites may have spawned 

twice around June and November based on the observed increase followed by a decrease 

in the levels of ripe ova and spermatozoa. Clams from the upper site presented around 

75% ripe ova or spermatozoa in July. From July to December, residual gametes 

accounted for 0% to greater than 50% in clams from the lower site. Residual gametes 

accounted for over 60% in clams from the middle site in January and February and over 

50% in December, with 0% to ~5% between March and November. No residual gametes 

were counted in April or between June and September in these clams. In clams from the 

upper site, residual gametes decreased from over 50% in January to 0% by June, but 

increased from October to December to approximately 50% (Figure 22).  

Shell parameters of Rangia cuneata 

Using measurements taken from the 108 individuals of R. cuneata collected for 

the histological analysis, the range (Table 7), average, and potential effect of location on 

shell parameters and whole body mass were analyzed (F3.08, df = 105, p = 0.05, n = 36) 

(lower, middle, and upper sites). The average shell length from each site (lower, middle, 

upper) was 58.5 ± 6.2 mm, 56.1 ± 5.4 mm, and 47.9 ± 5.2 mm, respectively (F = 35.3, p 
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= < 0.001) (Figure 23), while average shell height from each site was 50.1 ± 5.6 mm, 

45.3 ± 4.8 mm, and 38.9 ± 3.6 mm, respectively (F = 50.6, p = < 0.001) (Figure 24). 

Average shell inflation from each site was 40.8 ± 4.4 mm, 37.4 ± 4.7 mm, and 31.4 ± 3.3 

mm, respectively (F = 46.3, p = < 0.001) (Figure 25), and average whole body mass from 

each site was 97.5 ± 30.7 g, 72.9 ± 24.1 g, and 42.1 ± 13.5 g, respectively (F = 56.3, p = 

< 0.001) (Figure 26). There was a significant difference between shell parameters of 

clams between sites, with the exception of shell length in clams from the lower and 

middle sites (i.e., clams taken from the lower and the middle sites had statistically equal 

shell lengths) (Table 8). There was a positive correlation between shell parameters 

correlated against one another, and between each parameter and whole body mass with a 

correlation value (r) greater than 0.9 (Figures 27, 28).  

Organic matter analysis 

At the end of each month in 2016, a total of four sediment samples were taken 

within each collection site where clams were obtained, and samples were processed in the 

lab to determine percent OM. The range of OM per site was 0.9 – 21.6%, 2.3 – 17.8%, 

and 0.4 – 18.4% (lower, middle, and upper, respectively). The average percentage of OM 

per site was 8.3 ± 5.2%, 6.6 ± 4.1%, and 3.2 ± 3.1%, respectively. Analysis of these 

values to determine if there was a statistical difference between the OM content at these 

sites included Kruskal-Wallis and Dunn’s test (qcrit = 3.53) for pairwise comparison of 

OM between sites, and a two-way ANOVA (Fcrit = 3.07) followed by Dunn’s test for 

determining if location and the presence of clams had a significant effect on OM. A 

critical value for Kruskal-Wallis test could not be determined due to low numbers of 

group sizes (= 2), but the median value was calculated at 48 (P =< 0.001), indicating a 
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significant difference in OM. It was determined that while there was no significant 

difference in percent OM between the lower and middle sites (q = 1.56), there was a 

significant difference in percent OM between the lower and inner (q = 6.63), and middle 

and inner sites (q = 5.07).  

A near two-fold difference in percent OM was determined when results were 

separated based on where clams were present versus absent within each site. The average 

percent of OM where clams were present per site was 5.7 ± 3.2%, 5.3 ± 3.4%, and 2.6 ± 

1.3%, respectively. While, average percent of OM where clams were absent per site was 

10.9 ± 5.5%, 8.0 ± 4.4%, and 3.9 ± 4.1%, respectively. Location and presence of clams 

had a significant effect on OM (F = 40.7 and 19.4, p = < 0.001, Df = 138, n = 24); 

however, the interaction between location and presence or absence of clams showed no 

significant effect on OM (F = 1.8, p = 0.158). Only six pairwise comparisons out of 

fifteen conducted were significant (Table A1).  

Sediment particle size analysis 

Across all sites, based on measured mass, the dominant particle sizes fell between 

0.25 and 0.063 mm. Overall, very little sediment (< 1%) was 4 mm or larger. 

Comparisons of particle sizes between sites revealed that the lower site had no dominant 

particle size. However, medium to very fine sand (0.125 mm) was the dominant particle 

size in samples acquired from the middle and inner sites (57% and 68%, respectively). In 

contrast, only 29% of sediment from the lower site was between 0.125 and 0.25 mm. 

Another 29% of sediment from the lower site was between 0.063 and 0.125 mm. The 

remaining 42% of sediment from the lower site was greater than 0.25 mm and less than 

0.063 mm. Sediment particle size and site from which samples were taken were 
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significantly related (χ2 probability = 102, χ2 = 126, p = < 0.001, df = 78) as determined 

using a Chi-square analysis. Particles greater than 2 – 4 mm included small rocks and 

shell fragments (e.g., from Geukensia demissa). Small rocks or pebbles were more 

commonly collected from the inner site, while shell fragments were abundant in samples 

taken from the lower site.  

Burrowing Behavior per sediment type 

The burrowing behavior of 8 specimens of R. cuneata and 5 P. caroliniana were 

recorded across three sediment types (sand, silt, and clay). Per sediment type, 13 clams 

were recorded burrowing in the dorsal-ventral (D-V), posterior-anterior (P-A), and 

anterior-posterior (A-P) orientations, 12 of the 13 clams were recorded in the ventral (V) 

orientation (one died before a successful recording was made), and 7 of the 13 clams 

were recorded burrowing in ventral-dorsal (V-D) orientation.  

After placement into a specific orientation, clams would remain in place 

anywhere from ten minutes to several days before burrowing. Burrowing behavior began 

with the emergence of the foot from the anterior and ventral end of the shell. Clams 

initiated a burrowing event by probing the sediment with their foot. While burrowing, 

siphonal activity was typically constant until the clam alternated contraction of the 

anterior and posterior adductor and retractor muscles acting to pull and rock the clam 

back and forth into the sediment in a wedge-like fashion. Just before contraction of the 

muscles, the siphons closed increasing the pressure in the mantle cavity and within foot 

as indicated by the clam rising slightly from the sediment. Both siphons of R. cuneata 

closed just prior to adduction of the shells. However, it was observed that the excurrent 

siphon would always close before the incurrent siphon in P. caroliniana. Any vibrations 
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caused by moving the camera or bumping the tank caused retraction of the siphons and 

foot into the shell resulting in a failed, partial burrow recording, the results of which were 

not included in the analysis. In these cases, siphonal activity would resume within 

minutes; however, burrowing might not have resumed for several more hours. 

A burrowing cycle was defined from the time at which the foot emerged from the 

shell and began probing the sediment to cessation of burrowing activity or approximately 

90% of the clam was buried and the recording was stopped. Overall, regardless of 

species, the total time for burrowing cycles ranged from 300 to 6675 seconds. When the 

length of time for only the burrowing events were summed per specimen (i.e., time 

between burrowing events was excluded), the range of length of burrowing events was 34 

seconds to 490 seconds. If separated by sediment type, the total length of burrowing 

events ranged from 41 seconds to 435 seconds in sand, 34 seconds to 219 seconds in silt, 

and 55 seconds to 490 seconds in clay.  

Using a one-way repeated measures ANOVA, it was determined that the type of 

sediment had a significant effect on the number of burrowing events (F = 101.5, Fcrit = 

3.07, p = <0.001, df = 115) and length of burrowing events (F = 5.81; Fcrit = 3.07, p = 

0.004, df = 115), when data from both species and all orientations were pooled. 

Generally, it took clams less events to burrow in silt (average = 13) than in sand (average 

= 28) and clay (average = 25). The results from a pairwise comparison using Hold-Sidak 

method (tcrit = 2.42) indicated a significant difference in the number of burrowing events 

between sand and silt (t = 13.3) and silt and clay (t = 11.1), but not between sand and clay 

(t = 2.11). A significant difference in length of burrowing events was measured between 
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sand and silt (t = 3.34), but not between silt and clay (t = 2.07) or sand and clay (t = 

1.28).  

Regardless of the species, a minimum of 11 events were required to burrow in 

sand, 10 in clay, and only 5 in silt. The greatest number of events required for burrowing 

for all sediment types included 69 events in sand, 57 in clay, and 23 in silt (Figure 24). 

When species were separately analyzed, the range of events required for burrowing in 

sand for R. cuneata versus P. caroliniana was 11 to 69, and 18 to 55, respectively. In silt, 

the number of events ranged from 5 to 23, and 6 to 22, respectively. In clay, the number 

of events ranged from 10 to 57, and 12 to 47, respectively. The length of events per sand, 

silt, and clay ranged from 1 to 16 seconds and 1 to 20 seconds, 2 to 26 seconds and 2 to 

22 seconds, and 2 to 23 seconds, respectively (Figure 25). Initially, burrowing events 

were only 2 to 4 seconds, because the foot was penetrating the substrate. It was not 

possible to test for differences between species due to an unbalanced design and lack of 

repeated measurements. However, overall, it appears that across sediment types, P. 

caroliniana spent less time per event than R. cuneata (Figure 25).  

When combining data from both species, but separating it out per orientation per 

sediment type, it appears that the number and length of burrowing events was similar 

across all orientations (Figure 26). In sand, the average number of events per orientation 

was 27 (D-V), 24 (P-A), 30 (A-P), 32 (V), and 28 (V-D). It took one clam a total of 69 

(V) events to burrow. In silt, the average number of events per orientation was 13 (D-V), 

10 (P-A), 14 (A-P), 13 (V), and 16 (V-D). In clay, the average number of events per 

orientation was 21 (D-V), 22 (P-A), 24 (A-P), 33 (V), and 29 (V-D). It took one clam a 

total of 57 (V) events to burrow.   
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Discussion 

Observations of Johnson Bayou 

This is the first report on some of the biological and physical characteristics that 

make up Johnson Bayou. While biotic and abiotic factors and observations were made 

throughout the bayou, during the course of 2016, three sites were chosen for primary 

focus. The lower reaches of Johnson Bayou opens up into Bayou Portage before reaching 

St. Louis Bay. In contrast, middle and upper sites, the lower reaches is much wider, 

surrounded by emergent grasses dominated by Juncus roemarianus, Spartina 

cynosuroides, and Spartina alterniflora, with gently sloping tidal flats that are exposed 

under very low tides. Water current is primarily under tidal influence, but wind may also 

play a large role in surface currents, because the emergent grasses are not tall enough to 

block the winds.  

The middle portion of the bayou contains a larger variety of plant species (e.g., 

Baccharis spp.) along the banks and sediments consist of contrasting areas of silt and 

clay, with small areas of sand. The banks immediately adjacent to the emergent grasses 

may be flat and wide, or drop abruptly towards the bottom of the channel. The latter 

being typical of the bends where water scours and erodes the sediment. Large chunks of 

emergent grasses and root systems can be dislodged during storms or after heavy boat 

traffic. There are a few areas where accretion rates of sediment appear to be high, the 

presence of new plant growth is common, and as a result, clams were more commonly 

found. In these areas, it is not uncommon to observe surface currents flow along the 

banks in the opposite direction to that of the channel. These areas are ideal for infaunal 

and benthic organisms, because the velocity was observed to be much lower than that of 
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the channel, so there should be a better chance of larvae settling as well as replenishment 

of oxygen and food. Organic and inorganic particles may become trapped in these areas 

which means organisms have a greater chance of encountering particles in these areas.  

Fauna and flora of Johnson Bayou 

It is important to identify and record locations of native and invasive species of 

both plants and animals for conservation and potential management efforts. In addition, 

future research focused on how native and invasive species interact, consequently 

affecting the ecosystem in which they inhabit or invade, is of growing concern and 

scientific interest. During site visits, a total number of 40 species or genera of plants were 

identified, including the free-floating exotic invasive alligatorweed (Alternantha 

philoxeroides). A concern is the spread of alligatorweed from South America. A 

successful biological control for the weed is its native herbivore, the alligatorweed flea 

beetle. This beetle does not have a winter diapause; thus, it has to be released yearly and 

is apparently done so by the U.S. Corps of Engineers in an effort to control alligatorweed 

populations throughout the southern states (Center et al. 2009). Another exotic invasive 

species, Brazilian milfoil, was observed in the summers of 2014 and 2016 attached to 

mats of alligatorweed; however, there is no indication that this species is spreading in the 

bayou at the same rate as the alligatorweed and was only observed in areas with a salinity 

of 0 ppt. The vegetative parts of the plants die back in higher salinities and winter; 

however, these plants root in the soil and thus survive over periods of higher salinity and 

winter, making total removal of the alligatorweed and milfoil unlikely in the near future. 

The fact that these species exist in an easily accessible estuarine system could be valuable 

for future research focused on management and conservation.  
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Regardless of how many species of plants and animals were identified over the 

course of three years from Johnson Bayou, hundreds more likely remain unrecorded or 

unidentified. A more extensive study focused on species identification would be 

invaluable for further describing Johnson Bayou, a system that affects and is affected by 

St. Louis Bay and the MS Sound.  

Abiotic factors – daily and seasonal results from Johnson Bayou from 2014-2016 

Abiotic data for three consecutive years, providing a baseline of the current health 

of Johnson Bayou through the measurement of factors such as pH and dissolved oxygen. 

For estuarine systems, a pH value between 7 and 9 is desirable, while dissolved oxygen 

levels are typically between 80 and 110% saturation (ANZECC 2000). There were 

recordings of more extreme levels in pH (e.g., 4.21 and 8.37 in January and October 

2014) and in dissolved oxygen (e.g., 4.7% saturation in 2015 and 162.3% saturation in 

2014); however, these are single recordings from a single location in Johnson Bayou, and 

not enough information is available to determine why these levels of pH and dissolved 

oxygen drastically changed. There was a lower pH on average in the fall months, likely 

attributable to increased breakdown of OM, which would increase the acidity of the 

water. Hypoxic levels of oxygen below 15% saturation were recorded four times. All but 

one of these times were recorded from areas located in canals near culverts that direct 

water from the ditches and roads. These areas are mostly stagnant all year-round and 

covered in thick mats of algae and free-floating aquatic plants (e.g., Lemna minor). In 

general, above average levels of dissolved oxygen were recorded shortly after rainfall 

events that resulted in greater mixing of the water column. As a consequence, the bottom 

dissolved oxygen was higher than or equal to that of the surface.  
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During one of seven field measurements taken in August 2016, water temperature 

was approximately four degrees warmer on the bottom of the water column. This was not 

entirely unexpected, as it rained for several days prior to taking measurements and this 

water would have had less time to absorb heat. Total rainfall for the month of August 

2016 was about 23.5 cm, roughly 10 cm higher than average for the area at that time. 

Difficulties with the research performed here involved time management and selecting 

the best times in which high tides are at peak levels in order to assess the greatest 

difference in abiotic factors between the surface and bottom of the water column. While 

more measurements may provide a clearer image of how these factors change throughout 

the seasons, this study does provide at least a baseline of what to expect in a given year 

and can be valuable information for determining which parts of Johnson Bayou are in 

need of management.  

Rangia cuneata and Polymesoda caroliniana 

Rangia cuneata was always found to be more abundant than P. caroliniana 

regardless of location in Johnson Bayou. This was also an observation made by Fairbanks 

(1963), noting that R. cuneata outnumbered P. caroliniana along the north and southern 

shores of Lake Pontchartrain.  

Based on preliminary observations in Johnson Bayou, it was originally 

hypothesized that both species of clams living in the lower reaches of Johnson Bayou 

exhibited an increased shell inflation and whole body mass compared to those living in 

the middle and upper sites. However, clams living in the middle site exhibited the 

greatest shell length, greatest shell height, and greatest shell inflation. The clams from the 

lower site did exhibit the greatest whole body mass, with a maximum record of 173.8 g. 
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In general, clams living in the lower reaches and middle of the bayou are likely to have 

approximately double the whole body mass compared to those living in the innermost 

locations (averages of 97.5 and 42.1 g, respectively). Statistically, location had a 

significant effect on shell dimensions and whole body mass. When shell dimensions and 

whole body mass were compared between locations, the only insignificant difference was 

shell length of clams from the lower and middle sites. All other comparisons were 

significant.  

Given the differences in the sizes of clams across sites, it is possible that the 

clams in the lower reaches of Johnson Bayou could be encountering more food and 

nutrients coming in from the bay compared to those living in the innermost regions of the 

system. In other studies, salinity has been correlated with size of R. cuneata; for example, 

larger clams have been reported to be found in areas of the Potomac River where salinity 

is far lower than levels reported in Johnson Bayou (Pfitzenmeyer and Drobeck 1964). 

