
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Fall 12-1-2017

Development, Evaluation, and Application of a Novel Error Development, Evaluation, and Application of a Novel Error

Correction Method for Next Generation Sequencing Data Correction Method for Next Generation Sequencing Data

Isaac Akogwu
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Bioinformatics Commons, Biotechnology Commons, Computational Biology Commons,

Genomics Commons, Other Genetics and Genomics Commons, and the Systems Biology Commons

Recommended Citation Recommended Citation
Akogwu, Isaac, "Development, Evaluation, and Application of a Novel Error Correction Method for Next
Generation Sequencing Data" (2017). Dissertations. 1453.
https://aquila.usm.edu/dissertations/1453

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=aquila.usm.edu%2Fdissertations%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/111?utm_source=aquila.usm.edu%2Fdissertations%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/28?utm_source=aquila.usm.edu%2Fdissertations%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/30?utm_source=aquila.usm.edu%2Fdissertations%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/32?utm_source=aquila.usm.edu%2Fdissertations%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/112?utm_source=aquila.usm.edu%2Fdissertations%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/1453?utm_source=aquila.usm.edu%2Fdissertations%2F1453&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

DEVELOPMENT, EVALUATION, AND APPLICATION OF A NOVEL ERROR

CORRECTION METHOD FOR NEXT GENERATION SEQUENCING DATA

by

Isaac Onoja Akogwu

A Dissertation

Submitted to the Graduate School,

the College of Science and Technology,

and the School of Computing

at The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

December 2017

DEVELOPMENT, EVALUATION, AND APPLICATION OF A NOVEL ERROR

CORRECTION METHOD FOR NEXT GENERATION SEQUENCING DATA

by Isaac Onoja Akogwu

December 2017

Approved by:

__

Dr. Chaoyang Zhang, Committee Chair

Professor, Computing

__

Dr. Ping Gong, Committee Co-Chair

Senior Research Scientist, Computing

__

Dr. Alex Flynt, Committee Member

Assistant Professor, Biological Sciences

__

Dr. Nan Wang, Committee Member

Assistant Professor, Computing

__

Dr. Zheng Wang, Committee Member

Assistant Professor, Computing

__

Dr. Wonryull Koh, Committee Member

Assistant Professor, Computing

__

Dr. Andrew H. Sung

Director, School of Computing

__

Dr. Karen S. Coats

Dean of the Graduate School

COPYRIGHT BY

Isaac Onoja Akogwu

 2017

Published by the Graduate School

ii

ABSTRACT

DEVELOPMENT, EVALUATION, AND APPLICATION OF A NOVEL ERROR

CORRECTION METHOD FOR NEXT GENERATION SEQUENCING DATA

by Isaac Onoja Akogwu

December 2017

Tremendous evolvement in sequencing technologies and the vast availability of

data due to decreasing cost of Next-Generation-Sequencing (NGS) has availed scientists

the opportunity to address a wide variety of evolutionary and biological issues. NGS uses

massively parallel technology to accelerate the process at the expense of accuracy and

read length in comparison to earlier Sanger methods. Therefore, computational

limitations exist in how much analysis and information can be gleaned from the data

without performing some form of error correction.

Error correction process is laborious and consumes a lot of computational

resources. Despite the existence of many NGS data error correction methods, the false

positive rate of correction is still quite high while the amount of computational resources

consumed is not declining even with improved algorithms. Until now, many error

correction algorithms still use bloom filter as their underlying data structure and a

comprehensive downstream analysis of a novel organism upon error correction does not

currently exist.

 With Illumina sequencing being the most popular and most widely used

sequencing technique, this dissertation focuses mostly on correcting Illumina based data.

We first describe the characteristics of errors in NGS data and the algorithms

implemented so far in mitigating these errors. A methodology was presented to

iii

investigate error correction given a range of both real and experimental NGS data with

specific attention to substitution, insertion, and deletion errors

Secondly, a comprehensive comparative and statistical comparison of these error

correction methods was conducted to discern the effects of NGS data properties like

genome size, read length, genome coverage depth and correction algorithm on the

number of errors that can be corrected. Based on the results of our investigation, we

developed a web based workflow called BECOW, a Bioinformatics Error Correction

Workflow, which will allow error correction of NGS data over the internet without the

need for prior knowledge of command line language.

Third, a novel error correction algorithm, Cuckoo Filter-based Error Correction of

Next-generation Data (CECOND), with cuckoo filter as its underlying data structure, was

then introduced. Cuckoo filter is based on cuckoo hash table used to dynamically test

approximate set membership in O (1) time. By storing items fingerprints, space is

maximized leading to a reduction in computational resource consumption. It also results

in low false positive (>3%) rates, better than >4% reported by existing methods, are

obtained after error correction.

Finally, error corrected timber rattlesnake (Crotalus horridus) data was used to

generate de novo draft genome assembly and compared with those generated using other

methods. The assembly comparison results proved that error corrected data is desired for

qualitative draft genome assembly to be achieved.

iv

ACKNOWLEDGMENTS

 These last five years as a graduate student has allowed me to live, interact and

work with several great people and researchers without whose support, advice, and help, I

would not have completed this dissertation.

 Primarily, I am extremely thankful to my supervisor and committee chair,

Professor Chaoyang Zhang, who has influenced every aspect of my research. He taught

me how and what it takes to be an exceptional researcher. The weekly meetings were

essential in teaching me rigorous research ethics and ensured I had the necessary

interactions, to be the researcher I wanted to be. I would also like to thank Dr. Ping Gong,

of the United States Army Corp of Engineers, for being a great collaborator and for his

immense guidance and support. Dr. Ping Gong is a great mentor whose deep insight and

experience in working with genomics data inspired the ideas of the research presented in

this dissertation.

I was fortunate to have some of the best minds in the field as my supervisory

committee members. I would like to express my gratitude to: Dr. Alex Flynt of USM

Biological science department, who gave me insights on genome analysis, in addition to

his accommodation of my numerous questions. Dr. Nan Wang, Dr. Zheng Wang, and Dr.

Wonryull Koh for their feedback, support and general advice.

My sincere gratitude to our collaborators Dr. Douglas Rhoads, Dr. Shane Sanders,

and other participants from Mississippi State University, University of Arkansas, and

King Abdullah University of Science and Technology, for supplying the timber

rattlesnake data evaluated in this work.

v

 Finally, my life as a PhD would not have been more complete without the

presence of my fellow lab mates: Andrew Maxwell, Gabriel Idakwo, Mensheng Zha, and

all the visiting scholars like, Dr. Runzhi Lee. The ideas, input to my research and

encouragement we shared with each other made my stay in the Data Mining and

Bioinformatics lab worthwhile. They not only made the work environment more

enjoyable, but also became good company outside work. We have built a lifelong

friendship.

vi

DEDICATION

I dedicate this dissertation to my father, late Peter Ojeabo Akogwu and to my sons

Maxwell Amran Onoja and Castiel Onoja Akogwu, whose thoughts have kept me going.

I am also grateful to my spouse, Romona Akogwu, for her loving support and

understanding during this five years – she gave me the strength and confidence to stay

focused and determined. I would like to express my profound gratitude to my mom,

Rosemary Akogwu, my sisters, brothers, and especially to my brother, Emmanuel Peter

Oche, for their never-ending support and encouragement. They have always motivated

me to remain curious and productive in my professional and personal life. Finally, and

most importantly, I will like to give thanks to God for a gift of life without which none of

this would have been possible.

vii

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iv

DEDICATION ... vi

LIST OF TABLES ... xiv

LIST OF ILLUSTRATIONS .. xvii

LIST OF ABBREVIATIONS .. xxiv

CHAPTER I - INTRODUCTION .. 1

1.1 General Overview ... 1

1.2 Research Motivation ... 2

1.3 Research Purpose .. 3

1.4 Contributions... 4

1.5 Works Presented and Published .. 5

1.6 Organization of This Dissertation ... 7

CHAPTER II – GENOME SEQUENCING AND ERRORS ... 8

2.1 Chapter Overview ... 8

2.2 Genomic DNA Sequencing... 9

2.3 Brief history of DNA sequencing Discovery .. 11

2.3.1 First Generation Sequencing .. 12

viii

2.3.2 Next-Generation Sequencing Technologies .. 14

2.3.3 Third-Generation Sequencing .. 19

2.3.4 Fourth generation Sequencing ... 20

2.4 Significance of Sequencing Projects ... 22

2.5 Characteristics of Sequencing Data .. 24

2.5.1 Genome Sequence Coverage ... 24

2.5.2 Read Length ... 25

2.5.3 Ambiguous or Uncalled Bases ... 26

2.5.4 Sequence Duplication .. 27

2.6 Errors in Next-Generation Sequencing ... 28

2.6.1 Types and Characteristics of NGS Errors .. 29

2.6.2 Error Rates of Sequencing Platforms ... 32

2.6.3 Error Detection and Correction .. 34

2.6.4 Error Correction ... 35

2.6.5 Error Correction Algorithms .. 35

2.6.6 Classification of Error Correction Algorithms .. 37

2.7 Data structures for Error Correction ... 44

2.7.1 Suffix Arrays .. 44

2.7.2 Hash Tables .. 46

2.7.3 Bloom Filters ... 48

ix

2.7.4 Cuckoo Filters .. 50

2.8 Kmer Based Error Correction Methods .. 52

2.9 Previous Related Work ... 52

2.10 Discussions ... 56

2.10.1 Ambiguous Base (N) Handling .. 56

2.10.2 Parameter Selection ... 57

2.11 Significance of Error Correction ... 57

2.12 Motivations for k-spectrum based application .. 60

2.13 Problem Statement .. 61

2.14 Chapter Summary ... 62

CHAPTER III - COMPARISON OF ERROR CORRECTION METHODS 63

3.1 Framework .. 63

3.2 Evaluation Workflow .. 64

3.3 Evaluation Parameter Setting .. 66

3.4 Selected k-mer based Error Correction Methods .. 67

3.5 Phase I Analysis .. 69

3.5.1 Error Correction Methods .. 69

3.5.2 Computational Environment .. 69

3.5.3 Synthetic NGS Datasets ... 70

3.5.4 Comparative Analysis Results ... 71

x

3.5.5 Discussions .. 76

3.5.6 Review and Future Direction ... 77

3.6 Phase II Analysis... 78

3.6.1 Error Correction Methods .. 79

3.6.2 Computational Environment .. 80

3.6.3 Synthetic NGS Dataset .. 80

3.6.4 Results of Multivariate Statistical Analysis of Performance Metrics 85

3.6.5 Discussions .. 94

3.6.6 Review and Future Directions ... 98

3.7 Chapter Synopsis .. 99

CHAPTER IV BIOINFORMATICS ERROR CORRECTION WORKFLOW 102

4.1 Overview ... 102

4.2 Hardware Environment ... 102

4.3 Background Architecture .. 103

4.4 Web Implementation ... 106

4.5 Functionality ... 108

4.5.1 Data Upload ... 108

4.5.2 Input Parameters .. 109

4.5.3 Email Result ... 110

4.6 Features of BECOW ... 111

xi

4.6.1 Supported Web Browsers .. 111

4.6.2 Operating System ... 111

4.6.3 Multi-processing .. 112

4.7 Testing and Evaluation ... 112

4.7.1 Error Correction Statistics.. 112

4.7.2 Computational Resource Usage and Speed ... 114

4.7.3 Evaluation Result Discussion .. 114

4.8 Significant BECOW Contribution .. 116

4.9 Future Directions .. 117

4.10 Chapter Synopsis .. 118

CHAPTER V CUCKOO-FILTER ERROR CORRECTION OF NGS DATA.............. 119

5.1 Background ... 119

5.2 Error Correction Model... 122

5.3 Methodology ... 124

5.3.1 The k-mer Counting Problem .. 124

5.3.2 Counting K-mer Frequency ... 126

5.3.3 Error Correction ... 130

5.4 Testing and Evaluation ... 135

5.4.1 Materials and Method .. 135

5.4.2 Evaluation Metrics ... 138

xii

5.4.3 Parameters .. 139

5.5 Results and Discussions .. 140

5.5.1 Evaluation of CECOND Using Synthetic Dataset ... 141

5.5.2 Evaluation of CECOND Using Experimental Dataset 144

5.5.3 Computational Resource Consumption ... 147

5.6 Scalability ... 150

5.7 Recommendations to Users... 151

5.8 Limitations .. 152

5.9 Software Information .. 153

5.10 Contributions of this work .. 153

5.11 Chapter Summary ... 154

CHAPTER VI TIMBER RATTLESNAKE GENOME ASSEMBLY 155

6.1 Overview ... 156

6.2 Data and Materials .. 157

6.3 Computational Environment ... 159

6.4 Methodology ... 159

6.4.1 Data Pre-processing ... 159

6.4.2 Correcting Timber Rattlesnake Data ... 161

6.4.3 De-novo Genome Assembly Process ... 165

6.4.4 De-novo Genome Assembly and Comparative Result 165

xiii

6.5 Discussions and Conclusions .. 171

6.6 Chapter Summary ... 172

CHAPTER VII – CONCLUSION AND FUTURE WORK... 173

7.1 Overview ... 173

7.2 Summary ... 174

7.3 Contributions... 176

7.4 Conclusions and Future Work .. 179

APPENDIX A CECOND IMPLEMENTATION GUIDE ... 182

A.1 SYSTEMATIC IMPLEMENTATION GUIDE .. 182

APPENDIX B EXPLORATORY TABLES AND FIGURES 185

B.1.1 Representation of TP, FP and FN.. 185

BIBLIOGRAPHY ... 188

xiv

LIST OF TABLES

Table 2.1 Information based on company sources alone from early 2012 (independent

data not yet available as of Feb 2014); it is not clear if the 4% error rate reported by

Oxford Nanopore refers to a single-pass rate or is what is achieved after reading both

strands & producing a consensus sequence; nor is it clear what the error rate will be for

instruments when they are released. ... 33

Table 3.1 Distinguishing characteristic features of seven k-mer based methods

investigated in phase I and II. ... 68

Table 3.2 Synthetic paired-end Illumina sequencing datasets simulated using ART. 71

Table 3.3 Performance analysis of six k-spectrum-based error correctors as evaluated

using six synthetic Illumina datasets... 72

Table 3.4 Simulated datasets and optimal k-mer values derived using KmerGenie [138] 82

Table 3.5 Memory (in GB) and CPU Time (in hours) consumption by six error correctors

for the 27 synthetic NGS datasets ... 83

Table 3.6 Result of Levene’s test where H0 and H1 signifies accepted and rejected

hypothesis respectively at a 95% confidence level for hypothesis testing. 86

Table 3.7 Statistical significance expressed as F-test probability for the main and

interaction effects of four independent variables on performance metrics (precision and

F-score) determined using a four-way ANOVA model. P = p-value, df = degree of

freedom. .. 88

xv

Table 3.8 Statistical significance expressed as F-test probability for the main and

interaction effects of four independent variables on performance metrics (precision and

F-score) determined using a four-way ANOVA model. P = p-value, df = degree of

freedom. .. 90

Table 3.9 Statistical significance expressed as F-test probability for the main and

interaction effects of three independent variables (genome, coverage, and length) on each

correction method’s performance metrics determined using a three-way ANOVA model.

Empty cells indicate statistical insignificance (p > 0.05) ... 93

Table 3.10 Reproducibility of KmerGenie-generated optimal k-mer size for two test

datasets, DM_80X_L250 and DM_320X_L250... 93

Table 5.1 Total possible k-mers in a sequence with only A, C, T, G bases 127

Table 5.2 Experimental datasets downloaded from SRA database and their characteristics

... 136

The S. cerevisiae reference genome of S3 is a concatenation of 16 chromosomes.

Genome Length: Length of genomes without Ns. Number of Reads: Number of reads

after all paired reads that contain Ns are removed and after trimming is done. Coverage:

Number of Reads × Read Length/Genome Length. Error Rate: Mismatches/((Total

Number of Reads - Unaligned Reads))* Read Length as defined in [119] 136

Table 5.3 Version information of evaluated error correction methods and any associated

tool used in the evaluation process ... 137

Table 5.4 Subset of synthetic data used to evaluate performance of CECOND 141

Table 5.5 Performance comparison of CECOND on simulated data with existing methods

... 143

xvi

Table 5.6 Alignment based evaluation result for experimental dataset 145

Table 5.7 Assembly based statistics for experimental datasets 147

Table 5.8 Comparison of computational resource consumption of error correctors for

simulated dataset memory(GB) and time(hrs) .. 149

Table 5.9 Comparison of computational resource consumption of error correctors for

experimental dataset.. 149

Table 6.1 Source of sample extracted for sequencing the timber rattlesnake genome ... 157

Table 6.2 Raw sequence fastq dataset for initial Assembly .. 158

Table 6.3 Additional Illumina Miseq and Hiseq data with SRA accession number 158

Table 6.4 Output of DSK run on multiple values of k for evaluation of kmergenie

recommended k of 35.. 162

Table 6.5 Evaluation of CECOND and BFC performance on TR data with Burmese

Python as the reference genome ... 164

xvii

LIST OF ILLUSTRATIONS

Figure 2.1 Summary of the history of DNA sequencing discovery and how it has evolved

to the most recent times. The circles indicate the year while the yellow boxes indicate the

sequencing events that occurred within that year. Details extracted from various sources.

... 10

Figure 2.2 Restriction enzyme Mva1 (grey) is shown wrapped around DNA

(multicolored) [23]. Protein database ID: 2OAA. New England Biolabs 12

Figure 2.3 Growth of the nucleotide sequence database. The number of published

nucleotide sequences, and the total number of base pairs of sequence are plotted versus

the date of deposition or publication. Data since 1981 are re-plotted

from http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html and data for sequences

published before 1981 are from Dayhoff, Nucleic Acid Sequence Database, Vol. 1. The

dates of landmark sequences and technological advances are indicated. Adapted from

[29]. ... 13

Figure 2.4 How sequencing by ligation works adapted from [36] 15

Figure 2.5 shows how pyrosequencing works. Pyrosequencing. Single stranded DNA

template is first hybridized with the sequencing primer and mixed with the enzymes

along with the two substrates adenosine 5′-phosphosulfate (APS) and luciferin. In each

cycle, (1) one of the four nucleotides (dTTPi, in this case) is then added to the reaction.

(2) If the nucleotide is complementary to the base in the template strand then the DNA

polymerase incorporates it into the growing strand. (3) Pyrophosphate (PPi)—in an

amount equal in molarity to that of the incorporated nucleotide—is released and

converted to ATP by sulfurylase in the presence of APS. (4) ATP then serves as a

xviii

substrate to luciferase, causing a light reaction. Photon emission is in equimolar quanta to

the amount of nucleotide incorporated in each cycle. (5) apyrase degrades the excess

nucleotides. Figure was adapted from [38] ... 16

Figure 2.6 Difference between sequencing by synthesis vs. sequencing by ligation

adapted from [36] .. 16

Figure 2.7 Process of generating Illumina sequencing data [41] 18

Figure 2.8 Nanopore DNA sequencing as employed in ONT's MinION sequencer.

Double stranded DNA gets denatured by a processive enzyme (†) which ratchets one of

the strands through a biological nanopore (‡) embedded in a synthetic membrane, across

which a voltage is applied. As the ssDNA passes through the nanopore the different bases

prevent ionic flow in a distinctive manner, allowing the sequence of the molecule to be

inferred by monitoring the current at each channel .. 21

Figure 2.9 The blown up read is 2 x 35. The insert size (bp between the sequencing

adapters) is 400-500 bp. All the reads in the picture could be used to assemble a single

contig based on the consensus sequence. .. 26

Figure 2.10 Growth of DNA sequencing. The plot shows the growth of DNA sequencing

both in the total number of human genomes sequenced (left axis) as well as the

worldwide annual sequencing capacity (right axis: Tera-base pairs (Tbp), Peta-base pairs

(Pbp), Exa-base pairs (Ebp), Zetta-base pairs (Zbps)). The values through 2015 are based

on the historical publication record, with selected milestones in sequencing (first Sanger

through first PacBio human genome published) as well as three exemplar projects using

large-scale sequencing: the 1000 Genomes Project, aggregating hundreds of human

genomes by 2012; The Cancer Genome Atlas (TCGA), aggregating over several

xix

thousand tumor/normal genome pairs; and the Exome Aggregation Consortium (ExAC),

aggregating over 60,000 human exomes. The values beyond 2015 represent projections.

Figure and corresponding text adapted from [63]... 28

Figure 2.11 Sources of noise during sequencing reactions adapted from [54] 30

Figure 2.12 k-mer coverage histogram with a model fit. The histogram in this plot from

the Quake paper [72] gives a nice example of an empirical k-mer coverage distribution.

The density tells us which proportion of all existing k-mers in the data set has a coverage.

The solid line gives the Quake model fit. The first peak of the distribution is formed by

very low coverage error k-mers and is usually modelled by a Poisson or a Gamma

distribution. The second peak results from most correct k-mers and is usually modelled

by a Poisson or a Gaussian distribution. Between these two peaks, a clear local minimum

can provide a k-mer trust coverage cut-off. The heavy tail of higher multiplicity k-mers is

the result of k-mers from sequence repeats. Adapted by font change and label addition

from [72] ... 38

Figure 2.13 Deriving a k-mer Spectrum or a Hamming graph from k-mer counts. Some

error correction tools work directly with the k-mer frequencies as counted from the read

set. Others set a minimum k-mer coverage (2 in this example, green) to consider a k-mer

as correct (trusted k-mers, green counts) and then derive a (C) k-mer Spectrum of all

trusted k-mers. See [87] .. 39

Figure 2.14 depicts the cumulative fraction of all k-mers in the reads as a function of

frequency. The spectrum for the filtered reads starts off at about 10%. This means that

10% of all the k-mers in all the reads have very low frequencies and are most likely

associated with errors. However, remember that a single base error in a read spoils K k-

xx

mers, so the base error rate is not 10%. The base error rate is more like 10% / K. The

corrected cumulative spectrum (blue) starts a 0%, as expected for a mostly error free data

set. Adapted from [87] .. 40

Figure 2.15 A suffix tree and array matching two strings adapted from [113] 46

Figure 2.16 Hash tables example. ... 47

Figure 2.17 Bloom filter example with three hash functions adapted from (Simon S Lam)

... 48

Figure 2.18 Assembly: http://people.mpi-inf.mpg.de/~sven/images/assembly.png 58

Figure 2.19 General framework of k-spectrum based error correctors 60

Figure 3.1 Workflow for error-correction performance analysis using ECET. See [75] for

more information. ... 65

Figure 3.2 Results showing influence of read length on error corrector performance 73

Figure 3.3 Results showing influence of data coverage on error corrector performance . 74

Figure 3.4 Results showing influence of organism genome size on error correction

performance .. 75

Figure 3.5 Heat maps of F-score and precision for each evaluated method and dataset (see

material 2 at http://pinfish.cs.usm.edu/simulation_data/results for their numerical values).

C21 = Chromosome 21, DM = Drosophila melanogaster and EC = Escherichia coli 87

Figure 3.6 The main effects of (a) correction method, (b) genome size, (c) read length,

and (d) coverage depth on NGS data correction performance metric F-score with 27

simulated Illumina datasets. Eco = E. coli; Chr21 = Human chromosome 21; Dme = D.

melanogaster ... 89

xxi

Figure 3.7 Interaction effect of (a) genome size, (b) read length or (c) coverage depth

with correction method on F-score ... 91

Figure 4.1 shows the general framework of how Becow interacts with the algorithms and

submitted data ... 103

Figure 4.2 displays the python-based backend information flow of Becow’s error

correction and statistics generation process. ... 105

Figure 4.3 (a) shows the homepage of Becow displaying how the form can be accessed to

submit user NGS data (b) shows the submission form of Becow with various parameters

that can be set by the user and submitted for processing using the backend workflow

shown in Figure 4.2... 107

Figure 4.4 Sample error correction performance metrics generated by BECOW 113

Figure 4.5 Comparison of the draft genome assembly of BECOW’s error corrected E.

coli dataset. Genome size was used as the performance metrics and E. coli draft genome

assembly as the ground truth for comparison. .. 115

Figure 5.1 Example of DNA sequence tracing and Phred score (grey bars) corresponding

to each colored peak as adapted from [154] ... 121

Figure 5.2 The flow chart of CECOND algorithm showing error correction steps. Results

from each correction stage is stored and collected at the end for the final error correction

result .. 123

Figure 5.3 Example of a simple approach to k-mer counting (this case implies k=4). Just

hashing and collision resolution will take a long time using this method 125

Figure 5.4 Example of a 15-mer count coverage distribution for Escherichia coli using

k=15 showing the peak at 36. A strong divergence at low kmer frequency is indicative of

xxii

errors while the peak is the coverage with the highest number of different 15-mers i.e. the

average coverage depth is around 36 though the normal like curve observed indicates

there are regions with less or more coverage. ... 129

Figure 5.5 identifying k-mer counts for building a k-mer count profile 131

Figure 5.6 Example of k-mer count profiles generated for three different reads. Errors

located in the middle of a read generally affects the k-mer count more than errors located

at the 3’ end of a read. ... 132

... 132

Figure 5.7 A k-mer neighborhood. The neighborhood of trimer AAA is the collection of

trimers in R3 that have a non-vanishing chance of being misread as AAA, in this case

trimers with at most one substitution. Text and illustration adapted from [167] 132

Figure 5.8 Algorithm for CECOND ... 134

Figure 5.9 Heatmap illustrating performance of CECOND on simulated data in

comparison with six k-mer based algorithms. .. 144

Figure 5.10 Runtime and Speedup of CECOND for E. coli data 150

Figure 6.1 Fastqc representation of per sequence quality score of SRR3185265_1. fastq

... 160

Figure 6.2 Size of timber rattlesnake data (a) before trimming (b) after trimming 161

Figure 6.3 Timber rattlesnake assembly workflow with Assemblathon [175] used for

assembly comparison .. 166

Figure 6.4 Comparison of Velvet based and MaSuRCA based assemblies. Assemblathon

statistics shows significantly low values for both contig and scaffold N50 values in

comparison to values from the Burmese python genome assembly generated in [182] . 168

xxiii

Figure 6.5 Assemblathon assembly evaluation for corrected and non-corrected data ... 169

Figure 6.6 Contig and scaffold size comparison for corrected and non-corrected data . 170

Figure 6.7 Comparison of total contig size of our corrected assembly against assembly of

uncorrected sequence and MCBIOS assembly deposited on NCBI database 170

xxiv

LIST OF ABBREVIATIONS

ATP Adenosine triphosphate

BECOW Bioinformatics Error Correction Workflow

BF Bloom Filter

BP Base Pairs

CECOND Cuckoo-filter Error Correction of Next-generation Data

CF Cuckoo Filter

DBG Double Bricks & Gap

DL-CBF D-left Counting Bloom Filters

DNA Deoxyribonucleic Acid

DSK Disk Streaming of K-mers

ECC Error Correction Code

ECET Error Correction and Evaluation Toolkit

FN False Negative

FP False Positive

GAII Genome Analyzer II

GATB Genome Assembly & Analysis Took Box

HMM Hidden Markov Model

KMC K-mer Counter

MASURCA Maryland Super Read Cabog Assembler

MCBIOS MidSouth Computational Biology and Bioinformatics Society

MEGA Molecular Evolutionary Genetics Analysis

MPSS Massively Parallel Signature Sequencing

xxv

MSA Multiple sequence alignment

NGS Next-Generation Sequence

NIPT Non-invasive Prenatal Tests

NT Nucleotide

OGDRAW Organellar Genome Draw

OTU Operational Taxonomic Units

PacBIO Pacific Biosciences

PCR Polymerase Chain Reaction

PE Paired-end

PGD Preimplantation Genetic Diagnosis

QC Quality control

QUAST Quality Assessment Tool for Genome Assemblies

RAM Random Access Memory

RNA Ribonucleic Acid

rRNA ribosomal RNA’s

SBE Single Brick & Edges

SBL Sequencing by Ligation

SFF Standard Flowgram format

SMRT Single Molecule Real Time

SMS Single Molecule Sequencer

SNP Single Nucleotide Polymorphism

SOLiD Supported Oligonucleotide Ligation Detection

SSPACE SSAKE Scaffolding of Pre-Assembled Contigs after Extension

xxvi

TEF Target Error Format

TGS Third Generation Sequence

TP True Positive

TRNA Transfer Ribonucleic Acid

USM The University of Southern Mississippi

1

CHAPTER I - INTRODUCTION

1.1 General Overview

DNA sequence defines the information encoded in an organism. Determining the

ordering of the sequence is critical to understanding the information. This is achieved by

performing genome sequencing. Despite knowledge of the nature of DNA

(Deoxyribonucleic Acid) as an information encoder (from study by Oswald Theodore

Avery in 1944), little was known of its structure until it was discovered in 1953 [1]. Even

then, no one thought the pace of progress in the field will be this fast. Since 2005, DNA

sequencing has evolved leading to NGS (Next-Generation Sequence) technologies which

operates at exceptional speeds. NGS has been widely accepted [2] and currently,

sequencing on an Illumina machine is 1,000 times cheaper than Sanger with 10,000 more

data generated at the same amount of time [3]. Sequencing the genome multiple times

(high coverage) has allowed large genomes like that of humans and loblolly pines to be

sequenced and assembled. However, assembling the genome of many other species e.g.

timber rattlesnake remains difficult due to multiple challenges.

These challenges are due to significantly short read length, incorrectly called

bases that lead to errors in the sequence and technical difficulties of using the

technologies. Understanding how sequence reads produced by the various technologies

differ is paramount for thorough and qualitative analysis of the sequence reads.

Challenges of short read length are due to the large size of the genome to be sequenced.

Current sequencing machines are unable to sequence the whole genome at once because

sequence library preparation methods employ slicing of the full genome before it goes to

be read by the sequencers. Characteristics of NGS technologies have been studied in [4]

2

and [5]. Errors in base calling, which involves determining nucleotide ordering from the

sample, is one of the most fundamental challenges encountered in NGS technologies.

In this chapter, we first present an explanation to justify the inspiration for the

work in this dissertation. Secondly, a summary of the main aim of this dissertation is

outlined. Next, specific accomplishments gained from the various methods implemented

in our work is presented and finally, we provide a description of the layout of the entire

dissertation.

1.2 Research Motivation

Accurate base calling is important for analysis such as genotype calling, genome

assembly, SNP (Single Nucleotide Polymorphism) detection, genome resequencing etc.

Although it can aid sequencing cost reduction because accurately called bases will

require less sequence coverage, having high read coverage is not a guarantee to achieving

accurate analysis. These base calling errors create complexity in analysis because it can

either prevent identification of overlapping reads or it can include information which can

misguide an analysis.

Although, technological advancements have reduced errors to about 1 per 100 BP

(Base Pairs) read [6], it is still not acceptable for quality downstream analysis. This

makes it extremely paramount to remove all errors. Review of current literature,

discussed in CHAPTER II, highlights the existence of many error correction methods

developed to alleviate issues that lead to poor downstream analysis. Continuous

improvement in the methods are still constantly been sought after. Many of the methods

are not space efficient, therefore consumes a lot of computational resources during the

error correction process. The error correction methods also exhibit high false positive

3

rates. Furthermore, published error correction methods only use genome assembly quality

metrics and contig size to show that their methods work. None of the existing methods

have been used to completely assemble the genome of a previously un-sequenced

organism after error correction during the evaluation of the method.

1.3 Research Purpose

The main aims of this work are to improve upon existing error correction methods

discussed in CHAPTER II and apply the method to characterize the genome of a novel

organism. A sequence of steps is necessary to achieve our goal. These steps are each

dependent on the knowledge gained from a prior step thereby creating an effective way of

understanding the processes even for novice in the field. The steps taken are clustered

into four major goals:

1. To provide the ground truth for this work from an NGS error correction

perspective. To achieve this aim, a limited description of the history of NGS is first given

to acquaint the reader with its progressive nature. A background of the sequencing

technologies is also elaborated with an in-depth focus on errors in the sequence data and

methods available to correct these errors.

2. To establish a foundation by gaining more insights from the

implementation approaches used by existing error correction methods. For improvement

to be made over existing methods, it is imperative to understand their underlying

structure and the differences between them. This can be achieved by performing a

comparative and statistical analysis to measure their performance on a varied number of

NGS datasets. Measuring the performance of the methods will allow us to make

4

recommendations to users on why and when to use specific methods and provide a more

user-friendly way of using the methods.

3. To develop a novel error correction method if it is discovered, from earlier

step, that limitations exist in the current methods employed for error correction.

Identification of any associated problems will allow the developed method to be more

robust to alleviating the discovered issues. In addition, make a comparison of the novel

and existing methods to see if the issues have been resolved.

4. To use the developed error correction method to correct the sequence data

of a previously un-sequenced organism. This will help in the evaluation of the novel data

in a real experiment without an existing reference genome.

The set goals for this dissertation are organized in a methodological manner to be

accessible and used, not just by seasoned molecular or computational biologists, but by a

wide range of audiences.

1.4 Contributions

This dissertation examines and confronts the above-mentioned challenges in

terms of algorithm efficiency, computational resource consumption, method evaluation

and application. All the goals outlined were successfully addressed in the following

chapters of this dissertation.

First, genomic sequencing was addressed based on its history and progress over

the years. We proceed to define the type of base calling errors that exist or are prevalent

in the different types of NGS platforms. Secondly, with the current significant availability

and popularity of data from Illumina based technologies, focus was specifically placed on

studying errors generated by that technology and the algorithms capable of resolving

5

those errors. Upon complete statistical analysis and evaluation of the chosen NGS error

correction methods, their shortcomings were presented.

A novel method known as CECOND (Cuckoo-filter Error Correction of Next-

generation Data), based on Cuckoo filter data structure and a combination of error

correction steps, was proposed and implemented. CECOND is categorized as a k-mer

spectrum based error correction method implemented to solve the shortcomings of

existing k-mer spectrum based error correction methods. The results were analyzed using

statistical methods and alignment. Finally, the method was used to correct Illumina data

of timber rattlesnake and the results were evaluated by a comparative assessment in

relation to an existing draft genome assembly of the rattlesnake.

Each of the goals of this research has been achieved as individual chapters in this

dissertation.

1.5 Works Presented and Published

Part of this dissertation have been published as peer reviewed journal publication,

conference publication while some were presented as oral and poster presentations at

various conferences and symposiums.

