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ABSTRACT

RADIAL BASIS FUNCTION DIFFERENTIAL QUADRATURE METHOD FOR THE

NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

by Daniel Wade Watson

December 2017

In the numerical solution of partial differential equations (PDEs), there is a need for

solving large scale problems. The Radial Basis Function Differential Quadrature (RBF-

DQ) method and local RBF-DQ method are applied for the solutions of boundary value

problems in annular domains governed by the Poisson equation, inhomogeneous biharmonic

equation, and the inhomogeneous Cauchy-Navier equations of elasticity. By choosing the

collocation points properly, linear systems can be obtained so that the coefficient matrices

have block circulant structures. The resulting systems can be efficiently solved using matrix

decomposition algorithms (MDAs) and fast Fourier transforms (FFTs). For the local RBF-

DQ method, the MDAs used are modified to account for the sparsity of the arrays involved in

the discretization. An adjusted Fasshauer estimate is used to obtain a good shape parameter

value in the applied radial basis functions (RBFs) for the global RBF-DQ method while

the leave-one-out cross validation (LOOCV) algorithm is employed for the local RBF-DQ

method using a sample of local influence domains. A modification of the kdtree algorithm

is used to select the nearest centers for each local domain. In several numerical experiments,

it is shown that the proposed algorithms are capable of solving large scale problems while

maintaining high accuracy.

iii
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this dissertation represents fairly standard mathematical and compu-
tational usage. Standard fonts are used to denote sets of numbers: R for the field of real
numbers, C for the complex field, Z for the integers, and Q for the rationals. Functions in
boldface type represent vector valued functions. The caligraphic letters L and B denote
partial differential operators and the capital letters, A,B, · · · are used to denote matrices.

It is common to denote u as a function of several variables, u(x,y, t). Functions are
generally defined on some region Ω of R2. A partial differential equation (PDE) involves
one or more partial derivatives of an unknown function of several variables. If all partial
derivatives of u = u(x,y) are continuous in a region Ω of R2, the Laplacian of u is,

∆u =
∂ 2u
∂x2 +

∂ 2u
∂y2 .

Generally, norms are represented by using double pairs of lines, i.e., || · ||, and the absolute
value of numbers is denoted using a single pairs of lines, i.e., | · |. The determinant of the
matrix is denoted by single pairs of lines around the matrices.

xi



1

Chapter 1

INTRODUCTION

1.1 Background

Partial Differential Equations (PDEs) are mathematical equations that are significant in
modeling physical phenomena that occur in nature. Applications can be found in physics,
engineering, mathematics, and finance. Examples include modeling mechanical vibration,
heat, sound vibration, elasticity, and fluid dynamics, just to name a few. Although PDEs
have a wide range of applications to real world problems in science and engineering, the
majority of PDEs do not have analytical solutions. It is, therefore, important to be able to
obtain an accurate solution numerically.

The advancements of high-speed computers have made it possible to find numerical
solutions to complex PDEs while minimizing the time it requires to perform the computa-
tions. Many computational methods have been developed and implemented to successfully
approximate solutions. Traditionally, mesh methods such as the finite difference method
(FDM), finite element method (FEM), and boundary element method (BEM) have been
used [4, 43, 44]. These methods require a mesh to connect nodes inside the computational
domain or on the boundary. Complications of these methods include a slow rate of con-
vergence, spatial dependence, instability, low accuracy, and difficulty of implementation
in complex geometries. However, meshless approximation techniques using radial basis
functions (RBFs) have been developed over the last several decades. These techniques are
easy to implement, highly accurate, and truly meshless, which avoids troublesome mesh
generation for high-dimensional problems.

Edward Kansa [26, 27] first introduced the original radial basis function collocation
method (RBFCM) in 1990 also known as the Kansa method. While the mesh based methods
require every node to be connected to its neighboring nodes, the nodes in the RBFCM has no
nodal connectivity and thus can easily handle complex geometries. Additional advantages
include stability with a high rate of convergence, spatial independence, and infinitely differ-
entiable. Many RBFs have been used in the meshless literature including multiquadric (MQ),
inverse multiquadric (IMQ), Gaussian, and thin plate splines being the most commonly used
globally supported RBFs [7, 26, 27, 18]. Polynomials and trigonometric functions can also
be used as basis functions [36].
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1.2 Literature Review

Over recent decades, meshless methods using RBFs have evolved, and a number of different
techniques have been developed for solving partial differential equations, such as the Kansa
method, method of approximate particular solutions, method of fundamental solutions, and
singular boundary method, just to name a few. In addition to these well known methods, the
radial basis function differential quadrature method (RBF-DQ) is a significant and effective
method. Bellman [1] first proposed the differential quadrature (DQ) method when searching
for a method that only required a few grid points in order to obtain accurate numerical
results. Borrowing from the integral quadrature where an integral on a closed domain is
approximated by a linear combination of functional values at all nodes, the differential
quadrature approximates a derivative of a function with respect to a coordinate at a node
using a linear combination in the whole domain in that coordinate direction. Wu and Shu
[54] combined this differential quadrature method with radial basis functions and referred to
it as the RBF-DQ method. This method is simple to implement, ensures non-singularity,
and is appropriate for both linear and non-linear problems.

While this method along with other methods have been proven to be effective, a sig-
nificant disadvantage to these methods is that they are not able to handle the solution of
problems on a large scale. In this case, the matrices can become dense and are often poorly
conditioned. Not only is stability an issue, but the computational cost and memory allocation
become very high thereby rendering the method ineffective. Furthermore, the solution is
very sensitive to the choice of the shape parameter in the RBFs. To circumvent these issues,
a number of efforts have been made in the literature including a domain decomposition in-
troduced by Main-Duy and Tran-Cong [40], a multi-grid approach in [50], compact support
radial basis functions by Chen et al. [9], the greedy algorithm [46, 24], extended precision
arithmetic [25], the improved truncated singular value decomposition method [38], and local
methods such as the local Kansa method [35] and local Method of Approximate Particular
Solutions [50].

In the local approach, instead of solving the problem using all of the collocation points,
a local influence domain is created for each point where only a small number of neighboring
points is used to approximate the solution. By repeatedly solving for the coefficients using
the small local domains, the resultant coefficient matrix becomes sparse, which allows for the
use of a large number of collocation points. Also, since a low number of collocation points
is used, the shape parameter naturally will become more stable. While the shape parameter
for each local domain theoretically is different, this difference will not be signficiant, and
using one shape parameter for all local domains yields acceptable results. While this method
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does not achieve the same accuracy as the global method, it allows a large scale problem
to be solved while still resulting in an acceptable approximation [5, 6]. As an alternative
to these methods, a matrix decomposition algorithm (MDA) can be used to resolve the
issues that arise with large scale problems. This MDA has the ability of reducing the
solution of an algebraic problem to the solution of a set of independent systems of lower
dimension. Further, by appropriately choosing the collocation points lying on concentric
circles in the domain, linear systems can be obtained in which the coefficient matrices will
have block circulant structures. By utilizing the properties of circulant matrices, additional
computational time savings can be realized.

Another disadvantage to RBF methods is that the determination of an optimal shape
parameter is often problem-dependent and continues to be an area of research. While the
leave-one-out cross validation (LOOCV) method is effective in finding a sub-optimal shape
parameter, the computational time is an issue and becomes a burden for large scale problems.
In this dissertation, a modification of the Fausshauer estimate is explored, which can be
effective in estimating a good value for the shape parameter without requiring a significant
computational cost. An additional parameter that can affect the outcome is the selection of
the radial basis function. Different RBFs will also be considered to determine which is most
effective.

In this dissertation, a matrix decomposition algorithm (MDA) is implemented in order
to reduce the dense collocation matrix to a diagonal matrix. This will in effect reduce the
solution of the PDE to the solution of a set of independent systems of lower dimension.
The decomposition can be implemented efficiently using fast Fourier Transforms (FFTs).
Since the global structure is maintained in this scheme, the same high accuracy is able
to be achieved in the numerical results. Such MDAs have been implemented in a variety
of methods, including the Kansa method and the method of fundamental solutions (MFS)
[29, 30]. MDA leads to substantial savings in computational cost and memory and can be
further coupled with the local method to further improve time and memory savings.

Finally, this dissertation will:

• address the problem of solving large scale problems by implementing a matrix decom-
position algorithm.

• examine the attractive properties of circulant matrices and explore how these properties
can contribute to computational savings.

• explore the selection of the radial basis function and the effect it has on the accuracy
of the solution.
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• test methods for selecting an appropriate shape parameter that minimizes the error of
the RBF-DQ method.

• explore the pairing of the local radial basis function differential quadrature method
with the matrix decomposition algorithm.

1.3 Synopsis

The purpose of this study is to pair a matrix decomposition algorithm with the radial basis
function differential quadrature method for solving elliptic PDEs:

Lu = f (x,y), (x,y) ∈Ω,

Bu = g(x,y), (x,y) ∈ ∂Ω,
(1.1)

where L and B are linear partial differential operators, Ω is a bounded domain in R2, and
∂Ω is the boundary of the domain Ω.

In this dissertation, a numerical scheme Radial Basis Function Differential Quadrature
method (RBF-DQ) is combined with a matrix decomposition algorithm (MDA) for solving
various types of PDEs, which is applied both globally and locally. This numerical scheme
is direct, less ill-posed, easy to implement, and highly accurate. Also, this can be easily
extended to higher order elliptic PDEs and in higher dimensions as well.

Chapter 2 begins with a review of state-of-the-art meshless methods focusing particularly
on the methods and techniques used in this dissertation. The RBF collocation method,
known as Kansa method, is introduced. The method of particular solutions (MPS) is also
briefly discussed. The RBF-DQ method is then introduced along with the local scheme. A
discussion of the techniques for choosing an appropriate shape parameter follows, including
the Leave-one-out cross validation (LOOCV) and other techniques, such as the adjusted
Fausshauer estimate and dimensionless shape parameter.

Chapter 3 introduces the matrix decomposition algorithm (MDA) in detail. The relation-
ship between similar matrices and their eigenvalues is first introduced followed by a strategy
for choosing collocation points, which is necessary in order for a circulant structure to be
achieved. Circulant matrices are then defined along with important properties and theormes
that is necessary for the matrix decomposition algorithm. Once the circulant structure is
established, the fast Fourier transform is then applied to decompose the matrices.

In Chapter 4, the RBF-DQ method is combined with the MDA to solve partial differential
equations along using both the global and local scheme. Examples include the Poisson
equation, Biharmonic equation, and the Cauchy-Navier problem of elasticity. Details will be
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given to transform a matrix with a non-circulant structure to one that is circulant as required
for the Cauchy-Navier problem.

Chapter 5 consists of numerical results utilizing the global and local RBF-DQ MDA
schemes. Various numerical experiments are performed to test the numerical accuracy of the
proposed methods on the problems governed by the Poisson equation, Biharmonic equation,
and the Cauchy Navier problem with different types of boundary conditions including the
Dirichlet and Neumann boundary conditions. The time, memory, accuracy, and selection of
the shape parameter are of particular interest.

Conclusions from the numerical results and possible future works are listed in Chapter
6.
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Chapter 2

STATE-OF-THE-ART IN MESHLESS METHOD

2.1 Radial Basis Function (RBF) Interpolation

Radial basis functions have been widely used in applications for solving a variety of science
and engineering problems including function interpolation and solving PDEs. The RBF
collocation method for interpolation was created by making an extension of the piecewise
polynomial interpolation using a function of Euclidean distance which is defined as follows
[4]:

Definition 2.1.1. Given a set of N distinct data points x1,x2, . . . ,xN, and corresponding data
values f1, . . . , fN , the RBF interpolant is given by

u(x) =
N

∑
i=1

αiϕ(‖ x−xi ‖)

where ϕ is some radial basis function, ‖ . ‖ represents the Euclidean norm, and coefficients
{αi}N

i=1 are determined by using the interpolation condition u(xi) = fi, i = 1,2, . . . ,N,
which leads to the following linear system:

Aα = f,

where the entries of A are Ai j = ϕ(‖ xi−xj ‖), i, j = 1,2, ...,N, α = [α1,α2, . . . ,αN ]
T and

f = [ f1, f2, . . . , fN ]
T .

There are a number of globally supported radial basis functions that are widely used in
the literature including those in Table 2.1.

In this chapter, several basic meshless methods are briefly introduced, such as the radial
basis function collocation method (RBFCM), also referred to as the Kansa method, the
method of particular solutions (MPS), the RBF Differential Quadrature method (RBF-DQ),
and the local RBF-DQ method (LRBF-DQ). The RBF-DQ and LRBF-DQ are the main
focus of the chapter. The intent is to combine both the global and local approaches with a
matrix decomposition algorithm in the remaining chapters, so that this method can be used
for solving large scale problems.
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Table 2.1: Globally supported RBFs.
Types of basis function ϕ(r),(r ≥ 0)

Multiquadric (MQ)
√

r2 + c2

Normal Multiquadric (NMQ)
√

1+(rc)2

Inverse multiquadric (IMQ) 1√
r2+c2

Thin plate spline (TPS) r2 ln(r)
Gaussian e−cr2

Conical r2n−1

2.2 The Collocation (Kansa) Method

The Kansa method, the original radial basis function collocation method (RBFCM), is a
well-known meshless method. First developed by Kansa [26] in 1990, the method uses
RBFs to solve both linear and nonlinear PDEs. The Kansa method has become very popular
due to its simplicity and effectiveness. The method has been applied to physics, material
science, and a variety of engineering problems [4]. The novelty of the Kansa method is that
it does not require any mesh, making it flexible in the geometrical sense. The only geometric
property used is the distance between points in the computational domain. This allows the
extension to higher order dimensions without the method increasing in difficulty. While the
Kansa method has a high-order accuracy, issues still remain such as stability for complex
time dependent problems [34].

To demonstrate the Kansa method, consider the following boundary value problem:

Lu(x) = f (x),x ∈Ω, (2.1)

Bu(x) = g(x),x ∈ ∂Ω, (2.2)

where L, B are differential operators, f and g are known functions, Ω is a computational
domain, and ∂Ω is the boundary of Ω. Let {(xi, f (xi))}ni

i=1 be ni distinct interior collocation
points in Ω and {(xi,g(xi))}N

i=ni+1 boundary points such that nb are the number of boundary
nodes and N = ni +nb.

The collocation technique reduces the boundary value problem to a discrete problem by
imposing finitely many conditions [10]:

Lu(x j) = f (x j), j = 1,2, · · · ,ni, (2.3)

Bu(x j) = g(x j), j = ni +1,ni +2, · · · ,N. (2.4)
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In the Kansa method, the primary idea is to approximate the solution u by a linear
combination of the RBFs,

û(x) =
N

∑
i=1

αiϕ(||x−xi||), (2.5)

where {αi}N
i=1 are undetermined coefficients. Then we have

Lû(x) =
N

∑
i=1

αiLϕ(||x−xi||), (2.6)

and

Bû(x) =
N

∑
i=1

αiBϕ(||x−xi||). (2.7)

From (2.1) and (2.2), we have

N

∑
i=1

αiLϕ(||xj−xi||) = f (x j), j = 1,2, · · · ,ni, (2.8)

and
N

∑
i=1

αiBϕ(||xj−xi||) = g(x j), j = ni +1, · · · ,N. (2.9)

This is a square linear system for which the coefficients {αi}N
i=1 can be determined. There

are a number of different RBFs that can be used in the Kansa method, although MQ is one
of the most widely adopted.

2.3 The Method of Particular Solutions

Chen et al. [7, 8] proposed a method to solve inhomogeneous problems (2.1)-(2.2) without
the requirement of finding the homogeneous solution, known as the method of particular
solutions (MPS). A particular solution of a boundary value problem is defined as a function
up which satisfies the inhomogeneous differential equation

Lup(x) = f (x),x ∈Ω. (2.10)

It is not a requirement for the particular solution to satisfy the boundary condition (2.2).
This would imply that the particular solution does not have uniqueness. In order to apply
the MPS, a solution, Φ(r), must be known in advance for the differential equation:

LΦ(r) = ϕ(r), (2.11)

where ϕ(r) is a chosen radial basis function.
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We can construct a particular solution up(x) in (2.10) by interpolating the forcing term
f (x) using RBFs, ϕ(r),

f (x) =
ni

∑
i=1

αiϕ(||x−xi||). (2.12)

By (2.11), an approximate particular solution of (2.10) can be written as

ûp(x) =
ni

∑
i=1

αiΦ(||x−xi||). (2.13)

The coefficients {αi}N
i=1 can then be determined by the same collocation technique described

in the previous section.
Since the differential operator and the RBFs are radially invariant, the solutions Φ(r)

must also be radially invariant. Thus, the MPS is a special kind of RBF collocation method.
Unlike the Kansa method using ϕ(r), the MPS uses Φ(r). This is an important tool for
evaluating solutions of PDEs. The primary difference between the MPS and Kansa method
is the utilization of the RBF, ϕ(r), as a basis for the Kansa method, while the MPS uses the
solution of (2.11) as the basis function. While it is necessary to find the closed form of Φ

for different operators, deriving Φ(r) for higher order differential operators has proved to be
a challenge. Also, this closed form depends on the dimension of the domain space.

2.4 Radial Basis Function Differential Quadrature Method

In this section, the radial basis function differential quadrature (RBF-DQ) method is pre-
sented. The differential quadrature (DQ) method is a numerical discretization technique
that approximates the derivative of a function f (x) with respect to a coordinate using a
linear combination of function values in the domain of that coordinate direction as shown
in [1]. The idea of the DQ method came from the integral quadrature, where the integral
over a closed domain is approximated by a linear combination of function values at all
nodes, such as the well known Trapezoidal Rule and Simpson’s Rule that students learn
in an introductory Calculus course. A variety of methods have been developed based on
the DQ method, including the polynomial-based differential quadrature (PDQ) and the
Fourier-expansion-based differential quadrature (FDQ) [51, 49]. In the PDQ, the coeffi-
cients are determined by a simple algebraic formulation or a recurrence relationship that is
independent of the selection of the nodal points. In a similar approach, the FDQ uses the
Fourier series expansion to approximate the function. While the PDQ and FDQ methods are
able to obtain accurate results using only a small number of grid points, they are mesh-based
methods. Moreover, the distribution of the nodes has limitations, and the mesh must be
clustered close to the boundary limiting its usefulness.
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In 2002, Wu and Shu [54] applied radial basis functions (RBF) to the DQ method to take
advantage of the naturally meshless method that RBFs provide. In the RBF-DQ method, the
coefficients are determined using radial basis functions. This has been found to be very easy
to implement while ensuring that the collocation matrix is non-singular. Since the functional
values at each node represent the dependent variables, this method can also be suitable for
non-linear problems.

In the RBF-DQ method, the primary idea for solving an nonhomogeneous problem
(2.1)-(2.2) is to approximate the derivative of a function u(x) using a linear combination of
the functional values at given nodes. Consider the following example:

∂u
∂x

+
∂ 2u
∂x2 +

∂ 2u
∂y2 = f (x)

The approximation for the derivatives of u(x) at the ith node for this method can be written
as,

∂u(xi)

∂x
=

N

∑
j=1

ai ju(xj)

∂ 2u(xi)

∂x2 =
N

∑
j=1

bi ju(xj)

∂ 2u(xi)

∂y2 =
N

∑
j=1

ci ju(xj),

(2.14)

where N is the total number of collocation points used for approximating the derivatives at
each node xi, and ai j,bi j,ci j are the coefficients of ∂u

∂x ,
∂ 2u
∂x2 ,

∂ 2u
∂y2 , respectively. Determining

the coefficients ai j,bi j,ci j can be achieved using radial basis functions. Consider the first
order derivative:

∂ϕk(xi)

∂x
=

N

∑
j=1

ai jϕk(xj), (2.15)

where ϕk(x) = ϕ(||x−xk||). Equation (2.15) can be written in matrix form as
∂ϕ1(xi)

∂x
∂ϕ2(xi)

∂x
...

