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Figure 1.1 The Geometry of Parker’s Paper. 

This is the geometry of Parker’s paper on top of a background image courtesy of NOAA. 

 

1.2 New Approach 

Although Fourier transforms are a proven mathematical tool and rapidly 

computable, they are not without issue.  Specifically, although their basis functions are 

local in wavenumber, they are not local in space.  Seafloor features, however, exhibit 

spatial locality, meaning that the amplitude goes to zero away from the object.  Thus, the 

FT of seafloor topography will have a wide spectrum of wavenumber components, 

requiring computation of many Fourier coefficients, because the components have 

constant amplitude from −∞ to +∞.  Small changes in the transform will produce 

changes everywhere in the spatial domain (Vidakovic & Mueller, 1991).  As a result, the 

root-mean-square error (RMSE) in the transform will eventually reach a lower limit that 

is pragmatically unreducible without the use of a different transformation method. 
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The proposed dissertation effort focuses on the applicability of alternate 

transformation methods to perform the inversion.  Specifically, these transformation 

methods were sparse representations of seafloor features.  The transformation of a signal 

from a basis space (dense measurements required for characterization) to a new basis 

space that requires only minimal measurements or terms is defined as a sparse 

representation (Elad, 2010; Starck et. al. 2010).  Sparse representations enable lower 

RMSE between original and constructed information because there is better correlation 

term-by-term in the sparse transform space compared to a dense transform space.  In 

contrast, the FT is a dense representation for seafloor features. 

If a sparse representation could be found to replace the Fourier method, the 

associated RMSE of inversion calculations to get ℎ(𝑥, 𝑦) from 𝑁(𝑥, 𝑦) could be lowered.  

The result could reduce uncertainty of sea floor topography heights and the location and 

depths of navigational hazards.  Using different sparse transform methods may not only 

maximize the use of new satellite systems but also help to capitalize on older systems and 

data. 

The aim of this research is to determine what candidate sparse basis function will 

best remediate the resolution problem.  However, sparse basis functions are well known 

to require heavy computational power (Elad, 2010).  Unlike the time in the early 1990’s 

in which the Smith and Sandwell work appeared, computational power is now orders of 

magnitude larger, making computationally intractable problems that existed then to be 

potentially applicable now. 

A determination of what candidate sparse basis functions, in lieu of the FT, are 

capable of providing an increase in resolution of the inverse transformation was the first 
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step.  Candidate functions that exhibit localization include wavelets, ridgelets, curvelets, 

contourlets and fractals (Starck et al., 2010).  The second Derivative of the Gaussian 

(DOG) named the Ricker Wavelet, is also known as the Mexican Hat Wavelet (MHW) 

due to its sombrero-like shape (Daubechies, 1992; Ryan, 1994).  The MHWs are real 

zero-phase functions that consist of a central peak with two smaller lobes on either side; 

and, they are uniquely specified by a singular frequency parameter, which is its peak 

frequency (Ryan, 1994). 

 

Figure 1.2 The 2D and 3D MHW 

Figure a is the 2D MHW and figure b is the 3D MHW. 

 

This particular wavelet and its extension to the sphere have been used extensively 

to detect structures on a 2D image, utilizing signal amplification to move from real to 

wavelet space (Argueso et al., 2006).  Also, because the MHW is circularly symmetric, 

its FT results in a zero order Hankel function, many solutions for which are listed in 

tables.  Unlike the FT, wavelets are local in both frequency and time (Vidakovic & 

Mueller, 1991) and wavenumber and space.  Further, many different function classes are 
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more compactly represented by wavelets than FTs, such as functions with discontinuities 

and sharp spikes (Vidakovic & Mueller, 1991).  Further reasons for selecting the MHW 

as the initial candidate are its properties as a non-orthogonal, real valued function, 

capable of separating both positive and negative values of time series oscillations into 

separate peaks in wavelet power (Torrence & Compo 1998).  When a smooth and 

continuous variation in wavelet amplitude is expected, non-orthogonal transforms are of 

great utility in time series analysis (Torrence & Compo 1998).  Further, they have a very 

small cone of influence (COI), thus less affected by edge effects (Torrence & Compo 

1998).  For these reasons, the primary candidate function tested was the MHW.  An 

attempt was made to produce inverse solutions using similar procedures that Parker 

(1972) and Sandwell and Smith (2009) used in their methods, however, utilizing the 

MHW. 

Ridgelets, contourlets and fractals were also considered for their practicality in 

this problem, though, due to time constraints were not applied during this study.  Like the 

MHW, these basis functions should be studied.  Should the methods proposed decrease 

RMSE, then compressed sensing algorithms should be considered to calculate the 

coefficients of the candidate basis functions.  One last alternative method, however, was 

also considered.  As highlighted by Argueso et al. (2006), the calculation of the basis 

function coefficients can be made by taking the FT of the basis function.  In the case of 

Argueso et at. (2006) for the Mexican Hat Wavelet Family (MHWF), the iterative 

process of applying the Laplacian to the MHW, produced the set of basis functions.  This 

technique employed the use of the signal’s amplification moving from real to wavelet 

space (Argueso et al., 2006).  They credited their technique’s success of point source 
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detection in cosmic microwave background maps on the fact that wavelets amplified the 

ratio between the background dispersion and point source intensity.  Thus, this method 

was thought to allow for a comparison of results of two different approaches such that a 

determination could be made as to which was more efficient and computationally more 

practical. 

1.3 Hypotheses 

 H1: The application of sparse basis functions to satellite altimetry data 

will result in a lower RMSE than the Fourier transform approach when 

predicting Newtonian gravitational potential with fewer coefficients. 