The whole of CHAPTER III was published or currently in review under the

following:

1. Influence of Illumina Sequencing Dataset Characteristics on Performance of Error

Correction Tools. Submitted and in review by the journal: Nature Scientific

Reports on September 27, 2017

6

2. A comparative Study of K-spectrum-based Error Correction Methods for Next

Generation Sequencing Data Analysis. This was published in Vol 10 Supplement

2 of Human Genomics, 2016

3. Factorial analysis of error correction performance using simulated next-generation

sequencing data. Bioinformatics and Biomedicine (BIBM), 2016 IEEE

International Conference Proceeding

The works in CHAPTER III and CHAPTER IV were also presented as poster and

oral presentations at conferences and symposiums under the following:

1. Becow: A Web-Based Bioinformatics Error Correction Workflow Tool for

Next Generation Sequence Data Correction at the XIII MCBIOS Annual

Conference, March 3-5, 2016, Memphis, TN (Poster Presentation)

2. An Integrated Statistical Probe of Next Generation Sequencing Error

Correction Frameworks for Illumina DNA Sequence Data at the XIII

MCBIOS Annual Conference, March 3-5, 2016, Memphis, TN (Oral

Presentation)

3. A Comparative Study of K-mer-spectrum Based Error Correction Methods for

Next-Generation Sequencing Data Analysis at the XII MCBIOS Annual

Conference, March 12-14, 2015, Little Rock, AR (Oral Presentation)

4. De Novo Assembly and Functional Annotation of Timber Rattlesnake

(Crotalus horridus) Genome from Next Generation Sequence Data at the XI

MCBIOS XI Annual Conference, March 6-8, 2014, Stillwater, OK (Oral

Presentation)

7

1.6 Organization of This Dissertation

The organization of this dissertation continues as follows: CHAPTER II discusses

the progress of DNA sequencing over the years, the different types of sequencing

technologies, their drawback, and the types of errors they contain. Also, a biological

background for the research is presented here. CHAPTER III presents the various

comparative and statistical evaluation of error correction methods. The contents of this

chapter have already been published but further elaboration have been provided here to

support our claims. CHAPTER IV proceeds with introducing BECOW (Bioinformatics

Error COrrection Workflow), previously unpublished. BECOW is one of the results of

the evaluations conducted in the previous chapter. CHAPTER V presents the novel error

correction method called CECOND with a look at its performance through a series of

evaluations using both simulated and experimental data. We presented its error correction

model and evaluated its computational resource consumption in comparison to exiting

methods. CHAPTER VI discusses the implication of error correction for genome

assembly by application to timber rattlesnakes. Finally, a conclusion describing the

general contributions of the research and future directions was presented in CHAPTER

VII.

8

CHAPTER II – GENOME SEQUENCING AND ERRORS

2.1 Chapter Overview

Genome sequencing has revolutionized how biological experiments are conducted to

unravel DNA. Its contribution to different fields of molecular biology including

medicine, forensics, agriculture, and a host of other applications are visibly apparent.

Here, the progress of DNA sequencing over the years, the different types of sequencing

technologies, their drawbacks, and the types of errors they contain are first discussed.

Secondly, NGS errors, their detection, correction and overall impact of the corrections

are elaborated. Thirdly, we discuss the various types of error correction algorithms

including their classification and applicable data structures. Furthermore, related existing

error correction methods like Bloocoo, BLESS, BFC, Musket, Lighter and Trowel which

are all kmer-spectrum based are discussed. We basically focused on parameter selection,

types of errors they can handle and the types of NGS data they are most suitable for.

Finally, the chapter ends with a discussion on the drawbacks of the error correction

methods and systematically proposes a solution to reduce, if not eliminate, the problems

associated with the existing methods.

9

2.2 Genomic DNA Sequencing

Understanding DNA (Deoxyribonucleic acid) sequencing entails looking at a

brief history of how the technologies for studying nucleic acids evolved from DNA

discovery until now Figure 2.1. Aside using DNA to decode the life mysteries

surrounding living organisms, it provides evidences about the environment, origin,

phylogeny, disease vulnerability of an organism. Decoding the DNA constitute a

paramount challenge for scientist and has led to constant evolvement of sequencing

platforms. Each technology improves based on prior discoveries as they evolve. These

improvements over the years, have been grouped into various contentious categories

based on sequencing method [7] or suggested differences between 2nd and 3rd generation

sequencing [8][9][10][11] with some methods existing within the boundary of both

suggestions.

Classification referred to in this dissertation is based on the period of release

because in most cases, a newer sequencing platform improves upon an existing

technology. We have grouped the sequencers as Sanger, Next, Third and Fourth

generation sequencing, in increasing order of development.

10

Figure 2.1 Summary of the history of DNA sequencing discovery and how it has evolved

to the most recent times. The circles indicate the year while the yellow boxes indicate the

sequencing events that occurred within that year. Details extracted from various sources.

11

2.3 Brief history of DNA sequencing Discovery

Long before 1944, when DNA was assumed to be first known as the genetic

material, the first purification of DNA was obtained by Friedrich Miescher in 1870. The

work of Avery et. al. led to James D. Watson and Francis Crick [1] discovering that the

double helix strand structure contains four bases in 1953. Having proved it is the

hereditary material and the structure determined, the focus of biologists shifted from

studying whole organisms to their component cells. Determining the nucleotide ordering

in biological samples became an integral component of several research applications. The

first homogenous purification of DNA molecule was the genome of bacteriophage ϕX174

in 1959 [12]. In 1964, the earliest known sequencing was performed with TRNA

(Transfer ribonucleic acid) from Bacteriophage [13]. It involved breaking down and

piecing back together the pieces of RNA molecules. The process was laborious and took

too long to sequence because of the large DNA size. This resulted in using primer

extension [14][15][16] as the first method for DNA sequencing. They reported a partial

sequence in 1968, but successfully sequenced 12bp cohesive ends of phage l DNA by

1971 [17].

This discovery opened opportunities for DNA sequencing but due to its

application only to short sections of lambda phage genome ends, oligonucleotide primers

in DNA sequencing reactions [18] was introduced to generalize the process.

Subsequently, synthetic primers that binds to specialized locations were used from 1970-

1973. Current sequencing methods resulted from the discovery of type II enzymes which

binds to DNA at definitive lengths of 4bp-6bp without the need for ATP (Adenosine

triphosphate) during degradation [19][20][21]. This led to the realization that screening

12

bacterial strains [22] resulted in sequence recognizing enzymes known as restriction

enzymes. These enzymes Figure 2.2 therefore, provided a general method for DNA

fragmentation which are subsequently separated using gel electrophoresis.

Figure 2.2 Restriction enzyme Mva1 (grey) is shown wrapped around DNA

(multicolored) [23]. Protein database ID: 2OAA. New England Biolabs

2.3.1 First Generation Sequencing

Earlier modern methods used base specific chemical reactions (depurination) like

those used for RNA (Ribonucleic Acid) sequencing. They applied separation methods, to

limit the size of the fragments. Fredrick Sanger introduced the plus and minus approach

[24] which became the pioneer method for modern sequencing technologies. It used

chain termination principle and was used to sequence a complete genome sequence of the

ϕX DNA genome [25]. Despite this result, better methodology was still been sought after

by Sanger [26] which led to a chemical degradation method like the plus and minus

method [27]. The only difference being that it produced bands for every sequence

position. This advantage led to its early adoption until Sanger realized that copying the

DNA was better than degrading it [28]. The method became a basis for subsequent

technologies Figure 2.3.

Restriction enzymes

DNA

13

Figure 2.3 Growth of the nucleotide sequence database. The number of published nucleotide sequences,

and the total number of base pairs of sequence are plotted versus the date of deposition or publication. Data

since 1981 are re-plotted from http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html and data for

sequences published before 1981 are from Dayhoff, Nucleic Acid Sequence Database, Vol. 1. The dates of

landmark sequences and technological advances are indicated. Adapted from [29].

The revolutionary PCR (Polymerase Chain Reaction) [30] was developed in 1983

whereby a single DNA gets exponentially amplified in a selective way to generate

multiple copies of the DNA. Automation of the process led to the first partial automation

method of DNA sequencing in 1986 [31] through a modification of the chemistry and

data gathering method of the Sanger method. Regardless, there was a need for a faster

and inexpensive sequencing which led to pyrosequencing or sequencing by synthesis.

Pyrosequencing published in 1996 [32][33], as opposed to Sanger sequencing, is

based on how much pyrophosphate released can be detected upon fusion with nucleotide

instead of chain termination [24]. It works in real-time to monitor the pyrophosphate

released allowing the DNA sequence to be determined. Increasing the read length is

among its greatest disadvantages resulting in Next generation of DNA sequencing.

http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

14

2.3.2 Next-Generation Sequencing Technologies

Competition for the fastest and most efficient sequencing technologies promoted

rapid advances in new methods. A concept presented in [34] led to MPSS (Massively

Parallel Signature Sequencing) in 2000. This method used parallelized adapter bead

based sequencing of four nucleotides at a time. The technology was so complex and

susceptible to sequence bias. MPSS became obsolete when a sequencing by synthesis

was developed. However, the important properties of MPSS output made up parts of later

NGS data types. Lynx Therapeutics merged with Solexa in 2004 and later purchased by

Illumina.

2.3.2.1 Polony Sequencing

Polony, an acronym for Polymerase-colony sequencing developed at Harvard and

published in 2003 [35] was one of the first Next Generation Sequencing technology with

an open-source platform. Polony is a non-electrophoretic SBL (Sequencing By Ligation)

method. i.e. it uses short DNA segments called oligonucleotides and not single bases for

sequencing Figure 2.4 It contains three (3) replaceable major steps: library construction,

emulsion PCR and sequence data. Polony was not commercially successful, even though

it is easy to use, because of the cost, short reads, and ligation time. Although it was used

to sequence a full genome of Escherichia coli in 2005 with an accuracy almost 100%.

15

Figure 2.4 How sequencing by ligation works adapted from [36]

2.3.2.2 Roche 454 Technology

With the potentials of pyrosequencing, 454 life science decided to develop a

version of pyrosequencing that was parallelized. The pyrosequencing method, Figure 2.5,

in their instrument employed sequencing by synthesis and became the first

commercialized next generation sequence technology. The sequences are determined

while the complementary strand is being formed as opposed to polony which is ligation

based, Figure 2.6. However, its reliance on the detection of pyrophosphate molecules

makes it like polony. The amount of pyrophosphate released by DNA polymerase equals

the amount of nucleotide added thereby initiating reactions that generate the light [37]

detected by a sensor. Currently in 2016, the read length is about 1kb. The speed and read

length gives the Roche system a competitive edge over other NGS methods. The

drawback for Roche 454 remains the high reagent cost and the relatively high amount of

indel errors.

16

Figure 2.5 shows how pyrosequencing works. Pyrosequencing. Single stranded DNA template is first

hybridized with the sequencing primer and mixed with the enzymes along with the two substrates

adenosine 5′-phosphosulfate (APS) and luciferin. In each cycle, (1) one of the four nucleotides (dTTPi, in

this case) is then added to the reaction. (2) If the nucleotide is complementary to the base in the template

strand then the DNA polymerase incorporates it into the growing strand. (3) Pyrophosphate (PPi)—in an

amount equal in molarity to that of the incorporated nucleotide—is released and converted to ATP by

sulfurylase in the presence of APS. (4) ATP then serves as a substrate to luciferase, causing a light reaction.

Photon emission is in equimolar quanta to the amount of nucleotide incorporated in each cycle. (5) apyrase

degrades the excess nucleotides. Figure was adapted from [38]

Figure 2.6 Difference between sequencing by synthesis vs. sequencing by ligation

adapted from [36]

17

2.3.2.3 Illumina (Solexa) Sequencing

Illumina sequencing released in 2006 was the second of the NGS technology in

the market. It is based off Solexa sequencing. It uses sequencing-by-synthesis strategy, a

chain termination based method known as reversible termination sequencing [39]. It

tracks the addition of labelled nucleotides as the DNA chain is copied. It’s ability to

reversibly terminate primer extension due to fluorescent label on the terminating base as

opposed to irreversible termination in Sanger marks a significant difference [40]. Since

base reading steps are separated from each other in a homopolymer run, Illumina also

does not generate a lot of indels like 454. It’s system of high densities clusters that can be

analyzed, allows it to generate data ranging from 300 KB up to 1 TB in a single run.

Signal deterioration due to the incorporated reversible dye terminator nucleotides or

cleavage of fluorescent labels causes its read length to be shorter than that of 454. The

presence of this dye terminator and use of modified polymerase nucleotides also makes

base-substitution errors as the dominant error type. Average raw error-rates are about 1–

1.5%, but higher accuracy bases with error rates of 0.1% or less can be identified through

quality metrics associated with each base-call. As with other systems, modifications have

recently enabled mate-paired reads; for example, each sequencing feature yielding 2 × 36

bp independent reads derived from each end of a given library molecule several hundred

bases in length. Illuimina process is shown in Figure 2.7

18

Figure 2.7 Process of generating Illumina sequencing data [41]

2.3.2.4 ABI SOLiD Sequencing Technology

In 2008, the SOLiD (Supported Oligonucleotide Ligation Detection) system,

based on a hybridization-ligation chemistry [42], was released. It is a massively parallel

sequencer like 454 in principle but differs in terms of the bead size and the random array

format used. Colonal bead populations are obtained from DNA fragments of sequencing

samples. These fragments, in addition to a mixture of sequencing primers and

fluorescently labelled probes go through repeated process of hybridization and ligation.

The encoded base on the probes are detected based on the perceived fluorescent signals.

Multiple cycles of the entire process are performed with the read length determined by

the number of cycles. Although the read length is short, 25 − 35, it can generate up to 3

GB of sequence per run. The final error rates for SOLiD is <= 0.1%

19

2.3.3 Third-Generation Sequencing

Although a huge amount of data is generated by second generation sequencers at

consistently lower cost per base, important properties like read length, cost per run and

time to completion have been overlooked. The goal of Third generation sequencing is to

solve these setbacks. In this dissertation, we consider third generation technologies to be

those capable of sequencing single molecules without amplification.

2.3.3.1 Helicos SMS Technology

Helicos BioSciences commercialized the first Single Molecule Sequencer (SMS)

technology developed by Stephen Quake [43][44]. It uses the same SBS method as

Illumina does, but without any amplification. It performs True Single Molecule

Sequencing tSMS chemistry to observe the SBS reaction of individual DNA molecules in

parallel. Single fragmented DNA molecules are combined into single DNA strands and

then deposited to a Flow Cell glass surface. Using a propriety fluorescent reversible

virtual terminator dNTPs [45], the nucleic acid bases are identified one base at a time by

capturing the image and its cycle information. While relatively slow and expensive, this

was the first technology to allow sequencing of non-amplified DNA.

2.3.3.2 PACBIO single molecule real time (SMRT)

Pacific Biosciences developed the SMRT platform. The pacBio SMRT method

unlike NGS allows real time DNA sequencing without pausing between read steps. It

exploits the properties of light passing through holes of a diameter smaller than its

wavelength thereby allowing only a single immobilized DNA polymerase or template at

the bottom of a well to be illuminated. Because sequencing occurs at the rate of the

polymerase, it produces kinetic data, which leads to detection of modified bases [46].

20

PacBio machines can produce long reads exceeding 10 kb in length offering much longer

lengths and faster runs than NGS methods but is mired by a lower throughput, higher raw

read error rate >5% and higher cost per base when compared to NGS or tSMS.

2.3.4 Fourth generation Sequencing

Fourth generation sequencing refers to sequencing methods that neither require a

DNA amplification step nor use any expensive reaction agents as part of library

preparation. DNA sequencing by other generation technologies has become increasingly

faster and cheaper but most of them either use fluorescent reagents to identify nucleotides

or require chopping up the DNA molecule and amplifying the fragments.

2.3.4.1 Oxford Nanopore Technology

Oxford Nanopore sequencer was the first and only currently known fourth

generation of sequencers available. As the name implies, it is based on nanopores. A

nanopore is a 1 nanometer diameter hole, only capable of allowing a single DNA

molecule to thread through it at a time. The idea behind the nanopore sequencers is that,

an electrically charged fluid can create a specific change in the amount of current in an

immersed nanopore when single nucleotides (bases) of a DNA, or other molecules pass

through or near the nanopore. Specific change in current corresponding to each base

passing through the pore is measured to decode the entire order of the DNA sequence

Figure 2.8. There is also the potential to use solid-state technology to generate suitable

nanopores, allowing sequencing of double stranded DNA molecules [47][48]. The

GridION was the first, then came the MinION, which is a USB sized device, first tried by

users in 2014 [49]. Then PromethION which is compatible with cloud based services.

21

SmidgION, the smallest sequencer ever that can be plugged into a smartphone for

sequencing producing 230 Mb/hour is expected in late 2017 [62]

Figure 2.8 Nanopore DNA sequencing as employed in ONT's MinION sequencer.

Double stranded DNA gets denatured by a processive enzyme (†) which ratchets one of

the strands through a biological nanopore (‡) embedded in a synthetic membrane, across

which a voltage is applied. As the ssDNA passes through the nanopore the different bases

prevent ionic flow in a distinctive manner, allowing the sequence of the molecule to be

inferred by monitoring the current at each channel

22

2.4 Significance of Sequencing Projects

Sequencing projects are performed for a variety of reasons. DNA sequencing as

mentioned in 1.1 involves determining the ordering of the nucleotide sequence of a given

DNA, the genetic material of most organisms. This implies defining the exact order in

which the bases; adenine, cytosine, thymine, and guanine, occur. Sequencing is very

complex and has gone through several modifications technology-wise. Just sequencing

the DNA is by itself, not enough. Sequencing projects are performed to answer specific

biological questions. There are currently several ongoing sequencing projects like the

human genome project, the plant genome project, etc. The significance of these projects

is enormous and cannot be completely stated in this dissertation. This is because new

applications are being sought as the technologies improve. Projects like the human

genome projects have potential significance for:

• Molecular medicine – for disease diagnosis and discovery where proper

identification of a gene may lead to accurate diagnosis. It can also lead to detection, for

risk assessment, of an individual’s predisposition to certain genetic disorders like cancer,

metabolic and heart diseases. Furthermore, it benefits targeted drug design for gene

products which lead to diseases while also allowing performance of gene and drug

therapies. In these cases, the genes are reengineered by replacing defective disease-

causing genes and drug administration based on a person’s genotype respectively. Also

aids Preimplantation Genetic Diagnosis(PGD) and Non-invasive Prenatal Tests (NIPT)

whereby embryos can be tested for genetic characteristics and early genetic screening for

chromosomal conditions. It also aids preconception and preimplantation screening to

enable informed choices about reproductive status. Finally, it allows exploration of

23

genetic makeup of an individual to determine their response to medications in

pharmacogenomics.

• Forensics – determining the paternity of a child and other family

relationships, identifying crime suspects and victims based on DNA evidences e.g. hair

and blood or even to absolve individuals wrongfully accused of a crime. It can also aid

missing person’s cases and identification of disaster victims

• Evolution – study population migration based on genetic inheritance,

evolution through germline mutations in lineages, etc.

Projects like the Floral, plant and animal genome projects are more complex due

to the presence of multiple chromosome copies and repetitive sequences, yet, like their

human genome counterpart, once sequenced is applicable to:

• Agriculture – Using conserved genes to determine the evolutionary

history of plants, understanding plant to pathogen and plant to insect relationships,

Identification of micro-organism that may endanger crop and plant growth or

productivity through air, soil, or water pollution, engineering crops to produce better

quality products with increased nutrient value, improve resistance to insects and pests. In

addition, even plants are being reengineered to carry edible vaccines for certain human

diseases allowing the antigens to exist in the cell of the plants. Finally, is it also used for

the identification of both endangered and protected wild life species,

The above significance of sequencing a genome is nowhere near complete hence,

there are many more applications known and yet to be determined.

24

2.5 Characteristics of Sequencing Data

Genome sequencing data, be it de novo sequencing, genome resequencing or

transcriptome sequencing, possess important characteristics that aids its analysis and

understanding. These characteristics are unique to each set of sequenced data and are

determined by the sequencer, sequencing platform or technology used and the organism

been sequenced. Here, a brief explanation of some of the major characteristics are

elaborated with a focus on NGS data. Genome Sequence Coverage

2.5.1 Genome Sequence Coverage

Often, the concept of depth of coverage gets misused or misunderstood. The

coverage gives an average measurement taken for each base of the genome been

sequenced. i.e. each base is sequenced a coverage number of times. Sequence coverage is

a key consideration when performing genome analysis since it determines the amount of

data generated and depends on the type of questions been investigated by the experiment.

The error rate of sequencing technology, the complexity of repeats of the genome under

consideration and the read length determines the coverage depth of sequencing required.

Sequencing to high depths does not necessarily improve certain downstream analysis like

assembly [50]. The average coverage (X) for a genome (G) with number of reads (N) can

be calculated using various formulae depending on the read Length (L) as follows:

1. For equal read length: X = N*L / G

2. For variable length L of read j: X = sum (Lj) / G

Since DNA fragmentation from sequencer exhibits countless non-definitive

patterns due to bias which cannot be easily modelled, theoretical coverage is not ideal for

practical purposes. For these reasons, the average coverage is used. Been that this

25

coverage is only average for a random process, it is certain that variations exist from one

base position to another and some bases may not have been covered. The probability of a

base not getting covered or sequenced can be calculated based on the Lander/Waterman

theoretical model of random fragmentation as: Probability (p) = exponential value of (-

X), again X been coverage. This gives the number of missing bases in the sequenced

data. High coverage depth is desired because low depth introduces sequence errors that

may propagate through downstream analysis and lead to inaccurate conclusions during an

analysis.

2.5.2 Read Length

Sequencing a genome is performed with an initial idea or goal of stitching the

fragments to obtain the draft genome. The fragments generated from sequencing flow

cells are often of a given length. This length is known as the sequence read (sequence

information) length. It is the number of bases ACTG sequenced. Read length is

sometimes referred to as cycles. On Illumina platforms, using e.g. 200 and 250 cycles for

base pair sequencing will result in two 200bp and two 250bp read lengths respectively

from one piece of DNA. These pair are separated by a length (insert size) chosen during

material preparation for the sequencing project Figure 2.9. Often, depending on the

experiment, longer read lengths are desired but read length can only be configurable up to

a maximum length. This implies that it is sequencer platform dependent. For example, the

read length is specified by the probe or reagent kit used for Illumina sequencing. It is

common to have read lengths of 36bp, 50bp, 100bp, 150bp or 250bp from Illumina

machines. In general, longer read lengths are desired to provide enough information to

reconstruct the sequence for various reasons including: ability to map and assemble less

26

ambiguously, span repeats better, haplotype phasing, splicing events, isoform and indel

detection and detection of new and clearly resolve structures. In some cases, short read

lengths are also desirable. e.g. cases where read counts matter or where coverage depth is

desired (DNA mixture quantification)

Figure 2.9 The blown up read is 2 x 35. The insert size (bp between the sequencing

adapters) is 400-500 bp. All the reads in the picture could be used to assemble a single

contig based on the consensus sequence.

2.5.3 Ambiguous or Uncalled Bases

Ambiguous bases (also known as uncalled bases) are usually represented by N’s

in the data. These N’s can be any of A, C, T and G nucleotide. To infer the ordering of

nucleotide bases during a sequencing reaction, a process known as base calling is

initiated. Base calling is performed using base calling software programs. The accuracy

of the Phred base-calling software makes it one of the most widely used software [51]. It

works by identifying the unique colors of the reversible dye terminators associated with

each base in a next generation sequencing platform. The program accuracy in inferring or

calling a base during a sequencing run is typically measured by a quality score known as

27

Phred quality score and is related to the base calling error probability by Q = - 10 log P /

log 10. Despite the software accuracy, it sometimes cannot determine the definite value

of some bases. Ambiguous nucleotides are used when the true nucleotide is unknown

resulting in ambiguous or uncalled bases in the sequence data.

2.5.4 Sequence Duplication

Duplicate reads in sequence data are introduced during PCR library amplification

process [6]. Copying the subsequence of a DNA multiple times as a DNA replication

process during PCR steps creates these duplicate reads. Since every read in the

sequenced data is expected to come from a different fragment of the original

experimental sample during analysis, duplication may constitute a bias and affect correct

reporting of analysis result. These duplications can be procedural, systematic, or true

sample duplicates. Procedural duplication will exaggerate the number of observations.

Repeated observations will cause any count based analysis to have unwarranted amounts

of confidence in measures coming from the duplicated data. Systematic bias can be

identified when duplication is not equally applicable to each fragment but preferring one

fragment over another. Low duplication levels are indicative of high unique reads while

the opposite indicates high duplicate reads. Having too many reads for a small target and

enrichment bias are the two most likely causes of duplicate reads. Reduced duplication

levels can usually be achieved by reducing the number of required PCR cycles.

28

2.6 Errors in Next-Generation Sequencing

Since its discovery, genome sequencing has become the foundation of virtually

every area of molecular biology and new genome research. Large‐ scale high-throughput

genome sequencing has rapidly emerged resulting in generation of an astronomical

amount of genomic data in a manner faster than Moore’s law. Figure 2.10

Figure 2.10 Growth of DNA sequencing. The plot shows the growth of DNA sequencing

both in the total number of human genomes sequenced (left axis) as well as the

worldwide annual sequencing capacity (right axis: Tera-base pairs (Tbp), Peta-base pairs

(Pbp), Exa-base pairs (Ebp), Zetta-base pairs (Zbps)). The values through 2015 are based

on the historical publication record, with selected milestones in sequencing (first Sanger

through first PacBio human genome published) as well as three exemplar projects using

large-scale sequencing: the 1000 Genomes Project, aggregating hundreds of human

genomes by 2012; The Cancer Genome Atlas (TCGA), aggregating over several

thousand tumor/normal genome pairs; and the Exome Aggregation Consortium (ExAC),

aggregating over 60,000 human exomes. The values beyond 2015 represent projections.

Figure and corresponding text adapted from [63]

29

The growth in the data size is continually expected but there is a need to generate

useful data. The advancement in technology together with the ability of digitalizing DNA

have so far aided sequencing of several highly accurate genomes. However, NGS data

have been known to be error prone allowing its usefulness to be called to question if no

further processing is performed to remove or correct the errors.

Sequencing errors also known as mis-call occurs when a sequencer incorrectly

calls one or more bases. Since DNA sequencing is laboratory based and with molecular

biology been so peculiar, there is no guarantee of precisely calling a base during

sequencing. These biases and errors are introduced at different stages of the sequencing

experiment thereby impacting downstream data analysis. Despite the availability of

numerous NGS error correction methods, certain drawbacks like high false positive rates,

resource consumption and high time complexity of the methods and their algorithms

remains a menace.

2.6.1 Types and Characteristics of NGS Errors

Various factors determine the errors that can creep up during NGS sequencing.

The factors can be because of the machine itself (systemic), knowledge level of the

individual performing the sequencing (experimental) or Biological which is often due to

the actual DNA being sequenced. For example, presence of oil on an Illumina GAII slide,

over or under sampling the DNA, use of expired reagents and DNA properties like

homopolymer can all constitute error sources during sequencing. Clone pre-processing,

gel length used in the electrophoresis process and sequencing primers [52] [53] also

causes a variation in the data quality observed over each sequence strand.

30

Sequencing platform selection for given experiment is also critical to error

reduction and requires in-depth knowledge of a machine's error sources and rates. This is

because different sequencing platforms have their own benefits and shortcomings. For

example, the distribution of error types varies from one platform to another [6].

Furthermore, different sources contribute to noise in the sequencing reaction

Figure 2.11, while at the same time, a relationship exists between the noise source and the

error type that results. Despite the emergence of newer sequencing technologies, the trust

worthiness of the data generated is still not 100% accurate as several unnoticed artefacts

can be a source of sequence quality degradation. Characterizing the errors generated by

common NGS platforms and differentiating true genetic variants from technological

artefacts are unrelated steps, essential to various downstream analysis like variant calling,

haplotype inference, genome assembly and evolutionary studies.

Figure 2.11 Sources of noise during sequencing reactions adapted from [54]

31

In general, NGS technologies contains higher amount of errors than Sanger

sequencing while SMS technologies has a much higher error distribution than that of

PCR-based methods. Errors occurring in NGS data includes insertion, deletion errors

together known as indel errors, and Substitution errors. Indel errors are less common

than Substitution errors which are the predominant error type in NGS data. As an

example, the dominant error type in Illumina and SOLiD reads are mostly substitution

errors[55], reads from 454/Roche platform tend to contain many insertions and deletions

due to its inability to correctly assess the length of homopolymer runs [56][57].

Meanwhile, Helicos reads contains more of deletion errors (2–7% error rate with one

pass; 0.2–1% with two passes).

Substitution error otherwise known as mismatch occurs when a certain nucleotide

is replaced by a different nucleotide leading to a wrong base been called. [58] reported

that miscalls are more frequent during the first and last cycles and proposed that Illumina-

specific miscalls result from cycle-dependent variations of the cross-talk matrix,

declining intensities, pre-phasing and phasing and T accumulation. According to [59],

miscalls are more frequently distributed in the GC-rich regions. The authors also claimed

that the base-specific miscalls A to C and C to G are observed more often than the others,

suggesting that this type of miscall is due to the inhibition of base elongation during SBS.

Various researchers agree that the quality of the Illumina sequencer reads is significantly

lower in the later cycles. Lagging-strand dephasing, caused by the incomplete extension

of the template ensemble, has been suggested as one of the main reasons for this problem

[60]. In genome sequencing terms, dephasing refers to a situation whereby there is no

32

synchronization of the various amplified DNA fragments due to inaccurate de-blocking

and incorporation of nucleotide sequences on the DNA strand.

Errors that result from misjudging the length of homopolymer runs leads to

single-base insertions and deletions (indels). Insertions occur when a wrongly called base

is placed where there is no base while deletion is when a base is totally not called in the

sequence. The ‘plus and minus’ method of Sanger and Coulson faced the same problems.

Nonetheless, the second generation 454 Genome Sequencer FLX is reportedly able to

produce 100 Mb of sequence with 99.5% accuracy for individual reads averaging read

over 250 bases in length. Insertions and deletions of bases (indels) that produce frame

shifts in deduced coding regions cause errors in predicted protein sequences and

compromise the interpretation of the chromosome sequence.

A reduction in all the above-mentioned errors can be achieved by using advanced

algorithms for base calling, improving the sequencing chemistry or using algorithms for

image processing as described in [61] [62] and [63] respectively

2.6.2 Error Rates of Sequencing Platforms

Without doubt, the biggest problem with sequencing analysis is the error content.

Measuring the error rate of different sequencing platform is challenging making a direct

comparison very tough to accomplish. This is because of the difference in library

preparation methods, error calculation algorithms, sample to be sequenced and variation

in the read length produced by these platforms. We can only come up with error

distributions because the data will not provide any pronounced distinction among the

sequencers.

33

Numerous attempts have been made to identify, enumerate and comprehend

errors that are generated by NGS platforms. Errors patterns linked to Illumina platforms

have been studied by [59] [64] while those for 454 Genome Sequencers have been

studied by [56]. These studies have been instrumental in understanding the NGS quality

characteristics. Table 2.1 gives a recent comparison of the error distribution

Table 2.1 Information based on company sources alone from early 2012 (independent

data not yet available as of Feb 2014); it is not clear if the 4% error rate reported by

Oxford Nanopore refers to a single-pass rate or is what is achieved after reading both

strands & producing a consensus sequence; nor is it clear what the error rate will be for

instruments when they are released.

INSTRUMENT PRIMARY

ERRORS

SINGLE-PASS

ERROR RATE (%)

FINAL ERROR

RATE (%)

3730XL (CAPILLARY) substitution 0.1-1 0.1-1

454 ALL MODELS indel 1 1

ILLUMINA ALL

MODELS

substitution ~0.1 ~0.1

ION TORRENT – ALL

CHIPS

Indel ~1 ~1

SOLID – 5500XL A-T bias ~5 ≤0.1

OXFORD NANOPORE deletions ≥4* 4*

PACBIO RS Indel ~13 ≤1

34

2.6.3 Error Detection and Correction

Output generated by NGS sequencing platforms contain short reads that represent

the sequence sample. The presence of errors as discussed earlier causes a significant

difference from the true genomic sequence. Detecting the errors is the most important

step before the actual error correction. Therefore, there is a need for a good procedure to

detect the errors in the sequence.

Several error detection methods have been developed in recent years. Most of

these procedures cater to errors in genomic sequences. They mostly use the sequence

coverage statistics to identify the erroneous base/bases that exists in the sequence data.

Coverage statistics is being used because errors occur in sequences in a random manner

hence the sequence itself is random. This implies that the generated sequence is not the

same as the genomic sample that was sequenced. Therefore, it makes it more probable for

those random bases introduced to be seen only a few times (less than thrice). Seeing a

rare sequence in a high coverage sample most often indicates that the sequence is

erroneous [65] [66].

Often, a threshold is chosen and sequences with multiplicity below the selected

threshold gets eliminated from the read. To do this, the coverage must be uniform (which

follows a Poisson distribution) or high throughout the whole genome sequence. We must

however note that there is a distinction between under sampled but true sequence and

erroneous sequence with high coverage. A rough estimate of the expected coverage of a

sequence was shown in 2.5.1

A careful analysis based on the method described above is required because

removal of true sequences which are like other low abundance or rare erroneous

35

sequences may occur. DNA sequence anonymities like repeats or low coverage makes it

difficult for errors to be detected. Other methods to improve sequencing error detection

have been developed using PCR, Circle Sequencing and coding theory as described in

[67][68] and [69] respectively.

2.6.4 Error Correction

As explained above, NGS technologies offer great new opportunities for

biomedical sciences, but the data generated is not flawless. Sequencing errors make

processing of the data more difficult. DNA sequence assembly struggles with such

sequencing errors. Error correction involves identification and use of non-error

containing overlapping reads in a sequence to resolve sequencing errors. It is the task of

analyzing the data and removing sequencing errors, so that the data can be analyzed more

effectively. Error correction is only performed on the raw sequence data therefore, does

not require a reference genome. This is a demanding task from an analytical perspective

as well as from its computational complexity.

2.6.5 Error Correction Algorithms

Over 61 error correction methods are known and have been evaluated. This

includes those built as stand-alone tools and those that have been incorporated into other

tools like genome assemblers with the error correction process being just one part of their

process. Most importantly, the fundamental structure behind their correction process

remains the same. They organize the reads in data structures so that they can be compared

with each other to identify the errors and subsequently correct them.

In general, error correction algorithms for correcting genomic sequence data

execute three important steps:

36

• Computation of overlaps among the read sequence

• Detection of the errors in the read

• Read error correction

Mostly, the steps mentioned above gets accomplished based on three main assumptions:

• An incorrectly called or erroneous base per position will be rare in

comparison to the correct base in the sequence read

• There should be uniformity of coverage across a sequence data eligible for

error correction

• The probability of introducing errors (substitution and indels) is similar at

all positions of the sequence sample.

However, error rate is data dependent making these expectations precarious. Also,

the rate is basically unknown because of system biases that influence the read coverage

and frequencies with which these errors occur. This makes it imperative for more refined

methodologies to be developed for error correction. Algorithms by [70][71][72] or [73]

approach the error-correction problem with varying strategies. There is a measurable

positive effect on mapping or assembling NGS data after first applying an error

correction algorithm. Strategies employed for error correction in current methods are

further discussed in the next section.

37

2.6.6 Classification of Error Correction Algorithms

Refinement in error correction algorithms over the years have led to increase in

the number of categories of error correction algorithms. Currently, they are classified into

five categories with each having many variations in application by different tools. An

extensive review have been made in [74][75][76]. Differences between each category and

a brief explanation will be addressed with more focus on k-spectrum based methods.

2.6.6.1 K-spectrum Based

 K-spectrum based error correction algorithms has the broadest set of applications.

It has its origin from deBruijn based assemblers [66][72]. It involves the use of k-mer

frequencies for the correction process. K-mers refer to all the possible subsequences (of

length k) from a read obtained through DNA Sequencing. This algorithm basically

depends on the application of a coverage threshold, determined from a k-mer coverage

histogram Figure 2.12 to predict if a k-mer is part of the actual genomic sequence.

