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ABSTRACT 

ROOT DYNAMICS OF CROP PLANTS IN A HIGH CARBON DIOXIDE 

WORLD:  EFFECTS OF ELEVATED VERSUS AMBIENT CARBON 

DIOXIDE LEVELS AND NO-TILL VERSUS CONVENTIONAL 

AGRICULTURAL MANAGEMENT 

By Charlotte Jean Barker 

May 2018 

Due to the continuing increases in atmospheric carbon dioxide levels and its 

potential effect on food sources, there is an interest in evaluating the effect of elevated 

CO2 concentration versus ambient CO2 concentration in agricultural crop plants although 

more studies have focused on the aboveground portions of plants rather than the roots.  

Additionally, the conservation agricultural method, no-till, has been widely suggested as 

a possible method of increasing soil organic carbon and increasing soil moisture in a 

hotter world. 

This research involves two major agricultural plants, Sorghum bicolor (sorghum), 

and Glycine max (soybean) grown under four conditions including conventional till 

elevated, conventional till ambient, no-till elevated, and no-till ambient.  These plants, 

along with three rotating cover crops, were grown in open top chambers (OTCs) at the 

USDA-ARS National Soil Dynamics Laboratory at Auburn, Alabama as part of a series 

of related studies.  The cover crops were not used during conventional tillage and were 

grown under no-till elevated and no-till ambient conditions. 

The first part of the study involved comparing root growth response to the 

treatments of the important agricultural plants, sorghum and soybean.  There was a trend 
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toward greater standing root crop with sorghum using no-till cropping methods.  There 

was a significantly greater average root length of sorghum in deeper soil and a trend 

toward elevated atmospheric CO2 concentration being associated with increased average 

root length of sorghum.  For soybean, there was a significant effect of no-till on average 

root diameter.  

The second area of focus involved comparing the three legumes in the study at 

no-till elevated CO2 concentration at 720 µmol mol- and no-till ambient CO2 

concentrations at 365 µmol mol-1conditions.  This included soybean (Glycine max (L.) 

Merrill), sunn hemp (Crotalaria juncea L), and scarlet clover (Trifolium incarnatum L.).  

There was a species difference, as postulated previously, with sunn hemp having a 

significant growth response to elevated CO2 concentration while there was less increased 

root growth from the other two legumes.  Additionally, both sunn hemp and soybean had 

increased root growth in deeper soil (17 – 34 cm) which clover did not. 

The third portion of the study involved a comparison of a C3 cover crop grass, 

wheat (Triticum aestivum L.), with a C4 grass (Sorghum bicolor L.), at no-till ambient 

and no-till elevated conditions.  In this case, both members of family Poaceae had root 

growth response to elevated CO2 concentration, which although not identical, did not 

support earlier indications of C3 plants having an advantage in elevated CO2 

concentration.
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CHAPTER I – GENERAL INTRODUCTION 

The concentration of carbon dioxide, in chemical notation written as [CO2], in the 

atmosphere has increased from 313 parts per million (ppm) on the first day that Charles 

Keeling took measurements at Mauna Loa in March,1958 (Peterman 2017), to a monthly 

average of 408.35 ppm at Moana Loa on February, 2018 (NOAA/ESRL 2018).  Human 

activity, such as burning of fossil fuels and clearing of forested areas, is contributing to 

an ever upward spiral of increased [CO2] that has resulted in global warming (Lal 2008) 

with important implications for the sustainability of food resources for a planet with a 

human population of some 7.6 billion (World Population Prospects 2017). 

These observations prompt questions as to how agricultural plants will be affected 

by increased atmospheric carbon dioxide.  Elevated atmospheric carbon dioxide increases 

plant growth for a number of crop plants, with enhanced root growth often exceeding that 

of aboveground plant structures (Kimball et al. 2002).  The response of agricultural plant 

roots to elevated atmospheric [CO2] is to increase in number, diameter, and length.   

Faster growth rates, with increased branching, is not unusual (Pritchard and Amthor 

2005; Pritchard et al. 2006; Madhu and Hatfield 2013).  In a meta-analysis including a 

number of ecosystems, Nie et al. (2013) indicate that the responses of plant roots to 

elevated atmospheric [CO2] could increase absorption of water and nutrients, but they 

also speculate that this might not be applicable for agricultural plants due to fertilizer 

application which already increases the efficiency of fine roots.  Leakey et al. (2009) 

indicate that increased root branching due to elevated [CO2] could also decrease the 

roots’ ability to efficiently take in nutrients and water.  Although increased [CO2] may  
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result in a larger root area which takes in more water, the more extensively branched 

roots systems may be less efficient per mm of root length (Pritchard and Amthor 2005). 

Fine roots (< 2mm in diameter) are directly involved in uptake of water and 

nutrients and, in turn, deliver carbon to the soil in the form of exudates (Pritchard 2011). 

The smallest (first, second, and third order) absorptive fine roots are those most closely 

associated with uptake of nutrients and water and are more effectively monitored by 

minirhizotrons than are higher order roots (McCormack et al. 2015).  Fine roots are short-

lived and represent a major commitment of resources on the part of the plant (Pritchard et 

al. 2006).  An often quoted figure, based on a study of eleven biomes, is that replacement 

of dead fine roots by new living fine roots (root turnover) may involve as much as 30% 

of global terrestrial net primary production (Jackson et al.1997).  

A broad based meta-analysis of a number of biomes indicated that elevated 

atmospheric [CO2] increased both root production and mortality.  However, for the three 

agricultural ecosystems included in the study, the distinction was less clear with fine root 

biomass showing very little increase with elevated [CO2] (Nie et al. 2013).  When the 

additional factor of agricultural management system is added, the results can become 

even more complex.  In an earlier USDA study of sorghum root growth, twice ambient 

[CO2] resulted in an increase in seasonal root production of 58% for the conventionally 

tilled plants, while root growth was unaffected by twice ambient [CO2] with the no-till 

agricultural management (Pritchard et al. 2006).   Alternatively, Madhu and Hatfield 

(2013) noted that increases in atmospheric CO2 increases growth of plant roots, but they 

also speculated that the growth of fine roots and soil carbon storage may be even more 

affected by the adoption of no-till agricultural management than by atmospheric [CO2]. 
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No-till, as a category of conservation agriculture, involves a lack of mechanical 

soil disturbance to minimize loss of soil organic carbon (SOC), the use of cover crops and 

crop residues to provide mulch and contribute to soil carbon and water retention, and 

varied crop rotations (Corsi et al. 2012).  No-till agricultural management is preferable to 

conventional tillage for preventing soil erosion and for carbon storage with the potential 

to improve soil quality and to improve soil organic carbon (SOC) (Blanco-Canqui and 

Lal 2008).  The resulting improvement in soil carbon sequestration has a positive 

influence on root growth (Pritchard et al.2006).  As a result of increased fine root growth, 

large increases in the amount of carbon stored in the soil could result from the switching 

from conventional to no-till agricultural management systems.  The increased water 

retention and reduced soil erosion resulting from increased crop residue and more ground 

cover may be involved in the improved storage of soil organic carbon (Prior et al. 2005).  

However, Madhu and Hatfield (2013) asserted that the interactive effects of 

increased [CO2] and agricultural management practices upon fine root growth are 

incompletely understood.  Pritchard (2011) has cautioned that increasing the flow of 

organic carbon into the soil by sloughing of root organic material and exudates would 

also increase decomposition and result in increased soil carbon efflux.  Clearly, the 

combined effects of agricultural management and elevated carbon dioxide levels involve 

complex interactions.   

A related issue is that plants with C3 photosynthesis (C3 plants) respond to a 

different extent to increased [CO2] than do plants with C4 photosynthesis (C4 plants).  

This is relevant to agricultural concerns concerning elevated atmospheric carbon dioxide 

since the majority of agricultural plants are C3 plants with 12 of the 15 crops which 
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supply 90% of the world’s calories having C3 photosynthesis (Reddy et al. 2010).  

Studies have shown that C3 plants respond to elevated [CO2] with increased 

photosynthesis which translates into increased root growth (Prior et al. 2005; Pritchard 

and Amthor 2005).   

While fewer total plant species are C4 plants, those that undergo C4 photosynthesis 

include important agricultural crop plants such as maize (corn), sorghum, sugarcane, and 

millet (Parry 1990).  Sorghum, which is grown worldwide in temperate and tropical areas 

and can survive in marginal areas, uses the “malate” C4 cycle, as do sugarcane and maize 

(Ruskin 1996).  Additionally, many C4 agricultural plants are of great importance in 

tropical areas where local farming is essential to food security (Leakey et al. 2009).   

The photosynthetic response of C4 plants to increased [CO2] is less well known 

than that of C3 plants.  A number of authors indicate that C4 plants have an increase in 

photosynthesis under elevated [CO2] but less than that of C3 plants under similar 

conditions (Ainsworth 2005; Runion 2009).  Chaudhuri et al. (1986) found an increase in 

shoot and root growth of sorghum under [795 µmol mol-1 CO2] while water use 

decreased.  Pritchard and Amthor (2005) attribute the increase in productivity of C4 
  

plants under elevated atmospheric [CO2] to be primarily due to increased water use 

efficiency (WUE).  Similarly, Leakey et al. 2009 indicate that elevated [CO2] does not 

directly enhance photosynthesis, but instead improves the water relations of C4 plants 

which increases photosynthesis and growth in drought conditions. 

Legume agricultural species, which included three of the plants utilized in this 

study, have a further area of interest in addition to response to [CO2] and to agricultural 

management.  The legumes have the ability to form a symbiotic relationship with 
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rhizobia in which the legume provides carbohydrates to the bacteria, and the rhizobia 

move into root nodules of the legume and fix nitrogen (Rogers et al. 2006).  In the case of 

legumes, more carbon is acquired as a result of increased photosynthesis due to elevated 

[CO2], which means that more carbon could be shifted to root production.   More root 

growth would then result in more nitrogen being available to the plant due to nitrogen 

fixation (Morrison and Morecroft 2006). This has led to the observation that legumes 

have the potential to grow more and have additional productivity in response to elevated 

carbon dioxide levels than non-legumes under the same conditions (Rogers et al. 2006).   

Elevated carbon dioxide levels have been shown to affect growth and symbiotic 

activity in legume species with increased growth associated with characteristics such as 

larger nodule size, mass, and/or number such as was found by Prevost et al. (2010) who 

observed a 63% increase in nodule mass and a 50% increase in number of nodules in 

soybeans grown under elevated carbon dioxide.  However, West et al. (2005) indicate 

that the amount of response of legumes to elevated [CO2] can vary depending upon 

cultivar or species, soil nitrogen availability, and other conditions.   

This project was designed to compare root growth of a crop plant legume 

(Glycine max) with a non-legume agricultural plant (Sorghum bicolor) for differing levels 

of atmospheric carbon dioxide and for differing agricultural management systems.  The 

current research is associated with a series of experiments done over a span of ten years 

by plant scientists at the USDA-ARS National Soil Dynamics Laboratory in Auburn, 

Alabama, in part, to quantify the effects of increased atmospheric carbon dioxide on 

agricultural plant growth and physiology.  As a part of those studies, Pritchard et al. 

(2006) had previously described the effects of elevated atmospheric carbon dioxide [CO2] 
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with conventional and with conservation (no-till) agricultural management on root 

productivity of one crop plant, sorghum (Sorghum bicolor). By capturing and analyzing 

data for five different agricultural plants, including sorghum, during a later cropping 

cycle, the current research project amplified the process of quantifying agricultural plant 

root responses to the alternative management systems and/or ambient and twice ambient 

levels of carbon dioxide.  

Plant root growth, under controlled conditions, was recorded using minirhizotrons 

and a BTC-100 microvideo camera (Prichard et al. 2006), at the USDA National Root 

Laboratory, while I undertook data capture and analysis as a doctoral student at the 

University of Southern Mississippi, Hattiesburg.  Data collection methods (from 

previously recorded root images) and statistical analyses were similar but not identical to 

the earlier study.  The current study used Rootfly 2.0.2 (Stanley T. Birchfield and 

Christina Wells, Clemson University) while the earlier sorghum study used RooTracker 

(Dave Tremmell, Duke University) to digitize the data.  However, like the earlier study 

(Pritchard et al. 2006), data were considered statistically different when alpha levels were  

p < 0.05.  The differences between the current study as regards data capture, analyses, 

and personnel involved offered an invaluable opportunity for independent observation of 

repeatability. 

Agricultural plants grown in the open top chambers (OTCs) were chosen for their 

differing characteristics including a C4 grain, Sorghum bicolor (sorghum), and a C3 grain, 

Triticum aestivum (wheat). There were three leguminous C3 plants including Glycine max 

(soybean), Crotalaria juncea (sunn hemp), and Trifolium incarnatum (crimson clover).   

The crop plants were soybean and sorghum, which were grown with both no-till and 
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conventional till at ambient [CO2] and twice normal [CO2] (Pritchard et al. 2006).  The 

three cover crops, grown under no-till treatment at both ambient (365 µmol CO2 mol-1 air 

[ppmv] and twice normal [CO2] (720 µmol CO2 µmol-1 air) (Mitchell et al. 1995) were 

sunn hemp, wheat, and crimson clover. 

The experimental design of the crop plants grown in the OTCs with two levels of 

carbon dioxide (ambient and twice ambient) and two agricultural management systems 

(conventional and no-till) was a split-plot design with three blocks (three replications).  

One half of each block was traditional and one half was no-till.  Split-plot treatments of 

carbon dioxide level were randomly assigned within blocks.  Clear plastic minirhizotron 

tubes were used that allowed repeated recording of images of root growth with six tubes 

for each of the four treatments (Pritchard et al. 2006).  These included no-till ambient 

[CO2] which was designated as NTA; No-till elevated [CO2] which was referred to as 

NTE; Conventional till ambient [CO2] which was abbreviated as CTA; and Conventional 

till elevated [CO2] also referred to as CTE.   

The research project involved the use of the Rootfly 2.0.2 image analysis program 

to quantify the length and width of roots from 0 to 34 cm vertical soil depth (Pritchard 

2006). The data obtained were used to calculate average root length, average root 

diameter, and standing root crop.  Maximum root production, seasonal root production 

and root turnover index were calculated. 

The study was designed as a repeated measures study with time being the 

repeated measure where root images were recorded at biweekly intervals across the 

growing season of each species of plant.  Repeated measures MANOVA analysis (JMP 

12.1) was used for statistical inference as is appropriate for complex interactions of 
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multiple factors with more than one dependent (response) variable (SAS Institute 2012).  