 H2: These functions then, will be applicable for sparse transformation 

operations to predict higher resolution bathymetry. 

 H3: Taking the Fourier transform of the candidate basis functions to 

calculate their coefficients will also result in a decrease in RMSE and may 

result in an analytical solution. 

1.4 Proposed Test Case 

Due to the extensive amount of research conducted at the Southern East Pacific 

Rise (SEPR), this area was used to test the hypotheses.  A quick scan of the area via 

Global Multi-Resolution Topography (GMRT) visualizations (powered using Google 

Earth) revealed several seamounts that could be used as test cases. 
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Figure 1.3 Area of interest: Southern East Pacific Rise (From Google Earth) 

 

1.5 Importance of Work 

The practicality of this approach lies in its economic as well as ecological utility.  

As Fourier methods do not produce the level of resolution required for navigation in 

naval warfare, general scientific and commercial needs, increased costly sea time would 

be required to resolve this issue as the fruits of increases in satellite resolution cannot be 

met with current calculation methods.  In fact, it was estimated that an approximate 900 

ship years would be required to complete a complete multibeam survey of the world’s 

oceans (Weatherall 2015).  However, the cost of applying a different 

mathematical/computational approach to the current data is low. 
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1.6 Proposed Approach 

Application of various transforms to the earth’s gravitational potential was 

attempted including the MHW, the Paul wavlet and Morlet wavelet.  The Mexican Hat 

Wavelet, was the first transform applied to the earth’s gravitational potential.  A 

numerical solution was obtained.  Data from the Southern Eastern Pacific Rise was 

applied to the transform solutions and then compared to the method used by Parker 

(1972) and Smith & Sandwell (1994) using Fourier transforms, by calculating the RMSE 

of both.  Transform performance was evaluated by comparing each tested method against 

each other with regards to RMSE vs. number of coefficients, utilizing the same datasets. 

1.7 Constraints 

In order to provide a clear and focused research directive, the following 

constraints were made.  The data considered was from the Juan de Fuca Ridge.  

Bathymetry and gravity data for tests are publically available through the Global Multi-

Resolution Topography synthesis database (Ryan et al. 2009).  Because there are large 

amounts of data for this particular site, and it is well studied, any test results can be met 

with greater certainty of truth than for other areas not as well studied.  All geoid height 

datasets used were strictly from satellite altimetry with the intent to invert the data to 

derive bathymetry.  To further constrain the research timeline, only a few basis functions 

were considered.  The first priority for testing of the basis functions was the Mexican Hat 

wavelet followed by the Paul and Morlet wavelets.  There is great utility in applying 

these same methods to increasing resolution between satellite altimeter tracks.  

Resolution is highest on the tracks but drops between them.  However, this line of study 



 

10 

was not tested due to time constraints, but should be considered for future research 

interests 

 



 

11 

CHAPTER II - BACKGROUND 

(Kellogg, 1953) defined the gravity potential or Newtonian potential as “the work 

done by the field on a test particle.”  As the gravitational field is conservative, net work is 

not required to move a mass around a closed loop (Blakely 1995) which makes the 

concept of gravity potential useful.  To begin this study and further understand the 

concepts behind the gravitational potential, a review of some basic principles was 

required.  Key among them is the principle of superposition which states that the 

interaction of two stimuli is completely unaffected by the presence of others, thus the 

combination of two or more potentials may be taken simply as their sum (Griffiths 1981).  

Following this convention, the gravitational potential of a group of masses is defined as 

the sum of the individual masses’ potentials (Blakely 1995).  This concept will prove 

useful when considering the potential of a mass source in conjunction with a smooth flat 

earth later in the study.  Fundamentally, however, this study will begin with simpler 

problems and build from there.  Blakely (1995) first considered the potential of a mass 

distribution expressed as:  

 𝑈(𝑃) = 𝛾 ∫
𝜎(𝑆)

𝑟𝑆
𝑑𝑆,  (2.1) 

where γ is Newton’s gravitational constant, σ is the surface mass density and r is the 

distance from a point P to any point on the sphere (see figure 2.1).  From this expression, 

Blakely went on to define the gravitational potential of various geometries such as a 

spherical shell, both inside and out, a solid sphere, which is a special case of a spherical 

shell, as well as the potentials of finite and infinite wires. 
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Figure 2.1 Thin walled spherical shell. 

Reproduction of figure 3.3 from Blakely of a thin walled, spherical shell of radius a with an observation point at P 

 

After a review of the derivations by Blakely of the gravitational potential of these 

simple geometries, attempts at arriving at the same results were made.  Upon successful 

completion, Blakely’s discussion of the application of the Fourier Transform to these 

potentials was also reviewed.  Table 11.1 of Blakely (1995) lists a number of 

gravitational attraction potentials and their Fourier transforms.  Gravitational attraction is 

related to the gravitational potential in that it is simply its gradient (Blakely 1995).  

Below is a systematic derivation of the top four transforms listed in the table per Blakely 

(1995), however, for gravitational potential not attraction. 