38

Figure 2.12 k-mer coverage histogram with a model fit. The histogram in this plot from

the Quake paper [72] gives a nice example of an empirical k-mer coverage distribution.

The density tells us which proportion of all existing k-mers in the data set has a coverage.

The solid line gives the Quake model fit. The first peak of the distribution is formed by

very low coverage error k-mers and is usually modelled by a Poisson or a Gamma

distribution. The second peak results from most correct k-mers and is usually modelled

by a Poisson or a Gaussian distribution. Between these two peaks, a clear local minimum

can provide a k-mer trust coverage cut-off. The heavy tail of higher multiplicity k-mers is

the result of k-mers from sequence repeats. Adapted by font change and label addition

from [72]

The original reasoning behind this method is to generate a spectrum of k-mers, set

a threshold and consider k-mers above that threshold as most likely part of the sequence

while those below the threshold are grouped as candidates for error correction. These are

then systematically edited into high-multiplicity k-mers., one full read sequence is

inspected at a time. If the k-mer spectrum of the read contains k-mers not in the trusted

spectrum of the full sequenced sample, the read is either corrected by the minimum

number of base edits necessary to turn all its untrusted k-mers into trusted ones or

39

discarded if that is not possible without making more than a pre-defined maximum

number of changes to the read in question.

Several variations of this K-SPECTRUM approach exist. Some can use mixed

models to select the required parameters [72][77]. Others decompose reads into k-mer

sets [66], [78]–[82]. Yet, some consider the quality values of the bases in their

corrections to be better able to discriminate between low copy true k-mers and high copy

error k-mers [70]. some assemblers use variants of this approach as pre-processing steps

in their assemblers [83]–[86]. The simplified version of how k-mer spectrum is used by

some methods is shown in Figure 2.13

Figure 2.13 Deriving a k-mer Spectrum or a Hamming graph from k-mer counts. Some

error correction tools work directly with the k-mer frequencies as counted from the read

set. Others set a minimum k-mer coverage (2 in this example, green) to consider a k-mer

as correct (trusted k-mers, green counts) and then derive a (C) k-mer Spectrum of all

trusted k-mers. See [87]

40

Figure 2.14 depicts the cumulative fraction of all k-mers in the reads as a function of

frequency. The spectrum for the filtered reads starts off at about 10%. This means that

10% of all the k-mers in all the reads have very low frequencies and are most likely

associated with errors. However, remember that a single base error in a read spoils K k-

mers, so the base error rate is not 10%. The base error rate is more like 10% / K. The

corrected cumulative spectrum (blue) starts a 0%, as expected for a mostly error free data

set. Adapted from [87]

2.6.6.2 Suffix tree/array Based

The generalization of this method to handle multiple kmer values at once is the

main difference between the suffix tree-based method and the k-spectrum based

approach. Like the k-spectrum algorithm, multiple variations of this approach exist.

Basically, the first ever implementation of this method [88] built a suffix tree of all the

reads and transverses this tree to find and correct erroneous reads using the k-mer

frequency weights associated with the suffix tree nodes.

The reads used for the correction and the erroneous reads are children of

branching nodes on the tree with k−1 string depth. Variations of this approach includes:

those that use simple extensions like the hamming distance to correct insertion and

41

deletion errors and color space sequences [89] methods that combine statistical approach

with partial suffix array, methods that do not use the suffix array but based on the same

concept [73] and those that uses coverage statistics to automatically select and set

parameters for the error correction [90]. See 2.3.1 for more discussions on suffix arrays.

The problems with this approach is that some of the methods show disparity in

performance due to their sensitive nature to input parameters. For others, a large amount

of memory is required for the array data structure. For some, automatic selection of

parameters occurs only for reads of equal length. Most worrying of all, no explanations

are given for how correction is done when the sequence contains the same error occurring

multiple times.

2.6.6.3 Multiple sequence alignment (MSA) Based

As the name implies, this approach is alignment based. Alignment identifies

similarities between two sequences. Error correction is performed based on how the reads

in the sequence aligns with a given reference. Multiple alignment has been used for a

long time [91], [92] were used to correct sanger sequences. The general idea is that each

individual read is considered a reference. Multiple alignment is performed to determine

reads that share a minimum of one k-mer with that reference. The first read is set as the

initial consensus of the alignment. The correction of the reads is then based on these

alignments and their consensus. Aligning the reads one after the other against the

consensus using a variant of the Needleman–Wunsch algorithm [93] allows error

correction to be made.

42

As with other approaches, several variants of this method are available [94]

creates a consensus sequence after each alignment with the reference. [95] uses a

maximization algorithm that performs pairwise alignment among reads sharing at least

one k-mer. [96]uses a directed acyclic graph instead of a consensus sequence. [81]

groups read based on spectral clustering before applying MSA. The main problem

associated with this approach is that alignment is computationally expensive for long

reads.

2.6.6.4 Hidden Markov model (HMM) Based

 Basically, HMM is a machine learning probability model whereby a system is

modelled under the assumption that it is a Markov process with latent states. It provides a

foundation to label and model the states of sequence by the transition probabilities

between the states. Used for sequential or temporal data and played a big role in the

human genome project.

Sequence reads can be modelled as a de Bruijn graph whereby traversing the

graph can be a read and the graph is an HMM (Hidden Markov Model). The vertices (k-

mers) on the graph represents the states while the transformation matrix depends on the

edges. A recursive transversion of an edge gives off one base in a read whose

identification maybe be prevented by sequencing errors or may not be present. Since

repeats constitute only a part of the genome, selecting a reasonable k is possible. This

way, the subsequent character strongly depends on only k characters before it, forming

the basis of the Markov assumption. For error correction, the problem is posed as a

maximum likelihood sequence detection problem [97], [98]. The problem with this

43

approach is that a large state space is required. This is because small k will increase speed

but as reads gets longer, the computation becomes more complex.

2.6.6.5 Hybrid Based Methods

 Due to different characteristics of the sequencing platforms, it is an attractive

idea to combine reads produced by several platforms. Most hybrid error correction

methods are seemingly meant to correct long or third generation sequences (TGS) reads.

It is based on combining two sets of reads with one set as the reference and the other as

the sequence candidate for error correction. The idea is to marry the long reads like the

error prone long single molecule reads from PacBIO with the highly abundant and

relative high quality but short read length of NGS like Illumina Miseq

Downstream analysis can be affected by the coverage of TGS data no matter the

read quality due to the uneven distribution of the read length. Since TGS data mostly

have lower coverage due to the sequencing cost, the higher coverage from second

generation sequences can be combined with the TGS data to correct the sequence. It is

believed that this approach will correct the reads regardless of the coverage of the TGS

data. It also prevents computational complexities that may arise because of pairwise

alignment between the long reads of TGS data.

Variations of the hybrid approach includes: those that use de Bruijn graphs [99]

and those that perform multiple alignment between the two read sets in order to call the

consensus sequence [100]–[102]. They are all mostly targeted towards PacBIO reads.

44

2.7 Data structures for Error Correction

 Having briefly walked through classifications of error correcting algorithm

in 2.2, we are aware of how error correction is handled by most of the methods. The most

important take away is that all methods involve the use of k-mer subsequence in one way

or the other. They all look for a way of differentiating correct k-mers from erroneous

ones to create a consensus sequence. K-mer counting is one of the methods most widely

used to determine the frequency of k-mer occurrence. Once a k-mer is selected, it is

important to efficiently process it for the error correction to be made e.g. a need to

identify and store the observation of each k-mer. Data structures are employed for this

purpose

Data structures allow the structuring of sequence data (DNA strings) in a time and

memory efficient manner. The efficient handling of these strings is necessary for almost

all error correction techniques that are applied to bioinformatics sequences. In this

section, we briefly explain the data structures that have been previously employed in

bioinformatics but place more emphasis on the newer data structure which forms the

basis of our work.

2.7.1 Suffix Arrays

A suffix array, a space-efficient data structure, contains a sorted array of all

possible read suffixes. Figure 2.15. It basically acts as a means of storage for suffix trees.

The construction of arrays and trees are similar except that practically suffix arrays are

preferred for storing or presenting a suffix tree. Suffix arrays supplemented with

additional tables can substitute for suffix trees [103]

45

Suffix array SA(T) = an array giving the lexicographic order of the suffixes of T.

It is often used in conjunction with an array termed LCP array, containing the lengths of

the longest common prefixes between every consecutive pair of suffixes in SA.

Practically, using an array has the advantage of space efficiency (lower memory

consumption) but its performance over using full trees may be sacrificed depending on

how it is used. Theoretically, it is very simple to construct. Suffix arrays can be built

easily in O (n * log2n) time, where n is the length of the sequence. Using linear time

sorting algorithm, it can be built in O(nlogn) time and a search for a pattern of length m

can be done in O(mlogn) time by a binary search; reduced to O(m+logn) as in the case of

using LCP.

The popularity of suffix arrays in bioinformatics is evident from their application

in a range of tasks such as pairwise sequence alignment [104]–[107], error correction of

reads from high-throughput sequencers [88], [90], prefix–suffix match finding for

genome assembly [108], [109], k-mer counting [110] and sequence clustering [111], as

well as the development of suffix array software explicitly aimed at bioinformatics

applications [112].

46

Figure 2.15 A suffix tree and array matching two strings adapted from [113]

2.7.2 Hash Tables

A hash table is a data structure used to map keys (indices) to values of an array as

a pair. To put it simply they are used to store a set of sequence data for efficient search

within the set [114]. As opposed to arrays which uses integers as indices, a hash table can

use a string, floating point values or an array itself as the index. A hash table is made up

of two parts: an array (the actual table where the data to be searched is stored) and a

mapping function, known as a hash function. The hash function provides a way for

assigning numbers to the input data such that the data can then be stored at the array

index corresponding to the assigned number. i.e. it maps a block of i bits to a smaller

block of j bits. Two properties that should be matched by a hash function include;

• The mapping must be balanced: same number of combinations of the i bits

maps to each one of the combinations of the j bits.

• Similar values of the input map to different values of output

47

Figure 2.16 Hash tables example.

Hash tables are commonly stored in memory and can consume a significant

amount of space. The data is therefore exposed to the errors that affect the memory such

as radiation induced soft errors [115]. To avoid data corruption in memories, ECC (Error

Correction Code) is commonly used [116]. ECCs add additional bits to each memory

word which are used to detect and correct errors and therefore increase the area and

power consumption of the memory.

Error correction techniques for next-generation sequencing, such as RACER [89],

employ the use of hash tables to achieve efficient storage of k -mers. The basic idea is to

hash the read sequences into a hash table and scan through the reference sequence with

the same sequence lengths as the original data to find the exact matches in the hash table

of reads. Hash tables face certain problems like; effective determination of the hash table

size, problems of collision resolution, storage in memory and resource consumption.

48

2.7.3 Bloom Filters

Originally developed by Burton H Bloom [115], a BF (Bloom Filter) is a simple

probabilistic data structure used to test set membership with high space efficiency and

fast look-up times. It allows querying of a set to see if an item is not in the data set using

just a few bits. In other words, it is not used to test if an element is present but to test

whether it is certainly not existing in the set.

BF’s do not give any false negatives and the risk of generating false positives (incorrectly

presenting an element as a member of the set) is manageable with a trade-off of memory

and time. Its compact representation is the payoff for allowing a small rate of false

positives in membership queries. It is basically a one-sided error data structure because of

it guarantees no false positives. Because of this guarantee, no extra work is done to

search for elements that do not exist in the set. Figure 2.17 shows an example of a BF

with three (3) hash functions.

Figure 2.17 Bloom filter example with three hash functions adapted from (Simon S Lam)

BF performs multiple hash of an object by either using multiple hash functions or

one hash function with different seed thereby ensuring that same outcome is unlikely to

be achieved when an object is hashed. The multiple hash functions are used to minimize

false positives. The hope is that between all the k-hash functions, each value will have a

49

unique signature in the bit-array compared to every other possible value. For each time,

an object is hashed, the equivalent hash value in the bit array is marked as 1. This is the

reason for using a bit array. Instead of requiring 4 bytes to store a 1 or a 0, a bit can be

used. Using this technique, elements are hashed independent of their size. When a search

is then performed, each hash function is used and checked to make sure their bit-values

are all 1s. It is important to control the false positive rate. To do this, the size of the data

set has to be known or chosen. [116] presents the methods behind choosing the values.

Upon insertion of n keys into a filter of size m using k hash functions, the probability that

a given bit is still 0 is:

m

knkn

e
m

p

 1

1
10

. (1)

Therefore, the probability of a false positive (the probability that all k bits have been

previously set) is:

k

m

kn
k

kn

k

err e
m

pp

1
1

111 0
 (2)

In (2) perr is minimized for 2ln
n

m
k hash functions. The number of hash functions

used, practically, is small because the overhead remains constant as more hash functions

gets added but the benefits of each addition decreases after a specific limit.

Bloom filters have a strong space advantage over other data structures for representing

sets, such as self-balancing binary search trees, tries, hash tables, or simple arrays or

linked lists of the entries. Most of these require storing at least the data items themselves,

which can require anywhere from a small number of bits, for small integers, to an

50

arbitrary number of bits, such as for strings. Bloom filters do not support deletion, thus

removing even a single item requires rebuilding the entire filter

Variations of bloom filters exists. Like the counting bloom filter [117] which support

delete operations by extending the bit array to a counter array but requires four times

more space than a standard Bloom filter and Compressed bloom filter [118] which has a

cost of processing time for compression and decompression.

Several error correction methods for NGS data have extensively used variants of bloom

filters as their underlying data structures. BLESS [80], [119]–[124], have all made

significant improvement by using bloom filters. Despite this improvement, it has been

shown that there remain some problems with the false positive rate generated and

computational resource consumption in terms of space and time. This is because of the

limitations associated with bloom filters and its variants even though bloom filters have

been shown to be the best of all the data structures discussed so far. A look at a more

advanced data structure is imperative to determine if better or comparable results can be

achieved upon implementation.

2.7.4 Cuckoo Filters

The main reason for the extensive overview of BF (bloom filters) in 2.7.3 is

because of its similarity to CF (Cuckoo Filter). CF can replace BF for approximate set

membership tests for error correction methods. One major limitation of Bloom filters is

that the existing items cannot be removed without rebuilding the entire filter in addition

to the false positive rate. Several proposals have extended classic Bloom filters to support

deletion, but with significant space overhead: counting Bloom filters [125] are 4× larger

51

and the recent DL-CBF (d-left counting Bloom filters) [117], which adopt a hash table-

based approach, are still about 2× larger than a space-optimized Bloom filter. As a

practical data structure, its four main advantages are:

• It supports dynamic addition and removal of items

• It achieves higher lookup performance

• It is easier to implement than alternatives such as the quotient filter

• It requires less space than a space-optimized Bloom filter when the target

false positive rate ε is less than 3%.

Basically, it is meant for applications that store many items and while targeting

moderately low false positive rates. Cuckoo filter [126] is a compact variant of a cuckoo

hash table [127]. It does not store fingerprints of the entire items but only for each item

that is inserted in the table. Cuckoo hash tables can have more than 95% occupancy,

which translates into high space efficiency when used for set membership.

A cuckoo filter uses a hash table to store a small fingerprint for each element, and

answers queries by testing whether the fingerprint of the queried element is present. Each

element has two hash table cells where its fingerprints might be stored, determined by a

combination of a hash of the element and a second hash of the fingerprint. As in cuckoo

hashing [127], fingerprints already stored in the table may be moved to their second

location to make room for a newly inserted fingerprint. The performance of a cuckoo

filter is controlled by the number n of elements in the set it represents, together with three

design parameters: the table size N (number of cells), block size b (fingerprints that can

be stored in a single cell), and fingerprint size f (bits per fingerprint). A good choice of

these parameters allows the fingerprints for all elements in the given set to be stored in

52

the table, giving a data structure whose false positive rate (the probability that an element

not in the set is falsely reported to be in the set) can easily be bounded by ≤ 2b/ (2f − 1).

For bad choices of parameters, or unlucky choices of hash function, the data structure

may fail, being unable to store all its elements’ fingerprints. Therefore, it is important to

analyze the likelihood of a failure, and to understand which combinations of parameters

have a guaranteed low failure probability

2.8 Kmer Based Error Correction Methods

Because errors located at precise genomic position occurs rarely and in a random

manner, reads that cover that genomic position will occur with very high frequency.

Kmer based methods take advantage of this high frequency to detect and correct any base

considered erroneous. All kmer-based error correction methods employ this idea by

counting K-mers and storing the counts using various data structures. For example,

BLESS [119]employs a bloom-filter and RACER [89] organizes 2-bit-encoded K-mers as

64-bit integers and stores them in a hash table.

2.9 Previous Related Work

Musket [120]uses a multi-stage workflow including two-sided conservative

correction, one-sided aggressive correction, and voting-based refinement. It computes the

multiplicity of each k-mer in the hash table to filter out the stored unique k-mers using

Bloom filter. A parallelized slave-master k-mer counting method is implemented to sort

out unique k-mers and then generates k-mer coverage histograms to determine a cut-off

for a k-mer spectrum for the coverage of likely correct and erroneous k-mers. The error

correction stage initially uses a two-sided conservative correction strategy to correct one

substitution error, at most, in any k-mer of a read with the intention of finding a unique

53

alternative base that makes all k-mers covering the position trusted. Significant

improvement in speed can be achieved by evaluating only the leftmost and rightmost k-

mers that cover the position. It then applies a one-sided correction to aggressively correct

errors in the case of more than one error occurring in a single k-mer. Furthermore, to

confine the number of false positives, error correction is conducted for each integer value

from 1 to the maximal allowable number of corrections. The drawback is its reliance on

alternative selection if a k-mer is wrongly called to be trusted even though it contains

sequencing errors or incorrect corrections. To overcome this drawback, look-ahead

validation and voting-based refinement are implemented to assess the trustiness of

neighboring k-mers that cover the base position at which a sequencing error likely occurs.

BLESS [119] uses a single minimum-sized Bloom filter and disk-based k-mer

counting algorithm like DSK (Disk Streaming of K-mers) [128] and KMC (K-mer

Counter) [129] to achieve high memory efficiency for error correction, sequence repeat

handling, and read end correction by read extension. Briefly, it counts k-mer multiplicity

to sort out solid k-mers from weak k-mers, creates a k-mer multiplicity histogram to

determine the multiplicity threshold M, and programs those solid k-mers into a Bloom

filter. Weak k-mers are converted to their canonical forms using consecutive solid k-mers

(known as k-mer islands) in their neighborhood or read end through Bloom filter

querying. Bases in a weak k-mer that do not overlap with solid k-mers are modified. For

instance, weak k-mers that exist between two consecutive solid k-mer islands S 1 and S 2

are corrected by using the rightmost k-mer of S 1 and the leftmost k-mer of S 2. BLESS

has three distinctive features: high memory efficiency, better handling of genome repeats,

and more accurate error correction at read ends.

54

As part of the GATB (Genome Assembly & Analysis Took Box) [122], Bloocoo

was developed to correct large datasets with low memory footprints by using DSK [33], a

counting algorithm that requires a user to define a fixed amount of memory and disk

space. Its error correction process is like CUSHAW [130], a procedure also used by

Musket. In Bloocoo, the multi-set of all k-mers present in the reads is partitioned, and

partitions are saved to disk. Then, each partition is separately loaded into memory in a

temporary hash table. The k-mer counts are returned by traversing each hash table. Low-

abundance k-mers are optionally filtered and solid k-mers are inserted in the Bloom filter

based on a given threshold. With a multi-stage correction approach like Musket [120],

correction is performed by scanning k-mers of a read, trying the other three different

possible nucleotides at the error site, and checking if corresponding k-mers are in the set

of solid k-mers. When several close errors occur, the pattern is more complex, and errors

are corrected via a voting algorithm. Bloocoo distinguishes itself from other error

correctors in the k-mer counting stage and the way that solid k-mers are stored in

memory. By using only 11 bits of memory per solid k-mers, Bloocoo requires only 4-GB

memory for the entire human genome re-sequencing read correction at 70× coverage.

Different from other tools, Lighter [124] samples k-mers randomly, i.e., sub-

sampling fraction α rather than counting k-mers. It uses a pattern-blocked Bloom filter

[131]to decrease the overall number of cache misses and improve memory efficiency.

Lighter populates Bloom Filter A with a k-mer subsample, followed by a simple test

applied to each position of each read to compile a set of solid k-mers, and then stores the

solid k-mers in Bloom Filter B. A sequenced k-mer survives sub-sampling with

probability of α, a user determined sub-sampling fraction that is set to be 0.10 (70/C) with

55

C being average coverage. For error correction, lighter applies a greedy approach like

that used in BLESS [119] and extends a read when an error is located near the end of the

read. Error correction is parallelized by using concurrent threads to handle subsets of the

reads. Lighter maintains near constant accuracy and Bloom filter size if the sampling

fraction is adjusted in inverse proportion to the coverage depth. However, a user should

specify k-mer length, genome length, and sub-sampling fraction α.

Trowel [121] is a highly parallelized and efficient error correction module for

Illumina sequencing reads. The key difference to other tools is that Trowel relies on

contiguity of high quality values instead of a k-mer coverage distribution to differentiate

between solid and weak k-mers. The algorithm not only improves low quality bases but

also iteratively expands the trusted k-mer set by including corrected k-mers. Trowel

applies two different algorithms, DBG (Double Bricks & Gap) and SBE (Single Brick &

Edges), to increase the likelihood that a correction can be made and to boost quality

values. The DBG algorithm exploits an asymmetric k 1-gap-k 2 structure, where a gap is

a single base, k = k 1 + k 2. The quality of the gap is boosted to the maximum quality

value when the index relevant to gap-enclosing bricks contains the gap with high quality.

The SBE algorithm is used because bases at read ends cannot be accessed by the brick

index. Hence, a new edge-k-edge index is used to correct edges, where an edge is a single

base, or increase their quality values as in the DBG algorithm.

BFC [123] is the most recent error correction method and unlike some of the

above algorithm which use greedy approach for correction, it uses a non-greedy method

and corrects recurrent errors of low base quality in a read. It is fast and handles

56

compressed data. BFC encounters problems in correcting errors that exist in regions of

low coverage. Which is synonymous with k-mer based error correction methods.

2.10 Discussions

For the accuracy of these error correction methods, various factors had to be taken into

consideration. One factor is the handling of ambiguous bases in the sequence which are

often represented by other characters apart from ACTG. The way these ambiguous bases

are handled is critical to their performance. Also of importance are the error correction

parameters determined by each individual method. How the parameters are selected and

assignment of default values is critical for correction accuracy. Both factors are discussed

in this section

2.10.1 Ambiguous Base (N) Handling

A fair and precise analysis of the error correction methods is highly dependent on how

each method deals with ambiguous or unknown bases mostly existing as N’s within a

sequence read. Different methods handle N’s in different ways. BFC [123] tries to correct

N’s to A/C/T/G based on k-mers around it while BLESS remove ambiguous bases by

choosing large k-mer values and any base that does not overlap with the solid k-mer gets

modified to a base found in the solid k-mer. i.e. Ns are converted to an arbitrary character

and corrected if the character does not match with the original ones. Furthermore, Trowel

corrects all ambiguous bases if it has a low quality (Phred score < 38) during the Single

Brick Edge stage because it finds a candidate base based on high quality anchoring k-mer

statistics. On the other hand, lighter corrects N’s but does not attach any importance to

the resulting correction in calculating precision. This is because it uses scores for the

calculation and scores corrections at bases represented by N a value of zero (0) making it

57

irrelevant. Musket only randomly converts unknown bases to known bases which, we

assume, may impact the correction performance. Bloocoo [122] also converts ambiguous

bases to known bases before correction.

2.10.2 Parameter Selection

One of the most important aspect of error correction and indeed, any NGS analysis, is

how parameters for running the analysis are selected. Constant features of most of the

error correction methods are options for both user specified and default parameters. This

is to give control to the user because a variety of dataset exist. Selecting what options to

turn on or off is critical depending on a user’s understanding of their data. There also

parameters that should be left untouched because they are automatically determined

based on the given dataset or a prior analysis that confirms such parameters to be optimal

across board. Developers will almost always provide instructions for parameter selection.

If not given, a careful study of the method employed and the available examples of

running the error correction algorithm is always a good start for correcting NGS data.

Several articles reviewing various error correction methods also provide

recommendations on how to select some parameters for reviewed methods.

2.11 Significance of Error Correction

NGS data are used in several analyses and many of these analyses may benefit

from error correction. Analysis like identification of variation in copy number,

chromosomal rearrangement, genome assembly, SNP (Single Nucleotide Polymorphism)

etc. can all gain from error correction.

A known example of the significance of error correction is in genome assembly.

Due to the size of both plant and animal genomes, it is currently impossible to sequence

58

the genome at once. This led to sequencing of genomes in fragments. These fragments

are aligned and merged to recover the original genome sequence through a process

known as genome assembly. It is basically fusing together the ordering of the bases that

make up the DNA. The generated reads are assembled into a draft genome by identifying

reads originating from the same region. Once identified, they are merged into longer

contiguous sequences called contigs. The short length of sequence reads makes assembly

complex therefore requiring highly reliable data for accurate assembly. However, the

flawed nature of NGS data because of introduced sequencing errors, leads to unrealizable

downstream analysis. The introduction of false genetic information complicates such

analysis. Error correction allows for recovery of data that could otherwise muddle the

work of a genome assembler. Genome assembly has been extensively discussed in [132]

Figure 2.18 Assembly: http://people.mpi-inf.mpg.de/~sven/images/assembly.png

It has also been well studied that error correction affects sequence alignment.

Errors in a read sequence can lead to misalignment of reads to a reference genome. For

http://people.mpi-inf.mpg.de/~sven/images/assembly.png

59

repetitive regions, errors in a unique path of a read can allow it to match multiple

locations of the repetitive region [78], [93], [120], [130].

Error correction is also of significance during re-sequencing where a comparison

to understand variability between multiple known genomes of a given specie is desired.

In this case, the data maybe from same organism with a known reference, sequenced

using different sample preparation methods or sequencing platforms [73][133].

Furthermore, errors also affect SNP detection and discovery. To detect variants,

sequence aligners usually map the read to a reference genome. Once mapped, these errors

can increase the observed differences resulting in a deceptive analysis. Also, SNPs are

not uniformly distributed and errors often have high impact on regions of high density

[72], [73].

Error correction is not without its problems too. Even though the software is

proposed to correct errors, erroneous correction like changing a base from the correct to

an incorrect value, can also introduce errors into the sequence. A careful examination is

required before correcting the data.

60

2.12 Motivations for k-spectrum based application

Error correction methods based on k-spectrum originate from earlier implementation of

de Bruijn graph assemblers using spectral alignment [66] and follow a generalized

framework as shown in Figure 2.18.

Figure 2.19 General framework of k-spectrum based error correctors

A k-spectrum is the distribution of a set of decomposed distinct substring of

length k (i.e., k-mer) observed in a group of reads. It counts the occurrence of all k-length

contiguous strings represented as a vector within the spectrum feature space. The

expectation is that errors in a sequence will result in a strong divergence at low k-mer

frequencies compared to a sequence without errors. One challenge in error correction is

that inconsistent genome sampling and genomic repeats may occur at high frequencies

and consequently result in numerous equally susceptible correction possibilities. Owing

61

to this, a frequently explored property of the k-mer spectra is the distribution composition

of the spectra representing motif groups with varying sequence and bias frequencies

[134]. This implies that based on their frequencies of occurrences, k-mers having small

hamming distances are presumably of the same genomic locus and should be corrected.

K-spectrum-based correction starts by assigning a weighted value to each k-mer after

extraction from sequencing reads. The value is assigned based on sorted count

frequencies or base quality scores.

By determining and selecting an acceptable error threshold [135], [136], weak

(insolid or untrusted) k-mers with low frequencies are separated from solid (trusted) k-

mers (with high frequencies). The reads with weak k-mers are considered for error

correction by repeatedly converting them into solid k-mers until there are no weak k-mers

in the sequence. Hence, only solid k-mers will be kept after correction.

2.13 Problem Statement

Despite the availability of over 60 error correction methods of which approximately

59.1% of them are k-mer frequency and spectrum based, there still exists limitations in

their correction ability. The amount of false positive corrections generated can still be

further reduced by implementing more robust correction methods. There is a need for an

in-depth comparative statistical analysis to determine how these correction methods

currently perform. The amount of computational resources used is also desired to be

minimal which is currently not the case. Though computational resources like storage and

RAM (Random Access Memory) are getting cheaper in addition to existence of cloud

based resources, there is also a rise in the length and size of NGS data with improved

sequencing technologies. Therefore, it is important for error correction to be achieved

62

with high accuracy and minimal resource usage. Furthermore, most error correction

methods are also Linux command-line based, making it difficult for molecular biologist,

with little to no experience working on Linux systems, to correct their NGS data. There is

currently no web-based platform for error correction. A web-based platform that will

provide a user-friendly interface for error correction is necessary. All the above-

mentioned problems necessitated the need for our current studies.

2.14 Chapter Summary

This chapter discussed different types of error correction algorithms and data structures

that were and may be implemented. It outlined the significance of error correction for

NGS data analysis and the problems encountered by current correction methods. It details

the significance of error correction to genome assembly, sequence alignment, SNP

detection and re-sequencing projects. Based on the studies, the chapter defined the

problems that will be tackled in the dissertation.

63

CHAPTER III - COMPARISON OF ERROR CORRECTION METHODS

3.1 Framework

Having discussed different error correction methods in CHAPTER II, it is imperative to

analyze the performance of the methods to gain full insight into their error correction

process, advantages and disadvantages. The evaluations allow making of informed

recommendations to users on what, why and when they should use a given error

correction method and how to choose their parameters. The analyses also led to the

provision of a web-based workflow called BECOW (Bioinformatic Error Correction

Workflow). This workflow makes it easy for Molecular Biologists to correct their NGS

data without the need to learn command-line language which may constitute a steep

learning curve for them. The analysis was performed in two different phases. Results

from phase I evaluations led to a more robust evaluation in phase II. Though the purpose

of both evaluation phases is the same i.e. to study performance of the existing error

correction methods and make usage recommendations to users, the evaluation methods

are different:

• Phase I – involved a direct evaluation of performance metrics.

• Phase II – involved evaluation of performance metrics from a statistical

perspective by expanding on phase I.

Both analysis phases are presented in 3.5 and 3.6

64

3.2 Evaluation Workflow

The workflow used for both phases of the analysis are the same as shown in Figure 3.1

Steps taken in the workflow consists of: sequencing dataset simulation, pre- and post-

correction alignment to reference genome, parameter optimization for error correctors,

and derivation of evaluation statistics and metrics (see http://aluru-

sun.ece.iastate.edu/doku.php?id=ecr for more details). Briefly, both error-free and error-

containing paired-end sequences were generated in FASTQ format by ART simulation.

The error-free data served for the QA/QC purpose throughout the workflow. After

converting FASTQ to FASTA (pre-process due to ECET’s header requirements before

alignment), simulated erroneous sequences were aligned to a reference genome using

BWA package version 0.7.12 [137]. A reference genome file is used for alignment

because it can help in the determination of the difference between the corrected and

uncorrected data file after error correction. The SAM alignment files produced by BWA

were then converted to TEF format using ECET (Error Correction Evaluation Toolkit)

[75]. ECET version 1.1 was used to allow an unbiased comparison. Error-containing

datasets were corrected using error correction tools. The error correction outputs from

these tools were converted to TEF (Target Error Format) files in ECET. The two TEF

files that were generated pre- and post-correction were compared using the

Comp2PCAlign script provided in ECET. This generates files that inferred performance

assessment metrics of the error correction methods. The metrics are:

• True positive (TP) – a wrong base correctly changed to its true base

• False positive (FP) – a correct base incorrectly altered

• False negative (FN) – an incorrect base left unaltered

65

• True negative (TN) – a true base correctly identified

• Recall or sensitivity = TP/ (TP + FN)

• Precision = TP/ (TP + FP), gain = (TP − FP)/ (TP + FN), and F-score = 2 ×

((precision × recall)/ (precision + recall)).

Figure 3.1 Workflow for error-correction performance analysis using ECET. See [75] for

more information.

66

The generated metrics have been widely used to evaluate error correction quality

[75], [80], [119]–[124] Despite the importance and uniqueness of each of the metrics

generated, the focus of our analysis was on precision and F-score. F-score, defined as a

harmonic mean of precision and recall, was chosen because it accounted for both false

positives and false negatives which should have similar cost to downstream data analysis

(e.g., genome assembly). Precision was chosen because it provides the accuracy of

corrections made by a given correction method based on the percentage of right

corrections within the total corrections for an individual dataset.

3.3 Evaluation Parameter Setting

An inherent difficulty in using any corrector is the challenge of choosing optimal

parameters [80]. Since the quality and accuracy of error correction tools are highly

dependent on parameter (particularly k-mer) settings, we introduced an iterative

optimization loop to select recommended k values by using Kmergenie version 1.6476

[138]. Very few tools have implemented automated choice of parameters sensitive to

datasets being processed. Although BLESS [119] can automatically choose an

appropriate value for M, k-mer multiplicity threshold, it cannot select an optimal k and

nor can other tools evaluated in this study (except for Reptile [80], which chooses

k = log4|G|, where G is the genome length). In this loop, we also tweaked other

parameters while maintaining the same suggested best k-mer derived for a specific

dataset. For instance, α is a user-defined parameter in Lighter and its default value is set

by the formula 0.1(70/C), where C is the coverage depth.

While it is possible that the k picked by Kmergenie may not be the optimal value

for all six evaluated tools, we performed limited tests in tweaking k and other user-

67

defined, tool-specific parameters but did not observe significant deviations in terms of

performance metrics. For similar reasons, we set edit distance to 2 (36/56-bp reads), 4

(100-bp reads) or 6 (250bp) for read alignment based on the recommendation of 4 % read

length (see http://bio-bwa.sourceforge.net/bwa.shtml).

3.4 Selected k-mer based Error Correction Methods

For both phase I and II analysis, 7 recently published and widely used k-mer

based error correction methods were selected for the evaluation. i.e. BFC[123], BLESS

[119], Bloocoo [122], Lighter [124], musket [120], trowel [121] and Reptile [80]. Reptile

was used in phase I but dropped in phase II due to its age (published in 2010) in addition

to the complex nature of its execution. Given that it is also single threaded and the large

number of dataset that had to be evaluated, it will be unfair to evaluate and compare the

speed and computational resource usage of reptile to the other methods. It was replaced

by BFC, which was the latest k-mer based method as at the time of writing this

dissertation. As summarized in Table 3.1, these methods differ greatly in error correction

algorithms as well as in how hash tables and Bloom filters are implemented

http://bio-bwa.sourceforge.net/bwa.shtml

68

Table 3.1 Distinguishing characteristic features of seven k-mer based methods

investigated in phase I and II.

Tools
Algorithm

highlight

Data

structure
Pros Cons

Quality

score

Target

error type

Reptile

Explore multiple

alternative k-mer

decompositions

and contextual

information of

neighbouring k-

mers

Hamming

graph

Contextual

information to

resolve errors

without increase

in k or lowering

local coverage.