Based on related previous studies (Prior et al. 2005; Pritchard et al. 2006), I had predicted 

that the results would be complex. 

The two crop plants were tested at four conditions including conventional till 

elevated (CTE), conventional till ambient (CTA), no-till elevated (NTE), and no-till 

ambient (NTA).  Hypotheses included, first, for the two crop plant species tested at all 

four conditions (CTA, CTE, NTA, NTE) (chapter two), twice ambient carbon dioxide 

levels will increase plant root growth of the legume more than the increase in root growth 

of non-legumes.  Second, for the two crop plant species studied at all four conditions 

(CTA, CTE, NTA, NTE), no-till agricultural management will increase root growth more 

than will conventional till (chapter two). Third, for the legume species studied with no-till 

agricultural management, twice ambient CO2 (NTE) will increase plant root growth (for 

one or more species) more than that with ambient CO2 (NTA) (chapter three).  Fourth, for 

the two grains/monocots evaluated under no-till conditions, twice ambient carbon dioxide 

levels (NTE) will increase root growth of the C3 plant more than twice-ambient (NTE) 

conditions will increase the root growth of the plant with C4 photosynthesis (chapter 

four). 
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CHAPTER II – SORGHUM AND SOYBEAN ROOT GROWTH AT ELEVATED CO2 

2.1 Abstract 

To evaluate the effects of agricultural management and atmospheric carbon 

dioxide levels [CO2] on root growth of two important agricultural crop plants, a C4 grain, 

Sorghum bicolor (sorghum), and a C3 legume, Glycine max (soybean), were grown at the 

USDA-ARS National Soil Dynamics Laboratory, Auburn, Alabama, USA, in silt loam 

soil in open top chambers under four different environmental conditions.  These included: 

(1) no-till agricultural management and ambient [CO2] (365 µmol mol-1), (2) no-till 

agricultural management and elevated [CO2] (720 µmol mol-1), (3) conventional till and 

ambient [CO2] (365 µmol mol-1), and (4) conventional till and elevated [CO2] (720 µmol 

mol-1).  Root growth was recorded using minirhizotrons into which a BTC-100 

microvideo camera (Bartz Technologies, Santa Barbara, California) was inserted and 

images were recorded at specific intervals across the growing season of each plant.  The 

image analysis program, Rootfly Version 2.0.2 (Birchfield and Wells, Clemson 

University), was used to measure root diameter and root length, from which standing root 

crop, maximum standing root crop, seasonal root production, and root turnover index 

could be calculated.  

Statistical analysis involved repeated measures MANOVA using the JMP 12.1.0 

program.  Sorghum had a significantly greater average root length (m/m2) at the deeper 

soil level (17–34 cm), and sorghum had significantly more roots (m/m2) (standing root 

crop) in deep soil than in shallow soil. For the average root diameter of soybean (m/m2), 

no-till agricultural management resulted in significantly increased values.  The results 
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indicate that no-till agricultural management can affect the root growth of sorghum and 

soybean.   

2.2 Introduction 

In the United States conservation agriculture, of which no-till agricultural 

management is an integral part, dates back to a response to the dustbowl conditions of the 

1930s (Baveye et al. 2011).  No-till has advantages over conventional tillage in the 

prevention of soil erosion, improvement of soil structure, and retention of moisture 

(Wright and Hons 2004; Blanco-Canqui and Lal 2008).  From a business management 

standpoint, the no-till agricultural management system saves time, labor, and fuel (Hobbs 

2007).  No-till is an agricultural innovation worldwide with the land under no-till 

increasing from 45 million hectares in 1999 to 105 million hectares by 2009 (Derpsch et 

al. 2010).  By 2009 no-till agricultural management was used on 35.5 % of cropland 

planted with eight major crops as determined by the Economic Research Council.  

Among these were sorghum and soybean with close to 50% of soybeans grown using no-

till agricultural management (Horowitz et al. 2010). 

Atmospheric carbon dioxide concentration [CO2] has increased from an estimated 

pre-industrial level of 280 parts per million (ppm) to 409.96 ppm as of March 10, 2018 as 

measured at NOAA’s Mauna Loa Baseline Atmospheric Observatory (NOAA/ESRL 

2018).  No-till agricultural management has been promoted as a means of sequestering 

carbon from atmospheric CO2 in the soil and as preferable to conventional tillage where 

cultivation releases soil organic carbon (West and Post 2002).  Originally, the potential 

for stored amounts of carbon resulting from no-till was described as 0.57 tons of carbon 

per hectare per year (West and Post 2002) or 1000 kg/hectare/year (Lal et al. 2004).  
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Palm et al. (2014) pointed out that while increased soil carbon storage by no-till has been 

recorded in fewer than 50% of studies, and where it is recorded, it is primarily in the 

shallow layers (< 10 cm deep).  While other sources have indicated that no-till only has 

its full effect over decades of time (Six et al. 2004), not all studies of soil organic carbon 

(SOC) storage have been conducted over a number of years.  

The no-till agricultural management system involves not only minimal soil 

disturbance, the use of cover crops, and crop rotation, but it also prominently features 

retention of crop residue on the surface (Derpsch et al. 2010).  Prior et al. (2005) 

indicates that the improvement in water retention and reduction in soil erosion resulting 

from no-till agricultural management has the potential to increase storage of SOC as does 

the decomposing crop residue. 

 Pritchard (2011) considered canopy litter and rhizodeposition to be important for 

accrual of SOC and pointed out that rhizodeposition includes sloughing of exterior root 

cells and root exudation or movement of carbon-containing molecules, such as simple 

sugars and amino acids, from fine roots into the soil.  Kell (2012) considered that 

photosynthesis followed by root exudation is a major source of carbon in the complex 

soil ecosystem.  While there are other inputs to soil carbon, such as decomposition of 

microorganisms and fungi (Lal 2008), root exudates may compose some 0.5–20% of net 

ecosystem carbon assimilation (Frank and Groffman 2009).   

The turnover of roots smaller than 2 mm in diameter is part of rhizodeposition 

(Pritchard 2011).  The smallest fine roots are classified as first-order, with second order 

fine roots beginning at the junction of first order fine roots.  Lower order fine roots 

including first, second, and third order are typically 2 millimeters or less in diameter and 
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are primarily absorptive in nature while slightly larger roots have more transport function 

(McCormack et al. 2015). Replacement of these small diameter roots, or root turnover, 

may involve as much as 30% of global terrestrial net primary production (Jackson et al. 

1997).  

It is widely agreed that elevated [CO2] increases plant growth including plant root 

growth (Prior et al. 1995; Pritchard and Amthor 2005).  There have been a number of 

studies corroborating this effect, although more of those studies have involved 

aboveground plant growth than belowground. Those studies which do address the growth 

of plant fine roots frequently involve different functional groups of plants rather than 

agricultural plants.  Root growth in a variety of ecosystems have been studied where the 

effects of elevated [CO2] on root growth has been found not to have an identical effect as 

that of elevated [CO2] on the root of growth of agricultural plants (Nie et al. 2013). 

Carbon dioxide is a necessary input for photosynthesis to occur, and plants with 

C3 photosynthesis typically respond to elevated atmospheric carbon dioxide by more 

increase in root growth than do C4 plants (Pritchard and Amthor 2005; Ainsworth 2005; 

Runion 2009).  Plants with C4 photosynthesis have a carbon dioxide concentrating 

mechanism and, at current levels of atmospheric carbon dioxide, are already undergoing 

photosynthesis at near maximum capacity, so they are less affected by an increase in 

atmospheric carbon dioxide levels (Mirkham 2011).  Increased root growth of C4 plants 

with elevated carbon dioxide is understood to be largely due to increased water use 

efficiency (WUE) (Pritchard and Amthor 2005).   

Rooting depth of agricultural plants can also be affected by the treatments used in  
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 this study.  No-till management is thought to encourage additional root growth at 

shallow levels when compared to conventional till which tends toward increased root 

growth at deeper levels, as was the case for sorghum (Pritchard et al. 2006). Pritchard’s 

2006 study, with a maximum depth of 30.4 cm, found that tillage in deep soil affected 

daily root length production of sorghum with root growth in conventional till with 

elevated [CO2] (CTE) increased more than root growth in no-till with elevated [CO2] 

(NTE).  

Madhu and Hatfield (2013) have made the general assertion that agricultural 

management systems may be more important for root growth and soil carbon storage than  

elevated [CO2].  This may vary depending upon which cultivar, species, or functional 

group of plant is being studied.  Pritchard et al. (2006) noted that, at least for their study 

of root growth of Sorghum bicolor, agricultural management system was not more 

important than [CO2]. 

This dissertation study compares root growth of two agricultural plants that were 

evaluated at all four conditions:  sorghum (Sorghum bicolor (L). Moench), a C4 plant, 

and soybean (Glycine max (L.) Merr.) a C3 plant.   The conditions include no-till with 

elevated [CO2] (NTE), no-till with ambient [CO2] (NTA), conventional till with elevated 

[CO2] (CTE) and conventional till with ambient [CO2] (CTA).  Three other plants, used 

as cover crops in the no-till agricultural management at both elevated and ambient [CO2], 

included:  wheat (Triticum aestivum L.), crimson clover (Trifolium incarnatum L.), and 

sunn hemp (Crotalaria juncea L.)   

Hypotheses addressed by this chapter include:   
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1) For the two crop plants tested at all four conditions, no-till agricultural management 

will result in an increase in root growth when compared to root growth in conventional 

tillage. 

2)  For the two crop plants evaluated at all four conditions, elevated atmospheric carbon 

dioxide levels will result in an increase in root growth when compared to root growth at 

ambient atmospheric carbon dioxide levels. 

3)  For the two crop plants tested at all four conditions, root turnover index will decrease 

with an increase in depth of soil. 

2.3 Materials and Methods 

Plants used in this study were grown at an outdoor soil facility (Prior et al. 2010) 

in several bins (2 m deep, 6 m wide, and 76 m long) located at the USDA-ARS National 

Soil Dynamics Laboratory, Auburn, AL, USA (32.6 o N, 85.5 o W).  Each bin contained a 

Decatur silt loam soil (clayey, kaolinitic, thermic Rhodic Paleudults; FAO classification 

Haplic Acrisols) supported on a tile and gravel drainage basin in an experimentally 

constructed soil profile of field proportions (Batchelor 1984).  In these soil bins, crops 

were grown from seed to maturity in open top field chambers (OTCs).  The OTCs were 

constructed of a structural aluminum frame (3 m in diameter by 2.4 m in height) covered 

with a PVC (polyvinyl chloride) film panel (0.2 mm thickness) (Rogers et al. 1983). Two 

levels of atmospheric carbon dioxide concentrations were administered: ambient (365 

µmol mol-1) and twice ambient (720 µmol mol-1).  Carbon dioxide was supplied from a 

12.7 mg liquid carbon dioxide receiver through a high volume dispensing manifold with 

continuous injection of carbon dioxide into plenum boxes (Mitchell et al. 1995).  
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While the entire series of studies covered 10 years, this study compared two crop 

management systems involving conventional tillage and conservation (no-till) during one 

crop rotation (two years).  In the conventional system, grain sorghum (Sorghum bicolor 

(L.) Moench. ‘Pioneer 8282’) and soybean (Glycine max (L.) Merr. ‘Asgrow 6101’) were 

rotated each year with spring tillage after winter fallow (Prior et al. 2010).  Three tillage 

procedures were used.  These included insertion of a pitch fork at 10 cm intervals to a 

depth of 20 – 25 cm before heaving the soil to simulate a chisel plowing operation.  In 

order to simulate two disking operations, a large push type PTO tiller (Model 192432, 

Gardenway, Inc., Troy, NY, USA) was used twice to a soil depth of 14 -20 cm.  A field 

cultivation operation was simulated using a small push type garden cultivator (Model 

410R, Ryobi Technologies, Inc., Anderson, SC, USA).  In the no-tillage) system, grain 

sorghum and soybean were also rotated, but with three cover crops (crimson clover 

(Trifolium incarnatum L. ‘AU Robin’), sunn hemp (Crotalaria juncea L. ‘Tropic Sun’), 

and wheat (Triticum aestivum L. ‘Pioneer 2684’)) which were also rotated.  Cover crop 

seeds were broadcast planted at 56 kg ha-1 for clover, 112 kg ha-1 for sunn hemp, and 168 

kg ha-1 for wheat (Prior et al. 2005).   

The seeds of the legumes including clover, soybean, and sunn hemp,  were 

inoculated with commercial Rhizobium (Nitragin Co., Milwaukee, WI, USA) prior to 

planting (Prior et al. 2010).  In both of the management systems, sorghum and soybeans 

seeds were planted at a density of 20 plants per meter in rows 38 cm apart.  Fertilizer 

rates were based on standard soil tests guidelines as recommended by the Auburn 

University Soil Testing Laboratory (Adams et al. 1994).  For grain sorghum, fertilizer N  
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was applied at a rate of 34 kg N ha-1 shortly after planting and an additional 101 kg N ha-1 

was applied 30 days after planting.  For wheat, fertilizer N was applied at planting (34 kg 

N ha-1), 3.5 months after planting (67.4 kg N ha-1), and 4.5 months after planting (34 kg 

N ha-1).  In order to prevent regrowth, cover crops and sorghum were terminated with 

glyphosate (N-[phosphomethyl] glycine) 10 days prior to planting the following crops 

(Prior et al. 2010).  

To study root dynamics, two minirhizotrons per open top chamber were installed.   

Minirhizotrons are clear plastic tubes (o.d. = 56 mm) that allow repeated non-invasive 

measurement of root growth.  These were installed at a 45º angle from vertical to a 

vertical depth of 34 cm.  Tubes were installed equidistant between and parallel to rows of 

plants.  The portion of the minirhizotron tube above the ground was covered with a 

closed-cell polyethylene sleeve, and the end was sealed with a rubber cap to exclude light 

and minimize heat exchange between the air and the tube.  A PVC cap was installed over 

the end to protect the rubber cap from UV damage, and to further protect and insulate the 

tube.  To prevent movement, aluminum brackets were clamped to the minirhizotron tubes 

and anchored into the ground with 40 cm stainless steel rods (Pritchard et al. 2006).  

A BTC-100 microvideo camera (Bartz Technologies, Santa Barbara, California) was 

inserted into minirhizotrons at specific time intervals spread across the lifespan of the 

particular plant.  Images of roots growing along the surface of the tubes were recorded.  