∂ϕN(xi)
∂x

=


ϕ1(x1) ϕ1(x2) . . . ϕ1(xN)
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN)

...
... . . . ...

ϕN(x1) ϕN(x2) . . . ϕN(xN)




ai1
ai2
...

aiN

 , (2.16)

or in vector form,
∂ϕ(xi)

∂x
= Gai. (2.17)

The coefficient vector ai can then be found,

ai = G−1 ∂ϕ(xi)

∂x
. (2.18)
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The RBF-DQ method inherits the attractive quality from ϕ(||x−x j||) that G will always
be invertible, so there is no question whether or not G is singular. Also, it is important to
observe that the matrix G is independent of xi so the coefficients at each center can easily be
found by simply changing the vector ∂ϕ(xi)

∂x . Also, since G is fixed, it is only necessary to
compute this collocation matrix once and then use it to solve for the remaining coefficients,
bi j and ci j. Once the coefficients have been computed using Eq. (2.14)-(2.18), it is now
possible to solve for u,

N

∑
j=1

ai ju(xj)+
N

∑
j=1

bi ju(xj)+
N

∑
j=1

ci ju(xj) = f (xi). (2.19)

By rearranging this can be written as

N

∑
j=1

(ai j +bi j + ci j)u(xj) = f (xi) (2.20)

or in vector form,
Au = f , (2.21)

where

A =


a11 +b11 + c11 a12 +b12 + c12 · · · a1N +b1N + c1N
a21 +b21 + c21 a22 +b22 + c22 · · · a2N +b2N + c2N

...
...

...
aN1 +bN1 + cN1 aN2 +bN2 + cN2 · · · aNN +bNN + cNN

 .

By solving the above system, u can now be found.
The coefficients are dependent only on the chosen RBFs, which means that it is necessary

to compute them only once. Furthermore, the RBF-DQ scheme does not require a mesh and
is not sensitive to the spatial dimension, making it a multi-dimensional meshless method for
solving PDEs.

2.5 Local Radial Basis Function Differential Quadrature Method

In the global RBF-DQ method, the RBFs are used to obtain the coefficients so that the
derivatives of a function f (x) can be written as a linear combination of the functional values
at the predetermined nodes. This numerical scheme is simple and effective. However,
the approximation can become unstable as the number of collocation points become large
resulting in dense matrices. This leads to ill-conditioning and sensitivity to the shape
parameters in the RBF formulation. We can alleviate these issues by using a localized
formulation. A number of RBF collocation methods have been localized, including the Kansa
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method and MAPS [55, 56]. In these local methods, since only neighboring collocation
points are needed, it does not have the typical ill-conditioning that comes with large, dense
matrix systems. Additionally, the shape parameter of the RBF does not vary much, which
is beneficial in choosing a good value. Another advantage of the local approach is that the
accuracy is not compromised by the computational efficiency. Unlike the global approach
where it is required to work with a dense matrix, the local approach results in a sparse matrix
which can be solved efficiently.

Shu et al. [50] proposed a local approach to the RBF-DQ method, known as the local
radial basis function differential quadrature (LRBF-DQ) method. The derivatives of a
function u(x) can be approximated at a point xi using a linear combination of the functional
values u(x j) within the local domain Ωi = {x j}n

j=1. The union of all local influence domains
covers the global domain.

The approximation for ∂uk(xi)
∂x at the ith node can be written as:

∂uk(xi)

∂x
=

n

∑
j=1

ai ju(x j). (2.22)

The corresponding coefficients ai j can be achieved as follows:

∂ϕk(xi)

∂x
=

n

∑
j=1

ai jϕi(x j), (2.23)

where ϕi(x) = ϕ(||x−xi||). Assume that within each Ωi, using the collocation method, the
resulting linear system is obtained

∂ϕ1(xi)

∂x
∂ϕ2(xi)

∂x
...

∂ϕn(xi)

∂x


=


ϕ1(x1) ϕ1(x2) . . . ϕ1(xn)
ϕ2(x1) ϕ2(x2) . . . ϕ2(xn)

...
... . . . ...

ϕn(x1) ϕn(x2) . . . ϕn(xn)




ai1
ai2
...

ain

 . (2.24)

or in vector form,
∂ϕ(xi)

∂x
= Gai. (2.25)

Note that G is a different matrix for each local domain. Since G is non-singular, the inverse
matrix can be calculated assuming that all of the nodal points inside Ωi are distinct. The
unknown coefficients in (2.25) can be written as

ai = G−1 ∂ϕ(xi)

∂x
, (2.26)
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where

ai =


ai1
ai2
...

ain


and

∂ϕ(xi)

∂x
=



∂ ϕ̂1(xi)

∂x
∂ ϕ̂2(xi)

∂x
...

∂ ϕ̂n(xi)

∂x


.

The vectors ai, i = 1, ...,N, contain all of the required coefficients for the approximations
{u(xi)}N

i=1 in the global system. However, it is necessary to distribute ai appropriately
in the global matrix. This can be accomplished by padding ai with zero entries at the
appropriate positions yielding the vector α [57]. For example, suppose that N = 100, n = 3,
and Ωi = {x18,x26,x32}. Then 97 zeros are inserted into the n-vector, ai, given in (2.26).
This will pad the vector at all positions except 18, 26, and 32, as shown in

α(x) = [0,0, · · · , a1︸︷︷︸
18th

,0,0, a2︸︷︷︸
26th

,0,0,0, a3︸︷︷︸
32nd

,0, · · · , 0︸︷︷︸
100th

]. (2.27)

In (2.27) there are 17 zeros before a1 and 68 zeros after a3. This zero padding keeps track
of the original position at each local point so that α can be easily obtained from ai. This can
be repeated to solve for any of the remaining coefficients as necessary, such as bi j,ci j. The
assembly of all equations for the N centers xi will yield the N×N system

Au = f , (2.28)

where the global matrix A is sparse. The above sparse system can now be solved to
approximate u(x).

This local method is effective for solving large-scale problems. By pairing this method
with the matrix decomposition algorithm, additional computational savings can be realized
as will be demonstrated in Chapter 5.

2.6 Shape Parameter

In the previous sections, the global and local RBF-DQ schemes were described in detail.
It is important to note that this scheme is appropriate only if the collocation matrix, G,
is invertible in (2.17) so that the coefficients ai can be obtained. Schoenberg [47] proved
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the invertibility of the collocation matrix for positive definite RBFs, Gaussian, and Inverse
Multiquadric (IMQ). Multiquadric (MQ) is only conditionally positive definite. However, it
is conditionally positive definite of order one, which Micchelli established the invertibility
of G for this class of RBFs [42]. He further proved the invertibility of the collocation matrix
for conditionally positive definite functions of order m given certain requirements, such
as polyharmonic splines. The interpolation matrix of this class of RBFs can be singular
even for non-trivial sets of distinct centers. To guarantee invertibility, it is necessary to add
polynomial terms to the RBF interpolation problem.

Among the RBFs, the multiquadric (MQ) is perhaps the most popular that is used in
applications. This is due to its high convergence rate and accuracy. Perhaps a disadvantage
that the MQ has, compared to the polyharmonic splines, is that the accuracy depends on
the correct choice of the shape parameter. This same disadvantage applies to the inverse
multiquadric (IMQ) and the Gaussian (GA) RBF as well. Finding the appropriate shape
parameter that minimizes the approximation error is not trivial and is an ongoing research
problem. In 2001, Main-Duy and Tran-Cong [40] claimed that the shape parameter relates
to the grid distance. However, other researchers such as Zhang et al. in [58] argue that the
optimal shape parameter is dependent upon the problem itself. In 2003, Lee et al. [35]
claimed that the numerical solution is less sensitive to the selection of the shape parameter
in the local collocation methods than the global methods. A number of different techniques
have been developed throughout RBF literature for finding an optimal shape parameter. Of
course, the simplest strategy is the trial and error method where the best value of the shape
parameter is found by performing a number of experiments with different shape parameter
values. This method is certainly not sophisticated and can only be used with certainty if we
know the original function. In one of the earliest papers on the topic of RBFs, Hardy [20]
suggested the value c = 1/(0.815d), where d = 1/N ∑

N
j=1 d j and d j is the distance of the jth

data value from its nearest neighbor. Franke, in 1982, [19] recommended an alternative value
of c = 0.8

√
N/D, where D is the diameter of the smallest circle containing the data points

{x}N
j=1, for the MQ RBF. Both approaches yielded satisfactory approximations. However, at

that time, only single precision computers were used. Today, double precision computation
has caused these shape parameter estimates to become obsolete.

More recently, Fasshauer [16] proposed the value c = 2
√

N for interpolation in a regular
domain two dimensional problem. Fasshauer later suggested a "safe" shape parameter based
on Schaback’s uncertainty principle [15], which states that it is impossible to achieve both
good stability and small errors simultaneously. As the shape parameter approaches zero,
the coefficient matrix’s condition number grows exponentially. In this strategy, Fasshauer
used the smallest value of the shape parameter without MATLAB issuing a warning of
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ill-conditioning. While this strategy will not result in an optimal shape parameter, it does at
least guarantee that the system will not be near-singular. Rippa [45] used the Leave-One-
Out-Cross-Validation (LOOCV) method to find a sub-optimal shape parameter that results
in an accurate approximation while maintaining matrix stability. LOOCV is a technique
that has been used extensively in RBF literature. In a large scale global scheme, LOOCV
becomes ineffective due to the great computational burden it causes. However, it can still
present usefulness in a local scheme, such as the local RBF-DQ. The next sections these
techniques for calculating the shape parameter in more detail.

2.6.1 Fasshauer Estimate

For a large scale problem, the LOOCV is not a practical tactic for finding an optimal
shape parameter in a global scheme. Therefore, a more sophisticated method for the shape
parameter is desired that will produce high accuracy while being able to handle a large
number of collocation points. After extensive experimentation, Karageorghis et al. [29]
observed that the value c = 4

√
n/5, where n is the number of collocation points, yielded

the most accurate results when using the normalized MQ RBF. Taking this formula a step
further, we can allow the denominator to be adjustable, c = 4

√
n/mx, where mx depends on

the density of the collocation points. As we will observe in the numerical results, as the
number of collocation points increases, the proper value of mx decreases. Not only does this
formula yield accurate results, it is computationally simple and works well for large scale
problems as will be shown in Chapter 5, in addition to a detailed description of how mx is
chosen in the formula.

2.6.2 Leave-One-Out Cross Validation

Cross validation is a statistical technique that tests the accuracy of a method by separating
given data into two sections. The first section of the data set is used to calculate an
approximation of the data. The error is then measured by finding the difference between the
approximation and the actual data in the second section of the data. Leave-one-out cross
validation (LOOCV) uses n−1 of the available n data points for the approximation. The
remaining data point is then used to calculate the error. This procedure is then repeated for
each data point, and the set of errors resulting from the n procedures are used to estimate the
relative accuracy. This can be accomplished without the need of computing all of the partial
interpolants.

In order to use LOOCV to calculate the optimal shape parameter, first, define the vector
of data points with the kth data point removed x[k] = [x1,x2, ...,xk−1,xk+1, ...,xn]

T . The
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approximation of the deleted point xk can then be found,

û[k](x) =
n−1

∑
i=1

αiϕi(x[k]). (2.29)

The error between the approximation and the actual value at xk can be calculated as

ek = |u(xk)− û[k](xk)|. (2.30)

The accuracy for the entire data can then be found as the norm of the vector of errors
e = [e1,e2, ...,en]

T by removing each of the data points and comparing the approximation
with the exact value at the removed data point. The norm of the error vector ||e|| is the cost
function of the shape parameter. We can then choose the appropriate shape parameter that
minimizes ||e||.

This procedure would not be efficient if these n linear systems had to be solved and
would, in fact, increase the computational complexity of the RBF-DQ algorithm. However,
this can be done efficiently without the need of calculating the error at every point. Rippa
[45] showed that the error can be calculated using the formula

ek =
αk

A−1
k

, (2.31)

where αk is the kth coefficient of û for the entire data set and A−1
k is the kth diagonal element

of the inverse of the corresponding interpolation matrix. Once e is calculated using the above
formula, the relative minimum of the cost function for c can be found using the MATLAB
function fminbnd. The calling sequence for the cost function is

c = f minbnd(@(c) costeps(c,rb f ,DM,rhs),minc,maxc), (2.32)

where DM is the distance matrix of A, minc, maxc is the interval used to search for the
sub-optimal shape parameter c and rhs represents the right-hand side of the equation Ax = b.
While this technique provides good results, the shape parameter is not necessarily optimal
because of its dependence on the chosen search interval (minc, maxc). The LOOCV is
shown to be effective for the local RBF-DQ method, however, for the global case of large
scale problems, this algorithm proves to be computationally complex. Thus, it is necessary
to present other techniques for finding an effective shape parameter.

2.6.3 Dimensionless Shape Parameter

While using a single shape parameter value for each local domain is acceptable, a second
approach for calculating the shape parameter involves choosing a fixed value and multiplying
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by the maximal distance in each local domain, allowing a tailored shape parameter for each
domain. In [35], the authors found the choice of the shape parameter of MQ in the local
collocation method to be less sensitive than in the global method. The optimal shape
parameter seems to depend on the density of nodes, the number of nodes, and the functional
value of the nodes in the influence domain. In the LRBF-DQ method, the number of nodes
in the local domain is fixed. Assigning different values of the shape parameter for each
local domain proves to be very difficult. In [53], the author adopted a dimensionless shape
parameter for a local collocation method to reduce this difficulty. This technique produced
excellent results using MQ. Let

r0 = max1≤ j≤n||x0−x j||, (2.33)

where r0 is the maximum distance from the center x0 to all nodal points among all local
domains Ωi, i = 1,2, ...,N as shown in Figure 2.1.

Figure 2.1: Choosing r0 in each local influence domain.

By using the dimensionless shape parameter, the MQ RBF is changed to the following
form

ϕ(r) =
√

r2 +(cr0)2. (2.34)

When r0 is small, a large value for c is chosen. Overall, the desire is to select the value c

such that cr0 is a fixed number for various values of r0. This approach is also appropriate for
other RBFs, such as the normalized MQ (NMQ). The NMQ RBF would then be converted
to the form

ϕ(r) =
√

1+(cr0)2r2, (2.35)

Choosing the dimensionless shape parameter c becomes less critical due to the wider
range of values that will result in an accurate estimation. This makes it easier to choose a
shape parameter without sacrificing accuracy. A comparison of the dimensionless shape
parameter with the LOOCV for the LRBF-DQ method will be presented in Chapter 5.
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Chapter 3

MATRIX DECOMPOSITION ALGORITHM

In this section, the matrix decomposition algorithm (MDA) is presented. An MDA [3] is a
direct method that can be used to reduce the solution of an algebraic problem into the solution
of a set of independent systems having lower dimension, leading to significant memory
and computational cost savings. For large scale problems, it is necessary to diagonalize
the coefficient matrix to alleviate the computational burden. The fact that the coefficient
matrix, as well as the right hand side matrix, are circulant yields the ability to use a Fast
Fourier Transform to complete the diagonalization. MDAs have been successfully applied
in a variety of RBF techniques [28, 30, 31, 39].

3.1 Matrix Decomposition

Two matrices having the same eigenvalues are known as similar matrices. The eigenvalues
of an n×n matrix A are the zeros of its characteristic polynomial P(x) = det(A− xI). An
n×n matrix B such that B = S−1AS, where S is a nonsingular n×n matrix, will have the
same characteristic polynomial as A. This implies that A and B have the same eigenvalues,
in other words, A and B are similar. The computational time for solving a matrix equation,
such as Ax = b, can be reduced if we can diagonalize the matrix A due to the sparsity of a
diagonal matrix.

If A is diagonalizable, instead of using the full matrix to solve the equation

Ax = b, (3.1)

A can be diagonalized, and (3.1) can be rewritten as

(S−1AS)(S−1x) = S−1b (3.2)

Âx̂ = b̂, (3.3)

where Â = S−1AS, x̂ = S−1x, b̂ = S−1b. The new equation (3.3) can now be solved, and the
solution to the original equation (3.1) can be recovered:

x̂ = Â−1b̂ (3.4)
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x = Sx̂. (3.5)

As the size of matrix A gets large, significant computational time can be saved using the
diagonalization process. As mentioned earlier, it is necessary to possess a diagonalizable
matrix in order for this process to work. In this dissertation, the matrices that are being used
are circulant. The next sections will demonstrate how to construct a circulant matrix and
will prove that all circulant matrices are diagonalizable. Details for finding the matrix S will
also be provided.

3.1.1 The domain

The domain that is being studied for the elliptic boundary value problems in this dissertation
is the annulas Ω defined by

Ω =
{

x ∈ R2 : γ1 < ||x||< γ2
}
. (3.6)

The boundary is ∂Ω = ∂Ω1∪∂Ω2, ∂Ω1∩∂Ω2 = /0, where ∂Ω1 =
{

x ∈ R2 : ||x||= γ1
}

and
∂Ω2 =

{
x ∈ R2 : ||x||= γ2

}
. The outward unit normal vector to the boundary is denoted by

n = (nx,ny).

Figure 3.1: Annulus Domain

3.1.2 Distribution of Collocation Points

The collocation points {xmn}M,N
m=1,n=1 will be placed on concentric circles in the domain Ω.

First, define the M angles on each concentric circle

θm =
2π(m−1)

M
, m = 1, . . . ,M, (3.7)

and the radii for the N concentric circles

rn = γ1 +(γ2− γ1)
n−1
N−1

, n = 1, . . . ,N. (3.8)



20

For the two-dimensional case, {xmn}M,N
m=1,n=1 = {(xmn,ymn)}M,N

m=1,n=1 are then defined as
follows:

xmn = rn cos
(

θm +
2παn

M

)
, ymn = rn sin

(
θm +

2παn

M

)
, m = 1, . . . ,M, n = 1, . . . ,N.

(3.9)
The parameters {αn}N

n=1 ∈ [−1/2,1/2] correspond to rotations of the collocation points and
may be used to produce more uniform distributions. Typical distributions of collocation
points without rotation (αn = 0,n = 1, ...,n) and with rotation are given in Figure 3.2.

Figure 3.2: Discretization of the annuluar domain with (a) no rotation of the collocation
points and (b) with rotation of the collocation points. The crosses (+) denote the collocation
points.

With the distribution of collocation points, the RBF interpolation matrix can then be
constructed. First define ϕim(r jn)=ϕ(||x jn−xim||), where i, j are the concentric circle index
and m,n are the collocation point index on each concentric circle. Then the interpolation
matrix of each ith, jth concentric circle is

Ai j =


ϕi1(r j1) ϕi1(r j2) · · · ϕi1(r jM)
ϕi2(r j1) ϕi2(r j2) · · · ϕi2(r jM)

...
...