Uses a single

core (non-

parallelized)

Used

Substitution

Deletion

Insertion

BFC

Non-greedy and

quality aware

method. Uses

exhaustive search

like in fermi

Blocked

bloom

filter /hash

table

Results in fewer

overcorrections;

has two variants

and handles

compressed files

Specifically,

for high-

coverage

WGS human

data

Used Substitution

Musket

Multistage

correction: two-

sided

conservative, one-

sided aggressive

& voting-based

refinement.

Bloom

filter

Master-slave

Multi-threading

results in high

parallel

scalability

A single

coverage cut-

off to

differentiate

trusted and

weak k-mers

Not used Substitution

BLESS

Count k-mer

multiplicity;

Correct errors

using Bloom

filter; Restore

false positives.

Bloom

filter

High memory

efficiency;

Handle genome

repeats better;

Correct read

ends

Cannot

automatically

determine

the optimal k

value

Not used

Substitution

Deletion

Insertion

Bloocoo

Parallelized

multi-stage

correction method

like Musket

Blocked

Bloom

filter

Faster and lower

memory usage

than Musket

Not

extensively

evaluated
Not used Substitution

Trowel

Rely on quality

values to identify

solid k-mers; Use

two algorithms

(DBG and SBE)

Hash table

Correct

erroneous bases

and boost base

qualities.

Only accept

FASTQ files

as input Used Substitution

Lighter

Random sub-

fraction sampling;

parallelized error

correction.

Pattern-

blocked

Bloom

filter

No k-mer

counting; near

constant

accuracy and

memory usage

A user must

genome

length and

subsampling

fraction α

Used

Substitution

Deletion

Insertion

69

3.5 Phase I Analysis

3.5.1 Error Correction Methods

In phase 1, six k-spectrum-based methods, i.e., Reptile version 1.1, Musket

version 1.1, BLESS v0p23 for 64× Linux, Bloocoo 1.0.4-linux, Lighter version 1.1, and

Trowel version 0.1.4.2, were compared using six simulated sets of paired-end Illumina

sequencing data.

3.5.2 Computational Environment

Computational experiments were conducted using multiple machines due to

specific requirements of individual tools and varied sizes of synthetic testing datasets;

hence, consideration was not given to the performance in terms of run time and memory

usage but rather effectiveness and accuracy of read error correction. Due to requirement

of Message Passing Interface (MPI), BLESS was run on a Red Hat Enterprise Linux MPI

cluster with 12 nodes, and each node had 12-GB memory and 8 cores running at a core

speed of 2.93 GHz. For all other tools, datasets with a genome size >5 MB were run on a

64-bit Ubuntu 12.04 LTS Intel Core i7-3770 CPU@ 3.40 GHz machine with 8 cores and

8-GB memory. The E. coli datasets (genome size <5 MB) were run on a CentOS—64-bit

Intel(R) Xeon(R) CPU E5630@ 2.53 GHz machine with 16 processors and a total

memory of 296 GB.

70

3.5.3 Synthetic NGS Datasets

Reference genome sequences downloaded from NCBI (National Center for

Biotechnology Information) RefSeq (Reference Sequence) database, included two

bacteria genomes (Escherichia coli (EC) strain K-12 and Bacillus cereus (BC) strain

ATCC 14579); and one invertebrate genome (Drosophila melanogaster (DM)).

Synthetic, paired-end sequence read datasets were generated using ART with default

Illumina profiles of empirical quality score distributions and error rates [139]. We chose

to simulate Illumina-specific sequencing data because of the predominant status of

Illumina sequencers among all NGS platforms. ART was used because it imitates the

sequencing process with built-in, NGS platform-specific read error models and base

quality value profiles parameterized empirically using large sequencing datasets [139].

All three types of errors (substitution, insertion, and deletion) for all major sequencing

platforms are incorporated in simulated reads. The following default error rates were

selected: 0.009 % and 0.015 % of insertion and 0.011 % and 0.023 % of deletion for the

first and the second read, respectively. Base substitution is the dominant error type

accounting for up to 98 % of all errors in Illumina sequencing data. The substitute rate in

the simulated datasets varied, resulting in the overall error rate varying between 0.1 and

0.95 %, which is typical for Illumina sequencers (see Table 2.1). Details of the six

simulated datasets are shown in Table 3.1 and these datasets can be downloaded at

http://pinfish.cs.usm.edu/ngs_correction/. The simulated NGS datasets varied in coverage

depth (10× to 120×), read length (36 to 100 bp), and genome size (4.6 to 143 MB).

http://pinfish.cs.usm.edu/ngs_correction/

71

Table 3.2 Synthetic paired-end Illumina sequencing datasets simulated using ART.

Organism

(dataset ID)

Accession number

of reference

genome assembly

ART simulation parameter Genome

Size (Mb) Read

length (bp)

Genome

coverage

Insert

size

Error

rate (%)

Escherichia coli

(EC-1)

GCF_000005845.2

(ASM584v2)

36 70× 200 0.866 4.6

Escherichia coli

(EC-2)

GCF_000005845.2

(ASM584v2)

36 20× 200 0.866 4.6

Escherichia coli

(EC-3)

GCF_000005845.2

(ASM584v2)

100 20× 200 0.952 4.6

Bacillus cereus

(BC-1)

GCF_000007825.1

(ASM782v1)

56 50× 200 0.175 5.4

Bacillus cereus

(BC-2)

GCF_000007825.1

(ASM782v1)

100 120× 300 0.109 5.4

Drosophila

melanogaster

(DM)

GCF_000001215.4

(Release 6)

100 10× 300 0.854 143

3.5.4 Comparative Analysis Results

The derived performance metrics are presented in Table 3.2. BLESS and Bloocoo

each failed to process one dataset, i.e., BC-2 and DM, respectively. A negative gain value

means that more errors are introduced into the data than corrected. Five methods (Reptile,

BLESS, Bloocoo, Trowel, and Lighter) produced negative gains, mostly in processing

EC-3. F-score is the most comprehensive measure of error correction performance. If

setting F-score = 0.8 as the threshold for good performance, all methods except Musket

underperformed with at least one dataset. Therefore, Musket was the best overall

performer whereas, for yet undiscovered reasons, Trowel was the worst one with five

instances of underperformance.

72

Table 3.3 Performance analysis of six k-spectrum-based error correctors as evaluated

using six synthetic Illumina datasets

Dataset Method TP FP FN Recall Gain Precision F-score

EC-1

36 bp

70×

k=19

Reptile 2335361 144751 451889 0.8378 0.7859 0.9416 0.8867

Lighter 2695425 72843 91825 0.9671 0.9409 0.9737 0.9704
BLESS 2624659 48342 56279 0.9790 0.9610 0.9819 0.9805
Bloocoo 2411701 22259 375549 0.8653 0.8573 0.9908 0.9238
Musket 2701885 61096 85365 0.9694 0.9474 0.9779 0.9736
Trowel 1246340 705438 1539825 0.4473 0.1941 0.6386 0.5261

EC-2

36 bp

20×

k=17

Reptile 681551 140039 114910 0.8557 0.6799 0.8296 0.8424

Lighter 108241 58579 688220 0.1359 0.0624 0.6488 0.2247
BLESS 779824 18095 16637 0.9791 0.9564 0.9773 0.9782
Bloocoo 689322 6454 107139 0.8655 0.8574 0.9907 0.9239
Musket 767087 18182 29374 0.9631 0.9403 0.9768 0.9699
Trowel 434885 19167 361576 0.5460 0.5220 0.9578 0.6955

EC-3

100 bp

20×

k=24

Reptile 105 461 876053 0.0001 -0.0004 0.1855 0.0002
Lighter 858125 2446 18033 0.9794 0.9766 0.9972 0.9882
BLESS 746 872860 875412 0.0008 -0.9954 0.0009 0.0009
Bloocoo 79790 3644539 796368 0.0911 -4.0686 0.0214 0.0347
Musket 873592 1645 2566 0.9971 0.9952 0.9981 0.9976
Trowel 155 178354 876003 0.0002 -0.2034 0.0009 0.0003

 BC-1

56 bp

50×

k=27

Reptile 382043 22303 16602 0.9584 0.9024 0.9448 0.9515
Lighter 331759 15470 141618 0.7008 0.6682 0.9554 0.8086
BLESS 429017 34018 11943 0.9729 0.8958 0.9265 0.9492
Bloocoo 410156 24127 63221 0.8664 0.8155 0.9444 0.9038
Musket 355015 47460 118362 0.7500 0.6497 0.8821 0.8107
Trowel 55277 4976 26744 0.6739 0.6133 0.9174 0.7770

BC-2

100 bp

120×

k=31

Reptile 497425 116 208081 0.7051 0.7049 0.9998 0.8269

Lighter 698089 159 7417 0.9895 0.9893 0.9998 0.9946
BLESS - - - - - - -
Bloocoo 27409 1278837 678097 0.0389 -1.7738 0.0210 0.0272
Musket 703882 68 1624 0.9977 0.9976 0.9999 0.9988
Trowel 652845 108 52661 0.9254 0.9252 0.9998 0.9612

 DM

100 bp

10×

k=21

Reptile 11702183 187733 517322 0.9577 0.9423 0.9842 0.9708
Lighter 42 23055867 12224293 0.0000 -1.8861 0.0000 0.0000
BLESS 11122683 126388 1101652 0.9099 0.8995 0.9888 0.9477
Bloocoo - - - - - - -
Musket 11550483 163838 673852 0.9449 0.9315 0.9860 0.9650
Trowel 1197127 384403 11027208 0.0979 0.0665 0.7569 0.1734

In the first column, dataset ID, read length, genome coverage, and the optimal k estimated using

KmerGenie are shown. The values in TP, FP, and FN columns are number of bases. Italicized and bolded

values denote the best performer given a specific evaluation measure for a dataset. The symbol “–”

indicates that a method failed to process a specific dataset

73

3.5.4.2 Influence of read length on performance

Three datasets with a short-read length of either 36 or 56 bp were processed by

four to five methods to a satisfactory degree (F-score > 0.8, Fig. 3.2). Only two, three,

and four methods generated satisfactory results with the other three 100-bp datasets EC-

3, DM, and BC-2, respectively. In general, read length has an adverse impact on tool

performance, i.e., the longer the read length, the less superior a tool performs. This

impact was the most pronounced on Bloocoo, which underperformed in all three long-

read datasets. Musket was the most resistant tool because it performed well across all six

datasets. For the other four tools, there appeared to exist interactive effects among read

length, coverage depth and genome size because no clear-cut relationship between read

length and performance was observable.

Figure 3.2 Results showing influence of read length on error corrector performance

74

3.5.4.3 Influence of genome coverage depth on performance

A medium coverage depth (50- and 70-fold) appeared to be preferred by all tested

tools except Trowel (Fig. 3.3). At a low depth (10- and 20-fold), Reptile and BLESS

performed well except for the long-read dataset EC-3. Lighter seemed to require a

medium-to-high coverage depth (50-fold or higher). In case of low depth (20-fold), a

longer read length might compensate for the loss of coverage depth, resulting in a

satisfactory performance. At the highest coverage depth (120-fold), two tools failed

(BLESS) or underperformed (Bloocoo). Again, Musket showed the strongest resistance

to variation in coverage depth

Figure 3.3 Results showing influence of data coverage on error corrector performance

75

3.5.4.4 Influence of genome size on performance

Genome size is most likely a covariant that interacts with the other two factors

(read length and coverage depth) because instances of underperformance occurred across

the full spectrum of genome size (Fig. 3.4). For small genomes (EC and BC), Musket was

the best method, followed by Lighter and Reptile (both performed well in four of five

datasets), then BLESS and Bloocoo (three of five datasets), and Trowel ranked the last.

For the large genome (DM), only three methods (Reptile, BLESS and Musket) performed

well.

Figure 3.4 Results showing influence of organism genome size on error correction

performance

76

3.5.5 Discussions

Different Bloom filter variants were implemented in four of the six investigated

methods to allow compression of the filter, storage of count data, and representation of

maps in addition to sets [124] (also see Table 3.1). The other two methods (Reptile and

Trowel) used hash tables, which do not yield false positives. Although Bloom filter’s

space efficiency comes at the cost of false positives, all major error correction programs

have reduced or minimized false positive rate by implementing various algorithms.

Authors who developed these six tools had put lots of efforts in increasing speed and

reducing memory footprint while maintaining or improving their correction quality. In

the present study, we chose to focus solely on correction quality because speed and

memory are no longer bottlenecking factors that limit the application of these tools.

Simulated datasets were used because correction accuracy could be directly

measured. When real experimental datasets are used, only indirect evaluation metrics

(e.g., N50 contig size and genome coverage of de novo assemblies and percentage of

mapped reads in genome alignment) can be derived for performance assessment. Using

real datasets in tool evaluation however, can provide insights that cannot be obtained

from simulation studies. Nevertheless, extensive evaluations should be conducted using

simulated datasets before moving on to real datasets. Authors of the six tools investigated

in our study have performed evaluations using both synthetic and real datasets. In

general, tools that perform well with synthetic datasets also work well with real datasets

(see publications featuring BLESS [119], Trowel [121], and Lighter [124]). There is a

good correlation between performance metrics for simulated and real datasets.

77

Previous evaluations showed that Musket was consistently one of the top

performing correctors for both simulated and real datasets when it was compared with

several well-regarded programs: HiTEC, SHREC, Coral, Quake, Reptile, DecGPU, and

SGA [84]. Here, we also demonstrated that Musket yielded better performance metrics

than Reptile. When authors of BLESS, Trowel and Lighter performed their comparative

evaluations, they claimed that their own tools slightly outperformed Musket. However, if

looking more specifically into simulated datasets, Musket performed equally well as the

other three tools did (e.g., the synthetic 40× human chromosome 1 dataset used in [119]).

Bloocoo shares a great deal of similarity with Musket, especially in the multi-stage error

correction algorithm [120], [122]. They reportedly achieved similar correction accuracy

as measured by recall and precision on a simulated dataset with 1 % error rate from

human chromosome 1 at 70× coverage (see “Supplementary Material” in [122]). In the

current study, these two programs did perform equally well on three datasets (EC-1, EC-

2, and BC-1 with read length of 36 or 56 bp). However, Bloocoo underperformed or

failed on the remaining three datasets with longer reads (100 bp), suggesting the

existence of potential bottleneck in Bloocoo limiting its application to longer reads.

3.5.6 Review and Future Direction

Identifying and correcting errors in NGS data is an important step before carrying

out any in-depth downstream analysis. This phase I analysis was aimed at providing an

independent and unbiased evaluation of the effects of three NGS dataset features on the

performance of six k-spectrum-based error correction methods with an emphasis on

correction accuracy. We observed that performance of six selected methods was

dependent on such factors as read length, genome size and coverage depth. Our

78

experimental results suggest that good performance of a method for a specific dataset

does not guarantee its ability to perform as well for another type of dataset, hence careful

consideration should be given to selecting appropriate tools. Among the six tested

methods, Musket appeared to be the front runner, whereas Trowel showed the worst

performance. We recommend Musket as the top choice because of its consistently

superior performance across all six testing datasets though the datasets and their varieties

are limited in scope. In phase II analysis, the analysis was expanded to include the most

recent error correction method, a wider spectrum of genome size and complexity (e.g.,

human genome), and longer reads (e.g., 250bp). Performing a second, more in-depth

statistical analysis will give a broader inference on how these error correction methods

perform.

3.6 Phase II Analysis

The significance of error correction has previously been outlined. Deficiencies

observed in phase I evaluation, see 3.5, of error correction methods includes: limitations

due to size of dataset, computational performance and an effective statistical evaluation.

Here we report a simulation study using a full factorial analysis to examine how NGS

dataset characteristics (genome size, coverage depth and read length particularly) affect

error correction performance, as well as to compare performance sensitivity/resistance of

six k-mer-spectrum based methods to variations in dataset characteristics. Multi-way

ANOVA tests indicate that choice of correction method and dataset characteristics had

significant effects on performance metrics (precision and F-score). Overall, BFC,

BLESS, Bloocoo and Musket performed better than Lighter and Trowel on 27 synthetic

datasets. However, Bloocoo and Lighter were the most resistant to the examined

79

variables, while Musket was the most sensitive method. For each chosen method, read

length and coverage depth showed more pronounced impact on performance than

genome size. This study shed insights to the performance behavior of error correction

methods in response to the common variables one would encounter in real-world NGS

datasets. Based on this extensive comparative and statistical evidence of performance,

further studies of wet lab-generated experimental NGS data is warranted to validate

findings obtained from this simulation study.

3.6.1 Error Correction Methods

In the present study, we selected the following six recently developed k-mer

spectrum-based error correction methods: BFC-ht release 181 [123], BLESS version 0.23

[119], Bloocoo version 1.0.5 [122], Lighter version 1.0.7 [124], Musket version 1.1 [120]

and Trowel version 0.1.4.3 [121]. All six algorithms represent the state-of-the-art in NGS

data error correction and use bloom filter as their underlying data structure. Except BFC,

all others were included in our previous study [140]. KmerGenie version 1.6476 [138]

was used to determine the recommended best k-mer for each dataset (Table 3.4), which

served as the input parameter k during error correction process. All other parameters of

the chosen tools were set at the default values

80

3.6.2 Computational Environment

This simulation study, from data generation and error correction to performance

evaluation, was conducted on a dedicated server named BigCat. The server ran on a 64-

bit Ubuntu 12.04 LTS Intel(R) Xeon(R) CPU with 16 nodes, 72 GB memory and a core

speed of 2.40GHz. The memusage command was used to monitor the amount of memory

consumed by each of the correction methods during the error correction process while the

time command was used to record CPU time consumption of the process. Both memory

usage and time consumption together with the corresponding averages and standard

deviations for each corrector are shown in Table 3.5.

3.6.3 Synthetic NGS Dataset

Reference genome sequences of Escherichia coli strain K-12 (4.6 Mb),

Drosophila melanogaster (143 Mb) and Human chromosome 21 (48 Mb) were

downloaded from NCBI’s reference sequence database

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq) for NGS data simulation and error correction

evaluation. Selection of these three organisms was based on genome size variation,

genome complexity (simple prokaryote to complex eukaryote) and taxonomic coverage

(bacterium, invertebrate and vertebrate). Ambiguous regions in the reference genomes

were removed prior to the simulation study. This was to allow a fair comparison because

some methods attach no importance to these regions (e.g. [124]), modifies them ([141],

[142]) or randomly convert the ambiguous bases to known bases [120] in their error

correction process.

81

ART, was still used to generate 27 synthetic datasets (9 per organism) of paired-

end sequencing reads according to Illumina’s empirical quality score distributions and

error rate profile [139]. The simulated reads were 50-, 150- or 250-bp in length with a 20-

, 80- or 320-fold genome-wide coverage for each organism. The insert size was kept

constant at 300 bp for all simulations to eliminate any bias that may be introduced if

variable fragment sizes were allowed. Substitution, deletion and insertion errors were

evenly introduced into the sequence at a total error rate of 1%, a rate at the upper limit of

reported error rates for most NGS platforms and higher than that of the Illumina platform.

This high error rate was chosen to consider worst case scenarios where suboptimal data

may be produced from a sequencing run. These simulated datasets are available at

http://pinfish.cs.usm.edu/simulation_data.

82

Table 3.4 Simulated datasets and optimal k-mer values derived using KmerGenie [138]

Organism Genome coverage Read length (bp) k-mer size

Escherichia coli

20X 50 15

20X 150 23

20X 250 35

80X 50 31

80X 150 37

80X 250 59

320X 50 31

320X 150 61

320X 250 76

Drosophila

melanogaster

20X 50 18

20X 150 21

20X 250 30

80X 50 15

80X 150 65

80X 250 134

320X 50 36

320X 150 97

320X 250 127

Human

Chromosome 21

20X 50 17

20X 150 30

20X 250 59

80X 50 31

80X 150 64

80X 250 87

320X 50 37

320X 150 85

320X 250 103

83

Table 3.5 Memory (in GB) and CPU Time (in hours) consumption by six error correctors for the 27 synthetic NGS datasets

Error Corrector BFC BLESS Bloocoo Lighter Musket Trowel
Measurement Memory Time Memory Time Memory Time Memory Time Memory Time Memory Time

Mean 7.52 5.2 0.02 12.33 4.71 6.29 1.47 3.22 15.55 23.99 18.71 2.42

Standard deviation 4.79 10.6 0 26.8 1.76 15.27 0.56 8.01 19.26 47.17 19.66 4.59

Eco_20X_L50 2.14 0.01 0.02 0.01 4.11 0.01 0.35 0 0.47 0.04 0 0.47

Chr21_20X_L50 2.15 0.02 0.02 0.02 4.12 0.03 0.35 0.02 0.55 0.11 0.01 0.55

Dme_20X_L50 2.16 0.03 0.02 0.01 4.22 0.02 0.65 0.09 1.09 0.16 0.02 1.09

Eco_20X_L150 2.4 0.02 0.02 0.02 4.29 0.14 0.65 0.39 2.83 0.13 0.02 2.83

Chr21_20X_L150 2.87 0.04 0.02 0.01 7.44 0.02 1.27 0.01 2.15 0.26 0.02 2.15

Dme_20X_L150 2.78 0.1 0.02 0.02 4.33 0.02 1.27 0.01 1.43 0.36 0.02 1.43

Eco_20X_L250 3.46 0.11 0.02 0.08 4.36 0.12 1.27 0.05 5.14 0.46 0.04 5.14

Chr21_20X_L250 6.81 0.13 0.02 0.07 4.34 0.09 1.27 0.04 7.5 1.64 0.05 7.5

Dme_20X_L250 2.96 0.08 0.02 0.62 4.43 0.08 1.27 0.05 3.79 1.5 0.08 3.79

Eco_80X_L50 6.36 0.16 0.02 0.11 1.19 0.42 0.84 0.02 1.49 1.76 0.07 1.49

Chr21_80X_L50 3.19 0.06 0.02 0.4 1.19 0.3 0.84 0.02 4.43 0.84 0.18 4.43

Dme_80X_L50 3.99 0.22 0.02 0.33 4.36 0.02 1.47 0.02 2.95 0.78 0.03 2.95

Eco_80X_L150 4.02 0.65 0.02 2.99 4.41 0.51 1.47 0.13 10.45 6.34 0.26 10.45

Chr21_80X_L150 4.51 2.12 0.02 3.54 4.45 0.5 1.47 1.11 15.13 6.36 0.12 15.13

Dme_80X_L150 7.65 2.48 0.02 3.36 4.45 0.98 1.47 1.26 7.69 6.55 0.19 7.69

Eco_80X_L250 7.22 3.71 0.02 8.48 4.49 1.21 1.9 2.91 7.01 10.91 1.89 7.01

Chr21_80X_L250 10.46 5.96 0.02 7.69 4.01 0.84 1.9 2.86 17.31 13.86 3.7 17.31

Dme_80X_L250 9.61 6.94 0.02 9.9 5.01 1.48 1.9 3.18 27.64 35.18 4.17 27.64

Eco_320X_L50 11.93 2.8 0.02 2.79 3.51 3.64 1.9 1.1 12.83 17.82 0.35 12.83

Chr21_320X_L50 12.76 0.25 0.02 1.9 4.49 1.85 1.9 0.81 9.8 17.62 0.95 9.8

84

Error Corrector BFC BLESS Bloocoo Lighter Musket Trowel
Measurement Memory Time Memory Time Memory Time Memory Time Memory Time Memory Time

Mean 7.52 5.2 0.02 12.33 4.71 6.29 1.47 3.22 15.55 23.99 18.71 2.42

Dme_320X_L50 8.71 0.22 0.02 1.48 4.49 1.21 1.9 0.84 7.01 10.91 1.35 7.01

Eco_320X_L150 14.96 25.02 0.02 42.69 4.01 2.4 1.9 2.59 17.31 13.86 1.75 17.31

Chr21_320X_L150 15.94 1.61 0.02 7 5.01 14.81 1.9 3.06 57.64 75.18 0.93 57.64

Dme_320X_L150 10.27 1.55 0.02 112 5.09 4.91 1.89 0.25 35.46 212.66 7.66 35.46

Eco_320X_L250 15.94 14.64 0.02 19.92 8.24 22.21 2.22 5.42 66.94 20.78 11.62 66.94

Chr21_320X_L250 13.84 27.41 0.02 22.95 8.25 49.03 2.22 26.44 61.83 72.77 18.39 61.83

Dme_320X_L250 14 44 0.02 84.67 8.98 62.92 2.22 34.22 32 118.99 11.49 32

Eco = E. coli; Chr21 = Human chromosome 21; Dme = D. melanogaster; 20X, 80X and 320X = 20-, 80- and 320-fold coverage; L50,

L150 and L300 = read length of 50, 150 and 300 bp

85

3.6.4 Results of Multivariate Statistical Analysis of Performance Metrics

Multi-way full factorial analyses of performance metrics were generated using

SAS (Statistical Analysis System) software, version [9.3] of the SAS System for

[Windows] [143] to analyze relationships between two dependent variables (DVs, i.e.,

precision and F-score) and four independent variables (IVs, i.e., correction method,

genome size, coverage depth and read length), as well interaction effects among IVs on

DVs. Type III sums of squares were obtained to check the individual effects of the

factors, given other factors were included in the model. After that, performance metrics

data were stratified into six groups by correction method, and a three-way ANOVA was

conducted for each group to examine how the other three IVs affected DVs.

3.6.4.1 Descriptive Statistics of Performance

Two performance metrics (precision and F-score) of the six selected correctors on

the 27 synthetic datasets derived using ECET are presented in Figure 3.5. A pictorial

view of the TP, FP and FN is also shown in Figure B.1. Among the 162 observations, the

25%, 50% (median) and 75% quantiles are 0.570, 0.852 and 0.967 for precision or 0.291,

0.650 and 0.932 for F-score, respectively. Both metrics display a skewed distribution

(normality tests: Kolmogorov-Smirnov p < 0.01) with continuous values varying between

0 and 1. In general, ANOVA with fixed factors was modest to the moderate non-normal

assumption violation [144], which raised no flag to subsequent factorial analyses. To

confirm the conformability of our data to ANOVA test, we performed Levene’s test of

variance equality using a means comparison in IBM SPSS Version 24.0. Results shown

in Table 3.6 suggest that read length (p-values = 0.058 for F-score and 0.902 for

86

precision), genome coverage (0.424 for F-score) and method (0.221 for F-score and 0.464

for precision) conformed to equality of variance. Although genome coverage (0.008 for

precision) and genome size (0.004 for F-score and 0.000 for precision) data exhibited

unequal variance, these violations are considered minimal and tolerable. ANOVA test is

robust enough to handle such minimal violations. After the full factorial analyses, the

adequacy of the normality assumption for each fitted model was checked by residual

analysis.

Table 3.6 Result of Levene’s test where H0 and H1 signifies accepted and rejected

hypothesis respectively at a 95% confidence level for hypothesis testing.

Variable F Score Precision

DFn DFd F Value Pr(>F) Inference DFn DFd F Value Pr(>F) Inference

Length 2 159 2.893 0.058 H0 2 159 0.103 0.902 H0

Genome 2 159 5.778 0.004* Ha 2 159 41.908 0.000 Ha

Coverage 2 159 0.863 0.424 H0 2 159 4.941 0.008 Ha

Method 5 156 1.418 0.221 H0 5 156 0.929 0.464 H0

87

Figure 3.5 Heat maps of F-score and precision for each evaluated method and dataset (see

material 2 at http://pinfish.cs.usm.edu/simulation_data/results for their numerical values).

C21 = Chromosome 21, DM = Drosophila melanogaster and EC = Escherichia coli

3.6.4.2 Four-way ANOVA Model

The four IVs were examined for their individual and interaction effects on

performance metrics. Significant impact of all four IVs was observed on F-score and

precision, except that no significant difference in precision exists between correction

methods (p = 0.1206; Table 3.7 and Figure 3.6). The significance of interaction effects

differs greatly between the two metrics. Only the pair-wise interactions between method

and the other three IVs were observable for F-score, whereas all pair-wise interactions

between the four IVs, except coverage × method (p = 0.3320) and length × method (p =

0.0735), were significant for precision (Table 3.8 and Figure 3.7). In addition, a

88

significant 3-factor interaction effect (genome × coverage × length) was also observed for

precision.

Table 3.7 Statistical significance expressed as F-test probability for the main and

interaction effects of four independent variables on performance metrics (precision and

F-score) determined using a four-way ANOVA model. P = p-value, df = degree of

freedom.

Dependent

Variable

Significant

Factor
df

Type III

Sums of

Squares

F

statistic
p

F-score

Genome (G) 2 1.3546 17.63 <.0001

Coverage (C) 2 1.9849 25.83 <.0001

Length (L) 2 3.4061 44.32 <.0001

Method (M) 5 3.8528 20.05 <.0001

G × M 10 0.9954 2.59 0.0070

C × M 10 1.0405 2.71 0.0050

L × M 10 0.9988 2.60 0.0069

Precision

Genome (G) 2 2.3468 30.34 <.0001

Coverage (C) 2 1.7245 22.30 <.0001

Length (L) 2 2.0184 26.10 <.0001

Method (M) 5 0.3471 1.80 0.1206

G × C 4 0.6234 4.03 0.0045

G × L 4 0.8551 5.53 0.0005

G × M 10 0.8831 2.28 0.0187

C × L 4 0.3816 2.47 0.0497

C × M 10 0.4456 1.15 0.3320

L × M 10 0.6892 1.78 0.0735

G × C × L 8 0.8724 2.82 0.0073

89

Figure 3.6 The main effects of (a) correction method, (b) genome size, (c) read length,

and (d) coverage depth on NGS data correction performance metric F-score with 27

simulated Illumina datasets. Eco = E. coli; Chr21 = Human chromosome 21; Dme = D.

melanogaster

90

Table 3.8 Statistical significance expressed as F-test probability for the main and

interaction effects of four independent variables on performance metrics (precision and

F-score) determined using a four-way ANOVA model. P = p-value, df = degree of

freedom.

Dependent
Variable

Significant
Factor

df
Type III
Sums of
Squares

F
statistic

p

F-score

Genome (G) 2 1.3546 17.63 <.0001

Coverage (C) 2 1.9849 25.83 <.0001

Length (L) 2 3.4061 44.32 <.0001

Method (M) 5 3.8528 20.05 <.0001

G × M 10 0.9954 2.59 0.0070

C × M 10 1.0405 2.71 0.0050

L × M 10 0.9988 2.60 0.0069

Precision

Genome (G) 2 2.3468 30.34 <.0001

Coverage (C) 2 1.7245 22.30 <.0001

Length (L) 2 2.0184 26.10 <.0001

Method (M) 5 0.3471 1.80 0.1206

G × C 4 0.6234 4.03 0.0045

G × L 4 0.8551 5.53 0.0005

G × M 10 0.8831 2.28 0.0187

C × L 4 0.3816 2.47 0.0497

C × M 10 0.4456 1.15 0.3320

L × M 10 0.6892 1.78 0.0735

G × C × L 8 0.8724 2.82 0.0073

91

Figure 3.7 Interaction effect of (a) genome size, (b) read length or (c) coverage depth

with correction method on F-score

92

3.6.4.3 Three-way ANOVA Model

Results of three-way factorial analyses are shown in Table 3.9. Genome,

coverage, and length all significantly impacted F-score and precision of Musket. BFC,

BLESS, and Trowel responded less sensitively to the three factors with only one

exception per method, i.e., coverage on precision of BFC, genome on precision of

BLESS, and genome on F-score of Trowel. Lighter and Bloocoo were the least sensitive

methods. Significant interaction effects were detected only in five instances for F-score,

i.e., genome × length for BFC, genome × coverage for BLESS, genome × length and

coverage × length for Lighter, and genome × coverage for Musket. Except coverage ×

length for Lighter, the other four significant instances also occurred to precision. No 3-

factor interaction effect (genome × coverage × length) was observed. Read length had

significant impact on both precision and F-score of all correction methods (except

Bloocoo), whereas coverage depth showed the same effects on F-score but less

pronounced effect on precision (insignificant for BFC, Bloocoo and Lighter). Genome

size affected F-score and precision of four correction methods.

93

Table 3.9 Statistical significance expressed as F-test probability for the main and

interaction effects of three independent variables (genome, coverage, and length) on each

correction method’s performance metrics determined using a three-way ANOVA model.

Empty cells indicate statistical insignificance (p > 0.05)

Table 3.10 Reproducibility of KmerGenie-generated optimal k-mer size for two test

datasets, DM_80X_L250 and DM_320X_L250

KmerGenie version DM_80X_L250 DM_320X_L250

1.6476 (initial run) 134 127

1.6982 (repeat-1) 135 130

1.7044 (repeat-2) 143 141

Effect BFC BLESS Bloocoo Lighter Musket Trowel

F-score

Genome (G) 0.0021 0.0004 0.0093

0.0006

Coverage (C) 0.0084 <.0001

0.0002 0.0001 0.0017

Length (L) <.0001 <.0001

<.0001 0.0019 <.0001

G × C

0.0011

0.0328

G × L 0.0022

0.0032

C × L

0.0448

G × C × L

Precision

Genome (G) 0.0024

0.0040

0.0009 0.0013
Coverage (C)

0.0012

0.0032 0.0117

Length (L) <.0001 0.0046

0.0266 0.0493 0.0336

G × C

0.0302

0.0227

G × L 0.0003

0.0438

C × L

G × C × L

94

3.6.5 Discussions

Choosing an appropriate NGS reads error corrector could be a daunting job, given

the fact that so many choices are available but no systematic comparison has been made

so far. As mentioned earlier, many factors may have to be considered. However, from a

research point of view, performance in correction accuracy (i.e., how many true

erroneous bases are corrected and how many false erroneous bases are mistakenly

corrected) is more important because this determines the quality of the corrected data,

which is directly linked to downstream analyses. Besides, other factors such as memory

consumption and CPU time are resolvable as faster machines with larger RAMs become

more affordable or accessible. Hence, we focused on accuracy-related performance

metrics.

Two approaches are often employed for error correction performance evaluation:

direct and indirect [145]. Direct evaluation assesses the point correction accuracy of

single erroneous bases, whereas indirect evaluation assesses correction impact on

downstream application (e.g., contig or genome assembly quality, and single nucleotide

polymorphism or structural variant call accuracy). We adopted the direct evaluation

strategy and point correction-based performance metrics in this study. Since simulated

datasets were used and no further genome assembly or other indirect evaluation was

performed, we did not develop new performance metrics such as read depth or breadth

gain and k-mer depth or breadth gain [145], nor did we use assembly or contig quality

metrics [119].

95

Although limited comparative evaluations have been conducted by the authors of

most published correction methods, little information is available on how NGS data

characteristics affect method performance. Previously, we used six datasets with varying

coverage depth (10X, 20X, 50X, 70X and 120X), genome size (4.6 Mb, 5.4 Mb and 143

Mb), and read length (36 bp, 56 bp and 100 bp) to compare six correctors [140]. Due to

the small number of samples (datasets) and a relatively large number of variables,

conclusion made from that study has a limited statistical power.