The camera was equipped with an indexing handle allowing very precise and consistent 

camera placement over time (Johnson and Meyer 1998).  The images were saved in jpeg 

format using standard Rootfly labeling for future analysis. 
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Manual digitization of the images on the frames involved the use of the image 

analysis program Rootfly Version 2.0.2 (Guang et al. 2008).  Each frame represents a 

one-dimensional area of soil equivalent to 144 mm2.  Frames represent depths from 0 to 

34 cm from all tubes at each date.  

For each minirhizotron frame studied (for each sampling date/session), variables 

were quantified for average root diameter (m/m2), average length of live roots (m/m2), 

and standing root crop (m/m2).  Roots which were still visible were classified as live and 

standing root crop was quantified as the total length (m/m2) of root that appeared live at a 

given session (McCormack et al. 2010).  

Production, in repeated measures studies (repeated measure being time), can be 

quantified based on the length of roots that have developed since the preceding session 

(McCormack et al. 2010), and production for this study was quantified similarly.  

Seasonal root production, for these annual crop plants, included all length of roots that 

developed during the growing season (Pritchard et al. 2006).  That is, standing root crop 

for day 1 plus (standing root crop of day 2 minus day 1), plus (standing root crop of day 3 

minus day 2), plus, etc.  

Maximum standing root crop is given as the length of roots present at the session 

with the greatest standing root crop present (m/m2).   

Root turnover index was seasonal root production divided by the maximum 

standing root production (Gill and Jackson 2000; Norby and Jackson 2000; Frank and 

Groffman 2009).  The JMP 12.1.0 program was used for ANOVA analysis of the root 

turnover index for tillage, [CO2], and depth for sorghum and for soybean. 
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The experimental design of the crop plants grown in the OTCs with two levels of 

atmospheric carbon dioxide (ambient and twice ambient) and two agricultural 

management systems (conventional and no-till methods) was a split-plot design with 

three blocks (three replications).  One half of each block had conventional agricultural 

management and one half had no-till.  Split-plot treatments of carbon dioxide level were 

randomly assigned within blocks.  Data were analyzed as a repeated measures MANOVA 

(repeated measure being time) with univariate tests also included.  The JMP 12.1.0 image 

analysis program (SAS Institute, Cary, NC) was used for analysis of the effects of 

agricultural management, carbon dioxide levels, and vertical soil depth (0 – 17 cm and 17 

– 34 cm) with even numbered frames (2 – 36) for each session being analyzed. Data were 

considered statistically significant when alpha levels were < 0.05 and were indicated with 

an *.  Statistical trends were noted at 0.05 < p < 0.15.   

Soybean was evaluated for 8 days (sessions) and sorghum for 4 sessions across 

the span of their respective growing seasons.  The JMP program between groups results 

indicate comparison of the root growth of groups of plants of a particular cultivar which 

were grown under the four conditions (NTE, NTA, CTE, CTA).  For a repeated measures 

experiment where time is the repeated measure, each within group results represents the 

recorded changes in growth of roots of plants grown in six minirhizotrons under a 

designated condition across the sessions (days where images were recorded).  For a given 

response variable, such as  root length, the length measured for a given species of plant 

for a given session under a specific condition was considered a separate variable, thereby 

rendering multivariate ANOVA analysis (MANOVA) appropriate (JMP Support, SAS).  

Response variables included root diameter, root length, and standing root crop.  



 

19 

Separately from MANOVA, the JMP platform for ANOVA was used to generate 

Tukey’s Honestly Significant Difference (HISD) test as a post-hoc test. 

Primary analysis of data involved JMP data tables with tillage, [CO2], and depth 

recorded in three separate columns.  This made it possible to separately analyze tillage, 

[CO2], and depth.  Where applicable, JMP data tables were divided into the four 

conditions at shallow soil depth and the four conditions at deep soil depth with tillage and 

[CO2] in one column and depth (shallow or deep) in a second column.  This enabled the 

analysis of NTE, NTA, CTE, and CTA at both shallow soil levels and deep soil levels. 

As referred to in this dissertation, a condition under which a group of plants were 

grown would include tillage and [CO2].  There were four conditions for sorghum and four 

conditions for soybean (NTE, NTA, CTE, CTA).  One treatment would include type of 

tillage (conventional till or no-till) and another treatment would include [CO2].  The two 

atmospheric [CO2] treatments were ambient (365 µmol mol-1), and elevated or twice-

ambient (720 µmol mol-1).  

Additionally, as referred to in this dissertation, a group of plants would indicate 

those plants of a particular species (sorghum or soybean), grown in three OTCs (with two 

minirhizotrons per OTC) under the same condition.  This correlates to the JMP 

terminology “subjects.”  For each of the three OTCs, the results of root growth observed 

using its two minirhizotrons were averaged to give a total of three replicates to be used in 

analysis of average root diameter, average root length, and standing root crop for each 

condition. 

2.4 Results 

2.4.1 Average root diameter of sorghum 
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For sorghum, when analyzed individually using MANOVA with univariate tests, 

the only significant difference was within subjects time (p < 0.0001*) (Table 2.1). 

2.4.2 Average root length of sorghum 

Sorghum with no-till agricultural management had significantly greater average 

root length (m/m2) at the deep soil level (17 – 34 cm) (p = 0.0041*).  There was a 

significant effect on average root length of sorghum by within (groups) time (p = 

0.0153*) (Table 2.2).  Sorghum also displayed a trend toward greater average root length 

at elevated [CO2] (p = 0.1071).   

2.4.3 Standing root crop of sorghum 

For sorghum, there was a significant increase in standing root crop in the deep 

soil level (17 – 34 cm) (p = 0.0009*).  There was also a within subjects time significant 

effect (p = 0.0002*).  There was a trend toward an effect of [CO2] × Depth (p = 0.1180) 

(Table 2.3). 

2.4.4 Average root diameter of soybean 

For soybean, no-till agricultural management resulted in a significantly greater 

average root diameter (p = 0.0212*).  Soybean had a significant effect for within time (p 

= 0.0004*) (Table 2.4). 

2.4.5 Average root length of soybean 

For soybean, there was no significant effect of tillage, [CO2], or depth upon 

average root length. There was a significant effect of (within) time upon average root 

length (p = 0.0021*) (Table 2.5). 

2.4.6 Standing root crop of soybean 
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For standing root crop of soybean, there was a significant effect for within 

subjects time (p < 0.0001*) (Table 2.6). 

2.4.7 Root Turnover Index Results  

Root turnover index was calculated for roots growing in the shallow (0 cm –17 

cm) and deep (17 cm – 34 cm) soil for both sorghum and soybean for all four conditions:  

NTE, NTA, CTE, and CTA.  A root turnover index of 1.0/100% would indicate that all 

roots had died (Gill and Jackson 2000), which did not occur in any of these annual crop 

plants by the conclusion of the experiment.   

The highest percent root turnover index was seen in sorghum where it ranged 

from 71.1% for no-till elevated (NTE) shallow to 88.5% for no till ambient (NTA) deep 

(Table 2.7).  For all four treatments in sorghum, the deep root turnover index was higher 

than the shallow root turnover index.  Seasonal root production for sorghum was greater 

for deep soil levels for all four treatments (Table 2.7).   

ANOVA for depth indicated that, in sorghum, there was a significantly greater 

root turnover index in the deep level than in the shallow (p = 0.0245*) (Table 2.9).   

One-way analysis of root turnover index of sorghum for the four treatments was done.  

From greatest to least root turnover index, the treatments were CTE, NTA, CTA, and 

NTE with no significant difference (p = 0.1345).  However, Tukey’s Honestly Significant 

Difference test showed a trend toward a difference between CTE and NTE. 

One-way analysis of root turnover index of soybean for the four treatments was 

done (p = 0.0481*).  For soybean, from greatest to least root turnover index, the 

treatments were NTA, CTE, CTA, and NTE with a significant difference between NTA 
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and NTE (p = 0.0481*) (Table 2.10); the significantly different groups were verified by 

Tukey’s Honestly Significant Difference post-hoc test. 

In soybean, the percent root turnover indices ranged from 33.6% for no-till 

elevated (NTE) deep to 53.4% for no-till ambient (NTA) shallow (Table 2.8).  In 

soybean, the shallow depths (0 – 17 cm) had a greater root turnover index than that of 

deep depths for three of four conditions, except for conventional till ambient (CTA) for 

which the results were reversed but at less than significance or trend level (Table 2.8, 

Table 2.10).  Seasonal root production was greater for shallow depths for three out of 

four conditions except for no-till ambient for which the seasonal root production was 

greater for the deep levels (17 – 34 cm) (Table 2.8).  

One-way analysis of root turnover index of soybean for the four treatments was 

done (p = 0.0481*) (Table 2.10).  For soybean, from greatest to least root turnover index, 

the treatments were NTA, CTE, CTA, and NTE with a significant difference between 

NTA and NTE (p = 0.0481*); the significantly different groups were verified by Tukey’s 

Honestly Significant Difference post-hoc test. 

In soybean root turnover, for carbon dioxide, one way ANOVA (p = 0.1120) 

revealed a trend toward a greater root turnover with ambient [CO2] than with elevated 

[CO2] (Table 2.10).   

2.5 Discussion 

While tillage had no significant effect on average root diameter or average root 

length of sorghum, there was a trend toward greater standing root crop with no-till 

agricultural management (p = 0.1064) (Table 2.3).  Standing root crop is the total length 

of live roots (m/m2) present at a given session, so although the average length of fine 
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roots was not affected, the total length of fine roots was somewhat increased with no-till.  

No-till agricultural management is characterized by a lack of disturbance of roots in the 

soil and the plant residue being allowed to remain in the field with resulting shade, soil 

moisture, and carbon deposition (Palm et al. 2013). These characteristics of no-till would 

tend to positively impact annual production which would increase the standing root crop 

(Frank and Groffman 2009).  

Sorghum is known to be a vigorously growing, deep-rooted plant (Dial 2013).  

The fact that there was a significantly greater standing root crop in the deeper soil level 

(17 – 34 cm) (p = 0.0009*) could partially be a function of its innate rooting system. 

There was a slight increase in average root diameter in elevated [CO2] for all four 

days for which root growth was recorded for sorghum (p = 0.4363) (Table 2.1), but this 

was not to significance or trend level. While there was not a significant or trend level 

effect of elevated [CO2] upon standing root crop of sorghum for each of the four session 

(days) that were recorded, there was slightly higher value for standing root crop with 

elevated [CO2] (p = 0.4114) (Table 2.3).   

The effect of elevated [CO2] on C4 plants is associated with a reduction in the 

effect of drought, by an improvement of water use efficiency (Pritchard and Amthor 

2005; Runion 2009).  Sorghum is a C4 agricultural plant that can be grown in dry 

conditions in the American southwest (Fageria 2012).  While there is no indication that 

the soil at the National Soil laboratory was under drought conditions during the study, 

excessive soil dryness could have slightly impacted the standing root crop.  The fact that 

sorghum is a drought resistant and deep-rooted plant (Dial 2013), while soil dryness tends 
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to be more pronounced at shallow soil levels, could have resulted in the effect of [CO2] 

×depth for standing root crop being at trend level (p = 0.1180) instead of significant.   

For soybean, there was a significant effect of no-till agricultural management 

upon average root diameter (p = 0.0212*) (Table 2.4).  This was the only significant 

effect for tillage, CO2, or depth alone for soybean diameter, soybean root length, or 

soybean standing root crop.  Also, there were very distinctive patterns for the effects of 

experimental treatments on the root growth of soybean which frequently indicated that 

no-till agricultural management very slightly increased root growth as did elevated 

carbon dioxide levels; however, these were very subtle differences at less than 

significance or trend level. 

The repeated measures MANOVA analysis showed elevated [CO2] as having 

slightly greater values than ambient [CO2] for each of the eight sessions (days) where 

average root diameter of soybean was recorded.  This was not at the significant level or 

even at trend level (p = 0.3791) (Table 2.4), but root diameters were consistently greater 

in each measurement cycle for elevated [CO2].   

Repeated measures MANOVA indicated that, for soybean average root length, 

no-till agricultural management had slightly higher values than conventional tillage for 

all eight sessions with more increase later in the season, but this was not to the 

significance or trend level (p = 0.3705) (Table 2.5).  Using repeated measures MANOVA 

for soil depth of soybean roots revealed that the deep soil level had a slightly greater 

standing root crop than did the shallow soil level for the last six sessions, but this was not 

to the significant or trend level (p = 0.4964) (Table 2.6).   
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Elevated [CO2] had consistently slightly greater levels for standing root crop of 

soybean for each of the eight sessions, but it was not to the significance or trend level (p 

= 0.3376) (Table 2.6).  Soybean standing root crop for depth showed no difference for the 

first two sessions, yet the six sessions later in the growing season showed the deep soil 

level with slightly higher values, but it was not to significance or trend level (p = 0.4964). 

Using repeated measures MANOVA for soybean the direction of influence was as 

was hypothesized, but the magnitude of the difference was not sufficient to reach 

significance level or trend.  No-till agricultural management resulted in significantly 

higher values only for soybean average root diameter. 

One hypothesis was that no-till agricultural management would result in an 

increased root growth for C3 plants and for C4 plants.  The C3 soybean’s diameter (p = 

0.0212*) (Table 2.4) was significantly increased, and the C4 sorghum standing root crop 

(p = 0.1064) showed a trend toward an increase, so both C3 plants and C4 plants showed 

increase in one dimension of root growth. 

There were a number of interactions of factors including tillage for sorghum and 

soybean which resulted in significance or trend level effects.  These provide additional 

credibility to the idea that no-till can also affect plant root growth when interacting with 

other factors.  The results of this experiment suggest that no-till agricultural management 

has a positive effect on plant root growth. 

Elevated [CO2] alone had no significant effect or trend for soybean root growth, 

but elevated [CO2] did have slightly greater results than ambient [CO2] for soybean 

average root diameter (p = 0.3791) and for standing root crop of soybean (p = 0.3371).  
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Elevated [CO2] was slightly higher for sorghum average root diameter (p = 0.4363) as it 

was for sorghum standing root crop (p = 0.4114). 

For sorghum average root length, there was a trend (p = 0.1071) (Table 2.2) for an 

increase due to elevated [CO2].  This was the only result in the trend level for an effect of 

elevated carbon dioxide levels alone affecting root growth, and there was no result at the 

significance level for the effect of elevated [CO2] alone on plant root growth. However, 

there were several interactions involving carbon dioxide with other factors which added 

some credibility to the hypothesis that elevated atmospheric [CO2] interacting with other 

factors increased plant root growth.  Considering the results, even with the addition of 

several slightly elevated effects described above, the experiment does not prove the 

relationship between elevated [CO2] and increased plant root growth.  However, the 

results from this experiment do not rule out the probability that plant root growth is 

positively affected by elevated atmospheric [CO2]. 