Pfitzenmeyer and Drobeck (1964) measured the highest salinity level at 11.8 ppt in their 

study within the Potomac River. Clams living at this salinity were half the size of those in 

salinities at around 5.7 ppt (Pfitzenmeyer and Drobeck 1964). Further research analyzing 

the type and abundance of food in these areas of Johnson Bayou is necessary to 

determine if food is indeed a causative factor for differences in size and if salinity plays a 

role as well. Due to differences in biotic and abiotic parameters throughout Johnson 

Bayou, it is clear that based on where clams are located, they do not respond in the same 

manner in terms of physiological aspects. More specifically, R. cuneata present 

differences in reproductive cycles based on their location and as a result of seasonal 

abiotic factors.  
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Reproductive histological analysis of Rangia cuneata 

To my knowledge, this is the first study on the reproductive cycle of R. cuneata in 

a bayou, rather than a bay or large river (e.g., Mobile Bay, James River; Cain 1975, 

Jovanovich and Marion 1989). The results support previously published literature on 

gametogenesis progressing under the influence of warming temperatures and releasing 

gametes under increasing salinity (Cain 1972; Jovanovich and Marion 1989). Based on 

visual analysis of stained tissue, clams from the lower site produced gametes earlier in 

the year than those from the middle and upper sites, and spawned twice between June and 

November (Figures 21, 22). Clams from the middle and upper sites presented ripe 

gametes (ripe ova or spermatozoa) in the late summer months followed by spawning in 

the Fall. However, using the method by Tomkiewicz et al. (2011), results suggest that 

clams from the middle and upper sites may have spawned twice between June and 

November (Figure 21). The percentage of gametic tissue dropping in June and November 

from these sites are not nearly as great as presented from the clams in the lower site, but a 

partial spawning event is not out of the question. Overall, the clams in the lower site 

undergo gametogenesis at a faster rate and may become ripe up to two months before 

individuals at the other two sites. By the time spawning occurred, water temperatures had 

begun to drop from peak levels in the summer. Overall, water temperature does appear to 

be a strong factor in the rate and timing of gamete production. It was unexpected to have 

a weak correlation between salinity and production of gonadal tissue from clams living in 

the lower reaches of the bayou; however, upon further examination (Figure 21), the 

spawning event in June followed by an increase in gonadal tissue and second spawning 

event in November, could be reason why gametogenesis did not correlate positively with 
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salinity. In contrast, salinity did correlate in a positive fashion with production of gonadal 

tissue in clams from the middle and upper sites. For several months, salinity in these 

regions remained at 0 ppt, only to increase starting in summer, and peaking in November.  

A dual reproductive cycle in which bivalves release gametes more than once 

within a single year is not unusual, and has been reported in Spisula solidissima (Ropes 

1968). While temperature, food abundance (Delgado and Camacho 2005), and possibly 

hormonal influences cause spawning in marine species (Ropes 1968), if salinity is the 

primary trigger for spawning in estuarine species of bivalve, then this may support why 

clams in the lower reaches of Johnson Bayou appeared to have spawned twice, but 

interestingly, at different salinity levels (i.e., salinity peaked in November).  

Aside from salinity levels, food abundance may be another factor in the rate and 

timing of gametogenesis and spawning. The contours of the lower reaches of Johnson 

Bayou include a larger volume of water and more gentle slopes along the grasses 

compared to the middle and upper sites. It stands to reason that the lower reaches of 

Johnson bayou has a greater abundance of food coming in and out of the system during 

tidal shifts. A study by Delgado and Camacho (2005) showed that the quantity of food 

does not influence maturation, but does condition gonadal development. Specimens in the 

presence of abundant food develop gonads faster than those without as much food 

(Delgado and Camacho 2005). Future research should focus on abundance of 

phytoplankton present in the selected sites in Johnson Bayou.  

Unlike Fairbanks (1963), who stated that specimens of R. cuneata presented 

gonads of different color and texture from sites in Lake Pontchartrain, gonads in 

specimens from Johnson Bayou were found to be a single color, and the sex could only 
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be determined via histological examination. Even then, if no gametes are present, or germ 

cells are undifferentiated, then the sex of the individual cannot be determined (Bower and 

Blackbourn 2003). In this study, determination of sex, particularly of clams in the spent 

phase, was made based on the presence of residual gametes, some outside of the follicles 

and lobules, presumably due to rupture or natural breakdown of a follicle or lobule. 

However, the eight clams whose sex could not be determined were collected at times 

where they should have been in the spent phase. Consequently, if the gonad is collapsed 

during the spent phase, then there may be no cellular material left to determine sex.  

Following the ripe and partially spent phases, the presence of empty lumens 

suggests that any remaining gametes were in the process of being removed with granular 

hemocytes, and follicles should begin to shrink and eventually collapse. Collapsed 

gonadal tissue appears much like visceral tissue (e.g., digestive gland and muscle tissue). 

Other bivalve species may exhibit similar features of gonadal tissue for some time after 

spawning, with no obvious gonadal development occurring during this time (Afiati 

2007). Given the fact that all stages of gametogenesis were observed during the ripe 

phase in both sexes, several annual spawning events are not unreasonable. Previous 

studies have reported multiple spawning events in populations in R. cuneata (Fairbanks 

1963; Chanley 1965; Jovanovich and Marion 1989). In the current study, while it was not 

determined at the specific salinity level spawning is triggered, the results do provide 

insight into a relative range, and more importantly how clams may behave when salinity 

does not reach levels known to trigger spawning in other estuarine systems. In other 

words, salinity levels in the middle and uppermost regions of Johnson Bayou do not 

reach that of the lowermost region. It is very reasonable to hypothesize that clams 
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throughout the system are cued to their local environment (i.e., sites in Johnson Bayou) to 

undergo gametogenesis and spawn at a relative level of salinity at their location.  

Organic matter analysis 

Sediment from the lower site of Johnson Bayou was found to contain more OM 

than sediment from the middle and upper sites. The results are supported by the visual 

observation of sediment type abundant in each area. Where sediments at the lower site 

are composed of thick layers of silt and peat-like material, the middle contains areas of 

silt and clay with some areas composed of a layer of sand located beneath a thin layer of 

silt that accretes over time. Last, the upper parts of the bayou are characterized by large 

areas composed of sand and clay. During times of heavy rainfall where surface velocities 

can reach greater than 1 m s-1, sand washes out away from the edges of the bayou toward 

the middle parts of the channel. It was not uncommon to see bends in the channel freshly 

covered with sand shortly after a storm, and then slowly covered by plant litter and silt 

throughout the following months. For this study, only the top level of sediment (cores of 

~90 mm) was removed for OM determination, as the clams do not live at depths much 

greater than their shell length (max recorded = 71.3 mm) since siphon length limits the 

depth at which infaunal bivalves can live. Nonetheless, there was a difference in percent 

OM between sites and in some cases, statistically different depending on whether clams 

were present or absent. Percent OM was lower where clams were present versus where 

they were absent (average of ~3-6% versus ~4-11%, respectively).  

There might be a level of OM that inhibits growth or settlement (Tenore et al. 

1968); however, it may be that the physical factors of Johnson Bayou (sediment particle 

size, water velocity, basin shape) are more likely be attributed to where clams are present 
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versus where they are absent. The amount of OM, specifically in the lower reaches in 

Johnson Bayou, exceeds what has been reported in a few studies. For instance, in 

laboratory studies, Tenore et al. (1968) observed that R. cuneata preferred sand with high 

OM (1% in their study). Fairbanks (1963) reported a maximum OM of about 6% in clay 

in Lake Pontchartrain. The maximum recorded percentage OM from Johnson Bayou 

came from the lower site, heavy in silt and measured at approximately 22%. While clams 

were not found in this area, they were found in areas of OM as high as 18%. However, 

clams of either species were rarely found in sediment with OM higher than 6%. Based on 

these results, it appears that both R. cuneata and P. caroliniana may prefer a lower 

amount of OM regardless of sediment type in areas of Johnson Bayou.  

Growth and survivability of the clams may be influenced by the amount of OM 

present in the sediments, based on previous research focused on R. cuneata (Fairbanks 

1963; Tenore et al. 1968; Hoese 1973). A study of a population in the Pamlico River 

Estuary in North Carolina showed few numbers of clams were associated with a clay and 

silt substrate with high OM and high phosphate concentration (1% and 0.1%, 

respectively) (Tenore et al. 1968). These results were supported by laboratory 

experiments involving a range of high (1% and 0.1%) and low (0.1% and 0.001%) OM 

and phosphate concentrations, respectively (Tenore et al. 1968). In contrast, sand with 

high OM and high phosphate concentrations was found to be preferred by clams in the 

same study (Tenore et al. 1968; Tenore 1972). Greater growth of clams was reported 

from sand with high OM content compared to sand with low OM content. Clams were 

adversely affected in clay-silt sediment with high OM and phosphate concentration 

(Tenore et al. 1968). Another study conducted by Hoese (1973) found no correlation 
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between abundance of clams and sediment type, and reported a paucity of individuals in 

sediments with an organic content greater than 10%. In general, it appears that in areas 

where sediment is overlain with a high amount of plant detritus, the number and size of 

clams were much lower (Fairbanks 1963), likely due to the clam’s inability to stabilize 

themselves in sediment containing a copious amount of plant material (Hoese 1973).  

Fairbanks (1963) found that between two localities in Lake Pontchartrain, levels 

of OM in the water column had an effect on population density and size of clams. The 

population on the north shore had higher numbers of individuals, smaller and less 

variable sizes, heavier shells, and more eroded umbos compared to the population on the 

south shore. Additional factors that likely have a cause in the differences observed by 

Fairbanks (1963) include lower pH, greater bacterial counts, and clay and silt sediments 

characteristic of the north shore compared to the south shore. High organic content would 

potentially allow greater growth and survivability of larvae while heavier shells could 

result from increased calcification in response to a lowered pH; the latter produced by 

carbonic acid resulting from carbon dioxide released from the actions of bacteria 

(Fairbanks 1963). If larvae are selectively feeding on bacteria, and bacteria are abundant 

in sediment high in OM, then this could explain the correlation. During the summer of 

1958, Fairbanks (1963) calculated a 0.53% and 6.72% OM content for sand and clay, 

respectively. Organic matter content in the water column was calculated at 29.4 and 23.3 

mg (KMnO4) for the north and south shores of Lake Pontchartrain, respectively 

(Fairbanks 1963).  
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Sediment particle size analysis 

Over half the mass of sediment from the middle and upper sites indicated that 

these areas are composed primarily of fine sand. In contrast, samples from the lower site 

were not primarily composed of one dominant particle size, resulting in a more even 

distribution of sediment particle sizes in this site. The sediment in the lower site appears 

from the surface to be composed of thick, but soft mud and silt in most areas and thick 

peat-like material in others. Particle size analysis reveals a mixture of sand, silt, and some 

clay. Areas heavy in peat-like material were found where higher wave action or greater 

velocity was observed. The sediment in the middle of Johnson Bayou is a mix of sand, 

silt (dominant sediment type), and clay. Clay particles are defined as less than 0.063 mm 

in diameter (Wentworth 1922), and because of the small particle size, clay naturally holds 

on to water and has less pore space, making it difficult for organisms to move into or 

through it. The dominant areas of clay within the study site were located primarily in 

between the middle and upper collection sites. Clams of both species were found in this 

sediment type, but their presence was sparse. The sediment in the upper site is composed 

of a greater amount of sand than silt and clay; although there is some variability 

depending on location in the innermost parts of the bayou. In general, clams of either 

species studied here are more commonly found in silt compared to in sand and clay.  

Burrowing behaviors per sediment type 

With respect to observed burrowing behavior, closure of the siphons was not a 

reliable indicator of intended burrowing, because the clam may have been in the process 

of expelling waste material from the mantle cavity. In addition, during the burrowing 

process, many clams would rock or angle themselves where siphonal activity was 
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impossible to observe from the standpoint of the recording device. Siphons occasionally 

opened before complete contraction of the muscles. A more reliable indicator of intended 

burrowing was the rise of the animal slightly out of the sediment just prior to siphonal 

closure. This motion indicated swelling of the foot so it can act as an anchor while the 

retractor muscles contract, bringing the animal into the sediment.  

After pooling the data from recordings of burrowing activity of all clams from all 

orientations, it was found that sediment type had a significant effect on the number of 

burrowing events and on the length of events. When burrowing activity results per 

sediment type were compared to one another using Tukey’s HSD, the number and length 

of burrowing events undertaken by clams in sand versus clay was not statistically 

different. However, when comparing silt versus clay, the number of burrowing events 

was statistically different, while the length of burrowing events was not statistically 

different. It was surprising that there was not a difference in the length of burrowing 

events between sand and clay due to the differences in particle size. This may be due to 

the artificial environment in which this was conducted. While clay particles are much 

smaller and there is a smaller pore size between particles compared to sand and silt, the 

fact that multiple clams were recorded burrowing from different starting positions in the 

same artificial environment likely had an effect on the results. Multiple clams moving 

through the sediment without a lengthy time interval to allow for re-compaction would 

have introduced water into the sediment. The presence of an increased space between 

particles would have potentially altered how the clams were able to move through this 

type of substrate.  
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When analyzing the number and length of burrowing events by species, the most 

obvious difference was that less time was spent burrowing by P. caroliniana individuals. 

This may be due to the fact that bivalves with thinner shells and less shell inflation can 

burrow quicker (Seed 1980). The shell of R. cuneata is about four times the thickness of 

that of P. caroliniana.  

At the beginning of this study, it appeared that clams were unable to successfully 

burrow from the V-D orientation except when in silt. However, later observations 

demonstrated that clams could actually burrow from this orientation, albeit with apparent 

difficulty. Alas, by this time, 6 of the 13 clams had completed the trials and had been 

returned to the bayou, and one specimen died before a successful recording of one of the 

five orientations was captured. As a consequence, the design was unbalanced and 

significance between species was not determined.  

The results support observations of clam abundance and location in Johnson 

Bayou. Far more clams (> 32 m2) were found in silt than in sand or clay (up to 5 m2). The 

most interesting observation was that regardless of orientation, the patterns held true per 

sediment type. Clams undertook more burrowing events in sand and clay, but length of 

events were variable. This information could be useful in the development of prediction 

models intended to predict locations of clams within a system. Site observations support 

the conclusion that an area heavy in silt, with low water flow compared to the channel, 

and a gently sloping bank, then there is a greater chance of encountering clams. Both 

field and preliminary laboratory observations indicated that clams had a harder time 

burrowing if plant debris (e.g., sticks, decaying leaf litter) was present. Thus, while the 

presence of emergent and submerged grasses in Johnson Bayou had an effect on the flow 
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of water in some areas, if organic or inorganic debris was too thick, then clams were not 

present or were in reduced numbers.  

Ultimately, abiotic factors such as salinity, OM, and sediment particle size have 

an effect on the physiological aspects of R. cuneata, and the presence and abundance of 

R. cuneata and P. caroliniana in Johnson Bayou. The results of this research may be 

valuable for understanding the dynamics in other systems surrounding St. Louis Bay 

(e.g., Jones River, Bayou Portage).  
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Table 1  

Phases and gametic stages of clams used in the reproductive histology study 

Phase Percent gonadal to somatic tissue Characteristics 

Early active 25-50% gonadal tissue Follicles and lobules are thin and 

primarily empty. The presence of 
oogonia and spermatogonia embedded in 

the follicular and lobular walls indicate 

an active gonad. Very few gametes are 
present beyond -gonia. Visceral somatic 

tissue and muscle bundles are abundant 

around the follicles and lumens.  

Late active 50-75% gonadal tissue All stages of gametes are present, but 

lumens are not yet enlarged or swollen 

with gametes. The number of ripe ova 
and spermatozoa begin to outnumber all 

other stages.  

Ripe >75% gonadal tissue Follicles and lobules are swollen with 

gametes, primarily of ripe ova and 
spermatozoa. Very little somatic tissue is 

present.  

Partially spawned 50-75% gonadal tissue Lumens appear emptied of most gametes 
with residual or unspawned ripe ova and 

spermatozoa remaining. A second round 

of spawning is possible. Otherwise, 
residual gametes will undergo atresia.  

Spent <25% gonadal tissue Follicles and lobules are empty and 

collapsed or have few unspawned and 
degenerating oocytes and sperm cells. 

Hemocytes are commonly found around 

and in the lumens.  