In the present study, we designed a full factorial simulation experiment where

correction performance metrics were statistically analyzed for the significance of main

factor and interaction effects caused by correction method, genome size, coverage depth,

and read length. All factors showed significant influence on performance. Overall, BFC,

BLESS, Bloocoo and Musket performed better than Lighter and Trowel (Figure 3.6a);

correction of smaller genomes yielded higher F-scores (Figure 3.6b); longer reads led to

better correction (Figure 3.6c); but an excessively high coverage depth jeopardized

correction performance (Figure 3.6d). It is widely accepted that infrequent errors can be

corrected using many other reads covering the same genomic locus only if the sequencing

coverage depth is sufficiently high [75], [146], [147]. However, no studies have defined

such a sufficiently high level of coverage depth. Our study shows that the 320-fold

coverage was so high that it adversely affected the performance of all six correction tools,

suggesting that this might be a shortcoming of k-mer spectrum-based correction

algorithms. Although method interacted with all other three data characteristics factors

(Figure 3.7), it appears that interaction effects were less pronounced than the main effects

(Table 3.8). For each individual method, the three dataset characteristics exhibited

96

differential influences as demonstrated by the results from 3-way factorial ANOVA

Table 3.8 and Table 3.9). BLESS and Musket appeared to be the most sensitive while

Bloocoo the least sensitive to variations in dataset characteristics.

Dataset DM_320X_L50 is clearly an outlier as all six tools performed

consistently poor. We repeated one of the six tools (i.e., BFC) on this dataset and

reevaluated its performance using ECET. Results (see table 2

http://pinfish.cs.usm.edu/dissertation_tables/metrics.pdf) indicate that the poor error

correction performance is reproducible. To explore if the consistent and reproducible

poor performance of this outlier dataset was a result of uneven genome sampling, we

created another DM_320X_L50 dataset and ran error correction using BFC. Correction

performance results (see http://pinfish.cs.usm.edu/dissertation_tables/metrics.pdf)

demonstrate that little difference exists between the original and the new dataset in their

evaluation metrics. Such an outlier may have been resulted from the joint effects of high

genome complexity of the fruit fly, short read length (50-bp, the shortest among the three

lengths) and excessively high coverage depth (320-fold). A new iterative strategy of error

correction called String Graph Assembler-Iteratively Correcting Errors (SGA-ICE) [147]

was published after the current study was completed. SGA-ICE takes advantage of a

combination of multiple rounds of k-mer-based correction with increasing k-mer sizes

and a final round of MSA/overlap-based correction. We ran it on two datasets

(C21_80X_L250 and EC_80X_L250) and confirmed that SGA-ICE outperformed all test

tools, including the best performer BFC among them (see Supplementary Table 2 for

performance metrics results). However, SGA-ICE did not significantly improve

performance metrics over BFC, likely because the performance of BFC was already

http://pinfish.cs.usm.edu/dissertation_tables/metrics.pdf
http://pinfish.cs.usm.edu/dissertation_tables/metrics.pdf

97

superb (>0.98 for both precision and F-score). Therefore, there was little room for

improvement with these two datasets. Nevertheless, such an iterative strategy can be

applied to many error correction tools other than SGA [148], such as Musket [120], to

further improve correction performance.

Some caveats are worth mentioning because of several measures we took for

convenience and other reasons. KmerGenie was used to generate the best recommended

k-mer for each dataset because quite a lot of methods require a user-defined k-mer as

input (e.g., Bloocoo) while other methods (e.g., BLESS) automate the k-mer selection or

optimization process. It has been reported that k-mer size selection affects the correction

performance for some methods while others like Lighter are less sensitive to k-mer size

[124]. To save computational time dedicated to k-mer selection and for the fairness of

comparison, we pre-selected a KmerGenie-derived k-mer for each dataset (Table 3.4). In

principle, the higher the coverage depth, the larger the optimal k-mer size [138].

However, there were two exceptional cases observed in this study: (1) the optimal k-mer

size for the DM_80X_L250 dataset is slightly larger (7 bases) than that for the

DM_320X_L250 dataset, and (2) the optimal k-mer size for the DM_80X_L50 is slightly

smaller (3 bases) than that of the DM_20X_L50 dataset. We repeated the first case by

running those two datasets through two later versions of KmerGenie and confirmed its

reproducibility (2 to7 bases larger as shown in Table 3.10). A plausible explanation for

such a deviation is that the KmerGenie statistical model is prone to some degree of

randomness (R. Chikhi, personal communication). Given a dataset of sequencing reads,

KmerGenie estimates the optimal k-mer length for genome de novo assembly. It first

computes the k-mer abundance histogram for many k sizes, then predicts the number (N)

98

of distinct genomic k-mers in the dataset for each k value, and finally returns the k-mer

length that maximizes N [138]. It is possible that the Ns are very similar for a wide range

of k-mer sizes, which is reflected to a certain degree in Table 3.10 because the optimal k-

mer size varies from 134 to 143 for DM_80X_L250 and from 127 to 141 for

DM_320X_L250, with an overlapping range of 134 to 141 bp.

 For error correction, it has been shown that with a high enough coverage,

selecting k-mers that span about 67% of the sequence read length is desired [147]. This is

to allow for error correction to propagate through the middle of the sequence (i.e., correct

errors that occur in the middle). For practical purposes, it is advised that it should not be

much more than half the read length because longer k-mers improves error correction

until the k-mer depth becomes too low. Also, long k-mers allow correction of errors due

to low complexity and repetitive genomic elements [146] which often cannot be resolved

using short k-mers. For each method, we used the default settings without attempting to

optimize other parameters or options. We purposely simulated all three types of errors at

an equal rate to test the versatility of a correction method. This might disadvantage some

methods that are designed to correct a specific type of errors (e.g., PyroNoise [149])

3.6.6 Review and Future Directions

In summary, we presented a full factorial study that statistically assessed the

impact of four factors (i.e., correction method and three NGS data features) on correction

performance. Evidence from this study demonstrates that correction performance is

highly dependent on these factors. No examined method is free from effects (either main

or interaction) of data characteristics, even though some (e.g., Bloocoo) are more

resistant than others. Read length and coverage depth had more significant impact on

99

correction performance than genome size. Although only Illumina sequencing datasets

were used in the present study, our findings and conclusions can be extrapolated to data

generated by other similar NGS platforms. We understand that superior performance on

simulated data does not translate 100% to good performance on wet lab-generated

experimental data (or real data). The tools selected for the present study have been

demonstrated to perform well on both real and simulated data. There are certainly many

other factors that may affect tool performance, including the unknown and uncontrollable

factors associated with real data. These factors are more challenging to investigate and

are beyond the scope of this work. Future studies and new experimental data are

warranted to validate the results produced in this simulation study. Additionally, an in-

depth comparison of k-mer spectrum-based tools with tools representing other categories

of error correction algorithms (e.g., multiple sequence alignment, suffix trie/array, and

probabilistic modelling ([75], [146], [150]) may produce broader insights on how

algorithmic difference affects correction performance [145].

3.7 Chapter Synopsis

In this chapter, we

• Developed an experiment for a comparative analysis of k-mer spectrum based

error correction methods including Lighter, Reptile, Bloocoo, BLESS, BFC,

Musket and Trowel.

• Presented an expansion of an earlier comparative analysis from a statistical

viewpoint to observe interaction effects of factors, read length, genome size,

coverage depth and the error correction algorithms, on error correction

performance.

100

• Identified factors that limits existing error correction algorithms

Our observations indicated that

• Performance of different error correction methods varies depending on the type of

NGS data been corrected

• Some error correction methods can perform error correction even with ambiguous

bases while others choose to ignore those ambiguous bases and discard reads

containing them.

• While some of the methods also use the phred quality score as part of their

correction process, others depend solely on the kmer count frequency and error

profile generated to correct a given NGS data.

Based on these findings, we conclude that

• Methods such as BFC, Bloocoo, BLESS and Musket performed better than

Lighter and Trowel

• BLESS and Musket appeared to be the most sensitive while Bloocoo was the least

sensitive to variations in dataset characteristics

• Correction of smaller genomes yielded higher performance overall

• Longer reads led to better correction

• Excessively high coverage depth jeopardized correction performance due to

repeats occurring in the data

• A full factorial study can statistically assess the impact of several factors (i.e.,

correction method and NGS data features) on correction performance.

• No examined method is free from effects (either main or interaction) of data

characteristics, even though some (e.g., Bloocoo) are more resistant than others.

101

• Read length and coverage depth had more significant impact on correction

performance than genome size.

102

CHAPTER IV BIOINFORMATICS ERROR CORRECTION WORKFLOW

4.1 Overview

Complexity of command line based bioinformatics tools presents a monumental

challenge to users, especially molecular biologists who do not possess the necessary

training to use such tools. This has led to increased availability of web-based frameworks

over the years. However, there is no web-based tool for error correction of sequencing

reads generated by Next Generation Sequencing (NGS) technologies. With the

significance of error correction to downstream analysis, it is imperative that such a web

based Graphical User Interface (GUI) be provided to further alleviate the problems facing

users when they run command-line error correction tools. The goal of BECOW

(Bioinformatics Error Correction Workflow) [http://pinfish.cs.usm.edu/becow] is to

alleviate these complexities. BECOW’s development was a result of the evaluation

performed in CHAPTER III. Having made some important recommendation to users of

error correctors, the best performing methods evaluated were incorporated into this

pipeline. This chapter describes the main features of BECOW, how it can be used for

error correction and results of testing on actual dataset.

4.2 Hardware Environment

BECOW is a web-based error correction workflow with a point-and-click

interface that makes it easy to use and provide access to actionable information from the

error correction statistics it generates. It is smaller in scope in comparison to some

platforms e.g. Galaxy platform but robust enough to handle large sequencing data.

Developed using open source software, it runs on a 64-bit Centos Linux server with 16

Intel® CPUs at 2.53GHz, 7Tb of storage space, 244Gb RAM. The pipeline was

103

developed in python and its source code is shown in Appendix 2. The python backend

has also been made available on https://github.com/AisaacO/Becow_scripts and

distributed under the GPL free software license.

4.3 Background Architecture

Four main error correction algorithms constitute the bedrock of BECOW. These

algorithms were chosen for integration because of their performance in correcting a large

variation of datasets. The general framework of BECOW is shown in Figure 4.1

Figure 4.1 shows the general framework of how Becow interacts with the algorithms and

submitted data

https://github.com/AisaacO/Becow_scripts

104

From Figure 4.1, the Input conversion phase involves converting the files into an

independent format TEF. This format allows for an unbiased comparison of the

performance result. The correction phase involves the utilization of the error correction

methods to correct erroneous bases in the sequence data. Finally, in the analysis phase,

comparison is performed to generate statistics about the performance of each of the

methods on the input data.

Once user data together with specified parameters are transmitted over the web,

the processing follows the steps outlined in the error correction analysis workflow which

is as follows:

• The designated data for error correction is aligned to the submitted reference

genome. This allow for a precorrection file to be generated in the TEF (Target

Error Format) of the ECET (Error Correction and Evaluation Toolkit)

• Next, the available error correction algorithms in the pipeline (BLESS, Bloocoo,

BFC and Lighter) begins correction of the submitted NGS data file.

• Once correction is complete, the corrected files are passed through ECET to

generate the TEF file of the corrected data.

• The precorrection and corrected alignment file in the TEF format are compared

against each other to identify the differences.

• Finally, the differences are generated in the form of performance metrics TP

(True Positive), FP (False Positive), FN (False Negative), Recall, Precision and

gain.

105

The behavior of BECOW is controlled by a PHP code which transmits input data to a

python code used to integrate all tools that corrects and generates analysis for the

corrected data and corresponding error correction method Figure 4.2

Figure 4.2 displays the python-based backend information flow of Becow’s error

correction and statistics generation process.

For each submission, the data is stored in its internal storage on The University of

Southern Mississippi School of Computing pinfish server. The stored data is indexed in

the database for each submission. A user is given a submission identification number.

106

This number helps in avoiding submission conflict allowing correct identification of the

user. Once the data is deemed to be of the right format, the correction and statistics

generation process begins following the steps outlined above. The process is visible in the

workflow of Figure 4.2. Upon completion, multiple statistics are generated in addition to

the corrected data. The statistics will allow a user to determine which corrected data to

select for their analysis. This is because performance of error correction methods is

dependent on the type of input data. i.e. read length, genome size, genome coverage, etc.

4.4 Web Implementation

The front-end or GUI visible to the user was designed in a simplistic fashion as

shown in Figure 4.3. Figure 4.3(a) displays the homepage of BECOW with links to more

information about the methods implemented for the error correction, statistical analysis

performed, a readme on parameter selection, contacting the author and submission form

for running an error correction analysis. There is a seamless transition from one BECOW

page to another. Content of the page were styled using CSS. Figure 4.3 (b) displays the

form for running an analysis.

107

(a)

(b)

Figure 4.3 (a) shows the homepage of Becow displaying how the form can be accessed to

submit user NGS data (b) shows the submission form of Becow with various parameters

that can be set by the user and submitted for processing using the backend workflow

shown in Figure 4.2

108

4.5 Functionality

The functionality of the pipeline can be grouped into three distinctive parts;

Uploading of NGS data files for correction in fastq format, entering parameters for the

error correction process and users email address for obtaining result of the analysis.

4.5.1 Data Upload

To perform an error correction, the pipeline requires a pair of uncompressed fastq

files and a fasta formatted reference genome. Uploading a pair of files only requires

clicking on the upload button and selecting the desired files from its storage location.

BECOW uses File Transfer Protocol (FTP) allowing large files to be downloaded in a

fast and efficient manner. With a download speed of 347.80Mbps, a 10GB file size takes

only approximately 3.926 minutes on the pinfish server.

BECOW employs a series of checks to ensure that the file is in the correct format.

The file will not be uploaded if it is not in fastq format. The forward file must end with a

1. fastq likewise 2. fastq for the reverse file. The desired format is checked immediately

upon uploading the file. In general, most of the error correction methods incorporated

into BECOW are de-novo based. This implies that they do not require a reference

genome to perform error correction. The use of a reference genome is to allow ECET to

generate important performance metrics for each error correction method. Error

correction will still be performed if a user decides not to be interested in looking at the

correction statistics. Even though these error correction methods are de-novo based,

performance is dependent on the type of NGS data. For most error correction candidate

data with an existing reference genome, it is advisable to upload the reference data. This

109

will ensure correction statistics are generated thereby helping the user to make informed

decision on which data to use for their downstream analysis.

4.5.2 Input Parameters

Each of the error correction methods implemented in BECOW requires certain

input parameters. Default parameters allocated by the methods have mostly been

observed to be sufficient for data correction based on the implementation of their error

correction algorithm. Currently, there is a requirement for the user to input four

parameters namely; Flag, Kmer-Length, Genome size and Result format.

1. The Flag parameter is relevant to ECET. It accepts three integer values:

• 1 – which implies a desire to keep only reads containing ACTG (actg).

This means any bases with characters other than ACTG or actg are

discarded during the analysis.

• 2 – which is the default value keeps all the reads intact without any

changes

• 0 – which implies converting any ambiguous characters in the sequence

e.g. N’s to ACTG or actg in a random manner.

2. Kmer Length parameter is relevant for all error correction methods implemented.

Some of the methods have a default kmer length while some also have a

maximum kmer length that can be used. The default of 17 was determined to be

appropriate for most genomes of small organisms. Overall it ranges from 15 to 32

but can be longer or shorter depending on the data

110

3. Genome size is used by several of the implemented error correction methods e.g.

Lighter and BFC. The size is required to be given in Mega bases (Mb). It should

correspond to the genome size of the organism whose dataset is been corrected.

4. Result format refers to the user desired result format of the error correction

output. It can be in either one of two formats but not both. This parameter is set to

1 for result output in fasta format or 2, for result output in fastq format. Upon

correction, if a fasta format is the desired output, quality scores are stripped from

correction result and the resulting fasta formatted file is returned to the user.

4.5.3 Email Result

BECOW transmits all information through user email. Once data has been

uploaded and the parameters have been specified, the user finally inputs a valid email.

Upon submission, an email with the job requirement parameters are sent to the user. The

first email indicates that the job has been successfully submitted and is been processed.

When the job is complete, a second email is sent to the user with links to the result. The

user clicks on the link and downloads the corrected data files and their corresponding

statistical analysis. The method is very efficient because correcting the data takes time

hence, the results cannot be immediately made available. The results folder is kept for

two (2) weeks after which it is automatically deleted from the pinfish server.

111

4.6 Features of BECOW

Testing and evaluation of BECOW was extensively conducted based on several

factors. Factors such as web browsers, efficiency of the operating systems and other

computational resources of the server on which the web application is running on (e.g.

multiprocessing, server specifications, etc.) contribute, extensively, to a pleasant user

experience when using any web application. These factors and their test results are

outlined in this section

4.6.1 Supported Web Browsers

BECOW was tested across multiple browsers to ensure that it runs equally well

on all major operating systems that supports modern browsers. The tests were conducted

using Microsoft® Internet Explorer® version 9, 10, and 11, Microsoft Edge for

Windows® 10 and the most recent stable versions of Mozilla® Firefox® and Google

Chrome™. With these extensive browser support, it is expected that using BECOW on

the tested browsers will deliver the same functionalities and user experience across board.

4.6.2 Operating System

In general, web application promise operating system independence. As a web

application, BECOW can be run on any operating system that runs a web browser with

internet connection. No OS specific plugins are required. Furthermore, it can also be run

on mobile devices e.g. android even though it was not developed to be used from such

devices. The mobile experience is limited because it is not adapted to micro browsers.

Although, if the data to be processed resides in the mobile device storage, BECOW can

still be run and results will still be sent as email link to the user.

112

4.6.3 Multi-processing

The error correction algorithms implemented provided options to run the analysis

with any number of cores, threads, or processors. Pinfish runs on a multi-core processor

with 16 threads. BECOW is programmed to run the analysis using all available

processors on the pinfish server. This allows for a faster processing of the data resulting

in reduced time to completion and result delivery to the user. This implementation saves

users a lot of time

4.7 Testing and Evaluation

To evaluate BECOW it was necessary to perform some downstream analysis. The

performance of BECOW was tested on Escherichia coli illumina data, which is a well-

studied organism. After error correction, assembling a genome with a known reference

will make it easier to evaluate the performance. The experimental dataset was download

from the SRA (Sequence Read Archive) database and extracted in fastq format using the

SRA toolkit [151]. At the same time, E. coli reference genome (in fasta format) was

downloaded from NCBI database like methods employed in CHAPTER III. Both datasets

were uploaded to BECOW and its default parameters were used for the error correction.

The sample data used can be found on the download sample data link on the webpage of

BECOW.

4.7.1 Error Correction Statistics

Upon completion of error correction, BECOW sends an email containing a download link

for the error correction results and statistics to the user. The statistics for our sample test

evaluating BECOW is shown in Figure 4.4. It contains values for the error correction

performance metrics described in CHAPTER III

113

Figure 4.4 Sample error correction performance metrics generated by BECOW

lighter_correction Statistics:

FP: exist in tar but not ref

FN: exist in ref but not tar

TP: exist in both tar and ref

Total Err (TP, FN): 0

TP 0

FP 0

FN 0

EBA 0

Sensitivity = -nan

Gain = -nan

Total Errs Corrected in tar reads that cannot be uniquely mappedby pre-correction alignment (-m = 3) : 0

Approximate ambiguous correction false rate: 0 out of 0 (-nan %)

bfc_correction Statistics:

FP: exist in tar but not ref

FN: exist in ref but not tar

TP: exist in both tar and ref

Total Err (TP, FN): 25076022

TP 16119578

FP 11935820

FN 8956444

EBA 362171

Sensitivity = 0.642828

Gain = 0.166843

Total Errs Corrected in tar reads that cannot be uniquely mappedby pre-correction alignment (-m = 3) : 2578006

Approximate ambiguous correction false rate: 0 out of 0 (-nan %)

bless_correction Statistics:

FP: exist in tar but not ref

FN: exist in ref but not tar

TP: exist in both tar and ref

Total Err (TP, FN): 25076022

TP 2110121

FP 243488734

FN 22965901

EBA 4027346

Sensitivity = 0.084149

Gain = -9.62587

Total Errs Corrected in tar reads that cannot be uniquely mappedby pre-correction alignment (-m = 3) : 14277141

Approximate ambiguous correction false rate: 0 out of 0 (-nan %)

bloocoo_correction Statistics:

FP: exist in tar but not ref

FN: exist in ref but not tar

TP: exist in both tar and ref

Total Err (TP, FN): 25076022

TP 15626715

FP 4952189

FN 9449307

EBA 198982

Sensitivity = 0.623174

Gain = 0.425687

Total Errs Corrected in tar reads that cannot be uniquely mappedby pre-correction alignment (-m = 3) : 1734790

Approximate ambiguous correction false rate: 0 out of 0 (-nan %)

114

4.7.2 Computational Resource Usage and Speed

For the evaluated E. coli dataset, BECOW used a maximum combined RAM of 10.5 GB.

A total physical storage of 8GB was used for the combined error correction and analysis

process. This includes storage of intermediate results, final results and evaluation

statistics. The combined file size of the paired-end fastq file and reference genome fasta

file was 2GB. It took a total of 10 minutes from data submission to completion.

According to our individual error correction method evaluations from CHAPTER III, this

is a total of about 19% decrease in processing time. Making BECOW an effective and

efficient web application for error correction.

4.7.3 Evaluation Result Discussion

Genome assembly was performed after error correction. Results from each of BECOW’s

incorporated error correction method was separately used for the genome assembly. The

assembly was performed using MASURCA genome assembler [152]. Default parameters

were used and k-mer parameter was kept constant across the board. The result obtained is

shown in Figure 4.5. The final draft genome size was used as a measure of assembly

performance. This was compared to the reference genome. Though the draft genome size

of some of the error corrected data from the BECOW pipeline were lower than expected,

overall the accuracy was above average for the E. coli dataset. The observation was that

the draft genome size generated were comparable to that of the draft reference genome

assembly. Factors that may contribute to variation from the reference genome may

include:

115

• Difference in the experimental dataset used in this analysis and that used to

generate the reference genome,

• Data QC process used by the publishers of the draft reference genome

• Genome assembly method and tools used to generate the reference genome and

• Finally, the parameters used to generate the reference genome.

One or all the above-mentioned factors, may be the cause of discrepancies in the draft

genome assembly result. The evaluation though has shown that BECOW, as a web-based

error correction application can generate useable result for downstream analysis.

Figure 4.5 Comparison of the draft genome assembly of BECOW’s error corrected E.

coli dataset. Genome size was used as the performance metrics and E. coli draft genome

assembly as the ground truth for comparison.

116

4.8 Significant BECOW Contribution

BECOW, as a web-based application for error correction, is highly significant. Though

several bioinformatics web-based applications exist, currently there is no application to

provide an easy to use GUI for NGS data error correction because they are mostly either

stand-alone command-line based or incorporated with other genome assembly tools. The

contributions of BECOW are therefore highlighted below:

• Provides a user-friendly GUI method to make error correction easier to perform

for any user

• Makes it easy for Molecular Biologists without prior knowledge or training in

command-line Linux programming to execute NGS data error correction, which

are currently all command-line based

• Provides a means for understanding the errors in the user’s NGS data through

error correction statistics

• Allows a user, with knowledge of the command-line process, to make informed

decisions on the type of error correction algorithm suitable for their NGS data.

This allows for further error correction processing if some other user specific

parameters are desired for further analysis

• Optimizes the time required by a user to perform error correction of their data

using several error correction methods.

117

• Ensures that a user with limited computational resources available to them can

perform error correction of large NGS data without fear of running into storage

and computation speed problems.

4.9 Future Directions

The above comparative and statistical analysis of error correction methods and

subsequent implementation of BECOW, has led to a deeper understanding of error

correction methods. Despite this effort, limitations still exist in the analysis and

BECOW’s implementation.

Research directions that may be taken in the future, from a comparative analysis

effort may include: Extending the recommendations that can be made based on the

analysis, Extension of analysis to include other NGS data platforms similar to Illumina

and those that generate longer sequence reads e.g. Ion torrent and PACBIO respectively,

Extension of analysis to include non-k-mer spectrum based error correction methods e.g.

multiple sequence alignment based methods, development of other k-mer spectrum

based error correction methods that may be better than existing methods, Expanding the

analysis to include a larger variety of experimental dataset for many organisms and

developing a more expansive method of performance evaluation.

It is imperative, to include newer error correction methods to further upgrade and

update the system as other methods become available, increase allowable data size as

input and finally, allow correction of single-end NGS read.

118

4.10 Chapter Synopsis

In this chapter, we

• Developed a novel web-based NGS error correction workflow as a follow up from

our comparative and statistical NGS error correction analysis.

• Showed the significance of BECOW as an NGS error correction pipeline

Our observations indicated that

• Performance of different error correction methods varies depending on the type of

NGS data been corrected

• A web-based GUI interface does not exist, currently, for NGS error correction

Based on these findings, we conclude that

• Methods such as BFC, Bloocoo, BLESS and Lighter are excellent candidates for

such applications because of their accuracy and frugal resource consumption

• Having a web-based GUI pipeline like BECOW is important to alleviate issues

faced by users without the necessary Linux command-line knowledge to run these

error correction methods.

We recommend that

• Selection of error correction method for a given type of NGS should be carefully

planned based on the characteristics of the data in question

• Finally, optimal parameters, for a chosen error correction method, are important

and should also be carefully selected if a qualitative error correction is desired.

119

CHAPTER V CUCKOO-FILTER ERROR CORRECTION OF NGS DATA

5.1 Background

The significance of error correction in NGS data has been discussed in

CHAPTER II and a comparative analysis of several existing methods was also elaborated

in CHAPTER III. Based on prior discussions and analysis, it was discovered that existing

error correction methods possess limitations. Error correction process is laborious and

consumes a lot of computational resources. The rate of NGS data generation has continue

to rise at a rate higher than Moor’s law [145]. This means that everyone can have access

to these data if they desire. Home based users have access to fewer computational

resources. Despite the existence of many NGS data error correction methods, the amount

of computational resources consumed is not declining even with improved algorithms.

Current error correction methods require high computational overhead which is not easily

accessible. Therefore, there is a need for error correction algorithms to be space efficient.

This minimizes the amount of computational resources used and the time required to

perform the error corrections.

Furthermore, the false positive rate of NGS error correction is still high, > 4%,

given that most methods evaluated used bloom filters as their data structure. Additionally,

engaging in sequence pre-processing steps like read trimming based on length and phred

quality score values lead to reduction in sequence length which may produce reads with

different lengths. Also, with recent trends towards individual home based DNA analysis,

NGS mini-sized sequencers like Minion [153] were developed. These sequencers

generate reads of varying lengths. Current k-mer (sequences of consecutive k symbols)

120

based error correction methods target reads of the same length e.g. Illumina based reads.

Developing an error correction method that can handle varying read lengths is significant.

Finally, ambiguous bases in NGS data implies there is a base present in that

position that could not be called based on inability to assign or calculate the phred quality

score Figure 5.1. Several of the analyzed error correction methods do not consider

ambiguous bases represented by “N’s” in the data. They either ignore the uncalled bases,

discard them, or associate a score value of zero to those bases in their correction process

which may be misleading. Consideration must be given to those types of uncalled bases

as they may be a source of further arriving at better quality reads. Therefore, there is a

significant burden on the research community to develop more precise error correction

methods which will facilitate accurate downstream analysis.

CECOND (Cuckoo Filter Error Correction of NGS Data) was developed to target

the above-mentioned limitations. Its main goals are efficiency, integrability, generality

and usability. The overall idea of this chapter is an attempt to investigate and demonstrate

the efficiency and feasibility of using cuckoo filter data structure as an alternative to

bloom filters for NGS error correction. We want to indicate that prior to this

implementation, no one has tried to use fingerprints of bases for NGS error correction.

This chapter examines CECOND error correction algorithm following this

format: First, the steps employed by the CECOND method are outlined. Secondly, the

algorithm implementation detail is presented. Thirdly, testing and evaluation of the

method in comparison to the most current kmer-spectrum based error correction methods

like BFC, BLESS, Bloocco and Lighter, are discussed. Next significant contributions

121

made by CECOND are deliberated. Lastly, the conclusion of the chapter and directions

for future research are discussed.

Figure 5.1 Example of DNA sequence tracing and Phred score (grey bars) corresponding

to each colored peak as adapted from [154]

122

5.2 Error Correction Model

Data structure plays an important role in the false positive rate and the amount of

computational resources used. Probabilistic data structures, implemented by most

existing error correction methods, have a false positive rate of >4% i.e. Bloom filter.

Even though they are space efficient, they are not optimal [155]. A more recent

probabilistic data structure known as cuckoo filter [156] was discussed in CHAPTER II

and has been shown to test set membership with a target false positive rate < 3% . It also

possesses a better space efficiency in comparison to the bloom filter [115] used by most

error correction methods. Implementing the cuckoo filter data structure may result in

lowering the number of false positives generated during error correction. It may also

improve space efficiency which will result in reduced consumption of computational

resources and possibly, increased speed.

CECOND error correction is also a k-mer spectrum based error correction method

developed in C++. Given the large size of NGS data which contains candidates for error

correction, it is only reasonable to use a compiled language like C++ for its development

because of requirement for faster processing times. The general algorithm workflow of

CECOND is illustrated in Figure 5.2. A feature of CECOND include its ability to accept

both FASTQ and FASTA formatted sequences for error correction. Once sequence files

and options are supplied, CECOND begins by checking the options. The options for the

file formats are checked first. If option r = 1 is provided, it indicates that the files are in

fasta format and CECOND proceeds directly to correction process starting with stage I. If

option is r =2 or option r not stated, it checks the phred quality score values Q, of the

sequence to ensure that the average quality is greater than 20 i.e. > 0.1% probability of

123

incorrect base call or 99% base call accuracy. This implies some level of contextual

information is required. Once the quality scores are checked but found to be < 20 on the

phred score scale, the user is prompted to further pre-process their data to bring the

average quality score up to 20 at the least and the process is terminated. If no option is

provided but the associated phred quality score is checked and found to be ≤ 20,

CECOND proceeds to stage I of the error correction process.

Figure 5.2 The flow chart of CECOND algorithm showing error correction steps. Results

from each correction stage is stored and collected at the end for the final error correction

result

124

5.3 Methodology

Prior to beginning of stage I and after checking that all parameters have been

properly set, CECOND starts processing by randomly converting all ambiguous “N”

nucleotides to one of A, C, T, or G (process not shown in flowchart Figure 5.2). We

assume that user supplied data have been properly pre-processed to remove low quality

bases also associated with ambiguous bases. The distribution of the number of Ns in the

reads, at this point, will be minimal, if any, and will be of high quality. Dealing with

ambiguous nucleotides can be complex and may cause significant delay in computation.

Discarding reads containing Ns may lead to loss of information. Random assignment of

nucleotides to ambiguous bases will help reduce information loss and may aid error

correction. A systematic guide on how CECOND was implemented is presented in

APPENDIX A

5.3.1 The k-mer Counting Problem

The determination of k-mer (length k substring of a sequence) abundance in

genome sequencing finds application in many areas of genome projects. Areas such as de

novo assembly [157], detection of repeats in a genome [109], genomic sequence

duplication [158], multiple sequence alignment [159] and direct provision of biological

insights [160]. It is also used in all NGS error correction methods. The k-mer counting

problem is stated as:

Given a group of read sequences R and a substring of R of length K, find the

frequency occurrence of K in R. One way to count this k-mer is illustrated in Figure 5.3

125

Figure 5.3 Example of a simple approach to k-mer counting (this case implies k=4). Just

hashing and collision resolution will take a long time using this method

But with the several giga bases of biological sequence data available for analysis,

issues of scalability are encountered since huge amount of computational resource usage

is required. The bottleneck in the kmer counting problem lies in how to efficiently count

the k-mers to maximize computational resource usage and speed. Since errors in

sequencing data generated from sequencing platforms lead to unique k-mers, larger

genomes will contain a higher number of those k-mers. This implies erroneous k-mers

maybe greater than non-error containing ones. Considering the huge amount of data

generated by NGS technologies, several methods have been implemented to tackle the k-

mer counting problem [128], [129], [160]–[162] [163].

In general, they all employ some form of data structures like bloom filters,

hashing strategies (single or multiple tables) and arrays. While some directly count the k-

mers, others use minimizers for sorting the k-mers into super k-mers (substrings of length

≥ k which contains k-mers that share the same minimum p-substring) where p ≤ k [164].

126

5.3.2 Counting K-mer Frequency

First stage of CECOND involves counting the k-mer occurrence based on user

specified k value of k-mer. A k-mer counting algorithm approach similar to KMC [129]

is used. The k-mer counting problem discussed in 5.3.1 Each k-mer present in the read is

consecutively extracted starting from the leftmost base until the end of the read. They

overlap by k-1. Though devising a means to extract these k-mers is simple, the bottleneck

lies in the size of the data. Since the data is not strand specific (unknown orientation) and

both a kmer and its reverse compliment are equally likely to be seen, an efficient method

is required to conserve memory used during the counting. Multiple copies are eliminated

using canonical k-mers. i.e. both k-mer and its reverse complement are considered and

the numerical lesser of the two is selected. For a given sequence read R containing bases

b eq. (1), the reverse complement Rc is given by eq. (2):

R = {b1b2b3….bn} ∈ {A, C, T, G}n (1)

Rc = c(bn)… c(b3)c(b2)c(b1) | c(A):=T, c(C):=G, c(T):=A & c(G):=C (2)

Hence, the k-mers are first extracted before conversion into its canonical representation.

During this phase, k-mers are extracted based purely on the pre-determined k value. To

count the k-mers, we used cuckoo filter (see CHAPTER II) with 2 hash tables.

5.3.2.1 Implementation of Cuckoo filter

Cuckoo filter stores the fingerprints of the k-mers observed during the count while

the hash table stores all the k-mers with a frequency greater than a pre-determined

threshold. The number of possible k-mers increase as the k-mer length is increased.

Overall, based on the assumption that there are only 4 types of bases in the sequence i.e.

A, C, T, and G, we can estimate the total number of k-mers:

127

 𝑇𝑘 = 𝐵𝑘 (3)

where Tk = total number of k-mers, B = total possible bases and k = k-mer length.

To determine the cuckoo filter hash table size (number of buckets), we first

estimate the number of k-mers of a given a read by counting the possible k-mers in a user

supplied sequence file (always 4) and k-mer value using eq. (3). Table 5.1 shows total

number of bases calculated for different k-mers (up to 10). Knowing the total number of

k-mers helps prevent failure due to table filling up or requiring rebuilding, which can be

additional (re-insertion) computational cost. Also, since current cuckoo filter allows a

maximum of 500 relocation attempts, for insertion into a vacant bucket, having a

predetermined table is crucial. Relocation only stops when a vacant bucket is found or it

reaches the maximum value. If this happens and no extra vacant position can be found,

the filter may fail and the process terminated.

Table 5.1 Total possible k-mers in a sequence with only A, C, T, G bases

Bases k-mer

Length

Total Possible

k-mers

4 1 4

4 2 16

4 3 64

4 4 256

4 5 1,024

4 6 4,096

4 7 16,384

4 8 65,384

4 9 262,144

4 10 1,048,576

Based on estimates from [156], we desired optimal performance therefore we

chose a target false positive rate E that will lie between the range 0.00001< E ≤ 0.02 in

our corrected data. The default (2,4) cuckoo filter is suitable for this purpose and implies

128

an optimal bucket size was chosen. Meaning, each k-mer k will have two buckets which

can contain up to 4 counts as fingerprints in the cuckoo table. It is important that an

optimal bucket size be chosen because it is directly proportional to the probability of false

fingerprints hit eq. (4) This helps to reduce the space occupancy (amount of memory

used). Since our cuckoo filter does not require support for deletion in terms of error

correction, the space saved in this manner is sufficient. There was no need to sort the

fingerprints using semi sorting cuckoo filter which will further reduce space usage but “

requires extra coding/decoding tables and indirections on each lookup” [156].