2.1 Monopole 

The gravitational potential observed on a horizontal plane at the point z=z0 that is 

caused by a point mass located below the plane is considered and is given by the formula 

 𝑈(𝑃) =
𝛾𝜇

𝑟
  (2.2) 
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where μ is the point mass in question, γ remains the gravitational constant and r is the 

distance to the horizontal plane from the point mass.  Pulling the two constants outside, 

the Fourier transform is then expressed as: 

 ℱ[𝑈] = 𝛾𝜇ℱ [
1

𝑟
]  (2.3) 

However, we know from Blakely (1995) that due to cylindrical symmetry about the z-

axis, after transformation into cylindrical coordinates a Hankel transform of zeroth order 

ensues that result in the following expression: 

 ℱ [
1

𝑟
] = 2𝜋

𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|
, 𝑧′ < 𝑧0, |𝑘| ≠ 0  (2.4) 

Thus,  

 ℱ[𝑈] = 2𝜋𝛾𝜇
𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|
, 𝑧′ < 𝑧0, |𝑘| ≠ 0  (2.5) 

2.2 Vertical Line 

For the case of the vertical line we with start with its potential given by Blakely 

𝑈(𝑃) = 𝛾𝜌∫
1

𝑟

𝑎

−𝑎

𝑑𝑧′ 

where ρ is density and the limits a and –a will be the points z2 and z1, respectively.  

Again, we can note the solution of the Fourier transform of 1/r.  As such, we have the 

following: 

 ℱ[𝑈] = 2𝜋𝛾𝜆 ∫
𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|

𝑧2

𝑧1
𝑑𝑧′, 𝑧2 > 𝑧1  (2.6) 

where λ is the mass per unit length of the wire.  After removal of the constants to outside 

of the integral and then integration, we end up with the solution 

 ℱ[𝑈] =
2𝜋𝛾𝜆

|𝑘|2
𝑒|𝑘|𝑧0(𝑒−|𝑘|𝑧1 − 𝑒−|𝑘|𝑧2)  (2.7) 
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This equation will be used again in a later section. 

2.3 Calculation of Gravitational Potential Anomaly 

The process of inversion of satellite altimetry measurements of marine geoid 

height to seafloor topography, is covered in conjunction by two papers, the theory by 

Robert Parker (1972), “The Rapid Calculation of Potential Anomalies” and the 1997 

Sandwell and Smith paper, “Marine Gravity Anomaly from Geosat and ERS 1 Satellite 

Altimetry.”  A six-step process of this procedure is detailed below. 

The first step is to derive the Newtonian gravitational potential of a vertical line 

segment mass whose density is given by 

 𝜌(�̂�) = 𝜆𝛿(𝑥)𝛿(𝑦)  (2.8) 

between z1 and z2 and zero elsewhere, where λ is a finite positive constant, and z1<z2. 

 

Figure 2.2 Coordinate system adopted after Blakely (1996). 

 

We start with the general formula for the Newtonian Potential of mass distribution 

 𝑈(𝑃) = 𝛾 ∭
𝜌(𝑄)

𝑟𝑉
𝑑𝑉  (2.9) 

Substitution of 𝜌(𝑟 ) into the above equation yields: 
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 𝑈(𝑃) = 𝛾 ∭
𝜌(𝑄)

𝑟𝑉
𝑑𝑉 = 𝛾 ∭

𝜆𝛿(𝑥)𝛿(𝑦)

𝑟𝑉
𝑑𝑉  (2.10) 

As, λ is a finite constant, it can move outside of the integrals; and, after conversion of “r” 

to Cartesian coordinates, 

 𝛾𝜆∭
𝛿(𝑥)𝛿(𝑦)

[(𝑥−𝑥0)2+(𝑦−𝑦)2+(𝑧−𝑧0)2]
1
2

𝑉
𝑑𝑉  (2.11) 

However, the triple volume integral is evaluated from negative to plus infinity for x and 

y.  Thus, it can be noted that 

 ∫ 𝛿(𝑥)𝑑𝑥 = 1    
∞

−∞
and ∫ 𝛿(𝑦)𝑑𝑦 = 1    

∞

−∞
      (2.12, 2.13) 

Further, we know that 

 ∫ 𝑓(𝑥)𝛿(𝑥)𝑑𝑥 = 𝑓(𝑎)    
∞

−∞
 (2.14) 

If we consider x and y to be centered at the origin, with the x-y plane at z=0 and set a=0, 

then we can simplify the integral to the form 

 𝑈(𝑃) = 𝛾𝜆 ∫
1

[(𝑥−𝑥0)2+(𝑦−𝑦)2+(𝑧−𝑧0)2]
1
2

𝑑𝑧 =
𝑧2

𝑧1
𝛾𝜆 ∫

1

[(𝑥0
2)+(𝑦0

2)+(𝑧−𝑧0)2]
1
2

𝑑𝑧
𝑧2

𝑧1
  

 (2.15) 

A further simplification was made through the summation of x0
2 and y0

2 to some other 

constant r0
2 yielding 

 𝛾𝜆 ∫
1

[𝑟0
2+(𝑧−𝑧0)2]

1
2

𝑑𝑧
𝑧2

𝑧1
  (2.16) 

Expansion of the denominator and rearrangement of the constant terms gives 

 𝛾𝜆 ∫
1

[𝑧2−2𝑧0𝑧+(𝑟0
2+𝑧0

2)]
1
2

𝑑𝑧
𝑧2

𝑧1
  (2.17) 

which is in the form of an integral whose solution is listed on a standard table of integrals 

 ∫
1

√𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥  (2.18) 
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whose solution from Spiegel, (1968) is 

 
1

√𝑎
𝑙𝑛 |2𝑎𝑥 + 𝑏 + 2√𝑎(𝑎𝑥2 + 𝑏𝑥 + 𝑐)|  (2.19) 

Setting z1=-a, z2 =a and z0=0, evaluation of the integral results in 

𝑈(𝑃) = 𝛾𝜆 [𝑙𝑛 |2𝑧2 − 2𝑧0 + 2√𝑧2
2 − 2𝑧0𝑧2 + (𝑟0

2 + 𝑧0
2)| − 𝑙𝑛 |2𝑧1 − 2𝑧0 +

2√𝑧1
2 − 2𝑧0𝑧1 + (𝑟0

2 + 𝑧0
2)|]   (2.20) 

After further reductions (see Appendix C for full steps), the final solution is 

 𝑈(𝑃) = 𝛾𝜆 𝑙𝑛 [
𝑎+√𝑎2+(𝑟0

2+𝑧0
2)

−𝑎+√𝑎2+(𝑟0
2+𝑧0

2)
]  (2.21) 

The requirement is that the potential should vanish at infinity (Blakely, 1995).  In order to 

prevent the potential from approaching infinity, a constant was added to the equation 

(Blakely, 1995). 