This table is adapted from the publication by Ropes and Stickney (1965) from which was used the stages (“phases” here) and stages of 

the gametes per phase.  
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Table 2  

Plants of Johnson Bayou 

Scientific Name Common Name 

Albizian julibrissin Pink silk tree 

Alternantha philoxeroides Alligatorweed 

Ampelopsis arborea Pepper-vine 

Aster tenuifolius Perennial salt marsh aster 

Azolla caroliniana Mosquito fern 

Baccharis angustifolia False willow 

Baccharis halimifolia Groundsel bush (sea myrtle) 

Cicuta maculata Water hemlock (spotted cowbine) 

Cladium jamaicense Saw grass 

Crinum americanum Swamp lily 

Hydrocotyle umbellata Marsh pennywort 

Hymenocallis crassifolia Spider lily 

Ilex vomitoria Yaupon 

Ipomoea sagittata Morning glory 

Juncus roemarianus Needle rush 

Kosteletzkya virginica Seashore mallow 

Lemna minor Duck weed 

Lilaeopsis chinesis Eastern lilaeopsis 

Lonicera japonica Japanese honeysuckle 

Ludwigia sp. Seedbox 

Myriophyllum aquaticum Brazilian milfoil 

Phragmites australis Common reed (Roseau cane) 

Pinus taeda Loblolly pine tree 

Polygonum sp. Smartweed 

Quercus nigra Water oak 

Rubus sp. Blackberry 

Rumex verticillatus Swamp dock 

Ruppia maritima Ditch grass (widgeongrass) 

Sagitaria lancifolia Bull-tongue (lance-leaved arrowhead) 

Salvinia minima Common salvinia (water spangles) 

Scirpus robustus Salt marsh bulrush 

Scirpus validus Softstem bulrush 

Serenoa ripens Saw palmetto 

Setaria sp. Grasses (foxtail) 

Sesbania punicea Rattlebush 

Spartina alterniflora Smooth cordgrass 

Spartina cynosuroides Big cordgrass 

Triadica sebifera (Sabium sebiferum) Chinese tallow 

Typha latifolia Cattail 

Vigna luteola Hairy-pod cow pea (deer pea) 

This table lists the scientific and common names of identified species of emergent, submerged, free-floating, and terrestrial plants that 

directly impact and are impacted by Johnson Bayou.  
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Table 3  

Invertebrates of Johnson Bayou 

Scientific Name Common Name 

Agasicles hygrophila Alligatorweed flea beetle 

Apitasia sp.  Stripped anemone 

Balanus sp.  Barnacle 

Beröe ovata Comb jelly 

Callinectes sapidus Blue crab 

Chryosaora quinquecirrha Atlantic sea nettle 

Diopatra cuprea Decorator worm 

Dolomedes triton Fishing spider 

Dugesia sp. Planarian 

Ensis sp. Razor clam 

Gammarus sp. Gammarid (amphipod) 

Geukensia demissa Ribbed mussel 

Lyssomanes virids Jumping spider 

Myzobdella lugubris Leech 

Nereis sp. Nereid (polychaete) 

Neritina reclivata Olive nerite 

Palaeomonetes pugio Grass shrimp 

Polymesoda caroliniana Marsh clam 

Rangia cuneata Wedge clam 

Tagelus plebius Stout tagelus 

Uca spp. Fiddler crabs 

This table lists the scientific and common names of identified species of invertebrates in Johnson Bayou.  

Table 4  

Fish of Johnson Bayou 

Scientific name Common name 

Anguilla rostrata American eel 

Archosargus probatocephalus Sheepshead 

Atractosteus spatula Alligator gar 

Cynoscion nebulosus Spotted seatrout 

Elops saurus Ladyfish 

Heterandria formosa Least killifish 

Ictalurus catus White catfish 

Ictalurus punctatus Channel catfish 

Lepisosteus sp. Gar 

Leponis macrochinus Bluegill 

Micropogonias undulatus Atlantic croaker 

Micropterus dolomieu Smallmouth bass 

Morone saxatilus Striped bass 

Pylodictis olivaris Flathead catfish 

Sciaenops ocellatus Red drum 

Trinectes maculatus Hogchocker 

This table lists the scientific and common names of identified species of fish that either inhabit or can be found at some point during 

the year in Johnson Bayou.  
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Table 5  

Birds of Johnson Bayou 

Scientific name Common name 

Accipiter cooperii Cooper’s hawk 

Agelaius phoeniceus Red-winged blackbird 

Anas platyrhynchos Wild duck (mallard duck) 

Ardea alba Great blue heron 

Ardea herodias Great egret 

Aythya affinis Lesser scaup 

Aythya americana Redhead 

Aythya collaris Ring-necked duck 

Butorides virescens Greenback heron 

Egretta caerulea Little blue heron 

Elanoides farficatus Swallow-tailed hawk 

Mimus polyglottos Mockingbird 

Nyctanassa violacea Yellow-crowned night heron 

Pandion haliaetus Osprey 

Pelecanus occidentalis Brown pelican 

Phalaxcrocorax auritus Double-crested cormorant 

This table lists the scientific and common names of identified species of birds that either inhabit or migrate to and from Johnson 

Bayou.  

Table 6  

Reptiles and amphibians of Johnson Bayou 

Scientific name Common Name 

Agkistrodon contortix Copperhead 

Agkistrodon ventralis Cottonmouth 

Alligator mississippiensis American alligator 

Chelydra serpentina Snapping turtle 

Coluber constrictor Black racer 

Hyla cinerea American green tree frog 

Lampropeltis getula holbrooki Speckled king snake 

Ophisaurus ventralis Eastern glass lizard 

Pantherophis guttatus Corn snake 

Rana sphenocephala Southern leopard frog 

Trachemys scripta Red-eared slider 

This table lists the scientific and common names of identified species of reptiles and amphibians in and around Johnson Bayou.  

Table 7  

Shell dimensions and whole body mass of Rangia cuneata 

 Lower Middle Upper 

Shell Length (mm) 42.2 – 69.8 47.5 – 71.3 38.6 – 60.3 

Shell Height (mm) 35.7 – 61.3 38.2 – 62.7 32.4 – 44.8 

Shell Inflation (mm) 30.8 – 50.6 28.9 – 54.6 25.9 – 38.7 

Whole Body Mass (g) 34.1 – 173.8 39.1 – 134.1 21.7 – 70.3 

This table presents the range of shell dimensions and whole body mass (shell + soft tissue) recorded from 108 collected Rangia 

cuneata from the lower, middle, and upper sites.  
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Table 8  

Statistical comparison of shell dimensions and whole body mass of Rangia cuneata 

Location Comparison Shell Dimension t value (qobt) Significance? 

Lower versus Middle Length 2.53 Not significant 

Lower versus Upper Length 11.32 Significant 

Middle versus Upper Length 8.79 Significant 

Lower versus Middle Height 4.76 Significant 

Lower versus Upper Height 11.18 Significant 

Middle versus Upper Height 6.42 Significant 

Lower versus Middle Inflation 4.88 Significant 

Lower versus Upper Inflation 9.42 Significant 

Middle versus Upper Inflation 5.99 Significant 

Lower versus Middle whole body mass 3.50 Significant 

Lower versus Upper whole body mass 10.43 Significant 

Middle versus Upper whole body mass 6.92 Significant 

A Tukey’s HSD (qcrit = 3.36; p = 0.05) was performed with the assumption that there was a statistical difference in shell dimensions 

between, while a Holm-Sidak method was performed with the hypothesis that there was a statistical difference in whole body mass 

between sites (lower, middle, and upper).  

Table 9  

Ranges of abiotic factors from seasonal measurements 

Dates of 

Measurement 

pH Dissolved oxygen (% 

saturation) 

Water Temperature 

(°C) 

Salinity (ppt) 

October 2014 6.34 – 7.21 

6.30 – 7.01 

12.5 – 86.4 

8.96 – 62.5 

21.8 – 25.3 

21.8 – 24.8 

0 – 10 

0 – 10 

February 2015 6.42 – 7.20 

6.32 – 7.10 

55.9 – 126.7 

30.2 – 122.9 

12.7 – 16.6 

12.6 – 15.9 

0 – 8.5 

2 – 12 

June 2015 6.70 – 7.08 

6.70 – 7.10 

30.5 – 65.8 

16.5 – 61.5 

27.9 – 32.4 

26.8 – 29.9 

0 – 0 

0 – 0 

October 2015 6.55 – 7.55 

6.77 – 7.54 

30.0 – 83.7 

23.6 – 92.0 

22.8 – 26.0 

23.0 – 24.9 

9.5 – 20.5 

15 – 22 

February 2016 5.80 – 6.88 

5.79 – 6.84 

74.4 – 111.1 

53.6 – 98.7 

15.2 – 21.2 

14.7 – 21.2 

0 – 0 

0 – 0 

May 2016 6.15 – 7.08 

6.05 – 6.92 

28.5 – 76.6 

21.9 – 70.0 

19.8 – 22.7 

19.5 – 21.9 

0 – 0  

0 – 0 

August 2016 6.48 – 7.38 

6.30 – 7.05 

24.3 – 111.6 

24.1 – 96.2 

26.9 – 28.9 

26.4 – 31.3 

0.1 – 7  

0.1 – 8.4 

A total of seven occasions of abiotic field measurements were undertaken, once in each of the above months. A range of values per 

abiotic factor are separated into surface and bottom water by a midline.  



 

88 

 

Figure 1. Seasonal sites for abiotic measurements in Johnson Bayou. 

This image acquired and saved from GoogleEarth2013 shows 34 selected locations (*) in Johnson Bayou between 30°20.233’N 

89°14.202’W and 30°20.274’N 89°13.419’W, at which seasonal abiotic parameters were measured (surface and bottom water) 

including pH, dissolved oxygen, water temperature, and salinity. The locations were selected based on the shape of the system and 

human development (e.g., canals and bulkheading on topmost portion of image). Arrow indicates site at which abiotic factors were 

measured on a near daily basis from 2014-2016. Scale bar = 0.25 km.  
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Figure 2. Collection sites for Rangia cuneata and sediment in Johnson Bayou (2016). 

Specimens of Rangia cuneata and sediment samples were taken at the end of each month in 2016 along established salinity gradients 

indicated by numbered circles (1 – lower, 2 – middle, 3 – upper). Scale bar = 0.25 km.  
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Figure 3. Shell dimensions for measuring bivalves. 

Measurements include length from anterior to posterior, height from umbo (dorsal) to ventral, and inflation is determined at the 

thickest points of the shell. Image adapted from Leal JH. 2002. Bivalves. In: Carpenter KE, editor. The living marine resources of the 

Western Central Atlantic. Volume 1. Introduction, mollusks, crustaceans, hagfishes, sharks, batoid fishes, and chimaeras. FAO 

Identification Guide for Fishery Purposes. The Food and Agriculture Organization of the United Nations, Rome. p. 25-98. Reproduced 

with permission.  
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Figure 4. ImageJ analysis screenshot of gonadal tissue. 

Adapted methods from Tomkiewicz et al. (2011): an image is opened into ImageJ and a series of 80 crosses are placed by the software 

over the image. Gonadal versus somatic tissue and the stage of gametes are recorded if it intersects a cross.  

 

Figure 5. Starting positions and orientations for burrowing study. 

These were the orientations each clam was placed in prior to recording burrowing behavior. The substrate was either sand, silt, or clay 

sediment. (A = anterior, D = dorsal, P = posterior, V = ventral, L = left valve, R = right valve). 
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Figure 6. Alligatorweed, alligatorweed flea beetle, and Brazilian milfoil. 

Alligatorweed flea beetles are released by the U.S. Corps of Engineers each year (Center et al. 2009). This insect feeds exclusively on 

alligatorweed (a). Larvae of the beetle (arrows) hatch on the underside of the leaves and signs of consumption are indicated by holes 

in the leaves and stems (b). Brazilian milfoil (arrows) is associated with alligatorweed in Johnson Bayou, but is less abundant (c).  

 

Figure 7. Shell characteristics of Rangia cuneata and Polymesoda caroliniana. 

The periostracum of Rangia cuneata is dark, smooth, and unornamented (a). The periostracum of Polymesoda caroliniana is dark 

brown to black and ruffled (b). The nacre of R. cuneata is completely white, but has discernible scars where the adductor and retractor 

muscle (*) and the mantle tissue (arrow) are attached to the shell (c). The nacre of P. caroliniana is a mix of white, pink, and purple 

with scars that are less discernible, but mirrors those on R. cuneata (d). Abbreviations: A = anterior, D = dorsal, P = posterior, V = 

ventral). All images were oriented with respect to (a).  
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Figure 8. The foot, siphons, and pedal gape of clams. 

The foot of both species (R. cuneata is shown here) is a pale, tongue-like structure (white arrow) that emerges from the pedal gape in 

the mantle tissue (black arrow). Siphons (arrowhead) indicate the posterior side of the animal.  

 

Figure 9. Siphons of Rangia cuneata and Polymesoda caroliniana. 

The incurrent (left opening) and excurrent (smaller right opening) siphons are fused (arrow) in Rangia cuneata (a). The openings of 

both siphons are surrounded by a ring of tentacles, which are larger on the incurrent than the excurrent siphon. In Polymesoda 

caroliniana, the incurrent (right opening) and the excurrent (left and topmost opening) are smaller in diameter than those of R. cuneata 

and fused a few millimeters below the openings (arrow). The incurrent siphon is ringed with short, stubby tentacles (arrowhead) while 

the excurrent siphon is ringed with thin tissue (chevron).  
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Figure 10. Monthly means of pH in Johnson Bayou (2014-2016). 

pH means are presented across three years measured from a single point in Johnson Bayou. In general, average pH remained between 

6.0 and 7.5 across all three years with the exception of January (pH = 7.6) and October of 2014 (pH = 5.9).  
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Figure 11. Monthly means of dissolved oxygen in Johnson Bayou (2014-2016). 

Surface (a) and bottom (b) dissolved oxygen means are presented across three years measured from a single point in Johnson Bayou. 

In general, there was a lower average of dissolved oxygen on the bottom than the surface across all three years. Dissolved oxygen was 

highest in January and February across all years except for September and October in 2016. Averages across all three years ranged 

from 46.8 % saturation (2015) to 88.9 % saturation (2014) for surface and 36.8 % saturation (2015) to 85.2 % saturation (2014). 
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Figure 12. Monthly means of air and water temperature in Johnson Bayou (2014-2016). 

Air (a) and water (b) temperature means are presented across three years measured from a single point in Johnson Bayou. Across these 

years, averages ranged from 12.7°C to 30.1°C for air temperature, and 11.4°C to 30.8°C for water temperature.  
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Figure 13. Monthly means of salinity in Johnson Bayou (2014-2016). 

Salinity means are presented across three years measured from a single point in Johnson Bayou. For half of every year, salinity was 

near 0 ppt, and peaked from October to December.  

 

Figure 14. Gross morphology of the gonad and foot of Rangia cuneata. 

The gonad is part of the visceral mass (arrow) flanked by the demibranchs and dorsal to the foot (f) (a). A section through a ripe gonad 

reveals digestive tissue (arrows) and the crystalline style (*) surrounded by gonadal tissue (b). In partially spawned and spent clams, 

the gonad is nearly absent (arrow) and the visceral mass is shrunken almost as thin as the foot (f) (c).  
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Figure 15. Photographs of H&E stained sections through the visceral mass of Rangia 

cuneata.  

The gonad (G) grows in the vicinity and around the digestive gland (DG) (a). A thick muscular layer (MT) normally surrounds the 

gonad. The demibranchs (Db) lie just outside this muscle layer (b). Scale bars = 100 µm.  
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Figure 16. High magnification photographs of H&E stained female and male gonadal 

tissue of Rangia cuneata. 

At the beginning of each year, gonadal tissue is characterized by collapsed or near empty follicles with degenerating oocytes and 

lobules with degenerating sperm cells (a, b). Early and late active phases (c, d) are characterized by the presence of enlarged oogonia 

and spermatogonia embedded in the follicular and lobule walls. All stages of gametes can be present at this time, including early and 

late vitellogenic oocytes indicated by increasing amounts of yolk and vitellogenin, but attached to the follicular walls, mature oocytes 

with a thin stalk, and a few ripe ova free in the lumen (c). In males, this includes spermatocytes in clusters along the outer lumen, 

spermatids further in the lumen, but smaller in size, and finally spermatozoa in the central lumen with the characteristically 

eosinophilic tails oriented toward the center (d). The ripe phase in both sexes is indicated by swollen follicles and lobules, and reduced 

somatic tissue (e, f). All stages of gametes may be present, but at the peak before spawning, the lumens are dominated by ripe ova 

with large nuclei and darker stained nucleoli (e) and spermatozoa (f). Last, partially spawned clams show a highly reduced number of 

ripe ova and spermatozoa (g, h), some of which do not get released. If no further spawning events can occur, degeneration of oocytes 

and sperm cells will occur. (Abbreviations: DO = degenerating oocyte; DS = degenerating sperm; EVO = early vitellogenic oocyte; 

LVO = late vitellogenic oocyte; MO = mature oocyte; N = nucleus; Nu = nucleolus; Oo = oogonia; RO = ripe ova; Sd = spermatids; 

Sg = spermatogonia; Sp = spermatocytes; Sz = spermatozoa). Scale bars = 10 µm. 
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Figure 17. Photographs of H&E stained female gonadal tissue of Rangia cuneata taken 

from the lower, middle, and upper sites of Johnson Bayou from January to June 2016.  