...
ϕiM(r j1) ϕiM(r j2) · · · ϕiM(r jM)

 , i, j = 1, ...,N. (3.10)

To study the effect the distribution of points will have on the interpolation matrix,
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consider the following example for A12 where M = 4,N = 4:

A12 =


ϕ11(r21) ϕ11(r22) ϕ11(r23) ϕ11(r24)
ϕ12(r21) ϕ12(r22) ϕ12(r23) ϕ12(r24)
ϕ13(r21) ϕ13(r22) ϕ13(r23) ϕ13(r24)
ϕ14(r21) ϕ14(r22) ϕ14(r23) ϕ14(r24)

 . (3.11)

The distribution of the collocation points are shown in Figure 3.1.2. By examining the

Figure 3.3: Distribution of collocation points on domain

geometry of this distribution, it can be observed that many of the distances between each
point are the same. This allows A12 to be rewritten as

A12 =


ϕ11(r21) ϕ11(r22) ϕ11(r23) ϕ11(r24)
ϕ11(r24) ϕ11(r21) ϕ11(r22) ϕ11(r23)
ϕ11(r23) ϕ11(r24) ϕ11(r21) ϕ11(r22)
ϕ11(r22) ϕ11(r23) ϕ11(r24) ϕ11(r21)

 . (3.12)

Notice that every row is a right cyclic shift of the previous row. This same structure is
common for all Ai j, which is a special type of matrix known as a circulant matrix. The
interpolation matrix now consists of circulant submatrices

G =


A11 A12 · · · A1N
A21 A22 · · · A2N

...
...

...
AN1 AN2 · · · ANN

 . (3.13)



22

In the next section, the circulant matrix will be discussed in further detail and its importance
in the matrix decomposition algorithm.

3.2 Circulant Matrices

A circulant matrix occurs when every row of the matrix is a right cyclic shift of the previous
row:

CM =


c1 c2 c3 . . . cM
cM c1 c2 . . . cM−1

cM−1 cM c1 . . . cM−2
...

...
... . . . ...

c2 c3 c4 . . . c1

 (3.14)

Circulant matrices and their properties have been well documented in [13]. One advan-
tage of circulant matrices is that they can be completely described by the first row of the
matrix due to its cyclic permutations of the row. By strategically choosing the collocation
points so that they lie on concentric circles, the collocation matrix will then consist of
circulant submatrices. These circulant matrices come with special inherent properties that
can be utilized in simplifying the process of the numerical solution to the partial differential
equation.

First, a circulant matrix can be diagonalized by a discrete Fourier transform. Let
ω = e2πi/M,M ≥ 1, i2 =−1. Note that ω is a primitive Mth root of unity, meaning ωM = 1.
We can then construct the Fourier matrix of order M:

UM =
1√
M


1 1 1 · · · 1
1 ω ω2 · · · ωM−1

1 ω2 ω4 · · · ω2(M−1)

...
...

...
...

1 ωM−1 ω2(M−1) · · · ω(M−1)(M−1)

 . (3.15)

Theorem 1. The Discrete Fourier matrix, UM, is unitary, i.e. UMU∗M = IM, where U∗M is
the conjugate transpose of UM.

Proof. Consider an element ui j of UMU∗M,

ui j =
M−1

∑
k=0

1√
M

ω
ki 1√

M
ω
−k j =

1
M

M−1

∑
k=0

ω
k(i− j) =

1
M

(
1−ωM(i− j)

1−ω i− j

)
. (3.16)

For i = j,

ui j =
1
M

(
1+ω

(i− j)+ω
2(i− j)+ ...+ω

(M−1)(i− j)
)
= 1 (3.17)
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For i 6= j,

ui j =
1
M

(
1−ωM(i− j)

1−ω i− j

)
= 0 (3.18)

Therefore, UMU∗M = IM.
The eigenvalues and eigenvectors of a circulant matrix can be found by the following

equation 
c1 c2 c3 . . . cM
cM c1 c2 . . . cM−1

cM−1 cM c1 . . . cM−2
...

...
... . . . ...

c2 c3 c4 . . . c1




1

ω i

ω2i

...
ω(M−1)i

= λi


1

ω i

ω2i

...
ω(M−1)i

 , (3.19)

where i = 0, ...,M−1.

Definition 3.2.1. λi = c1 + c2ω i + ...+ cMω(M−1)i is an eigenvalue of CM.
xi = [1,ω i,ω2i, ...,ω(M−1)i] is an eigenvector of CM.

Note that the columns of {xi}M−1
i=0 of the discrete Fourier matrix, UM, are the eigenvec-

tors of CM and are independent of the entries c1, ...,cM. Hence, UM can now be used to
diagonalize CM along with Λ, which is the diagonal matrix consisting of the eigenvalues
{λi}M−1

i=0 as the diagonal entries
CM =U∗MΛUM. (3.20)

Since UM is unitary, Λ can be written as

Λ =UMCMU∗M. (3.21)

In MATLAB, the diagonalization process can be achieved using the functions fft (fast
Fourier Transform) and ifft (inverse fast Fourier Transform). The fast Fourier Transform is a
very efficient algorithm that is used to compute the discrete Fourier Transform by factorizing
the DFT matrix into a product of sparse factors. Using these commands not only adds
savings in computational cost, but it also provides considerable savings in storage since the
eigenvalues can be found using only the first row of the matrix [c1,c2, ...,cn].

To apply the diagonalization to each submatrix in the interpolation matrix (3.13), the
tensor product can be applied:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

 , (3.22)
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where A and B are m× n and p× q matrices, respectively. The resultant matrix will be
mp×nq. By multiplying G, consisting of circulant submarices, by IN⊗UM on the left hand
side and IN⊗U∗M on the right hand side, each circulant block will be diagonalized

Λ = (IN⊗UM)G(IN⊗U∗M)

=


UM 0 · · · 0
0 UM · · · 0
...

...
...

0 0 · · · UM




A11 A12 · · ·A1N
A21 A22 · · ·A2N

...
...

...
AM1 AM2 · · ·AMN




U∗M 0 · · · 0
0 U∗M · · · 0
...

...
...

0 0 · · · U∗M



=


Λ11 Λ12 · · · Λ1N
Λ21 Λ22 · · · Λ2N

...
...

...
ΛM1 ΛM2 · · · ΛMN .


(3.23)

Λ is a sparse matrix consisting of diagonal submatrices.

3.3 Properties of Circulant Matrices

The following theorems will present additional properties of circulant matrices that are
necessary for the implementation of the matrix decomposition algorithm in the RBF-DQ
method.

Theorem 2. Consider the system

BA =C, (3.24)

where the MN×MN matrices B and C are block circulant, each consisting of N2 circulant

submatrices Bn1,n2,Cn1,n2,n1,n2 = 1, . . . ,N, respectively, each of order M. Assume that the

matrix B is nonsingular. Then the MN×MN matrix A will also be block circulant consisting

of N2 circulant submatrices An1,n2,n1,n2 = 1, . . . ,N, each of order M.

Proof. It is first necessary to prove that if an MN×MN matrix B is block circulant then so
is its inverse. Since B is block circulant, B can be rewritten as

B = (IN⊗U∗M)D(IN⊗UM) , (3.25)

where the matrix D is block diagonal and nonsingular, consisting of N2 diagonal submatrices
Dn1,n2,n1,n2 = 1, . . . ,N, each of order M. The inverse of the matrix B will be

B−1 = (IN⊗U∗M)D−1 (IN⊗UM) . (3.26)
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Next, it must be proven that since D is block diagonal, so is D−1. Let D−1 consist of N2

submatrices D̂n1,n2 ,n1,n2 = 1, . . . ,N, each of order M. Then
D1,1 D1,2 · · · D1,N
D2,1 D2,2 · · · D2,N

...
...

...
DN,1 DN,2 · · · DN,N




D̂1,1 D̂1,2 · · · D̂1,N
D̂2,1 D̂2,2 · · · D̂2,N

...
...

...
D̂N,1 D̂N,2 · · · D̂N,N

=


IM 0 · · · 0
0 IM · · · 0
...

...
...

0 0 · · · IM

 ,

(3.27)
where each diagonal submatrix Dn1,n2 = diag

(
dn1,n2

1 ,dn1,n2
2 , . . . ,dn1,n2

M
)
. Assume that each

submatrix D̂n1,n2 =
(
d̂n1,n2

m1,m2

)M
m1,m2=1, is full.

Consider the system created by multiplying D by the first column of D−1
D1,1 D1,2 · · · D1,N
D2,1 D2,2 · · · D2,N

...
...

...
DN,1 DN,2 · · · DN,N




D̂1,1
D̂2,1

...
D̂N,1

=


IM
0
...
0

 . (3.28)

This system can be broken to M independent systems of order N
d1,1

1 d1,2
1 · · · d1,N

1
d2,1

1 d2,2
1 · · · d2,N

1
...

...
...

dN,1
1 dN,2

1 · · · dN,N
1




d̂1,1
1,1 d̂1,1

1,2 · · · d̂1,1
1,M

d̂2,1
1,1 d̂2,1

1,2 · · · d̂2,1
1,M

...
...

...
d̂N,1

1,1 d̂N,1
1,2 · · · d̂N,1

1,M

=


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ,


d1,1

2 d1,2
2 · · · d1,N

2
d2,1

2 d2,2
2 · · · d2,N

2
...

...
...

dN,1
2 dN,2

2 · · · dN,N
2




d̂1,1
2,1 d̂1,1

2,2 · · · d̂1,1
2,M

d̂2,1
2,1 d̂2,1

2,2 · · · d̂2,1
2,M

...
...

...
d̂N,1

2,1 d̂N,1
2,2 · · · d̂N,1

2,M

=


0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ,

up to
d1,1

M d1,2
M · · · d1,N

M
d2,1

M d2,2
M · · · d2,N

M
...

...
...

dN,1
M dN,2

M · · · dN,N
M




d̂1,1
M,1 d̂1,1

M,2 · · · d̂1,1
M,M

d̂2,1
M,1 d̂2,1

M,2 · · · d̂2,1
M,M

...
...

...
d̂N,1

M,1 d̂N,1
M,2 · · · d̂N,1

M,M

=


0 0 · · · 1
0 0 · · · 0
...

...
...

0 0 · · · 0

 ,

Similarly, the system
D1,1 D1,2 · · · D1,N
D2,1 D2,2 · · · D2,N

...
...

...
DN,1 DN,2 · · · DN,N




D̂1,2
D̂2,2

...
D̂N,2

=


0

IM
0
...
0

 , (3.29)
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is equivalent to
d1,1

1 d1,2
1 · · · d1,N

1
d2,1

1 d2,2
1 · · · d2,N

1
...

...
...

dN,1
1 dN,2

1 · · · dN,N
1




d̂1,2
1,1 d̂1,2

1,2 · · · d̂1,2
1,M

d̂2,2
1,1 d̂2,2

1,2 · · · d̂2,2
1,M

...
...

...
d̂N,2

1,1 d̂N,2
1,2 · · · d̂N,2

1,M

=


0 0 · · · 0
1 0 · · · 0
...

...
...

0 0 · · · 0

 ,


d1,1

2 d1,2
2 · · · d1,N

2
d2,1

2 d2,2
2 · · · d2,N

2
...

...
...

dN,1
2 dN,2

2 · · · dN,N
2




d̂1,2
2,1 d̂1,2

2,2 · · · d̂1,2
2,M

d̂2,2
2,1 d̂2,2

2,2 · · · d̂2,2
2,M

...
...

...
d̂N,2

2,1 d̂N,2
2,2 · · · d̂N,2

2,M

=


0 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 0

 ,

up to
d1,1

M d1,2
M · · · d1,N

M
d2,1

M d2,2
M · · · d2,N

M
...

...
...

dN,1
M dN,2

M · · · dN,N
M




d̂1,2
M,1 d̂1,2

M,2 · · · d̂1,2
M,M

d̂2,2
M,1 d̂2,2

M,2 · · · d̂2,2
M,M

...
...

...
d̂N,2

M,1 d̂N,2
M,2 · · · d̂N,2

M,M

=


0 0 · · · 0
0 0 · · · 1
...

...
...

0 0 · · · 0

 .

Continuing this process for every block column in system (3.27) until, finally, the system
D1,1 D1,2 · · · D1,N
D2,1 D2,2 · · · D2,N

...
...

...
DN,1 DN,2 · · · DN,N




D̂1,N
D̂2,N

...
D̂N,N

=


0
...
0

IM

 , (3.30)

is equivalent to
d1,1

1 d1,2
1 · · · d1,N

1
d2,1

1 d2,2
1 · · · d2,N

1
...

...
...

dN,1
1 dN,2

1 · · · dN,N
1




d̂1,N
1,1 d̂1,N

1,2 · · · d̂1,N
1,M

d̂2,N
1,1 d̂2,N

1,2 · · · d̂2,N
1,M

...
...

...
d̂N,N

1,1 d̂N,N
1,2 · · · d̂N,N

1,M

=


0 0 · · · 0
0 0 · · · 0
...

...
...

1 0 · · · 0

 ,


d1,1

2 d1,2
2 · · · d1,N

2
d2,1

2 d2,2
2 · · · d2,N

2
...

...
...

dN,1
2 dN,2

2 · · · dN,N
2




d̂1,N
2,1 d̂1,N

2,2 · · · d̂1,N
2,M

d̂2,N
2,1 d̂2,N

2,2 · · · d̂2,N
2,M

...
...

...
d̂N,N

2,1 d̂N,N
2,2 · · · d̂N,N

2,M

=


0 0 · · · 0
0 0 · · · 0
...

...
...

0 1 · · · 0

 ,

up to
d1,1

M d1,2
M · · · d1,N

M
d2,1

M d2,2
M · · · d2,N

M
...

...
...

dN,1
M dN,2

M · · · dN,N
M




d̂1,N
M,1 d̂1,N

M,2 · · · d̂1,N
M,M

d̂2,N
M,1 d̂2,N

M,2 · · · d̂2,N
M,M

...
...

...
d̂N,N

M,1 d̂N,N
M,2 · · · d̂N,N

M,M

=


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1

 .
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The solution of system (3.27) is equivalent to solving the systems

EmFmn = Ĩmn, m = 1, . . . ,M, n = 1, . . . ,N,

where

Em =


d1,1

m d1,2
m · · · d1,N

m

d2,1
m d2,2

m · · · d2,N
m

...
...

...
dN,1

m dN,2
m · · · dN,N

m

 ,m = 1, ...,M,

(Fmn)i, j =
(

d̂i,n
m, j

)
, i,n = 1, . . . ,N, j,m = 1, . . . ,M,

and Ĩmn,m = 1, . . . ,M, n = 1, . . . ,N, are zero matrices with 1 at the position (n,m). This can
be written more compactly as M systems with MN right hand sides,

Em (Fm1|Fm2| . . . |FmN) =
(
Ĩm1|Ĩm2| . . . |ĨmN

)
, m = 1, . . . ,M. (3.31)

Since the matrix D−1 is nonsingular, each matrix Em is nonsingular, and from (3.31), for
each n = 1, . . . ,N, the only nonzero column in matrix Fmn is column m. This means that
in each submatrix D̂n1,n2,n1,n2 = 1, . . . ,N, the only nonzero elements are the elements(
d̂n1,n2

m,m
)M

m=1, which implies that each submatrix D̂n1,n2 is diagonal, and hence D−1 is block
diagonal. Therefore,

B−1 = (IN⊗U∗M)D−1 (IN⊗UM) =


U∗MD̂1,1UM U∗MD̂1,2UM · · · U∗MD̂1,NUM
U∗MD̂2,1UM U∗MD̂2,2UM · · · U∗MD̂2,NUM

...
...

...
U∗MD̂N,1UM U∗MD̂N,2UM · · · U∗MD̂N,NUM


(3.32)

and from [13, Theorem 3.2.3] each of the matrices U∗MD̂n1,n2UM, n1,n2 = 1, . . . ,N, is circu-
lant. Therefore B−1 is block circulant.

From (3.24),
A = B−1C, (3.33)

where B−1 and C are block circulant, each consisting of N2 circulant matrices of order M.
Since from [13, Theorem 3.2.4] the sum and the product of circulant matrices is circulant,
it easily follows that the matrix A is block circulant, consisting of N2 circulant matrices of
order M.

Corollary 1. Consider the system

BA =C, (3.34)
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where the MN×MN matrix B is block circulant, consisting of N2 circulant submatrices

Bn1,n2,n1,n2 = 1, . . . ,N, each of order M, and the MN ×M matrix C is block circulant,

consisting of N circulant submatrices Cn,n = 1, . . . ,N, each of order M. Assume that the

matrix B is nonsingular. Then the MN×N matrix A will also be block circulant consisting

of N circulant submatrices An,n = 1, . . . ,N, each of order M.

Proof. From Theorem 2 it follows that the inverse of matrix B in (3.34) is block circulant,
consisting of N2 circulant matrices of order M. Since C is also block circulant, consisting of
N circulant submatrices Cn,n = 1, . . . ,N, each of order M, since the sum and the product of
circulant matrices is circulant, it follows that the matrix A is block circulant, consisting of N

circulant matrices of order M.
The following theorem and corollary will be necessary for solving the Cauchy Navier

elasticity problem.

Theorem 3. Consider the system(
B11 B12
B21 B22

)(
A11 A12
A21 A22

)
=

(
C11 C12
C21 C22

)
, (3.35)

where the MN×MN matrices Bi j,Ci j, i, j = 1,2, are block circulant, each consisting of

N2 circulant submatrices Bi j
n1,n2,C

i j
n1,n2,n1,n2 = 1, . . . ,N, i, j = 1,2, respectively, each of

order M. Assume that the matrices Bi j, i, j = 1,2, are nonsingular. Then the MN×MN

matrices Ai j, i, j = 1,2, will also be block circulant consisting of N2 circulant submatrices

Ai j
n1,n2,n1,n2 = 1, . . . ,N, i, j = 1,2, each of order M.

Proof. It is first necessary to prove that if the inverse of the coefficient matrix in system
(3.35) is (

B̂11 B̂12
B̂21 B̂22

)
=

(
B11 B12
B21 B22

)−1

,

then each of the matrices B̂i j, i, j = 1,2, is block circulant consisting of N2 circulant subma-
trices of order M.

From the properties of circulant matrices it follows that(
B11 B12
B21 B22

)
= (I2⊗ IN⊗U∗M)

(
D11 D12
D21 D22

)
(I2⊗ IN⊗UM) , (3.36)

where each of the matrices Di j, i, j = 1,2, is block diagonal and nonsingular, consisting of
N2 diagonal submatrices each of order M. The inverse of(

B11 B12
B21 B22

)
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can be written as(
B̂11 B̂12
B̂21 B̂22

)
= (I2⊗ IN⊗U∗M)

(
D11 D12
D21 D22

)−1

(I2⊗ IN⊗UM) . (3.37)

Next, it must be proven that if(
D̂11 D̂12
D̂21 D̂22

)
=

(
D11 D12
D21 D22

)−1

,

then each of the matrices D̂i, j, i, j = 1,2, will consist of N2 diagonal submatrices each of
order M. It is true that(

D11 D12
D21 D22

)(
D̂11 D̂12
D̂21 D̂22

)
=

(
IMN 0

0 IMN

)
, (3.38)

where IMN is the MN×MN identity matrix. System (3.38) is equivalent to

D11D̂11 +D12D̂21 = IMN

D11D̂12 +D12D̂22 = 0

D21D̂11 +D22D̂21 = 0

D21D̂12 +D22D̂22 = IMN .

(3.39)

Combining the first and third equations in (3.39) yields[
−D11D−1

21 D22 +D12
]

D̂21 = IMN . (3.40)

Since the matrix D21 is block diagonal consisting of N2 diagonal submatrices each of order
M, from Theorem 2, so will D−1

21 . It follows that the matrix
[
−D11D−1

21 D22 +D12
]

will be
block diagonal consisting of N2 diagonal submatrices each of order M. Therefore, from
the results of Theorem 2, matrix D̂21 will also be block diagonal consisting of N2 diagonal
submatrices each of order M. Since D̂11 = −D−1

21 D22D̂21, it will also be block diagonal
consisting of N2 diagonal submatrices each of order M. A similar argument combining the
second and fourth equations (3.39) yields that both D̂12 and D̂22 will also be block diagonal
consisting of N2 diagonal submatrices each of order M.