5.3.2.2 Selecting k-mer Threshold

Before error correction, most k-mer based methods select a specific threshold

over which a given k-mer is assumed to be valid. Some use k-mer frequency or coverage

distribution histograms to determine the threshold [72], [119], [120], some use quality

thresholds [121], some define a range of thresholds (3-6) [122] while others [165] use

repetition depth to calculate the threshold. CECOND uses the k-mer count coverage

depth to calculate the threshold. Instead of using a single threshold for the entire reads

like the others, we calculate the threshold for each read in a way similar to [165]. Figure

5.4 illustrates an example of a k-mer count abundance (distribution) plot.

In this method, for each read, a k-mer count depth histogram is determined,

calculate the harmonic mean of the counts and generate a strand specific threshold T

using the adjusted mean. The intention here is to reduce the effect of small regions of the

sequence which are highly repetitive and using the harmonic mean can negate such

effects [165] resulting in the possibility of correcting errors in high regions and

129

minimizing wrongful error correction of reads with low coverage depth. The calculation

is performed using eq. (6)

Harmonic mean of k-mers 𝐾 = 𝑛 ⋅ (∑
1

𝑘𝑖

𝑛

𝑖=1
)

−1

 (6)

where n is the number of k-mers observed and ki is the k-mer at the ith index.

Figure 5.4 Example of a 15-mer count coverage distribution for Escherichia coli using

k=15 showing the peak at 36. A strong divergence at low kmer frequency is indicative of

errors while the peak is the coverage with the highest number of different 15-mers i.e. the

average coverage depth is around 36 though the normal like curve observed indicates

there are regions with less or more coverage.

130

To reduce computational resource usage, only most frequently occurring k-mers

are stored. CECOND classifies a k-mer as correct based on the auto determined threshold

from a generated k-mer coverage histogram as explained above. If a k-mer has a

frequency greater than the threshold, the frequency of the count is stored as fingerprints

in cuckoo filter rather than key-value pairs like in bloom filter. Each k-mer fingerprint

stored is one entry in the cuckoo filter table which can store multiple entries in one

bucket. The entries are added dynamically and only one copy of an identified k-mer is

stored in the hash table.

5.3.3 Error Correction

Stage II of CECOND involves error correction. First, it corrects single base errors

where the base is found to be wrong and secondly, correction of multiple base errors

where there exist up to a maximum of four (4) base errors and finally, it checks for more

errors and try to correct them using exhaustive search. If a correction cannot be made at

that point, the read is discarded.

Single base errors occur most often as sequence specific errors [166] and can be

either substitution or mismatch errors (where a base is replaced by another base in the

sequence or specifically, single nucleotide is misinterpreted). These errors can be

identified using coverage statistics of the most occurring k-mers in a sequence. i.e. they

are the bases that are not supported by the k-mer evidence. To correct these type of errors

CECOND uses a non-greedy approach. These errors can be identified using the k-mer

count profile as illustrated in Figure 5.5 and Figure 5.6.

131

Counting the k-mer abundance and generating a profile indicates k-mers that

occur less frequently and maybe candidates for error correction. As shown, for an 8-mer

count, it is expected that the average number of times, any given 8-mer counts occur

should be about 8 or more. K-mer counts that are below average create a trough in the k-

mer count profile indicative of base errors. A count profile of k-mers is used to detect

where these errors lie. CECOND, compares the counts at these troughs to the determined

threshold (see 5.3.2.2) and proceed to correct the k-mer if its value is seen to be less than

threshold.

Figure 5.5 identifying k-mer counts for building a k-mer count profile

132

Figure 5.6 Example of k-mer count profiles generated for three different reads. Errors

located in the middle of a read generally affects the k-mer count more than errors located

at the 3’ end of a read.

CECOND proceeds to explore possible corrections by looking at both the

coverage threshold and the neighborhood of an identified error containing k-mer for

contextual information as shown in algorithm 2. A k-mer’s neighbor is its adjacent k-

mers. Example illustrated in Figure 5.7 with 3-mers.

Figure 5.7 A k-mer neighborhood. The neighborhood of trimer AAA is the collection of

trimers in R3 that have a non-vanishing chance of being misread as AAA, in this case

trimers with at most one substitution. Text and illustration adapted from [167]

133

It checks the neighboring k-mer of the k-mer in question to determine the number of

nucleotide (base) difference between them. It uses a minimum hamming distance of 1,

based on hamming codes [168], to check that the difference between the k-mer and its

neighbor is 1. If the neighbor is a valid k-mer (frequency count ≥ T, threshold) and the

difference is 1, the erroneous k-mer gets modified or replaced with the neighbor k-mer. It

does this recursively until the end of file and outputs an intermediate result. This result is

used in the next step where multiple errors in a sequence read are corrected. The same

method is applied but a maximum correction of 4 bases is allowed. The hash tables are

revisited to check for other invalid (erroneous) k-mers. If more k-mers are found to be

invalid, we apply exhaustive search to correct the kmer if possible. If not, the read is

deemed uncorrectable and discarded. The algorithm of CECOND is shown in Figure 5.8

Certain criteria that allows successful error correction includes:

• Having a high enough k-mer coverage depth

• Setting k to a high enough value to allow differentiation of unique k-mers from

frequently occurring k-mers

• The k-mer neighborhood, which is dependent on error rate and k, should be broad

enough to allow finding of frequent k-mers

• Use a data structure that will not complicate the error correction process further

based on the counts.

134

Figure 5.8 Algorithm for CECOND

135

5.4 Testing and Evaluation

Testing and evaluating the method is a crucial aspect in determining its

effectiveness. CECOND aims to target space efficiency, handle repetitive regions better

and improved accuracy. One more feature is its application of cuckoo filter to both kmer

counting and error correction. It is known in the research community that k-mer counting

constitutes considerable memory overhead given the large size of data to be processed.

This means that with the exception of a few k-mer spectrum based methods, several error

correction methods make use of existing k-mer counting methods like [128], [129], [160]

for their k-mer counting needs required for error correction. Here, we evaluate CECOND

in comparison to other existing error correction methods that have been discussed in

CHAPTER III

5.4.1 Materials and Method

For this evaluation purpose, we used both synthetic and experimental datasets.

Synthetic dataset used are same as discussed in CHAPTER III namely; Escherichia coli,

Human chromosome 21 and Drosophila melanogaster reference genomes. The data was

generated using ART at various lengths and sequence coverage depth (see Table 3.4).

Testing was conducted using the same parameters, computational environment, and

settings as our previous evaluation of the existing error correction methods [169]. For

evaluation of CECOND, only a subset of the simulated data was used. (see Table 5.4)

Following evaluation on synthetic data, to further evaluate the accuracy of

CECOND, six publicly available (popular for use in evaluating novel error correction

methods) and well characterized experimental data were selected, downloaded from the

SRA database, and used as benchmark for evaluation. The sequence data, which are all

136

Illumina based, includes Staphylococcus aureus (referred to as S1), Escherichia coli

(referred to as S2), Saccharomyces cerevisiae (referred to as S3), Caenorhabditis elegans

(referred to as S4), and human chromosome 14 (referred to as S5) see Table 5.2 for the

characteristics of the sequence datasets. S1 and S5 were the same sequence data used in

the GAGE (Genome Assembly Gold-standard Evaluations) competition [170] and were

also used in the evaluation of BLESS [119]. S4 is the same dataset used during BFC

[123] and BLESS 2 [142] evaluations.

Based on our inability to directly measure performance on experimental dataset,

pre-correction and post-correction alignments were performed. Statistics generated from

the alignment, were used to measure performance. Mapping the corrected reads to a

reference genome and counting the number of mismatches is an effective method used

regularly to evaluate error correction methods. We used BWA [171] for this purpose.

Reads containing ambiguous bases were removed for a fair comparison and to ensure that

evaluation by ECET [75] is accurate. ECET avoids N’s in a read so it is imperative to

remove them.

Table 5.2 Experimental datasets downloaded from SRA database and their characteristics

Label Genome

Number of Reads (Mb) Accession Number
Genome

size

Read

length

Cov.

(X)
Pre-

processing

Post-

processing
Reference Read

S1 S. aureus 1 .1 0.92

NC010079

NC010063.1

NC012417.1

SRR022868 2. 9 101 38.1

S2 E. coli 21 19.4 NC_000913 SRR001655 4. 6 36 160.6

S3 S. cerevisiae 51 48.9 PRJNA128 SRX100885 12. 1 76

S4 C. elegance 68 67.6 SRR065390 100.3 100 67

S5 H. Chrom. 14 36.2 35.1 NA 88.3 101 34

The S. cerevisiae reference genome of S3 is a concatenation of 16 chromosomes. Genome Length: Length

of genomes without Ns. Number of Reads: Number of reads after all paired reads that contain Ns are

removed and after trimming is done. Coverage: Number of Reads × Read Length/Genome Length. Error

Rate: Mismatches/((Total Number of Reads - Unaligned Reads))* Read Length as defined in [119]

137

5.4.1.1 Evaluated Error Correction Methods

The methods evaluated for comparison to CECOND are the most recent error

correction methods developed between 2012 and 2016. Some of the methods have since

upgraded or modified the version of software used in the dissertation. The complete

characteristics of the selected methods have previously been summarized in Table 3.1 of

CHAPTER III. Versions of the methods are also presented in Table 5.3. Not all error

correctors were used in the evaluation performed using experimental dataset. Having

conducted an earlier analysis, the error correctors chosen for comparison with CECOND

were 4 of the highest performing correctors evaluated and includes: BLESS, BFC,

Bloocoo and Lighter. The only reason Musket did not make the cut is because of it takes

a long time to run and consumes a lot of memory for large dataset.

Table 5.3 Version information of evaluated error correction methods and any associated

tool used in the evaluation process

Error correction

Method (Tool)
Version Used Latest Version

CECOND 1.1 1.1

BFC r181 r181

BLESS 0.23 1.01

Bloocoo 1.0.4-Linux 1.0.4-Linux

Lighter 1.1 1.1

Musket 1.1 1.1

Trowel 0.1.4.2 0.1.4.2

138

5.4.1.2 Computational Environment

All error corrections were performed on a server with a 64-bit Ubuntu 12.04 LTS

Intel(R) Xeon(R) CPU with 16 nodes, 72 GB RAM and a core speed of 2.40GHz. The

server also has MPI and OpenMp capabilities which is required by error correction

methods like BLESS.

5.4.2 Evaluation Metrics

For a robust analysis, we also used two types of evaluation methods to validate

the accuracy of CECOND namely; Validation through alignment and through genome

assembly. For genome assembly, we used E. coli and timber rattlesnake data. For

performance measure through alignment, we used the same metrics as in our prior studies

[140]. The metrics are further explained here for clarity:

• Sensitivity: Sensitivity/true positive or recall rate which is a measure of correct

identification of bases in the sequence i.e. if a base is correct or wrong, defined as:

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• Specificity: Specificity / true negative rate which is a measure of correct

identification of truly erroneous bases in a sequence defined as:

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

• Accuracy: Accuracy in our context is a measure of the ability of a method to

differentiate correct bases from erroneous ones and it is defined as:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+ 𝐹𝑁

139

• Gain: is the ratio of the difference between pre-correction and post-correction

error rate of a dataset to the pre-correction error rate of the dataset. Gain has a

maximum value of 1 so the best methods should have values close to 1.

Occasionally, a negative gain value is encountered indicating that a method

introduced more errors during the error correction process. Gain is defined as:

Gain =
𝑇𝑃 − 𝐹𝑃

𝑇𝑃 + 𝐹𝑁

This definitions are less stringent in comparison to definitions in [80], “any read

containing errors was classified as TP provided at least one of its errors was detected and

irrespective of whether they were accurately corrected or not.” The above-mentioned

metrics are important for the evaluation because they help us to:

1. Evaluate the ability of a method to detect an erroneous base

2. Identify methods that perform the wrong corrections despite discovering the

erroneous bases in the read sequence.

3. Quantify the quality of error correction performed by each method

4. Determine if the amount of correction made is beneficial to the overall essence of

error correction

5.4.3 Parameters

All evaluations were performed using the same number of threads or processes

(12 for each case). This is to allow for accurate measurement of memory consumption

and speed of error correction. For preprocessing, although CECOND can handle N’s

because it randomly converts all ambiguous bases to known bases, we still had to remove

140

all N’s from the data before processing. Mainly, this removal of N’s is because of the

inability of ECET [75], our evaluation toolkit to handle ambiguous bases. All other

parameters were kept at the default settings of each individual method except for the k-

mer parameter. Every tool requires this parameter and we had to derive a recommended

k-mer value both from kmergenie [138] and looking at various histograms of k-mer

values from jellyfish [172]. Plotting the histograms provides a means for checking peaks

and determining regions of low and high k-mer coverage. Also, it allows us to determine

what k-mer value will cover the genome. Several k-mer values were used for the

evaluation and the results indicated which k-mer works best for an error corrector.

5.5 Results and Discussions

In furtherance of our earlier comparative analysis, which informed our decision to

implement CECOND, performance evaluation of CECOND was in comparison to the

same sets of error correction algorithms enumerated in CHAPTER III with versions used

shown in Table 5.3. BLESS, BFC, Bloocoo, Lighter, Musket, Trowel and CECOND

were used to correct simulated datasets of E. coli, D. melanogaster and H. chromosome

21. They were also used to correct experimental (real) datasets of S. aureus, E. coli, S.

cerevisiae, C. elegance, D. Melanogaster and H. Chromosome 14. In this section, we

present the results obtained

141

5.5.1 Evaluation of CECOND Using Synthetic Dataset

Following the same principles discussed in CHAPTER III, ART simulated reads

consisting of 27 datasets (9 each) for E. coli, H. chromosome 21 and D. Melanogaster

were generated. The data was de-novo corrected and evaluated using ECET by alignment

with BWA according to the workflow shown in Figure 3.1. Due to the size of the dataset

and desire to compare CECOND against dataset on which existing tools had the worst

performance, selected subset of the data was used to evaluate CECOND in comparison to

the existing analysis. The subset of data used are shown in Table 5.4. The results of

performance comparison are presented in Table 5.5 based on true positives, true

negatives, false negative, true negatives, gain, precision, recall and f-score. Selecting four

important metrics, precision, recall, gain and f-score, for a clearer visualization of the

performance, we illustrate the performance of CECOND in the form of a heatmap Figure

5.9.

Table 5.4 Subset of synthetic data used to evaluate performance of CECOND

Organism Read Length

(bp)

Genome

Coverage

Escherichia coli (Ecoli) 50 20

Escherichia coli (Ecoli) 150 20

Escherichia coli (Ecoli) 50 80

Escherichia coli (Ecoli) 250 320

Human Chromosome 21 (Chr) 150 320

Drosophila melanogaster (Dme) 150 20

Drosophila melanogaster (Dme) 50 320

142

To evaluate performance of CECOND, it was compared to lighter, Bloocoo,

Bless, BFC, Trowel, and Musket which are top five k-mer based methods. As mentioned

earlier, same environment was used for the evaluation. Once the simulated reads were

generated, preprocessing was done using ECET’s preprocessing steps and kmergenie was

used to select best recommended k-mer for each dataset. CECOND showed great

performance in comparison to most of the correctors apart from coming second to BFC or

third at the least in terms of performance. For genomes such as the human chromosome

21 data which has many repetitive regions and for larger sized genomes, CECOND

generated the most accurate result with an f-score of 0.536 and 0.975 respectively. This is

due to our implementation of sequence specific threshold instead of selection of a global

threshold as implemented in several k-mer based methods. Often, most k-mer based

method have problems with repetitive regions but not CECOND. Based on the results

shown in Figure 5.9, we observe that the overall performance of CECOND is comparable

to those of the top performers like BFC and BLESS

143

Table 5.5 Performance comparison of CECOND on simulated data with existing methods

Dataset Method TP FP FN Recall Gain Precision F-score

Ecoli 20X-L50

Lighter 524270 833102 2801156 0.158 -0.093 0.386 0.224

Bloocoo 2437053 517156 888373 0.733 0.577 0.825 0.776

BLESS 2370291 1412508 955135 0.713 0.288 0.627 0.667

BFC 2729110 1578103 596316 0.821 0.346 0.634 0.715

Trowel 159062 55354 3166364 0.048 0.031 0.742 0.090

Musket 2411297 946045 914129 0.725 0.441 0.718 0.722

CECOND 2458425 1167722 867001 0.502 0.270 0.684 0.579

Ecoli 20X- L150

Lighter 1833762 95317 221862 0.892 0.846 0.951 0.920

Bloocoo 1791065 66800 264559 0.871 0.839 0.964 0.915

BLESS 1987770 107360 67854 0.967 0.915 0.949 0.958

BFC 2010306 109617 45318 0.978 0.925 0.948 0.963

Trowel 206771 7639 1848853 0.101 0.097 0.964 0.182

Musket 2023583 105268 32041 0.984 0.933 0.951 0.967

CECOND 2019397 114261 36227 0.973 0.927 0.951 0.962

Ecoli 80X- L50

Lighter 1120010 166142 12188883 0.084 0.072 0.871 0.154

Bloocoo 6049451 745885 7259442 0.455 0.399 0.890 0.602

BLESS 8158797 3887266 5150096 0.613 0.321 0.677 0.644

BFC 10306905 5536277 3001988 0.774 0.359 0.651 0.707

Trowel 2956666 1033910 10352227 0.222 0.145 0.741 0.342

Musket 4222269 964854 9086624 0.317 0.245 0.814 0.457

CECOND 9257110 7092391 4051783 0.668 0.163 0.506 0.576

Ecoli 320X- L250

Lighter 467064 7640024 13752001 0.033 -0.505 0.058 0.042

Bloocoo 12847399 105305 1371666 0.904 0.896 0.992 0.946

BLESS 13869114 184149 349951 0.975 0.962 0.987 0.981

BFC 14198589 169410 20476 0.999 0.987 0.988 0.993

Trowel 3463360 45566 10755705 0.244 0.240 0.987 0.391

Musket 13470253 67423 748812 0.947 0.943 0.995 0.971

CECOND 12965445 104839 1253620 0.912 0.904 0.992 0.950

Chr 320X-L150

Lighter 95769002 34562312 188965339 0.336 0.215 0.735 0.462

Bloocoo 89402571 46117811 195331770 0.314 0.152 0.660 0.426

BLESS 95725880 6732168 189008461 0.336 0.313 0.934 0.495

BFC 104590358 39031768 180143983 0.367 0.230 0.728 0.488

Trowel 79032178 97825610 205702163 0.278 -0.066 0.447 0.342

Musket 34494677 645021146 250239664 0.121 -2.144 0.051 0.072

CECOND 110086051 16190168 174648290 0.387 0.330 0.872 0.536

Dme 20XL150

Lighter 49363299 2902247 8881569 0.848 0.798 0.945 0.893

Bloocoo 14856304 136668296

1

43388564 0.255 -23.209 0.011 0.021

BLESS 53060434 2325825 5184434 0.911 0.871 0.958 0.934

BFC 56650226 2597501 1594642 0.973 0.928 0.956 0.964

Trowel 8738 14491 58236130 0.000 0.000 0.376 0.000

Musket 55657680 2937961 2587188 0.956 0.905 0.950 0.953

CECOND 48611706 28968413 3500201 0.933 0.377 0.627 0.975

Dme 320XL50

Lighter 869521 44737030 127052556 0.007 -0.343 0.019 0.010

Bloocoo 70628812 399843586 57293265 0.552 -2.574 0.150 0.236

BLESS 99479127 830950017 28442950 0.778 -5.718 0.107 0.188

BFC 94340796 707612613 33581281 0.738 -4.794 0.118 0.203

Trowel 71539583 356478867 56382494 0.559 -2.227 0.167 0.257

Musket - - - - - - -
CECOND 106903263 149354905 21018814 0.679 -4.240 0.121 0.206

144

Figure 5.9 Heatmap illustrating performance of CECOND on simulated data in

comparison with six k-mer based algorithms.

5.5.2 Evaluation of CECOND Using Experimental Dataset

To evaluate CECOND using experimental data, reference genome is instrumental

for accurate evaluation. This is achieved by mapping the reads back to the reference

genome and determining the performance from the counts of the mapped reads. A read

will not map to the reference genome if it contains incorrect or erroneous bases. Mapping

was done using BWA. The result of the performance is shown in Table 5.6.

145

Table 5.6 Alignment based evaluation result for experimental dataset

Data Corrector Accuracy

(%)

Specificity

(%)

Sensitivity

(%)

Gain Reads

Mapped (%)

S1
S. aureus

Lighter 87.27 97.29 89.30 0.582 92.45

BLESS 89.50 97.59 94.57 0.491 93.11

BFC 90.23 89.06 92.50 0.599 95.63

Bloocoo 87.72 85.93 97.33 0.564 91.07

CECOND 89.45 92.50 93.15 0.491 89.56

S2
E. coli

Lighter 93.48 98.60 97.51 0.637 92.98

BLESS 95.44 99.72 94.93 0.222 95.67

BFC 95.90 99.37 96.64 0.496 93.68

Bloocoo 96.17 99.10 97.79 0.723 97.73

CECOND 95.83 99.47 97.87 0.655 95.91

S3

S. cerevisiae

Lighter 96.40 72.01 92.43 0.509 75.68

BLESS 93.16 88.90 88.07 0.873 73.56

BFC 95.52 87.56 88.42 0.678 79.99

Bloocoo 90.72 92.24 91.01 0.701 79.03

CECOND 92.34 73.67 90.70 0.682 74.45

S4
C. elegance

Lighter 89.71 97.55 87.77 0.572 81.74

BLESS 92.33 98.32 92.30 0.523 80.10

BFC 92.78 97.71 92.33 0.449 89.23

Bloocoo 92.65 96.99 90.99 0.473 88.82

CECOND 89.92 98.42 87.42 0.581 86.17

S5
H. Chromosome

14

Lighter 58.49 87.59 90.88 0.216 76.03

BLESS 69.72 90.07 89.20 0.451 80.27

BFC 76.66 85.42 93.67 0.503 82.11

Bloocoo 70.57 92.14 90.80 0.550 78.28

CECOND 75.77 91.92 92.73 0.592 82.23

Considering the performance results shown in Table 5.6, it is evident that BFC showed

the overall best performance especially for accuracy and percent of mapped reads.

CECOND performed well for S5 and had the best mapped rate at 82.23. It also showed

better gain for S5 and S4 with a higher sensitivity for S2. Although the accuracy of

CECOND is not as good as that of BFC or BLESS, it came a close second quite often and

sometimes supersedes performance of lighter and BLESS (S5) or even Bloocoo (S1)

which had a close performance to BFC. BLESS showed best performance in terms of

specificity S1, S2 and S4 while lighter had the best performance for S3.

146

Mapping alone may not suffice for accurate evaluation. To ensure proper

evaluation we went a step further to perform genome assembly. This is an important step

because error correction affects genome assembly in crucial ways. To ensure that results

of genome assembly are solely due to performance of error correction methods on the

chosen dataset, we chose assemblers that do not have a built-in error correction algorithm

or implement an external standalone error correction algorithm. This is unlike any other

evaluations performed for other error correction methods

For this purpose, we choose SOAPdenovo – SOAP (Short Oligonucleotide

Analysis Package) version 2.04 [173] with its error correction module turned off.

SOAPdenovo also use iterative k-mer values, so we can adequately specify and compare

assembly output of using several k-mer values. Specifically, we tried k-mers that are

between 2 and 5 (inclusive) steps different from recommended best k-mer by kmergenie

[138]. No gap closing was performed because we were only interested in capturing the

values of the contiguous sequence generated based on error corrected data from the error

correctors.

147

Table 5.7 Assembly based statistics for experimental datasets

Dataset Corrector N50 NG50 Edits/

100kb

Misassemblies Coverage

S1
S. aureus

Lighter 26947 26035 6.32 6 96.368

BLESS 27440 27510 7.13 4 97.394

BFC 27801 27786 6.68 7 96.450

Bloocoo 26041 26042 5.49 9 97.225

CECOND 27627 27629 6.01 13 97.107

S2
E. coli

Lighter 90001 90001 4.21 3 98.203

BLESS 96410 96410 4.41 3 98.668

BFC 96220 95636 5.02 4 98.711

Bloocoo 98317 98317 7.32 1 98.541

CECOND 98622 98622 4.11 2 98.720

S3

S. cerevisiae

Lighter 22675 22794 3.56 17 96.44

BLESS 22983 23021 4.90 31 97.20

BFC 23491 23491 7.45 9 96.40

Bloocoo 23510 23510 4.47 21 95.39

CECOND 22910 23001 4.55 45 93.90

S4
C. elegance

Lighter 18056 17947 26.55 522 96.201

BLESS 18923 18973 27.33 462 94.871

BFC 19435 20167 29.10 473 95.407

Bloocoo 17422 17611 29.62 417 95.518

CECOND 18713 18903 27.30 485 95.420

S5
H. Chromosome

14

Lighter 5756 4218 126.7 569 77.218

BLESS 5862 4240 132.3 607 78.436

BFC 5894 4220 128.2 720 78.727

Bloocoo 5730 4119 133.7 654 79.155

CECOND 5823 4101 127.1 582 79.224

5.5.3 Computational Resource Consumption

For measurement of the computational resource consumption of CECOND, we

used the time command and memusage like in our previous analysis in CHAPTER III.

The result of the comparison is shown in Table 5.8 for simulated dataset and Table 5.9

for experimental dataset. The memory footprint of CECOND is comparable with those of

existing methods. It is next to BLESS and Lighter reasons been that both methods

allocate a constant amount of memory. CECOND allocates memory dynamically like

BFC and Bloocoo. With an average memory usage of 3.30 and 3.81, its footprint is lower

148

than BFC (7.48 and 4.82) and Bloocoo (5.43 and 4.08) for both simulated and

experimental datasets respectively. Variation in memory usage is also respectably

comparable with those of existing methods as observed from the standard deviations

presented in the table.

Speed wise, the error correction running time by CECOND is acceptable given that it is a

novel implementation and can be improved. Generally, the speed of CECOND scales

with the amount of memory allocated. For simulated data, its runtime for correction is on

par with the rest of the methods. Though it took longer to correct Chr21 and Dme at 320

times coverage, it still took a shorter time (0.44) in comparison with lighter, bless and

Bloocoo. Only BFC surpassed its speed. On the experimental data, it was bit grim for

CECOND in terms of speed. With an average correction time of 0.89, it runs at about

65% the speed of the tools it is been compared with for real dataset. More test and

analysis is required to determine areas of potential bottleneck for the speed to improve.

Overall, its performance computational wise is good.

149

Table 5.8 Comparison of computational resource consumption of error correctors for simulated dataset memory(GB) and time(hrs)

Table 5.9 Comparison of computational resource consumption of error correctors for experimental dataset

Error Corrector BFC Bless Bloocoo Lighter CECOND

Measurement Memory Time Memory Time Memory Time Memory Time Memory Time

Mean 7.48 2.41 0.02 4.11 5.43 5.47 1.48 1.34 3.30 2.10

Standard deviation 6.17 5.42 0.00 7.41 1.69 9.17 0.61 2.12 2.60 3.40

Eco_20X_L50 2.14 0.01 0.02 0.01 4.11 0.01 0.35 0.00 0.31 0.02

Eco_20X_ L150 2.87 0.04 0.02 0.01 7.44 0.02 1.27 0.01 1.42 0.03

Eco_80X_ L50 3.99 0.22 0.02 0.33 4.36 0.02 1.47 0.02 2.33 0.15

Eco_320X_ L250 15.94 14.64 0.02 19.92 8.24 22.21 2.22 5.42 6.40 7.83

Chr21_320X_L150 15.94 1.61 0.02 7.00 5.01 14.81 1.90 3.06 5.11 6.22

Dme_20X_L150 2.78 0.10 0.02 0.02 4.33 0.02 1.27 0.01 1.11 0.03

Dme_320_XL50 8.71 0.22 0.02 1.48 4.49 1.21 1.90 0.84 6.40 0.44

Error Corrector Bfc Bless Bloocoo Lighter CECOND

Measurement Memory Time Memory Time Memory Time Memory Time Memory Time

Mean 4.82 0.60 0.02 0.69 5.08 0.56 1.23 0.54 3.81 0.89

Standard deviation 1.79 0.57 0.00 0.74 1.82 0.38 0.55 0.75 2.24 0.42

S1 3.22 0.22 0.02 0.24 4.15 0.29 0.82 0.15 2.17 0.40

S2 3.45 0.13 0.02 0.17 4.07 0.32 0.94 0.14 1.52 1.61

S3 5.61 0.49 0.02 0.27 4.28 0.51 1.18 0.21 3.10 0.82

S4 4.29 0.62 0.02 0.87 4.57 0.46 1.02 0.31 5.47 1.22

S5 7.55 1.56 0.02 1.92 8.32 1.23 2.19 1.87 6.79 1.41

150

5.6 Scalability

CECOND was run multiple times for Escherichia coli dataset S2 to observe its

scalability. Since multithreading was implemented in CECOND, there was a need to

measure the speed of the error correction process using different number of threads. The

evaluation was performed by running error correction with threads of 1, 2, 4, 6, 10, 12, 14

and 16, which is the maximum for the system used in our test evaluation. The result is

illustrated in Figure 5.10. From this figure, we observe an almost linear speedup when the

number of threads used was varied from 1 to 16. Due to the implementation of

CECOND, there was a variation in the amount of memory consumption given different

number of threads. The memory bottleneck stems from the way supplied data is been

read by CECOND which affects the runtime. The amount of data processed at each point

increases with increased number of cores thereby decreasing the run time.

Figure 5.10 Runtime and Speedup of CECOND for E. coli data

151

5.7 Recommendations to Users

To facilitate efficient error correction by CECOND, we advise that data Illumina

data should be used. It is currently targeted for correcting such data and all evaluations

performed in this chapter were Illumina specific. Users should ensure that their data is

preprocessed through quality and adapter trimming. CECOND will not accept data (fastq

file) that contains reads with average quality score less than 20.

k-mer values should also be optimal. We recommend using an existing k-mer

value determination method like kmergenie to evaluate the best k value for each dataset.

The general rule of thumb is to set the k-mer value to about two third of the length of the

sequence. E.g. for a read length of 56, the recommended k-mer will range between 19

and 36. The k-mer value is integral to the number of errors that can be corrected and this

is true for all k-mer based methods. If runtime or memory is not an issue, we recommend

specifying a range of k-mer values so that CECOND will recursively run the same dataset

but with different k-mer values. Be warned, this may take quite some time depending on

the size of the dataset and the error rate of the sequence.

Typically, we recommend a computing environment with at least 4Gb of memory

depending on the dataset. For large genomes, if the coverage is high enough e.g. 60X and

above, we recommend large k-mers and a 4GB memory will allow CECOND to run

smoothly. Large k-mers allows errors effective correction of errors that occur in

repetitive regions thereby improving the accuracy of CECOND.

152

5.8 Limitations

1. The current implementation of CECOND is its first and development is still

ongoing. Some more fine tuning is required to allow for its full capabilities to be

achieved.

2. The amount of memory consumed is excellent for small genomes but not so for

larger genomes. CECOND requires a more efficient way of reading the data from

large files to further reduce the amount of memory used. This is because it

allocates memory progressively as data is being read and the hash table gets

expanded.

3. CECOND is currently unable to handle reads containing indel errors. There is a

need for further analysis of the threshold method implemented in CECOND to

allow for indel correction.

4. Several parameters are required to be given by the user. Upon further analysis, the

number of parameters required by CECOND may be reduced.

5. Finally, it is worth considering the use of multiple k-mers iteratively during the

error correction process. The method has been implemented in some genome

assembly algorithms and can also be implemented in error correction algorithms.

Making use of several k-mers gives an assurance of better error correction.

153

5.9 Software Information

The current version of CECOND, which is the first release is version 0.15.

Testing was conducted on GNU/Linux Ubuntu 14.04.5 with GCC 4.8.5 and requires

pthread. Included in the folder is a readme file showing details of CECOND including

installation instructions, usage instructions and sample test data. The software is available

under the GNU (General Public License) version 3.0 (GPLv3) without any restrictions to

use or modify by non-academics. CECOND can be freely downloaded and extracted

from http://pinfish.cs.usm.edu/cecond.

5.10 Contributions of this work

This chapter elaborates a novel error correction method that implements cuckoo

filter as its underlying data structure. The efficiency of CECOND relies on the efficiency

of the cuckoo filter for error correction in a way, similar to how lighter [124] relies on

bloom filter. The contributions of this work include:

1. Combines Cuckoo filter and hash tables in a memory efficient way to reduce

the amount of computational resources consumed during the error correction

process.

2. Implements a different data structure that has not been tested on NGS data

prior to this implementation. It produced results comparable to those of

several existing k-mer based error correction methods.

3. The method of threshold selection ensures that errors that occur in repetitive

regions are corrected as opposed to several k-mer based error correction

methods which use only one global threshold for correcting the entire dataset

http://pinfish.cs.usm.edu/cecond

154

5.11 Chapter Summary

In this chapter, we discussed a novel error correction algorithm, CECOND, which

is based on cuckoo filter data structure. The method of error correction and threshold

selection was discussed. Upon development, the method was tested on both experimental

and simulated data, compared against state of the art k-mer based methods and evaluation

results was presented. The results showed comparable accuracy with existing methods

even though it is the first implementation of this data structure for set membership test

(other methods used bloom filter in the past). Furthermore, the importance of CECOND

for the correction of repetitive regions of a genome was highlighted in the result. In

addition, despite the good qualities of CECOND, its limitations were also highlighted.

The limitations may act as a guide for future further improvements.

155

CHAPTER VI TIMBER RATTLESNAKE GENOME ASSEMBLY

Several tetrapod vertebrates, specifically the serpent suborder, have been studied

and assembled with annotated genomes e.g. the Burmese python and king cobra

genomes. Despite timber rattlesnake’s wide habitat in the Americas and their diversity,

little effort has been made to study them until recently. Timber rattlesnakes (Crotalus

horridus) which we will refer to as TR, poses important characteristics that makes them

excellent candidates for novel research questions. These snakes exhibit a wide selection

of important phenotypic characteristics that may have implications for humans. Their

ability to withstand long starvation bouts, hibernate, slow down their metabolism,

decrease or increase their anatomical features like the hearts and lungs to facilitate

survival and the wide variety of species available are some of the reasons for their study.

Considering these important characteristics, it is a surprise that they have not been

sequenced and assembled until now. Here we implement our error correction method,

CECOND together with an existing error corrector, BFC, to ease assembly of TR

genome.

156

6.1 Overview

 Improvement in routine generation of sequence data due to the availability of

better sequencing technologies, as discussed in CHAPTER I, has led to increased amount

of de-novo based assembly being performed. While many researchers have been involved

in the genome assembly of various organisms, not much attention was given to

vertebrates until recently. The Genome 10k project [174] whose goal is to sequence

10,000 vertebrate genomes was one of the projects that revolutionized sequencing of

vertebrates.