In January across all sites, spent clams had small, shrunken follicles containing degenerating oocytes and hemocytes. Digestive tissue 

(a) and muscle tissue (b, c) were commonly observed in sections. In February, clams from the middle section were spent with 

degenerating oocytes, but some presented oogonia and early vitellogenic oocytes along the follicular walls (d). In March, clams from 

the lower site were in the early active phase, producing early and late vitellogenic oocytes, and a few mature and ripe ova (e). Some 

clams from the middle and upper sites all contained residual or degenerating oocytes, but some produced early vitellogenic oocytes (f, 

g). In April, clams from the lower and middle sites were in the ripe (h) and late active phases (i), respectively. Many clams from the 

upper site still appeared spent or were producing few early vitellogenic oocytes (j). In May, clams from the lower site appeared to be 

spawning with a majority of mature or ripe ova in enlarged follicles against digestive tissue (k). Clams from the middle site were 

producing ripe ova (l), but remained in the early to late active phase. Clams from the upper site were in the early active phase 

producing early and some late vitellogenic oocytes (m). By June, clams from the lower site were partially spawned or spent with 

unspawned and degenerating oocytes in the follicles (n). Clams from the middle and upper sites were between the late active and ripe 

phases (o, p). Blank panels indicate no female clams were collected. (Abbreviations: DO = degenerating oocytes; DT = digestive 

tissue; EVO = early vitellogenic oocyte; F = follicle; H = hemocyte; LVO = late vitellogenic oocyte; MO = mature oocyte; MT = 

muscle tissue; Oo = oogonia; RO = ripe ova). Scale bars = 100 µm. 
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Figure 18. Photographs of H&E stained female gonadal tissue of Rangia cuneata taken 

from the lower, middle, and upper sites of Johnson Bayou from July to December 2016.  

In July, clams from the lower site were in the early active phase, producing early and late vitellogenic oocytes, and some mature and 

ripe ova (a). Clams from the upper site were progressing from the early to late active phase (b). From August to September, clams 

across all sites progressed through the late active phase (c-h). By October, clams from the lower and upper sites were ripe, indicated 

by swollen follicles and an abundance of ripe ova (i, j). By November, all clams were spent (k-m) with a few remaining unspawned 

ripe ova (k). In December, clams from the lower and upper sites had some unspawned ripe ova and degenerating oocytes (n, o). Blank 

panels indicate no female clams were collected. (Abbreviations: DO = degenerating oocytes; DT = digestive tissue; EVO = early 

vitellogenic oocyte; F = follicle; H = hemocyte; LVO = late vitellogenic oocyte; MO = mature oocyte; MT = muscle tissue; Oo = 

oogonia; RO = ripe ova). Scale bars = 100 µm. 
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Figure 19. Photographs of H&E stained male gonadal tissue of Rangia cuneata taken 

from the lower, middle, and upper sites of Johnson Bayou from January to June 2016.  

In January, all clams were in the spent phase with small, shrunken lobules (a-c). Muscle tissue was commonly observed in these 

sections (b). In February, clams from the lower site were in the early active phase, producing gametes of all stages, primarily 

spermatocytes (d). Clams at the middle and upper sites were spent with degenerating sperm cells present. Muscle tissue was 

commonly observed (e, f). Clams remained in the same phases in March as they were in February (g-i). In April, clams from the lower 

site progressed into the late active phase with increasing numbers of spermatids and spermatozoa (j). Clams from the middle site were 

in the early to late active phase (k). Clams from the upper site were in the early active phase (l). In May, clams from the upper site 

progressed into the late active phase (n). In June, clams from the lower site had partially spawned or were spent indicated by few 

spermatocytes and degenerating sperm cells (o). Clams from the middle site appeared partially spawned, but still produced gametes of 

all stages (p). Blank panels indicate no male clams were collected. (Abbreviations: DS = degenerating sperm; H = hemocyte; L = 

lobule; MT = muscle tissue; Sd = spermatids; Sg = spermatogonia; Sp = spermatocyte; Sz = spermatozoa). Scale bars = 100 µm. 
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Figure 20. Photographs of H&E stained male gonadal tissue of Rangia cuneata taken 

from the lower, middle, and upper sites of Johnson Bayou from July to December 2016.  

In July, clams from the lower site were in the late active and ripe phases with enlarged lobules filled with primarily spermatozoa (a). 

Clams at the middle site were partially spawned, indicated by smaller lobules and sparse amounts of spermatozoa, but numerous 

spermatocytes and spermatids (b). Clams at the upper site were in the late active phase (c). In August, clams from the lower site were 

ripe (d), while clams in the middle and upper sites were in the late active to ripe phases (e, f). In September, clams from the middle 

site were ripe (g). In October, clams from the lower site were partially spawned (h), indicated by an increasing amount of space in the 

lumens of the lobules and less spermatozoa than in ripe clams. Clams from the middle and upper sites were ripe with very little 

somatic tissue present (i, j). In November, clams from the middle site were spent with degenerating sperm cells present in the lumens 

(k). Clams from the upper site were partially spawned, indicated by increasing amount of somatic tissue and less spermatozoa in the 

lumens (l). In December, clams from the lower site were spent with unspawned spermatozoa and degenerating sperm cells present (n). 

Blank panels indicate no male clams were collected. (Abbreviations: DS = degenerating sperm; H = hemocyte; L = lobule; MT = 

muscle tissue; Sd = spermatids; Sg = spermatogonia; Sp = spermatocyte; Sz = spermatozoa). Scale bars = 100 µm. 
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Figure 21. Average percentage of gonadal versus somatic tissue across all sites from 

January to December 2016.  

The average percentage of gonadal and somatic tissue was determined by pooling data from all clams collected from each site (lower, 

middle, and upper) at the end of each month in 2016. Clams from the lower site produced nearly equal percent gonadal to somatic 

tissue by summer, and greater than 50%, peaking in October. Clams from the middle site produced greater than 50% gonadal tissue by 

April and peaked at greater than 95% gonadal tissue in October. Clams from the upper site reflect those from the middle site, but did 

not produce as much gonadal tissue. Error bars indicate standard deviation. 
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Figure 22. Average percentage of gametic stages of male and female clams from all sites collected from January to December 2016. 

Gametic stages were pooled and averaged into a percentage based on data from three clams collected per site (lower, middle, and upper) at the end of each month in 2016. Germ cells (oogonia and 

spermatogonia) accounted for 50% twice in January and June in clams from the lower site and once in clams from the middle. Germ cells generally accounted for 10-30% across all sites throughout the 

year. Vitellogenic oocytes (VO; including early and late vitellogenic oocytes) and spermatocytes (Sp) accounted for nearly 20% or less in clams from the lower site, and at 5% or less in June and 

December. These stages in clams from the middle and upper sites peaked between May and June, but varied from 0-20% across all months. The percentage of mature oocytes (MO) and spermatids (Sd) 

varied in clams across all sites throughout the year, anywhere from 0% to nearly 25% (lower site, February). Based on increasing and subsequent decreasing levels of ripe ova (RO) and spermatozoa 

(Sz), clams from the lower and middle sites may have spawned twice, around April and May and again between August and October. Clams from the upper site spawned once after July. Residual 

gametes (Res) accounted for 0% to greater than 50% (December) in clams from the lower site. Residual gametes accounted for over 60% in clams from the middle site in January and February and over 

50% in December, with 0% to ~5% between March and November. No residual gametes were counted in April and between June and September in these clams. Residual gametes in clams from the 

upper site decreased from over 50% in January to 0% by June, but increased from October to December to approximately 50%.  
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Figure 23. Shell length of Rangia cuneata per site. 

The shell lengths of Rangia cuneata (N = 108) were measured and graphed based on location. Average shell length per site was 58.5, 

56.1, and 47.9 mm, respectively.  



 

107 

 

Figure 24. Shell height of Rangia cuneata per site.  

The shell heights of Rangia cuneata (N = 108) were measured and graphed based on location. Averages shell height per site was 50.1, 

45.3, and 38.9 mm, respectively.  
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Figure 25. Shell inflation of Rangia cuneata per site. 

The shell inflations of Rangia cuneata (N = 108) were measured and graphed based on location. Averages shell inflation per site was 

40.8, 37.4, and 31.4 mm, respectively.  
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Figure 26. Whole body mass of Rangia cuneata per site. 

The whole body mass of Rangia cuneata (N = 108) were measured and graphed based on location. Average whole body mass per site 

was 97.5, 72.9, and 42.1 mm, respectively.  
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Figure 27. Correlation analysis between shell parameters of Rangia cuneata.  

A Pearson correlation (simple linear) was performed between shell parameters (shell length – SL; shell height – SH; and shell inflation 

– SI) measured from collected specimens of Rangia cuneata (N = 108). All parameters were strongly and positively correlated with 

one another as indicated by the Pearson coefficient (r).  
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Figure 28. Correlation analysis between shell parameters and whole body mass of Rangia 

cuneata. 

A Pearson correlation (simple linear) was performed between individual shell parameters (shell length – SL; shell height – SH; and 

shell inflation – SI) and whole body mass measured from collected specimens of Rangia cuneata (N = 108). All parameters were 

strongly and positively correlated with whole body mass as indicated by the Pearson coefficient (r).  
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Figure 29. Average mass distribution of particle sizes from all sites in Johnson Bayou. 

The mass distributions of all particle sizes were averaged and plotted from all sites, then separated based on location (lower, middle, 

upper). Based on mass, there was little sediment greater than 4 mm, majority of sediment between 0.125 and 0.25 mm, and 

intermediate amounts of remaining particle sizes. There was no one majority of sediment particle size from the lower site. The 

majority of particle size was between 0.125 and 0.25 mm in diameter from the middle and upper sites. The central line represents the 

median. The box interquartile range is between the first and third quartiles and the whiskers (error bars) above and below represent the 

95th and 5th percentiles. Outliers are indicated as individual points.  
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Figure 30. Summary of burrowing events by Rangia cuneata and Polymesoda 

caroliniana in all orientations in sand, silt, and clay. 

The number of burrowing events of Rangia cuneata and Polymesoda caroliniana from all orientations in sand ranged from 11 to 69. 

The length of events ranged from 1 to 20 seconds. The number of burrowing events of R. cuneata and P. caroliniana from all 

orientations in silt ranged from 5 to 23. The length of events ranged from 2 to 26 seconds. The number of burrowing events of R. 

cuneata and P. caroliniana from all orientations in clay ranged from 10 to 57. The length of events ranged from 2 to 23 seconds.  
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Figure 31. Burrowing events in all orientations in sand, silt, and clay, separated by 

species.  

The number of burrowing events of Rangia cuneata versus Polymesoda caroliniana in sand ranged from 11 to 69 and 18 to 55 events, 

respectively. The length of events by R. cuneata and P. caroliniana ranged from 1 to 16 seconds and 1 to 20 seconds, respectively. 

The number of burrowing events of R. cuneata versus P. caroliniana in silt ranged from 5 to 23 and 6 to 22 events, respectively. The 

length of events by R. cuneata and P. caroliniana ranged from 2 to 26 seconds and 2 to 22 seconds, respectively. The number of 

burrowing events of R. cuneata versus P. caroliniana in clay ranged from 10 to 57 and 12 to 47 events, respectively. The length of 

events by both species ranged from 2 to 23 seconds.  
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Figure 32. Burrowing events of Rangia cuneata and Polymesoda caroliniana in sand, 

silt, and clay separated by orientation.  

The two longest burrowing events in sand occurred in the V-D and V orientations with 33 and 69, respectively. The average number 

of events per orientation were 27 (D-V), 24 (P-A), 30 (A-P), 33 (V), and 27 (V-D) (N = 13, 13, 13, 13, 7, respectively). The two 

longest burrowing events in silt occurred in the D-V and V-D orientations with 19 and 23, respectively. The average number of events 

per orientation were 13 (D-V), 10 (P-A), 14 (A-P), 13 (V), and 15 (V-D) (N = 13, 13, 13, 13, 7, respectively). The two longest 

burrowing events in clay occurred in the P-A and V orientations with 33 and 57, respectively. The average number of events per 

orientation were 21 (D-V), 22 (P-A), 24 (A-P), 34 (V), and 28 (V-D) (N = 13, 13, 13, 12, 7, respectively). (Abbreviations: D-V = 

dorsal-ventral; P-A = posterior-anterior; A-P = anterior-posterior; V = ventral; V-D = ventral-dorsal).  
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CHAPTER III  - A COMPARATIVE STUDY ON THE GROSS MORPHOLOGY AND 

ULTRASTRUCTURE OF THE FOOT OF RANGIA CUNEATA AND POLYMESODA 

CAROLINIANA 

Introduction 

Use of microscopy on foot tissue 

There have been several studies on the basic morphology of the foot of bivalves, 

but few rigorous and thorough examinations of the morphology and ultrastructure using 

microscopic methods. Mores studies need to take place on the ultrastructure and 

histological composition of infaunal bivalves to provide better insight into comparative 

studies between species and families. With increased information, we may also be able to 

infer how different species are able to burrow or have adapted to living in specific 

sediment types.  

Using different microscopical techniques allows for investigation into multiple 

aspects of foot morphology and ultrastructure. In this study, scanning electron 

microscopy (SEM) is used to produce a 3D gross morphological image of foot tissue. The 

use of diagnostic histological stains (hematoxylin and eosin; H&E), provides an 

ultrastructural view of tissue sections. Histochemical methods, where specific stains bind 

primarily to one type of structure or compound, are used to help determine the presence 

or absence of those specific structures or compounds not possible under H&E protocols. 

For instance, in this study, Alcian blue and periodic-acid Shiff stains were used to 

determine the composition of the glandular material in the subepithelium region of the 

foot of R. cuneata and P. caroliniana.  
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Alcian blue and periodic-acid Shiff can be used separately or in combination 

when determining polysaccharide type and composition. Alcian blue is a copper 

phthalocyanine compound with a high affinity for polyanionic substances such as 

glycosaminoglycans (Quintarelli and Dellovo 1966). Given its stability at low pH and its 

high degree of specificity, it has been widely used in histochemical and cytochemical 

protocols. The density or darkness of the stain may indicate a more concentrated area of 

substrate, or more than one type of substrate. Certain molecules, such as hyaluronate, can 

bind more stain than others such as chondroitin 4-sulfate (Whiteman 1973). Another 

important staining protocol is the periodic acid-Schiff, comprised of periodic acid and the 

Schiff stain. Periodic acid is an oxidizing agent used in histochemical and electron 

microscopy methods. Periodic acid cleaves certain saccharide rings producing aldehyde 

and ketone groups in the fixed section. When the Schiff reagent is added, it binds to the 

aldehyde groups producing a magenta color when reacted with water. Thus, this protocol 

provides an indication of the type of carbohydrate present in a sample, which is primarily 

used as an indicator of glycogen or mucus in a sample.  

Images obtained through the use of transmission electron microscopy (TEM) 

supports what can be examined under light microscopy, but provides a higher resolution 

and higher magnification on thin sections (90-100 nm) of tissue. The standard staining 

protocol for TEM is uranyl acetate and lead citrate for binding and staining to nucleic 

acids and proteins, respectively. The fixative, osmium tetroxide (OsO4), is also a stain, 

because it is electron dense and binds to lipid moieties (e.g., plasma membranes).  
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Research aims 

No research on the foot morphology or ultrastructure has been published on either 

R. cuneata or P. caroliniana. The focus of this research was to not only characterize the 

gross morphology and ultrastructure of both species, but compare the results between two 

species from two different bivalve families. This was purely a descriptive study, using 

electron microscopy methods, and histological and histochemical staining protocols for 

light microscopy examination. Results revealed largely similarities between the foot of 

both species, but also some interesting differences. Notably, the type of 

mucopolysaccharides produced appears to be dissimilar. Descriptive measures from light 

micrographs supported visual observations between species. Last, foot tissue obtained 

from a fixed specimen (i.e., after collection, the clam is opened and fixed in 100% EtOH) 

is contracted tissue. A relaxed foot protocol was performed in order to examine any 

differences in ultrastructure, primarily of the musculature and the size and distribution of 

glandular material, providing an internal view of how the foot changes between 

contraction and relaxation, and inferring how the clam adjusts the foot for anchoring and 

burrowing in the substrate.  

Methodology 

Scanning electron microscopy 

Specimens for pedal morphological and ultrastructural analysis were randomly 

collected from Johnson Bayou (N = 8; 4 of each species). The posterior or anterior 

adductor muscle was severed using a razor blade placed between the two shell valves 

and, if the specimens were not to undergo a relaxation protocol, then clams were 

immediately placed in 100% EtOH. For relaxation of the foot, clams were placed in 7% 
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MgCl2 until valves were agape and the foot observably relaxed. Following fixation for a 

minimum of 48 hours, the contracted foot of some specimens was removed from the 

visceral mass and cut either longitudinally or in cross-section. A longitudinal section was 

necessary to examine the sides of the foot and to accommodate the scanning electron 

microscopy (SEM) stub. The cross-section was performed to visualize internal 

morphology. Remaining tissues were placed in 100% EtOH for storage and archiving at 

the University of Southern Mississippi Gulf Park Campus, Long Beach, MS.  