From (3.37) and [13, Theorem 3.2.3] it follows that each of the matrices B̂i j, i, j = 1,2,
is block circulant consisting of N2 circulant submatrices of order M. Now from (3.35) it
follows that (

A11 A12
A21 A22

)
=

(
B̂11 B̂12
B̂21 B̂22

)(
C11 C12
C21 C22

)
, (3.41)

and since each of the matrices B̂i j,Ci j, i, j = 1,2, is block circulant, so will the matrices
Ai j, i, j = 1,2.
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Corollary 2. Consider the system(
A11 A12
A21 A22

)(
B11 B12
B21 B22

)
=

(
C11 C12
C21 C22

)
, (3.42)

where the MN×MN matrices Bi j, i, j = 1,2, are block circulant, each consisting of N2

circulant submatrices Bi j
n1,n2,n1,n2 = 1, . . . ,N, i, j = 1,2, each of order M, and now the

MN×M matrices Ci j, i, j = 1,2, are block circulant, each consisting of N circulant subma-

trices Ci j
n ,n = 1, . . . ,N, i, j = 1,2, each of order M. Assume that the MN×MN matrices

Bi j, i, j = 1,2 are nonsingular. Then the MN×M matrices Ai j, i, j = 1,2, are also block

circulant, each consisting of N circulant submatrices Ai j
n ,n = 1, . . . ,N, i, j = 1,2, each of

order M.

Proof. From (3.42) it follows that(
A11 A12
A21 A22

)
=

(
B̂11 B̂12
B̂21 B̂22

)(
C11 C12
C21 C22

)
where, from Theorem 2, each of the matrices B̂i j, i, j = 1,2, is block circulant consisting
of N2 circulant submatrices of order M. Since each of the matrices Ci j, i, j = 1,2, is also
block circulant consisting of N circulant submatrices of order M, and since the sum and
the product of circulant matrices is circulant, it follows that the matrices Ai j, i, j = 1,2, are
block circulant, each consisting of N circulant matrices of order M.



31

Chapter 4

Global and Local RBF-DQ MDA

4.1 RBF-DQ MDA

4.1.1 Poisson

Consider the following PDE
∆u = f (x,y) in Ω, (4.1a)

subject to either the Dirichlet boundary conditions

u = g1(x,y) on ∂Ω1, (4.1b)

u = g2(x,y) on ∂Ω2, (4.1c)

or the mixed Neumann/Dirichlet boundary conditions

∂u
∂n

= g1(x,y) on ∂Ω1, (4.1d)

u = g2(x,y) on ∂Ω2. (4.1e)

In (4.1d), ∂/∂n denotes the derivative along the outward unit normal vector to the boundary.
Problem (4.1a), (4.1b-4.1c) is a Dirichlet boundary value problem, and problem (4.1a),
(4.1d-4.1e) is a mixed Neumann/Dirichlet boundary value problem, where u = u(x,y) is the
dependent variable to be solved, and f ,g1,g2 are given functions.

In the RBF-DQ method, for each point (xi j,yi j), i = 1, . . . ,M, j = 1, . . . ,N, and for each
RBF ϕmn, m = 1, . . . ,M, n = 1, . . . ,N,

∆ϕmn(xi j,yi j) =
M

∑
k=1

N

∑
`=1

ai j
kl ϕmn(xk`,yk`),

which in vector form gives, for each point (xi j,yi j),

ϕ
i j
∆
= Gai j, (4.2)
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where

G =


ϕ11(r11) ϕ11(r12) ϕ11(r13) · · · ϕ11(rMN)
ϕ12(r11) ϕ12(r12) ϕ12(r13) · · · ϕ12(rMN)

...
...

...
ϕMN(r11) ϕMN(r12) ϕMN(r13) · · · ϕMN(rMN)

 , (4.3)

ϕ
i j
∆
= [∆ϕ(ri j

11) ∆ϕ(ri j
12) · · ·∆ϕ(ri j

MN)]
T , and ai j = [ai j

11 ai j
12 · · · ai j

MN ]
T .

Due to the circular distribution of the collocation points, the (MN×MN) matrix G consists
of N2 circulant submatrices An1,n2,n1,n2 = 1, . . . ,N, each of order M, and is therefore block
circulant. Moreover, the MN×MN matrix Φ =

[
ϕ11

∆
|ϕ12

∆
|ϕ13

∆
| . . . |ϕMN

∆

]
also consists of

N2 circulant [13] submatrices Φn1,n2,n1,n2 = 1, . . . ,N, each of order M, and is therefore
also block circulant. It follows that, by Theorem 2 in Chapter 3, the MN×MN matrix
A = [a11|a12|...aMN ] will also be block circulant, consisting of N2 circulant submatrices
An1,n2,n1,n2 = 1, ...,N, each of order M.

Equation (4.2) can be written more compactly as

GA = Φ. (4.4)

Once A = [a11|a12|...aMN ] is computed, for each point (xi j,yi j),

∆u(xi j,yi j)≈
M

∑
k=1

N

∑
l=1

ai j
klukl, (4.5)

where the ukl are approximations of u(xkl,ykl). Substitution in the differential equation
yields

M

∑
k=1

N

∑
l=1

ai j
klukl = f (xi j,yi j), i = 1, ...,M, j = 2, ...,N−1. (4.6)

In the case of the Dirichlet boundary condition,

ui1 = g1(xi1,yi1) and uiN = g2(xiN ,yiN), i = 1, ...,M. (4.7)

In the case of the Neumann/Dirichlet boundary condition, for each point (xi1,yi1), i =

1, ...,M, on the boundary ∂Ω1, and for each RBF ϕmn,m = 1, ...,M,n = 1, ...,N,

∂ϕmn

∂n
(xi1,yi1) =

M

∑
k=1

N

∑
l=1

bi1
klϕmn(xkl,ykl), (4.8)

which in vector form gives, for each boundary point (xi1,yi1) on ∂Ω1,

ϕ
i1
n = Gbi1. (4.9)
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The MN×M matrix Ψ = [ϕ11
n |ϕ21

n |...|ϕM1
n ] now consists of N circulant submatrices Φn,n =

1, ...,N, each of order M, and is therefore block circulant. It follows from Corollary 1 that
the matrix B = [b11

n |b21
n |...|bM1

n ] will also have the same block circulant structure. Equation
(4.9) can be written more compactly as

GB = Ψ. (4.10)

Once B = [b11|b12|...|bMN ] is computed, for each boundary point (xi1,yi1) on ∂Ω1,

∂u
∂n

(xi1,yi1)≈
M

∑
k=1

N

∑
l=1

bi1
klukl. (4.11)

So now in addition to (4.6), instead of (4.7), the equations corresponding to the boundary
conditions is written as

M

∑
k=1

N

∑
`=1

bi1
kl uk` = g1(xi1,yi1) and uiN = g2(xiN ,yiN), i = 1, . . . ,M. (4.12)

The system can now be effectively solved using the Matrix Decomposition Algorithm as
detailed below.

4.1.2 Matrix Decomposition Algorithm

As shown in section 3.1, the system (4.2) can be premultiplied by the matrix IN⊗UM. To
take advantage of the fact that the right hand side is block circulant, the system can also be
post multiplied by the matrix IN⊗U∗M in order to diagonalize the submatrices on the right
hand side for additional computational savings. The system then becomes

(IN⊗UM)G(IN⊗U∗M)(IN⊗UM)A(IN⊗U∗M) = (IN⊗UM)Φ(IN⊗U∗M) , (4.13)

or
ĜÂ = Φ̂, (4.14)

where

Ĝ=(IN⊗UM)G(IN⊗U∗M) , Â=(IN⊗UM)A(IN⊗U∗M) , Φ̂=(IN⊗UM)Φ(IN⊗U∗M) .
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The matrices Ĝ and Φ̂ are sparse block diagonal and can be calculated using the fast Fourier
transform (FFT). More specifically,

Ĝ = (IN⊗UM)G(IN⊗U∗M) =


UMG1,1U∗M UMG1,2U∗M · · · UMG1,NU∗M
UMG2,1U∗M UMG2,2U∗M · · · UMG2,NU∗M

...
...

...
UMGN,1U∗M UMGN,2U∗M · · · UMGN,NU∗M



=


Ĝ1,1 Ĝ1,2 · · · Ĝ1,N
Ĝ2,1 Ĝ2,2 · · · Ĝ2,N

...
...

...
ĜN,1 ĜN,2 · · · ĜN,N

 , (4.15)

Â = (IN⊗UM)A(IN⊗U∗M) =


UMA1,1U∗M UMA1,2U∗M · · · UMA1,NU∗M
UMA2,1U∗M UMA2,2U∗M · · · UMA2,NU∗M

...
...

...
UMAN,1U∗M UMAN,2U∗M · · · UMAN,NU∗M



=


Â1,1 Â1,2 · · · Â1,N
Â2,1 Â2,2 · · · Â2,N

...
...

...
ÂN,1 ÂN,2 · · · ÂN,N

 , (4.16)

and

Φ̂ = (IN⊗UM)Φ(IN⊗U∗M) =


UMΦ1,1U∗M UMΦ1,2U∗M · · · UMΦ1,NU∗M
UMΦ2,1U∗M UMΦ2,2U∗M · · · UMΦ2,NU∗M

...
...

...
UMΦN,1U∗M UMΦN,2U∗M · · · UMΦN,NU∗M



=


Φ̂1,1 Φ̂1,2 · · · Φ̂1,N
Φ̂2,1 Φ̂2,2 · · · Φ̂2,N

...
...

...
Φ̂N,1 Φ̂N,2 · · · Φ̂N,N

 . (4.17)

From the properties of circulant matrices, the matrices Ĝ and Φ̂ both consist of N2 blocks of
order M, each of which is diagonal. It follows that the matrix Â will also be diagonal.

The coefficient matrix Â can therefore be obtained by decomposing system (4.2) into
the M independent systems of order N

(Ĝn1,n2)m(Ân1,n2)m = (Φ̂n1,n2)m, n1,n2 = 1, ...,N, m = 1, ...,M. (4.18)

For the mixed Neumann/Dirichlet problem, the corresponding coefficients,
B̂ = (In⊗UM)B(In⊗U∗M) can be obtained in a similar fashion. By pre-multiplying system



35

(4.9) by the matrix IN⊗UM and post-multiplying it by the matrix U∗M, the system becomes

(IN⊗UM)G(IN⊗U∗M)(IN⊗UM)BU∗M = (IN⊗UM)ΨU∗M, (4.19)

or
ĜB̂ = Ψ̂, (4.20)

where the matrix Ψ̂ is sparse block diagonal and can be calculated using FFT. More specifi-
cally,

B̂ = (IN⊗UM)BU∗M =


UMB1U∗M
UMB2U∗M

...
UMBNU∗M

=


B̂1
B̂2
...

B̂N

 , (4.21)

and

Ψ̂ = (IN⊗UM)ΨU∗M =


UMΨ1U∗M
UMΨ2U∗M

...
UMΨNU∗M

=


Ψ̂1
Ψ̂2
...

Ψ̂N

 . (4.22)

The matrix Ĝ consists of N2 diagonal blocks of order M and from the properties of circulant
matrices, the matrix Ψ̂ will consist of N blocks of order M, each of which is diagonal.
In addition, since the coefficient matrix B is block circulant, consisting of N circulant
submatrices of order M, B̂ will consist of N diagonal blocks of order M. B̂ can therefore be
obtained by decomposing system (4.20) into solving the M independent systems of order N

(Ĝn1,n2)m(B̂n)m = (Ψ̂n)m, n = 1, ...,N, m = 1, ...,M. (4.23)

By appropriately arranging the matrices B̂ (for the Neumann boundary condition) and Â (for
the differential equation), the matrix Â1 can be obtained to be used in the folllowing system

Â1û = f̂ , (4.24)

where û = (IN⊗UM)u and f̂ = (IN⊗UM) f .
System (4.24) is sparse block diagonal and may be solved efficiently to yield û. Finally,

u is obtained from u = (IN⊗U∗M) û. Note that all operations involving multiplication by the
matrices IN⊗UM and IN⊗U∗M are carried out using the MATLAB c© [41] FFT commands
ifft and fft, respectively.
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4.1.3 Biharmonic

Consider the following biharmonic equation

∆
2u = f (x,y) in Ω, (4.25a)

subject to the boundary conditions

u = g1(x,y) and
∂u
∂n

= h1(x,y) on ∂Ω1, (4.25b)

and
u = g2(x,y) and

∂u
∂n

= h2(x,y) on ∂Ω2, (4.25c)

or the boundary conditions

u = g1(x,y) and ∆u = h1(x,y) on ∂Ω1, (4.25d)

and
u = g2(x,y) and ∆u = h2(x,y) on ∂Ω2. (4.25e)

Problem (4.25a),(4.25b)-(4.25c) is known as the first biharmonic problem whereas the
problem (4.25a),(4.25d)-(4.25e) is known as the second biharmonic problem.

The collocation points are defined in the same way as the previous case for the Poisson
problem. However, the interior points are defined as (xi j,yi j)

M
i=1, j = 3, · · · ,N−2, while the

boundary points are defined as {(xi1,yi1)}M
i=1 and {(xiN ,yiN)}M

i=1. Fewer interior points are
taken than in the previous case due to the fact that it is necessary to impose two boundary
conditions on the boundary instead of one in the biharmonic case. Hence, there are (N−4)M
interior points while there are 4M boundary points for a total of MN collocation points.

In the RBF-DQ method, for each point (xi j,yi j), i = 1, . . . ,M, j = 1, . . . ,N, and for each
RBF ϕmn, m = 1, . . . ,M, n = 1, . . . ,N,

∆
2
ϕmn(xi j,yi j) =

M

∑
k=1

N

∑
`=1

ai j
kl ϕmn(xk`,yk`),

which in vector form, gives for each point (xi j,yi j),

ϕ
i j
∆2 = Gai j. (4.26)

As was the case in the Poisson equation, due to the circular distribution of the collo-
cation points, the matrix G is block circulant of size (MN ×MN). The matrix Φ =[
ϕ11

∆2 |ϕ12
∆2 |ϕ13

∆2 | . . . |ϕMN
∆2

]
consists of N2 circulant submatrices of order M and is therefore
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also block circulant. This means that the matrix A =
[
a11|a12|a13| . . . |aMN] will also be

block circulant. Equation (4.26) can be written more compactly as

GA = Φ. (4.27)

Once A = [a11|a12|...|aMN ] is computed, for each point (xi j,yi j),

∆
2u(xi j,yi j)≈

M

∑
k=1

N

∑
l=1

ai j
klukl, (4.28)

where the ukl are approximations of u(xkl,ykl). Substitution in the differential equation
yields

M

∑
k=1

N

∑
l=1

ai j
klukl = f (xi j,yi j), i = 1, ...,M, j = 3, ...,N−2. (4.29)

In the case of the first biharmonic problem, for each boundary point (xis,yis), i= 1, . . . ,M,
s = 1,N, on ∂Ω and for each RBF ϕmn, m = 1, . . . ,M, n = 1, . . . ,N,

∂ϕmn

∂n
(xis,yis) =

M

∑
k=1

N

∑
`=1

bis
kl ϕmn(xk`,yk`), (4.30)

which in vector form gives for each boundary point (xis,yis),

ϕ
is
n = Gbis. (4.31)

By observing that the MN ×M matrix Ψ =
[
ϕ1s

n |ϕ2s
n | . . . |ϕMs

n
]
, s = 1,N, consists of N

circulant submatrices of order M, B =
[
b1s|b2s| . . . |bMs], s = 1,N, is also block circulant.

Equation (4.31) can be written more compactly as

GB = Ψ. (4.32)

Once B = [b1s|b2s|...|bMs], s = 1, ...,N, is computed, for each boundary point (xis,yis), i =

1, ...,M,s = 1,N,
∂u
∂n

(xis,yis)≈
M

∑
k=1

N

∑
l=1

bis
klukl, (4.33)

.
In the case of the second biharmonic problem, instead of (4.30), for each boundary point

(xis,yis), i = 1, . . . ,M, s = 1,N, and for each RBF ϕmn, m = 1, . . . ,M, n = 1, . . . ,N,

∆ϕmn(xis,yis) =
M

∑
k=1

N

∑
`=1

bis
kl ϕmn(xk`,yk`), (4.34)
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which in vector form gives for each boundary point (xis,yis),

ϕ
is
∆ = Gbis. (4.35)

As in the first biharmonic problem, by observing that the matrix Ψ =
[
ϕ1s

∆
|ϕ2s

∆
| . . . |ϕMs

∆

]
,

s= 1,N, consists of N circulant submatrices of order M, B=
[
b1s|b2s| . . . |bMs], s= 1,N, will

also be block circulant. Equation (4.35) can be written more compactly as Equation (4.32).
Once B = [b1s|b2s|...|bMs] is computed, for each boundary point (xis,yis), i = 1, ...,M,s =

1,N,

∆u(xis,yis)≈
M

∑
k=1

N

∑
l=1

bis
klukl. (4.36)

So now, in addition to Equation (4.29), the boundary condition (4.25b) or (4.25d) is written
as

ui1 = g1(xi1,yi1),
M

∑
k=1

N

∑
l=1

bi1
klukl = h1(xi1,yi1), i = 1, ...,M, (4.37)

and boundary conditions (4.25c) or (4.25e) is written as

uiN = g2(xin,yin),
M

∑
k=1

N

∑
l=1

biN
kl ukl = h1(xiN ,yiN), i = 1, ...,M. (4.38)

The system can then effectively be solved using the same MDA technique as in the Poisson
problem described in the previous section.

In this dissertation, the selection of the collocation points must be determined strate-
gically to achieve a circulant structure. The collocation points, (xi j,yi j), are determined
by

xmn = rn cos
(

θm +
2παn

M

)
, ymn = rn sin

(
θm +

2παn

M

)
, m = 1, . . . ,M, n = 1, . . . ,N,

(4.39)
where rn = γ1 +(γ2− γ1)

n−1
N−1 is the radius of each of the N concentric circles, θm is the

angle of each of the m collocation points on a circle, and αn is the rotation of the collocatoin
points, which is used to produce more uniform distributions. For the Poisson equation,
αn = (−1)n/4,n = 1, ...,N, is used for selecting the collocation points. However, when
using this same value for the biharmonic equation, possible singularities may occur as shown
in the following theorem.

Theorem 4. For the biharmonic problems (4.25) considered, in the case αn =(−1)n/4,n=
1, . . . ,N, and M = 2m is even, the global matrix G in (4.26) resulting from the proposed

discretization is singular.
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Proof. For simplicity, consider the RBF-DQ discretization for the case of the domain Ω

being a disk. The extension for the case of the annulus is trivial. The global matrix G has
the block structure

G =


A1,1 A1,2 . . . A1,N
A2,1 A2,2 . . . A2,N

...
... . . . ...

AN,1 AN,2 . . . AN,N

 , (4.40)

where each of the M×M submatrices Ai, j, i, j = 1, . . .N, is circulant. Because of the
imposition of the Dirichlet boundary condition,

AN,N = IM and Ai,N = 0M, i = 1, . . . ,N−1,

where IM and 0M are the M×M identity and zero matrices, respectively. Therefore, showing
that G is singular is equivalent to showing that the matrix

G=


A1,1 A1,2 . . . A1,N−1
A2,1 A2,2 . . . A2,N=1

...
... . . . ...

AN−1,1 AN−1,2 . . . AN−1,N−1

 , (4.41)

is singular.
Without loss of generality, assume that N = 2n is even.
For the submatrices corresponding to

i = 1,3, . . . ,2n−3, j = 1,3, . . . ,2n−1,

and
i = 2,4, . . . ,2n−2, j = 2,4, . . . ,2n−2,

the circulant structure is

Ai, j = circ
(

ai, j
1 ,ai, j

2 , . . . ,ai, j
m ,ai, j

m+1,a
i, j
m , . . . ,ai, j

3 ,ai, j
2

)
. (4.42)

Because of the imposition of the second boundary condition and the omittance of the
collocation points on the circle corresponding to i = N−1, the same structure also applies
to the submatrices corresponding to

i = 2n−1, j = 2,4, . . . ,2n−2.