The difficulty posed by de novo assembly, notwithstanding the improvement in

genome sequencing data generation, led to competitive efforts like the Assemblathon II

project [175]. The outcome of such projects indicated that assembly quality is dependent

on several factors including the assembler design, parameters, complexity of the

sequenced organism, and data quality. Assemblers are generally grouped into 3 major

categories: De-Bruijn, Overlap and hybrid based. Vertebrate organisms can be very

complex making it difficult to assemble due to their repeat contents. Timber rattlesnakes

is one of such organisms which have undergone phenotypic and morphological

transformations. The focus of this chapter is to understand how error correction will

affect genome assembly of such a previously unassembled organism. In this chapter,

First, a de-novo genome assembly of the TR was performed using existing dataset and

compared with other available assemblies from the same dataset. Secondly, additional

Illumina based data was generated. Before error correction, all data were checked for

adapters and low quality bases which were subsequently removed through adapter and

base quality trimming [176]–[178]. Finally, the data was error corrected using CECOND

157

and BFC. Error corrected TR genomic data from BFC and CECOND was used in the

genome assembly process discussed here. The results indicate assembly improvement

because of error correction. This chapter discusses the process that led to assembly of the

TR genome.

6.2 Data and Materials

The initial raw sequence data consisted of 454 reads, Illumina paired end and

mate-pair reads. To achieve a better assembly, more Illumina Miseq and Hiseq data was

sequenced. Table 6.1 shows the source of the sequencing sample. The juvenile was born

in captivity and was properly sacrificed for RNA isolation according to standards because

there was no need for it. The initial raw sequence data generated after sequencing and the

sequencing platforms are shown in Table 6.2. For a more expansive analysis, more data

was sequenced. The additional data is shown in Table 6.3

Table 6.1 Source of sample extracted for sequencing the timber rattlesnake genome

Data type Isolation source Sex Development stage

Genomic Blood Female Adult

RNA-seq Muscle, blood, heart, head, digestive

tract, mixed internal organs

Male Juvenile

158

Table 6.2 Raw sequence fastq dataset for initial Assembly

Reads Source Library
Number

of files
Size (gb) Coverage

454 gDNA Single read 13 23.540 11.8X

Illumina

PE
gDNA

100bp on 179bp

library 4 106.235 52.4X

Illumina

MP
gDNA

100bp on 6.6kbp

library 2 44.937 21.5X

Illumina

PE

Mixed

tissue

RNA

265bp (including

adapters 130bp)
2 10.534 5.3X

Total 181.712 90.9X

While the Roche 454 reads are single libraries, all Illumina data are paired libraries where PE – Paired-end

and MP -Mate-pair. The total coverage shown is just to show the coverage of the dataset not the coverage

of the genome. The coverage of the genome are the individual values shown. gDNA refers to genomic

DNA. The file sizes are in giga bases

Table 6.3 Additional Illumina Miseq and Hiseq data with SRA accession number

SRA

Accession No.

Technology

(Illumina)
%GC

Insert

Size

Read

Length (bp)

Total nt

Sequences

File Size

(Gb)

SRR3185239

Miseq 40

350 2 X 300 11847896 15.2
SRR3185241 350 2 X 300 12211478 15.6
SRR3185252 550 2 X 300 13084150 16.8
SRR3185265 550 2 X 300 13289092 17.0
SRR3185268

Hiseq 39

350 2 X 100 80263916 38.8
SRR3185269 350 2 X 100 70880665 34.3
SRR3185271 350 2 X 100 75011492 36.3
SRR3185272 550 2 X 100 98275350 47.5
SRR3185274 550 2 X 100 94569070 45.7
SRR3185275 550 2 X 100 93517900 45.2

 Total File Size 312.4

159

6.3 Computational Environment

All genomic assembly runs were performed on USM’s School of Computing

pinfish server running on a CentOS 64-bit Intel(R) Xeon(R) CPU E5630@ 2.53 GHz

machine with 16 processors, 296 GB RAM and a total storage of 8 TB. The trinity

assembly for RNA-seq data was run on USM’s BigCat server with a 64-bit Ubuntu 12.04

LTS Intel(R) Xeon(R) CPU with 16 nodes, 72 GB RAM and a core speed of 2.40GHz.

6.4 Methodology

The Roche 454 dataset and gDNA Illumina paired-end dataset were used for the

genome assembly while the Illumina mate pair information was used to extend the

assembly. To assemble the genome, raw sequence data was first preprocessed to remove

contaminants and errors. The pyrosequencing 454 data was in a binary SFF (Standard

Flowgram Format) file and the sequences had to be extracted and subsequently converted

to fastq format using Sffinfo of mothur [61]. The Illumina and 454 datasets were first

preprocessed and quality checked after which error correction was performed.

6.4.1 Data Pre-processing

To prepare the data for genome assembly, contaminants like adapter read through

and low quality bases were removed through trimming using trimmomatic [176].

Erroneous data can also lead to slow assembler run, RAM consumption and poor or

misconstrued results. Pre-processing eliminates construction of suboptimal paths during

genome assembly, reduce sequence volume thereby enabling easier processing. To ensure

that the right number of bases and qualities are trimmed, there was a need to examine the

quality of the raw sequence files. For example, a quality score of 13 is equivalent to a 5%

160

error. Such values can be trimmed based on base quality, using a sliding window or

percentage of good quality sequence per window. A GUI based QC (quality control) tool

fastqc [179] was used. A subset of observation from fastqc based on the unprocessed

timber rattlesnake genome is shown in Figure 6.1. Low quality scores are observed at the

3’ end with hints of adapter sequences in position 1 to 6 at the 5’ end. The main idea was

to check for and remove over represented sequences, low quality bases and adapter

sequences. Further processing was performed using fastx toolkit [178] and NGS QC

Toolkit [177] both of which does quality trimming as well as formatting fastq files to

remove single unpaired sequences. The before and after preprocessing statistics for the

initial sequencing data is shown in Figure 6.2 (a) and (b). The impact of trimming is

clearly visible. A 6% increase in final contribution to the data is observed for the Illumina

PE data and an 8% decrease for 454 data.

Figure 6.1 Fastqc representation of per sequence quality score of SRR3185265_1. fastq

161

Figure 6.2 Size of timber rattlesnake data (a) before trimming (b) after trimming

6.4.2 Correcting Timber Rattlesnake Data

After preprocessing steps were completed. The processed data was used as input

for both CECOND and BFC. The choice of BFC for comparison with CECOND, given

the experimental TR data, is because BFC was determined to have the best performance

overall after evaluations conducted in both CHAPTER III and CHAPTER IV. Several

steps were used to determine how to proceed with error correction and are briefly

discussed in this section

6.4.2.1 K-mer Selection

CECOND, which is based on cuckoo filter data structure as described in

CHAPTER V, and BFC, were used to correct the TR dataset. Both CECOND and BFC

162

requires k-mer as one of the main inputs used in their error correction process.

Kmergenie [138] was used to determine the best K for the given data. Kmergenie

produced a recommended k of 35 with a total of 1,087,547,810 genomic k-mers. This

value is close to the genome size of TR genome. This can be improved after error

correction and subsequent genome assembly steps are performed. For a more robust

analysis to validate kmergenie output, we decided to experiment with several values of k

centered around the recommended k of 35 by kmergenie. We increased and decreased the

k value by multiples of 4. The final values of k used for the experiment are: 23, 27,31, 35,

39, 43 and 47. To evaluate the k-mer values shown, DSK [128], a k-mer counting method

was used. DSK is like Jellyfish and provides several valuable information based on the

value of k provided to it as input. It also gives an estimated expected genome size based

on the k value. The results of DSK run on the TR data from multiple values of k are

shown in Table 6.4.

Table 6.4 Output of DSK run on multiple values of k for evaluation of kmergenie

recommended k of 35

K value 27 31 35 39 43

Number of k-mers 6,681,306,980 6583769660 6,486,232,340 6,388,695,020 6,291,157,700

Valid K-mers 4421045121 4275877951 4141414906 4014962021 3890894050

Invalid K-mers_ 2355091390 2318320169 2270844823 2383852451 2410228598

Distinct k-mers 1768216733 1830169426 1876875964 1912113725 1936457140

Solid k-mers 472811440 452252452 491813252 430824463 4710228598

Weak k-mers 1357357986 1424623512 1276403481 1481289262 1227909980

163

The results confirm that the k value generated by kmergenie is optimal given that

there is a decrease in the number of solid k- for every subsequent k-mers with values 4

places below or above the k value of 35 chosen by kmergenie as optimal. Although the

number of distinct k-mers increases steadily as the value of k increases, the value of solid

k-mers was highest at k = 35. The total number of k-mers observed decreases as the value

of k increases. This is totally normal because the smaller the value of k, the more k-mers

are generated. The value of weak k-mers is also minimal at k = 35 although it is higher

than at k = 43. Having a lower value implies lesser error complexity for the error

correctors. After error correction, a decrease in the value of weak k-mers present in the

read is expected at the given k value of 35.

6.4.2.2 Error Correction

Once it is determined that the value of k generated by kmergenie from the process

in 6.4.2.1, is valid, we proceed to error correction of the data. An inherent difficulty in

most error correction method is the time it takes to process the large amount of data

generated from NGS sequencing technologies especially, from complex genomes like

those of TR, been considered in this work. This was not a problem with both BFC and

CECOND due to their design. The data was processed using both methods and evaluated.

The results of evaluation of the corrected data were compared and shown in Table

6.5TABLE 4. Due to the lack of a well annotated reference genome assembly for TR,

after error correction, the error corrected reads were mapped back to the genome of the

Burmese python which is a closely related specie.

164

This helps to determine the amount of error free reads from the counts of the

mapped reads. A read will not map to the reference genome if it contains incorrect or

erroneous bases. Mapping was done using BWA. The same process used in measuring

performance of error correction method in 5.5.2 was used for this evaluation.

Table 6.5 Evaluation of CECOND and BFC performance on TR data with Burmese

Python as the reference genome

The percentage of reads mapping to the Burmese python reference was not very

high but it gives us an idea of how the correctors performed. Given the limited

information we have (no reference genome for timber rattlesnake), using a close relative

was the best method in our case. Although BFC still performed better than CECOND, the

ability of CECOND to detect the errors present in the reads is much higher. This is

because of the way CECOND builds local thresholds for identifying errors in each read.

Apart from BFC being more accurate than CECOND, every other metrics generated are

Metrics (%)

Error Corrector

CECOND BFC

Accuracy 67.54 72.16

Specificity 83.11 81.73

Sensitivity 77.32 80.20

Gain 0.401 0.449

Reads Mapped 77.98 78.34

165

comparable with only a maximum difference of about 0.5%. Based on the result,

corrected reads from any of both methods can be used as input to MaSuRCA for

generating the de-novo assembly. The decision was made to use both results from the

error correction as input to the assembler. The result from CECOND was used as input to

the assembler while the result from BFC was used to refine the assembly. This was

achieved by mapping the reads to the assembly during the extension process. The genome

assembly process is discussed in the next sections.

6.4.3 De-novo Genome Assembly Process

After preprocessing the data to remove contaminants and errors, de-novo genome

assembly was performed. Genome assembly, which is the process of determining the

ordering of the bases and stitching them back to form contiguous sequence has been

elaborated in CHAPTER II. Several genome assembly tools are available. For genomic

assembly, the whole genome MASURCA (Maryland Super Read Cabog Assembler)

[152] was used. It was chosen because of its ability to work with reads of variable length

(due to trimming) and reads from multiple sequencing platforms – it is an efficient hybrid

approach that combines de Bruijn graph and overlap-based assembly methods. QUAST

(Quality Assessment Tool for Genome Assemblies) [180] was used to compare

MaSuRCA assembly (using default values) with another efficient assembler, IDBA-UD

[181] before its selection as an ideal assembler for our genome assembly. See Figure B.2.

6.4.4 De-novo Genome Assembly and Comparative Result

With timber rattlesnakes not having been assembled before, there was no draft

genome available on genomic databases. De-novo based methods should be used. We

166

stated (see 5.4.2) the reasons why MaSuRCA [146] was chosen as the ideal assembler in

our case. A prior de-novo assembly had been generated using velvet [178]. The assembly

used the initial data shown in Table 5.3. To further analyze the data to measure effect of

assembler program on a genome assembly, we used the same data to generate an

assembly by MASURCA. Before assembly, kmergenie [138] was used to determine the

best recommended k based on our data. The recommended k was used as input for

assembly. The workflow used in generating the assembly is shown in Figure 6.3

Figure 6.3 Timber rattlesnake assembly workflow with Assemblathon [175] used for

assembly comparison

Genome assembly was performed based on initial available sequence data, Table

5.3, and compared with an existing timber rattlesnake genome using the same dataset.

The assembly result showed higher quality to existing velvet based assembly Figure 6.4

167

but was still well short of the known genome size for timber rattlesnake. The generated

scaffold lengths were also well shorter than the values observed for both the Burmese

python [182] and King cobra [183] genome. For these reasons, additional data was

sequenced. The final assembly was performed using a combination of both datasets in

Table 6.2 and Table 6.3. which had been error corrected in the prior section using

combined CECOND and BFC corrected data. The result of the final assembly is shown in

Figure 6.6 for both error corrected and non-corrected datasets.

 An N50 contig size of N implies 50% of the assembled bases are contained in

contigs of length N or larger. N50 sizes are often used as a measure of assembly quality

because they capture how much of the genome is covered by relatively large contigs

[184] The N50 is like a mean or median, but with greater weight given to the longer

contigs. N50 can be longer when the measurement falls within an area with longer

contigs than others while it could be shorter if it falls between the region of the assembly

with shorter contigs hence not a very accurate measurement of the quality of the

assembly but will suffice for a de novo assembly since there is no reference genome. The

initial assemblies are comparable with better statistics in some respects. Overall statistics

of our assembly is comparable and slightly better with longer MaSuRCA based contigs.

Even though our longest scaffold was relatively shorter, we can see that the number of

scaffolds greater than 1k NT (Nucleotide) is much higher and those greater than 10k is

comparable. Our L50 contig and scaffold counts are also much better. The L50 measure

is the number of scaffolds/contigs that are greater than, or equal to, the N50 length [175].

168

Having a higher L50 count demonstrates that the MaSuRCA assembly is of a higher

quality than the velvet based assembly.

Figure 6.4 Comparison of Velvet based and MaSuRCA based assemblies. Assemblathon

statistics shows significantly low values for both contig and scaffold N50 values in

comparison to values from the Burmese python genome assembly generated in [182]

After performing error correction on the data, de-novo genome assembly was

performed. The existing assembly with results shown in Figure 6.4 was combined with

the new assembly generated and extended into scaffolds using the Illumina mate-pair

data. To merge both assembly, SSPACE (SSAKE-based Scaffolding of Pre-Assembled

Contigs after Extension) [185]. Combining the assembly in this way helps create longer

contiguous sequence. The result of the final assembly generated are shown in Figure 6.5

and Figure 6.6. The results were compared against an existing draft genome deposited on

169

NCBI database by the MCBIOS (Mid-South Computational Biology and Bioinformatics

Society) community effort. Figure 6.7 compares the total genome size of the new

assembly with that of the existing and uncorrected data assembly. The idea is for this new

assembly to be evaluated and used as an update to the version on NCBI.

Figure 6.5 Assemblathon assembly evaluation for corrected and non-corrected data

0

100,000

200,000

300,000

400,000

500,000

600,000

No of
Contigs

No. of
Scaffolds

Longest
contig

Longest
Scaffold

No of
Contigs >

1k

No of
Scaffolds >

1k

No of
scaffolds

>10k

L50 contig
count

L50
Scaffold

count

Genome Assembly Results Comparison

Corrected Non-Corrected

170

Figure 6.6 Contig and scaffold size comparison for corrected and non-corrected data

Figure 6.7 Comparison of total contig size of our corrected assembly against assembly of

uncorrected sequence and MCBIOS assembly deposited on NCBI database

1.515E+09

1.516E+09

1.517E+09

1.518E+09

1.519E+09

1.52E+09

1.521E+09

1.522E+09
1520334138

1521783162

1517804644

N
u

m
b

er
 o

f
B

as
es

Genome Assembly

Total Contig Size Comparison

MCBIOS CORRECTED UNCORRECTED

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Mean Contig
Size

Median
Contig Size

N50 Contig
Length

Mean Scaffold
Size

Median
Scaffold Size

N
u

m
b

er
 o

f
B

as
es

 (
M

b
)

Genome Assembly Result Comparison

Corrected Non-Corrected

171

6.5 Discussions and Conclusions

With the critical nature of genome assembly for various genomic downstream

analysis, it is necessary that the correct ordering of the genomic sequence is attained.

Having a properly sequenced data, engaging in proper pre-processing steps and

performing qualitative analysis is relevant for genome assembly. From our results, error

correction has shown to improve the quality of the assembly especially in terms of

contiguous sequence length and total contig size (length) or genome size. With an initial

size of 1,517,804,644 total number of bases for uncorrected data, error correction lead to

an increase of 3,978,518 contiguous bases for the assembly. This is an extremely

significant number given that longer contiguous bases are desired in genome assembly.

Without any proof to determine if error correction was performed or if a combination of

existing data and newly generated data was used for the deposited assembly on NCBI, we

compared the resulting assembly from our error corrected data. The assembly also

showed an improvement of over 1.4 million bases in the contiguous assembly. This

increase in the total contig size is important for conclusions that can be drawn from such

assembly data.

We conclude that as far as genome assembly and analysis is concerned, error

correction is significant for qualitative analysis. Determining the type of error correction

method to use is also important because methods that may work on genomic data almost

always does not work well with RNA sequence data. Improvement in the sequencing

assembly is largely due to the error correction made as observed in the difference

between the corrected and uncorrected genome assembly.

172

6.6 Chapter Summary

In this chapter, we:

• Discussed timber rattlesnake as a novel model organism for several studies

• Applied error correction to Illumina based genomic data of the timber

rattlesnake to investigate the effectiveness of error correctors for real

novel datasets and analyze improvements that can be made upon

implementation

We observed that

• Error correction is an important facet of every genome assembly project

which is buttressed by the fact that almost all genome assemblers rely on

either internal or external error correction method to resolve ambiguities in

their graph during contiguous sequence reconstruction.

• The implementation of error correction to the rattlesnake data generated a

better genome assembly than that of an uncorrected sequence data. This is

indicative of how effective error correction can be in improving genome

assembly.

We conclude that

• Error correction is an important step that should never be overlooked

during a genome assembly process

• Error correction can adversely affect the quality of a final assembly and

the method for error correction should be chosen with care to prevent over

correction which may lead to the introduction of more errors

173

CHAPTER VII – CONCLUSION AND FUTURE WORK

7.1 Overview

NGS technologies are now viewed as the holy grail of exploring molecular

biology. The work in this dissertation explored several aspects of NGS data including the

different types of sequencing platforms, their error content, and what effects they exact

on final analysis results. It further explores the error contents from various perspectives

with regards to the sources of errors and the significance of knowing which error

correction method to choose for a selected dataset. It depicts how the performance of

NGS error correctors depends on characteristics of the NGS data. Characteristics such as

the genome size of the organism, the sequence read length, the genome coverage and in a

minimally explained sense, the repetitiveness of some regions of the genome.

This work is significant because it breaks down the complex nature of errors in

NGS data to provide new insights and methods to alleviate erroneous base(s) issues with

NGS data, especially, data from Illumina based technology, which is currently the most

widely used platform. The approach employed here was to create a ground truth, in a

bottom up fashion, around which all other development and analysis was built.

The study was highly experimental requiring some further studies that will build

on the intuitions acquired and developed here. In this chapter, a summary of the goals and

insights gained from the dissertation is presented. The contributions it makes to further

enhance our knowledge of the area as well as its implications are also elaborated. Finally,

we conclude with the queries tackled by this dissertation, the implications of those

queries for comparative genomic analysis, and recommendations for future work.

174

7.2 Summary

Studying the implication of NGS errors, finding ways to mitigate these errors and

verifying implication of these errors for a real-world novel organism, were the main

purpose of this dissertation. Downstream analysis is complex and answering the

questions that arises requires careful design, implementation, and attention to details. A

systematic organization based on several prerequisite goals had to be strictly followed for

the main objectives of this dissertation to be achieved. To that end, there was need to

delve into a little history of how sequencing evolved. Understanding its evolvement

means we can get to understand how errors became permanent fixtures of NGS data. As

opposed to earlier more complicated methods, NGS methods are more error prone. This

discovery prompted the need for a stringent quality control (QC) analysis to be able to

achieve quality draft genome assembly. These errors constitute significant noise during

downstream analysis. Having understood that NGS data contained errors in varied

quantities, we investigated the methods available to correct these errors. Our focus was

mainly on Illumina based data (most widely used platform) which are prone to what is

known as substitution errors. In this case, a base is incorrectly replaced by another base in

the sequence. Most methods available are geared towards this error types and are

generally classified as k-mer or k-spectrum based methods.

Since every method implements different algorithm with varying underlying

principles, further comparative analysis was carried out to investigate their performance,

understand their capabilities, review their limitations, and discover ways to improve on

them. Most of the existing methods are also command line based. With Linux based

command line programming not been a strong forte of many molecular biologist, we

175

explored the idea of implementing our findings as a web-based pipeline. The core idea, in

this case, was to identify the most appropriate error correction algorithms for different

datasets and use those to reduce the complication in execution through a web-based

implementation. This provides a graphical user interface for error correction and

statistical investigation allowing few parameters as possible. This pipeline known as

Bioinformatics Error Correction Workflow (BECOW) was implemented in python and

was the first of its kind. It provided a means for those with little to no knowledge of using

these error correction tools, on Linux systems, to correct errors in their data. It also

generates statistical data about the corrections made allowing the user to select the best

result for their analysis.

Based on the investigation conducted, it became necessary to develop a novel

approach that can deal with limitations encountered by the existing methods. Especially,

limitations of dealing with reads of various length after trimming, repeat rich genomes,

amount of false positive correction generated, computational resource consumption and

speed. It was imperative to develop a model with the potential to alleviate the issues

mentioned above.

The model, Cuckoo-filter Error Correction of Next-Generation Data (CECOND)

with cuckoo-filter as its data structure was implemented. Its performance was measured

comparative to existing methods using both simulated and experimental datasets. This

novel algorithm produced results with about 3% false positive rate in comparison to

existing methods although the overall performance in terms of f-score and precision was

comparable or a little below the best performing methods. These existing methods

produced results with at least 4% false positive rate. The computational resource

176

consumption and error correction completion time were significantly reduced by about

7.85% and 6.233% respectively for CECOND. Error correction was then applied to

reconstruct the genome assembly of timber rattlesnake, which is a novel organism for

sequencing projects. Prior to error correction, an earlier genome assembly had been

constructed with the timber rattlesnake data. This assembly was then used as a

comparative approach to investigate the effect of error correction on de novo assemblies.

Results indicated an improvement of the final genome assembly even in comparison to an

assembly recently deposited in the NCBI data bank by the MCBIOS community. The

idea is to place the genome assembly results produced in this dissertation as an updated

version alongside the current existing NCBI draft genome assembly.

7.3 Contributions

Contributions of this dissertation were based on the queries or research questions

that required practical answers. As mentioned earlier, it follows a systematic series of

requisite research questions. The 4 main objectives (corresponding to CHAPTER III,

CHAPTER IV, CHAPTER V, and CHAPTER VI) of this dissertation are highlighted

here in the form of the questions while the contributions are presented as answers to those

questions.

1. Question: Which are the most common error correction methods, how can we

use them and what are their limitations if any?

Contribution: The work presented in CHAPTER III answered these sets of

questions by identifying k-mer or k-spectrum based methods as the most

commonly used error correction methods. Prior to this work, no comparison

of the methods had been made. We compared 6 of the methods, discovered

177

their limitations and made recommendations to users on how best to set

parameters for optimal performance of the error correctors. Through this

comparative and statistical analysis, we also discovered certain inherent

limitations in the false positive rates, inability to handle reads of varying

lengths, ineffectiveness in correcting repeat regions of reads, high memory

consumption and slow speeds of some of the error correctors. This in addition

to difficulty in setting up the corrector (installation, parameter settings and

ease of use) were discovered in this part of the work.

2. Question: Given that almost all the NGS error correctors are Linux based, can

we develop a web-based pipeline that will make it easier to use for those users

(especially molecular biologist), with little to no training on Linux systems?

Contribution: Based on our analysis from CHAPTER III, we created an error

correction web-based pipeline that will provide a GUI for users to input their

data and supply a limited number of parameters. The pipeline runs on four (4)

of the best error correctors evaluated and the novel error corrector (CECOND)

we developed, to correct the user supplied data. This makes it easy for any

user to correct their data without fear of using a Linux command line

interface. This as well, is the first ever implementation of a web application

for NGS error correction despite availability of web based pipelines for

several other NGS data analysis and pipelines.

3. Question: With our analysis also indicating several limitations of existing

NGS error correction methods, can we develop an error correction method

that will alleviate some, if not all, of the associated problems we identified?

178

Contribution: This dissertation implemented a novel algorithm for error

correction that is based on cuckoo filter data structure. Its false positive rate is

based on the cuckoo filter implementation. One other distinguishing

characteristics is the ability to select several thresholds across the entire data

as opposed to using a single local threshold for the whole dataset. This

implementation means that correction of data without uniform coverage is

performed. Also reads with high repeat contents can be easily corrected as

opposed to some k-mer based methods, which are incapable of correcting such

datasets.

4. Question: Can a qualitative draft genome assembly be generated for timber

rattlesnake de-novo (without any reference) if we apply error correction to it?

Contribution: This dissertation presented a de-novo draft assembly that is of

high quality as indicated by the results shown. The effect of error correction

on the data was clearly visible in comparison to non-error corrected data and

existing draft assembly generated from the same set of data. A hybrid

approach was used in the process ensuring that we took advantage of the

various data characteristics. Error correction was performed using our novel

error corrector and an existing error corrector

179

7.4 Conclusions and Future Work

We have described some of the problems related to NGS error correction, how it

affects genome-assembly and how the suit of tools we developed alleviate the associated

problems. A comparative analysis of error correction methods, two-state of the art error

correction tools, BECOW pipeline and CECOND error corrector and generation of de-

novo timber rattlesnake (Crotalus horridus) were described. The work presented in this

dissertation is not by any means complete and further investigation is desired. Here, we

discuss some of the possible improvements to the works presented in this dissertation.

Our comparative and statistical analyses allow us to find associated problems with

existing error correctors while also making recommendations to users on which methods

to use. Despite this expansive view, further review is desired to include more diverse

error correctors. Also, in addition to synthetic NGS dataset, running the tools on

experimental dataset will give a broader overview of how these tools perform. In our

opinion, this will result in a more thorough recommendation for users of such error

correctors.

In addition, the development of BECOW, as the first of its kind, has eased issues

associated with using the Linux command line language for error correction but requires

more tweaks to ensure it is a fully developed web application. Limitations of BECOW

that could be addressed ranges from increasing the size limit (currently 10 GB) of data

that can be processed, incorporating novel tools as they become available, allowance for

single end data to be processed (currently only paired end data is allowed), removing the

compulsory requirement for a reference genome which will make statistics generation

optional and modification to the interface to ensure users of the tools can be accounted

180

for by logging into a sign on page. Addressing these issues will make BECOW more

robust and effective at helping users correct their NGS data.

We further implemented CECOND error corrector which has exceptional speed

and CPU memory consumption in addition to its comparable accuracy with those of

existing methods. CECOND, due to the way the threshold for erroneous vs correct k-mer

separation is selected, is especially tuned to correct reads with highly repetitive regions

without loss of speed or increase in memory footprint. Results have shown considerable

improvement over existing methods as shown in CHAPTER V. Although the results are

comparable, we believe it can exceed expectations and further theoretical analysis would

be necessary to improve its performance. Specifically, the algorithm implemented can be

modified to correct insertion and deletion errors as newer data from other sequencing

platforms like Ion Torrent becomes popular (substitution and indel errors are equally

likely given such dataset). Also, allowing a user to pre-process their data completely

before submission, makes it possible for us to use some contextual information provided

by the associated Phred quality score. This makes the error correction process easier for

us but shifts quite a bit of processing to the user. It will be worthwhile to automate such

process in the future to allow CECOND pre-process data through trimming off low

quality score reads. CECOND has great potential and making these modifications is

recommended. To further improve the already fast run time and memory usage of the

algorithm of CECOND, distributed parallelization strategy can be employed together

with its already implemented multi-threading capabilities using cores

Finally, application of error correction to timber rattlesnake made a whole

difference based on our result. Although the draft genome assembly generated superseded

181

all currently available rattlesnake genomes, further work is required to get to the range of

its genome size (1.9 to 2.5 Giga bases). More data needs to be sequenced using a

combination of short and long NGS data platforms possibly in combination with mate-

pair information. Also, the data should be properly pre-processed with errors corrected

before genome assembly is started. Assembly should be performed with hybrid error

correctors like MaSuRca and possible stitched with existing draft assemblies using

SSPACE. This will ensure that a qualitative draft genome assembly, that is comparable to

those of Burmese python and king cobra, is generated.

182

APPENDIX A CECOND IMPLEMENTATION GUIDE

CECOND was uniquely implemented to alleviate some issues associated with k-

mer based methods. These methods are known to have issues with highly repetitive

genomes because of non-uniformity of coverage across a genome, in which case, there is

a drop in the correctors performance. Some of the correctors also have issues with loss of

information due to how ambiguous bases are handled. The implementation of CECOND

and usage is presented.

A.1 SYSTEMATIC IMPLEMENTATION GUIDE

Step 1: Take user input files and check the options. If option r =1, the file is in

fasta format, proceed to next step but if r = 2, the file is in fastq format. Check the 4th

line of the file. Calculate the average quality score for each line. Check that the quality

score total is ≥ 20. If it is not the case, exit the process and inform the user to process

their data to bring the average quality to at least 20 and resubmit the files again.

CECOND assumes quality scores are in ASCII_BASE=33. It can also determine the type

of sequencing data being supplied to it by the user.

Step 2: If step 1 is satisfied, take user input files and check that it contains only

ACTG letters which is the second line of both fasta or fastq files. Sometimes it contains

Ns. If it contains N, randomly convert the N to any of the four letters A or C or G or T.

Step3: Estimate the total number of k-mers based on value of k given by the user

using the formula: Total k-mers = B ^ k. If a user gives k =8, the number of possible

bases is only 4 always i.e. A, C, T and G. So, for example if k =8, then total number of k-

mers = 4 ^ 8 = 65536. We can use that to set the cuckoo filter table size.

183

Step 4: Based on the user supplied k value, count the k-mers in an efficient

method. Only k-mer counts that occur more than a given threshold of T (T is determined

as shown in step 5) should be stored as fingerprints in the cuckoo filter table. Murmur

hash was used to store the k-mers. Two hash tables are required and used for hashing the

fingerprints and counts.

Step 5: Determine the threshold. This is done for every sequence line. So, each

sequence will have a different threshold T. This is computed by first calculating the

adjusted mean counts of a given sequence line e.g. If user gives k=3 and assuming

sequence line = ATCGATCTCATCGACTCGCATCGTCTCATCG

COUNTS: ATC = 5, TCG = 5 CGA =2 GAT =1 TCT =2 CTC=3 TCA=2 CAT=3

GAC =1 ACT =1 CGC=1 GCA=1 CTG=1 GTC=1 TCT=1 TCA=1.

Use the count, the adjusted mean value i.e. excluding means less than minimum

representation desired, calculate the harmonic mean as the threshold T for each sequence.

Hence, we chose T = 2 as the threshold for the above sequence. So, any k-mer ≥ 2 is

considered good or correct k-mer and those with counts < 2 are said to contain errors.

These are now candidates for error correction. This process is repeated and calculated for

each sequence and the threshold is used for that sequence. We rely on the closest

sequences, before and after an incorrect k-mer, that satisfy this condition and see if we

can turn the erroneous k-mer to the valid k-mer using the minimum number of edit

operations.

Step 6: Once the count is completed and stored and the threshold is determined

proceed to error correction using the k-mer counts. Take each k-mer whose count occur

less than T times and compare it with the k-mer closest to it, then check the count of that

184

k-mer in the cuckoo table. If the k-mer closest to it has a count ≥ T, then check the

difference between the incorrect k-mer (invalid k-mer) and the k-mer next to it with count

greater than T. Change the incorrect k-mer to the neighbor k-mer if the difference

between them is one base. i.e. using hamming distance.

Step 7: After completing step 6, count the k-mers again to see if any k-mer has a

count less than the threshold of T. If there is still invalid k-mers, use the same method to

correct the k-mer again but this time correct it even if the difference between the k-mer

and its neighbor is 2 or 3 or 4. The maxcor value of 4 (default) is the maximum number

of correction that can be made. Do not allow more than m = 4 changes in a k-mer

containing 10 bases i.e. a window of 10 bases (A, C, T, G characters).

Step 8: Once step 7 is completed, check through again. If there is still invalid k-

mer, use exhaustive search to see if it can be corrected i.e. look for any k-mer within the

sequence that is valid and correct the invalid k-mer to that k-mer.

Step 9: If after checking through all and still there is an invalid k-mer, discard the

read. i.e. remove the full sequence read from the file.

Step 10: Output the result. Retrieve the result from the table, aggregate them and

return the corrected sequence. The results will be the same number of files and input

format given by the user. i.e. if two fastq files are given, the output will be two fastq files

with the corrections performed. If the input is 2 fasta files, then the output will be two

fasta files with corrections performed. Fastq file can end with fastq or fq while fasta files

end with fasta or fa.

185

APPENDIX B EXPLORATORY TABLES AND FIGURES

B.1.1 Representation of TP, FP and FN

Figure B.1 Performance metrics of six k-mer spectrum-based error correctors on 27

synthetic datasets. Eco = E. coli; Chr21 = Human chromosome 21; Dme = D.

melanogaster; 20X, 80X and 320X = 20-, 80- and 320-fold coverage; L50, L150 and

L300 = read length of 50, 150 and 300 bp. Metrics measurements for TP, FP and FN.

186

187

Figure B.2 QUAST comparison of MaSuRCA vs IDBA-UD generated assembly.

MaSuRCA showed better performance over IDBA-UD and was used for genome

assembly. It is also a hybrid assembler that can handle data from multiple platforms.

188

BIBLIOGRAPHY

[1] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic aids: A structure

for deoxyribose nucleic acid,” Nature, vol. 171, no. 4356, pp. 737–738, 1953.

[2] V. Precone et al., “Cracking the Code of Human Diseases Using Next-Generation

Sequencing : Applications , Challenges , and Perspectives,” Biomed Res. Int., vol.

2015, 2015.

[3] J. Henson, G. Tischler, and Z. Ning, “Next-generation sequencing and large

genome assemblies,” Pharmacogenomics, vol. 13, no. 8, pp. 901–915, 2012.

[4] H. P. J. Buermans and J. T. den Dunnen, “Next generation sequencing technology:

Advances and applications,” Biochim. Biophys. Acta, vol. 1842, no. 10, pp. 1932–

1941, 2014.