 𝑈(𝑃) = 𝛾𝜆 [𝑙𝑛
𝑎+√𝑎2+(𝑟0

2+𝑧0
2)

−𝑎+√𝑎2+(𝑟0
2+𝑧0

2)
− 𝑙𝑛

𝑎+√𝑎2+1

−𝑎+√𝑎2+1
]  (2.22) 

The potential as a → ∞ is then 

 𝑈(𝑃) = 2𝛾𝜆 𝑙𝑜𝑔
1

𝑟
    (2.23) 

Utilizing Wolfram Alpha, the FT of this potential is given as 

 2𝛾𝜆 [
√

𝜋

2

|𝑘|
+ 𝛾∗√2𝜋𝛿(𝑘) −

𝑖𝜋
3

2⁄ 𝛿(𝑘)

√2
−

√
𝜋

2

𝑘
]  (2.24) 

where γ* is the Euler-Mascheroni constant.  If, however, like Parker (1972) we assume 

that density is constant, then the potential may be expressed as 

 𝑈(𝑃) = 𝛾𝜌∫
1

𝑟

𝑧2

𝑧1
𝑑𝑧′  (2.25) 
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Recall equation 2.4 

 ℱ [
1

𝑟
] = 2𝜋

𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|
, 𝑧′ < 𝑧0, |𝑘| ≠ 0   

Thus, 

 ℱ[𝑈(𝑃)] = 2𝜋𝛾𝜆 ∫
𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|

𝑧2

𝑧1
𝑑𝑧′, 𝑧2 > 𝑧1  (2.26) 

 ℱ[𝑈(𝑃)] =
2𝜋𝛾𝜆

|𝑘|
𝑒|𝑘|𝑧0 ∫ 𝑒−|𝑘|𝑧′𝑧2

𝑧1
𝑑𝑧′  (2.27) 

 ℱ[𝑈(𝑃)] =
2𝜋𝛾𝜆

|𝑘|
𝑒|𝑘|𝑧0 [

−𝑒−|𝑘|𝑧′

|𝑘|
]|

𝑧1

𝑧2

 (2.28) 

Thus, the solution is 

 ℱ[𝑈(𝑃)] =
2𝜋𝛾𝜆

|𝑘|2
𝑒|𝑘|𝑧0(𝑒−|𝑘|𝑧1−𝑒−|𝑘|𝑧2)  (2.29) 

 

Parker (1972) considered the gravitational attraction of a layer of material with a 

lower boundary at z = 0 and an upper boundary defined at 𝑧 = ℎ(𝐫 ).  He further required 

that the layer vanish at a finite domain, D such that ℎ(𝐫 ) = 0 if |𝐫 | > 𝑅.  It is also 

assumed that “ℎ” is bounded and integrable.  The Newtonian gravitational potential at 𝐫 0 

due to a layer is 

 𝑈(𝐫 0) = γρ∫
𝑑𝑉

|𝐫 𝟎−𝐫 |𝑉
 =  γρ∫ 𝑑𝑆

𝐷
∫

𝑑𝑧

|𝐫 𝟎−𝐫 |

ℎ(𝐫 )

0
 (2.30) 

Note:  𝐫  is a vector in x-y-z space and its projection onto the x-y plane is  𝑟 .  In spherical 

coordinates:  𝑟  is the source coordinates and 𝑟0⃗⃗  ⃗ is the observation coordinates. 
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Figure 2.3 Geometric coordinate system adopted after Sandwell and Smith (1997). 

 

Geometric coordinate system adopted after Sandwell and Smith (1997). 

1. Define: 𝑧 = 0 to be the mean seafloor within a domain of diameter D << diameter 

of the earth and is centered at the origin of the 𝑥 − 𝑦 plane.  Further, 𝑅 ≡ 𝐷/2.   

2. Any influence of gravitational source outside R to be zero (the layer disappears 

for |𝐫 | > R.   

 

From figure 2.3, the Newtonian gravitational potential from mass density source 𝜌(𝐫 ) at 

the observation point 𝐫 0 from the layer is 

 𝑈(𝜉 0) = 𝛾 ∭[
𝜌(𝐫 )

|�⃗� 𝟎−�⃗� |
] 𝑑𝑥𝑑𝑦𝑑𝑧,  (2.31) 

Note, 𝜉  is the 3D distance from the origin to the source point and 𝜉0
⃗⃗  ⃗ is the 3D distance 

from the origin to the observation point. 
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Note: for consistency, here, the gravitational constant is represented by the lower case γ.  

However, in Parker’s 1972 paper, the upper case Γ is used instead.   