For the remaining submatrices corresponding to

i = 1,3, . . . ,2n−3, j = 2,4, . . . ,2n−2,
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and
i = 2,4, . . . ,2n−2, j = 1,3, . . . ,2n−1,

and also
i = 2n−1, j = 1,3, . . . ,2n−1,

the circulant structure is

Ai, j = circ
(

ai, j
1 ,ai, j

2 , . . . ,ai, j
m ,ai, j

m , . . . ,ai, j
2 ,ai, j

1

)
. (4.43)

First, consider the submatrices possessing the structure (4.42). The sum of the odd rows
of these matrices yields a row of the form(

α
i, j,β i, j,α i, j,β i, j, . . . ,α i, j,β i, j) ,

while the sum of the even rows yields a row of the form(
β

i, j,α i, j,β i, j,α i, j, . . . ,β i, j,α i, j) .
Subtracting the sum of columns from the sum of odd rows from the sum of even rows will
give one row of the form

γ
i, j =

(
γ

i, j,−γ
i, j,γ i, j,−γ

i, j, . . . ,γ i, j,−γ
i, j) , (4.44)

where γ i, j = β i, j−α i, j. Next, consider the submatrices possessing structure (4.43). In this
case, the sum of the odd rows of these matrices is equal to the sum of the even rows. As a
result, subtracting the sum of columns from the sum of odd rows from the sum of even rows
will give one row of zeros.

The matrix (4.41) is thus equivalent to a matrix in which each submatrix with structure
(4.44) has a row (say the last row) of type (4.44) while each submatrix with structure (4.43)
has a corresponding zero row denoted by 0. Considering the last rows of the matrices in
blocks i = 2,4, . . . ,2n−2 and 2n−1, the n×MN matrix is defined as

T =


0 γ2,2 0 γ2,4 . . . 0 γ2,2n−2 0
0 γ4,2 0 γ4,4 . . . 0 γ4,2n−2 0
...

...
...

...
...

...
...

0 γ2n−2,2 0 γ2n−2,4 . . . 0 γ2n−2,2n−2 0
0 γ2n−1,2 0 γ2n−1,4 . . . 0 γ2n−1,2n−2 0

 .

By subtracting appropriate multiples of the first row of matrix T from the remaining rows, a
matrix is obtained where the row vectors γ4,2, . . . ,γ2n−1,2 are replaced by zero row vectors.
In a similar subsequent step, subtracting appropriate multiples of the second row from the
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third row through the nth row yields zero row vectors in place of row vectors γ6,4, . . . ,γ2n−1,4.
Repeating this will eventually yield a full zero row in place of row n of matrix T . Thus
matrix G and hence G is singular.

Structure (4.43) in some of the submatrices is due to the relationship between any two
consecutive circles in the RBF discretization, say circles j−1 and j with radii r j−1 and r j,
respectively. Without loss of generality, assume that j is odd. From (4.39), the first point of
circle j will be the point A =

(
r j cos(− π

2M ), r j sin(− π

2M )
)
. Similarly, the first point of circle

j− 1 will be the point B =
(
r j−1 cos( π

2M ), r j−1 sin( π

2M )
)

and the last (Mth) point of circle
j−1 will be the point C =

(
r j−1 cos(− 3π

2M ), r j−1 sin(− 3π

2M )
)
. The distances |AB| and |AC|

are equal and are given by

|AB|= |AC|=
√

r2j + r2j−1−2r jr j−1 cos(
π

M
).

For similar reasons, the distance of A from the second point of circle j−1 is equal to the
distance of A from the point M−1 of circle j−1 and so on. This yields the first circulant
structure in (4.43). In a similar way, the distance sof point B on circle j−1 from the first
and second points on circle j are also equal, leading to the second structure in (4.43).

To avoid possible singularities, αn =
(−1)n

5 will be used for the biharmonic equations.

4.1.4 Cauchy Navier

Finally, consider the Cauchy–Navier system in R2 for the displacements (u1,u2) in the form
(see, e.g. [21])

L1(u1,u2)≡ L11u1 +L12u2 ≡ µ∆u1 +
µ

1−2ν

(
∂ 2u1
∂x2 + ∂ 2u2

∂x∂y

)
= f1,

in Ω,

L2(u1,u2)≡ L21u1 +L22u2 ≡ µ

1−2ν

(
∂ 2u1
∂x∂y +

∂ 2u2
∂y2

)
+µ∆u2 = f2,

(4.45a)

subject to the Dirichlet boundary conditions

u1 = g1 and u2 = h1 on ∂Ω1, (4.45b)

and
u1 = g2 and u2 = h2 on ∂Ω2, (4.45c)

or the mixed Neumann/Dirichlet boundary conditions

t1 = g1 and t2 = h1 on ∂Ω1, (4.45d)

and
u1 = g2 and u2 = h2 on ∂Ω2. (4.45e)
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In (4.45a) the constant ν ∈ [0,1/2) is Poisson’s ratio, and µ > 0 is the shear modulus. Also,
in (4.45a) the operators L11,L12,L21, and L22 are defined by

L11 ≡ µ∆+
µ

1−2ν

∂ 2

∂x2 , L12 ≡
µ

1−2ν

∂ 2

∂x∂y

L21 ≡ L12, L22 ≡ µ∆+
µ

1−2ν

∂ 2

∂y2 .

In (4.45d), t1 and t2 are the tractions [21] defined by

t1 = 2µ

[(
1−ν

1−2ν

)
∂u1

∂x
+

(
ν

1−2ν

)
∂u2

∂y

]
nx +µ

[
∂u1

∂y
+

∂u2

∂x

]
ny,

t2 = µ

[
∂u1

∂y
+

∂u2

∂x

]
nx +2µ

[(
ν

1−2ν

)
∂u1

∂x
+

(
1−ν

1−2ν

)
∂u2

∂y

]
ny.

Problem (4.45a), (4.45b)-(4.45c) is a Dirichlet boundary value problem whereas problem
(4.45a), (4.45d)-(4.45e) is a mixed Neumann/Dirichlet boundary value problem.

In the RBF-DQ method, for each point (xi j,yi j), i = 1, . . . ,M, j = 1, . . . ,N, and for each
RBF ϕmn, m = 1, . . . ,M, n = 1, . . . ,N,

L11ϕmn(xi j,yi j) =
M

∑
k=1

N

∑
`=1

ai j
kl ϕmn(xk`,yk`), L12ϕmn(xi j,yi j) =

M

∑
k=1

N

∑
`=1

bi j
kl ϕmn(xk`,yk`),

L21ϕmn(xi j,yi j) =
M

∑
k=1

N

∑
`=1

ci j
kl ϕmn(xk`,yk`), L22ϕmn(xi j,yi j) =

M

∑
k=1

N

∑
`=1

di j
kl ϕmn(xk`,yk`),

which in vector form gives for each point (xi j,yi j),

ϕ
i j
L11

= Gai j, ϕ
i j
L12

= Gbi j, ϕ
i j
L21

= Gci j, ϕ
i j
L22

= Gdi j. (4.46)

The matrix G is block circulant due to the distribution of the collocation points, but unlike
the Poisson and Biharmonic problems, this is the only matrix having a block circulant
structure. However, it is possible to transform the matrices to a block circulant matrix by
using an appropriate transformation which will be introduced in the next section. Equations
(4.46) can be written more compactly as(

G 0
0 G

)(
A B
C D

)
=

(
Φ11 Φ12
Φ21 Φ22

)
, (4.47)

where the matrix G is defined in (4.3) and

A =
[
a11|a12|a13| . . . |aMN] , B =

[
b11|b12|b13| . . . |bMN] ,

C =
[
c11|c12|c13| . . . |cMN] , D =

[
d11|d12|d13| . . . |dMN] ,
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and
Φ11 =

[
ϕ

11
L11
|ϕ12

L11
|ϕ13

L11
| . . . |ϕMN

L11

]
, Φ12 =

[
ϕ

11
L12
|ϕ12

L12
|ϕ13

L12
| . . . |ϕMN

L12

]
,

Φ21 =
[
ϕ

11
L21
|ϕ12

L21
|ϕ13

L21
| . . . |ϕMN

L21

]
, Φ22 =

[
ϕ

11
L22
|ϕ12

L22
|ϕ13

L22
| . . . |ϕMN

L22

]
,

are MN×MN matrices. Each of the MN×MN matrices A,B,C,D consists of N2 subma-
trices An1,n2,Bn1,n2,Cn1,n2,Dn1,n2,n1,n2 = 1, . . . ,N, each of order M, respectively. Similarly,
each of the MN×MN matrices Φi j consists of N2 submatrices Φi jn1,n2

,n1,n2 = 1, . . . ,N, of
order M, respectively.

Once A,B,C,D are computed, for each point (xi j,yi j),

L11u1(xi j,yi j)≈
M

∑
k=1

N

∑
`=1

ai j
kl u1k`, L12u2(xi j,yi j)≈

M

∑
k=1

N

∑
`=1

bi j
kl u2k`,

L21u1(xi j,yi j)≈
M

∑
k=1

N

∑
`=1

ci j
kl u1k`, L22u2(xi j,yi j)≈

M

∑
k=1

N

∑
`=1

di j
kl u2k`,

where the u1k` and u2k` are approximations of u1(xk`,yk`) and u2(xk`,yk`), respectively.
In the Dirichlet problem, substitution in the differential equations yields

M

∑
k=1

N

∑
`=1

ai j
klu1k` +

M

∑
k=1

N

∑
`=1

bi j
kl u2k` = f1(xi j,yi j),

M

∑
k=1

N

∑
`=1

ci j
klu1k` +

M

∑
k=1

N

∑
`=1

di j
kl u2k` = f2(xi j,yi j), i = 1, . . . ,M, j = 2, . . . ,N−1,(4.48)

and the Dirichlet boundary conditions yield

u1i1 = g1(xi1,yi1), u2i1 = h1(xi1,yi1), i = 1, . . . ,M. (4.49)

u1iN = g2(xiN ,yiN), u2iN = h2(xiN ,yiN), i = 1, . . . ,M. (4.50)

In the case of the mixed Neumann/Dirichlet problem, for each boundary point (xi1,yi1), i =

1, . . . ,M on ∂Ω1, and for each RBF ϕmn, m = 1, . . . ,M, n = 1, . . . ,N,

T11ϕmn(xi1,yi1)=

[
2µ

(
1−ν

1−2ν

)
∂ϕmn

∂x
nx +µ

∂ϕmn

∂y
ny

]
(xi1,yi1)=

M

∑
k=1

N

∑
`=1

ei1
kl ϕmn(xk`,yk`),

T12ϕmn(xi1,yi1)=

[
2µ

(
ν

1−2ν

)
∂ϕmn

∂y
nx +µ

∂ϕmn

∂x
ny

]
(xi1,yi1)=

M

∑
k=1

N

∑
`=1

f i1
kl ϕmn(xk`,yk`),

T21mn(xi1,yi1) =

[
µ

∂ϕmn

∂y
nx +2µ

(
ν

1−2ν

)
∂ϕmn

∂x
ny

]
(xi1,yi1) =

M

∑
k=1

N

∑
`=1

gi1
kl ϕmn(xk`,yk`),
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T22ϕmn(xi1,yi1)=

[
µ

∂ϕmn

∂x
nx +2µ

(
1−ν

1−2ν

)
∂ϕmn

∂y
ny

]
(xi1,yi1)=

M

∑
k=1

N

∑
`=1

hi1
kl ϕmn(xk`,yk`),

which in vector form gives for each boundary point (xi1,yi1) on ∂Ω1,

ϕ
i1
T11

= Gei1, ϕ
i1
T12

= G f i1, ϕ
i1
T21

= Ggi1, ϕ
i1
T22

= Ghi1. (4.51)

Similarly, we can transform the matrices to block circulant using an appropriate transforma-
tion. Equation (4.51) can be written more compactly as(

G 0
0 G

)(
Â B̂
Ĉ D̂

)
=

(
Φ̂11 Φ̂12
Φ̂21 Φ̂22

)
, (4.52)

where
Â =

[
e11|e21| . . . |eM1] , B̂ =

[
f 11| f 21| . . . | f M1] ,

Ĉ =
[
g11|g21| . . . |gM1] , D̂ =

[
h11|h21| . . . |hM1] ,

and
Φ̂11 =

[
ϕ

11
T11
|ϕ21

T11
| . . . |ϕM1

T11

]
, Φ̂12 =

[
ϕ

11
T12
|ϕ21

T12
| . . . |ϕM1

T12

]
,

Φ̂21 =
[
ϕ

11
T21
|ϕ21

T21
| . . . |ϕM1

T21

]
, Φ̂22 =

[
ϕ

11
T22
|ϕ21

T22
| . . . |ϕM1

T22

]
,

are MN×M matrices. Each of the MN×M matrices Â, B̂, Ĉ, D̂ consists of N submatrices
An,Bn,Cn,Dn,n= 1, . . . ,N, of order M, respectively. Similarly, each of the MN×M matrices
Φ̂i j consists of N submatrices Φi jn,n = 1, . . . ,N, of order M, respectively.

Once Â, B̂, Ĉ, D̂ is computed, for each boundary point (xi1,yi1) on ∂Ω1,

T11u1(xi j,yi j)≈
M

∑
k=1

N

∑
`=1

ei1
kl u1k`, T12u2(xi j,yi j)≈

M

∑
k=1

N

∑
`=1

f i1
kl u2k`,

T21u1(xi j,yi j)≈
M

∑
k=1

N

∑
`=1

gi1
kl u1k`, T22u2(xi j,yi j)≈

M

∑
k=1

N

∑
`=1

hi1
kl u2k`.

In this case, equations (4.49) are replaced by

M

∑
k=1

N

∑
`=1

ei1
kl u1k` +

M

∑
k=1

N

∑
`=1

f i1
kl u2k` = g1(xi1,yi1),

M

∑
k=1

N

∑
`=1

gi1
kl u1k` +

M

∑
k=1

N

∑
`=1

hi1
kl u2k` = h1(xi1,yi1), i = 1, . . . ,M. (4.53)
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4.2 Circulant Matrix Transform

This section presents a transformation which creates a block circulant structure for any
matrix. This is necessary for problems such as the Cauchy-Navier system since the right
hand side does not possess the block circulant structure that is required for the MDA to be
applied [39]. Begin by rewriting system (4.47) as

GA= Θ, (4.54)

where the 2MN × 2MN matrix G consists of N2, 2M× 2M submatrices Gn1,n2,n1,n2 =

1, . . . ,N, where each 2×2 array

(Gn1,n2)m1,m2
=

(
(Gn1,n2)m1,m2

0
0 (Gn1,n2)m1,m2

)
,

and (Gn1,n2)m1,m2
= ϕm2n2(xm1n1,ym1n1). The 2MN×2MN matrix A consists of N2, 2M×

2M submatrices An1,n2,n1,n2 = 1, . . . ,N, where each 2×2 array

(An1,n2)m1,m2
=

(
(An1,n2)m1,m2

(Bn1,n2)m1,m2

(Cn1,n2)m1,m2
(Dn1,n2)m1,m2

)
, m1,m2 = 1, . . . ,M,

and the 2MN × 2MN matrix Θ consists of N2, 2M × 2M submatrices Θn1,n2 ,n1,n2 =

1, . . . ,N, where each 2×2 array

(Θn1,n2)m1,m2
=


(

Φ11n1,n2

)
m1,m2

(
Φ12n1,n2

)
m1,m2(

Φ21n1,n2

)
m1,m2

(
Φ22n1,n2

)
m1,m2

 .

Next, the (2M×2M) matrix

R =


Rθ1 0 0 · · · 0 0
0 Rθ2 0 · · · 0 0
...

... . . . ...
...

...
0 0 0 · · · RθM−1 0
0 0 0 · · · 0 RθM

 (4.55)

where Rθk =

(
cosθk sinθk
sinθk −cosθk

)
, θk =

2π(k−1)
M , can be used to complete the transforma-

tion. It can be shown that R2
θk
= I2 which implies that R2 = I2N . By pre-multiplying and

post-multiplying the 2MN× 2MN system (4.54) by the 2MN× 2MN matrix IN ⊗R , the
system becomes

(IN⊗R)GA(IN⊗R) = (IN⊗R)Θ(IN⊗R) , (4.56)
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or
G̃Ã= Θ̃, (4.57)

where

G̃= (IN⊗R)G(IN⊗R) , Ã= (IN⊗R)A(IN⊗R) , Θ̃ = (IN⊗R)Θ(IN⊗R) .

The 2MN×2MN matrices G̃, Ã and Θ̃ can be written as

G̃=


G̃1,1 G̃1,2 . . . G̃1,N
G̃2,1 G̃2,2 . . . G̃2,N

...
... . . . ...

G̃N,1 G̃N,2 . . . G̃N,N

 , Ã=


Ã1,1 Ã1,2 . . . Ã1,N
Ã2,1 Ã2,2 . . . Ã2,N

...
... . . . ...

ÃN,1 ÃN,2 . . . ÃN,N

 , (4.58)

and

Θ̃ =


Θ̃1,1 Θ̃1,2 . . . Θ̃1,N
Θ̃2,1 Θ̃2,2 . . . Θ̃2,N

...
... . . . ...

Θ̃N,1 Θ̃N,2 . . . Θ̃N,N

 , (4.59)

where each of the 2M×2M submatrices G̃m,`=RGm,`R, Ãm,`=RAm,`R, and Θ̃m,`=RΘm,`R.

The elements
(
G̃n1,n2

)
m1,m2

=
((

G̃n1,n2

)
m1,m2

)2

i, j=1
,
(
Ãn1,n2

)
m1,m2

=
((

Ãn1,n2

)
m1,m2

)2

i, j=1
and(
Θ̃n1,n2

)
m1,m2

=
((

Θ̃n1,n2

)
m1,m2

)2

i, j=1
are 2×2 arrays, where

(
G̃n1,n2

)
m1,m2

= Rm1
(Gn1,n2)m1,m2

Rm2
,
(
Ãn1,n2

)
m1,m2

= Rm1
(An1,n2)m1,m2

Rm2
,

and(
Θ̃n1,n2

)
m1,m2

= Rm1
(Θn1,n2)m1,m2

Rm2
, m1,m2 = 1, . . . ,M, n1,n2 = 1, . . . ,N. (4.60)

Now, each of the submatrices G̃n1,n2,Θ̃n1,n2, n1,n2 = 1, . . . ,N, has a block 2× 2 block
circulant structure. Finally, the system (4.57) can be rewritten in the form(

G11 G12
G21 G22

)(
A11 A12
A21 A22

)
=

(
ϒ11 ϒ12
ϒ21 ϒ22

)
, (4.61)

where the MN×MN matrices Gi j,Ai j,ϒi j, i, j = 1,2, are expressed in the form

Gi j =


Gi j

1,1 Gi j
1,2 . . . Gi j

1,N

Gi j
2,1 Gi j

2,2 . . . Gi j
2,N

...
... . . . ...

Gi j
N,1 Gi j

N,2 . . . Gi j
N,N

 , Ai j =


Ai j

1,1 Ai j
1,2 . . . Ai j

1,N

Ai j
2,1 Ai j

2,2 . . . Ai j
2,N

...
... . . . ...

Ai j
N,1 Ai j

N,2 . . . Ai j
N,N

 ,
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and

ϒi j =


ϒ

i j
1,1 ϒ

i j
1,2 . . . ϒ

i j
1,N

ϒ
i j
2,1 ϒ

i j
2,2 . . . ϒ

i j
2,N

...
... . . . ...