[5] L. Liu et al., “Comparison of next-generation sequencing systems,” Journal of

Biomedicine and Biotechnology, vol. 2012. 2012.

[6] J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nat Biotechnol, vol.

26, pp. 1135–1145, 2008.

[7] L. T. C. Franc: A, E. Carrilho, and T. B. L. Kist, “A review of DNA sequencing

techniques,” Q. Rev. Biophys., vol. 35, no. 2, pp. 169–200, 2002.

[8] E. E. Schadt, S. Turner, and A. Kasarskis, “A window into third-generation

sequencing,” Hum. Mol. Genet., vol. 19, no. R2, 2010.

[9] T. P. Niedringhaus, D. Milanova, M. B. Kerby, M. P. Snyder, and A. E. Barron,

“Landscape of next-generation sequencing technologies,” Analytical Chemistry,

vol. 83, no. 12. pp. 4327–4341, 2011.

[10] C. S. Pareek, R. Smoczynski, and A. Tretyn, “Sequencing technologies and

189

genome sequencing,” Journal of Applied Genetics, vol. 52, no. 4. pp. 413–435,

2011.

[11] I. G. Gut, “New sequencing technologies,” Clin. Transl. Oncol., vol. 15, no. 11,

pp. 879–881, 2013.

[12] R. L. Sinsheimer, “Purification and properties of bacteriophage fX174,” J. Mol.

Biol., vol. 1, pp. 37–42, 1959.

[13] W. R. Holley et al., “Struture of a ribonuclei acid,” Science, vol. 147, no. 3664, pp.

1462–1465, 1965.

[14] R. Wu and A. D. Kaiser, “Mapping the 5’-terminal nucleotides of the DNA of

bacteriophage lambda and related phages.,” Proc. Natl. Acad. Sci. U. S. A., vol. 57,

no. 1, pp. 170–7, Jan. 1967.

[15] R. Wu and A. D. Kaiser, “Structure and base sequence in the cohesive ends of

bacteriophage lambda DNA,” J. Mol. Biol., vol. 35, no. 3, pp. 523–537, 1968.

[16] A. D. Kaiser and R. Wu, “Structure and function of DNA cohesive ends.,” Cold

Spring Harb. Symp. Quant. Biol., vol. 33, pp. 729–734, 1968.

[17] R. Wu and E. Taylor, “Nucleotide sequence analysis of DNA. II. Complete

nucleotide sequence of the cohesive ends of bacteriophage lambda DNA.,” J. Mol.

Biol., vol. 57, no. 3, pp. 491–511, 1971.

[18] R. Padmanabhan, R. Padmanabhan, and R. Wu, “Nucleotide sequence analysis of

DNA. IX. Use of oligonucleotides of defined sequence as primers in DNA

sequence analysis,” Biochem. Biophys. Res. Commun., vol. 48, no. 5, pp. 1295–

1302, 1972.

[19] H. O. Smith, “NUCLEOTIDE SEQUENCE SPECIFICITY OF RESTRICTION

190

ENDONUCLEASES,” 1978.

[20] H. O. Smith and K. W. Welcox, “A Restriction enzyme from Hemophilus

influenzae I,” J. Mol. Biol., vol. 51, no. 2, pp. 379–391, 1970.

[21] T. J. Kelly and H. O. Smith, “A restriction enzyme from Hemophilus influenzae

II,” J. Mol. Biol., vol. 51, no. 2, pp. 393–409, 1970.

[22] J. H. Middleton, M. H. Edgell, and C. A. Hutchison, “Specific fragments of phi

X174 deoxyribonucleic acid produced by a restriction enzyme from Haemophilus

aegyptius, endonuclease Z.,” J. Virol., vol. 10, no. 1, pp. 42–50, 1972.

[23] M. Kaus-Drobek et al., “Restriction endonuclease MvaI is a monomer that

recognizes its target sequence asymmetrically,” Nucleic Acids Res., vol. 35, no. 6,

pp. 2035–2046, 2007.

[24] F. Sanger and A. R. Coulson, “A rapid method for determining sequences in DNA

by primed synthesis with DNA polymerase,” J. Mol. Biol., vol. 94, no. 3, 1975.

[25] F. Sanger, “The Croonian Lecture, 1975: Nucleotide Sequences in DNA,” Proc. R.

Soc. B Biol. Sci., vol. 191, no. 1104, pp. 317–333, 1975.

[26] F. Sanger, “DETERMINATION OF NUCLEOTIDE SEQUENCES IN DNA,”

1980.

[27] a M. Maxam and W. Gilbert, “A new method for sequencing DNA.,” Proc. Natl.

Acad. Sci. U. S. A., vol. 74, no. 2, pp. 560–4, 1977.

[28] F. Sanger, S. Nicklen, and a R. Coulson, “DNA sequencing with chain-

terminating inhibitors.,” Proc. Natl. Acad. Sci. U. S. A., vol. 74, no. 12, pp. 5463–

7, 1977.

[29] C. A. Hutchison, “DNA sequencing: Bench to bedside and beyond,” Nucleic Acids

191

Res., vol. 35, no. 18, pp. 6227–6237, 2007.

[30] K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich, Specific

enzymatic amplification of DNA in vitro: the polymerase chain reaction., vol. 51

Pt 1. 1986.

[31] L. Smith et al., “Fluorescence detection in automated DNA sequence analysis.,”

Nature, vol. 321, no. 6071, pp. 674–679, 1986.

[32] M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, and P. L. Nyrén, “Real-

Time DNA Sequencing Using Detection of Pyrophosphate Release,” Anal.

Biochem., vol. 242, pp. 84–89, 1996.

[33] M. Ronaghi, M. Uhlén, and P. Nyrén, “PyroSequencing: A {DNA} sequencing

method based on real-time pyrophosphate detection,” Science (80-.)., vol. 281, pp.

363–365, 1998.

[34] S. Brenner et al., “Gene expression analysis by massively parallel signature

sequencing (MPSS) on microbead arrays.,” Nat. Biotechnol., vol. 18, no. 6, pp.

630–634, 2000.

[35] R. D. Mitra, J. Shendure, J. Olejnik, E. Krzymanska-Olejnik, and G. M. Church,

“Fluorescent in situ sequencing on polymerase colonies,” Anal. Biochem., vol.

320, no. 1, pp. 55–65, 2003.

[36] “Sequencing by Ligation.” [Online]. Available:

https://binf.snipcademy.com/lessons/ngs-techniques/sequencing-by-ligation.

[Accessed: 03-Jun-2017].

[37] “Miniaturized, high-throughput nucleic acid analysis,” 2010.

[38] J. C. Wooley, A. Godzik, and I. Friedberg, “A primer on metagenomics,” PLoS

192

Computational Biology, vol. 6, no. 2. 2010.

[39] T. S. Seo, X. Bai, H. Ruparel, Z. Li, N. J. Turro, and J. Ju, “Photocleavable

fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific

coupling chemistry.,” Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 15, pp. 5488–

93, 2004.

[40] J. Guo, L. Yu, N. J. Turro, and J. Ju, “An integrated system for DNA sequencing

by synthesis using novel nucleotide analogues.,” Acc. Chem. Res., vol. 43, no. 4,

pp. 551–63, Apr. 2010.

[41] “Human Genome Project: Illumina Sequencing.” [Online]. Available:

http://itghumangenomeprojectwallpapars.blogspot.com/2012/12/illumina-

sequencing.html. [Accessed: 28-Jun-2017].

[42] J. Shendure et al., “Accurate multiplex polony sequencing of an evolved bacterial

genome.,” Science, vol. 309, no. 5741, pp. 1728–32, 2005.

[43] I. Braslavsky, B. Hebert, E. Kartalov, and S. R. Quake, “Sequence information can

be obtained from single DNA molecules.,” Proc. Natl. Acad. Sci. U. S. A., vol.

100, no. 7, pp. 3960–4, 2003.

[44] T. D. Harris et al., “Single-molecule DNA sequencing of a viral genome.,”

Science, vol. 320, no. 5872, pp. 106–9, 2008.

[45] J. Bowers et al., “Virtual terminator nucleotides for next-generation DNA

sequencing.,” Nat. Methods, vol. 6, no. 8, pp. 593–5, 2009.

[46] B. A. Flusberg et al., “Direct detection of DNA methylation during single-

molecule, real-time sequencing.,” Nat. Methods, vol. 7, no. 6, pp. 461–5, 2010.

[47] J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko,

193

“Ion-beam sculpting at nanometre length scales,” Nature, vol. 412, no. 6843, pp.

166–169, Jul. 2001.

[48] C. Dekker, “Solid-state nanopores,” Nat. Nanotechnol., vol. 2, no. 4, pp. 209–215,

2007.

[49] N. J. Loman and A. R. Quinlan, “Poretools: A toolkit for analyzing nanopore

sequence data,” Bioinformatics, vol. 30, no. 23, pp. 3399–3401, 2014.

[50] D. Sims, I. Sudbery, N. E. Ilott, A. Heger, and C. P. Ponting, “Sequencing depth

and coverage: key considerations in genomic analyses,” Nat. Rev. Genet., vol. 15,

no. 2, pp. 121–132, Jan. 2014.

[51] P. Richterich, “Estimation of errors in "raw" DNA sequences: a

validation study.,” Genome Res., vol. 8, no. 3, pp. 251–9, Mar. 1998.

[52] a Lario, a González, and G. Dorado, “Automated laser-induced fluorescence

DNA sequencing: equalizing signal-to-noise ratios significantly enhances overall

performance.,” Anal. Biochem., vol. 247, no. 1, pp. 30–3, 1997.

[53] B. B. Rosenblum et al., “New dye-labeled terminators for improved DNA

sequencing patterns.,” Nucleic Acids Res., vol. 25, no. 22, pp. 4500–4504, 1997.

[54] K. Robasky, N. E. Lewis, and G. M. Church, “The role of replicates for error

mitigation in next-generation sequencing,” Nat. Rev. Genet., vol. 15, no. 1, pp. 56–

62, Dec. 2013.

[55] S. Hoffmann et al., “Fast mapping of short sequences with mismatches, insertions

and deletions using index structures,” PLoS Comput. Biol., vol. 5, no. 9, 2009.

[56] S. M. Huse and D. B. M. Welch, “Accuracy and Quality of Massively Parallel

DNA Pyrosequencing,” in Handbook of Molecular Microbial Ecology I:

194

Metagenomics and Complementary Approaches, 2011, pp. 149–155.

[57] J. Archer, G. Baillie, S. J. Watson, P. Kellam, A. Rambaut, and D. L. Robertson,

“Analysis of high-depth sequence data for studying viral diversity: a comparison

of next generation sequencing platforms using Segminator II.”

[58] M. Kircher, U. Stenzel, and J. Kelso, “Improved base calling for the Illumina

Genome Analyzer using machine learning strategies.,” Genome Biol., vol. 10, no.

8, p. R83, 2009.

[59] J. C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer, “Substantial biases in

ultra-short read data sets from high-throughput DNA sequencing,” Nucleic Acids

Res., vol. 36, no. 16, 2008.

[60] M. L. Metzker, “Sequencing technologies - the next generation.,” Nat. Rev. Genet.,

vol. 11, no. 1, pp. 31–46, 2010.

[61] A. J. Berno, “A graph theoretic approach to the analysis of DNA sequencing

data.,” Genome Res., vol. 6, no. 2, pp. 80–91, Feb. 1996.

[62] A. Lario, A. González, and G. Dorado, “Automated Laser-Induced Fluorescence

DNA Sequencing: Equalizing Signal-to-Noise Ratios Significantly Enhances

Overall Performance,” Anal. Biochem., vol. 247, no. 1, pp. 30–33, Apr. 1997.

[63] J. Z. Sanders et al., “Imaging as a tool for improving length and accuracy of

sequence analysis in automated fluorescence-based DNA sequencing,”

Electrophoresis, vol. 12, no. 1, pp. 3–11, Jan. 1991.

[64] K. D. Hansen, S. E. Brenner, and S. Dudoit, “Biases in Illumina transcriptome

sequencing caused by random hexamer priming,” Nucleic Acids Res., vol. 38, no.

12, pp. e131–e131, Jul. 2010.

195

[65] H. Shi, B. Schmidt, W. Liu, and W. Müller-Wittig, “A Parallel Algorithm for Error

Correction in High-Throughput Short-Read Data on CUDA-Enabled Graphics

Hardware,” J. Comput. Biol., vol. 17, no. 4, pp. 603–615, Apr. 2010.

[66] P. A. Pevzner, H. Tang, and M. S. Waterman, “An Eulerian path approach to DNA

fragment assembly.,” Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 17, pp. 9748–53,

Aug. 2001.

[67] M. Shugay et al., “Towards error-free profiling of immune repertoires,” Nat.

Methods, vol. 11, no. 6, pp. 653–655, May 2014.

[68] D. I. Lou et al., “High-throughput DNA sequencing errors are reduced by orders of

magnitude using circle sequencing,” Proc. Natl. Acad. Sci., vol. 110, no. 49, pp.

19872–19877, Dec. 2013.

[69] T. Buschmann and L. V Bystrykh, “Levenshtein error-correcting barcodes for

multiplexed DNA sequencing,” BMC Bioinformatics, vol. 14, no. 1, p. 272, 2013.

[70] M. J. Chaisson and P. A. Pevzner, “Short read fragment assembly of bacterial

genomes,” Genome Res., vol. 18, no. 2, pp. 324–330, Feb. 2008.

[71] J. Schroder, H. Schroder, S. J. Puglisi, R. Sinha, and B. Schmidt, “SHREC: a

short-read error correction method,” Bioinformatics, vol. 25, no. 17, pp. 2157–

2163, Sep. 2009.

[72] D. R. Kelley, M. C. Schatz, and S. L. Salzberg, “Quake: quality-aware detection

and correction of sequencing errors,” Genome Biol., vol. 11, no. 11, p. R116, 2010.

[73] L. Ilie, F. Fazayeli, and S. Ilie, “HiTEC: accurate error correction in high-

throughput sequencing data,” Bioinformatics, vol. 27, no. 3, pp. 295–302, Feb.

2011.

196

[74] M. Tahir, M. Sardaraz, A. A. Ikram, and H. Bajwa, “Review of Genome Sequence

Short Read Error Correction Algorithms,” Am. J. Bioinforma. Res., vol. 3, no. 1,

pp. 1–9, 2013.

[75] X. Yang, S. P. Chockalingam, and S. Aluru, “A survey of error-correction methods

for next-generation sequencing,” Brief. Bioinform., vol. 14, no. 1, pp. 56–66, Jan.

2013.

[76] P. A. Pevzner, H. Tang, and M. S. Waterman, “A new approach to fragment

assembly in DNA sequencing,” in Proceedings of the fifth annual international

conference on Computational biology - RECOMB ’01, 2001, pp. 256–267.

[77] M. Chaisson, P. Pevzner, and H. Tang, “Fragment assembly with short reads,”

Bioinformatics, vol. 20, no. 13, pp. 2067–2074, Sep. 2004.

[78] W. Qu, S.-I. Hashimoto, and S. Morishita, “Efficient frequency-based de novo

short-read clustering for error trimming in next-generation sequencing.,” Genome

Res., vol. 19, no. 7, pp. 1309–15, Jul. 2009.

[79] E. Wijaya, M. C. Frith, Y. Suzuki, and P. Horton, “Recount: expectation

maximization based error correction tool for next generation sequencing data.,”

Genome Inform., vol. 23, no. 1, pp. 189–201, Oct. 2009.

[80] X. Yang, K. S. Dorman, and S. Aluru, “Reptile: representative tiling for short read

error correction,” Bioinformatics, vol. 26, no. 20, pp. 2526–2533, Oct. 2010.

[81] H.-S. Le, M. H. Schulz, B. M. McCauley, V. F. Hinman, and Z. Bar-Joseph,

“Probabilistic error correction for RNA sequencing,” Nucleic Acids Res., vol. 41,

no. 10, pp. e109–e109, May 2013.

[82] J. Butler et al., “ALLPATHS: De novo assembly of whole-genome shotgun

197

microreads,” Genome Res., vol. 18, no. 5, pp. 810–820, Feb. 2008.

[83] R. Li et al., “De novo assembly of human genomes with massively parallel short

read sequencing.,” Genome Res., vol. 20, no. 2, pp. 265–72, Feb. 2010.

[84] J. T. Simpson and R. Durbin, “Efficient de novo assembly of large genomes using

compressed data structures.,” Genome Res., vol. 22, no. 3, pp. 549–56, Mar. 2012.

[85] A. Bankevich et al., “SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing.,” J. Comput. Biol., vol. 19, no. 5, pp. 455–

77, May 2012.

[86] S. I. Nikolenko, A. I. Korobeynikov, and M. A. Alekseyev, “BayesHammer:

Bayesian clustering for error correction in single-cell sequencing,” BMC

Genomics, vol. 14, no. Suppl 1, p. S7, 2013.

[87] “Kmer Spectrum Primer.”

[88] L. Salmela, “Correction of sequencing errors in a mixed set of reads,”

Bioinformatics, vol. 26, no. 10, pp. 1284–1290, May 2010.

[89] L. Ilie and M. Molnar, “RACER: Rapid and accurate correction of errors in reads,”

Bioinformatics, vol. 29, no. 19, pp. 2490–2493, Oct. 2013.

[90] M. T. Tammi, E. Arner, E. Kindlund, and B. Andersson, “Correcting errors in

shotgun sequences.,” Nucleic Acids Res., vol. 31, no. 15, pp. 4663–72, Aug. 2003.

[91] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search

for similarities in the amino acid sequence of two proteins.,” J. Mol. Biol., vol. 48,

no. 3, pp. 443–53, Mar. 1970.

[92] D. B. Jaffe et al., “Whole-Genome Sequence Assembly for Mammalian Genomes:

Arachne 2,” Genome Res., vol. 13, no. 1, pp. 91–96, Jan. 2003.

198

[93] L. Salmela and J. Schr??der, “Correcting errors in short reads by multiple

alignments,” Bioinformatics, vol. 27, no. 11, pp. 1455–1461, 2011.

[94] W. C. Kao, A. H. Chan, and Y. S. Song, “ECHO: A reference-free short-read error

correction algorithm,” Genome Res., vol. 21, no. 7, pp. 1181–1192, 2011.

[95] C.-S. Chin et al., “Nonhybrid, finished microbial genome assemblies from long-

read SMRT sequencing data,” Nat. Methods, vol. 10, no. 6, pp. 563–569, May

2013.

[96] A. Alic, A. Tomás, J. Salavert, I. Medina, and I. Blanquer, “Robust Error

Correction for De Novo Assembly via Spectral Partitioning and Sequence

Alignment.”

[97] X. Yin, Z. Song, K. Dorman, and A. Ramamoorthy, “PREMIER - PRobabilistic

Error-correction using Markov Inference in Errored Reads,” Feb. 2013.

[98] L. Salmela and E. Rivals, “LoRDEC: accurate and efficient long read error

correction,” Bioinformatics, vol. 30, no. 24, pp. 3506–3514, Dec. 2014.

[99] T. Hackl, R. Hedrich, J. Schultz, and F. Forster, “proovread: large-scale high-

accuracy PacBio correction through iterative short read consensus,”

Bioinformatics, vol. 30, no. 21, pp. 3004–3011, Nov. 2014.

[100] K. F. Au, J. G. Underwood, L. Lee, W. H. Wong, and B. Walenz, “Improving

PacBio Long Read Accuracy by Short Read Alignment,” PLoS One, vol. 7, no. 10,

p. e46679, Oct. 2012.

[101] S. Koren et al., “Hybrid error correction and de novo assembly of single-molecule

sequencing reads,” Nat. Biotechnol., vol. 30, no. 7, pp. 693–700, Jul. 2012.

[102] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees with

199

enhanced suffix arrays,” J. Discret. Algorithms, vol. 2, pp. 53–86, 2004.

[103] S. M. Kielbasa, R. Wan, K. Sato, P. Horton, and M. C. Frith, “Adaptive seeds tame

genomic sequence comparison,” Genome Res., vol. 21, no. 3, pp. 487–493, Mar.

2011.

[104] M. Vyverman, J. De Schrijver, W. Van Criekinge, P. Dawyndt, and V. Fack,

“ACCURATE LONG READ MAPPING USING ENHANCED SUFFIX

ARRAYS.”

[105] M. Vyverman, B. De Baets, V. Fack, and P. Dawyndt, “essaMEM: finding

maximal exact matches using enhanced sparse suffix arrays,” Bioinformatics, vol.

29, no. 6, pp. 802–804, Mar. 2013.

[106] Y. Ye, J.-H. Choi, and H. Tang, “RAPSearch: a fast protein similarity search tool

for short reads.”

[107] G. Gonnella and S. Kurtz, “Readjoiner: a fast and memory efficient string graph-

based sequence assembler.”

[108] D. Hernandez, P. Francois, L. Farinelli, M. Osteras, and J. Schrenzel, “De novo

bacterial genome sequencing: Millions of very short reads assembled on a desktop

computer,” Genome Res., vol. 18, no. 5, pp. 802–809, Feb. 2008.

[109] B. Genomics, S. Kurtz, A. Narechania, J. C. Stein, and D. Ware, “A new method

to compute K-mer frequencies and its application to annotate large repetitive plant

genomes,” BMC Genomics, vol. 9, no. 9, 2008.

[110] S. Hazelhurst and Z. Lipták, “KABOOM! A new suffix array based algorithm for

clustering expression data,” vol. 27, no. 24, pp. 3348–335510, 2011.

[111] R. Homann, D. Fleer, R. Giegerich, and M. Rehmsmeier, “mkESA: enhanced

200

suffix array construction tool,” Bioinformatics, vol. 25, no. 8, pp. 1084–1085, Apr.

2009.

[112] T. H. Cormen, Introduction to algorithms. MIT Press, 2009.

[113] “Suffix tree and suffix array for string matching.” [Online]. Available:

http://homes.soic.indiana.edu/yye/lab/teaching/spring2014-C343/suffix.php.

[Accessed: 03-Jun-2017].

[114] M. Nicolaidis, “Design for soft error mitigation,” IEEE Trans. Device Mater.

Reliab., vol. 5, no. 3, pp. 405–418, Sep. 2005.

[115] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors.”

[116] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A

Survey,” Internet Math., vol. 1, no. 4, pp. 485–509.

[117] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “LNCS

4168 - An Improved Construction for Counting Bloom Filters,” 2006.

[118] M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Trans. Netw., vol. 10,

no. 5, 2002.

[119] Y. Heo, X.-L. Wu, D. Chen, J. Ma, and W.-M. Hwu, “BLESS: Bloom filter-based

error correction solution for high-throughput sequencing reads,” vol. 30, no. 10,

pp. 1354–1362, 2014.

[120] Y. Liu, J. Schroder, and B. Schmidt, “Musket: a multistage k-mer spectrum-based

error corrector for Illumina sequence data,” Bioinformatics, vol. 29, no. 3, pp.

308–315, Feb. 2013.

[121] E. C. Lim, J. Müller, J. Hagmann, S. R. Henz, S. T. Kim, and D. Weigel, “Trowel:

A fast and accurate error correction module for Illumina sequencing reads,”

201

Bioinformatics, vol. 30, no. 22, pp. 3264–3265, 2014.

[122] E. Drezen et al., “GATB: Genome Assembly & Analysis Tool Box.,”

Bioinformatics, vol. 30, no. 20, pp. 2959–61, Oct. 2014.

[123] H. Li, “BFC: correcting Illumina sequencing errors,” Bioinformatics, vol. 31, no.

17, pp. 2885–2887, Sep. 2015.

[124] L. Song, L. Florea, and B. Langmead, “Lighter: fast and memory-efficient

sequencing error correction without counting,” Genome Biol., vol. 15, no. 11, p.

509, Nov. 2014.

[125] P. Lin, H. Deng, F. Wang, and W. Tan, “A study on d-left counting bloom filter

for dynamic packets filtering,” Information, vol. 14, no. 4, pp. 1353–1361, 2011.

[126] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo Filter,”

in Proceedings of the 10th ACM International on Conference on emerging

Networking Experiments and Technologies - CoNEXT ’14, 2014, vol. 38, pp. 75–

88.

[127] R. Pagh and F. Friche Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51, pp. 122–

144, 2004.

[128] G. Rizk, D. Lavenier, and R. Chikhi, “DSK: K-mer counting with very low

memory usage,” Bioinformatics, vol. 29, no. 5, pp. 652–653, 2013.

[129] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, “KMC 2: Fast

and resource-frugal k-mer counting,” Bioinformatics, vol. 31, no. 10, pp. 1569–

1576, 2014.

[130] Y. Liu, B. Schmidt, and D. L. Maskell, “Cushaw: A cuda compatible short read

aligner to large genomes based on the burrows-wheeler transform,”

202

Bioinformatics, vol. 28, no. 14, pp. 1830–1837, 2012.

[131] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An

Improved Construction for Counting Bloom Filters,” Lect. Notes Comput. Sci., vol.

4168, p. 684, 2006.

[132] R. Ekblom and J. B. W. Wolf, “A field guide to whole-genome sequencing,

assembly and annotation,” Evol. Appl., vol. 7, no. 9, pp. 1026–1042, Nov. 2014.

[133] Z. Zhao, J. Yin, Y. Li, W. Xiong, and Y. Zhan, “An efficient hybrid approach to

correcting errors in short reads,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2011, vol. 6820 LNAI, pp. 198–210.

[134] D. Mapleson, G. Garcia Accinelli, G. Kettleborough, J. Wright, and B. J. Clavijo,

“KAT: A K-mer Analysis Toolkit to quality control NGS datasets and genome

assemblies.,” Bioinformatics, p. btw663, 2016.

[135] M. J. Chaisson, D. Brinza, and P. A. Pevzner, “De novo fragment assembly with

short mate-paired reads: Does the read length matter?,” Genome Res., vol. 19, no.

2, pp. 336–346, 2009.

[136] X. Zhao, L. E. Palmer, R. Bolanos, C. Mircean, D. Fasulo, and G. M. Wittenberg,

“EDAR: an efficient error detection and removal algorithm for next generation

sequencing data.,” J. Comput. Biol., vol. 17, no. 11, pp. 1549–60, 2010.

[137] H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows-

Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[138] R. Chikhi and P. Medvedev, “Informed and automated k-mer size selection for

genome assembly,” Bioinformatics, vol. 30, no. 1, pp. 31–37, 2014.

203

[139] W. Huang, L. Li, J. R. Myers, and G. T. Marth, “ART: A next-generation

sequencing read simulator,” Bioinformatics, vol. 28, no. 4, pp. 593–594, 2012.

[140] I. Akogwu et al., “A comparative study of k-spectrum-based error correction

methods for next-generation sequencing data analysis,” Hum. Genomics, vol. 10,

no. S2, p. 20, 2016.

[141] H. Li, “BFC: Correcting Illumina sequencing errors,” Bioinformatics, vol. 31, no.

17, pp. 2885–2887, 2015.

[142] Y. Heo, A. Ramachandran, W. M. Hwu, J. Ma, and D. Chen, “BLESS 2: Accurate,

memory-efficient and fast error correction method,” Bioinformatics, vol. 32, no.

15, pp. 2369–2371, 2016.

[143] R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger, SAS system for

mixed models. 1996.

[144] D. Montgomery, “Design and Analysis of Experiments,” Jhon Wiley & Sons, Inc,

vol. 5th. p. 684, 2001.

[145] M. Molnar and L. Ilie, “Correcting Illumina data,” Brief. Bioinform., vol. 16, no. 4,

pp. 588–599, 2014.

[146] D. Laehnemann, A. Borkhardt, and A. C. McHardy, “Denoising DNA deep

sequencing data-high-throughput sequencing errors and their correction,” Brief.

Bioinform., vol. 17, no. 1, pp. 154–179, 2016.

[147] K. Sameith, J. G. Roscito, and M. Hiller, “Iterative error correction of long

sequencing reads maximizes accuracy and improves contig assembly,” Brief.

Bioinform., no. October 2015, p. bbw003, 2016.

[148] J. T. Simpson and R. Durbin, “Efficient de novo assembly of large genomes using

204

compressed data structures,” Genome Res., vol. 22, no. 3, pp. 549–556, 2012.

[149] C. Quince et al., “Accurate determination of microbial diversity from 454

pyrosequencing data.,” Nat. Methods, vol. 6, no. 9, pp. 639–41, 2009.

[150] A. S. Alic, D. Ruzafa, J. Dopazo, and I. Blanquer, “Objective review of de novo

stand-alone error correction methods for NGS data,” Wiley Interdiscip. Rev.

Comput. Mol. Sci., vol. 6, no. 2, pp. 111–146, 2016.

[151] R. Leinonen, H. Sugawara, M. Shumway, and International Nucleotide Sequence

Database Collaboration, “The sequence read archive.,” Nucleic Acids Res., vol. 39,

no. Database issue, pp. D19-21, Jan. 2011.

[152] A. V. Zimin, G. Marcais, D. Puiu, M. Roberts, S. L. Salzberg, and J. A. Yorke,

“The MaSuRCA genome assembler,” Bioinformatics, vol. 29, no. 21, pp. 2669–

2677, Nov. 2013.

[153] M. Jain, H. E. Olsen, B. Paten, and M. Akeson, “The Oxford Nanopore MinION:

delivery of nanopore sequencing to the genomics community.”

[154] E. C. Berglund, A. Kiialainen, and A.-C. Syv?nen, “Next-generation sequencing

technologies and applications for human genetic history and forensics,” Investig.

Genet., vol. 2, no. 1, p. 23, 2011.

[155] A. Pagh, R. Pagh, and S. S. Rao, “An Optimal Bloom Filter Replacement *.”

[156] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo Filter,”

in Proceedings of the 10th ACM International on Conference on emerging

Networking Experiments and Technologies - CoNEXT ’14, 2014, vol. 38, pp. 75–

88.

[157] P. E. C. Compeau, P. A. Pevzner, and G. Tesler, “How to apply de Bruijn graphs

205

to genome assembly,” Nat. Biotechnol., vol. 29, no. 11, pp. 987–991, 2011.

[158] S. S. Sindi, B. R. Hunt, and J. A. Yorke, “Duplication count distributions in DNA

sequences,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 78, no. 6, 2008.

[159] R. C. Edgar, “MUSCLE: Multiple sequence alignment with high accuracy and

high throughput,” Nucleic Acids Res., vol. 32, no. 5, pp. 1792–1797, 2004.

[160] G. Marçais and C. Kingsford, “A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers,” Bioinformatics, vol. 27, no. 6, pp. 764–770,

Mar. 2011.

[161] M. R. Crusoe et al., “The khmer software package: enabling efficient nucleotide

sequence analysis,” F1000Research, 2015.

[162] P. Audano and F. Vannberg, “KAnalyze: A fast versatile pipelined K-mer toolkit,”

Bioinformatics, vol. 30, no. 14, pp. 2070–2072, 2014.

[163] T. C. Conway and A. J. Bromage, “Succinct data structures for assembling large

genomes,” Bioinformatics, vol. 27, no. 4, pp. 479–486, 2011.

[164] Y. Li and X. Yan, “MSPKmerCounter: A Fast and Memory Efficient Approach for

K-mer Counting,” vol. 0, no. 0, pp. 1–7, 2013.

[165] P. Greenfield, K. Duesing, A. Papanicolaou, and D. C. Bauer, “Blue: Correcting

sequencing errors using consensus and context,” Bioinformatics, vol. 30, no. 19,

pp. 2723–2732, 2014.

[166] K. Nakamura et al., “Sequence-specific error profile of Illumina sequencers,”

Nucleic Acids Res., vol. 39, no. 13, 2011.

[167] X. Yang, S. Aluru, and K. S. Dorman, “Repeat-aware modeling and correction of

short read errors.,” BMC Bioinformatics, vol. 12 Suppl 1, no. Suppl 1, p. S52, Feb.

206

2011.

[168] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell Syst. Tech.

J., vol. 29, no. 2, pp. 147–160, 1950.

[169] I. Akogwu, N. Wang, C. Zhang, Hwanseok Choi, H. Hong, and P. Gong,

“Factorial analysis of error correction performance using simulated next-

generation sequencing data,” in 2016 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), 2016, pp. 1164–1169.

[170] S. L. Salzberg et al., “GAGE: A critical evaluation of genome assemblies and

assembly algorithms,” Genome Res., vol. 22, no. 3, pp. 557–567, 2012.

[171] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with

BWA-MEM,” Mar. 2013.

[172] G. Marçais and C. Kingsford, “A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers,” Bioinformatics, vol. 27, no. 6, pp. 764–770,

2011.

[173] R. Luo et al., “Erratum: SOAPdenovo2: an empirically improved memory-

efficient short-read de novo assembler,” Gigascience, vol. 4, no. 1, p. 30, 2015.

[174] Genome 10K Community of Scientists, “Genome 10K: A Proposal to Obtain

Whole-Genome Sequence for 10 000 Vertebrate Species,” J. Hered., vol. 100, no.

6, pp. 659–674, Nov. 2009.

[175] K. R. Bradnam et al., “Assemblathon 2: evaluating de novo methods of genome

assembly in three vertebrate species,” Jan. 2013.

[176] A. M. Bolger, M. Lohse, and B. Usadel, “Trimmomatic: a flexible trimmer for

Illumina sequence data.,” Bioinformatics, vol. 30, no. 15, pp. 2114–20, Aug. 2014.

207

[177] R. K. Patel, M. Jain, C. Schlotterer, P. Aboyoun, and H. Pages, “NGS QC Toolkit:

A Toolkit for Quality Control of Next Generation Sequencing Data,” PLoS One,

vol. 7, no. 2, p. e30619, Feb. 2012.

[178] H. Lab, “FASTX Toolkit,” http://hannonlab.cshl.edu/fastx_toolkit/index.html.

[179] Andrews, “FastQC A Quality Control tool for High Throughput Sequence Data,”

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

[180] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, “QUAST: Quality assessment

tool for genome assemblies,” Bioinformatics, vol. 29, no. 8, pp. 1072–1075, 2013.

[181] Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin, “IDBA-UD: A de novo

assembler for single-cell and metagenomic sequencing data with highly uneven

depth,” Bioinformatics, vol. 28, no. 11, pp. 1420–1428, 2012.

[182] C. TA and et al, “Sequencing the genome of the Burmese python\r(Python

molurus bivittatus) as a model for studying\rextreme adaptations in snakes,”

Genome Biol, vol. 12, p. 406, 2011.

[183] F. J. Vonk et al., “The king cobra genome reveals dynamic gene evolution and

adaptation in the snake venom system.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110,

no. 51, pp. 20651–20656, 2013.

[184] M. C. Schatz, A. L. Delcher, and S. L. Salzberg, “Assembly of large genomes

using second-generation sequencing,” Genome Research, vol. 20, no. 9. pp. 1165–

1173, 2010.

[185] M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano, “Scaffolding

pre-assembled contigs using SSPACE,” Bioinformatics, vol. 27, no. 4, pp. 578–

579, Feb. 2011.

	Development, Evaluation, and Application of a Novel Error Correction Method for Next Generation Sequencing Data
	Recommended Citation

	OLE_LINK5
	OLE_LINK1
	OLE_LINK2
	OLE_LINK7
	OLE_LINK4
	OLE_LINK6
	OLE_LINK8
	OLE_LINK3