Parker then makes the assumption that 𝜌(𝐫 )=ρ=constant.  Thus,  

 𝑈(𝜉 0) = 𝛾𝜌∭[
𝑑𝑥𝑑𝑦𝑑𝑧

|�⃗� 𝟎−�⃗� |
]  (2.32) 

The z-coordinate is then separated from the x-y plane to arrive at the following: 

 𝑈(𝜉 0) = 𝛾𝜌 ∫ 𝑑𝑥𝑑𝑦 ∫
𝑑𝑧

|�⃗� 𝟎−�⃗� |

ℎ(𝜉)

0𝐷
,  (2.33) 

where the ∫ 𝑑𝑥𝑑𝑦
𝐷

 is the surface integral within the aperture D=2R.  Furthermore, ℎ(𝜉 ) is 

the height of the topography as a function of x and y (ℎ(𝜉 ) = bathymetry(x,y)–regional 

depth(x,y)). 

Applying a 2-D FT for the observation point in cylindrical coordinates 𝜉 0 = 𝑥0𝑥0̂ + 𝑦0𝑦0̂ 

with the form 

  ℱ[f(𝜉 0)] = ∫ 𝑑𝑆0 𝑓(𝜉 0)𝑒
𝑖�⃗� ∙�⃗� 0

𝑋
,  (2.34) 

where �⃗� = 𝑘𝑥�̂� + 𝑘𝑦�̂� is the 2D wavenumber corresponding to 𝜉 = 𝑥�̂� + 𝑦�̂� in transform 

space.  This is done so that the 3-D vector 𝜉 = 𝑟 + 𝑧�̂� and similarly for 𝜉 0, results in the 

2-D FT being 

 ℱ [𝑈(𝜉 0)]  =  γρ ∫ 𝑑𝑆0𝑋
∫ 𝑑𝑆𝑒𝑖�⃗� ∙𝑟0
𝐷

∫
𝑑𝑧

|�⃗� 𝟎−�⃗� |

ℎ(𝜉)

0
  (2.35) 

After rearrangement the equation becomes 

 ℱ [𝑈(𝜉 0)]  = γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝑧
ℎ(𝜉)

0
∫ 𝑑𝑆0

𝑒𝑖�⃗⃗� ∙�⃗⃗� 0

|�⃗� 𝟎−�⃗� |𝑋
  (2.36) 

Equation 2.36 is the first equation at the top of page 449 of Parker (1972).  
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2.3.2 Intermediate Calculations 

Although Parker cites Bracewell (1965) for going from Eq. (2.36) to the second 

equation that appears on page 449 of Parker (1972), this derivation is not intuitive.  The 

equation referred to here from Parker is listed as Eq. (2.46) in this paper.  The missing 

mathematical steps are given in this paragraph.  To evaluate Eq. (2.36) the coordinate 

system needs to be in cylindrical coordinates.  For continuity with Parker’s paper, a 

switch is made from 𝜉 to r.  With coordinates given by script characters (𝓇, 𝓏, 𝜗), Eq. Eq. 

(2.36) becomes (Blakely, 1995) 

 ℱ [𝑈(𝐫 0)]  = γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝐫 )

0
∫

𝑒𝑖�⃗⃗� ∙((𝑤0+𝓇)�̂�

(𝑤0
2+𝑎2)1/2𝑋

𝑤0𝑑𝑤0𝑑𝜗,  (2.37) 

where  

 𝐫 0 – 𝐫  =  (𝓇0 − 𝓇)�̂�  + (𝓏0 –  𝓏)�̂�  (2.38) 

 |𝐫 𝟎 − 𝐫| = [(𝓇0 − 𝓇)2 + (𝓏0 –  𝓏)2]1/2  (2.39) 

 𝑤0 ≡ 𝓇0 − 𝓇  (2.40)  

 𝑎 ≡ 𝓏0 –  𝓏  (2.41) 

In addition, 𝑑𝑤0 = 𝑑𝓇0, 𝓇0 = 𝑤0 + 𝓇, and 𝑑𝑆 = 𝑤0𝑑𝑤0𝑑𝜗 in Eq. 2.33.  The 

exponential in Eq. Eq. 2.33 can be factored such that  

 exp(𝑖�⃗� ∙ ((𝑤0 + 𝓇)�̂�) = exp(𝑖�⃗� ∙ 𝑤0�̂�)exp(𝑖�⃗� ∙ 𝓇�̂�)  

 = exp(𝑖|�⃗� |𝑤0cos𝜗)exp(𝑖�⃗� ∙ 𝓇�̂�)  (2.42) 

Using this result in Eq. 2.33, the factor exp(𝑖�⃗� ∙ 𝓇�̂�) may be placed outside the integral 

over 𝑋 to produce 
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 ℱ [𝑈(𝐫 0)]  =  γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝑟)

0
exp(𝑖�⃗� ∙ 𝓇�̂�) ∫

exp(−𝑖|�⃗� |𝑤0cos𝜗)

(𝑤0
2+𝑎2)1/2𝑋

𝑤0𝑑𝑤0𝑑𝜗 

  (2.43) 

The integral over 𝜗 is 2𝜋𝐽0(|�⃗� |𝑤0) (Eq. 10.9.2 of NIST, 2015). Thus, 

 ℱ [𝑈(𝐫 0)]  =  γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝑟)

0
exp(𝑖�⃗� ∙ 𝓇�̂�) ∫

2𝜋𝐽0(|�⃗� |𝑤0)

(𝑤0
2+𝑎2)1/2

∞

0
𝑤0𝑑𝑤0  (2.44) 

The integral over 𝑤0 is the Hankel transform of the function 2𝜋(𝑤0
2 + 𝑎2)−1/2 (Eq. 