ϒ
i j
N,1 ϒ

i j
N,2 . . . ϒ

i j
N,N

 .

The matrices Gi j,ϒi j, i, j = 1,2, are block circulant and therefore, so will the matrices
Ai j, i, j = 1,2. as stated in Theorem 3 in Chapter 3.

Hence, each of the M×M submatrices Gi j
n1,n2,A

i j
n1,n2,ϒ

i j
n1,n2, i, j = 1,2, n1,n2 = 1, . . . ,N,

is circulant and defined from(
Gi j

n1,n2

)
m1,m2

=
((

G̃n1,n2

)
m1,m2

)
i, j
,
(
Ai j

n1,n2

)
m1,m2

=
((

Ãn1,n2

)
m1,m2

)
i, j
,

and (
ϒ

i j
n1,n2

)
m1,m2

=
((

Θ̃n1,n2

)
m1,m2

)
i, j
, m1,m2 = 1, . . . ,M, respectively.

In the case of the mixed Neumann/Dirichlet boundary problem, Other than the matrix G

which is block circulant, none of the other matrices involved in system (4.52) is block
circulant. The system may, however, be transformed into one with a block circulant structure
by means of a simple transformation. The system (4.52) can first be rewritten as

GB̂= Θ̂, (4.62)

where the 2MN×2MN matrix G is defined in (4.54). The 2MN×2M matrix B̂ consists of
N, 2M×2M submatrices B̂n,n = 1, . . . ,N, where each 2×2 array(

B̂n

)
m1,m2

=

(
(An)m1,m2

(Bn)m1,m2

(Cn)m1,m2
(Dn)m1,m2

)
, m1,m2 = 1, . . . ,M,

and the 2MN×2M matrix Θ̂ consists of N, 2M×2M submatrices Θ̂n,n = 1, . . . ,N, where
each 2×2 array (

Θ̂n
)

m1,m2
=

(
(Φ11n)m1,m2

(Φ12n)m1,m2

(Φ21n)m1,m2
(Φ22n)m1,m2

)
.

Pre-multiplying and post-multiplying the system (4.62) by the 2MN×2M matrices IN⊗R

and R, respectively, yields

(IN⊗R)GB̂R = (IN⊗R)Θ̂R, (4.63)

or
G̃

˜̂
B= ˜̂

Θ, (4.64)
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where G̃ is defined in (4.57) and

˜̂
B= (IN⊗R)B̂R, ˜̂

Θ = (IN⊗R)Θ̂R.

The 2MN×2M matrices ˜̂
B and ˜̂

Θ can be written as

˜̂
B=


B1
B2
...

BN

 and ˜̂
Θ =


Θ1
Θ2
...

ΘN

 (4.65)

where each of the 2M× 2M submatrices Bn = RB̂nR and Θn = RΘ̂nR. The elements

(Bn)m1,m2
=
(
(Bn)m1,m2

)2

i, j=1
and (Θn)m1,m2

=
(
(Θn)m1,m2

)2

i, j=1
are 2×2 arrays where

(Bn)m1,m2
= Rm1

(
B̂n1,n2

)
m1,m2

Rm2
,

(Θn)m1,m2
= Rm1

(
Θ̂n1,n2

)
m1,m2

Rm2
, m1,m2 = 1, . . . ,M, n = 1, . . . ,N. (4.66)

Each of the submatrices B̃n1,n2, n1,n2 = 1, . . . ,N, and Θn, n = 1, . . . ,N, has a 2×2 block
circulant structure. Next, the system (4.64) is rewritten in the form(

G11 G12
G21 G22

)(
B11 B12
B21 B22

)
=

(
Λ11 Λ12
Λ21 Λ22

)
, (4.67)

where the MN×MN block circulant matrices Gi j are defined in (4.61) while the MN×M

matrices Bi j and Λi j, i, j = 1,2, are expressed in the form

Bi j =


Bi j

1
Bi j

2
...
Bi j

N

 and Λi j =


Λ

i j
1

Λ
i j
2
...

Λ
i j
N

 .

The Λi j, i, j = 1,2, are block circulant and therefore so will the matrices Bi j, i, j = 1,2, as
shown in the Corollary 2 in Chapter 3.

Hence, each of the M×M submatrices Bi j
n ,Λ

i j
n , i, j = 1,2, n = 1, . . . ,N, is circulant and

defined from(
Bi j

n
)

m1,m2
=
(
(Bn)m1,m2

)
i, j
, and

(
Λ

i j
n
)

m1,m2
=
(
(Θn)m1,m2

)
i, j
, respectively.

Finally, system (4.57) can be solved after an appropriate transformation, using a slight
alteration of the MDA used in the Poisson and Biharmonic problems.
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4.3 Matrix Decomposition Algorithm for Cauchy-Navier

By pre-multiplying system (4.61) by the matrix I2⊗ IN⊗UM and post-multiplying it by the
matrix I2⊗ IN⊗U∗M, the result is

(I2⊗ IN⊗UM)

(
G11 G12
G21 G22

)(
A11 A12
A21 A22

)
(I2⊗ IN⊗U∗M)

= (I2⊗ IN⊗UM)

(
ϒ11 ϒ12
ϒ21 ϒ22

)
(I2⊗ IN⊗U∗M) , (4.68)

or (
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)(
Â11 Â12

Â21 Â22

)
=

(
ϒ̂11 ϒ̂12

ϒ̂21 ϒ̂22

)
, (4.69)

where (
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
= (I2⊗ IN⊗UM)

(
G11 G12
G21 G22

)
(I2⊗ IN⊗U∗M) ,(

Â11 Â12

Â21 Â22

)
= (I2⊗ IN⊗UM)

(
A11 A12
A21 A22

)
(I2⊗ IN⊗U∗M) ,

and (
ϒ̂11 ϒ̂12

ϒ̂21 ϒ̂22

)
= (I2⊗ IN⊗UM)

(
ϒ11 ϒ12
ϒ21 ϒ22

)
(I2⊗ IN⊗U∗M) .

Because each of the submatrices Gi j,Ai j, and ϒi j, i, j = 1,2, is block circulant, the matrices
Ĝi j, Âi j, and ϒ̂i j will be block diagonal. More precisely,

Ĝi j =


Ĝi j

1,1 Ĝi j
1,2 · · · Ĝi j

1,N

Ĝ2,1 Ĝi j
2,2 · · · Ĝi j

2,N
...

...
...

Ĝi j
N,1 Ĝi j

N,2 · · · Ĝi j
N,N

 , Âi j =


Âi j

1,1 Âi j
1,2 · · · Âi j

1,N

Â2,1 Âi j
2,2 · · · Âi j

2,N
...

...
...

Âi j
N,1 Âi j

N,2 · · · Âi j
N,N

 ,

and

ϒ̂i j =


ϒ̂

i j
1,1 ϒ̂

i j
1,2 · · · ϒ̂

i j
1,N

ϒ̂2,1 ϒ̂
i j
2,2 · · · ϒ̂

i j
2,N

...
...

...
ϒ̂

i j
N,1 ϒ̂

i j
N,2 · · · ϒ̂

i j
N,N

 ,

where each of the M×M matrices Ĝi j
n1,n2, Â

i j
n1,n2 , and ϒ̂

i j
n1,n2 , n1,n2 = 1, . . . ,N, is diagonal.

The solution of system (4.69) can thus be decomposed into solving the M systems of order
2N (

Gm
11 Gm

12
Gm

21 Gm
22

)(
Am

11 Am
12

Am
21 Am

22

)
=

(
Φm

11 Φm
12

Φm
21 Φm

22

)
, m = 1, . . . ,M, (4.70)
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where(
Gm

i j
)

n1,n2
= Ĝi j

n1,n2m
,
(
Am

i j
)

n1,n2
= Âi j

n1,n2m
,
(
Φ

m
i j
)

n1,n2
= ϒ̂

i j
n1,n2m

, n1,n2 = 1, . . . ,N,

and Ĝi j
n1,n2m , Âi j

n1,n2m , ϒ̂
i j
n1,n2m, m = 1, . . . ,M, are the diagonal elements of the matrices Ĝi j

n1,n2 ,
Âi j

n1,n2 , ϒ̂
i j
n1,n2, respectively.

In the case of the Neumann/Dirichlet boundary problem, pre-multiplying system (4.67)
by the matrix I2⊗ IN⊗UM and post-multiplying it by the matrix I2⊗U∗M yields

(I2⊗ IN⊗UM)

(
G11 G12
G21 G22

)(
B11 B12
B21 B22

)
(I2⊗U∗M)

= (I2⊗ IN⊗UM)

(
Λ11 Λ12
Λ21 Λ22

)
(I2⊗U∗M) , (4.71)

or (
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)(
B̂11 B̂12

B̂21 B̂22

)
=

(
Λ̂11 Λ̂12

Λ̂21 Λ̂22

)
, (4.72)

where (
B̂11 B̂12

B̂21 B̂22

)
= (I2⊗ IN⊗UM)

(
B11 B12
B21 B22

)
(I2⊗U∗M) ,

and (
Λ̂11 Λ̂12

Λ̂21 Λ̂22

)
= (I2⊗ IN⊗UM)

(
Λ11 Λ12
Λ21 Λ22

)
(I2⊗U∗M) .

Because each of the submatrices Bi j and Λi j, i, j = 1,2, is block circulant, the matrices B̂i j

and Λ̂i j will be block diagonal. More precisely,

B̂i j =


B̂i j

1
B̂i j

2
...
B̂i j

N

 and Λ̂i j =


Λ̂

i j
1

Λ̂
i j
2
...

Λ̂
i j
N

 ,

where each of the M×M matrices B̂i j
n and Λ̂

i j
n , n = 1, . . . ,N, is diagonal. The solution of

system (4.72) can thus be decomposed into solving the M systems of order 2N(
Gm

11 Gm
12

Gm
21 Gm

22

)(
B̂m

11 B̂m
12

B̂m
21 B̂m

22

)
=

(
Λ̃m

11 Λ̃m
12

Λ̃m
21 Λ̃m

22

)
, m = 1, . . . ,M, (4.73)

where the coefficient matrix is the same as in (4.70) and(
B̂m

i j
)

n = B̂i j
nm
,
(
Λ̃

m
i j
)

n = Λ̂
i j
nm
, n1,n2 = 1, . . . ,N,
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and B̂i j
nm , Λ̂

i j
nm , m = 1, . . . ,M, are the diagonal elements of the matrices B̂i j

n , Λ̂
i j
n , respectively.

By appropriately arranging the matrices
(

B̂11 B̂12
B̂21 B̂22

)
(for the Neumann boundary condi-

tion) and
(

Â11 Â12
Â21 Â22

)
(for the differential equation), the matrix Ĉ2 can be obtained to be

used in the following system(
Ĉ11 Ĉ12
Ĉ21 Ĉ22

)(
û1
û2

)
=

(
f̂1
f̂2

)
, (4.74)

where ûi = (I2⊗ IN ⊗UM)(IN ⊗R)ui and f̂i = (I2⊗ IN ⊗UM)(IN ⊗R) fi, i = 1,2. System
(4.74) is sparse block diagonal and may be solved efficiently to yield ûi. Finally, ui is
obtained from ui = (IN⊗R)(I2⊗ IN⊗UM)ûi, i = 1,2.

4.4 LRBF-DQ MDA

4.4.1 Poisson

In the LRBF-DQ method for the solution of the boundary value problem (4.1), for each
point (xi,yi), i = 1, ...,MN, in Ω and for each RBF ϕk,k = 1, ...n,

∆ϕk(xi,yi) =
n

∑
j=1

ai jϕk(x j,y j), (4.75)

where n is the number of points in the local domain Ωi, or in vector form,

∆ϕ = Giai, (4.76)

where Gi =


ϕ1(x1) ϕ1(x2) · · · ϕ1(xn)
ϕ2(x1) ϕ2(x2) · · · ϕ2(xn)

...
...

...
ϕn(x1) ϕn(x2) · · · ϕn(xn)

 is unique to each local domain Ωi.

After solving for the coefficients ai = G−1
i ∆ϕ , this can be used to construct the global

sparse coefficient matrix A.
In the case of the Dirichlet boundary condition,

ui = g1(xi,yi), i = 1, ...,M

ui = g2(xi,yi), i = (M−1)N...MN,
(4.77)

which means that the lines in the global matrix corresponding to these equations will consist
of only one non-zero element (1) in the global position of the corresponding boundary point.
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In the case of the Neumann/Dirichlet boundary condition, consider for each point
(xi,yi), i = 1, ...,M on the boundary ∂Ω1, and for each RBF ϕk,k = 1, ...,n,

∂ϕk

∂n
(xi,yi) =

n

∑
j=1

bi jϕk(x j,y j), (4.78)

or in vector form, for each boundary point (xi,yi), i = 1, ...,M on ∂Ω1,

∂ϕ i

∂n
= Gibi (4.79)

Once the coefficients bi have been computed, they can be placed appropriately in the global
coefficient matrix A .

In general, the assembly of all equations for the MN centers xi, yields an MN×MN

system of the form
Au = b, (4.80)

where the matrix A is sparse. The right hand side vector b = [b1,b2, · · · ,bn]
T is defined as:

bi =gD or gN , i = 1, · · · ,M

bi = f (xi), i = M+1 · · · ,(M−1)N +1,

bi =gD, i = (M−1)N +1, · · · ,MN.

(4.81)

With the distribution of collocation points being placed on concentric circles as described
in section 3.1.2, A has the special structure

Au =

 A1,1 A1,2 · · · A2,N
...

...
...

AN,1 AN,2 · · · AN,N




u1
u2
...

uN




b1
b2
...

bN

= b. (4.82)

On each concentric circle k, where k = 1, · · · ,N, there are M centers. The local
system (4.75) is the same for each of the M centers. This implies that for each center
(xi,yi), i = 1, ...,M, on a concentric circle k, the coefficients {ai}M

i=1 will be the same. Hence,
the coefficients relating each center (xi,yi) with its n neighboring points in the local domain
Ωi are the same for each center on the circle k. When transferring this relation to the global
matrix A, the submatrix Ak j resulting from each of the M points on the circle k to the M

points on any circle j = 1, · · · ,N will be circulant due to the fact the sets of neighboring
points for each point (xi,yi) on the circle k are globally circulant. Therefore, matrix A will
be block circulant consisting of sparse blocks An1,n2,n1,n2 = 1, · · · ,N [12]. Figure 4.4.1
presents a typical distribution of collocation points. Two consecutive centers are represented
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Figure 4.1: Distribution of collocation points in local domains. The four neighboring points
for the two centers (X) are highlighted.

by an X with the local domain of the four nearest neighbors highlighted in blue and red,
while the point belonging to both sets are highlighted in yellow. A similar argument can
be made for the boundary points where the Neumann conditions are applied, while the
Dirichlet case is trivial. Due to this block circulant structure, (4.82) can be solved using
an appropriate matrix decomposition algorithm that takes advantage of the sparsity of the
matrices An1,n2=1,··· ,N .

Let U continue to denote the unitary M×M Fourier matrix and IN the N×N identity
matrix. A is the sparse coefficient matrix that was calculated from each local domain Ωi.
Multiplying system (4.82) by IN⊗UM results in

(IN⊗UM)Au = (IN⊗UM) f (4.83)

or written more condensely,
Âû = f̂ (4.84)

where

Â = (IN⊗UM)A(IN⊗U∗M) =


D1,1 D1,2 · · · D1,N
D2,1 D2,2 · · · D2,N

...
...

...
DN,1 DN,2 · · · DN,N

 , (4.85)

û = (IN⊗UM)u, (4.86)
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and
f̂ = (IN⊗UM) f . (4.87)

System (4.84) is sparse block diagonal and may be solved efficiently to yield û. Once û

has been calculated, u can be obtained from u = (IN⊗U∗M)û.

4.4.2 Biharmonic

The same approach for the local approximation of the biharmonic problem can be used as in
the Poisson case. In the LRBF-DQ method for the solution of the boundary value problem
(4.25), for each point (xi,yi), i = 1, ...,MN, in Ω and for each RBF ϕk,k = 1, ...,n,

∆
2
ϕk(xi,yi) =

n

∑
j=1

ai jϕk(x j,y j), (4.88)

where n is the number of points in the local domain Ωi, or in vector form,

∆
2
ϕ = Giai. (4.89)

After solving for the coefficients ai = G−1
i ∆ϕ , this can be used to construct the global sparse

coefficient matrix A.

In the case of the first biharmonic problem, each boundary point (xi,yi), i = 1, ...,M, on
the boundary ∂Ω1, and for each RBF ϕk,k = 1, ...,n,

∂ϕk

∂n
=

n

∑
j=1

bi jϕk(x j,y j), (4.90)

or in vector form,
∂ϕ i

∂n
= Gibi. (4.91)

Once the coefficients bi have been computed, they can be placed appropriately in the global
sparse coefficient matrix A.

In the case of the second biharmonic problem we take, instead of (4.90), for each
boundary point (xi,yi), i = 1, ...,M, on the boundary ∂Ω1, and for each RBF ϕk,k = 1, ...,n,

∆ϕk(xi,yi) =
n

∑
j=1

bi jϕk(x j,y j), (4.92)

which in vector form gives
ϕ

i
∆ = Gibi. (4.93)
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As in the first biharmonic problem, the coefficients bi can be put in the global coefficient
matrix A. In both biharmonic problems, the assembly of all equations for the MN centers
(xi,yi), yields an MN×MN system of the form (4.80). Having the same circulant structure
as in the Poisson case, the system can be solved using the MDA as explained in the previous
section.

4.4.3 Cauchy Navier

In the LRBF-DQ method for the solution of the boundary value problem (4.45), for each
point (xi,yi), i = 1, ...,MN, in Ω and for each RBF ϕk,k = 1, ...,n,

L11ϕk(xi,yi) =
n

∑
j=1

ai
kl ϕk(x j,y j), L12ϕk(xi,yi) =

n

∑
j=1

bi
kl ϕk(x j,y j),

L21ϕk(xi,yi) =
n

∑
j=1

ci j
kl ϕk(x j,y j), L22ϕk(xi,yi) =

n

∑
j=1

di j
kl ϕk(x j,y j),

which in vector form gives for each point (xi,yi),

ϕ
i
L11

= Giai, ϕ
i
L12

= Gibi, ϕ
i
L21

= Gici, ϕ
i
L22

= Gidi. (4.94)

After solving for the coefficients, ai,bi,ci,di, this can be used to construct the global sparse

coefficient matrix A =

(
A B
C D

)
The Dirichlet boundary condition is applied separately for u1 and u2 as in (4.77). The
Neumann boundary condition is applied as follows

T11ϕ(xi,yi) =

[
2µ

(
1−ν

1−2ν

)
∂

∂x
nx +µ

∂

∂y
ny

]
ϕ(xi,yi) =

n

∑
j=1

ei jϕ(x j,y j),

T12ϕ(xi,yi) =

[
2µ

(
ν

1−2ν

)
∂

∂y
nx +µ

∂

∂x
ny

]
ϕ(xi,yi) =

n

∑
j=1

fi jϕ(x j,y j),

T21ϕ(xi,yi) =

[
µ

∂

∂y
nx +2µ

(
ν

1−2ν

)
∂

∂x
ny

]
ϕ(xi,yi) =

n

∑
j=1

gi jϕ(x j,y j),

T22ϕ(xi,yi) =

[
µ

∂

∂x
nx +2µ

(
1−ν

1−2ν

)
∂

∂y
ny

]
ϕ(xi,yi) =

n

∑
j=1

hi jϕ(x j,y j),

where n is the number of points in the local domain Ωi, or in vector form,

ϕ
i
T11

= Giei, ϕ
i
T12

= Gi fi, ϕ
i
T21

= Gigi, ϕ
i
T22

= Gihi. (4.95)

Once the coefficients ei, fi,gi,hi have been computed, they can be placed appropriately in
the global coefficient matrix A. Assembling all equations for the MN centers (xi,yi), yields
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a 2MN× 2MN system of the form (4.80). While the matrix A is sparse, it is not block
circulant. However, a transformation is possible for the local case as explained in section
4.2. Once A is transformed to a block circulant matrix, the system can be solved using the
MDA as explained in section 4.3.
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Chapter 5

NUMERICAL RESULTS

In this chapter, numerical results obtained from the Radial Basis Function Differential
Quadrature method (RBF-DQ) using the Matrix Decomposition Algorithm (MDA) are
presented. This method approximates the particular solution for large scale elliptic partial
differential equations (PDEs). The normal multiquadric (NMQ) has achieved excellent
results in the RBF literature. Other notable RBFs include the Inverse Multiquadric (IMQ)
and Gaussian. The accuracy of the method is dependent upon the selection of the shape
parameter for each of the RBFs. For the global RBF-DQ method, the adjusted Fausshauer
estimate will be applied for the selection of the shape parameter. Experiments will also
be considered using the well known leave-one-out cross validation (LOOCV) method, a
method described in Chapter 2. As the number of collocation points increases, LOOCV
becomes computationally expensive, thus a modification is required. Instead of using the
entire set of MN collocation points, LOOCV will be applied to the set of M collocation
points on a randomly selected concentric circle. This will provide satisfactory results given
the nature of the point distribution. For the local RBF-DQ method, LOOCV is also used to
determine a suitable shape parameter. Instead of applying LOOCV to each local domain, it
can be applied to only one local domain to calculate the shape parameter, and this value will
be used for all local domains.