One factor that could have the potential to affect the experimental results of added 

atmospheric carbon dioxide is the method of dispersing the elevated [CO2] to the plants 

and whether that method affects root growth by restriction of growth area.  It is generally 

thought that open top chambers (OTCs), as used as the national soil laboratory, are better 

for assessing plant root growth at elevated [CO2] than are studies involving agricultural 

plants grown in pots, since there is less root constriction.  This would particularly be the 

case in studies where agricultural plants are grown to maturity across a complete growing 

season as was the case in the dissertation study. 

However, some would say that the open top chambers are not as efficient as the 

free air concentration enrichment (FACE) method of exposing plants to elevated 
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atmospheric [CO2] where crops can be grown in field conditions without the restriction of 

growing in a partially enclosed space.  One concern is the potential for elevated 

temperatures inside the OTCs during the middle of the day when compared to outside 

temperatures (Ainsworth 2008a) with one estimate of as much as 3º C in difference 

(Leadley 1993).  It is difficult to determine whether the use of OTCs affected the results 

in this study especially since the OTCs used at the national soil dynamics laboratory were 

quite large (3 m in diameter by 2.4 m in height) (Prior et al. 2005). 

As regards root turnover, the dissertation study results did not agree with 

Pritchard et al. (2006) on the effect of soil depth on root turnover in sorghum, since the 

dissertation study found a significantly higher root turnover index for the deep soil level 

(17 – 34 cm) (p = 0.0245*) than for the shallow.  There are several methods of 

calculating root turnover, and the dissertation study used root turnover index while the 

Pritchard study used a different calculation method.  Whether this difference in method 

would enough to reverse the results is unclear.  Additionally, the dissertation study was 

divided into shallow and deep levels with 18 frames per minirhizotron tube (McCormack 

et al. 2010) while the Pritchard et al. (2006) study was divided into 16 frames per 

minirhizotron tube at eight soil levels. This may or may not have affected the results for 

root turnover by depth. 

However, with the treatments’ effects on root turnover on sorghum, the 

dissertation study results did agree with Pritchard et al. (2006).  For the dissertation 

study, sorghum plants growing under all four conditions (CTE, NTA, CTA, and NTE) 

were found to be group A with Tukey’s HSD test indicating that there was no significant 

difference in root turnover index.  The Pritchard study found that neither agricultural 
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management nor CO2 treatment had an effect on the percentage of sorghum roots to die 

which was interpreted to mean that root longevity was unchanged. 

The dissertation hypothesis for root turnover index was that for both of the crop 

plants tested at all four conditions, there would be a decrease in root turnover index in the 

deeper soil level.  For sorghum, the reverse was true.  For each of the four conditions, the 

shallow soil level had less percent root turnover index.  One reason for this could be that 

sorghum, being a deep-rooted plant, has more seasonal root production in the deep soil 

level for each of the four treatments.  This could lead to more crowding and competition 

for nutrients at the deeper soil level, with some fine roots not surviving. 

The hypothesis of a decrease in root turnover index in the deeper soil level was 

partially met for soybean.  In soybean there was less percent root turnover index in the 

deep soil levels for three out of four of the conditions tested:  NTE, NTA, and CTE.  

Only CTA had a greater value at the deep soil level (38.9%) compared to shallow soil 

level (34.9%).   
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2.6 Tables 

Table 2.1  

MANOVA repeated measures with univariate tests also analysis of average root 

diameter (m/m2) for sorghum (Sorghum bicolor) grown at four conditions: no-till 

elevated [CO2], no-till ambient [CO2], conventional till elevated [CO2], and conventional 

till ambient [CO2].  

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 0.363 0.9104 

Tillage 1 16 0.014 0.9082 

[CO2] 1 16 0.638 0.4363 

Depth 1 16 0.677 0.4228 

Tillage× [CO2] 1 16 0.419 0.5266 

Tillage × Depth 1 16 0.586 0.4550 

[CO2] × Depth 1 16 0.037 0.8504 

Tillage × [CO2] ×Depth 1 16 0.174 0.6820 

Within Subjects     

Time 3 14 46.647 <0.0001* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 2.2  

MANOVA repeated measures with univariate tests also analysis of average root length 

(m/m2) for sorghum (Sorghum bicolor) grown at four conditions: no-till elevated [CO2], 

no-till ambient [CO2], conventional till elevated [CO2], and conventional till ambient 

[CO2].  

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 2.179 0.0934 

Tillage 1 16 0.883 0.3614 

[CO2] 1 16 2.915 0.1071 

Depth 1 16 11.203 0.0041* 

Tillage× [CO2] 1 16 0.192 0.6671 

Tillage × Depth 1 16 0.0184 0.8939 

[CO2] × Depth 1 16 0.0082 0.9291 

Tillage × [CO2] ×Depth 1 16 0.0343 0.8554 

Within Subjects     

Time 3 14 4.930 0.0153* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 2.3  

MANOVA repeated measures with univariate tests also analysis of standing root crop 

(m/m2) for sorghum (Sorghum bicolor) grown at four conditions: no-till elevated [CO2], 

no-till ambient [CO2], conventional till elevated [CO2], and conventional till ambient 

[CO2].  

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 3.606 0.0159* 

Tillage 1 16 2.928 0.1064 

[CO2] 1 16 0.713 0.4114 

Depth 1 16 16.431 0.0009* 

Tillage× [CO2] 1 16 0.203 0.6586 

Tillage × Depth 1 16 0.104 0.7509 

[CO2] × Depth 1 16 2.730 0.1180 

Tillage × [CO2] ×Depth 1 16 2.133 0.1635 

Within Subjects     

Time 3 14 13.582 0.0002* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 2.4  

MANOVA repeated measures with univariate tests also analysis of average root diameter 

(m/m2) for soybean (Glycine max) grown at four conditions: no-till elevated [CO2], no-till 

ambient [CO2], conventional till elevated [CO2], and conventional till ambient [CO2].  

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 1.358 0.2880 

Tillage 1 16 6.525 0.0212* 

[CO2] 1 16 0.818 0.3791 

Depth 1 16 0.083 0.7771 

Tillage× [CO2] 1 16 0.995 0.3333 

Tillage × Depth 1 16 0.574 0.4596 

[CO2] × Depth 1 16 0.292 0.5964 

Tillage × [CO2] ×Depth 1 16 0.216 0.6485 

Within Subjects     

Time 7 10 12.101 0.0004* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 2.5  

MANOVA repeated measures with univariate tests also analysis of average root length 

(m/m2) for soybean (Glycine max) grown at four conditions: no-till elevated [CO2], no-till 

ambient [CO2], conventional till elevated [CO2], and conventional till ambient [CO2].  

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 0.549 0.785 

Tillage 1 16 0.849 0.3705 

[CO2] 1 16 0.059 0.8117 

Depth 1 16 0.471 0.5023 

Tillage× [CO2] 1 16 1.221 0.2856 

Tillage × Depth 1 16 0.283 0.6023 

[CO2] × Depth 1 16 0.378 0.5474 

Tillage × [CO2] ×Depth 1 16 0.583 0.4561 

Within Subjects     

Time 7 10 7.940 0.0021* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 2.6   

MANOVA repeated measures with univariate tests also analysis of standing root 

crop (m/m2) for soybean (Glycine max) grown at four conditions: no-till elevated [CO2], 

no-till ambient [CO2], conventional till elevated [CO2], and conventional till ambient 

[CO2].  

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 0.789 0.6070 

Tillage 1 16 .005 0.9463 

[CO2] 1 16 0.977 0.3376 

Depth 1 16 0.485 0.4964 

Tillage× [CO2] 1 16 2.088 0.1677 

Tillage × Depth 1 16 1.925 0.1844 

[CO2] × Depth 1 16 0.038 0.8489 

Tillage × [CO2] ×Depth 1 16 0.0041 0.9498 

Within Subjects     

Time 7 10 54.518 <0.0001* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 2.7 

Sorghum root turnover index determined by seasonal root production divided by 

maximum standing root crop with standard error and percent root turnover. 

Treatments Seasonal root  

Productiona 

Max standing  

root cropa 

Root 

turnover  

Indexa 

Standard  

error 

Percent 

root  

Turnover 

NTE shallow 1.75E-07 

 

2.45908E-07 

 

7.11E-01 

 

0.04 71.1 % 

NTE deep 3.19E-07 

 

4.17268E-07 

 

7.64E-01 

 

0.07 76.4% 

NTA shallow 2.01E-07 

 

2.52444E-07 

 

7.97E-01 

 

0.04 79.7% 

NTA deep 3.46E-07 

 

3.9154E-07 

 

8.85E-01 

 

0.10 88.5% 

CTE shallow 2.54E-07 

 

3.12666E-07 

 

8.14E-01 

 

0.02 81.4% 

CTE deep 3.06E-07 

 

3.45594E-07 

 

8.84E-01 

 

0.02 88.4% 

CTA shallow 2.18E-07 

 

2.93854E-07 

 

7.42E-01 

 

0.02 74.2% 

CTA deep 2.34E-07 

 

2.6594E-07 

 

8.79E-01 

 

0.02 87.9% 

a Values are in units of meters per meter squared.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  

Elevated [CO2] is 365 µmol-1 and ambient [CO2] is 720 µmol-1.  Tillage includes conventional till and no-till. 
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Table 2.8 

Soybean root turnover index determined by seasonal root production divided by 

maximum standing root crop with standard error and percent root turnover. 

Treatments Seasonal root  

Productiona 

Max standing  

root cropa 

Root 

turnover  

Indexa 

Standard  

error 

Percent 

root  

Turnover 

NTE shallow 1.70E-07 

 

4.62E-07 

 

3.67E-01 

 

0.04 36.7% 

NTE deep 1.51E-07 

 

4.48E-07 

 

3.36E-01 

 

0.04 33.6% 

NTA shallow 2.15E-07 

 

4.03E-07 

 

5.34E-01 

 

0.08 53.4% 

NTA deep 2.28E-07 

 

4.33E-07 

 

5.27E-01 

 

0.08 52.7% 

CTE shallow 2.91E-07 

 

6.47E-07 

 

4.50E-01 

 

0.09 45.0% 

CTE deep 1.97E-07 

 

4.95E-07 

 

3.98E-01 

 

0.07 39.8% 

CTA shallow 1.57E-07 

 

4.49E-07 

 

3.49E-01 

 

0.08 34.9% 

CTA deep 1.14E-07 2.94E-07 3.89E-01 0.02 38.9% 

a Values are in units of meters per meter squared.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  

Elevated [CO2] is 365 µmol-1 and ambient [CO2] is 720 µmol-1.  Tillage includes conventional till and no-till. 
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Table 2.9 

ANOVA analysis of sorghum (Sorghum bicolor) root turnover index at four  

conditions with mean, standard error of mean, and p-value. 

Sorghum Mean S.E. p-value 

Between subjects    

Tillage - Conventional 0.83 0.02 0.3293 

Tillage – No-till 0.79 0.03  

[CO2] - Elevated 0.79 0.03 0.4164 

[CO2] - Ambient 0.82 0.03  

Depth - Deep 0.85 0.03 0.0245* 

Depth - Shallow 0.77 0.02  

Treatments/conditions    

Conventional till elevated 0.85 0.02 0.1345 

No-till ambient 0.84 0.05  

Conventional till ambient 0.81 0.03  

No-till elevated 0.74 0.04  
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  

 Elevated [CO2] is 365 µmol-1 and ambient [CO2] is 720 µmol-1. 
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Table 2.10   

ANOVA analysis of soybean (Glycine max) root turnover index at four  

conditions with mean, standard error of mean, and p-value. 

Soybean Mean S.E. p-value 

Between subjects    

Tillage - Conventional 0.37 0.03 0.3147 

Tillage – No-till 0.42 0.13  

[CO2] - Elevated 0.03 0.03 0.1120 

[CO2] - Ambient 0.44 0.04  

Depth - Deep 0.40 0.04 0.9186 

Depth - Shallow 0.49 0.32  

Treatments/conditions    

No-till ambient 0.51 0.05 0.0481* 

Conventional till elevated 0.38 0.05  

Conventional till ambient 0.37 0.04  

No-till elevated 0.34 0.03  
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.   

Elevated [CO2] is 365 µmol-1 and ambient [CO2] is 720 µmol-1.  Tillage includes conventional till and no-till. 
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Table 2.11    

Comparison of Average Root Lengths between sorghum (Sorghum bicolor) from the 

Dissertation Study and the Pritchard study 

Treatments Dissertation sorghum Pritchard sorghum 

Tillage 

[CO2] 

Depth 

[CO2]×Depth 

Tillage×[CO2]×Depth 

Within Time 

0.3614 

p = 0.1071  

p = 0.0041* 

0.9291 

0.8554 

p = 0.0153* 

NS 

p = 0.08 

p = 0.02* 

p = 0.12 

NS 

P < 0.0001* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1.  Tillage includes conventional till and no-till. Results from Pritchard study from Pritchard et al 2006. 
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CHAPTER III – ROOT GROWTH DIFFERENCES OF THREE LEGUMES 

3.1 Abstract 

Rising levels of atmospheric carbon dioxide levels [CO2] have increased the 

photosynthesis of all major plant groups with root growth having the potential to increase 

as much as or more than above ground shoots.  The increased plant growth has been 

shown to require additional carbon and nitrogen with the nitrogen component of the C:N 

ratio often being the limiting element.  Due to the ability of their bacterial symbionts to 

fix nitrogen, legumes are thought to be capable of increases in growth at higher [CO2] 

without nitrogen limitation.  There have been few studies comparing the root growth of 

legumes using no-till agricultural management at ambient [CO2] versus no-till at twice-

normal [CO2].   As part of a larger study of agricultural plants grown at the USDA-ARS 

National Soil Dynamics Laboratory, Auburn, Alabama, USA, it was possible to compare 

the root growth of each of three leguminous species including soybean (Glycine max L. 