Sections of the foot taken for analysis were excised and fixed in 2.5% 

glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) for 2 hours at 4°C. Following 

three rinses in buffer, samples were postfixed in 1% osmium tetroxide in buffer for 2 

hours at 4°C. Samples were rinsed three times in buffer before undergoing a graded 

ethanol (EtOH) dehydration series (50, 70, 90, 95, 2 x 100% EtOH) for 10-15 minutes 

each. Samples were placed in propylene oxide for 10 minutes before being mounted on 

aluminum stubs. Samples were sputter coated with gold at a thickness of 10-20 nm (Desk 

II Denton, Denton Vacuum, Incorporated, Moorestown, NJ) and viewed under SEM 

(Hitachi SU3500, Hitachi High-Technologies, Corporation, Chiyoda-ku, Tokyo, Japan) at 

an accelerating voltage of 5 kV.  

Light microscopy 

In order to examine the major structures and layers of the foot and gain insight 

into its composition, radial, longitudinal, and sagittal sections of tissue from both species 

were stained and imaged under light microscopy. Hematoxylin and Eosin (H&E) staining 

served as the control for all histological experiments due to the ease of the protocol, 

reliability, and its broad use for determining acidophilic and alkalinic structures. An 
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Alcian blue and periodic-acid Schiff (AB-PAS) protocol was used to determine where 

acidic polysaccharides and non-acidic mucopolysaccharides (e.g., glycogen, 

glycoproteins) were located in the foot tissue. Acidic polysaccharides (e.g., 

glycosaminoglycans, substituted mucopolysaccharides) were localized with AB (pH 2.5 

for carboxylated acidic proteoglycan) (Norenburg and Ferraris 1990; Calabro et al. 2005) 

whereas non-acidic polysaccharides (e.g., unsubstituted mucopolysaccharides, 

glycoproteins) are localized by PAS. All sample preparations occurred at the USM Gulf 

Park campus; however, sectioning and staining were performed at GCRL and imaged 

using a Digital Eclipse DXM 1200 Nikon with ACT-1 software (Nikon Corporation, 

Konan, Minato-ku, Toyko).  

Transmission electron microscopy 

The protocol for TEM followed Park et al. (2012), Cohen and Tamburri (1998), 

Bairati et al. (2000) and Bairati and Gioria (2008). Sections of the foot were fixed in 

2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) for 2 hours at 4°C. 

Following three rinses in buffer, samples were postfixed in 1% osmium tetroxide in 

buffer for 2 hours at 4°C. Samples were rinsed three times in buffer before undergoing a 

graded ethanol dehydrate series (50, 70, 90, 95, 2 x 100% EtOH) for 10-15 minutes each. 

Pre-embedment of tissue occurred with a 1:1 ratio of 100% EtOH and Spurr’s resin and 

rotated overnight. Tissues were then embedded in 100% Spurr’s resin and cured at 70°C 

for 36 hours (Thermo Scientific Precision drying oven, Model 658, Marietta, OH). 

Sections were cut with a diamond knife to a thickness of 90-100 nm, placed on copper 

grids, stained with uranyl acetate and lead citrate (Reynolds 1963) and viewed using a 

Zeiss900 TEM (Carl Zeiss SMT, Peabody, MA) at an accelerating voltage of 50 kV.  
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Data analysis 

All qualitative data (e.g., images and figures) were edited and formatted in 

CorelDraw X8 (Corel Corporation, Ottawa, Ontario, Canada). Image J version 1.48 was 

used to scale and measure select features (e.g., diameter of muscle fibers) based on 

recorded images. Quantitative data included dimensions of foot tissue examined under 

light microscopy (LM) and TEM (e.g., dimensions of muscle tissue). All quantitative data 

were recorded and analyzed in Sigmaplot 13.0 (Systat Software, Incorporated, San Jose, 

CA).  

Results 

A gross morphological to internal ultrastructural examination was performed on 

both species using SEM for a large scale (whole foot) observation, light microscopy with 

histological staining techniques to determine composition of the foot, and TEM for a 

higher magnification and verification of what was observed under light microscopy. 

Scanning electron microscopy 

Scanning electron micrographs of both species revealed a ciliated epithelium and 

an internal cross-section of the subepithelial region and internal musculature, as well as 

the presence of a hemolymph sinus. Prominent features of the foot of R. cuneata included 

a strongly pointed toe (Figure 33a), ill-defined heel (Figure 33b), and deep villi of 

epithelial cells with cilia that appeared to increase in density and length progressing from 

the dorsal to the ventral portion of the foot (Figure 33c-e). A cross-section revealed inner 

muscle fibers in various orientations surrounding the hemolymph sinus (Figure 34a, b). 

The internal musculature was not sharply separated from the thick subepithelial region 

(Figure 34c, d). This cross-section also showed that the ventral portion of the foot was 
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strongly tapered into a V-shape (Figure 34d). Not all of these features observed in R. 

cuneata were the same as seen in P. caroliniana.  

The foot of P. caroliniana had a rounded toe and well-defined heel (Figure 35a). 

The ventral portion of the foot and villi had a very rugose or wrinkled appearance. The 

epithelium was very similar to that of R. cuneata with deep villi, and cilia on the 

epithelial cells increasing in density and length in a dorsal to ventral direction (Figure 

35b-d). A cross-section showed a similar morphology to that in R. cuneata: dense inner 

musculature surrounding the hemolymph sinus (Figure 36a, b), thick subepithelial region, 

not sharply separated from the internal musculature (Figure 36c, d), but an overall 

rounded pedal shape (Figure 36d). Returning to the epithelium, a thick line of 

mucilaginous-like material was observed on the outside of the foot of both species in 

some scanning electron as well as light micrographs. In addition, material such as 

phytoplankton (e.g., diatom frustules and dinoflagellates) were observed trapped in or on 

this material when viewed under SEM (Figure 37). Particular points of further interest 

from the scanning electron micrographs included the subepithelial composition, 

orientation of muscle fibers, and the hemolymph sinus. While scanning electron 

micrographs provided high resolution of the foot’s gross morphology and some internal 

ultrastructure, light microscopy and histochemical staining provided better contrast and a 

clearer picture of the ultrastructure.  

Light microscopy 

Stained H&E sagittal sections of R. cuneata and P. caroliniana contracted foot 

tissue revealed several characteristics (Figures 38, 39). Similar to observations under 

SEM, the toe was composed of a thin epithelium, subepithelial region, and internal 
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musculature (Figure 38a). Epithelial cells transitioned from simple cuboidal with short 

cilia to simple columnar cells with long cilia from the visceral mass (dorsal) to the 

bottom of the foot (ventral). A dense layer of basal bodies on the apical portion of these 

epithelial cells were evident. Within the epithelia cells, single nuclei were located near 

the basal portion of the cells. Beneath the epithelium, the subepithelium was composed 

primarily of large polysaccharide-producing cells (mucocytes) compacted in amorphous 

glands (Figure 38a, b). In H&E stained micrographs, these glands (3.8 – 33.2 µm 

diameter, average = 9.8 ± 6.2 µm, n = 25) were grayish in color and comprised of 

mucocytes (0.8 – 4.3 µm in diameter, average = 1.9 ± 0.9 µm, n = 33) separated by thin 

membranes. If in section, each mucocyte appeared to have a single nucleus (Figure 38b). 

The thickness of this subepithelial region increased towards the ventral margin and toe 

(thickness from ~95 – 153 µm). As was reported by Park et al. (2012) through 

observations of G. veneriformis, and observations from SEM reported here, no clear 

delineation between the subepithelial (i.e., connective tissue) layer and the muscular layer 

in R. cuneata and P. caroliniana was observed (Figures 38, 39). The muscular layer 

dominates the inside of the foot in both species. It is comprised of bundles of muscle 

fibers, oriented dorsal-ventrally, longitudinally, and in cross-section (Figure 38c). When 

relaxed, these fibers become string-like and the spaces between bundles of muscle fibers 

is reduced (Figure 38d). Diameter of muscle fibers bundles ranged from 0.19 – 17.6 µm 

(avg = 4.9 ± 4.6 µm, n = 73). Length was not measured given variability in section 

thickness. The hemolymph sinus was visualized in a radial section (dorsal to ventral) of 

the posterior end of the foot (Figure 38e, f) approximately 100 µm in diameter, 

supporting observations from scanning electron micrographs. Dorsal-ventral and 
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longitudinally oriented muscle fibers surrounded this sinus. A longitudinal section of the 

foot of P. caroliniana revealed the hemolymph sinus in cross-section, ringed by ciliated 

columnar cells with laterally positioned nuclei (Figure 39). In the same micrograph, it can 

be seen that the musculature is internal to the thick subepithelial region all around the 

foot. The subepithelial region normally contains gland whose composition can be either 

homogeneous or heterogeneous.  

In order to determine if the composition was homogenous or heterogeneous, 

sections of contracted and relaxed foot tissue were stained with H&E as a control for 

staining nuclei and cytoplasmic material, Alcian blue (AB) against acidic 

mucopolysaccharides, periodic-acid Schiff (PAS) against non-acidic 

mucopolysaccharides, and an AB-PAS protocol (Figure 40) to support observations from 

the individual staining protocols. H&E stained micrographs show the ciliated epithelial 

cells external to grayish-blue to pale colored glands comprised of single-nucleated 

mucocytes in both species (Figure 40a-d). The presence of acidic mucopolysaccharides in 

both species was indicated by positive staining with AB (Figure 40e-h); however, only 

non-acidic mucopolysaccharides were positively stained with PAS in R. cuneata (Figure 

40i, j). No structure in sections from P. caroliniana was positively stained with PAS 

(Figure 40k, l). The combined staining protocol (AB-PAS) revealed co-localization of 

acidic and non-acidic (in R. cuneata) mucopolysaccharides, indicating a heterogenous 

composition (Figure 40m, n), but only localization and homogeneous composition of 

glandular material in P. caroliniana (Figure 40o, p). Background staining of light blue 

and light magenta was an artifact of nonspecific staining and failure of the rinsing steps 

to fully remove the stains. Observing stained sections of contracted and relaxed foot 
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tissue from both species provided a comparison of ultrastructure; however, there was no 

large difference in the size or distribution of the glands and mucocytes, as originally 

hypothesized. Interestingly, the material stained by AB showed a heavily granular 

appearance (Figure 40o, p), which was further examined in higher resolution electron 

micrographs from TEM.  

Transmission electron microscopy 

Sections of the epithelium and subepithelial material from both species were 

imaged under TEM. Tissue was stained with OsO4, uranyl acetate (against nucleic acids), 

and lead citrate (against proteins and other cytoplasmic components). The micrographs 

showed heavily ciliated columnar cells outside of the thick subepithelium (Figures 41, 

42). In R. cuneata, the cilia were rooted with electron dense basal bodies. As observed in 

light micrographs, the epithelial cells had a single nucleus located near the basal portion 

of the cell. Some glandular material from the subepithelium was observed in between the 

epithelial cells, presumably in the act of secretion to the outside environment (Figure 

41a). A basement membrane was observed beneath the epithelial cells (Figure 41b), not 

observable from SEM or light microscopy micrographs. Beneath this membrane and in 

the subepithelium, there was a clear indication of heterogeneity in the glands, presumed 

to be sites for producing and storing mucus (Figure 41c, d). Portions of the glands were 

electron opaque, while other areas were not. Some glands in their entirety were not 

electron opaque, but still appeared granulated and nucleated (Figure 41d).  

The epithelium of P. caroliniana is comparable to that of R. cuneata, with long 

cilia in a standard 9+2 arrangement (Figure 42a, b). Location of the glands were primarily 

beneath the epithelium, but mucocytes were occasionally observed between epithelial 
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cells, presumably in the act of secreting its product to the external environment. 

However, the glands appeared more homogenous in P. caroliniana (Figure 42c, d). The 

mucocytes were nucleated, weakly granular, and divided by thin membranes, while 

bundles of muscle fibers were observed randomly surrounding the glands (Figure 42d). 

Discussion 

This is the first report on the gross morphology and ultrastructure of the foot of R. 

cuneata and P. caroliniana using SEM, histological and histochemical staining 

techniques with light microscopy, and TEM. The information gathered from this research 

revealed a similar composition of the foot between two species of estuarine clams within 

two different families. Overall, the foot had a sharply pointed (R. cuneata) or rounded toe 

(P. caroliniana) leading posteriorly to an undefined or well-defined heel (Figures 33, 35). 

From light micrographs, there was no clear indication of a basement membrane beneath 

the epithelium, but instead an indistinct transition to the subepithelium with muscle 

fibers, primarily dorsal-ventral in orientation (Figure 33). The subepithelium increased in 

thickness and in abundance of glandular material as it progressed towards the ventral 

portion of the foot (Figures 33, 34). Single-nucleated structures that comprised the glands 

were presumed to be mucocytes, that produced specific type(s) of polysaccharides (i.e., 

acidic or nonacidic mucopolysaccharides) indicated by the intensity of a specific stain.  

The most interesting observation regarding the subepithelial region and associated 

material is the fact that P. caroliniana does not appear to produce nonacidic 

polysaccharides, as indicated by the negative staining reaction with PAS, but does 

produce acidic polysaccharides, as indicated by positive staining with AB (Figure 40). In 

R. cuneata, there was a clear co-localization of AB and PAS in the subepithelium, 
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meaning acidic and non-acidic mucopolysaccharides were produced in the same glands. 

The material in the subepithelium was highly granular in both species, evidenced by how 

strong the stain bound material present in the glands. There was greater heterogeneity in 

the glands in R. cuneata. It was hypothesized that the heavily granulated material, as 

stained by AB, would have appeared as the most electron opaque material under TEM. 

This was not the case based on micrographs compared between R. cuneata and P. 

caroliniana (Figures 41, 42). It must be emphasized that tissue was stained with lead 

citrate, and so future research will have to undertake trials of varying stain protocols, in 

order to eliminate possible error in interpreting presence and location of proteins versus 

acidic polysaccharides. AB has been used in electron microscopy, but for reasons 

unknown, it was not entirely successful in this study and led to perplexing results (i.e., 

thick bands of artifacts through the subepithelium) (data not shown).  

It is not clear whether the observed “glands” are true single glands in R. cuneata 

and P. caroliniana, nor might they possess single nucleated mucocytes, because the 

sections (~5 µm for LM and ~100 nm for TEM) obtained in this research cannot provide 

the entire ultrastructure of these glands and mucocytes without 3D reconstruction. In 

some species of bivalve (e.g., M. edulis) (Lane and Nott 1975), there is more than one 

type of gland present, each producing a different product. However, this occurs primarily 

in epifaunal bivalves in which the material produced and secreted are involved in byssal 

thread formation (Norenburg and Ferraris 1990). Based on histological and histochemical 

analyses, R. cuneata and P. caroliniana do not produce different types of glands, because 

the subepithelium only changed in thickness from dorsal to ventral, and did not change in 

the intensity of staining with AB or PAS. A possible step for support of the results from 
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R. cuneata and P. caroliniana would be examination with fluorescent stains under laser-

scanning confocal microscopy, aimed at locating nuclei (with DAPI), proteins 

(aminofluorescein), and polysaccharides (concanavalin A) (Holloway and Cowen 1997). 

An additional examination into discerning the type of glycosaminoglycan or substrate is 

by changing the pH of a working AB solution. If testing with AB in fluid, a higher pH 

(5.6-5.8) may be necessary; however, at this pH, the effect of AB on substrate is severely 

diminished because proteins and glycoproteins may become weakly ionized and form a 

complex with AB (Whiteman 1973). Thus, based on the results here, a pH of 2.5 was 

successful.  

Mucocytes, or cells that produce and secrete mucus, are common in molluscan 

tissues such as the gills, digestive gland, mantle, and foot (Fiala-Médioni and Métivier 

1986, Morton 1986). The extracellular material observed in some electron and light 

micrographs (e.g., mucilaginous material and phytoplankton) could lend credence to the 

hypothesis of pedal feeding (Marelli 1987). Detritus and phytoplankton from the 

sediment may become trapped in the mucus released from the subepithelial region. If this 

is then followed by movement of the aggregate via ciliary action into the mantle cavity 

sorting and digestion can then take place. Live imaging or fixation of an active secretion 

would be the next step to observe how glandular material from the subepithelium is 

released and in what quantity at given time. Further research is required to determine the 

specific function(s) of the pedal glands and the molecular structure their products.  

Internally to the subepithelium, three major muscle orientations were observed in 

any and all sections of pedal tissue. Trueman and Brown (1985) determined that this was 

not the case in other bivalves, such as Donax serra, where the entire internal 
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ultrastructure is dominated by one orientation of muscle fibers in any one section of pedal 

tissue. Orientations of muscle fibers could be very informative for studying pedal 

flexibility as well as limits imposed by its morphology and ultrastructure. Two of the 

three muscle fiber orientations in R. cuneata and P. caroliniana surrounded, and 

presumably formed the hemolymph sinus. This large opening or tube-like structure 

observed in scanning electron micrographs and histologically stained tissue was 

identified as a hemolymph sinus by Park et al. (2012) in G. veneriformis. Hemolymph is 

thought to originate from a hemocoel associated with mantle tissue that is used as storage 

for hemolymph waiting to be transported and inflate tissue, such as the foot, when needed 

(Morton 1980). This was not observed in the current study in either species; thus, it 

remains open to further research as to the placement of such a hemocoel and origin of the 

hemolymph pumped into the pedal sinus.  