10.22.76 of NIST, 2015).  From Table 12.2 of Bracewell (1965) or Téllez et. al. (1997), 

(Eq. (2.36) on p. 275), the result is  

 2𝜋 ∫
𝐽0(|�⃗� |𝑤0)

(𝑤0
2+𝑎2)1/2

∞

0
𝑤0𝑑𝑤0 = 2𝜋

exp (−|�⃗� |𝑎)

|�⃗� |
  (2.45) 

Putting this result into Eq. 2.40 produces the second equation on p. 449 of Parker (1972)  

 ℱ [𝑈(𝐫 0)]  =  γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝓇�̂�)

0
{2π exp (𝑖�⃗� ∙ 𝓇�̂� − |�⃗� |(𝓏0 –  𝓏))} /|�⃗� | 

  (2.46) 

after resubstituting 𝓏0 –  𝓏 for 𝑎. 

 

2.3.3 Obtaining relation between 𝓕[∆𝐠] and 𝓕[∆𝐡] 

Parker (1972)   ℱ[𝑈(𝐫 0)]  =  γρ∫ 𝑑𝑆exp(𝑖�⃗� ∙ 𝓇�̂� −
𝐷

|�⃗� |𝓏0) {exp[|�⃗� |ℎ(𝓇�̂�)] − 1}/|�⃗� |
2
  (2.47) 

integrates explicitly over z.  Referring back to equation 2.7, the result is 

Factoring out the upward continuation term, exp(−|�⃗� |𝓏0), from the integral and using 

the Taylor series expansion of exp[|�⃗� |ℎ(𝓇�̂�)] produces Parker’s result (his Eq. (2)) 

linking the potential to the topography as an infinite series of Fourier transforms. 
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 ℱ[𝑈(𝐫 0)]  =  2π𝛾𝜌𝑒−|�⃗� |𝑧0  ∑
|�⃗� |

𝑛−2

𝑛!
ℱ[ℎ𝑛(𝑟 )]∞

𝑛=1      (2.48) 

The terrain correction is not the potential but rather the vertical attraction of the material.  

Since �̂� ∙ 𝐫𝟎⃗⃗  ⃗  >  max {ℎ(𝑟 0)}, the gravitational potential obeys Laplace’s equation 

(Section 2.12 of Hofmann-Wellenhof and Moritz, 2005), ∇2𝑈 = 0.  Under this condition, 

a general solution to Laplace’s equation in Cartesian coordinates is of the form (Sec. 4.12 

of Wyld, 1999; Sec. 13.2 of Boas, 2005) 

 𝑈(𝐫 𝟎)  =
1

4𝜋2
 ∫ 𝑑2 𝑘𝑈 (�⃗� )𝑒(−|�⃗� |�̂�∙𝐫 𝟎−𝑖�⃗� ∙𝐫 𝟎)  (2.49) 

where �̅�(�⃗� ) is an unknown function for the moment.  Comparison of this equation with  

Eq. 2.42 shows that  

  ℱ|𝑈(𝑟 0)| = 𝑈(�⃗� )𝑒−|�⃗� |�̂�∙𝑟0  (2.50) 

By the definition of potential, the vertical attraction is ∆𝑔 = +
𝜕𝑈

𝜕𝑧
 .  Using this equality in 

Eq. (2.46) produces  

 ℱ|∆𝑔| =  − |�⃗� |ℱ|𝑈|  (2.51) 

Equation 2.51 is possible due to the Fourier Transform’s derivative theorem.  See 

appendix g for the proof as outlined by Bracewell (1965).   

The desired generalized expression where the lower boundary of the layer is not flat but 

instead given by 𝑧 = 𝑔(𝐫 ) and where the density is free to vary with 𝐫  gives the result 

sought. 

 ℱ|∆𝑔| =  −2πγ𝑒(−|�⃗� |𝑧0)  ∑
|�⃗� |

𝑛−1

𝑛!
 ∞

𝑛=1 ℱ[𝜌(𝑟 ){ℎ𝑛(𝑟 ) − 𝑔𝑛(𝑟 )}]  (2.52) 
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2.4 Gibbs Phenomenon 

Given the assumption that some signal f(t) is continuous, the ability for a standard 

FT to represent its frequency content is difficult if time-localization is needed 

(Daubechies, 1992).  Time-localization is possible through windowing, heretofore called 

the windowed Fourier transform (Daubechies, 1992).  However, the wavelet transform 

also provides a time-frequency description but does so with the increased zoom capability 

for “short-lived high frequency phenomena, such as transient signals” (Daubechies, 

1992).  The advantage of the wavelet transform over the windowed FT results from its 

ability to be manipulated to cover different frequency ranges and relocate its time 

localization center (Daubechies, 1992).  As an example, the MHW is well localized in 

both time (or space) and frequency (Daubechies, 1992). 

The periodicity of the sine and cosine functions results in difficulty when 

attempting to accurately represent discontinuous functions such as step functions, saw 

tooth functions and square functions as a Fourier series (Rasmussen 1993).  Removal of 

the highest frequency contributions results in a filtered function that is unable to 

uniformly converge at any interval which contains a discontinuity, overshooting between 

0-17% in the vicinity of said discontinuity (Rasmussen 1993).  This is the Gibb’s 

phenomenon, which was rediscovered by J. Willard Gibbs and discussed in a letter to the 

journal Nature in 1898 (Gibbs 1898).   The step function was used as an example to 

demonstrate this phenomenon.  As the number of coefficient terms increased, the Fast 

Fourier Transform (FFT) more closely approximated the step function but nonetheless, 

continued to overshoot.  See Figure 2.4 below. 
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The occurrence of this phenomenon is critical in the determination of the number 

of coefficients required to recreate a signal (Bracewell 1965).  Figure 2.5 thus 

demonstrates how many coefficient terms are required to effectively diminish the Gibbs 

phenomenon.  For the case of the step function, a minimum of 226 coefficients was 

required.  The calculation was made by taking the square root of the sum of the 

coefficients an and bn.  The results were plotted and a visual inspection was made to 

determine when Gibbs induced error was no longer visible. 