Merrill), sunn hemp (Crotalaria juncea L.), and crimson clover (Trifolium incarnatum 

L.) using the no-till cropping system with [CO2] at 365 µmol mol-1) and [CO2] at 720 

µmol mol-1).  This comparison of three legumes allowed an evaluation as to whether the 

response of legume root growth to elevated atmospheric [CO2] is consistent across 

leguminous species or whether it is species dependent.  Root growth was evaluated as a 

repeated measure study using multiple sessions across the growing season of the legumes 

at shallow soil depths (0 – 17 cm) and deep soil depths (17 – 34 cm).  In soybean, clover, 

and sunn hemp, there was no effect on average root diameter of [CO2] or depth alone.  In 

clover, there was a significant effect of time × depth on average root diameter, as well as 

several multiple interactions involving time.  Neither soybean nor clover showed an 
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effect of [CO2] or depth alone upon average root length.  Sunn hemp had a significant 

increase of average root length in elevated [CO2], but had no effect of depth alone.  In 

soybean, for average root length, there was a significant effect of (Time × [CO2] × 

depth).  In soybean there was no effect of [CO2] or depth alone upon standing root crop.  

Clover had a significant effect toward increased standing root crop at shallow soil levels 

with root growth at shallow depths more prominent in the early season and root growth in 

deep soil depth surpassing shallow late in the season.  Sunn hemp had a trend toward 

increased standing root crop at elevated [CO2] and at deep soil level. There were also 

different responses between the agricultural plant species to multiple factor interactions 

and to interactions involving time.  For these three species of legumes, grown in no-till 

conditions at ambient [CO2] and twice ambient [CO2], the effects of elevated [CO2] on 

root growth and on depth were variable and likely species dependent.   

3.2 Introduction 

The family Leguminosae, or Fabaceae, is widely distributed in temperate and 

tropical areas of the world.  It is the third largest plant family with some 630 genera and 

over 18,860 species (Judd et al. 2002).  Most of these legume species are known to form 

a relationship with rhizobia and form root nodules into which the bacterial rhizobia move 

and where they fix nitrogen (Rogers et al. 2009). 

Soybean (Glycine max (L.) Merrill) is a prominent leguminous agricultural plant 

which is an important source of oil and protein (Madhu and Hatfield 2013).  Soybean is 

one of the top agricultural crops in the United States where it is grown on over 76 million 

acres. (USDA Fact sheet 2015) with an increasing percentage of acres planted with 

soybean farmed using no-till agricultural management (Horowitz et al. 2010). 
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Of the two legumes used as cover crops in this study, sunn hemp (Crotalaria 

juncea L.) is a vigorously growing, drought resistant herbaceous warm season annual of 

tropical origin which is widely grown as a green manure/cover crop in tropical and 

subtropical areas (Baligar and Fageria 2007).  Sunn hemp has been studied by the USDA 

because of its potential as a summer cover crop with a goal of producing usable cultivars 

that will survive well and produce seed in the temperate southeastern United States 

(Mosjidis 2011).  The cultivar of sunn hemp used in this study was ‘Tropic Sun’ which 

originated in Hawaii and was a joint release in 1982 by the USDA Natural Resources 

Conservation Service (NRCS) and the College of Tropical Agriculture and Human 

Resources (Valenzuela and Smith 2002). 

Crimson clover (Trifolium incarnatum L.) is an annual clover that is widely 

grown in the southern U.S. as a winter pasture legume and is the most important clover 

used in the United States for agricultural purposes (Smith 2010).  Crimson clover is also 

highly recommended as a cover crop because of its early season production of biomass 

and its nitrogen content (Mosjidis 2002).  The cultivar used for this experiment was ‘AU 

Robin,’ an early-maturing strain, which was released in 1992 by the Alabama Extension 

Service (AES) (Smith 2010). 

Most legumes have the ability to form a symbiotic relationship with soil bacteria 

known as rhizobia.  The rhizobia move into root nodules of the legume and supply 

enzymes that convert atmospheric nitrogen gas (N2) into forms such as NOx usable by 

the legume, while the legume provides carbohydrates to the rhizobia (Lindemann and 

Glover 2008; Jensen et al. 2012).   Nitrogen is a limiting factor in most terrestrial 

ecosystems (Morrison and Morecroft 2006), so the ability of legume symbionts to fix 
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nitrogen is vitally important. Legumes are less likely to be affected by nitrogen limitation 

with the resulting inability to utilize additional photosynthate, so legumes may exhibit a 

greater growth response to elevated atmospheric [CO2] than species that do not fix 

nitrogen (Bernacchi et al. 2005).   

It is thought that legumes will exhibit increased growth due to elevated [CO2] 

compared to non-nitrogen fixing C3 plants (Rogers et al. 2006; Runion et al. 2009).  Not 

all legumes respond to elevated [CO2] to the same extent with past studies suggesting that 

the amount of response can vary depending upon cultivar or species and environmental 

factors such as availability of nitrogen and the plant’s response to drought (West et al. 

2005).   

Fewer studies of the effects of elevated [CO2] on agricultural plant growth have 

involved root growth than those evaluating aboveground plant growth (Madhu and 

Hatfield 2013).  Quantifying root growth can be a challenge, so the opportunity to 

compare the root growth of cultivars of three herbaceous annual legume species grown 

using the same no-till agricultural management, and for each species subjects grown at 

ambient [CO2] and subjects grown at twice normal [CO2] was an additional plus to the 

larger study.  

Patterns of root growth are of great importance in assessing the effects of increase 

in atmospheric carbon dioxide on agricultural plants (Pritchard et al. 2006). The majority 

of root biomass in annual plants occurs in the 0 – 20 cm depth, and legumes have in 

common a taproot system (Fageria 2012).  

According to the NRCS USDA, crimson clover grows 0.4572 meters with a 

minimum rooting depth of 0.3048 meters, while soybean plants grow 0.0144 meters tall 
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with minimum rooting depth of 0.3048.  Sunn hemp grows 1.524 meters tall with 

minimum rooting depth of 0.4064 meters (NRCS USDA Plant database 2018).  Crimson 

clover is the smallest of the plants, soybean is intermediate, and sunn hemp is the largest 

with their root systems reflecting this diversity.  The effects of elevated [CO2] on rooting 

depth could potentially vary depending upon the species of plant observed (West et al. 

2005). 

No-till agricultural management, with its retention of organic matter in the field, 

increases moisture absorption and retention in the topsoil which can increase root growth 

at shallow soil depths (Pritchard et al. 2006).  Due to the variety of factors that affect root 

depth, it was worthwhile to compare the root growth of these legume species grown using 

no-till agricultural management under ambient [CO2] with those grown under twice-

ambient [CO2]. 

Hypotheses addressed by this chapter are as follows: 

1) For the three legumes in the study, growth using twice ambient atmospheric carbon 

dioxide [CO2] will result in differential root growth which will vary depending upon 

species.   

2) For the three legumes in the study, growth using no-till agricultural management and 

twice ambient atmospheric carbon dioxide [CO2], will result in differential root growth 

between shallow (0 – 17 cm) and deep soil depths (17 – 34 cm) which will vary 

depending upon species.   

3.3 Methods 

The initial growth of agricultural plants for this comparison of legume root 

growth was part of a larger study of root growth of five agricultural plants involved in 
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this dissertation study.  The plants were grown in an outdoor soil bin (7 m wide x 76 m 

long x 2 m deep) with Decatur silt loam soil at the at the USDA-ARS National Soil 

Dynamics Laboratory in Auburn, Alabama (32.6º N, 85.5º W).   

Seeds were planted by the no-till method using standard densities with clover 

being broadcast planted at 56 kgha-1 and sunn hemp at 112 kgha-1.  Soybean, clover, and 

sunn hemp seeds were inoculated with Rhizobium (Nitragin Co., Milwaukee, Wisconsin) 

prior to planting (Prior et al. 2005).  Fertilization rates followed guidelines recommended 

by the Auburn University Soil Testing Laboratory (Adams et al. 1994).  Irrigation was 

applied as needed with a target of approximately 1 inch of water per week.   

The larger study compared two cropping systems (no-till and conventional) and 

two levels of atmospheric carbon dioxide:  ambient and twice ambient.  In order to 

compare the root growth characteristics of a primary agricultural plant, soybean, with that 

of two additional legumes used as cover crops for the no-till system, this smaller study 

has focused on no-till agricultural management of the three legume species.  Open top 

chambers (OTCs) which were 3 m in diameter and 2.4 m in height were used to deliver 

atmospheric carbon dioxide to the plants at two [CO2] levels including ambient (365 

µmol mol-1) and twice ambient (720 µmol mol-1). 

The three legumes in this study were soybean (Glycine max L. Merr. ‘Asgrow 

6101’, crimson clover (Trifolium incarnatum L. ‘AU robin’), and sunn hemp (Crotalaria 

juncea L. ‘Tropic Sun’) comprising one rotation cycle in 2004 and 2005.   

The larger experiment was conducted using a split-plot design with three replicate 

blocks with the whole plot treatments (agricultural management system) randomly 

assigned to half of each block.  The levels of atmospheric carbon dioxide were the split-
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plot treatments and were randomly assigned to two chambers within each whole plot.  Of 

the 12 chamber plot locations, three were for no-till management and ambient [CO2] 

(NTA) and three were for no-till management and twice-ambient (elevated) [CO2] (NTE).   

Each open top chamber (OTC) had two clear plastic minirhizotron tubes installed 

at a 45 degree from vertical.  A BTC-100 microvideo camera (Bartz Technologies, Santa 

Barbara, California) was inserted into the minirhizotrons at appropriate days (sessions) 

throughout the growing seasons of the legumes.  Images of the roots growing along the 

surface of the tubes were recorded and still images were produced from the video. 

In the Davis laboratory at the University of Southern Mississippi, Hatttiesburg, 

Mississippi, still images of the roots were manually digitized and analyzed using the 

Rootfly Version 2.0.2 program.  A total of 18 frames representing depths from 0 to 34 cm 

were analyzed from all tubes from each session.  Sessions were spaced across the 

growing season of each plant.  For soybean there were eight sessions (June to October); 

for clover there were nine sessions (November to March), and for sunn hemp there were 

four sessions (August to October). 

Depths were divided into shallow (0 – 17 cm) and deep (17 – 34 cm) 

(McCormack et al. 2010) in order to further analyze root growth.  Each frame represents 

a two-dimensional area of soil equivalent to 144 mm2.  Statistical analysis of the data was 

performed using the JMP 12.1.0 image analysis program (SAS Institute, Cary, NC).  

Average root diameter, average root length, and standing root crop were calculated for 

three replicate OTCs with two minirhizotrons each.  Repeated measures MANOVA 

(repeated measure being time), a multivariate model, was used for the analyses due to 
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each of the time measurements forming a variable with the multiple sessions producing 

multiple variables (JMP Support).  

The same values were recorded for average diameter, average length, and for 

standing root crop for each of the three legume species. These included root growth as 

effected by [CO2], deep or shallow depth, interaction of ([CO2] × depth), interaction of 

(Time × [CO2]), interaction of (Time × Depth), and interaction of (Time × [CO2] × 

Depth). Also included were all between (between subjects or across-subjects effects), all 

within interactions (within subjects effects), and between time/intercept.  Only the data 

for root growth in no-tillage conditions were included in statistics for this chapter since 

clover nor sunn hemp were used as cover crops during no-till agricultural management, 

and neither were grown using conventional tillage. 

For all three legumes, one-way ANOVAS of no-till elevated [CO2] and no-till 

ambient [CO2] were done to in order to follow seasonal differences as well as the 

Tukey’s HSD test as a post-hoc test. 

3.4 Results 

3.4.1 Overall Average Root Diameter 

A comparison of average root diameter of the three legumes using MANOVA 

revealed similar results between soybean, clover, and sunn hemp in that neither [CO2] nor 

depth nor ([CO2] × depth) had a significant effect upon average root diameter. Soybean 

had a trend toward a within (group) time effect (p = 0.0911 (Table 3.1).  Clover had 

significant effects for within time (p = 0.0415*) Table 3.4.  Sunn hemp displayed 

significant results for within (group) time (p = 0.0147*) (Table 3.7). 

3.4.2  Average root diameter across the sessions 
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For soybean, using ANOVA, growth in NTE conditions resulted in greater root 

diameter than NTA conditions for each of the eight sessions (Figure 3.1), but not to trend 

or significance level.  For soybean average diameters grown at deep and shallow depths, 

while the first two sessions were very similar, sessions 3 through 8 showed greater 

average root diameter in deep levels (17 – 34 cm) (Figure 3.2) although not to the level of 

trend or significance. 

For clover, although root growth was very similar during the early sessions, NTE 

conditions resulted in slighter greater average root diameter during sessions 5 through 9 

(Figure 3.3), but not to the level of significance.  For clover, there was greater average 

root diameter in shallow depths during sessions two through six out of nine with  a trend 

for greater root diameter at shallow depths during day four (p = 0.1275) and Day 5 (p = 

0.1282) (Figure 3.4). 

For sunn hemp, average root diameter was significantly higher under NTE 

conditions for all four sessions than for NTA conditions (Figure 3.5) with p values for 

session one (p = 0.0301*), session two (p = 0.0292*, session three (p = 0.0241*), and 

session four (p = 0.0213*).  Tukey’s connecting letters report showed A/B for all four 

sessions.  For sunn hemp, average root diameter was greater for root growth in deep soil 

levels than that in shallow soil levels in all four sessions (Figure 3.5) but not to the level 

of trend or significance.   

3.4.3 Overall Average Root Length  

For soybean, within (group) time had a trend toward a significant effect (p = 

0.0568) (Table 3.2). 
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Clover had no significant effect of [CO2], Depth, [CO2] × Depth, or within 

(subjects) time for average root length.   

In sunn hemp, elevated [CO2] had a significant effect for increased average root 

length (p = 0.0370*).  Within (group) time (p = 0.0236*) had significant results in sunn 

hemp (Table 3.8). Of the three legumes, average root length of sunn hemp displayed the 

most response to the treatments in the dissertation study. 

3.4.4 Average root length across the sessions  

Soybean average root length was greater for all eight sessions when grown at 

NTE conditions rather than NTA conditions (Figure 3.7) but not to the level of 

significance with all eight sessions recording A/A for Tukey’s connecting letters report.  

Soybean average root length was greater at deep soil levels than shallow for all eight 

sessions (Figure 3.8) but not to the level of significance with Tukey’s connecting letters 

giving values of A/A for all eight sessions.  

Clover average root length was mixed with NTA conditions resulting in greater 

average root length for eight of nine sessions, with NTE surpassing it only at the ninth 

session (Figure 3.9), but there was no significant difference, with all  nine sessions were 

recorded as A/A for the Tukey’s connecting letters report.  Clover average root length 

was greater for deep soil levels for eight out of nine sessions with shallow soil levels 

showing greater average root length only at the ninth session (Figure 3.10), but this was 

not to the level of significance with Tukey’s connecting letters report recorded as A/A for 

all nine sessions.    