Most of the research performed on both clams was conducted on contracted pedal 

tissue. Relaxed pedal tissue was examined in order to provide insight into how the foot 

ultrastructure may appear compared to contracted (i.e., when the foot is retracted into the 

shell) and when the foot is relaxed (i.e., when the foot is extended past the ventral shell 

margins). Relaxed pedal tissue was imaged under SEM (data not shown); however, the 

results showed no large differences in morphology as compared to contracted tissue. The 

only observable difference under light microscopy, was that the musculature changed 

from tight bundles of muscle fibers to string-like, wavy bundles. Full relaxation was 

sometimes not possible. One specimen perished during the relaxation procedure. Another 

sample partially contracted once placed in buffered glutaraldehyde. This was possibly 

due to an effect of osmolarity. While the concentrations of fixatives and buffers remained 
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the same for all tissues for each respective microscopy technique, there may be a need for 

further research into optimizing a protocol that can reduce this effect of osmolarity on the 

tissue. Nonetheless, this was the first comparative study on the pedal morphology and 

ultastructure of R. cuneata and P. caroliniana, and the first to examine relaxation of 

pedal tissue for light microscopic analysis. Future research comparing the ultrastructure 

and composition of glandular material in the foot between infaunal species within and 

between families could provide insight into how species have adapted to their 

environments and reveal how closely related species are on a morphological and 

ultrastructural scale.  
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Figure 33. SEM micrographs of the foot of Rangia cuneata. 

The foot of Rangia cuneata under SEM has a well-defined toe (a) leading toward a rounded heel (b). A high magnification image 

taken from the dorsal portion (top) of the foot reveals an epithelium with deep villi, but is not strongly ciliated (c). The ventral portion 

of the foot has deep villi (d) and is heavily ciliated (arrows; e). Scales bars = 500 µm (a, b), 250 µm (d), 25 µm (c, e).  
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Figure 34. SEM micrographs of a cross-section through the foot of Rangia cuneata.  

A cross-section of the foot of Rangia cuneata reveals inner muscle fibers surrounding the hemolymph sinus (arrows, a, b). A higher 

magnification of the epithelium and subepithelial regions (box in a) indicated that they are not strongly separated from the internal 

musculature (to the right of the dashed line, c). The ventral portion of the foot is tapered in a V-shape with a dense subepithelial region 

(below and outside of the dashed line, d). Images are oriented with dorsal (top) and ventral (bottom). Scale bars = 500 µm (a, d), 250 

µm (b, c).  
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Figure 35. SEM micrograph of whole foot of Polymesoda caroliniana.  

The whole foot of Polymesoda caroliniana was cut in half to accommodate SEM mounts. The foot has a large, rounded toe that curves 

to a small heel (from left to right) (a). Higher magnification images reveal a somewhat smooth, but wrinkled epithelium (b) imaged 

from above the dotted line in (a). The epithelium becomes more flattened with deep villi (c) and is heavily ciliated (arrows, d, inset 

from c) towards the ventral portion of the foot. Scale bars = 1 mm (a), 50 µm (b, c), 25 µm (d).  
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Figure 36. SEM micrographs of a cross-section through the foot of Polymesoda 

caroliniana.  

A cross-section of the foot of Polymesoda caroliniana reveals inner musculature surrounding the hemolymph sinus (arrows, a, b). A 

higher magnification of the epithelium and subepithelial regions (box in a) indicated that they are not strongly separated from the 

internal musculature (to the right of the dashed line, c). The ventral portion of the foot is not tapered as strongly as that of R. cuneata 

(Figure 28), but does have a dense subepithelial region (below and outside of the dashed line, d). Images are oriented with dorsal (top) 

and ventral (bottom). Scale bars = 500 µm (a, d), 250 µm (b, c).  
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Figure 37. SEM micrograph of extracellular material on the epithelium of the foot.  

Several observations of the epithelium of the foot of Rangia cuneata and Polymesoda caroliniana included mucilaginous secretions 

with fragments or whole cells of phytoplankton (e.g., dinoflagellate (arrow in a); diatoms (arrows in b)). Scale bars = 25µm. 
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Figure 38. H&E stained foot tissue of Rangia cuneata. 

H&E stained photographs were acquired of the toe of Rangia cuneata present an epithelium, subepithelial region, and inner 

musculature (a). Ciliated, simple cuboidal to columnar cells comprise the epithelium (arrowheads, b). Nuclei (dark punctate 

coloration) are laterally to basally located in these cells. The subepithelium is of gray coloration (arrows in b). The muscle fibers are 

positioned in three major orientations: longitudinal (L), cross-section (CS), and dorsal-ventral (DV) (c). Under relaxation, the muscle 

fibers become string-like and the volume increases substantially, making it more difficult to see the separate orientations of the fibers 

(d). A cross-section through a contracted foot of R. cuneata from the posterior side of the foot reveals the ciliated epithelium and thick 

subepithelial region (arrowheads, g), and internal musculature surrounding the hemolymph sinus (arrows) (g). (h) is a higher 

magnification image from (g; box). Scale bars = 100 µm (a, g), 50 µm (b, e, h), 10 µm (c, f), 5 µm (d).  
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Figure 39. Longitudinal section through the foot of Polymesoda caroliniana. 

A longitudinal section of a contracted foot of Polymesoda caroliniana from the posterior to anterior (left to right orientation) shows 

the epithelium surrounding a subepithelial region and inner musculature. The hemolymph sinus is a circular tube near the posterior 

end of the foot (a, b). The tube is lined with simple columnar, ciliated cells with laterally placed nuclei (c). Scale bars = 100 µm (a), 50 

µm (b), 10 µm (c). 
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Figure 40. High magnification images of histochemically stained foot tissue of Rangia 

cuneata and Polymesoda caroliniana 

High magnification images of contracted and relaxed (R) foot tissue of Rangia cuneata and Polymesoda caroliniana were compared 

based on staining with hematoxylin and eosin (H&E) (a-d), Alcian blue (AB) (e-h), periodic-acid Schiff (PAS) (i-l), and a combined 

Alcian blue-periodic-acid Schiff (AB-PAS) protocol (m-p). General ultrastructure of the epithelium, subepithelial region, and muscle 

fibers were observed under standard H&E staining. Hematoxylin (dark coloration) stains DNA, revealing lateral to basally located 

nuclei in the ciliated, columnar cells and mucus-producing cells (mucocytes) comprising the subepithelium. Eosin stains cytoplasm 

and muscle fibers (a-d). Glycosaminoglycans or acidic polysaccharides were localized in the subepithelial region in both species via 

AB staining (dark coloration, e-h). Only R. cuneata showed positive PAS staining, indicating production of non-acidic 

polysaccharides (deep magenta, i-j), whereas no localization of this material was observed in P. caroliniana (light coloration 

indicating nonspecific staining, k-l). This is further supported with co-localization of AB-PAS in R. cuneata (m, n) and in P. 

caroliniana (positive AB staining only; o, p). Scale bars = 10 µm.  
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Figure 41. TEM micrographs of foot tissue of Rangia cuneata. 

High magnification images were acquired from sections of the epithelium and subepithelium of the foot of Rangia cuneata. Epithelial 

cells have long cilia (arrows) emerging from electron dense basal bodies (arrowheads). The nucleus (N) of each cell is lateral to 

basally located. In between some epithelial cells can be seen subepithelial electron dense granular material (*), possible indicating the 

presence of goblet cells (a). The epithelial cells sit on a thick basement membrane (arrows) above a large concentration of 

subepithelial material (*), the latter surrounded by muscle fibers (M) (b). The subepithelial material appears heterogeneous with 

different compositions based on how electron dense the material is (dashed circles indicate a different polysaccharide composition). 

Muscle fibers were also present here surrounding the glands. The darker, granular material (*; c) is likely what was stained with AB in 

histology images. Not all subepithelial material is composed of large, electron dense, granular material. A light, speckled appearance 

is also common, where nuclei may be observed; each indicating a single mucocyte. No other cytoplasmic organelles were observed 

(d). Scale bars = 5 µm (a-b, d), 2 µm (c).  
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Figure 42. TEM micrograph of foot tissue of Polymesoda caroliniana 

High magnification images were acquired from sections of the epithelium and subepithelium of the foot of Polymesoda caroliniana. 

Epithelial cells have long cilia (arrows) emerging from electron dense basal bodies (arrowheads). The nucleus (N) of each cell is 

lateral to basally located. Subepithelial glands or goblet cells (*) can be seen beneath the epithelium (a). A cross-section of a cilium 

reveals a standard 9+2 arrangement (b). The glands in the subepithelium appear homogeneous with unstained internal material (*) and 

surrounded by some muscle fibers (M) (c). The glands are composed of presumably numerous, amorphous mucocytes (*) with small 

nuclei. The glands are surrounded by muscle fibers. No other cytoplasmic organelles were observed (d). Scale bars = 10 µm (c), 5 µm 

(a, d), 1 µm (b).  
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CHAPTER IV – SHELL ULTRASTRUCTURE OF RANGIA CUNEATA AND 

POLYMESODA CAROLINIANA 

Introduction 

Shell layers and growth pattern 

The shells of both species are prosogyrous, meaning the umbo curves toward the 

anterior end of the shell. The umbo is the dorsal-most, and oldest part of the bivalve shell, 

and the ventral margin is the youngest (Figure 43). Bivalve shells are composed of layers 

of aragonite or calcite (CaCO3) (Lutz and Rhoads 1980). The number of layers may differ 

between species and may include inner, middle, and outer layers (Fritz et al. 1990). The 

innermost layer that comes into direct contact with the soft body tissue is the nacre. In 

many species, such as R. cuneata, attachment of soft tissue such as the adductor muscles 

and mantle forms a scar along the nacre (i.e., adductor muscle and pallial scars). The 

inner and middle layers are composed of prismatic crystals of aragonite or calcite (Lutz 

and Rhoads 1980). The outer shell layer is where the growth bands, examined for age 

determination and in population dynamics studies, are present and these bands offer 

visualization of the clam’s growth pattern. Thick growth bands indicate warm water 

temperatures, while narrow, tightly packed growth bands indicate cold water 

temperatures at the time of shell deposition (Lutz and Rhoads 1980; Fritz and Haven 

1983; Fritz et al. 1990). The outermost layer of bivalve shells is the periostracum, an 

organic layer not considered a true shell layer. A radial section through the maximum 

axis of growth (Figure 44a, b – D to V) provides a visual of the shell layers and the 

growth pattern.  
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Research aims 

While much research has investigated shell morphology and ultrastructure (i.e., 

shell layers and composition) on several bivalve species, including R. cuneata, this was 

the first comparative study on that of R. cuneata and P. caroliniana from a system in 

Mississippi. The goals of this research were to provide the first description and analysis 

of the shell ultrastructure of P. caroliniana and to provide an assessment of the shell 

layers, and visualization of any growth breaks in both R. cuneata and P. caroliniana. 

Last, it was of interest to determine the elemental composition of the shells from 

sympatric species in an estuarine environment of MS.  

The age of various species of bivalves has been published in the literature, but age 

using shells was not a research aim in this study. Age can be difficult to determine due to 

changes in the bivalve’s habitat (i.e., seasonal or large-scale ecological disturbances) or 

physiological responses (e.g., spawning, compaction of rings with increasing age). It was 

of interest to compare the shell ultrastructure of R. cuneata to studies that have performed 

on this species, but from other systems (e.g., Delaware River; Fritz et al. 1990). In 

addition, no study has been performed on the shell ultrastructure of P. caroliniana. Due 

to the thinness of this species’ shells, it was hypothesized that visualization of shell layers 

and any growth pattern would be more problematic compared to R. cuneata. Shells from 

live clams were used in this study. Empty shells found in the study site were in poor 

condition, greatly eroded, and too fragile for sectioning and subsequent examination. The 

gross morphology and ultrastructure were analyzed under light and scanning electron 

microscopy, and X-ray microanalysis was used to detect elements in various pieces of 

shell. It was hypothesized that elements including C, Ca, O (CaCO3) would be detected, 
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as well as Mg, Sr, and Si. The latter three are commonly detected in biomineralized tissue 

of many different organisms.  

Methodology 

Shell morphology and ultrastructure 

For visualization of shell morphology and ultrastructure (i.e., shell layers), four 

valves from R. cuneata (shell length = 23.2 – 54.5 mm) and two shells from P. 

caroliniana (SL ≈ 44 mm), collected as live individuals from random areas in sites from 

the middle and lower reaches of Johnson Bayou, were cut along the dorsal to ventral 

margin (i.e., along the maximum axis of growth) or longitudinally (anterior to posterior). 

Shells were cut using a RIDGID 15 Amp table saw in the Polymer Science Department in 

Hattiesburg, MS. Once the shells were cut, a 3 µm and 1 µm diamond paste was used to 

polish the section edges. Shells were then placed in Mutvei solution (1% acetic acid, 25% 

glutaraldehyde, 1-2 g Alcian blue (AB)) for a minimum of 1 hour at 4°C to etch and add 

contrast to the shell layers via the selective binding of AB to substituted polysaccharides 

(e.g., glycosaminoglycans; Quintarelli and Devollo 1966) in the organic matrix within the 

shell. Following removal from the Mutvei solution, sections were rinsed with distilled 

water and allowed to air dry. Images were captured before and after staining in Mutvei 

solution using a Pentax GPS-4 camera (Ricoh Imaging Americas Corporation, Denver, 

CO).  

Elemental analysis via EDS 

Examination of shell morphology and microanalysis required that shells be 

broken as whole shell examination was not possible under SEM due to size limitations. 

Shells were broken by wrapping them in thick paper packaging and using a hammer to 
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break the valves. Fragments were handled with nitrile gloves, sonicated several times for 

a few minutes in distilled water, and allowed to air dry before mounting on an aluminum 

stub. The periostracum, nacre and adductor muscle scar, and prismatic layers were 

examined under SEM (Hitachi SU3500, Hitachi High-Technologies, Corporation, 

Chiyoda-ku, Tokyo, Japan) at an accelerating voltage of 3 kV. An accelerating voltage of 

15 kV was required for X-ray microanalysis, also referred to here as Energy Dispersive 

X-ray Spectroscopy (EDS). Map (region-of-interest (ROI)) and line spectra were 

obtained from shell fragments and analyzed using AZtecEnergy EDS software v2.3 (X-

max 150 detector, Oxford Instruments NanoAnalysis, Buckinghamshire, UK).  

Data analysis 

All quantitative data (e.g., thickness of prismatic layers) was acquired using 

Image J version 1.48. All qualitative data (e.g., images and spectra) were edited and 

formatted in CorelDraw X8 (Corel Corporation, Ottawa, Ontario, Canada).  

Results 

Shell morphology and ultrastructure 

The periostracum is a dark and thin organic layer on the outside of the shells. It is 

smooth on R. cuneata, but ruffled on P. caroliniana (Figure 43a, b). The nacre is 

completely white in R. cuneata with strong scars indicating attachment sites for the 

adductor and retractor muscles and mantle tissue (pallial line). The pallial sinus is a 

continuation of the pallial line, formed by the siphons which are fused sections of the 

mantle (Figure 43c). The nacre on the inside of P. caroliniana shells is a mix of white, 

pink, and purple coloration with little to no discernible muscle or pallial scars (Figure 

43d). The periostracum and nacre layers are less than 100 µm in thickness. The shells of 
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R. cuneata were approximately 2.5 times thicker than those of P. caroliniana examined 

regardless of where on the shell the measurement was taken. 

The first observation during and after sectioning was the breaking of shell 

sections at an observed transition between prismatic layers (Figure 44a, b). The break 

was a smooth separation of shell layers indicating differences in crystalline structure or 

orientation. After polishing, the greatest difference between species was the presence of 

four shell layers in R. cuneata and three layers in P. caroliniana, the latter lacking a 

middle prismatic layer. A compact and white internal section was identified as the inner 

homogenous layer composed of stacked nacre layers in both species. In R. cuneata above 

the inner homogenous layer was the middle layer, separated from the outer layer by the 

pallial myostracum (Figure 44c, d). The middle layer was lighter, but thicker than the 

other layers before it terminated with the inner layer about halfway to two-thirds the 

length of the shell towards the ventral margin (Figure 44b, c, g). The outer layer 

dominated the ventral margin and was where the more easily observable growth bands 

used in research are visualized. The thin periostracum commonly flaked and fell off of 

sections of both species during handling.  

There were three to four distinct wedge-shaped sections of shell comprising the 

umbo of R. cuneata (Figure 44c, d). These are the concentric ridges of early growth in 

bivalves. If the results support observations by Fritz et al. (1990), then these wedges 

would indicate the first few years of ontogeny. The opaque, narrow growth bands 

indicate growth during the winter months, and the light, broad regions indicate growth 

from spring to fall (Figure 44d) (Lutz and Rhoads 1980; Fritz and Haven 1983; Fritz et 

al. 1990). Narrow and somewhat opaque bands indicate possible growth in the next 
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winter or a change in growth pattern. The length of the concentric ridges from shells of R. 

cuneata measured 2.7 – 5 mm. The width of growth bands, including some from the 

ridges were < 100 µm up to ~500 µm.  