 

Figure 2.4 Gibbs Phenomenon of a Step function. 
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Figure 2.5 Gibbs Error vs. No. of Coefficients. 

Note. Relates how many coefficients are needed to minimize Gibbs phenomenon issues. 

 

This phenomenon also exists for wavelets (Rasmussen 1993).  According to 

Rasmussen, however, wavelets should not overshoot the FFT; and, a wavelet may be 

chosen such that overshoot will not occur (the advantage of time and frequency 

localization by wavelets for short-lived high frequency phenomena).  Figure 2.6 gives a 

comparison of various wavelets against the FFT for a step function.  The step function 

was poorly reproduced by the FFT with all terms (blue line).  The Daubechies wavelets 

performed best, although, the MHW produced a near perfect replication of the step 

function as well (green line).  As can be seen in the figure inset, however, the MHW 
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smoothed the corner of the step function.  It may be determined at least for this basic 

function, that the MHW dramatically outperformed the FFT at reproducing a function at a 

discontinuity.  This could be of significant importance when attempting to predict 

bathymetric features with sharp inclinations, such as ridges, fracture zones and steep sea 

mounts. 

 

Figure 2.6 Gibbs Phenomenon of a step function with respect to the FFT, selected 

discrete wavelets and MHW. 

Another example of a signal with discontinuities is the saw tooth function.  Figure 

2.7 demonstrates the superiority of wavelet transforms over the FFT, however utilizing 

the db6 wavelet developed by Ingrid Daubechies. 
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Figure 2.7 Gibbs Phenomenon of the FFT and db6 wavelet. 

 

It is clear in Figure 2.7 that the analyzing wavelets outperformed the FFT at 

reconstructing the saw-tooth function and that overshoot by the FFT is clearly apparent at 

the discontinuities. 
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CHAPTER III - METHODS 

The following methods will be utilized for this study. 

3.1 Fourier Transforms 

The Fourier Transform is a linear mathematical method used to solve linear 

problems (Bracewell, 1965).  If there is some function f(x), then it can be mapped from 

the time/spatial domain to the frequency/wavenumber domain and then back again 

(David M. Glover 2011).  That is, using an infinite series of sine and cosine pairs 

multiplied by a function containing the sine and cosine coefficients, a function can be 

transformed from one domain to the other (David M. Glover 2011).  Expressing the sine 

and cosine pairs exponentially, the FT of some function f(x) is expressed as (Bracewell 

1965): 

 𝐹(𝑠) = ∫ 𝑓(𝑥)𝑒−𝑖2𝜋𝑥𝑠∞

−∞
𝑑𝑥  (3.1) 

However, if the integral of |f(x)| exists from –infinity to infinity and any discontinuities in 

f(x) are finite, then the Fourier Theorem states that (Bracewell 1965): 

 𝑓(𝑥) = ∫ 𝐹(𝑠)
∞

−∞
𝑒𝑖2𝜋𝑥𝑠𝑑𝑠  (3.2) 

Thus, under the aforementioned conditions, these transforms are cyclical, otherwise 

known as the Fourier Theorem. 

Proof of this theorem, below, is from (Papoulis 1962).  Beginning with the Fundamental 

Theorem: 

 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)

∞

−∞
𝑒𝑖𝜔𝑡𝑑𝜔,  (3.3) 

where the transform of the function f(t) is F(𝜔) defined as: 

 𝐹(𝜔) = ∫ 𝑓(𝑡)
∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡  (3.4) 
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Substitution of the equation for F(𝜔) into the Fundamental Theorem yields: 

 𝑓(𝑡) =
1

2𝜋
∫ 𝑒𝑖𝜔𝑡∞

−∞
𝑑𝜔 ∫ 𝑓(𝑡)

∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡      (3.5) 

 
1

2𝜋
∫ 𝑒𝑖𝜔𝑡∞

−∞
𝑑𝜔 = 𝛿(𝑡)  (3.6) 

 ∫ 𝜑(𝑥)
∞

−∞
𝛿(𝑡 − 𝑥)𝑑𝑥 = 𝜑(𝑡)  (3.7) 

After rearrangement and application of the first identity, we arrive at: 

 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑖𝜔𝑡∞

−∞
𝑑𝜔 =

1

2𝜋
∫ 𝑓(𝑥)

∞

−∞
𝑑𝑥 ∫ 𝑒𝑖𝜔(𝑡−𝑥)∞

−∞
𝑑𝜔 = ∫ 𝑓(𝑥)𝛿(𝑡 − 𝑥)

∞

−∞
𝑑𝑥

  (3.8) 

Recall, however the second identity listed.  Thus,  

 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑖𝜔𝑡∞

−∞
𝑑𝜔 =

1

2𝜋
∫ 𝑓(𝑥)

∞

−∞
𝑑𝑥 ∫ 𝑒𝑖𝜔(𝑡−𝑥)∞

−∞
𝑑𝜔=∫ 𝑓(𝑥)𝛿(𝑡 −

∞

−∞

𝑥) 𝑑𝑥 = 𝑓(𝑡)   (3.9) 

The following two theorems will also be of particular importance to this study: 

1. The Addition Theorem states that if two functions, f(x) and g(x) have FTs F(s) 

and G(s), respectively, then the sum of the two functions has a FT equal to the 

sum of their respective transforms (Bracewell 1965). 

2. The Derivative Theorem states that for some function f(x) whose transform is 

F(s), then the transform of its derivative, f ’(x) is i2πsF(s) (Bracewell 1965). 