Experiments are also conducted using the dimensionless shape parameter, where the
proposed value of c = MN/1000 is used, and is compared with the value found using
LOOCV. Several problems with known exact solutions are used to verify the effectiveness
of the proposed method including the Poisson, Biharmonic, and Cauchy-Navier equations.
While implementing the numerical schemes, an annulus is used for the domain. The
computations were carried out using MATLAB on a Macbook Pro laptop with 2.8 GHz
Intel Core i7, 16 GB memory, in OS X 10.11.6 for up to M = N = 700 in the global method.
For larger sets of collocation points, it was necessary to use a workstation with a larger
memory storage of 256GB. Using this workstation, a problem using up to one million points
(M = N = 1000) was successfully solved. The local method, however, is able to handle up
to one million points without the need of using the larger workstation.

To validate the numerical accuracy, the maximum relative error E is calculated and is
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defined as

E =
||u−uN ||∞,Ω

||u||
∞,Ω

, (5.1)

where u and uN denote the exact solution and the approximate solution, respectively.

5.1 Poisson Equation RBF-DQ

Consider the Poisson problem

∆u = 5e2x+y in Ω, (5.2a)

u = e2x+y on ∂Ω1,∂Ω2. (5.2b)

with the domain Ω defined by γ1 = 0.3 and γ2 = 1. The boundary conditions correspond to
the exact solution which is given by u = e2x+y. The profile of the exact solution is shown in
Figure 5.1. The profile of the relative error is shown in Figure 5.2. In Figures 5.3-5.5 the

Figure 5.1: Example 1: Profile of the Exact Solution.

maximum relative error E is plotted versus the shape parameter c for M = N = 100 for each
of the MQ, IMQ, and Gaussian RBFs. In these figures, it can be observed that all three RBFs
behave similarly for values up to c = 4. Beyond this value, the accuracy for IMQ begins to
detoriate while the accuracy for MQ continues to improve up to c = 5 before detoriating.
While the Gaussian RBF displays less stability, the accuracy appears to be fairly steady. In
fact, this trend continues through c = 100 as shown in Figure 5.6.

Table 5.1 displays the optimal shape parameter with its corresponding maximum relative
error for each of the three RBFs. Excellent results are obtained from each of the three tested
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Figure 5.2: Example 1: Profile of Relative Error.

RBFs. Perhaps an advantage to the Gaussian RBF is that excellent results can be obtained
over a wide range of values for the shape parameter. This comes with the disadvantage that
it is less stable.

RBF c E
MQ 4.987 1.045(−7)
IMQ 3.963 1.732(−7)

Gaussian 90.188 9.200(−8)

Table 5.1: Example 1, Optimal Shape Parameter c and Max Rel Error for MQ, IMQ, and
Guassian RBFs

It is not practical to use the trial and error method for approximating the solution unless
the exact solution is already known. This, of course, would not provide any significant
applications. Therefore, the methods for finding a suitable shape parameter presented in
Chapter 2 must be considered. The adjusted Fasshauer estimate for the shape parameter
c = 4
√

MN/mx will first be explored. Recall that mx is a parameter that is dependent on
the density of the collocation points. As the number of collocation points increases, the
appropriate value of mx will decrease. Using mx = 2.0, c = 5.000 is obtained with a
corresponding maximum relative error of 1.300(−7), which is close to the optimal shape
parameter achieving similar accuracy. In Figure 5.7, the relationship between mx and the
maximum relative error E is shown for M = N = 100,200, and 300. It can be observed that
E begins to deteriorate beyond the values of mx = 2.0,1.4, and 0.9 for M = N = 100,200,
and 300, respectively.
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Figure 5.3: Example 1, Multiquadric (MQ): Maximum relative error vs. shape parameter,
M = 100,N = 100.

Figure 5.4: Example 1, Inverse Multiquadric (IMQ): Maximum relative error vs. shape
parameter, M = 100,N = 100.

Figure 5.5: Example 1, Gaussian (GA): Maximum relative error vs. shape parameter,
M = 100,N = 100.
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Figure 5.6: Example 1, Gaussian (GA): Maximum relative error versus shape parameter
with M = 100,N = 100.

Figure 5.7: Example 1, Poisson Dirichlet problem: Maximum relative error versus mx using
MQ.

Using the above selection procedure, the values of mx have been chosen as shown in
Table 5.2 for M = N values up to 700 for the Dirichlet boundary problem (4.1a-4.1c) with
the MQ RBF.

To demonstrate the accuracy up to one million points (M = 1000,N = 1000), Table
5.3 shows the results using the workstation with 256 GB memory.
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M = N mx E CPU (s) sub-optimal c
100 2.0 1.300(−7) 0.261 5.000
200 1.4 2.903(−7) 1.728 10.102
300 0.9 2.075(−7) 6.098 19.245
400 0.8 1.503(−7) 14.877 25.000
500 0.7 2.931(−7) 33.969 31.944
600 0.6 1.153(−7) 53.190 40.825
700 0.5 1.956(−7) 107.654 52.915

Table 5.2: Example 1, Poisson Dirichlet Problem: Max Rel Error and shape parameter using
MQ.

M = N mx E CPU (s) sub-optimal c
600 0.6 7.754(−7) 82.050 40.825
700 0.5 2.204(−7) 127.867 52.915
800 0.5 4.781(−7) 174.710 56.569
900 0.4 3.322(−7) 251.210 75.000

1000 0.4 4.780(−7) 338.773 79.057

Table 5.3: Example 1, Poisson Dirichlet problem: Max Rel Error and shape parameter using
MQ up to 1 million points

It is also of interest to compare these results with the Gaussian RBF. As stated previously,
the accuracy has a wide range of acceptable shape parameters. It is less critical to choose
a proper shape parameter in this case. In Table 5.4, a value of c = 90 is a conveniently
chosen value that is near the optimal value as shown in Figure 5.6. The Gaussian RBF is
competitive with the MQ’s adjust Fausshauer estimate. While it does not quite reach the
same accuracy, it is able to achieve this using the same shape parameter for the different
number of collocation points.

M = N E
100 1.327(−7)
200 6.512(−7)
300 8.579(−7)
400 8.755(−7)
500 6.093(−7)
600 8.563(−7)
700 5.810(−7)

Table 5.4: Example 1, Poisson Dirichlet problem: Max Rel Error with c = 90 using Gaussian
RBF.
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Table 5.5 shows results for the Dirichlet/Neumann boundary problem (5.2) replacing
(5.2b) with ∂u

∂n = ∇e2x+y ·n on the boundary ∂Ω1 for M = N up to 700 using MQ.

M = N mx E CPU (s) sub-optimal c
100 2.0 1.462(−7) 0.263 5.000
200 1.4 1.447(−7) 1.730 10.102
300 0.9 2.040(−7) 6.075 19.245
400 0.8 3.096(−7) 14.970 25.000
500 0.7 1.236(−7) 33.989 31.944
600 0.6 4.919(−7) 53.988 40.825
700 0.5 4.966(−7) 109.273 52.915

Table 5.5: Example 1, Poisson Neumann problem: Max Rel Error and shape parameter
using MQ RBF.

It is also noteworthy to compare the MDA with the full RBF-DQ method in which the
full system (4.1) is solved to fully realize the computational savings. In Table 5.6, the errors,
E, and CPU times for the full RBF-DQ method and the corresponding values using the
proposed RBF-DQ MDA for a range of collocation points using LOOCV to estimate the
optimal shape parameter is displayed. While LOOCV is a valid and well known method,
the most time consuming part in both approaches is the search of a suitable shape parameter
using LOOCV, in which systems are repeatedly solved. Taking advantage of the circulant
structure and the distribution of the collocation points, instead of using all of the points in
the domain, we can take a subset of points. Choose for this subset the points on a randomly
selected concentric circle, and use LOOCV with an initial search interval [0,8] to calculate
the suboptimal shape parameter. This approach is used for both the full RBF-DQ method and
the RBF-DQ MDA method with the MQ RBF. Although the LOOCV is using a minimum
amount of required computational time, it can be observed that the full RBF-DQ method
quickly becomes burdened by the obligation of solving the full matrix. Time and memory
become so large, calculations were not able to be recorded beyond M = N = 120 for the full
RBF-DQ method. This clearly demonstrates the advantage and usefulness that the MDA
algorithm is able to offer large scale problems.

5.2 Biharmonic Equation RBF-DQ

Consider the First Biharmonic problem

∆
2u = 25e2x+y in Ω, (5.3a)

u = e2x+y and
∂u
∂n

= ∇e2x+y ·n on ∂Ω1,∂Ω2, (5.3b)
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Full RBF-DQ RBF-DQ MDA
M = N E CPU (s) E CPU (s)

40 4.927(−4) 0.430 4.925(−4) 0.1484
60 1.124(−4) 2.456 1.124(−4) 0.180
80 4.852(−6) 10.808 3.845(−6) 0.293

100 7.659(−6) 36.489 2.688(−6) 0.400
120 1.071(−5) 108.471 5.553(−7) 0.620
150 −− −− 8.497(−7) 0.981

Table 5.6: Example 1, Poisson Dirichlet problem: Comparison of Errors, E, and CPU times
for full RBF-DQ and RBF-DQ MDA solutions for various M = N with initial search interval
[0,8].

with the annulus domain Ω defined by γ1 = 0.3 and γ2 = 1. In this example αn =

(−1)n/5,n = 1, ...,N, is used to define the collocation points in order to avoid possible
singularities as detailed in Theorem 4 of Chapter 3. The profile of the relative error is shown
in Figure 5.8. In Figure 5.9 the maximum relative error versus the shape parameter for

Figure 5.8: Example 2: Profile of Relative Error.

M = 100,N = 100 is plotted for the first biharmonic problem using MQ.
In Table 5.7, the maximum relative error for values of M = N up to 700 is shown for the

first biharmonic problem. The numerical results is consistent with that in Table 5.2.
Since the biharmonic problem is a fourth order differential equation, it is more challeng-

ing to solve. Thus, the results do not reach the same accuracy as that of the Poisson problem.
However, the accuracy for the biharmonic problem is still able to maintain excellent results.
While the Biharmonic problem follows a similar pattern for the shape parameter, in that as
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Figure 5.9: Example 2, First Biharmonic Problem: Maximum relative error versus shape
parameter with M = 100,N = 100 using MQ.

M = N mx E CPU (s) sub-optimal c
100 2.3 2.027(−6) 0.306 4.348
200 2.0 8.915(−6) 2.068 7.071
300 1.9 1.188(−5) 7.126 9.116
400 1.9 1.338(−5) 17.639 10.526
500 1.8 2.334(−5) 38.524 12.423
600 1.8 1.945(−5) 62.811 13.608
700 1.7 2.494(−5) 128.802 15.563

Table 5.7: Example 2, First Biharmonic Problem: Max Rel Error and shape parameter using
MQ.

the number of collocation points increases, the value mx decreases. However, the values
have a narrower range beginning at mx = 2.3 for M = N = 100 and ending at mx = 1.7 for
M = N = 700. This is due to the fourth order problem requiring a lower shape parameter
value to achieve optimal accuracy.

Similar results are found using the Gaussian RBF. Again, the advantage that the Gaussian
offers is that the same shape parameter can be used for any size set of collocation points
as shown in Table 5.8. For the fourth order problem, a smaller shape parameter is chosen,
c = 60.

The same results can be seen when changing the boundary conditions for the biharmonic
problem. Tables (5.9) and (5.10) show results for M =N up to 700 for the second biharmonic
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M = N E
100 2.268(−6)
200 4.123(−6)
300 1.694(−5)
400 4.768(−6)
500 7.868(−6)
600 4.447(−5)
700 1.182(−5)

Table 5.8: Example 2, First Biharmonic problem: Max Rel Error with c = 60 using Gaussian
RBF.

problem replacing the equation (5.3b) with u = e2x+y and ∆u = 5e2x+y on ∂Ω1,∂Ω2 for
the MQ and Gaussian RBF, respectively.

M = N mx E CPU (s) sub-optimal c
100 2.3 5.042(−5) 0.302 4.348
200 2.0 1.010(−5) 2.175 7.071
300 1.9 1.835(−5) 7.085 9.116
400 1.9 2.239(−5) 17.495 10.526
500 1.8 2.113(−5) 38.544 12.423
600 1.8 6.577(−5) 62.423 13.608
700 1.7 9.731(−5) 125.409 15.563

Table 5.9: Example 2, Second Biharmonic problem: Max Rel Error and shape parameter
using MQ RBF.

M = N E
100 6.797(−6)
200 1.152(−5)
300 1.768(−5)
400 1.764(−5)
500 2.852(−5)
600 9.021(−6)
700 1.778(−5)

Table 5.10: Example 2, Second Biharmonic problem: Max Rel Error for c = 60 using
Gaussian RBF.
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5.3 Cauchy-Navier RBF-DQ

Consider the Cauchy–Navier problem
L1(u1,u2)≡ L11u1 +L12u2 ≡ µ∆u1 +

µ

1−2ν

(
∂ 2u1

∂x2 +
∂ 2u2

∂x∂y

)
= f1,

in Ω,

L2(u1,u2)≡ L21u1 +L22u2 ≡
µ

1−2ν

(
∂ 2u1

∂x∂y
+

∂ 2u2

∂y2

)
+µ∆u2 = f2,

(5.4a)

subject to the Dirichlet boundary conditions

u1 = g1 and u2 = h1 on ∂Ω1, (5.4b)

and
u1 = g2 and u2 = h2 on ∂Ω2, (5.4c)

or the mixed Neumann/Dirichlet boundary conditions

t1 = g1 and t2 = h1 on ∂Ω1, (5.4d)

and
u1 = g2 and u2 = h2 on ∂Ω2, (5.4e)

with the domain Ω defined by γ1 = 0.3 and γ2 = 1. The boundary conditions correspond to
the exact solutions which are given by u1 = ex+2y and u2 = sin(3x+ y). The profile of the
exact solutions are shown in Figure 5.10.

In Figure 5.11 the plot of the maximum relative errors in u1 and u2 versus the shape
parameter for M = 100,N = 100 is presented for the Dirichlet problem. In Tables 5.11 and
5.12, the maximum relative error is shown for M = N up to 400 for the Dirichlet problem
(4.45a-5.4c) and the mixed Neumann/Dirichlet problem (5.4a), (5.4d)-(5.4e), respectively,
for the MQ RBF. Results are also produced using the Gaussian RBF in Tables 5.13 and 5.14.

M = N mx E1 E2 CPU (s) sub-optimal c
100 2.0 1.068(−6) 1.323(−5) 1.071 5.000
200 1.4 8.712(−6) 8.278(−5) 7.787 10.102
300 0.9 9.017(−7) 6.564(−6) 30.469 19.245
400 0.8 9.038(−7) 9.729(−6) 78.360 25.000

Table 5.11: Example 3, Cauchy Navier Dirichlet problem: Max Rel Error and shape
parameter using MQ RBF.
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Figure 5.10: Example 3: Profile of the Exact Solutions, u1 and u2, respectively.

M = N mx E1 E2 CPU (s) sub-optimal c
100 2.0 1.929(−7) 1.923(−6) 1.293 5.000
200 1.4 1.489(−7) 1.833(−6) 9.435 10.102
300 0.9 2.234(−7) 3.217(−6) 36.538 19.245
400 0.8 1.246(−7) 1.831(−6) 99.261 25.000

Table 5.12: Example 3, Cauchy Navier Neumann/Dirichlet problem: Max Rel Error and
shape parameter using MQ RBF.

M = N E1 E2
100 2.351(−7) 2.530(−6)
200 2.772(−6) 2.490(−5)
300 3.083(−6) 2.149(−5)
400 8.088(−7) 1.068(−5)

Table 5.13: Example 3, Cauchy Navier Dirichlet problem: Max Rel Error with c = 90 using
Gaussian RBF.
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Figure 5.11: Example 3, Cauchy Navier Dirichlet problem: Maximum relative error versus
shape parameter with M = 100,N = 100 using MQ RBF.

M = N E1 E2
100 3.902(−7) 4.358(−6)
200 1.890(−6) 1.980(−5)
300 3.361(−6) 2.282(−5)
400 3.865(−6) 6.451(−5)

Table 5.14: Example 3, Cauchy Navier Neumann/Dirichlet problem: Max Rel Error with
c = 90 using Gaussian RBF.

Since the Cauchy-Navier problem is harmonic, the values of mx from the Poisson
problem can be applied to find an appropriate value for the shape parameter for the MQ
RBF. Having a system of two equations implies that there will be double the collocation
points being used, which requires more computational time and memory. Therefore, it is
only possible to go up to M = N = 400 using the computer with 16 GB of memory. Yet, this
is still a remarkable accomplishment while achieving a high level of accuracy.

5.4 Poisson Equation LRBF-DQ

Consider the Poisson problem (5.2) with the domain Ω defined by γ1 = 0.3 and γ2 = 1.
The boundary conditions correspond to the exact solution which is given by u = e2x+y. In
the local approach, the leave-one-out cross validation method is a valid tool for finding a
suboptimal shape parameter. Because of the circulant nature of the distribution of collocation
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points, all local domains are similar in nature and will have shape parameters close in value.
Therefore, the shape parameter is calculated only once and is used throughout all of the local
domains. For LOOCV, an initial search interval must be selected. For the local domain, the
shape parameter is fairly consistent for various lengths of initial search intervals [min,max]

for the small local domain size of n = 9 as shown in Table 5.15. The stability of the shape
parameter begins to deteriorate as the local domain increases in size, as shown for n = 30
and n = 50. A slight improvement can be observed as n increases although an increase
in computational time can be expected as well. In Tables 5.16 and 5.20, the results are
presented using a large number of collocation points using LOOCV for both the Dirichlet
boundary condition as well as the Neumann/Dirichlet boundary condition. The fact that it
takes only 43 seconds of computational time to solve the PDE using one million collocation
points displays the efficiency of the proposed LRBF-DQ MDA.

n = 9 n = 30 n = 50
[min,max] c E c E c E

[0,3] 0.5036 1.0129(−5) 2.0213 5.3332(−6) 1.1955 2.4492(−6)
[0,4] 0.6256 6.0946(−5) 2.3870 7.9265(−5) 1.9989 9.5581(−6)
[0,5] 0.6053 1.9654(−5) 3.0902 1.5571(−5) 3.8121 5.7068(−6)
[0,6] 0.5744 9.4325(−6) 4.3144 1.7955(−5) 4.5905 1.5259(−5)
[0,7] 0.6312 1.9471(−5) 2.5961 3.2400(−5) 3.9546 7.6296(−6)
[0,8] 0.5666 4.2063(−5) 2.3344 7.2283(−7) 3.1615 3.3218(−6)

Table 5.15: Example 4, Poisson Dirichlet problem: Max Rel Error and optimal shape
parameter with various search intervals of LOOCV for M = N = 200 using MQ RBF.