Sunn hemp had significantly greater average root length at NTE conditions than at 

NTA conditions for all four sessions (Figure 3.11) with p values of 0.0301*, 0.0291, 
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0.0241, and 0.0213 respectively and A/B for the connecting letters report for all four 

sessions.  Sunn hemp had greater average root length at deep soil conditions than at 

shallow soil conditions for all four sessions (Figure 3.12) but not to significance level 

with the Tukey’s connecting letters report indicating A/A for all four sessions. 

3.4.5 Standing Root Crop 

Soybean had a significant within subjects effect of time (p = 0.0041*) for 

standing root crop (Table 3.3).   

Clover had a significant effect upon standing root crop by depth (p = 0.0244*) 

and [CO2] × Depth (p = 0.0474*) (Table 3.6).   Clover had a trend for within time (p = 

0.0961). 

For standing root crop of sunn hemp, there were trends for [CO2] (p = 0.1168), 

Depth (p = 0.1131), and [CO2] × Depth (p = 0.1285).  There was also a significant effect 

of within subjects time (p = 0.0020*) (Table3.9). 

3.4.6 Standing root crop across the sessions  

For soybean, while NTE growing conditions resulted in greater standing root crop 

during sessions two through four, NTA conditions resulted in greater standing root crop 

in sessions five through nine (Figure 3.13) although not to the level of significance with 

Tukey’s connecting letter reports listed as A/A for all eight sessions.  For soybean,  

standing root crop was greater for deep soil levels for sessions one through seven (Figure 

3.15) with a trend for greater standing root crop at session two (p = 0.1910) and session 

three (p = 0.1223). However, there was no significant difference with all eight sessions 

recording A/A with the Tukey’s connecting letters report. 
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For clover, values for standing root crop for NTA and NTE were very close 

across the entire nine sessions with NTE slightly greater early and NTA slightly greater 

during the sessions seven through nine (Table 3.15); there were no significant differences 

or trends for any of the sessions and the Tukey’s connecting letters report was A/A for all 

nine sessions.  For clover standing root crop, shallow root growth was higher during 

sessions two through seven (Figure 3.16) with a trend for session three (p = 0.1023) and 

significantly higher for sessions four (p = 0.0211*), session five (p = 0.0031*), session 

six (p = 0.0024*), and session seven (p = 0.0017*). Deep standing root crop was 

significantly higher than shallow during session 9 (p = 0.0463*) with A/B showing deep 

as A. The connecting letters report showed A/B for sessions four through seven with 

shallow being the greater standing root crop.   

For sunn hemp, standing root crop was greater at NTE conditions than at NTA 

conditions for all four sessions (Figure 3.17) at a level approaching but not quite trend 

level. The Tukey’s connecting letter report indicated A/A for all four sessions. For sunn 

hemp, standing root crop was higher at deep soil levels than at shallow soil levels for all 

four sessions (Figure 3.18) with p values approaching but not quite at trend level. The 

Tukey’s connecting letters report was A/A for all sessions indicating no significant 

difference. 

3.5 Discussion 

A comparison of the effects of the treatments of carbon dioxide concentrations 

and depths upon root growth of the three legumes revealed that soybean had the least 

trends and significant differences (trend/significant) of any of the three plants.  Soybean 

had a trend toward a difference for average root diameter for within subjects time (p = 
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0.0911), a trend toward a difference with average root length for within subjects time (p = 

0.568), and a significant result for within subjects time for standing root crop (p = 

0.0041*).   

Clover had an intermediate response to the treatments in the study with a 

significant result for average root diameter with within subjects time (p = 0.0415*).  For 

standing root crop, clover had three significant results:  all between (p = 0.0421*), Depth 

(p = 0.0244*), and [CO2] × Depth (p = 0.0474*). 

Sunn Hemp had the greatest response to the treatments with a significant result 

for within subjects time for average root diameter (p = 0.0147*).  For average root length, 

sunn hemp had significant results for [CO2] (p = 0.0370*) and within subjects time (p = 

0.0236*).  For standing root crop, sunn hemp had a significant result for within subjects 

time (p = 0.0020*).  Also for standing root crop, sunn hemp had trends for all between (p 

= 0.0925), [CO2] (p = 0.1168), Depth (p = 0.1131), and [CO2] × Depth (p = 0.1285). 

There is a strong indication that the three legume species do not react as a unit in 

the response of their root growth to elevated [CO2] and/or depth under no-till conditions.  

However, the difference in response may vary as to which root growth characteristic is 

considered.  There was less variety of response to average root diameter for all three 

legumes, and no significant difference in root growth for [CO2] or for depth was recorded 

for any of the three without the consideration of time as a factor. 

Results for another root growth characteristic, rather than average diameter, may 

indicate that the species in question was responsive to the difference in [CO2] between 

365 µmol mol-1 and 720 µmol mol-1 and/or depth of root growth for that particular 

characteristic of root growth.  For average root length, while neither clover nor soybean 
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had any significant result or trend due to either [CO2] or root depth without the inclusion 

of time, sunn hemp had a significant increase in root length due to elevated [CO2] (p = 

0.0370*) (Table 3.8).  

Standing root crop was the root growth characteristic showing the most increase 

with the treatments.  For clover, there was significantly increased standing root crop at 

the shallow level (p = 0.0244*), and ([CO2] × Depth) (p = 0.0474*) (Table 3.6). For 

standing root crop, sunn hemp was clearly the most affected with trends toward effects 

for carbon dioxide levels (p = 0.1168), depth (p = 0.1131) and ([CO2] × Depth) (p = 

0.128) (Table 3.9). 

So, while there was a difference in response to the treatments by the three legumes, it also 

varied depending upon which characteristic of root growth was evaluated. 

The discussion of legume’s root growth inevitably turns to the ability of legumes 

to fix nitrogen.  The obvious thought is that this always increases root growth, but is that 

so?  The production of nodules by legumes requires energy with as much as 20 to 30 

percent of the photosynthate produced in soybeans being used when the plant is actively 

fixing nitrogen.  This reduces the energy-containing compounds which could otherwise 

be involved in plant growth (Lindemann and Glover 2008).  It is unclear whether that 

energy requirement is a major factor in the fact that not all studies involving leguminous 

plants have resulted in an increased production at elevated [CO2] (West et al. 2005).    

Nitrogen is a limiting factor in the ability to use the additional carbon in elevated 

[CO2] for the increased production of plant material (Rogers et al. 2006).  Soybean is a 

plant where large quantities of Nitrogen are removed from the field when the soybeans 

are harvested to an extent that less soil organic carbon (SOC) is produced from the 



 

54 

degradation of the plant material than would otherwise occur (Jensen et al. 2012).  A 

decrease in nitrogen and SOC could decrease the response of soybean to the treatments of 

this study. 

Conversely, green-manure legumes, such as sunn hemp, return large amounts of 

carbon and nitrogen to the soil particularly when they produce a large amount of plant 

residue, which the rapidly growing species sunn hemp does (Jensen et al. 2012). 

Sunn hemp has increased soil nitrogen by 57 kg after nine to twelve weeks growth as a 

cover crop (Mansoer et al. 1997) while Rotar and Joy (1998) found an increase of some 

60 kg of Nitrogen after growing sunn hemp as a cover crop for 60 days. Therefore, the 

increased root growth response to the treatments of this study could be attributed to the 

return of nitrogen to the soil. 

While crimson clover is an effective cover crop (Smith 2010), it is a smaller plant 

than sunn hemp with less plant residue to be returned to the soil, which could result in an 

intermediate level of response to the treatments of this study.  

Even though legume species are well known for nitrogen fixation, they don’t 

typically depend only on atmospherically fixed nitrogen instead depending partially upon 

soil N supply (West et al. 2005).  The extent to which a species of legume depends upon 

soil nitrogen could contribute to the variation in legume response to [CO2] (Lee et al. 

2003a). 
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3.6 Tables 

Table 3.1   

MANOVA repeated measures with univariate tests also analysis of average root diameter 

(m/m2) for soybean (Glycine max) grown at two conditions: no-till elevated [CO2] and 

no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 3 8 0.379 0.7711 

[CO2] 1 8 1.069 0.3314 

Depth 1 8 0.065 0.8049 

[CO2] × Depth 1 8 0.0017 0.9682 

Within Subjects      

Time 7 2 10.323 0.0911 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.2      

MANOVA repeated measures with univariate tests also analysis of average root length 

(m/m2) for soybean (Glycine max) grown at two conditions: no-till elevated [CO2] and 

no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 3 8 0.372 0.7758 

Carbon Dioxide 1 8 0.609 0.4575 

Depth 1 8 0.498 0.5003 

[CO2] × Depth 1 8 0.008 0.9333 

Within Subjects     

Time 7 2 16.964 0.0568 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.3   

MANOVA repeated measures with univariate tests also analysis of standing root crop 

(m/m2) for soybean (Glycine max) grown at two conditions: no-till elevated [CO2] and 

no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 3 8 0.252 0.8580 

[CO2] 1 8 0.21 0.6596 

Depth 1 8 0.48 0.5082 

[CO2] × Depth 1 8 0.07 0.8029 

Within Subjects     

Time 7 2 244.66 0.0041* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.4  

MANOVA repeated measures with univariate tests also analysis of average root diameter 

(m/m2) for crimson clover (Trifolium incarnatum) grown at two conditions: no-till 

elevated [CO2] and no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 3 8 0.0042 0.9996 

[CO2] 1 8 0.0025 0.9611 

Depth 1 8 0.0094 0.9251 

[CO2] × Depth 1 8 0.0007 0.9791 

Within Subjects     

Time 8 1 347.316 0.0415* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.5  

MANOVA repeated measures with univariate tests also analysis of average root length 

(m/m2) for crimson clover (Trifolium incarnatum) grown at two conditions: no-till 

elevated [CO2] and no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 3 8 0.276 0.8413 

[CO2] 1 8 0.176 0.6857 

Depth 1 8 0.141 0.7173 

[CO2] × Depth 1 8 0.511 0.4951 

Within Subjects     

Time 1 8 0.344 0.8734 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.6  

MANOVA repeated measures with univariate tests also analysis of standing root crop 

(m/m2) for crimson clover (Trifolium incarnatum) grown at two conditions: no-till 

elevated [CO2] and no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 3 8 4.381 0.0421* 

[CO2] 1 8 0.010 0.9215 

Depth 1 8 7.659 0.0244* 

[CO2] × Depth 1 8 5.475 0.0474* 

Within Subjects     

Time 8 1 64.378 0.0961 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.7 

MANOVA repeated measures with univariate tests also analysis of average root diameter 

(m/m2) for sunn hemp (Crotalaria juncea) grown at two conditions: no-till elevated 

[CO2] and no-till ambient [CO2].  

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 3 8 0.991 0.4445 

[CO2] 1 8 1.025 0.3410 

Depth 1 8 0.993 0.3483 

[CO2] × Depth 1 8 0.957 0.3567 

Within Subjects     

Time 3 6 8.320 0.0147* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.8  

 MANOVA repeated measures with univariate tests also analysis of average root length 

(m/m2) for sunn hemp (Crotalaria juncea) grown at two conditions: no-till elevated 

[CO2] and no-till ambient [CO2].  

Source NumDF DenDF F ratio p – value 

Between Subjects     

All Between 3 8 2.732 0.1463 

[CO2] 1 8 6.249 0.0370* 

Depth 1 8 0.822 0.3912 

[CO2] × Depth 1 8 0.044 0.8392 

Within Subjects     

Time 3 6 6.776 0.0236* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.9  

 MANOVA repeated measures with univariate tests also analysis of standing root crop 

(m/m2) for sunn hemp (Crotalaria juncea) grown at two conditions: no-till elevated 

[CO2] and no-till ambient [CO2].  

Source NumDF DenDF F ratio p – value 

Between Subjects     

All Between 3 8 3.043 0.0925 

  [CO2] 1 8 3.090 0.1168 

   Depth 1 8 3.165 0.1131 

   [CO2] × Depth 1 8 2.874 0.1285 

Within Subjects     

   Time 3 6 18.345 0.0020* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 3.10  

Soybean root turnover index (no till only) with [CO2] at 365 µmol mol-1) and [CO2] at  

720 µmol mol-1) 

Treatments Variables  

 Seasonal root  

productiona 

Max standing root  

Cropa 

Root turnover  

indexa 

Percent root  

Turnover 

NTE shallow 1.70E-07 
 

4.62E-07 
 

3.67E-01 
 

36.7% 

NTE deep 1.51E-07 
 

4.48E-07 
 

3.36E-01 
 

33.6% 

NTA shallow 2.15E-07 
 

4.03E-07 
 

5.34E-01 
 

53.4% 

NTA deep 2.28E-07 
 

4.33E-07 
 

5.27E-01 
 

52.7% 

aValues are in units of meters per meter squared (m/m2) 
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Table 3.11  

Clover root turnover index (no till only) with [CO2] at 365 µmol mol-1) and [CO2] at 720  

µmol mol-1) 

Treatments Variables  

 Seasonal root  

productiona 

Max standing root  

cropa 

Root turnover  

indexa 

Percent root  

Turnover 

NTE shallow 2.70E-07 4.45E-07 6.07E-01 60.7% 
 

NTE deep 2.82E-07 3.61E-07 7.81E-01 78.1% 
 

NTA shallow 2.72E-07 4.5E-07 6.04E-01 60.4% 
 

NTA deep 3.07E-07 4.26E-07 7.21E-01 72.1% 
 

aValues are in units of meters per meter squared (m/m2) 
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Table 3.12 

Sunn hemp root turnover index (no till only) with [CO2] at 365 µmol mol-1) and [CO2] at 

720 µmol mol-1)  

Treatments Variables  

 Seasonal root  

productiona 

Max standing root  

cropa 

Root turnover  

indexa 

Percent root  

Turnover 

NTE shallow 3.96045E-07 4.33E-07 0.914221 91.4% 
 

NTE deep 4.19797E-07 4.77E-07 0.880758 88.1% 
 

NTA shallow 3.28891E-07 3.95E-07 0.832966 83.3% 
 

NTA deep 4.29297E-07 4.67E-07 0.918587 91.9% 
 

aValues are in units of meters per meter squared (m/m2) 
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3.7 Figures 

 

 

 

Figure 3.1 Soybean average root diameter for NTA and NTE treatments 

Note.  Treatments are no-till ambient and no-till elevated.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Sesssion 3 Session 4 Session 5 Session 6 Session 7 Session 8

NTA 9.64E-11 1.03E-10 1.00E-10 9.88E-11 1.01E-10 9.74E-11 9.56E-11 9.50E-11

NTE 1.04E-10 1.16E-10 1.12E-10 1.08E-10 1.09E-10 1.05E-10 1.03E-10 1.04E-10

0.00E+00

2.00E-11

4.00E-11

6.00E-11

8.00E-11

1.00E-10

1.20E-10

1.40E-10

NTA NTE
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Figure 3.2 Soybean Average Diameter deep and shallow 

Note. Deep is 17 – 34 cm and Shallow is 0 – 17 cm.  Standard error bars are included. Units are m/m2. 