These two theorems, whose proofs are available in Bracewell’s text, will prove 

invaluable towards calculating the FT of gravitational potentials. 

3.2 Wavelet Transforms 

Due to the time-independent frequency content of the sine and cosine basis 

functions that comprise the FT, the analysis of the signal is purely in the frequency 

domain.  However, for the windowed FT and Wavelet Transform (WT), the objective is 
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to conduct an analysis of both time and frequency (Starck 2015).  Starck, 2015 notes the 

introduction of the windowed FT, which is a short-time FT (STFT) by (Gabor, 1946) in 

his 1946 paper, “The Theory of Communications”.  This method allows for the analysis 

of non-stationary signals through the use of a sliding Gaussian window yielding 

information on both time and frequency domains (Starck 2015).  From Starck, 2015, 

begin with the formula for the STFT 

 𝑆𝑇𝐹𝑇(𝜏, 𝜔) = ∫ 𝑠(𝑡)
∞

−∞
𝑔(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡  (3.10) 

A new basis is considered 

 𝑘𝜏,𝜔(𝑡) = 𝑔(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡  (3.11) 

and rewritten with a new window size, a, which will be inversely proportional to the 

frequency 𝜔.  Further, τ is replaced by a positional parameter b resulting in the 

continuous wavelet transform (CWT) 

 𝑘𝑏,𝑎(𝑡) =
1

√𝑎
𝜓∗ (

𝑡−𝑏

𝑎
)  (3.12) 

where, 𝜓* is the complex conjugate of 𝜓.  For the CWT, the basis functions are scaled 

forms of the mother wavelet 𝜓 (Starck 2015).  Taking the second derivative of the 

Gaussian (DOG) function, though, results in the Ricker Wavelet, otherwise known as 

the Mexican Hat Wavelet (MHW) due to its sombrero like shape (Daubechies, 1992; 

Ryan, 1994).  Per Daubechies, 1992, if the second derivative of the Gaussian is 

normalized such that L2 norm is 1, then the formula of the MHW is: 

 𝜓(𝑥) =
2

√3
𝜋−1

4⁄ (1 − 𝑥2)𝑒−𝑥2

2⁄   (3.13) 

Starck, 2015 provides a simplified version of this formula as 

 𝜓(𝑥) = (1 − 𝑥2)𝑒−𝑥2

2⁄   (3.14) 
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The MHWs are zero-phase that consist of a central peak with two smaller lobes on either 

side; and, they are uniquely specified by a singular frequency parameter, which is its peak 

frequency (Ryan, 1994).  Like the FT, the CWT also has an inverse that can be recovered 

using the formula below (Starck 2015) 

 𝑓(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)𝜒 (

𝑥−𝑏

𝑎
)

+∞

−∞

𝑑𝑎.𝑑𝑏

𝑎2
,

+∞

0
  (3.15) 

where 

 𝐶𝜒 ∫
�̂�∗(𝜈)�̂�(𝜈)

𝜈
𝑑𝜈

+∞

0
= ∫

�̂�∗(𝜈)�̂�(𝜈)

𝜈

0

−∞
  (3.16) 

The admissibility condition, however, for reconstruction is that Cχ must be finite, which 

means that the mean of the wavelet function is zero (Starck 2015).  Proof of this cyclical 

property will not be addressed here. 

3.3 Power Spectral Density 

Here, the term power refers to the measure of variance; and, power spectral 

density (PSD), also referred to as the power spectrum, is the measure of variance 

distribution with respect to frequency, wavenumber or scale that is contained within the 

signal in question (David M. Glover 2011).  Through the extraction of variance in a 

signal at specific frequencies or wavenumbers, information regarding the placement of 

peaks and the overall shape of the spectrum can help a researcher determine the nature of 

the signal being studied.  PSD can be defined as (Bracewell 1965) 

 ∫ |𝐹(𝑠)|2𝑑𝑠
∞

−∞
  (3.17) 

Also, per Parseval’s Theorem, regardless of how total power is defined, total power in the 

frequency/wavenumber domain must equal total power in the time/spatial domain (Starck 

2015). 
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 ∫ |𝐹(𝑠)|2𝑑𝑠 =
∞

−∞
∫ |𝑌(𝑥)|2𝑑𝑥

∞

−∞
  (3.18) 

Similarly, the same methodology applies with wavelets, where its PSD may be defined as 

 ∫ |𝜓(𝑥)|2𝑑𝑥
∞

−∞
  (3.19) 

3.4 Histogram 

The frequency-of-occurrence diagram or histogram is a type of graphical plot 

dealing with the concepts of sampling and probability (Thomson 1998).  For a given set 

of sample values, a histogram gives information on the frequency of occurrence of a 

particular value (Thomson 1998).  Here, the area distribution of depth references to 

hypsometry, where the calculated curve may be used as a base for describing a region’s 

morphology and geological evolution (Weatherall 2015). 

3.5 Root Mean Square Error 

The root mean square error (RMSE) is defined as 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑜𝑏𝑠 𝑖−𝑥𝑚𝑜𝑑𝑒𝑙 𝑖)

2𝑛
𝑖=1

𝑛
  (3.20) 

This calculation will give the difference in meters between the original bathymetric and 

reconstructed signals which will allow for the comparison between the FFT and sparser 

basis functions. 

The following MATLAB functions were used for the computation of the FFT and 

wavelets: 

 fft/ifft, where ifft is the inverse Fast Fourier Transform. 

 cwtft/icwtft: Continuous Wavelet Fourier Transform and icwtft is its 

inverse.  Note that the cwtft is the required command if an inverse 

transform is required, per Simulink documentation with the reason given 