There are four distinct layers of shell in R. cuneata: a white inner homogenous 

layer likely formed on thick, compact sheets of nacre, a thick, somewhat translucent 

middle layer, a pallial myostracum, and outer layer beneath the periostracum. The inner 

homogenous and middle layers do not continue beyond about halfway towards the ventral 

margin (Figure 44c).  

The shell layers ranged in thickness. Averages at the thickest point for inner 

homogenous, middle, myostracum, and outer layer were 0.96, 1.14, 0.002, and 1.31 mm, 

respectively. The outer layer was thinner in the middle of the shell (between umbo and 

ventral margins), but thickened at the ventral margin (Figure 44b, c, e). Averages at the 

thickest point of the inner, myostracum, and outer shell layer in P. caroliniana were 0.05, 

0.002, and 1.14 mm, respectively.  

Staining with Mutvei solution revealed better resolution of shell layers and 

growth bands. The inner homogenous layer was lightly stained, if at all, indicating little 

organic matrix and tightly compacted shell material. The middle and outer layers had 

several, but variable thin and thick layers of heavily stained organic matrix (Figure 44e). 

Some regions that were heavily stained could indicate growth breaks, possibly due to 

storm events or spawning (Figure 44f). A U-shaped notch in the growth bands beneath 

the periostracum along the outermost regions of the outer layer in R. cuneata was noted, 

likely indicating a storm break. Ridges along the outer layer and associated periostracum 

could indicate spawning breaks (Figure 44f).  
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The shell layers of P. caroliniana were more difficult to analyze due to the 

thinness and fragility of the shell. However, it could be discerned that the growth pattern 

is similar to that of R. cuneata in that the umbo is constructed of concentric ridges before 

recurving into presumably a mature stage of growth. Termination of the inner layer 

occurs approximately midway down the shell, similar to what occurs in R. cuneata 

(Figure 44g). Growth bands that comprise the outer layer curve perpendicularly from the 

inner side of the shell. Light microscopic images and SEM micrographs revealed that, 

along with the outer periostracum and the inner nacre, only three prismatic layers were 

evident in P. caroliniana (Figure 44h). Based on their appearance, two of the three 

prismatic layers varied in composition, and were separated by the pallial myostracum. 

Alcian blue revealed some growth bands in the outer layer, but individual bands were still 

difficult to examine (Figure 44e).  

A longitudinal section through shells of R. cuneata and P. caroliniana revealed a 

thick inner homogenous layer, the pallial myostracum, and growth increments in the 

outer layer (Figure 45). The inner layer was interrupted by the adductor muscle (Figure 

45a-c). Growth increments did not curve as strongly in P. caroliniana (Figure 45d) as 

those in R. cuneata. Alcian blue selectively bonded and stained the organic matrix within 

and between growth bands (Figure 45c, d). The thickness and presence of the organic 

matrix indicated by AB was highly variable between specimens in both species.  

High magnification images acquired via SEM revealed the innermost layer of 

nacre to be very thin and situated beneath (internal to) the stacked, older layers of nacre 

comprising the inner homogenous layer (Figure 46). In both species, the outer layer is 

aragonitic crossed lamellar crystals. The outer layer, as well as the middle layer (R. 
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cuneata) is composed of aragonitic cone complex crossed lamellar crystals (Lutz and 

Rhoads 1980) (Figure 47a-d). First- (1°) and second-order (2°) lamellae of the outer layer 

grow in an alternating pattern of near uniform thickness (10-15 µm) (Figure 47b). The 

crystals making up the middle layer are randomly oriented (Figure 40c, d), while the 

nacre is uniform and unornamented (Figure 47e). The pallial myostracum was imaged 

after fracturing a shell into two pieces, effectively removing the bottom half of the shell 

(middle and inner layers). The myostracum is thin in some areas depending on the 

arrangement of the crystals comprising the outer shell layer. Small pore-shaped regions 

are indicative of organic matrix (Figure 47f).  

Elemental analysis via EDS 

Elemental analysis of the periostracum of both species (Figure 48a-d) showed it to 

be primarily composed of C, O, and Si. Additional elements included Na, Mg, P, S, Cl, 

K, Ca, Ti, and Fe. Counts (i.e., indicating the relative amount of an element present in the 

ROI) of Si were far greater than from any other spectra on any other shell layer or 

section, while counts of Ca were the lowest (Figure 48e, f). A line spectrum across the 

nacre and adductor muscle scar of R. cuneata indicated a transition from low to high 

counts of Ca, with an increase in the level of Na, Mg, P, S, and Si across the scar (Figure 

49a, b). A map (ROI) spectrum of the nacre revealed uniform counts of elements (C, O, 

Ca, Na, Mg, S, P, Sr, and Cl) (Figure 49c). A map (ROI) spectrum of the adductor muscle 

scar supported results from the line spectra (i.e., lower levels of Ca, and higher levels of 

all other elements detected), but Sr and Cl were not detected (Figure 49d). A comparative 

line spectrum of nacre to the adductor muscle scar in P. caroliniana reflected 

observations from that of R. cuneata, but no Si or P was detected (Figure 50). A drop in 
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the detection of Ca occurred across the transition between nacre and scar. At this 

transition, the levels of C, Na, Mg, S, and Cl increased, but all except C dropped in 

detection levels again across the adductor muscle scar (Figure 50c). A line spectra across 

the outer and middle layers and the pallial myostracum of R. cuneata (Figure 51a) 

showed prominent peaks for C, H, O, and Ca, but with a drop in Ca levels across the 

myostracum (Figure 51b). Aluminum was not removed in all spectra, but can be 

discounted as X-ray analysis detects the Al from the stub upon which the sample is 

mounted.  

Discussion 

The current study compared shell morphology and ultrastructure between two 

venerids, from different families, that coexist in Johnson Bayou. Rangia cuneata and 

Polymesoda caroliniana may look very similar at first glance. The key indications for 

separating them are based on the periostracum, in which that of P. caroliniana is darker 

in color and ruffled, and an elongated posterior end produced by R. cuneata (Figure 43a, 

b). Internally, coloration and presence of strong scars on the nacre are the most obvious 

distinguishing characteristics. Rangia cuneata presents an entirely white nacre with 

distinct and sharply set scars indicating previous attachment of soft tissue (adductor 

muscle and mantle). The nacre is of mixed coloration from white to purple in P. 

caroliniana, and unless the shell is dried out, scars may not be discernible (Figure 43c, 

d). General shell morphology is not informative enough for estimating growth patterns or 

age. Examination of the internal shell ultrastructure via sectioning and polishing was 

required.  
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The thinnest sections attainable were approximately 0.5 cm in width, making 

visualization through sections with transmitted light impossible without sectioning with a 

thin, diamond-tipped blade. Nonetheless, visualization of shell layers and growth bands 

was made possible with polishing of the cut edges, and further by etching and staining 

with Mutvei solution. Several shells, particularly of P. caroliniana, broke during 

sectioning. A procedure to fully embed shell might reduce this occurrence; however, if 

necessary, removal of the shell fragments from the embedding media might cause the 

fragile sections to still fall apart. A partial embedding procedure was attempted with 

standard caulk and cement glue. Removal of fragments and sections from these materials 

was very time consuming and did not prevent many fragments from breaking. When 

cutting shells with the table saw, the point at which most sections broke was along the 

pallial myostracum (Figure 44b). Given how thin the myostracum is in the shells, it is not 

surprising this was a weak point. The use of a 3 µm and 1 µm diamond paste provided 

enough polish to observe a difference in shell layers and the presence of growth bands 

with the unaided eye.  

Shells of R. cuneata indicated that deposition of shell material occurred in wedge-

shaped concentric ridges before drastically shifting and depositing shell outward, and 

steadily increasing shell inflation. Based on shell growth in M. mercenaria, the shift from 

concentric ridges to recurved growth increments at a near right angle to previous shell 

deposition infers sexual maturity (Pannella and MacClintock 1968). Thus, if each 

concentric wedge indicates a year of growth, this population of R. cuneata may become 

sexually mature in 3-4 years. Ontogenetic studies may aid in answering how shell 

deposition specifically occurs during this early timeframe of life.  
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Growth breaks were difficult to examine without a larger sample size. In addition, 

without knowing all ecological or physiological events at the time of the examined 

breaks, interpretations may be suppositions. However, staining with Mutvei solution 

enhanced growth bands and helped identify changes in growth patterns. In R. cuneata, the 

growth break that is likely a storm break would likely have been caused by sediment 

particles trapped within the extrapallial sinus between the mantle tissue and shell, altering 

mineralization in that region. The ridges along the periostracum and outermost regions of 

the outer prismatic layer may indicate spawning events (Figure 47f). In this case, the 

clams cease growing for a time, likely in order to shunt energy into gametic production 

and spawning (Shumway and Parsons 2006). Spawning breaks in the shell ultrastructure 

are common and have even been observed in shells of bivalves that live >1000 m (Lutz 

and Rhoads 1980). Large and deep depressions (Figure 44f) may be considered breaks; 

however, the ones observed more likely indicate an outside force (e.g., predatory attack) 

imposed on the clam, erosion, or growth against another object. For instance, some clams 

were observed to live within sediment inundated with debris (e.g., sticks and logs, metal 

plates, or trash).  

It is thought that an increased amount of organic matrix present among growth 

bands may be indicative of slower growth, cessation, or shell dissolution (Lutz and 

Rhoads 1977). This is logical given the function of the organic matrix is to control 

biomineralization through nucleation and inhibition of crystal growth. It is unclear 

whether or not growth cessation or shifts in growth patterns occurred in the examined 

specimens of R. cuneata or P. caroliniana from Johnson Bayou. According to Fritz et al. 

(1990), dark growth bands indicate winter growth. The dark colored bands indicate not 
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only greater organic material, but a change in shell deposition (e.g., dissolution, growth 

breaks, amount of shell laid down). Clark (1979) observed no distinct marks indicating 

winter cessation in specimens of M. mercenaria from Georgia.  

If shell deposition was affected, then this is a reflection that the physiology of the 

clam was affected during this time. The “after-the-fact” observation is informative for 

looking at how clams respond to a specific disturbance. For example, low temperatures 

and salinity levels are known to retard growth in bivalves (Navarro 1988). For M. 

mercenaria, a water temperature of approximately 25°C is the upper limit for shell 

growth (Ansell 1968). It is hypothesized that such conditions could retard growth or 

cause a shift in growth patterns in R. cuneata and P. caroliniana in Johnson Bayou. In 

January 2015, water temperature was measured at 6°C for several days. At low tide 

during this time, sheets of ice were observed covering exposed banks where these clams 

exist. It would not be surprising if a population dynamics study revealed growth breaks 

due to cold shocks and mass mortality recorded during this time. Only six shells were 

examined in this study, four of R. cuneata and two of P. caroliniana. In contrast, nearly 

500 specimens of R. cuneata were collected and examined by Fritz et al. (1990). One 

could estimate recruitment events and how successful a spawning event was in previous 

years by examining the growth bands of shells, based on methods and results from Fritz 

et al. (1990).  

Lower and upper environmental limits that may affect shell growth in R. cuneata 

or P. caroliniana have not been determined or was not found in the literature that 

encompass all populations across their range. If these limits exist for the populations in 

Johnson Bayou, then it would be informative to observe fluctuations or changes in shell 
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growth, and perhaps any resulting physiological effects. It must be noted that this study 

only examined shell ultrastructure in a few shells from either species. Any observable 

differences in shell growth may not reflect the entire population. Large sample sizes are 

required to discern population shell growth (Fritz and Haven 1983). Nonetheless, even a 

few shells provided insight into elemental composition via X-ray microanalysis (i.e., 

elemental dispersive X-ray spectroscopy, EDS). 

Elemental analysis via EDS 

Growth bands can be used in the production of paleoproxies, similar to how 

researchers utilize ice core samples or tree rings. However, analysis via X-rays is 

required to first understand what elements are incorporated into the shells. The analysis 

from EDS provided information on the elemental composition of the shells from both 

species. Expected elements included C, O, and Ca (CaCO3). Some additional elements 

that were detected, and have been detected in published research on biomineralizing 

organisms (Mackinder et al. 2010; Matsko et al. 2010; Drescher et al. 2012) included Na, 

Mg, Sr, Si, Cl, and K. The elements Na, Cl, and K could be an artifact of handling or 

from the environment.  

Magnesium was low in spectra in both species of clam. This was expected, 

because highly selective ion transport systems are well known to be utilized in processes 

of biomineralization (Mackinder et al. 2010). If species produce shell out of calcite, then 

the presence of Mg can be expected in the shell, because the spacing in the crystal lattice 

is smaller than that in aragonite, and the ionic radius of Mg is smaller than that of Ca 

(Rosenberg 1980).  
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Strontium was another element detected in shell fragments of both species. Unlike 

Mg however, the ionic radius is larger than Ca. There is also more room in the crystal 

lattice of aragonite than calcite (Rosenberg 1980). Thus, it was not surprising to detect Sr 

in shell here. As a result of Mg and Sr being commonly incorporated and subsequently 

detected in biomineralized material (Lutz and Rhoads 1980), these elements can be used 

as indicators of elemental concentrations, using more sensitive methods, in the external 

environment of the calcifying organism under study.  

Strontium has been reported to co-localize with Ca in some animals and protists, 

such as corals and coccolithophores (Grovenor et al. 2006, Schöne and Gillikin 2012). 

The Sr/Ca ratio in calcitic structures is dependent on the Sr/Ca ratio in seawater. As 

reported in calcifying algae, deposition of Sr into calcitic structures may be used as a 

record in growth variations and indicate changes in the geochemistry of the water column 

(Stoll and Schrag 2000, Schöne and Gillikin 2012). If research into the use of Sr in 

development of paleoproxies is beneficial, then the Sr/Ca ratio in the studied water 

column must be known. This data might be compared to the ratio or percentage of Sr in 

shells acquired from sediment. Incorporation of such elements such as Sr has been 

exploited in developing paleoproxies (Rickaby et al. 2002); however, research that has 

focused on Sr/Ca ratios is mainly based on correlations of Sr/Ca ratios with rates of 

carbon fixation and calcification. Consequently, calcifying photosynthetic organisms 

might be easier to use as paleoproxies, because you can hypothetically correlate growth 

rates with calcification in these organisms (Rickaby et al. 2002). No inference can be 

made with respect to the data acquired here without further study on the elemental 

composition of the water column as changes in abiotic factors progress and at times of 
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specimen collection. Regardless, shells from R. cuneata and P. caroliniana may still be 

valuable in sclerochronological research. 

A third element of interest that was detected in some spectra was silicon, 

primarily from the periostracum (Figure 48). Silicon is a component in the cuticle of 

crustaceans and cyanobacteria that produce calcitic material, primarily at sites of growth 

or the laying down of biomineral material (Matsko et al. 2010); thus, the presence of Si 

here may infer a role in an as yet undiscovered organic matrix that regulates bivalve shell 

production. Presumably, Si is thought to be an important component of organic matrices 

or protein complexes, in which chains of Si act as “containers” for ions (e.g., Ca, P) that 

are required for crystal nucleation (Matsko et al. 2010).  

Elements that were not expected, but detected in nearly all samples included S, P, 

Fe, and Ti. These elements are likely not contaminants from methodology. Care was 

taken to minimize contamination from external sources and were only cleaned using 

distilled water under sonication. Other methods, such as use of HNO3
-, dissolves shell to 

be used in inductively coupled plasma mass spectrometry (Cathey et al. 2012). This 

method was not employed in this study. The first two elements, S and P, could be part of 

the periostracum’s composition, as this is a proteinaceous layer on shells. Sulfates in the 

marine environment are up to 1000X concentrated when compared to freshwater systems. 

Thus, with salt water intrusion, sulfur is brought into wetland habitats. Sulfate is reduced 

to sulfide under microbial action (Schoepfer et al. 2014). Similarly, Fe originating from 

erosional processes and insoluble in freshwater systems in the form of Fe(III), is reduced 

once in estuarine systems under the actions of microbes. Sulfide and Fe(II) binds and 

forms FeS, forming the characteristic black coloration and distinct smell of anaerobic 
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soils (Schoepfer et al. 2014). Both species of clam in this study are infaunal organisms, 

directly in contact with the soils. It is not surprising that some level of S and Fe were 

detected in the shell fragments. Titanium was detected in the periostracum from both 

species of clam (Figure 48). A plant owned by DuPont located in Pass Christian, MS 

along the shores of St. Louis Bay produces titanium dioxide. Thus, given the proximity to 

Johnson Bayou, it is not surprising Ti was detected in both species. No other heavy 

metals (e.g., Co, Cu, Pb) aside from Ti and Fe were detected in the periostracum of either 

species. This indicates that if such heavy metals are present, a more sensitive detection 

method is required. It is positive from this standpoint that no heavy metals aside from Ti 

and Fe, which were detected only from the periostracum, were detected by EDS, 

indicating potentially low heavy metal concentrations in Johnson Bayou. However, heavy 

metals tend to accumulate in soft body tissue (Wolfe and Schelske 1969; Pace and Di 

Giulio 1987).  