  

Session
1

Session
2

Session
3

Session
4

Session
5

Session
6

Session
7

Session
8

Deep 1.00E-10 1.10E-10 1.07E-10 1.05E-10 1.06E-10 1.03E-10 1.01E-10 1.01E-10

Shallow 1.00E-10 1.10E-10 1.05E-10 1.02E-10 1.04E-10 9.94E-11 9.71E-11 9.78E-11

8.50E-11

9.00E-11

9.50E-11

1.00E-10

1.05E-10

1.10E-10

1.15E-10

Deep Shallow
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Figure 3.3 Clover average diameter NTA and NTE 

Note. NTA is no till ambient and NTE is no till elevated.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

NTA 3.72E-10 3.77E-10 3.99E-10 4.26E-10 4.52E-10 4.68E-10 4.96E-10 4.71E-10 4.53E-10

NTE 3.69E-10 3.90E-10 4.04E-10 4.32E-10 4.76E-10 4.98E-10 5.18E-10 4.94E-10 4.86E-10

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

NTA NTE
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Figure 3.4 Clover Average Diameter Deep and Shallow 

Note.  Deep is 17 – 34 cm and Shallow is 0 – 17 cm.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

Deep 3.71E-10 3.62E-10 3.65E-10 3.97E-10 4.33E-10 4.62E-10 5.01E-10 4.80E-10 4.67E-10

Shallow 3.69E-10 4.05E-10 4.38E-10 4.63E-10 4.94E-10 5.04E-10 5.09E-10 4.85E-10 4.73E-10

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

Deep Shallow
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Fig. 3.5 Sunn Hemp average diameter NTA and NTE 

Note.  NTA is no-till ambient and NTE is no-till elevated.  Standrad error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4

NTA 1.22E-10 1.32E-10 1.32E-10 1.33E-10

NTE 4.05E-10 4.16E-10 4.46E-10 4.33E-10

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

2.50E-10

3.00E-10

3.50E-10

4.00E-10

4.50E-10

5.00E-10

NTA NTE
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Figure 3.6 Chapter 3 Sunn hemp average root length deep and shallow 

Note.  Deep is 17 – 34 cm and Shallow is 0 – 17 cm.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4

Deep 2.70E-09 2.80E-09 2.86E-09 2.83E-09

Shallow 2.49E-09 2.63E-09 2.70E-09 2.70E-09

2.20E-09

2.30E-09

2.40E-09

2.50E-09

2.60E-09

2.70E-09

2.80E-09

2.90E-09

3.00E-09

Deep Shallow



 

73 

 

 

Fig. 3.7 Soybean Average Root Length at NTA and NTE m/m2  

Note. Treatments include no-till ambient and no-till elevated.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session5 Session 6 Session 7 Session 8

NTA 2.29E-09 2.26E-09 2.23E-09 2.19E-09 2.23E-09 2.22E-09 2.20E-09 2.14E-09

NTE 2.37E-09 2.47E-09 2.49E-09 2.44E-09 2.38E-09 2.41E-09 2.38E-09 2.38E-09

1.90E-09

2.00E-09

2.10E-09

2.20E-09

2.30E-09

2.40E-09

2.50E-09

2.60E-09

NTA NTE
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Figure 3.8 Soybean Average Root length m/m2 at deep and shallow  

Note. Depths are 17 – 34 cm for Deep and 0 – 17 cm for shallow. Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Sesssion 6 Session 7 Session 8

Deep 2.41E-09 2.48E-09 2.46E-09 2.43E-09 2.41E-09 2.41E-09 2.37E-09 2.29E-09

Shallow 2.25E-09 2.25E-09 2.26E-09 2.20E-09 2.21E-09 2.22E-09 2.21E-09 2.23E-09

2.00E-09

2.05E-09

2.10E-09

2.15E-09

2.20E-09

2.25E-09

2.30E-09

2.35E-09

2.40E-09

2.45E-09

2.50E-09

2.55E-09

Deep Shallow
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Figure 3.9 Clover average root length NTA and NTE 

Note. NTA is no till ambient and NTE is no till elevated.  Standard error bars are included. Units are m/m2 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

NTA 6.25E-09 6.29E-09 7.24E-09 8.16E-09 8.84E-09 9.12E-09 1.00E-08 1.02E-08 1.01E-08

NTE 4.31E-09 4.10E-09 4.08E-09 4.60E-09 5.56E-09 6.17E-09 6.63E-09 6.65E-09 1.18E-08

0.00E+00

2.00E-09

4.00E-09

6.00E-09

8.00E-09

1.00E-08

1.20E-08

1.40E-08

NTA NTE
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Figure 3.10 Clover average root length deep and shallow 

Note. Deep is 17 – 34 cm and Shallow is 0 – 17 cm.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

Deep 6.50E-09 6.15E-09 6.20E-09 6.96E-09 8.36E-09 9.28E-09 1.04E-08 1.06E-08 1.06E-08

Shallow 4.07E-09 4.23E-09 5.12E-09 5.80E-09 6.04E-09 6.00E-09 6.27E-09 6.19E-09 1.14E-08

0.00E+00

2.00E-09

4.00E-09

6.00E-09

8.00E-09

1.00E-08

1.20E-08

1.40E-08

Deep Shallow
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Figure 3.11 Sunn hemp average root length NTA and NTE m/m2  

Note. NTA is no-till ambient and NTE is no-till elevated.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4

NTA 2.34E-09 2.48E-09 2.57E-09 2.55E-09

NTE 2.85E-09 2.96E-09 3.00E-09 2.98E-09

0.00E+00

5.00E-10

1.00E-09

1.50E-09

2.00E-09

2.50E-09

3.00E-09

3.50E-09

NTA NTE
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Figure 3.12 Sunn hemp average root length deep and shallow 

Note.  Deep is 17 – 34 cm and Shallow is 0 – 17 cm.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4

Deep 2.70E-09 2.80E-09 2.86E-09 2.83E-09

Shallow 2.49E-09 2.63E-09 2.70E-09 2.70E-09

2.20E-09

2.30E-09

2.40E-09

2.50E-09

2.60E-09

2.70E-09

2.80E-09

2.90E-09

3.00E-09

Deep Shallow
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Figure 3.13 Soybean standing root crop NTA and NTE in m/m2 

Note. Treatments are no-till ambient and no-till elevated..  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8

NTA 2.12E-07 2.52E-07 2.75E-07 2.89E-07 3.01E-07 2.65E-07 2.56E-07 2.22E-07

NTE 1.80E-07 2.58E-07 2.92E-07 3.02E-07 2.86E-07 2.27E-07 2.02E-07 1.60E-07

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

3.50E-07

NTA NTE
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Figure 3.14 Soybean standing root crop deep and shallow m/m2 

Note. Deep is 17 – 34 cm and shallow is 0 – 17 cm.  Standing error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8

Deep 2.19E-07 2.85E-07 3.18E-07 3.22E-07 2.98E-07 2.50E-07 2.34E-07 1.90E-07

Shallow 1.73E-07 2.25E-07 2.48E-07 2.69E-07 2.90E-07 2.43E-07 2.24E-07 1.92E-07

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

3.50E-07

4.00E-07

Deep Shallow
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Figure 3.15 Clover Standing root crop NTA and NTE 

Note. NTA is no till ambient and NTE is no till elevated.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

NTA 1.86E+02 1.84E+02 2.28E+02 2.84E+02 3.94E+02 4.64E+02 6.26E+02 6.58E+02 6.37E+02

NTE 1.83E+02 2.05E+02 2.50E+02 3.10E+02 4.28E+02 4.86E+02 6.06E+02 6.15E+02 6.05E+02

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

8.00E+02

NTA NTE
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Figure 3.16 Clover Standing Root Crop Deep and Shallow 

Note. Deep is 17 – 34 cm and Shallow is 0 – 17 cm.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9

Deep 1.97E+02 1.94E+02 2.08E+02 2.34E+02 3.05E+02 3.65E+02 5.30E+02 6.58E+02 6.59E+02

Shallow 1.72E+02 1.95E+02 2.70E+02 3.49E+02 5.16E+02 5.85E+02 7.02E+02 6.16E+02 5.83E+02

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

8.00E+02

9.00E+02

Deep Shallow
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Figure 3.17 Sunn hemp standing root crop NTA and NTE 

Note.  NTA is no-till ambient and NTE is no-till elevated.  Standard error bars are included. Units are m/m2. 

  

Session 1 Session 2 Session 3 Session 4

NTA 1.22E-10 1.24E-10 1.23E-10 1.21E-10

NTE 5.39E-10 5.50E-10 5.96E-10 5.77E-10

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

7.00E-10

NTA NTE
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Figure 3.18 Sunn hemp standing root crop deep and shallow  

Note.  Deep is 17 – 34 cm and Shallow is 0 – 17 cm.  Standard error bars are included. Units are m/m2. 

 

 

Session 1 Session 2 Session 3 Session 4

Deep 5.45E-10 5.53E-10 5.98E-10 5.66E-10

Shallow 1.16E-10 1.21E-10 1.21E-10 1.20E-10

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

7.00E-10

Deep Shallow
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CHAPTER IV – ROOT GROWTH OF C3 GRASS VERSUS C4 GRASS 

4.1 Abstract 

Comparison of the differential fine root growth responses of C3 photosynthetic 

plants to increased carbon dioxide levels with that of C4 photosynthetic plants has been 

an area of much speculation but limited research.  The increasing use of no-till 

agricultural management, which has been advocated as a potential carbon sink, makes it 

an area suitable for similar research.  Repeated measures MANOVA with univariate tests, 

was used to compare the  root growth of a C3 grass, Triticum aestivum L., with that of a 

C4 grass, Sorghum bicolor L. when both species were grown under the no-till cropping 

system with subjects grown at (365 µmol CO2 mol-1) and subjects grown at elevated CO2 

levels (720 µmol CO2 mol-1).  The plants were grown at the National Soil Dynamics 

Laboratory, Auburn, Alabama) using a split plot design replicated three times with the 

two carbon dioxide levels as split-plots.  The plants were grown in Open Top Chambers 

in experimental bins of prepared soil.  Minirhizotron cameras were used at regular 

intervals to record images of fine roots grown at soil depths from 0 cm to 34 cm.  The 

Rootfly 2.1 image program was used to digitize the data and JMP 12.0 was used for 

statistical analysis. 

For average root diameter, there were significant differences for all between, for 

[CO2], for species × [CO2], and for within subjects time.  For average root length, there 

were significant differences for all between, species, [CO2], species × depth, and within 

subjects time.  For standing root crop, there were significant differences for all between, 

species, depth, species × depth, and within subjects time. 
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 Both C3 and C4 grasses responded to the treatments used in the study but 

differently. While elevated [CO2] resulted in greater average root diameter and greater 

average root length than ambient [CO2], there was an increase in average root length 

across the season for the C3 wheat while there was a slight decrease across the season for 

the C4 sorghum.  For standing root crop, while [CO2] didn’t have a significant effect, the 

wheat increased standing root crop across the season to a greater extent than the sorghum. 

4.2 Introduction 

Comparison of the differential fine root growth responses of C3 photosynthetic 

plants to increased carbon dioxide levels with that of C4 photosynthetic plants has been 

an area of much speculation but limited research.  The increasing use of no-till 

agricultural management, which has been advocated as a potential carbon sink, makes it 

an area suitable for similar research.  The root growth of a C3 grass, Triticum aestivum 

L., was compared with that of a C4 grass, Sorghum bicolor L. when both species were 

grown under the no-till cropping system with subjects grown at (365 µmol CO2 mol-1) 

and subjects grown at elevated CO2 levels (720 µmol CO2 mol-1).  The plants were 

grown at the National Soil Dynamics Laboratory, Auburn, Alabama) using a split plot 

design replicated three times with the two carbon dioxide levels as split-plots.  The plants 

were grown in Open Top Chambers (OTCs) in experimental bins of prepared soil.  

Minirhizotron cameras were used at regular intervals to record images of fine roots 

grown at soil depths from 0 cm to 34 cm.  The Rootfly 2.0.2 image program was used to 

digitize the data and JMP 12.1 was used for statistical analysis.  

Atmospheric carbon dioxide levels have increased from 280 parts per million 

(ppm) before the industrial revolution to close to 400 ppm today and are continuing to 
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rise (Monasterksy 2013).  Plant growth will be affected by the increased carbon dioxide 

since CO2 is a necessary input in order for photosynthesis to take place (Prior et al. 2005).  

The response of agricultural plants to this increased carbon dioxide is of great interest 

particularly as it pertains to food security. 

 The majority of agricultural plants have a C3 method of photosynthesis with 12 of 

the 15 plants which supply 90% of the world’s calories having C3 photosynthesis (Reddy 

et al. 2010).  A number of studies have shown that C3 plants respond to elevated [CO2] 

with increased photosynthesis which translates into increased root growth (Pritchard and 

Amthor 2005).  The increased root growth resulting from elevated [CO2] can be more 

pronounced than that of the aboveground plant shoot (Kimball et al. 2002). 

 While not as many C4 species are represented as with C3 plants, plants that 

undergo C4 photosynthesis (C4 plants) include important agricultural crop plants. Not 

only are they important in the United States producing a significant proportion of grain 

crops, some are widely grown in tropical areas where food security is directly tied to 

local production of crops (Leakey, 2009).  

The photosynthetic response of C4 plants to increased [CO2] is less well known 

than that of C3 plants.  It is widely thought that C4 plant generally have an increase in 

photosynthesis under elevated [CO2] but less than that of C3 plants under similar 

conditions (Ainsworth 2005; Runion 2009).  

Chaudhuri et al. (1986) found an increase in shoot and root growth of sorghum 

under [795 µmol mol-1] while water use decreased.  Pritchard and Amthor (2005) 

attribute the increase in productivity of C4 plants under elevated atmospheric [CO2] to be 

primarily due to increased water use efficiency (WUE).  Pritchard et al. (2006), in an 
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earlier study, reported root growth of sorghum (a C4 plant) to be increased by 58% under 

twice normal [CO2] and conventional till agricultural management. 