M = N c E CPU (s)
200 0.5036 1.0129(−5) 0.365
300 0.8065 3.9362(−6) 0.951
400 0.8098 3.1808(−5) 2.079
500 1.1291 5.3057(−6) 3.591
600 1.4208 1.8988(−5) 6.970
700 1.8885 2.9185(−6) 10.846
800 1.9523 6.5150(−6) 16.061
900 1.9684 2.0352(−5) 28.352

1000 2.2015 1.0283(−5) 42.943

Table 5.16: Example 4, Poisson Dirichlet problem: Max Rel Error and optimal shape
parameter via LOOCV for n = 9 using MQ RBF.
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M = N c E CPU (s)
200 0.5036 7.5960(−4) 0.577
300 0.3967 2.4211(−4) 1.083
400 0.7201 4.0176(−4) 2.054
500 1.1152 2.8359(−4) 3.4601
600 1.6787 3.8463(−4) 6.176
700 2.0111 3.7611(−4) 10.553
800 1.9383 3.1873(−4) 16.575
900 1.9541 3.4984(−4) 28.367

1000 2.4492 3.5562(−4) 42.789

Table 5.17: Example 4, Poisson Neumann problem: Max Rel Error and optimal shape
parameter via LOOCV for n = 9 using MQ RBF.

A second approach to choosing an appropriate shape parameter is the dimensionless
shape parameter, which was introduced in Chapter 2. The advantage to the dimensionless
shape parameter is the stability in choosing the shape parameter value. In Figure 5.12, the
error is stable over the range [30,150] for M = N = 100. This makes it easier to choose a
shape parameter without sacrificing accuracy. Table 5.18 displays the error corresponding to
different values of the dimensionless shape parameter c for M = N = 200.

Figure 5.12: Example 4, Poisson Dirichlet problem: Maximum relative error versus dimen-
sionless shape parameter with M = N = 100 using MQ RBF.

As the number of points increases, the required shape parameter will also increase,
thus the acceptable range of values will increase as well. After experimenting with the
dimensionless shape parameter, it is found that the best value for c is MN/1000 since it falls
within the range of stability and produces good results. Using the above selection procedure,
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c cr0 E
10 0.1881 1.5167(−2)
30 0.5643 3.8797(−5)
50 0.9404 2.3853(−5)
70 1.3166 3.2355(−5)

110 2.0690 2.7129(−5)
150 2.8213 7.0490(−5)
190 3.5737 1.5479(−4)

Table 5.18: Example 4, Poisson Dirichlet problem M = N = 200: Max Rel Error for
dimensionless shape parameter using MQ RBF.

the value of c has been chosen as shown in Table 5.19 for M = N values up to 1000 for the
Dirichlet boundary problem. The results are consistent with LOOCV without the need of
choosing an appropriate inital search interval.

M = N c E CPU (s)
200 40 1.6939(−5) 0.371
300 90 4.9842(−6) 1.003
400 160 1.545(−5) 2.144
500 250 1.4673(−5) 3.630
600 360 3.2208(−6) 6.959
700 490 3.3203(−6) 10.949
800 640 1.5099(−6) 16.979
900 810 2.7664(−6) 28.101
1000 1000 6.2346(−5) 41.485

Table 5.19: Example 4, Poisson Dirichlet problem: Max Rel Error with c = MN/1000 using
MQ RBF.

In order to obtain a more accurate RBF approximation, it is necessary to balance the
size of the supporting domain and the sensitivity of the shape parameter. In Table 5.21, the
maximum error is calculated with various local domain sizes using the dimensionless shape
parameter. As the number of nodes in the local domain increases, the computational time
increases and does not have a noteable difference in accuracy with the exception of n = 5.
The LRBF-DQ provides accurate approximate solutions even with a small local domain size.
For the given distribution of the collocation points, it is only necessary to use nine points in
the local domain to reach satisfactory results.
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M = N c E CPU (s)
200 40 8.3935(−4) 0.611
300 90 5.8175(−4) 1.240
400 160 5.1726(−4) 2.391
500 250 5.3007(−4) 3.967
600 360 5.0164(−4) 7.365
700 490 4.5828(−4) 11.958
800 640 5.0732(−4) 16.976
900 810 5.5363(−4) 30.167
1000 1000 5.4880(−4) 44.911

Table 5.20: Example 4, Poisson Neumann problem: Max Rel Error with c = MN/1000
using MQ RBF.

n E CPU (s) c
5 1.2341(−2) 5.5479 1.6062
9 1.4673(−5) 5.6120 1.8860
15 6.6101(−5) 5.8642 2.9091
30 4.4999(−5) 6.2422 4.1956
40 1.1590(−5) 5.9229 4.8168
80 6.6619(−6) 6.425 7.0315
121 3.1574(−5) 6.554 8.8442

Table 5.21: Example 4, Poisson Dirichlet problem: Influence Domain for M=N=500 using
MQ RBF.

5.5 Biharmonic Equation LRBF-DQ

Consider the Biharmonic problem (5.3) with the domain Ω defined by γ1 = 0.3 and γ2 = 1.
In this example, collocation points are defined with αn = (−1)n/5,n = 1, ...,N, to avoid
possible singularities. The boundary conditions correspond to the exact solution, which is
given by u = e2x+y.
The profile of the error versus the shape parameter c for M = N = 80,200,n = 30 is given
in Figure 5.13.

Although there is fluctuation in the curve for M = N = 80, the estimation of a good
shape parameter using LOOCV is fairly stable for various initial search intervals as shown
in Tables 5.22 and 5.23 for the first and second biharmonic equation, respectively.

In the case n = 9, the solution is stable in terms of the shape parameter, however the
accuracy does not achieve the same results as that of n = 30. The accuracy does not appear
to have a significant improvement with an increase in the size of the local domain for n = 50.



74

[M = N = 80,n = 30]

[M = N = 200,n = 30]

Figure 5.13: Example 5: First Biharmonic problem: Error versus shape parameter for the
cases M = N = 80,200,n = 30 using MQ RBF.

The stability of the shape parameter also appears to decrease as n increases. When the
number of collocation points is increased (M = N = 200), the stability continues to detoriate
more intensely, and the shape parameter becomes unpredictable for various initial search
intervals, as shown in Tables 5.24 and 5.25 for the first and second biharmonic equations,
respectively.

The fluctuation in the accuracy curve in Figure 5.13 also increases with an increase in
collocation points. Additionally, the accuracy does not have a noticeable improvement when
increasing the number of collocation points. The low accuracy of the results obtained in
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n = 9 n = 30 n = 50
[min,max] c E c E c E

[0,3] 0.3819 1.0850(−1) 2.1554 3.7893(−2) 1.6428 2.9329(−2)
[0,4] 0.3916 3.6849(−1) 2.4357 3.8542(−2) 2.6184 2.7642(−2)
[0,5] 0.3915 1.9127(−1) 2.8283 4.0640(−2) 3.4451 5.1483(−2)
[0,6] 0.3754 4.6133(−1) 2.4333 3.9040(−2) 3.5419 4.4531(−2)
[0,7] 0.3971 1.8752(−1) 2.4336 3.9006(−2) 2.6203 2.7123(−2)
[0,8] 0.3832 6.0438(−1) 2.1512 3.8240(−2) 3.5417 4.3549(−2)

Table 5.22: Example 5, First Biharmonic problem: Max Rel Error and optimal shape
parameter via LOOCV for M = N = 80 using MQ RBF.

n = 9 n = 30 n = 50
[min,max] c E c E c E

[0,3] 0.3819 4.3539(−1) 2.3718 5.4498(−4) 2.1554 5.3486(−3)
[0,4] 0.3916 3.7193(−1) 1.0239 3.5424(−3) 2.4357 9.7082(−3)
[0,5] 0.3915 3.4028(−1) 1.0240 3.8391(−3) 2.8283 1.9726(−2)
[0,6] 0.3754 4.8182(−1) 0.8318 2.0337(−3) 2.4333 9.3419(−3)
[0,7] 0.3971 4.1428(−1) 0.8354 3.5208(−2) 2.4336 1.0045(−2)
[0,8] 0.3832 3.8092(−1) 1.0231 2.7986(−3) 2.1512 5.1182(−3)

Table 5.23: Example 5, Second Biharmonic problem: Max Rel Error and optimal shape
parameter via LOOCV for M = N = 80 using MQ RBF.

n = 30 n = 40
[min,max] c E c E

[0,3] 1.9873 6.9393(−3) 1.9705 1.8006(−3)
[0,4] 1.9839 7.4400(−3) 3.5619 2.4767(−2)
[0,5] 4.1629 1.7991(−2) 2.6742 8.2833(−3)
[0,6] 3.6560 1.7690(−2) 4.1751 1.2148(−2)
[0,7] 3.2882 2.8798(−2) 2.6738 8.9452(−2)
[0,8] 4.1630 1.9839(−2) 2.6711 3.5229(−2)

Table 5.24: Example 5, First Biharmonic problem: Max Rel Error versus shape parameter
with various LOOCV initial search intervals for M = N = 200 using MQ RBF.

this example is not considered unusual. It is noted in [54] that the accuracy of the RBF-DQ
decreases as the order of the derivative increases. The difficulties of specifically solving
biharmonic problems using local methods are also well documented in the literature [2],
[37].
Similar results occur when using the dimensionless shape parameter, perhaps with a slight
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n = 30 n = 50
[min,max] c E c E

[0,3] 1.9873 3.0261(−3) 1.9705 4.6244(−4)
[0,4] 1.9839 1.6197(−2) 3.5619 6.6223(−3)
[0,5] 4.1629 2.6217(−2) 2.6742 1.8432(−2)
[0,6] 3.6560 1.3596(−2) 4.1751 4.5175(−2)
[0,7] 3.2882 6.1351(−2) 2.6738 8.2696(−2)
[0,8] 4.1630 2.6051(−2) 2.6711 4.3496(−3)

Table 5.25: Example 5, Second Biharmonic problem: Max Rel Error versus shape parameter
with various LOOCV initial search intervals for M = N = 200 using MQ RBF.

advantage in that it is not necessary to choose the initial search interval as when using
LOOCV. Results are shown in Table 5.26.

M = N cc E CPU (s)
200 40 3.7882(−3) 0.781
300 90 7.7997(−3) 1.711
400 160 5.2316(−3) 3.781
500 250 7.7577(−3) 6.136
600 360 6.6737(−3) 11.432

Table 5.26: Example 5, Second Biharmonic Problem: Shape parameters and corresponding
errors obtained using dimensionless shape parameter.

5.6 Cauchy-Navier LRBF-DQ

Consider the Cauchy–Navier problem (5.4) with the domain Ω defined by γ1 = 0.3 and
γ2 = 1. The boundary conditions correspond to the exact solution which is given by
u1 = ex+2y,u2 = sin(3x+y). In the numerical experiments, M = N = 100, n = 9 are chosen,
and in Figure 5.14 it is shown how the errors behave with respect to the shape parameter.

As was the case in Example 3, the two error curves E1 and E2 are relatively smooth and
predictable, which is ideal for the application of LOOCV. The values of the shape parameters
obtained using LOOCV and the corresponding errors, which are presented in Table 5.27,
are in agreement with the optimal solutions in Figure 5.14 for the same input data. In Table
5.28, the results obtained for the Dirichlet Cauchy Navier problem using a large number of
collocation points up to the value of 600 for M = N are presented.

As shown in Tables 5.29 and 5.30, similar results are obtained for the Cauchy Navier
problem with mixed Neumann/Dirichlet boundary condition, that is, the boundary value
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Figure 5.14: Example 6: Cauchy Navier problem. Maximum relative error versus shape
parameter for M = N = 100,n = 9 using MQ RBF.

[min,max] c E1 E2
[0,3] 0.556 2.005(−4) 1.343(−3)
[0,4] 0.563 2.422(−4) 1.394(−3)
[0,5] 0.611 1.917(−4) 1.283(−3)
[0,6] 0.612 2.982(−4) 2.332(−3)
[0,7] 0.616 2.020(−4) 1.325(−3)
[0,8] 0.559 2.255(−4) 1.402(−3)

Table 5.27: Example 6, Cauchy Navier Dirichlet problem: Shape parameters and corre-
sponding errors obtained with various search intervals of LOOCV; M = N = 100, n = 9
using MQ RBF.

M = N c E1 E2 CPU (s)
200 1.130 4.636(−4) 3.298(−3) 1.729
300 1.706 9.842(−5) 1.049(−3) 4.836
400 2.275 1.416(−4) 5.752(−4) 12.322
500 2.842 1.888(−4) 1.080(−3) 25.185
600 2.796 4.275(−4) 1.804(−3) 50.760

Table 5.28: Example 6, Cauchy Navier Dirichlet problem: Shape parameters and corre-
sponding errors obtained using LOOCV with local domain size n = 9 using MQ RBF.
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problem consisting of (5.4d)-(5.4e).

[min,max] c E1 E2
[0,3] 0.556 1.002(−3) 4.115(−3)
[0,4] 0.563 1.049(−3) 4.092(−3)
[0,5] 0.611 9.928(−4) 4.066(−3)
[0,6] 0.612 9.567(−4) 6.526(−3)
[0,7] 0.616 1.015(−3) 4.067(−3)
[0,8] 0.559 1.030(−3) 4.155(−3)

Table 5.29: Example 6, Cauchy Navier Neumann problem: Shape parameters and corre-
sponding errors obtained using various search intervals of LOOCV; M = N = 100,n = 9
using MQ RBF.

M = N c E1 E2 CPU (s)
200 1.130 3.827(−3) 4.433(−2) 1.885
300 1.706 2.472(−4) 2.604(−3) 4.890
400 2.275 4.008(−4) 1.933(−3) 9.839
500 2.842 5.131(−4) 3.650(−3) 23.529
600 2.796 6.442(−4) 3.126(−3) 52.138

Table 5.30: Example 6, Cauchy Navier Neumann problem: Shape parameters and corre-
sponding errors obtained using dimensionless shape parameter using MQ RBF.

It is worth noting that a problem consisting of 360,000 collocation points can be solved
in only 50 seconds using a computer with 16 GB of memory space, which demonstrates the
efficiency of the proposed algorithm.
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Chapter 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

This dissertation developed a new numerical algorithm to solve various types of large scale
partial differential equations. Both a global and local scheme was used for the radial basis
function differential quadrature method combined with a matrix decomposition algorithm.

The global method is simple, efficient, and accurate in solving these large scale problems
quickly and efficiently. In particular, the global method has been applied to PDEs with up to
one million collocation points. The method, due to the nature of RBFs, can easily extend
to problems in high-dimensional spaces. The matrix decomposition algorithm developed
in this paper requires that the right hand side of the equation be circulant. For the Poisson
and Biharmonic problems, this requirement is certainly satisfied. For the Cauchy Navier
problem, however, this is not the case. To overcome this obstacle, the right hand side of
the differential equation is able to be transformed so that it becomes circulant. Once the
transformation has been completed, the proposed procedure can be continued. The global
method has the capability of solving problems up to half a million points before memory
becomes an issue on a laptop using 16 GB of memory. Even so, the global method was used
to solve up to a million points using a workstation with 256 GB of memory.

To overcome the problem of memory as the number of collocation points become large, a
local method has been developed for the RBF Differential Quadrature Matrix Decomposition
Algorithm. Instead of a large dense matrix, as in the global RBF-DQ, the local method
creates a sparse matrix, which makes it more efficient to solve. Moreover, this sparse matrix
is also block circulant allowing the implementation of the matrix decomposition algorithm.
In the sense of the Cauchy Navier problem, although this block circulant structure is not
present, a transformation can again be applied to create the block circulant structure. Specific
examples in this paper have demonstrated that the local method has the ability of solving
problems with up to a million points in about one minute using a computer with memory
space of only 16GB.

For the local method, the leave-one-out cross validation method (LOOCV) is effective in
calculating a good shape parameter. It was only necessary to calculate the shape parameter
for one local domain and to apply this value for all other local domains due to the circulant
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structure, which creates similar patterns in each local domain. While LOOCV is not practical
for the global method due to the large size of the matrix, the adjusted Fasshauer estimate
was employed to calculate an appropriate suboptimal shape parameter. It was observed that
this value is dependent on the density of the collocation points. As the number of collocation
points increased, the shape parameter should increase as well, which is controlled by the
decreasing value mx. This Fasshauer estimate works well for solving large scale problems
and does not require significant computational time.

This paper primarliy focused on the normalized multiquadric method for the radial basis
function. While there are many RBFs that can be used to achieve accurate results, the MQ is
the most commonly used RBF and has consistently produced excellent results. Furthermore,
the normalized MQ is stable with regard to the shape parameter meaning that accurate
results can be achieved over a large range of values making it less critical in choosing the
shape parameter. Similar results were also achieved using the inverse multiquadric and the
Gaussian RBF.

While the accuracy of the local method does not achieve the same level of accuracy of
the global scheme, excellent results are still achieved and provides a significant reduction
in the required time and memory. It is worthy to note that the biharmonic problem has
limitations on the accuracy, especially for a local domain size of nine. Better results are
achieved when increasing the number of collocation points in the local domain, but this
comes with the expense of the shape parameter becoming less stable in terms of the search
interval. This difficulty is not unusual and has been documented in the RBF literature.

It is apparent that meshless methods using local schemes can compete with traditional
numerical methods for solving large scale PDEs, such as the finite element, finite difference,
or finite volume methods. Due to the collocation approach, no numerical integration is
required. In this dissertation, the numerical results were calculated using a circular domain,
more specifically an annulus. This method can extend to other domain types as well
as irregular domains using a conformal mapping procedure. Furthermore, the proposed
methods can be easily extended to solving three-dimensional problems. This is indeed where
its strengths may lie. As such, the approach offers the prospects of an efficient algorithm
for solving more challenging problems in science and engineering. While this work has
not completely validated the method, the results obtained along with the given analysis
does provide strong evidence to the utility of the approach and supports the belief that these
methods developed have a substantial future in solving a wide range of difficult problems
that occur in the natural sciences and engineering.
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6.2 Future Works

In this dissertation, the radial basis function differential quadrature method was combined
with a modified matrix decomposition algorithm that takes advantage of the right hand side
of the equation being block circulant. Both the global and local methods can be used for
solving large scale problems efficiently. As with all new methods, thorough theoretical
analysis remains to be done, as does the possible extension of the methods to other types of
partial differential equations. The following topics are of particular interest:

• An MDA method has already been applied to three dimensional problems in [30].
The matrix decomposition algorithm employed in the RBF-DQ method suggests that
this method can be effective for the solution of three dimensional problems as well.

• This study limited the domain to that of an annulus. It is of interest to test the
proposed method for a variety of domains using a conformal mapping so that the
method becomes appropriate for irregular domains [22].

• Many engineering problems and other physical phenomena are mostly modeled by
nonlinear PDEs. The RBF-DQ method can be applied to nonlinear PDEs. The results
in this paper suggests that the MDA can also be appropriate for these nonlinear PDEs
for large scale problems.
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