Energy dispersive X-ray spectroscopy is a valuable tool for determining the 

composition and distribution of elements in biomineralized material. The exact 

mechanism of how clams are able to control calcification remains unknown, but the 

extrapallial space between the mantle epithelium and accreting shell is the site of 

calcification. Based on the “matrix” hypothesis, an organic matrix is laid down to control 

nucleation of crystals (Rosenberg 1980). This is observed in many invertebrates (e.g., 

corals) (Rosenberg 1980) as well as in calcifying protists (e.g., coccolithophores) 

(Rickaby et al. 2002; Drescher et al. 2012). Select elements from the water column are 

incorporated into the growing shell. No matter the mechanism of calcification, elements 

like heavy metals may end up in shell material, which can be detected by EDS.  
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Information derived from elemental analyses on shells of R. cuneata and P. 

caroliniana could hypothetically be used to gain insight into how Johnson Bayou has 

changed in water quality. However, research involving isotopic work must take into 

account that this is an estuarine system with fluctuating salinity levels throughout each 

year and under tidal influence. As a result, isotopic levels and ratios can change in a short 

time period. For instance, 18O levels increase with increasing salinity, while 16O and 17O 

levels decrease (Epstein and Mayeda 1953, Redfield and Friedman 1965). Compared to 

isotopic levels of these elements in the open ocean, those in estuarine systems could vary 

several-fold. Researchers may only construct a partial picture of the ecosystem at one 

time from the results.  

This is the first comparative report on shell morphology and ultrastructure 

between two infaunal clams from different families that coexist in the same estuarine 

system in MS. It is clear that while R. cuneata shells may be useful in future studies on 

population dynamics from this and surrounding systems (i.e., St. Louis Bay), the shell of 

P. caroliniana may only valuable in terms of analyzing elemental composition. 

Researchers can exploit methods utilized here and in the extensive literature to examine 

shell ultrastructure and detect elements in the shell. Fossil shells and extant shells provide 

a long and a short history of an ecosystem. Results from these shells can be used to 

elucidate past ecological trends. Future modeling can be constructed with this type of 

information to determine, for example, resiliency of a population.  
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Figure 43. Shell morphology of Rangia cuneata and Polymesoda caroliniana 

The periostracum of Rangia cuneata is dark, smooth, and unornamented (a). The periostracum of Polymesoda caroliniana is dark 

brown to black and ruffled (b). The nacre of R. cuneata is completely white, but has discernible scars where the adductor and retractor 

muscle (*) and the mantle tissue (arrow) are attached to the shell (c). The nacre of P. caroliniana is a mix of white, pink, and purple 

with scars that are less discernible, but mirrors those on R. cuneata (d). Abbreviations: A = anterior, D = dorsal, P = posterior, V = 

ventral). All images were oriented with respect to (a).  
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Figure 44. Cut, polished, and stained shells from Rangia cuneata and Polymesoda caroliniana 

A shell of Rangia cuneata was cut from the umbo (D = dorsal) to the ventral (V) shell margin along the maximum axis of growth (top to bottom; a). A side-view of (a) revealed a break between the 

outer layer and the middle and inner layers (arrowhead; b). A polished section shows damage that occurred to the periostracum and outer prismatic layer before preparation (arrow). There are four layers 

to the shell: (1) inner homogenous layer with the inner nacre, (2) translucent middle layer, (3) pallial myostracum, and (4) outer layer. The pallial myostracum divides the outer layer from the middle and 

inner layers, but (along with the middle and inner layers) terminates near the ventral margin (arrowhead) (c). A section through the umbo (box from c) shows early life growth with concentric ridges of 

shell. Narrow, opaque (*) and broad, translucent growth bands indicate seasonal variations. Arrows indicate new growth patterns during ontogeny (d). A closer image of the shell layers reveals the inner 

layer (1) as a white, compact layer underneath the middle layer (2). The outer layer (4) is sharply separated by the pallial myostracum (arrows; e). Two types of growth breaks were observed in shell of 

R. cuneata. The loss of periostracum in one region is indicative of abrasion, which resulted in a curved, U-shaped growth increment beneath the break (arrow). The ridges indicate possible seasonal 

change or spawning break (arrowheads in f). There is a greater amount of organic matrix (dark lines) in these locations, indicative of growth cessation (f). A polished and stained section through a shell 

of Polymesoda caroliniana from the D to V (g) revealed three shell layers (h; inset from g): an inner layer (1), pallial myostracum (2), and an outer layer (3). The pallial myostracum terminates 

approximately halfway towards the ventral margin (arrowhead in h).  
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Figure 45. Polished and stained longitudinal sections through a shell of Rangia cuneata 

and Polymesoda caroliniana 

A longitudinal section through a shell of Rangia cuneata near the adductor muscle scar revealed growth bands in the outer layer (thin 

dotted lines; a-c) and separation of the inner and middle layers from the outer layer (thick dashed line; a) that ceased at the scar 

(arrows; a-c). Variation in growth band thickness and intensity (light versus dark) was apparent after shells were polished and under 

transmitted light (b). Alcian blue from the Mutvei solution stained organic matrix and aided in visualization of growth bands (c). 

Thick dark bands indicate a greater concentration of organic matrix. A longitudinal section through a shell of Polymesoda caroliniana 

near the adductor muscle scar revealed a thinner shell structure and less curvature of growth bands (dashed lines) compared to R. 

cuneata. Arrows indicate possible shift in growth patterns as shell material does not align to the surrounding growth bands (d).  
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Figure 46. SEM micrograph of the nacre and inner prismatic layer from Rangia cuneata 

The nacre (N) is thin and will peel off in flakes shell is allowed to dry. The inner prismatic layer (IL) is compact and arranged in 

foliate-like sheets stacked upon one another (arrows; inset). Scale bar = 500 µm.  
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Figure 47. SEM images of shell fragments from Polymesoda caroliniana 

The ultrastructure of shell fragments from Polymesoda caroliniana were examined under SEM. The prismatic outer layer (OL) and 

middle layer (ML) are separated by the thin pallial myostracum (dashed line; a). (b) is a higher magnification image of the OL 

showing the first- (1°) and second- (2°) order lamellae. Direction of shell growth is towards the bottom right. The ML is composed of 

crossed-lamellar crystals (c) that grow in various orientations (dark lines; d). The nacre is extremely thin and uniform. The image 

shows the nacre on top of the inner prismatic layer (e). The pallial myostracum in P. caroliniana is shown above the middle layer. 

Large, nonuniform bundles of crystals can be seen beneath the myostracum. There were breaks along the pallial myostracum (arrows) 

and small pore-shaped regions present (*) across this layer (f). Scale bars = 200 µm (a), 50 µm (b, c, e), 25 µm (d, f). 
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Figure 48. Images, SEM micrographs, and EDS spectra of the periostracum from Rangia 

cuneata and Polymesoda caroliniana 

The periostracum of a shell from Rangia cuneata (a) and Polymesoda caroliniana (b) were examined with X-ray microanalysis. A 

map ROI from each shell was analyzed (c, d; boxes from a and b). Elements detected from the periostracum of R. cuneata (e): C, O, 

Na, Mg, Al (from SEM stub), Si, P, S, K, Ca, Ti, and Fe. Elements detected from the periostracum of P. caroliniana (f): C, O, Mg, Si, 

P, S, Cl, K, Ca, Ti, and Fe. In both species, the counts of Si were far greater than Ca (e and f). Scale bars = 1 mm.  
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Figure 49. SEM micrograph and EDS spectra across the nacre and adductor muscle scar 

from Rangia cuneata 

A shell fragment from the anterior end near the adductor muscle scar was imaged and scanned with EDS. A line spectrum showed a 

lower amount of Ca towards the muscle scar, while P was detected at a higher concentration. With the exception of C, O, and Ca, all 

other elements were detected, but with low counts. Elements detected from map (ROI) spectrum over the nacre (large box in (a)) 

included C, O, Na, Mg, Al (from SEM stub), Sr, Si, P, S, Cl, and Ca (c). Elements detected from map spectrum over the adductor 

muscle scar (small box in (a)) included C, O, Na, Mg, Si, P, S, and Ca (d). Scale bar = 2 mm.  
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Figure 50. Image, SEM micrograph, and EDS spectrum across the nacre and adductor 

muscle scar from Polymesoda caroliniana 

The nacre and adductor muscle scar transition (dashed box in a) is indicated by prismatic microstructures (arrows; b). A line spectrum 

was performed (solid middle line in b) across this transition (nacre - left side; adductor muscle scar – right side). The spectrum shows 

the presence of: C, O, Na, Mg, S, Cl, and Ca. Across the boundary between the nacre and scar regions, levels of Ca dropped (arrow; 

c), while all other elements except O increased (c). Scale bar = 500 µm. 

 

Figure 51. SEM micrograph and EDS line spectrum across the outer and middle 

prismatic layers from Rangia cuneata 

A line spectra (solid line; a) across the outer and inner prismatic layers of a fragment of Rangia cuneata shell shows that while levels 

of C, O, and Ca, remained stable throughout both layers, Ca levels dropped across the pallial myostracum (dotted line; a) (arrow; b). 

Scale bar = 2 mm (c).  

 

 

 



 

172 

References 

Ansell AD. 1968. The rate of growth of the hard calm Mercenaria mercenaria (L) 

 throughout the geographical range. J Cons Perm Int Explor Mer. 31:364-409. 

Cathey AM, Miller NR, Kimmel DG. 2012. Microchemistry of juvenile Mercenaria 

 mercenaria shell: Implications for modeling larval dispersal. Mar Ecol Prog Ser 

 465:155-168. 

Clark GR. 1979. Seasonal growth variations in the shells of Recent and prehistoric 

 specimens of Mercenaria mercenaria from St. Catherines Islands, Georgia. 

 Anthropol Pap Am Mus Nat Hist. 56:161-179. 

Drescher BD, Dillaman RM, Taylor AR. 2012. Coccolithogenesis in Scyphosphaera 

 apsteinii (Prymnesiophyceae). J Phycol. 48:1343-1361. 

Epstein S, Mayeda T. 1953. Variations in O18 content of waters from natural sources. 

 Geochem Cosmochim Acta. 27(4):213-224. 

Fritz LW, Haven DS. 1983. Hard clam, Mercenaria mercenaria: shell growth patterns in 

 Chesapeake Bay. Fish Bull. 81(4):697-708. 

Fritz LW, Ragone LM, Lutz RA. 1990. Microstructure of the outer shell layer of Rangia 

 cuneata (Sowerby, 1831) from the Delaware River: applications in studies of 

 population dynamics. J Shellfish Res. 9(1):205-213. 

Grovenor CRM, Smart KE, Kilburn MR, Shore B, Dilworth JR, Martin B, Hawes C, 

 Rickaby REM. 2006. Specimen preparation for NanoSIMS analysis of biological 

 materials. Appl Surf Sci. 252:6917-6924.  



 

173 

Lutz RA, Rhoads DC. 1977. Anaerobiosis and a theory of growth line formation. Micro- 

 and ultrastructural growth patterns within the molluscan shell reflect periodic 

 respiratory changes. Science. 198:1222-1227. 

Lutz RA, Rhoads DC. 1980. Growth patterns within the molluscan shell: An overview. 

 In: Rhoads DC, Lutz RA, editors. Skeletal growth of aquatic organisms: 

 Biological records of environmental change. New York (NY): Plenum Press. p. 

 203-254. 

Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C. 2010. Molecular 

 mechanisms underlying calcification in coccolithophores. Geomicrobiol J. 

 27:585-595. 

Matsko NB, Žnidaršič N, Letofsky-Papst I, Dittrich M, Grogger W, Štrus J, Hofer F. 

 2010. Silicon: The key element in early stages of biomineralization. J Struct Biol. 

 174:180-186. 

Navarro JM. 1988. The effects of salinity on the physiological ecology of Choromytilus 

 chous (Molina, 1782) (Bivalvia: Mytilidae). J Exp Mar Biol ecol. 122:19-33. 

Pace CB, Di Giulio RT. 1987. Lead concentrations in soil, sediment and clam samples 

 from the Pungo River peatland area of North Carolina, USA. Environ Poll. 

 43:301-311. 

Pannella G, MacClintock C. 1968. Biological and environmental rhythms reflected in 

 molluscan shell growth. J Paleontol. 2, supplemental to 42(5):64-80. 

Quintarelli G, Devollo MC. 1966. Age changes in the localization and distribution of 

 glycosaminoglycans in human hyaline cartilage. Histochemie. 7(2):141-167. 



 

174 

Redfield AC, Friedman I. 1965. Factors affecting the distribution of deuterium in the 

 ocean. Symposium on marine geochemistry; University of Rhode Island. Occ 

 Publication. 3:149-168. 

Rickaby REM, Shrag DP, Zondervan I, Riebesell U. 2002. Growth rate dependence of Sr 

 incorporation during calcification of Emiliania huxleyi. Global Geochem Cy. 

 16:1-8. 

Rosenberg GD. 1980. An ontogenetic approach to the environmental significance of 

 bivalve shell chemistry. In: Rhoads DC, Lutz RA, editors. Skeletal growth of 

 aquatic organisms. New York (NY): Plenum Press. 133-168. 

Schoepfer VA, Bernhardt ES, Burgin AJ. 2014. Iron clad wetlands: Soil iron-sulfur 

 buffering determines coastal wetland response to salt water incursion. J Geophys 

 Res: Biogeo. 119:2209-2219. 

Schöne BR, Gillikin DP. 2012. Unraveling environmental histories from skeletal diaries 

 – advances in sclerochronology. Palaeogeogr Palaeocl. 373:1-5. 

Shumway SE, Parsons GJ. 2006. Scallops biology, ecology, and aquaculture. Boston and 

 Amsterdam: Elsevier.  

Stoll HM, Schrag DP. 2000. Coccolith Sr/Ca as a new indicator of coccolithophorid 

 calcification and growth rate. Geochem Geophys Geosy. 1:1-24.  

Wolfe Da, Schelske CL. 1969. Accumulation of fallout radioisotopes by bivalve molluscs 

 from the lower Trent and Neuse Rivers. Proc 2nd Nat Symp on Radioecology. 

 USAEC Conf 670502:493-504. 

 

 



 

175 

APPENDIX A – PAIRWISE COMPARISON OF OM DATA 

Table A1.  

Pairwise comparison of OM based on location with presence versus absence of clams 

Site Comparison (+/-) q values Significant difference (yes or no) 

Lower (+) vs Lower (-) 2.80 No 

Lower (+) vs Middle (+) 0.84 No 

Lower (+) vs Upper (+) 3.67 Yes 

Lower (+) vs Middle (-) 1.43 No 

Lower (+) vs Upper (-) 2.89 No 

Lower (-) vs Middle (+) 3.64 Yes 

Lower (-) vs Middle (-) 1.37 No 

Lower (-) vs Upper (+) 6.48 Yes 

Lower (-) vs Upper (-) 5.70 Yes 

Middle (+) vs Middle (-) 2.27 No 

Middle (+) vs Upper (+) 2.83 No 

Middle (+) vs Upper (-) 2.06 No 

Middle (-) vs Upper (+) 5.11 Yes 

Middle (-) vs Upper (-) 4.33 Yes 

Upper (+) vs Upper (-) 0.78 No 

A pairwise comparison using Dunn’s test (qcrit = 2.92) was performed between OM collected where clams were present and clams 

were absent from the three sites (lower, middle, upper). The symbols (+) and (-) indicate presence and absence of clams, respectively.  
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APPENDIX B – PERMISSION FOR USAGE OF FIGURE 3 

Email request for use of Figure 3: 

Dear Jennifer, 

Please be informed that in accordance with updated Terms and Conditions for reuse of 

web content  (full version available on http://www.fao.org/contact-us/terms/en/),  except 

where otherwise indicated, material may be copied, downloaded and printed for private 

study, research and teaching purposes, or for use in non-commercial products or services, 

provided that appropriate acknowledgement of FAO as the source and copyright holder is 

given and that FAO’s endorsement of users’ views, products or services is not implied in 

any way. 

All requests for translation and adaptation rights, and for resale and other commercial use 

rights should be submitted via the online Licence Request Form 

http://www.fao.org/contact-us/licence-request/en/ when downloading. 

Kind regards, 

Radhika 

Reference from which figure was reproduced: 

Carpenter KE. 2002. The living marine resources of the Western Central Atlantic: 

 Introduction, molluscs, crustaceans, hagfishes, sharks, batoid fishes, and 

 chimaeras. FAO species identification guide for fishery purposes and American 

 Society of Ichthyologists and Herpetologists Special Publication No. 5. [Rome] p 

 1-600. 
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