4.3 Methods 

This research explores the differences in response to ambient [CO2] (365µmol 

mol-1) and twice ambient (720 µmol mol-1) between the C4 sorghum (Sorghum bicolor) 

and the C3 wheat (Triticum aestivum) while sorghum and wheat were being grown under 

the no-till cropping system.  The no-till agricultural management also included the 

rotating use of three cover crops:  scarlet clover (Trifolium incarnatum), Sunn hemp 

(Crotalaria juncea), and wheat (Triticum aestivum). Additionally, the roots were divided 

into shallow (0 – 17 cm) and deep (17 – 34 cm) soil levels.  

The plants were grown at the National Soil Dynamics Laboratory, Auburn, 

Alabama) as per Prior et al (2005) using a split plot design replicated three times with the 

two carbon dioxide levels as split-plots.  The plants were grown in Open Top Chambers 

(OTCs) in experimental bins of prepared soil.  Minirhizotron cameras were used at 

regular intervals to record images of fine roots grown at soil depths from 0 cm to 34 cm.  

The Rootfly 2.0.2 image analysis program was used to digitize the data.  The average root 

diameter, average root length, and standing root crop were determined for both wheat and 

sorghum. While grown at no-till conditions with elevated or ambient [CO2].  JMP 12.1 

was used for statistical analysis using repeated measures MANOVA with time being the 

repeated measure. 

4.4 Results 

4.4.1 Average root diameter 
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For average root diameter, there was a significant difference in all between 

subjects (p = 0.0141*).  There was a significantly greater average root diameter at 

elevated [CO2] (p = 0.0101*).  There was a significant species × [CO2] interaction (p = 

0.0140*).  There was also a significant difference for within subjects time (p = 0.0258*). 

4.4.2 Average root length 

For average root length, there was a significant result for all between (p = 

0.02399*).  There were also significant results for species (p = 0.0300*), for [CO2] (p = 

0.0492*), for species × Depth (p = 0.0435*), and for within subjects time (p = 0.0258*). 

4.4.3 Standing root crop 

For standing root crop, there was a significant result for all between (p = 

0.0047*).  There were also significant differences for species (p = 0.0033*), for depth (p 

= 0.0040*), for species × Depth (p = 0.0114*), and for within subjects time (p <0.0001*). 

4.5 Discussion 

It had been expected that the C3 plant, wheat, would have a greater increase in 

root growth at elevated [CO2] than that of the C4 sorghum, but that hypothesis was not 

entirely supported by the data.  There was no significant difference in average root 

diameters with elevated [CO2], and there was no significant difference in standing root 

crop with elevated [CO2].  There was a significant increase in average root length with 

elevated [CO2], which doesn’t entirely outweigh the lack of a significant effect of 

elevated [CO2] for the other two root growth perameters. 

In C3 plants, ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco) is the 

enzyme which catalyzes the initial step where CO2 is captured (Ainsworth and Long, 

2005).  Carbon dioxide is combined with the five-carbon molecule, Rubisco, to form a 
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six-carbon compound which quickly separates into two three-carbon molecules of 

Phosphoglycerate (3PGA).  3PGA, the first stable product of C3 photosynthesis, then 

continues through the Calvin cycle where carbon is fixed into organic molecules.  

Rubisco alternatively catalyzes a process called photorespiration in which oxygen is 

taken up instead of CO2 (Mirkham 2011).  At current atmospheric carbon dioxide levels, 

C3 plants undergo photosynthesis at less than peak efficiency.  At elevated [CO2], the 

photosynthetic fixation of C3 can continue to increase (Kimball et al. 2002). 

 C4 photosynthesis has an additional initial step where Phosphoenolpyruvate (PEP) 

is jointed with carbon dioxide to form a four carbon acid oaxaloacetate (OAA) inside the 

mesophyll cells of the leaf.  This step is catalyzed by PEP carboxylase, which fixes 

carbon dioxide but does not catalyze photorespiration (Mirkham 2011).  The OAA travels 

through strands of tissue (plasmodesmata) from the mesophyll cells to the bundle sheath 

cells.  There it is decarboxylated and the CO2 goes through the steps of the Calvin cycle 

just as in C3 plants with the resulting incorporation of carbon into organic molecules.  The 

concentration of carbon dioxide is much higher in the bundle sheath cells of C4 plants, so 

the process is much more efficient (von Caemmerer and Furbank 2003).  Due the 

concentrating mechanism, where CO2 is concentrated around rubisco (in the bundle 

sheath cells), C4 photosynthesis is saturated at current levels of atmospheric [CO2] with 

photorespiration being virtually nonexistent (Von Caemmerer and Furbank 2003).   

It is thought that photosynthesis of C4 plants will be less affected by elevated [CO2] than 

photosynthesis of C3 plants (Allen 2004).  The predicted result of increasing atmospheric 

[CO2] is that photosynthesis of C3 plants will increase to a point similar to that of C4 

plants (Kirkham 2011). 
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 Elevated [CO2] improves the photosynthetic capacity of C3 plants relative to C4 

plants.  However, increased atmospheric [CO2] leads to increased water use efficiency 

(WUE) of both C3Plants and C4 plants (Wang 2014).  WUE is the amount of dry matter 

(vegetative yield or grain yield) divided by the amount of water needed to produce that 

dry matter (Kirkham 2011).  The decreased stomatal conductance seen with elevated 

[CO2] and associated with improved WUE is seen in both C3 and C4 species (Ainsworth 

and Rogers 2007).  The increase in photosynthesis resulting in more biomass production 

coupled with the increase in WUE of C3 plants may give them a competitive edge under 

elevated [CO2]. 
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4.6 Tables 

Table 4.1  

MANOVA repeated measures with univariate tests also analysis of average root diameter 

(m/m2) for wheat (Triticum aestivum) and for sorghum (Sorghum bicolor) grown at two 

conditions: no-till elevated [CO2] and no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 2.807 0.0414* 

Species 1 16 0.546 0.4707 

[CO2] 1 16 8.507 0.0101* 

Depth 1 16 2.653 0.1229 

Species × [CO2] 1 16 7.611 0.0140* 

Species  × Depth 1 16 0.0009 0.9766 

[CO2] × Depth 1 16 0.256 0.6201 

Species × [CO2] × Depth 1 16 0.0729 0.7907 

Within Subjects      

Time 3 14 4.198 0.0258* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 4.2 

MANOVA repeated measures with univariate tests also analysis of average root length 

(m/m2) for wheat (Triticum aestivum) and for sorghum (Sorghum bicolor) grown at two 

conditions: no-till elevated [CO2] and no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 3.071 0.02399* 

Species 1 16 5.675 0.0300* 

[CO2] 1 16 4.530 0.0492* 

Depth 1 16 0.250 0.6239 

Species × [CO2] 1 16 1.133 0.3030 

Species  × Depth 1 16 4.808 0.0435* 

[CO2] × Depth 1 16 2.677 0.1213 

Species × [CO2] × Depth 1 16 2.423 0.1391 

Within Subjects      

Time 3 14 4.199 0.0258* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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Table 4.3  

MANOVA repeated measures with univariate tests also analysis of standing root crop 

(m/m2) for wheat (Triticum aestivum) and for sorghum (Sorghum bicolor) grown at two 

conditions: no-till elevated [CO2] and no-till ambient [CO2]. 

Source NumDF DenDF F– ratio p – value 

Between Subjects     

All Between 7 16 4.761 0.0047* 

Species 1 16 11.946 0.0033* 

[CO2] 1 16 0.352 0.5611 

Depth 1 16 11.308 0.0040* 

Species × [CO2] 1 16 0.0012 0.9731 

Species  × Depth 1 16 8.178 0.0114* 

[CO2] × Depth 1 16 0.534 0.4755 

Species × [CO2] × Depth 1 16 1.006 0.3307 

Within Subjects      

Time 3 16 8.809 <0.0001* 
Alpha = p < 0.05.  Deep is 17 – 34 cm vertical soil depth and shallow is 0 – 17 cm vertical soil depth.  Elevated [CO2] is 365 µmol-1 

and ambient [CO2] is 720 µmol-1. 
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CHAPTER V – CONCLUSION 

 

5.1 Chapter II Conclusion 

The dissertation study included five plants, two of which were grown under all 

four conditions and addressed in this chapter, sorghum and soybean.  A similar study was 

done at the USDA, National Soil Laboratory, Auburn, Alabama, with the exception that it 

included minirhizotron digitization and analysis of sorghum root growth without the 

inclusion of soybean (Pritchard et al. 2006).  A comparison of average sorghum root 

lengths from the dissertation study versus the earlier Pritchard sorghum study revealed 

some interesting information (Table 2.11).   

Both the dissertation study and the Pritchard study showed no significant effect of 

tillage on average root length of sorghum.  Both studies showed significantly greater 

average root length in deeper soil.  Both studies also showed a trend toward elevated 

atmospheric [CO2] being associated with increased average root length (Table 2.11).  In 

the Pritchard study, there was a trend toward an effect of [CO2] ×depth on average root 

length of sorghum (p = 0.120). 

The Pritchard study indicated that time was significant (p < 0.0001*).  The 

dissertation study indicated that, for sorghum average root length, within (within groups) 

time (p = 0.0153*) had a significant effect.  For repeated measures studies occurring 

across a number of weeks, the effect of time on increase of root length was not 

unexpected.  Depth was more important than tillage or [CO2] in both sorghum studies 

since only depth had a significance level effect for average root length in both studies 

(Table 2.11). 
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For average root length of sorghum, there was no significant effect of tillage in 

either the dissertation study or the Pritchard study; however, for [CO2], there was a trend 

toward an effect in the dissertation study (p = 0.1071) and in the Pritchard study (p = 

0.080) (Pritchard et al. 2006). 

The correlation between average root length for the two studies was close enough 

to serve as a validation of both since both were conducted independently.  While the 

minirhizotron images of roots for both studies were produced at the National Soil 

laboratory, the processing of those images and the statistical analyses had major 

procedural differences.  Two different digitization programs were involved with Rootfly 

2.0.2 used for the dissertation study and RooTracker (Dave Tremmel, Duke University) 

used for the Pritchard study.   

The dissertation study was digitized at The University of Southern Mississippi, 

Hattiesburg, by the dissertation author, a graduate student with ten years of previous 

research experience.   The Pritchard study was digitized at the USDA National Soil 

Laboratory at Auburn, Alabama, by an experienced research associate employed by the 

USDA.  Data from both studies were analyzed using a repeated measures (time) design, 

but individual analysis of each study was done independently.  The statistics for the 

dissertation study involved MANOVA analysis using the JMP 12.1.0 program, while 

statistics for the Pritchard study involved mixed model procedure (PROC MIXED) 

analysis using the SAS program (Littell et al. 1996).   

Although the sorghum plants were grown at the same facility under similar 

conditions, the digitization of the root images and the processing of the data as well as the 
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statistics were done independently by different people at separate research facilities.  As 

that is the case, it speaks well of the procedure that the sorghum results were similar.  

The experimental results indicate that no-till agricultural management increases 

standing root crop of sorghum when analyzed individually and increases all three 

measures of root growth when interacting with other treatments.  Elevated [CO2] 

increases average root length of sorghum and increases all three measures of root growth 

when interacting with other treatments (Table 2.4).   

The experimental results for soybean indicate that no-till agricultural management 

increases average root diameter when analyzed individually and increases all three 

measures of root growth when interacting with other treatments.  Elevated [CO2] shows a 

positive effect on root growth of soybean only when interacting with other treatments 

including depth and time (Table 2.5). 

Increased root depth of sorghum, when analyzed individually, increases average 

root length and standing root crop and has additional effects when interacting with other 

treatments (Table 2.4).  Increased depth increases root growth of soybean only when 

interacting with other treatments (Table 2.5). 

5.2 Chapter III Conclusion 

Hypotheses addressed by this chapter are as follows: 

Firstly, for the three legumes in the study, growth using no-till agricultural 

management and twice ambient atmospheric carbon dioxide [CO2], will result in 

differential root growth which will vary depending upon species.   

Secondly, for the three legumes in the study, growth using no-till agricultural 

management and twice ambient atmospheric carbon dioxide [CO2], will result in 
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differential root growth between shallow (0-17 cm) and deep soil depths (17 – 34 cm) 

which will vary depending upon species.   

Were the hypotheses addressed by this chapter supported by the experimental 

results?  First, for the three species legumes in the study, using no-till agricultural 

management at ambient [CO2] and twice ambient [CO2], there was differential root 

growth for the values addressed with Sunn hemp (Crotalaria juncea L.) having the most 

response, soybean (Glycine max L.) having the least response, and crimson clover 

(Trifolium incarnatum L.) having an intermediate response.  So the first hypothesis was 

not disproved for these three legumes. 

There was differential root growth at different depths between the three legumes 

grown at NTE and NTA conditions.  While soybean and sunn hemp had more root 

growth at deep conditions than shallow, it was not statistically significant.  Clover, 

however, had greater standing root crop in the shallow depths for six out of nine sessions 

with four of those sessions showing significantly greater standing root crop in shallow 

depths.  So, the second hypothesis was not disproved at least for standing root crop. 

5.3 Chapter IV Conclusion 

The hypothesis for this chapter was that C3 plants would be able to take advantage 

of elevated [CO2] to a greater degree than C4 plants in the form of increased root growth. 

Instead, although the average root diameter of sorghum was less malleable without the 

addition of time as a factor, the root growth of the two members of family Poaceae were 

similar for with the application of carbon dioxide, depth, and various combinations of the 

two factors in that while wheat had two additional significant/trend results for average 

root length (8 versus 6), sorghum had one additional significant/trend result for standing 
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root crop (8 versus 7).  Although this research could be considered a very preliminary 

exploration of the topic, the hypothesis was not supported by the results of the 

comparison of root growth of the C3  Triticum aestivum with that of the C4  

Sorghum bicolor.   

The effect of increasing [CO2] upon plants in general and upon agricultural crop 

plants specifically is a topic that has great importance for the future of a world that has 

some seven billion inhabitants (World Population Prospects 2017).  Both [CO2] levels 

and the population are widely predicted to continue to increase into the foreseeable 

future.  Related research, such as that from this dissertation study on the effects of 

elevated [CO2] on plant root growth, which will increase our knowledge of what to 

expect will be useful.  The study of agricultural innovations, such as no-till agricultural 

management, with the potential of increasing crop yield while minimizing degradation of 

cropland is an area which also deserves further consideration as we strive to prepare for 

the conditions that will be encountered in the coming years. 
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